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Introduction

*Graphene is a single layer of carbon atoms
*Half-filled mt-orbitals give simple honeycomb
lattice tight-binding band structure



E(E) ~*V, k-K. (i=1,2)




Simple types of edges of ribbons:
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For zigzag-bearded (ZB) case, with convenient
notation, there are exact zero energy states
existing only on A-sites with:

d(m,n) < exp (ik.m)[-2cos (k_/2)]™"

*Localized near bearded edge (n=0) for |k |<2m/3
and near zigzag edge (n=W) for |k |>2m/3

*N.B. k =+2m/3 are the Dirac points

*For zigzag-zigzag (ZZ) case there are 2 bands
with |k, |>2m/3 and |E|~exp[-W], which are

+ combinations of upper & lower edge states



Including Interactions

weak Hubbard interactions have little effect,
with no boundaries even at half-filling, since
4-Fermi interactions are irrelevant in

(2+1) dimensional Dirac theory

*Dirac liquid phase stable up to U_™t

*But they have a large effect on flat edge bands
which have effectively infinite interaction strength
*Mean field theory and numerical methods
indicate ferromagnetic ordering on each edge
*Antiferromagnetic order between edges

in ZZ case at half-filling ;



Lieb’s Theorem

1988: U>0 Hubbard model on bipartite connected
lattice at half-filling has unique ground state

total spin multiplet with S=(1/2)|N,-N;|

where N,, N; are numbers of sites on A and B
sub-lattice

-ZB case: S=(1/2)L, ZZ case: S=0

-for U<<t we expect negligible perturbation of
unpolarized Dirac liquid ground state



*so in ZB case, spin must come from edge states
*there are L edge states so they must be

fully polarized

for W>>1 upper and lower edges very weakly
interact so ~L/3 electrons on (upper) zigzag
edge must have spin ~(1/2)L/3 and ~2L/3
electrons on (lower) zigzag edge must have
spin ~(1/2)2L/3 (fully polarized!)

*Must be ferromagnetic coupling between
upper and lower edge (as shown below)

*For ZZ case, spin~ (1/2)L/3 on both edges but
must be antiferromagetic inter-edge coupling
(as shown below) 9



Projected 1D Hamiltonian
H=U YTk Qlet o0 =0,0Ch_ynCim =0,0]

k.k',.q

[(k.k'.q) = Y8, (k)g,(kK)g,(k+q)g,(k ~q)

(repeated spin indices summed)
Here g, (k) is the wave-function of the edge state
of momentum k at site n from the edge:

g (k) =0(m/3- 1k -7 N[2cos (k/12)]"y/1 - (2cos(k /2)’

Due to restricted range of k this geometric
series decays exponentially
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*N.B.-unusual particle-hole symmetry: ¢, <> c;
*Interaction energy and dispersion are both O(U)
*Energy to add (W) or remove (/) particle relative

tofully polarized spin A stat€: 4y _ 'Sk k' 0)
:

lqlrt/ 3

1n=0.05 1n=0.10 1n=0.109
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*We can simply prove exact ground state of H, is
fully polarized ferromagnet

*This follows because we can write it as a sum

of non-negative terms:

1
- 5202 (@0,(q), [0,(g)=0_,(q)]

0,(@) = Y 8,08, (k+)c},,,Cr0 —0,0]
k

*The fully polarized state is annihilated by all
O,(q) operators
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Uniqueness of ground state follows from observing
that O_(q) | y>=0 for all n implies

+ +
[ChiqoCho T CokoCtogo — 2(5(],0] ¥ >=0, Vk

We can then prove ferromagnetic states are
only ones to satisfy these conditions for all

k,q
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*Fully polarized edge state is consistent with Lieb’s

Theorem
*lt is a kind of spin-polarized semi-metal with a trivial

ground state despite strong interactions
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Since it is only a 2-body problem, it is feasible to
study AM=-1 exciton numerically despite
complicated interactions (L<602)

_ E/U
Bottom of 2 particle
continuum }0

Bound exciton

0.05¢

Near q=2m1/3 we see free
particle hole pair at band
edges

n=0.05 1=0.10 7=0.109

-0.05*
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*Graphene has 2" neighbour hopping:t,/t ~.1 ?
*We might expect a potential acting near edge, V,
*For U, t,, V_<<t, modification to edge Hamiltonian

e

IS: A
S(H —¢,N) = zE(zcos k+Dele. ,A=t,-V
ko

*Here we assume €. is held at energy of
Dirac points, €.=3t,
*This breaks particle-hole symmetry
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For A>0, energy to add a spin down
electron is decreased near k=m or for

A>0, energy to remove a spin up electron
|s decreased near k=7t
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*Increasing A causes the exciton to become
unbound (except close to g=0)

*For |A|>A_~.109 U the edge starts to become
doped at k near 1t (while g is maintained at energy
of Dirac points)

Since exciton is unbound it is plausible that we get
a non-interacting state with no spin down electrons
for A<O or filled band of spin up electrons, A>0
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*We confirmed this by looking at AM=-2 states
near A=A_— no biexiton bound states

*State with no spin down electrons (or no

spin up holes) is non-interacting for our
projected on-site Hubbard model since

particle of same spin don’t interact with each
other
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*Gives simple magnetization curve

*2"d neighbor extended Hubbard

interactions (must couple A to A sites)

would turn this into

a (one or two component) Luttinger liquid state

0.10 0.15 A/U

M/L
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Effect of Edge-Bulk Interactions

*Decay of edge states into bulk states is forbidden
by energy-momentum conservation

*But integrating out bulk electrons induces
interactions between edge modes
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We may calculate induced
Interactions for small
1/W, g and w using Dirac
propagators with correct
boundary conditions
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*Most important interactions involve spin operators
of edge states S;;,,(q,w) on upper and lower

edges — like RKKY

*At energy scales <<v./W, inter-edge interactions is

simply . U’
= JinterSU. SL ’ Jinter = i°2 th

*Ferromagnetic for zigzag-bearded ribbon or
antiferromagnetic for zigzag-zigzag case
*Consistent with S=(1/2)L or O for zigzag-bearded
or zigzag-zigzag ribbon, respectively (Lieb’s
Theorem) 23
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*Intra-edge interaction induced by exchanging
bulk electrons is long range and retarded but
this effect is reduced for Dirac liquid compared
to Fermi liquid

*Example: exciton dispersion gets a correction:

E(g) = 36Uq*> —3(4 —m)(U*/1)g*In g
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*To investigate effects of edge-bulk interactions
more systematically, we plan to use
Renormalization Group

*A type of boundary critical phenomenon in
(2+1) dimensions:

*Gapless (2+1) D Dirac fermions interacting with
spin polarized semi-metallic edge states
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Conclusions

*Small U/t limit is a tractable starting point for
studying graphene edge magnetism

*Both Lieb’s theorem and rigorous result on

1D edge Hamiltonian indicate full polarization

in simplest model

*t, and edge potential lead to doping but

ground state may remain free for Hubbard model
*Edge-bulk interactions stabilize inter-edge
magnetic ground state and introduce long range
retarded interactions
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