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Violence in 
the Cosmos



Ricci curvature:

Einstein’s field 
equation in vacuum: 

Schwarzschild 
metric: 

M
Spacetime around slowly rotating objects (Earth, Sun etc)

Black holes: outstanding prediction of  general 
relativity - Schwarzschild solution (1916)



Properties of a black hole

Surface 
escape velocity

Raio =

2GM

c2
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Speed of 
light
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Completely 
described by 

mass & spin

R =
2GM

c2



McKinney+; Tchekhovskhoy+

Black holes are also the ultimate particle 
accelerators: Accretion produces relativistic jets



based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:
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Here g % detðgl"Þ.
The next four equations express conservation of energy

momentum:

Tl
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where Tl
" is the stress energy tensor. In a coordinate basis,
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where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,

Tl"
fluid ¼ ð!þ uþ pÞulu" þ pgl" ð5Þ

(here u % internal energy and p % pressure), and an
electromagnetic part,

Tl"
EM ¼ Fl%F"

% $ 1
4 g

l"F%&F
%& : ð6Þ

Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:

ulF
l" ¼ 0 : ð7Þ

It is convenient to define the magnetic field 4-vector
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2 (
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where ( is the Levi-Civita tensor. Recall that (following the
notation of MTW) (l"$) ¼ ð$1=

ffiffiffiffiffiffiffi$g
p Þ l"$)½ (, where (l"$))

is the completely antisymmetric symbol and is equal to 0, 1,
or $1. These can be combined (with the aid of
identity 3.50h ofMTW):

Fl" ¼ (l"#$u#b$ : ð9Þ

Substitution and some manipulation (using identities 3.50
of MTW and blul ¼ 0; the latter follows from the
definition of bl and the antisymmetry of F) yield

Tl"
EM ¼ b2ulu" þ 1

2 b
2gl" $ blb" : ð10Þ

Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
higher order in v=c. To sum up,

Tl"
MHD ¼ !þ uþ pþ b2

" #
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2 b
2

" #
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is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current

Jl ¼ Fl"
;" ð13Þ

and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):

F)l" ;" ¼ 0 : ð14Þ

Here F)l" ¼ 1
2 (l"#$F

#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD

F)l" ¼ blu" $ b"ul ; ð15Þ

which can be proved by taking the dual of equation (9).
The components of bl are not independent, since

blul ¼ 0. Following, e.g., Komissarov (1999), it is useful to
define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,

bt ¼ Biulgil; ð16Þ

bi ¼ Bi þ btui

ut
: ð17Þ

The space components of the induction equation then
4 This scheme is also named in honor of R. Härm, who with M.
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:
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where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,

Tl"
fluid ¼ ð!þ uþ pÞulu" þ pgl" ð5Þ

(here u % internal energy and p % pressure), and an
electromagnetic part,

Tl"
EM ¼ Fl%F"
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Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:
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of MTW and blul ¼ 0; the latter follows from the
definition of bl and the antisymmetry of F) yield
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Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
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is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current

Jl ¼ Fl"
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and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):
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#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD
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which can be proved by taking the dual of equation (9).
The components of bl are not independent, since
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define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:
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where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,
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(here u % internal energy and p % pressure), and an
electromagnetic part,
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Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:
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is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations
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The rest ofMaxwell’s equations determine the current

Jl ¼ Fl"
;" ð13Þ

and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):
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#$ is the dual of the electromagnetic field
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which can be proved by taking the dual of equation (9).
The components of bl are not independent, since

blul ¼ 0. Following, e.g., Komissarov (1999), it is useful to
define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:
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where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,

Tl"
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(here u % internal energy and p % pressure), and an
electromagnetic part,
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Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:

ulF
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It is convenient to define the magnetic field 4-vector
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is theMHD stress energy tensor.
The electromagnetic field evolution is given by the
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:
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where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,
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(here u % internal energy and p % pressure), and an
electromagnetic part,
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Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:

ulF
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It is convenient to define the magnetic field 4-vector
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notation of MTW) (l"$) ¼ ð$1=

ffiffiffiffiffiffiffi$g
p Þ l"$)½ (, where (l"$))

is the completely antisymmetric symbol and is equal to 0, 1,
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Substitution and some manipulation (using identities 3.50
of MTW and blul ¼ 0; the latter follows from the
definition of bl and the antisymmetry of F) yield
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Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
higher order in v=c. To sum up,
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is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current
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and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):
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#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD
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which can be proved by taking the dual of equation (9).
The components of bl are not independent, since

blul ¼ 0. Following, e.g., Komissarov (1999), it is useful to
define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,
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The space components of the induction equation then
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:
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where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,
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Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:
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Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
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is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current
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and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):
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#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD

F)l" ¼ blu" $ b"ul ; ð15Þ

which can be proved by taking the dual of equation (9).
The components of bl are not independent, since
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define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:
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where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,

Tl"
fluid ¼ ð!þ uþ pÞulu" þ pgl" ð5Þ

(here u % internal energy and p % pressure), and an
electromagnetic part,
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Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:
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It is convenient to define the magnetic field 4-vector
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where ( is the Levi-Civita tensor. Recall that (following the
notation of MTW) (l"$) ¼ ð$1=
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p Þ l"$)½ (, where (l"$))

is the completely antisymmetric symbol and is equal to 0, 1,
or $1. These can be combined (with the aid of
identity 3.50h ofMTW):

Fl" ¼ (l"#$u#b$ : ð9Þ

Substitution and some manipulation (using identities 3.50
of MTW and blul ¼ 0; the latter follows from the
definition of bl and the antisymmetry of F) yield

Tl"
EM ¼ b2ulu" þ 1
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2gl" $ blb" : ð10Þ

Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
higher order in v=c. To sum up,
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is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current

Jl ¼ Fl"
;" ð13Þ

and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):
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Here F)l" ¼ 1
2 (l"#$F

#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD

F)l" ¼ blu" $ b"ul ; ð15Þ

which can be proved by taking the dual of equation (9).
The components of bl are not independent, since

blul ¼ 0. Following, e.g., Komissarov (1999), it is useful to
define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,

bt ¼ Biulgil; ð16Þ
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The space components of the induction equation then
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:
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The next four equations express conservation of energy
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where Tl
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where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,

Tl"
fluid ¼ ð!þ uþ pÞulu" þ pgl" ð5Þ

(here u % internal energy and p % pressure), and an
electromagnetic part,

Tl"
EM ¼ Fl%F"
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Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:

ulF
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It is convenient to define the magnetic field 4-vector
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where ( is the Levi-Civita tensor. Recall that (following the
notation of MTW) (l"$) ¼ ð$1=
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is the completely antisymmetric symbol and is equal to 0, 1,
or $1. These can be combined (with the aid of
identity 3.50h ofMTW):

Fl" ¼ (l"#$u#b$ : ð9Þ

Substitution and some manipulation (using identities 3.50
of MTW and blul ¼ 0; the latter follows from the
definition of bl and the antisymmetry of F) yield

Tl"
EM ¼ b2ulu" þ 1

2 b
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Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
higher order in v=c. To sum up,

Tl"
MHD ¼ !þ uþ pþ b2
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is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current

Jl ¼ Fl"
;" ð13Þ

and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):

F)l" ;" ¼ 0 : ð14Þ

Here F)l" ¼ 1
2 (l"#$F

#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD

F)l" ¼ blu" $ b"ul ; ð15Þ

which can be proved by taking the dual of equation (9).
The components of bl are not independent, since

blul ¼ 0. Following, e.g., Komissarov (1999), it is useful to
define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,

bt ¼ Biulgil; ð16Þ

bi ¼ Bi þ btui

ut
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The space components of the induction equation then
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Field equations
Mass/energy/
momentum

E e B fields

uses a scheme similar to HARM to control

D

xB. The prob-
lem is integrated in the periodic domain x 2 ð"!; !#,
y 2 ð"!; !# from t ¼ 0 to !. Our version of the OTV has
" ¼ 4=3 but is otherwise identical to the standard problem.

Results are shown in Figure 9, which shows # along a cut
through the model at y ¼ !=2 and t ¼ !. The resolution is
6402. The solid line shows the results from HARM; the
dashed line shows the results from VAC. The lower solid
line shows the difference between the two multiplied by 4.
Evidently our code behaves similarly to VAC on this
problem.

We can quantify this by asking how the difference
between the HARM and VAC solutions changes as a func-
tion of resolution. Figure 10 shows the variation in the L1
norm of the difference between the two solutions. Thus, the
line marked # shows

Z
dx dy # HARM;N2

! "
" # VAC;N2
! "## ## ð34Þ

evaluated at t ¼ !. The codes converge to one another
approximately linearly, as expected for a flow containing
discontinuities. If this study were extended to higher resolu-
tion, convergence would eventually cease because the
HARM solution would differ from the VAC solution as a
result of finite relativistic corrections.

4.5. Bondi Flow in Schwarzschild Geometry

Spherically symmetric accretion (Bondi flow) in the
Schwarzschild geometry has an analytic solution (see, e.g.,
Shapiro & Teukolsky 1983) that can be compared with the
output of our code. This appears to be a one-dimensional

test, but for HARM it is actually two-dimensional.
Although the pressure is independent of the Boyer-
Lindquist coordinate h, the h acceleration does not vanish
identically. This is because pressure enters the momentum
equations through a flux ["@$ðp sin $Þ in the Newtonian
limit] and a source term (p cos $ in the Newtonian limit).
Analytically these terms cancel; numerically they produce
an acceleration that is of order the truncation error.

Our test problem follows that set out in Hawley, Smarr,
& Wilson (1984): we fix the sonic point rs ¼ 8GM=c2,
_MM ¼ 4!r2#ur ¼ "1, and " ¼ 4=3. The problem is integrated
in the domain r 2 ð1:9; 20ÞGM=c2 for Dt ¼ 100GM=c3. We
use coordinates based on the Kerr-Schild system, whose line
element is

ds2 ¼ " 1" 2r

#2
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where we have set GM ¼ c ¼ 1. In equation (35) only
#2 ¼ r2 þ a2 cos2 $; elsewhere, # is density. In this test,
a ¼ 0. We modify these coordinates by replacing r by
x1 ¼ log r. The new coordinates are implemented by chang-
ing the metric rather than changing the spacing of grid
zones. We measure the L1 norm of the difference between
the initial conditions (exact analytic solution) and the final
state. The difference is taken over the inner 3

4 of the grid in
each direction, thus excluding boundary zones where errors
may scale differently. This test exercises many terms in the
code because in Kerr-Schild coordinates only three of the 10
independent components of the metric are zero.

Fig. 10.—Comparison of results from HARM and the nonrelativistic
MHD code VAC for the OTV. The plot shows the L1 norm of the differ-
ence between the two results as a function of resolution for the primitive
variables # (squares) and u (triangles). The straight line shows the slope
expected for first-order convergence. The errors are large because they are
an integral over an area of (2!)2.

Fig. 11.—Convergence results for the unmagnetized Bondi accretion test
onto a Schwarzschild black hole. The straight line shows the slope expected
for second-order convergence.
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#2 ¼ r2 þ a2 cos2 $; elsewhere, # is density. In this test,
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x1 ¼ log r. The new coordinates are implemented by chang-
ing the metric rather than changing the spacing of grid
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Results are shown in Figure 9, which shows # along a cut
through the model at y ¼ !=2 and t ¼ !. The resolution is
6402. The solid line shows the results from HARM; the
dashed line shows the results from VAC. The lower solid
line shows the difference between the two multiplied by 4.
Evidently our code behaves similarly to VAC on this
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We can quantify this by asking how the difference
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norm of the difference between the two solutions. Thus, the
line marked # shows
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! "## ## ð34Þ

evaluated at t ¼ !. The codes converge to one another
approximately linearly, as expected for a flow containing
discontinuities. If this study were extended to higher resolu-
tion, convergence would eventually cease because the
HARM solution would differ from the VAC solution as a
result of finite relativistic corrections.

4.5. Bondi Flow in Schwarzschild Geometry

Spherically symmetric accretion (Bondi flow) in the
Schwarzschild geometry has an analytic solution (see, e.g.,
Shapiro & Teukolsky 1983) that can be compared with the
output of our code. This appears to be a one-dimensional

test, but for HARM it is actually two-dimensional.
Although the pressure is independent of the Boyer-
Lindquist coordinate h, the h acceleration does not vanish
identically. This is because pressure enters the momentum
equations through a flux ["@$ðp sin $Þ in the Newtonian
limit] and a source term (p cos $ in the Newtonian limit).
Analytically these terms cancel; numerically they produce
an acceleration that is of order the truncation error.

Our test problem follows that set out in Hawley, Smarr,
& Wilson (1984): we fix the sonic point rs ¼ 8GM=c2,
_MM ¼ 4!r2#ur ¼ "1, and " ¼ 4=3. The problem is integrated
in the domain r 2 ð1:9; 20ÞGM=c2 for Dt ¼ 100GM=c3. We
use coordinates based on the Kerr-Schild system, whose line
element is

ds2 ¼ " 1" 2r

#2

$ %
dt2 þ 4r

#2

$ %
dr dtþ 1þ 2r

#2

$ %
dr2 þ #2 d$2

þ sin2 $ #2 þ a2 1þ 2r

#2

$ %
sin2 $

& '
d%2

"
$
4ar sin2 $

#2

%
d%" 2a 1þ 2r

#2

$ %
sin2 $ dr d% ; ð35Þ

where we have set GM ¼ c ¼ 1. In equation (35) only
#2 ¼ r2 þ a2 cos2 $; elsewhere, # is density. In this test,
a ¼ 0. We modify these coordinates by replacing r by
x1 ¼ log r. The new coordinates are implemented by chang-
ing the metric rather than changing the spacing of grid
zones. We measure the L1 norm of the difference between
the initial conditions (exact analytic solution) and the final
state. The difference is taken over the inner 3

4 of the grid in
each direction, thus excluding boundary zones where errors
may scale differently. This test exercises many terms in the
code because in Kerr-Schild coordinates only three of the 10
independent components of the metric are zero.

Fig. 10.—Comparison of results from HARM and the nonrelativistic
MHD code VAC for the OTV. The plot shows the L1 norm of the differ-
ence between the two results as a function of resolution for the primitive
variables # (squares) and u (triangles). The straight line shows the slope
expected for first-order convergence. The errors are large because they are
an integral over an area of (2!)2.

Fig. 11.—Convergence results for the unmagnetized Bondi accretion test
onto a Schwarzschild black hole. The straight line shows the slope expected
for second-order convergence.
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limit the time step to the light-crossing time, which prohibitively
increases the computational cost (as the fluid dynamics evolve on a
much slower time-scale) or one must handle all the radiation terms
via an implicit method. The latter inevitably couples neighbouring
cells and makes the code very complicated. Moreover, it does not
easily generalize to curved space–time.

In contrast, a GR code is applied only in relativistic space–times
near BHs and neutron stars. The time step in simulations is generally
set by applying the Courant condition to the smallest grid cell,
located at the innermost radius, where the flow is relativistic. Thus,
the normal time step in a pure GR hydrodynamic or GRMHD code is
already limited by the speed of light. Therefore, including radiation
as an extra relativistic fluid is fairly easy. In particular, the advection
terms in the radiation equations are no more difficult to compute than
the corresponding terms in the fluid and magnetic field evolution
equations. Nor does the time step need to be adjusted in any way.
Because of this large simplification, the advective radiation operator
can be treated via a standard explicit approach, just as one handles
the corresponding hydrodynamic and MHD terms.

Of course, the interactions between radiation and gas via emis-
sion, absorption and scattering introduce their own time-scales.
These can sometimes be very short, requiring implicit handling.
However, these interactions are local and can be handled via a local
implicit scheme. This is a great simplification. It means that one
can do implicit evolution independently in each grid cell, without
coupling to other cells. Therefore, there are no space–time curva-
ture effects to contend with as in other more sophisticated multicell
implicit schemes in GR.

In the work described here, we have implemented the above ap-
proach, closing the radiation moment equations using the M1 clo-
sure scheme (Levermore 1984; Dubroca & Feugeas 1999; González
et al. 2007). M1 closure allows a limited treatment of anisotropic
radiation fields and works well in both optically thick and thin
regimes. We have implemented our method in a GR radiation hy-
drodynamics (GRRHD) code KORAL. The structure of the paper is
as follows. In Section 2 we introduce the equations, in Section 3
we describe the numerical algorithm used by KORAL, in Section 4
we present a set of test problems which validate the scheme, and in
Section 5 we discuss possible applications of the code.

2 EQUATIO N S

2.1 Conservation laws

A pure hydrodynamic flow is described by the following conserva-
tion laws,

(ρuµ);µ = 0, (1)

(T µ
ν );µ = 0, (2)

where ρ is the gas density in the comoving fluid frame, uµ is the
gas four-velocity as measured in the ‘lab frame’ and T µ

ν is the
hydrodynamical stress-energy tensor in this frame,

T µ
ν = (ρ + u + p)uµuν + pδµ

ν , (3)

with u and p representing the internal energy and pressure of the
gas in the comoving frame.

In the case of radiation hydrodynamics, it is convenient to intro-
duce the radiation stress-energy tensor Rµ

ν (e.g. Mihalas & Mihalas

1984) and to replace the second equation above with the more gen-
eral conservation law,
(
T µ

ν + Rµ
ν

)
;µ = 0. (4)

The radiation stress-energy tensor in an orthonormal frame com-
prises various moments of the specific intensity Iν , e.g. in the fluid
frame it takes the following form,

R̂ =
[

Ê F̂ i

F̂ j P̂ ij

]
, (5)

where the fluid-frame quantities2

Ê =
∫

Îν dν d$, (6)

F̂ i =
∫

Îν dν d$ Ni, (7)

P̂ ij =
∫

Îν dν d$ Ni Nj (8)

are the radiation energy density, the radiation flux and the radiation
pressure tensor, respectively, and Ni is a unit vector in direction xi.

The fluid-frame radiation stress tensor R̂ is related to the tensor
R̃ defined in the locally flat non-rotating frame, or the zero-angular-
momentum observer (ZAMO) frame (Bardeen, Press & Teukolsky
1972), by

R̃µν = %µ
α (ũ)%ν

β (ũ)R̂αβ , (9)

where % is the Lorentz boost,

%(ũ) =
[

γ γ ṽi

γ ṽj δij + ṽi ṽj (γ−1)
ṽ2

]
, (10)

γ = ũt , ṽi = ũi/ũt and ũµ is the four-velocity of the gas as mea-
sured by the locally non-rotating observer.

Quantities in the ZAMO frame (denoted with tildes) are related
to those in the lab frame by tensors created from the components
of the corresponding tetrads of the ZAMO, eµ

ν and ẽµ
ν , defined in

Bardeen et al. (1972). The radiation tensor transforms as

Rµν = eµ
α eν

βR̃αβ , (11)

R̃µν = ẽµ
α ẽν

βRαβ , (12)

while four-vectors transform as

uµ = eµ
α ũα, (13)

ũµ = ẽµ
α uα . (14)

The conservation law (4) may be rewritten with the help of the
radiation four-force density Gν as
(
T µ

ν

)
;µ = Gν,

(
Rµ

ν

)
;µ = −Gν, (15)

where Gν is given by (Mihalas & Mihalas 1984)

Gν =
∫

(χνIν − ην) dν d$ Ni, (16)

2 Throughout the paper, ‘wide hats’ denote quantities in the fluid frame and
‘tildes’ denote quantities in the ZAMO frame.
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:

1
ffiffiffiffiffiffiffi$g

p @l
ffiffiffiffiffiffiffi$g

p
!ul

" #
¼ 0 : ð2Þ

Here g % detðgl"Þ.
The next four equations express conservation of energy

momentum:

Tl
";l ¼ 0 ; ð3Þ

where Tl
" is the stress energy tensor. In a coordinate basis,

@t
ffiffiffiffiffiffiffi$g

p
Tt
"

" #
¼ $@i

ffiffiffiffiffiffiffi$g
p

Ti
"

" #
þ ffiffiffiffiffiffiffi$g
p

T#
$!

$
"#; ð4Þ

where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,

Tl"
fluid ¼ ð!þ uþ pÞulu" þ pgl" ð5Þ

(here u % internal energy and p % pressure), and an
electromagnetic part,

Tl"
EM ¼ Fl%F"

% $ 1
4 g

l"F%&F
%& : ð6Þ

Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:

ulF
l" ¼ 0 : ð7Þ

It is convenient to define the magnetic field 4-vector

bl % 1
2 (

l"#$u"F$# ; ð8Þ

where ( is the Levi-Civita tensor. Recall that (following the
notation of MTW) (l"$) ¼ ð$1=

ffiffiffiffiffiffiffi$g
p Þ l"$)½ (, where (l"$))

is the completely antisymmetric symbol and is equal to 0, 1,
or $1. These can be combined (with the aid of
identity 3.50h ofMTW):

Fl" ¼ (l"#$u#b$ : ð9Þ

Substitution and some manipulation (using identities 3.50
of MTW and blul ¼ 0; the latter follows from the
definition of bl and the antisymmetry of F) yield

Tl"
EM ¼ b2ulu" þ 1

2 b
2gl" $ blb" : ð10Þ

Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
higher order in v=c. To sum up,

Tl"
MHD ¼ !þ uþ pþ b2

" #
ulu" þ pþ 1

2 b
2

" #
gl" $ blb" ð11Þ

is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current

Jl ¼ Fl"
;" ð13Þ

and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):

F)l" ;" ¼ 0 : ð14Þ

Here F)l" ¼ 1
2 (l"#$F

#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD

F)l" ¼ blu" $ b"ul ; ð15Þ

which can be proved by taking the dual of equation (9).
The components of bl are not independent, since

blul ¼ 0. Following, e.g., Komissarov (1999), it is useful to
define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,

bt ¼ Biulgil; ð16Þ

bi ¼ Bi þ btui

ut
: ð17Þ

The space components of the induction equation then
4 This scheme is also named in honor of R. Härm, who with M.

Schwarzschild was a pioneer of numerical astrophysics.
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:

1
ffiffiffiffiffiffiffi$g

p @l
ffiffiffiffiffiffiffi$g

p
!ul

" #
¼ 0 : ð2Þ

Here g % detðgl"Þ.
The next four equations express conservation of energy

momentum:

Tl
";l ¼ 0 ; ð3Þ

where Tl
" is the stress energy tensor. In a coordinate basis,

@t
ffiffiffiffiffiffiffi$g

p
Tt
"

" #
¼ $@i

ffiffiffiffiffiffiffi$g
p

Ti
"

" #
þ ffiffiffiffiffiffiffi$g
p

T#
$!

$
"#; ð4Þ

where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,

Tl"
fluid ¼ ð!þ uþ pÞulu" þ pgl" ð5Þ

(here u % internal energy and p % pressure), and an
electromagnetic part,

Tl"
EM ¼ Fl%F"

% $ 1
4 g

l"F%&F
%& : ð6Þ

Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:

ulF
l" ¼ 0 : ð7Þ

It is convenient to define the magnetic field 4-vector

bl % 1
2 (

l"#$u"F$# ; ð8Þ

where ( is the Levi-Civita tensor. Recall that (following the
notation of MTW) (l"$) ¼ ð$1=

ffiffiffiffiffiffiffi$g
p Þ l"$)½ (, where (l"$))

is the completely antisymmetric symbol and is equal to 0, 1,
or $1. These can be combined (with the aid of
identity 3.50h ofMTW):

Fl" ¼ (l"#$u#b$ : ð9Þ

Substitution and some manipulation (using identities 3.50
of MTW and blul ¼ 0; the latter follows from the
definition of bl and the antisymmetry of F) yield

Tl"
EM ¼ b2ulu" þ 1

2 b
2gl" $ blb" : ð10Þ

Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
higher order in v=c. To sum up,

Tl"
MHD ¼ !þ uþ pþ b2

" #
ulu" þ pþ 1

2 b
2

" #
gl" $ blb" ð11Þ

is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current

Jl ¼ Fl"
;" ð13Þ

and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):

F)l" ;" ¼ 0 : ð14Þ

Here F)l" ¼ 1
2 (l"#$F

#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD

F)l" ¼ blu" $ b"ul ; ð15Þ

which can be proved by taking the dual of equation (9).
The components of bl are not independent, since

blul ¼ 0. Following, e.g., Komissarov (1999), it is useful to
define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,

bt ¼ Biulgil; ð16Þ

bi ¼ Bi þ btui

ut
: ð17Þ

The space components of the induction equation then
4 This scheme is also named in honor of R. Härm, who with M.

Schwarzschild was a pioneer of numerical astrophysics.
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based on a Roe-type approximate Riemann solver, as well
as by the work of Del Zanna & Bucciantini (2002) and Del
Zanna et al. (2002), who chose to use the simple approxi-
mate Riemann solver of Harten, Lax, & van Leer (1983) in
their special relativistic hydrodynamics and SRMHD
schemes, respectively.

Our numerical scheme is called HARM, for high-accu-
racy relativistic magnetohydrodynamics.4 In x 2 we develop
the basic equations in the form used for numerical integra-
tion in HARM. In x 3 we describe the basic algorithm. In x 4
we describe the performance of the code on a series of
test problems. In x 5 we describe a sample evolution of a
magnetized torus near a rotating black hole.

2. A GRMHD PRIMER

The equations of GRMHD are well known, but for
clarity we will develop them here in the same form used in
numerical integration. Unless otherwise noted, c ¼ 1, and
we follow the notational conventions of Misner, Thorne, &
Wheeler (1973, hereafterMTW). The reader may also find it
useful to consult Anile (1989).

The first governing equation describes the conservation
of particle number:

ðnulÞ;l ¼ 0 : ð1Þ

Here n is the particle number density and ul is the 4-velocity.
For numerical purposes we rewrite this in a coordinate
basis, replacing n with the ‘‘ rest-mass density ’’ ! ¼ mn,
wherem is the mean rest mass per particle:

1
ffiffiffiffiffiffiffi$g

p @l
ffiffiffiffiffiffiffi$g

p
!ul

" #
¼ 0 : ð2Þ

Here g % detðgl"Þ.
The next four equations express conservation of energy

momentum:

Tl
";l ¼ 0 ; ð3Þ

where Tl
" is the stress energy tensor. In a coordinate basis,

@t
ffiffiffiffiffiffiffi$g

p
Tt
"

" #
¼ $@i

ffiffiffiffiffiffiffi$g
p

Ti
"

" #
þ ffiffiffiffiffiffiffi$g
p

T#
$!

$
"#; ð4Þ

where i denotes a spatial index and !$
"# is the connection.

The energy momentum equations have been written with
the free index down for a reason. Symmetries of the metric
give rise to conserved currents. In the Kerr metric, for exam-
ple, the axisymmetry and stationary nature of the metric
give rise to conserved angular momentum and energy cur-
rents. In general, for metrics with an ignorable coordinate
xl the source terms on the right-hand side of the evolution
equation for Tt

l vanish. These source terms do not vanish
when the equation is written with both indices up.

The stress energy tensor for a system containing only a
perfect fluid and an electromagnetic field is the sum of a
fluid part,

Tl"
fluid ¼ ð!þ uþ pÞulu" þ pgl" ð5Þ

(here u % internal energy and p % pressure), and an
electromagnetic part,

Tl"
EM ¼ Fl%F"

% $ 1
4 g

l"F%&F
%& : ð6Þ

Here Fl" is the electromagnetic field tensor (MTW:
‘‘ Faraday ’’), and for convenience we have absorbed a
factor of 4'ð Þ1=2 into the definition of F.

The electromagnetic portion of the stress energy tensor
simplifies if we adopt the ideal MHD approximation, in
which the electric field vanishes in the fluid rest frame as
a result of the high conductivity of the plasma
(E þ v! B ¼ 0). Equivalently the Lorentz force on a
charged particle vanishes in the fluid frame:

ulF
l" ¼ 0 : ð7Þ

It is convenient to define the magnetic field 4-vector

bl % 1
2 (

l"#$u"F$# ; ð8Þ

where ( is the Levi-Civita tensor. Recall that (following the
notation of MTW) (l"$) ¼ ð$1=

ffiffiffiffiffiffiffi$g
p Þ l"$)½ (, where (l"$))

is the completely antisymmetric symbol and is equal to 0, 1,
or $1. These can be combined (with the aid of
identity 3.50h ofMTW):

Fl" ¼ (l"#$u#b$ : ð9Þ

Substitution and some manipulation (using identities 3.50
of MTW and blul ¼ 0; the latter follows from the
definition of bl and the antisymmetry of F) yield

Tl"
EM ¼ b2ulu" þ 1

2 b
2gl" $ blb" : ð10Þ

Notice that the last two terms are nearly identical to the
nonrelativistic MHD stress tensor, while the first term is
higher order in v=c. To sum up,

Tl"
MHD ¼ !þ uþ pþ b2

" #
ulu" þ pþ 1

2 b
2

" #
gl" $ blb" ð11Þ

is theMHD stress energy tensor.
The electromagnetic field evolution is given by the

source-free part ofMaxwell’s equations

Fl";$ þ F$l;" þ F"$;l ¼ 0 : ð12Þ

The rest ofMaxwell’s equations determine the current

Jl ¼ Fl"
;" ð13Þ

and are not needed for the evolution, as in nonrelativistic
MHD.

Maxwell’s equations can be written in conservative form
by taking the dual of equation (12):

F)l" ;" ¼ 0 : ð14Þ

Here F)l" ¼ 1
2 (l"#$F

#$ is the dual of the electromagnetic field
tensor (MTW: ‘‘Maxwell ’’). In ideal MHD

F)l" ¼ blu" $ b"ul ; ð15Þ

which can be proved by taking the dual of equation (9).
The components of bl are not independent, since

blul ¼ 0. Following, e.g., Komissarov (1999), it is useful to
define the magnetic field 3-vector Bi ¼ F)it. In terms ofBi,

bt ¼ Biulgil; ð16Þ

bi ¼ Bi þ btui

ut
: ð17Þ

The space components of the induction equation then
4 This scheme is also named in honor of R. Härm, who with M.
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limit the time step to the light-crossing time, which prohibitively
increases the computational cost (as the fluid dynamics evolve on a
much slower time-scale) or one must handle all the radiation terms
via an implicit method. The latter inevitably couples neighbouring
cells and makes the code very complicated. Moreover, it does not
easily generalize to curved space–time.

In contrast, a GR code is applied only in relativistic space–times
near BHs and neutron stars. The time step in simulations is generally
set by applying the Courant condition to the smallest grid cell,
located at the innermost radius, where the flow is relativistic. Thus,
the normal time step in a pure GR hydrodynamic or GRMHD code is
already limited by the speed of light. Therefore, including radiation
as an extra relativistic fluid is fairly easy. In particular, the advection
terms in the radiation equations are no more difficult to compute than
the corresponding terms in the fluid and magnetic field evolution
equations. Nor does the time step need to be adjusted in any way.
Because of this large simplification, the advective radiation operator
can be treated via a standard explicit approach, just as one handles
the corresponding hydrodynamic and MHD terms.

Of course, the interactions between radiation and gas via emis-
sion, absorption and scattering introduce their own time-scales.
These can sometimes be very short, requiring implicit handling.
However, these interactions are local and can be handled via a local
implicit scheme. This is a great simplification. It means that one
can do implicit evolution independently in each grid cell, without
coupling to other cells. Therefore, there are no space–time curva-
ture effects to contend with as in other more sophisticated multicell
implicit schemes in GR.

In the work described here, we have implemented the above ap-
proach, closing the radiation moment equations using the M1 clo-
sure scheme (Levermore 1984; Dubroca & Feugeas 1999; González
et al. 2007). M1 closure allows a limited treatment of anisotropic
radiation fields and works well in both optically thick and thin
regimes. We have implemented our method in a GR radiation hy-
drodynamics (GRRHD) code KORAL. The structure of the paper is
as follows. In Section 2 we introduce the equations, in Section 3
we describe the numerical algorithm used by KORAL, in Section 4
we present a set of test problems which validate the scheme, and in
Section 5 we discuss possible applications of the code.

2 EQUATIO N S

2.1 Conservation laws

A pure hydrodynamic flow is described by the following conserva-
tion laws,

(ρuµ);µ = 0, (1)

(T µ
ν );µ = 0, (2)

where ρ is the gas density in the comoving fluid frame, uµ is the
gas four-velocity as measured in the ‘lab frame’ and T µ

ν is the
hydrodynamical stress-energy tensor in this frame,

T µ
ν = (ρ + u + p)uµuν + pδµ

ν , (3)

with u and p representing the internal energy and pressure of the
gas in the comoving frame.

In the case of radiation hydrodynamics, it is convenient to intro-
duce the radiation stress-energy tensor Rµ

ν (e.g. Mihalas & Mihalas

1984) and to replace the second equation above with the more gen-
eral conservation law,
(
T µ

ν + Rµ
ν

)
;µ = 0. (4)

The radiation stress-energy tensor in an orthonormal frame com-
prises various moments of the specific intensity Iν , e.g. in the fluid
frame it takes the following form,

R̂ =
[

Ê F̂ i

F̂ j P̂ ij

]
, (5)

where the fluid-frame quantities2

Ê =
∫

Îν dν d$, (6)

F̂ i =
∫

Îν dν d$ Ni, (7)

P̂ ij =
∫

Îν dν d$ Ni Nj (8)

are the radiation energy density, the radiation flux and the radiation
pressure tensor, respectively, and Ni is a unit vector in direction xi.

The fluid-frame radiation stress tensor R̂ is related to the tensor
R̃ defined in the locally flat non-rotating frame, or the zero-angular-
momentum observer (ZAMO) frame (Bardeen, Press & Teukolsky
1972), by

R̃µν = %µ
α (ũ)%ν

β (ũ)R̂αβ , (9)

where % is the Lorentz boost,

%(ũ) =
[

γ γ ṽi

γ ṽj δij + ṽi ṽj (γ−1)
ṽ2

]
, (10)

γ = ũt , ṽi = ũi/ũt and ũµ is the four-velocity of the gas as mea-
sured by the locally non-rotating observer.

Quantities in the ZAMO frame (denoted with tildes) are related
to those in the lab frame by tensors created from the components
of the corresponding tetrads of the ZAMO, eµ

ν and ẽµ
ν , defined in

Bardeen et al. (1972). The radiation tensor transforms as

Rµν = eµ
α eν

βR̃αβ , (11)

R̃µν = ẽµ
α ẽν

βRαβ , (12)

while four-vectors transform as

uµ = eµ
α ũα, (13)

ũµ = ẽµ
α uα . (14)

The conservation law (4) may be rewritten with the help of the
radiation four-force density Gν as
(
T µ

ν

)
;µ = Gν,

(
Rµ

ν

)
;µ = −Gν, (15)

where Gν is given by (Mihalas & Mihalas 1984)

Gν =
∫

(χνIν − ην) dν d$ Ni, (16)

2 Throughout the paper, ‘wide hats’ denote quantities in the fluid frame and
‘tildes’ denote quantities in the ZAMO frame.
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limit the time step to the light-crossing time, which prohibitively
increases the computational cost (as the fluid dynamics evolve on a
much slower time-scale) or one must handle all the radiation terms
via an implicit method. The latter inevitably couples neighbouring
cells and makes the code very complicated. Moreover, it does not
easily generalize to curved space–time.

In contrast, a GR code is applied only in relativistic space–times
near BHs and neutron stars. The time step in simulations is generally
set by applying the Courant condition to the smallest grid cell,
located at the innermost radius, where the flow is relativistic. Thus,
the normal time step in a pure GR hydrodynamic or GRMHD code is
already limited by the speed of light. Therefore, including radiation
as an extra relativistic fluid is fairly easy. In particular, the advection
terms in the radiation equations are no more difficult to compute than
the corresponding terms in the fluid and magnetic field evolution
equations. Nor does the time step need to be adjusted in any way.
Because of this large simplification, the advective radiation operator
can be treated via a standard explicit approach, just as one handles
the corresponding hydrodynamic and MHD terms.

Of course, the interactions between radiation and gas via emis-
sion, absorption and scattering introduce their own time-scales.
These can sometimes be very short, requiring implicit handling.
However, these interactions are local and can be handled via a local
implicit scheme. This is a great simplification. It means that one
can do implicit evolution independently in each grid cell, without
coupling to other cells. Therefore, there are no space–time curva-
ture effects to contend with as in other more sophisticated multicell
implicit schemes in GR.

In the work described here, we have implemented the above ap-
proach, closing the radiation moment equations using the M1 clo-
sure scheme (Levermore 1984; Dubroca & Feugeas 1999; González
et al. 2007). M1 closure allows a limited treatment of anisotropic
radiation fields and works well in both optically thick and thin
regimes. We have implemented our method in a GR radiation hy-
drodynamics (GRRHD) code KORAL. The structure of the paper is
as follows. In Section 2 we introduce the equations, in Section 3
we describe the numerical algorithm used by KORAL, in Section 4
we present a set of test problems which validate the scheme, and in
Section 5 we discuss possible applications of the code.

2 EQUATIO N S

2.1 Conservation laws

A pure hydrodynamic flow is described by the following conserva-
tion laws,

(ρuµ);µ = 0, (1)

(T µ
ν );µ = 0, (2)

where ρ is the gas density in the comoving fluid frame, uµ is the
gas four-velocity as measured in the ‘lab frame’ and T µ

ν is the
hydrodynamical stress-energy tensor in this frame,

T µ
ν = (ρ + u + p)uµuν + pδµ

ν , (3)

with u and p representing the internal energy and pressure of the
gas in the comoving frame.

In the case of radiation hydrodynamics, it is convenient to intro-
duce the radiation stress-energy tensor Rµ

ν (e.g. Mihalas & Mihalas

1984) and to replace the second equation above with the more gen-
eral conservation law,
(
T µ

ν + Rµ
ν

)
;µ = 0. (4)

The radiation stress-energy tensor in an orthonormal frame com-
prises various moments of the specific intensity Iν , e.g. in the fluid
frame it takes the following form,

R̂ =
[

Ê F̂ i

F̂ j P̂ ij

]
, (5)

where the fluid-frame quantities2

Ê =
∫

Îν dν d$, (6)

F̂ i =
∫

Îν dν d$ Ni, (7)

P̂ ij =
∫

Îν dν d$ Ni Nj (8)

are the radiation energy density, the radiation flux and the radiation
pressure tensor, respectively, and Ni is a unit vector in direction xi.

The fluid-frame radiation stress tensor R̂ is related to the tensor
R̃ defined in the locally flat non-rotating frame, or the zero-angular-
momentum observer (ZAMO) frame (Bardeen, Press & Teukolsky
1972), by

R̃µν = %µ
α (ũ)%ν

β (ũ)R̂αβ , (9)

where % is the Lorentz boost,

%(ũ) =
[

γ γ ṽi

γ ṽj δij + ṽi ṽj (γ−1)
ṽ2

]
, (10)

γ = ũt , ṽi = ũi/ũt and ũµ is the four-velocity of the gas as mea-
sured by the locally non-rotating observer.

Quantities in the ZAMO frame (denoted with tildes) are related
to those in the lab frame by tensors created from the components
of the corresponding tetrads of the ZAMO, eµ

ν and ẽµ
ν , defined in

Bardeen et al. (1972). The radiation tensor transforms as

Rµν = eµ
α eν

βR̃αβ , (11)

R̃µν = ẽµ
α ẽν

βRαβ , (12)

while four-vectors transform as

uµ = eµ
α ũα, (13)

ũµ = ẽµ
α uα . (14)

The conservation law (4) may be rewritten with the help of the
radiation four-force density Gν as
(
T µ

ν

)
;µ = Gν,

(
Rµ

ν

)
;µ = −Gν, (15)

where Gν is given by (Mihalas & Mihalas 1984)

Gν =
∫

(χνIν − ην) dν d$ Ni, (16)

2 Throughout the paper, ‘wide hats’ denote quantities in the fluid frame and
‘tildes’ denote quantities in the ZAMO frame.
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limit the time step to the light-crossing time, which prohibitively
increases the computational cost (as the fluid dynamics evolve on a
much slower time-scale) or one must handle all the radiation terms
via an implicit method. The latter inevitably couples neighbouring
cells and makes the code very complicated. Moreover, it does not
easily generalize to curved space–time.

In contrast, a GR code is applied only in relativistic space–times
near BHs and neutron stars. The time step in simulations is generally
set by applying the Courant condition to the smallest grid cell,
located at the innermost radius, where the flow is relativistic. Thus,
the normal time step in a pure GR hydrodynamic or GRMHD code is
already limited by the speed of light. Therefore, including radiation
as an extra relativistic fluid is fairly easy. In particular, the advection
terms in the radiation equations are no more difficult to compute than
the corresponding terms in the fluid and magnetic field evolution
equations. Nor does the time step need to be adjusted in any way.
Because of this large simplification, the advective radiation operator
can be treated via a standard explicit approach, just as one handles
the corresponding hydrodynamic and MHD terms.

Of course, the interactions between radiation and gas via emis-
sion, absorption and scattering introduce their own time-scales.
These can sometimes be very short, requiring implicit handling.
However, these interactions are local and can be handled via a local
implicit scheme. This is a great simplification. It means that one
can do implicit evolution independently in each grid cell, without
coupling to other cells. Therefore, there are no space–time curva-
ture effects to contend with as in other more sophisticated multicell
implicit schemes in GR.

In the work described here, we have implemented the above ap-
proach, closing the radiation moment equations using the M1 clo-
sure scheme (Levermore 1984; Dubroca & Feugeas 1999; González
et al. 2007). M1 closure allows a limited treatment of anisotropic
radiation fields and works well in both optically thick and thin
regimes. We have implemented our method in a GR radiation hy-
drodynamics (GRRHD) code KORAL. The structure of the paper is
as follows. In Section 2 we introduce the equations, in Section 3
we describe the numerical algorithm used by KORAL, in Section 4
we present a set of test problems which validate the scheme, and in
Section 5 we discuss possible applications of the code.

2 EQUATIO N S

2.1 Conservation laws

A pure hydrodynamic flow is described by the following conserva-
tion laws,

(ρuµ);µ = 0, (1)

(T µ
ν );µ = 0, (2)

where ρ is the gas density in the comoving fluid frame, uµ is the
gas four-velocity as measured in the ‘lab frame’ and T µ

ν is the
hydrodynamical stress-energy tensor in this frame,

T µ
ν = (ρ + u + p)uµuν + pδµ

ν , (3)

with u and p representing the internal energy and pressure of the
gas in the comoving frame.

In the case of radiation hydrodynamics, it is convenient to intro-
duce the radiation stress-energy tensor Rµ

ν (e.g. Mihalas & Mihalas

1984) and to replace the second equation above with the more gen-
eral conservation law,
(
T µ

ν + Rµ
ν

)
;µ = 0. (4)

The radiation stress-energy tensor in an orthonormal frame com-
prises various moments of the specific intensity Iν , e.g. in the fluid
frame it takes the following form,

R̂ =
[

Ê F̂ i

F̂ j P̂ ij

]
, (5)

where the fluid-frame quantities2

Ê =
∫

Îν dν d$, (6)

F̂ i =
∫

Îν dν d$ Ni, (7)

P̂ ij =
∫

Îν dν d$ Ni Nj (8)

are the radiation energy density, the radiation flux and the radiation
pressure tensor, respectively, and Ni is a unit vector in direction xi.

The fluid-frame radiation stress tensor R̂ is related to the tensor
R̃ defined in the locally flat non-rotating frame, or the zero-angular-
momentum observer (ZAMO) frame (Bardeen, Press & Teukolsky
1972), by

R̃µν = %µ
α (ũ)%ν

β (ũ)R̂αβ , (9)

where % is the Lorentz boost,

%(ũ) =
[

γ γ ṽi

γ ṽj δij + ṽi ṽj (γ−1)
ṽ2

]
, (10)

γ = ũt , ṽi = ũi/ũt and ũµ is the four-velocity of the gas as mea-
sured by the locally non-rotating observer.

Quantities in the ZAMO frame (denoted with tildes) are related
to those in the lab frame by tensors created from the components
of the corresponding tetrads of the ZAMO, eµ

ν and ẽµ
ν , defined in

Bardeen et al. (1972). The radiation tensor transforms as

Rµν = eµ
α eν

βR̃αβ , (11)

R̃µν = ẽµ
α ẽν

βRαβ , (12)

while four-vectors transform as

uµ = eµ
α ũα, (13)

ũµ = ẽµ
α uα . (14)

The conservation law (4) may be rewritten with the help of the
radiation four-force density Gν as
(
T µ

ν

)
;µ = Gν,

(
Rµ

ν

)
;µ = −Gν, (15)

where Gν is given by (Mihalas & Mihalas 1984)

Gν =
∫

(χνIν − ην) dν d$ Ni, (16)

2 Throughout the paper, ‘wide hats’ denote quantities in the fluid frame and
‘tildes’ denote quantities in the ZAMO frame.
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limit the time step to the light-crossing time, which prohibitively
increases the computational cost (as the fluid dynamics evolve on a
much slower time-scale) or one must handle all the radiation terms
via an implicit method. The latter inevitably couples neighbouring
cells and makes the code very complicated. Moreover, it does not
easily generalize to curved space–time.

In contrast, a GR code is applied only in relativistic space–times
near BHs and neutron stars. The time step in simulations is generally
set by applying the Courant condition to the smallest grid cell,
located at the innermost radius, where the flow is relativistic. Thus,
the normal time step in a pure GR hydrodynamic or GRMHD code is
already limited by the speed of light. Therefore, including radiation
as an extra relativistic fluid is fairly easy. In particular, the advection
terms in the radiation equations are no more difficult to compute than
the corresponding terms in the fluid and magnetic field evolution
equations. Nor does the time step need to be adjusted in any way.
Because of this large simplification, the advective radiation operator
can be treated via a standard explicit approach, just as one handles
the corresponding hydrodynamic and MHD terms.

Of course, the interactions between radiation and gas via emis-
sion, absorption and scattering introduce their own time-scales.
These can sometimes be very short, requiring implicit handling.
However, these interactions are local and can be handled via a local
implicit scheme. This is a great simplification. It means that one
can do implicit evolution independently in each grid cell, without
coupling to other cells. Therefore, there are no space–time curva-
ture effects to contend with as in other more sophisticated multicell
implicit schemes in GR.

In the work described here, we have implemented the above ap-
proach, closing the radiation moment equations using the M1 clo-
sure scheme (Levermore 1984; Dubroca & Feugeas 1999; González
et al. 2007). M1 closure allows a limited treatment of anisotropic
radiation fields and works well in both optically thick and thin
regimes. We have implemented our method in a GR radiation hy-
drodynamics (GRRHD) code KORAL. The structure of the paper is
as follows. In Section 2 we introduce the equations, in Section 3
we describe the numerical algorithm used by KORAL, in Section 4
we present a set of test problems which validate the scheme, and in
Section 5 we discuss possible applications of the code.

2 EQUATIO N S

2.1 Conservation laws

A pure hydrodynamic flow is described by the following conserva-
tion laws,

(ρuµ);µ = 0, (1)

(T µ
ν );µ = 0, (2)

where ρ is the gas density in the comoving fluid frame, uµ is the
gas four-velocity as measured in the ‘lab frame’ and T µ

ν is the
hydrodynamical stress-energy tensor in this frame,

T µ
ν = (ρ + u + p)uµuν + pδµ

ν , (3)

with u and p representing the internal energy and pressure of the
gas in the comoving frame.

In the case of radiation hydrodynamics, it is convenient to intro-
duce the radiation stress-energy tensor Rµ

ν (e.g. Mihalas & Mihalas

1984) and to replace the second equation above with the more gen-
eral conservation law,
(
T µ

ν + Rµ
ν

)
;µ = 0. (4)

The radiation stress-energy tensor in an orthonormal frame com-
prises various moments of the specific intensity Iν , e.g. in the fluid
frame it takes the following form,

R̂ =
[

Ê F̂ i

F̂ j P̂ ij

]
, (5)

where the fluid-frame quantities2

Ê =
∫

Îν dν d$, (6)

F̂ i =
∫

Îν dν d$ Ni, (7)

P̂ ij =
∫

Îν dν d$ Ni Nj (8)

are the radiation energy density, the radiation flux and the radiation
pressure tensor, respectively, and Ni is a unit vector in direction xi.

The fluid-frame radiation stress tensor R̂ is related to the tensor
R̃ defined in the locally flat non-rotating frame, or the zero-angular-
momentum observer (ZAMO) frame (Bardeen, Press & Teukolsky
1972), by

R̃µν = %µ
α (ũ)%ν

β (ũ)R̂αβ , (9)

where % is the Lorentz boost,

%(ũ) =
[

γ γ ṽi

γ ṽj δij + ṽi ṽj (γ−1)
ṽ2

]
, (10)

γ = ũt , ṽi = ũi/ũt and ũµ is the four-velocity of the gas as mea-
sured by the locally non-rotating observer.

Quantities in the ZAMO frame (denoted with tildes) are related
to those in the lab frame by tensors created from the components
of the corresponding tetrads of the ZAMO, eµ

ν and ẽµ
ν , defined in

Bardeen et al. (1972). The radiation tensor transforms as

Rµν = eµ
α eν

βR̃αβ , (11)

R̃µν = ẽµ
α ẽν

βRαβ , (12)

while four-vectors transform as

uµ = eµ
α ũα, (13)

ũµ = ẽµ
α uα . (14)

The conservation law (4) may be rewritten with the help of the
radiation four-force density Gν as
(
T µ

ν

)
;µ = Gν,

(
Rµ

ν

)
;µ = −Gν, (15)

where Gν is given by (Mihalas & Mihalas 1984)

Gν =
∫

(χνIν − ην) dν d$ Ni, (16)

2 Throughout the paper, ‘wide hats’ denote quantities in the fluid frame and
‘tildes’ denote quantities in the ZAMO frame.
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limit the time step to the light-crossing time, which prohibitively
increases the computational cost (as the fluid dynamics evolve on a
much slower time-scale) or one must handle all the radiation terms
via an implicit method. The latter inevitably couples neighbouring
cells and makes the code very complicated. Moreover, it does not
easily generalize to curved space–time.

In contrast, a GR code is applied only in relativistic space–times
near BHs and neutron stars. The time step in simulations is generally
set by applying the Courant condition to the smallest grid cell,
located at the innermost radius, where the flow is relativistic. Thus,
the normal time step in a pure GR hydrodynamic or GRMHD code is
already limited by the speed of light. Therefore, including radiation
as an extra relativistic fluid is fairly easy. In particular, the advection
terms in the radiation equations are no more difficult to compute than
the corresponding terms in the fluid and magnetic field evolution
equations. Nor does the time step need to be adjusted in any way.
Because of this large simplification, the advective radiation operator
can be treated via a standard explicit approach, just as one handles
the corresponding hydrodynamic and MHD terms.

Of course, the interactions between radiation and gas via emis-
sion, absorption and scattering introduce their own time-scales.
These can sometimes be very short, requiring implicit handling.
However, these interactions are local and can be handled via a local
implicit scheme. This is a great simplification. It means that one
can do implicit evolution independently in each grid cell, without
coupling to other cells. Therefore, there are no space–time curva-
ture effects to contend with as in other more sophisticated multicell
implicit schemes in GR.

In the work described here, we have implemented the above ap-
proach, closing the radiation moment equations using the M1 clo-
sure scheme (Levermore 1984; Dubroca & Feugeas 1999; González
et al. 2007). M1 closure allows a limited treatment of anisotropic
radiation fields and works well in both optically thick and thin
regimes. We have implemented our method in a GR radiation hy-
drodynamics (GRRHD) code KORAL. The structure of the paper is
as follows. In Section 2 we introduce the equations, in Section 3
we describe the numerical algorithm used by KORAL, in Section 4
we present a set of test problems which validate the scheme, and in
Section 5 we discuss possible applications of the code.

2 EQUATIO N S

2.1 Conservation laws

A pure hydrodynamic flow is described by the following conserva-
tion laws,

(ρuµ);µ = 0, (1)

(T µ
ν );µ = 0, (2)

where ρ is the gas density in the comoving fluid frame, uµ is the
gas four-velocity as measured in the ‘lab frame’ and T µ

ν is the
hydrodynamical stress-energy tensor in this frame,

T µ
ν = (ρ + u + p)uµuν + pδµ

ν , (3)

with u and p representing the internal energy and pressure of the
gas in the comoving frame.

In the case of radiation hydrodynamics, it is convenient to intro-
duce the radiation stress-energy tensor Rµ

ν (e.g. Mihalas & Mihalas

1984) and to replace the second equation above with the more gen-
eral conservation law,
(
T µ

ν + Rµ
ν

)
;µ = 0. (4)

The radiation stress-energy tensor in an orthonormal frame com-
prises various moments of the specific intensity Iν , e.g. in the fluid
frame it takes the following form,

R̂ =
[

Ê F̂ i

F̂ j P̂ ij

]
, (5)

where the fluid-frame quantities2

Ê =
∫

Îν dν d$, (6)

F̂ i =
∫

Îν dν d$ Ni, (7)

P̂ ij =
∫

Îν dν d$ Ni Nj (8)

are the radiation energy density, the radiation flux and the radiation
pressure tensor, respectively, and Ni is a unit vector in direction xi.

The fluid-frame radiation stress tensor R̂ is related to the tensor
R̃ defined in the locally flat non-rotating frame, or the zero-angular-
momentum observer (ZAMO) frame (Bardeen, Press & Teukolsky
1972), by

R̃µν = %µ
α (ũ)%ν

β (ũ)R̂αβ , (9)

where % is the Lorentz boost,

%(ũ) =
[

γ γ ṽi

γ ṽj δij + ṽi ṽj (γ−1)
ṽ2

]
, (10)

γ = ũt , ṽi = ũi/ũt and ũµ is the four-velocity of the gas as mea-
sured by the locally non-rotating observer.

Quantities in the ZAMO frame (denoted with tildes) are related
to those in the lab frame by tensors created from the components
of the corresponding tetrads of the ZAMO, eµ

ν and ẽµ
ν , defined in

Bardeen et al. (1972). The radiation tensor transforms as

Rµν = eµ
α eν

βR̃αβ , (11)

R̃µν = ẽµ
α ẽν

βRαβ , (12)

while four-vectors transform as

uµ = eµ
α ũα, (13)

ũµ = ẽµ
α uα . (14)

The conservation law (4) may be rewritten with the help of the
radiation four-force density Gν as
(
T µ

ν

)
;µ = Gν,

(
Rµ

ν

)
;µ = −Gν, (15)

where Gν is given by (Mihalas & Mihalas 1984)

Gν =
∫

(χνIν − ην) dν d$ Ni, (16)

2 Throughout the paper, ‘wide hats’ denote quantities in the fluid frame and
‘tildes’ denote quantities in the ZAMO frame.
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limit the time step to the light-crossing time, which prohibitively
increases the computational cost (as the fluid dynamics evolve on a
much slower time-scale) or one must handle all the radiation terms
via an implicit method. The latter inevitably couples neighbouring
cells and makes the code very complicated. Moreover, it does not
easily generalize to curved space–time.

In contrast, a GR code is applied only in relativistic space–times
near BHs and neutron stars. The time step in simulations is generally
set by applying the Courant condition to the smallest grid cell,
located at the innermost radius, where the flow is relativistic. Thus,
the normal time step in a pure GR hydrodynamic or GRMHD code is
already limited by the speed of light. Therefore, including radiation
as an extra relativistic fluid is fairly easy. In particular, the advection
terms in the radiation equations are no more difficult to compute than
the corresponding terms in the fluid and magnetic field evolution
equations. Nor does the time step need to be adjusted in any way.
Because of this large simplification, the advective radiation operator
can be treated via a standard explicit approach, just as one handles
the corresponding hydrodynamic and MHD terms.

Of course, the interactions between radiation and gas via emis-
sion, absorption and scattering introduce their own time-scales.
These can sometimes be very short, requiring implicit handling.
However, these interactions are local and can be handled via a local
implicit scheme. This is a great simplification. It means that one
can do implicit evolution independently in each grid cell, without
coupling to other cells. Therefore, there are no space–time curva-
ture effects to contend with as in other more sophisticated multicell
implicit schemes in GR.

In the work described here, we have implemented the above ap-
proach, closing the radiation moment equations using the M1 clo-
sure scheme (Levermore 1984; Dubroca & Feugeas 1999; González
et al. 2007). M1 closure allows a limited treatment of anisotropic
radiation fields and works well in both optically thick and thin
regimes. We have implemented our method in a GR radiation hy-
drodynamics (GRRHD) code KORAL. The structure of the paper is
as follows. In Section 2 we introduce the equations, in Section 3
we describe the numerical algorithm used by KORAL, in Section 4
we present a set of test problems which validate the scheme, and in
Section 5 we discuss possible applications of the code.

2 EQUATIO N S

2.1 Conservation laws

A pure hydrodynamic flow is described by the following conserva-
tion laws,

(ρuµ);µ = 0, (1)

(T µ
ν );µ = 0, (2)

where ρ is the gas density in the comoving fluid frame, uµ is the
gas four-velocity as measured in the ‘lab frame’ and T µ

ν is the
hydrodynamical stress-energy tensor in this frame,

T µ
ν = (ρ + u + p)uµuν + pδµ

ν , (3)

with u and p representing the internal energy and pressure of the
gas in the comoving frame.

In the case of radiation hydrodynamics, it is convenient to intro-
duce the radiation stress-energy tensor Rµ

ν (e.g. Mihalas & Mihalas

1984) and to replace the second equation above with the more gen-
eral conservation law,
(
T µ

ν + Rµ
ν

)
;µ = 0. (4)

The radiation stress-energy tensor in an orthonormal frame com-
prises various moments of the specific intensity Iν , e.g. in the fluid
frame it takes the following form,

R̂ =
[

Ê F̂ i

F̂ j P̂ ij

]
, (5)

where the fluid-frame quantities2

Ê =
∫

Îν dν d$, (6)

F̂ i =
∫

Îν dν d$ Ni, (7)

P̂ ij =
∫

Îν dν d$ Ni Nj (8)

are the radiation energy density, the radiation flux and the radiation
pressure tensor, respectively, and Ni is a unit vector in direction xi.

The fluid-frame radiation stress tensor R̂ is related to the tensor
R̃ defined in the locally flat non-rotating frame, or the zero-angular-
momentum observer (ZAMO) frame (Bardeen, Press & Teukolsky
1972), by

R̃µν = %µ
α (ũ)%ν

β (ũ)R̂αβ , (9)

where % is the Lorentz boost,

%(ũ) =
[

γ γ ṽi

γ ṽj δij + ṽi ṽj (γ−1)
ṽ2

]
, (10)

γ = ũt , ṽi = ũi/ũt and ũµ is the four-velocity of the gas as mea-
sured by the locally non-rotating observer.

Quantities in the ZAMO frame (denoted with tildes) are related
to those in the lab frame by tensors created from the components
of the corresponding tetrads of the ZAMO, eµ

ν and ẽµ
ν , defined in

Bardeen et al. (1972). The radiation tensor transforms as

Rµν = eµ
α eν

βR̃αβ , (11)

R̃µν = ẽµ
α ẽν

βRαβ , (12)

while four-vectors transform as

uµ = eµ
α ũα, (13)

ũµ = ẽµ
α uα . (14)

The conservation law (4) may be rewritten with the help of the
radiation four-force density Gν as
(
T µ

ν

)
;µ = Gν,

(
Rµ

ν

)
;µ = −Gν, (15)

where Gν is given by (Mihalas & Mihalas 1984)

Gν =
∫

(χνIν − ην) dν d$ Ni, (16)

2 Throughout the paper, ‘wide hats’ denote quantities in the fluid frame and
‘tildes’ denote quantities in the ZAMO frame.
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Fig. 1.2 The British journal Nature announced on July 16, 1992 the discovery of a microquasar in
the Galactic center region [22]. The image shows the synchrotron emission at a radio wavelength
of 6 cm produced by relativistic particles jets ejected from some tens of kilometers to light years
of distance from the black hole binary which is located inside the small white ellipse

Before the discovery of its radio counterpart, 1E 1740.7-2942 was suspected to
be a prominent source of 511 keV electron–positron annihilation radiation observed
from the center of our galaxy [17], and for that reason it was nicknamed as the
“Great Annihilator”. It is interesting that recently it was reported [40] that the
distribution in the Galactic disk of the 511 keV emission, due to positron–electron
annihilation, exhibits similar asymmetric distribution as that of the hard low mass
X-ray binaries, where the compact objects are believed to be stellar black holes.
This finding suggests that black hole binaries may be important sources of positrons
that would annihilate with electrons in the interstellar medium. Therefore, positron–
electron pairs may be produced by γ –γ photon interactions in the inner accretion
disks, and microquasar jets would contain positrons as well as electrons. If this
recent report is confirmed, 1E 1740.7-2942 would be the most prominent compact
source of anti-matter in the Galactic center region.
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Large Area Telescope (LAT)
Observes 20% of the sky at any instant, views entire sky every 3 hrs
20 MeV - 300 GeV - includes unexplored region between 10 - 100 
GeV 

Gamma-ray Burst Monitor (GBM)
Observes entire unocculted sky
Detects transients from 8 keV - 40 
MeV

• Unique Capabilities for GeV astrophysics
– Large effective area
– Good angular resolution
– Huge energy range
– Wide field of view 

The Fermi Observatory

International and 
interagency collaboration 
between NASA and DOE 
in the US and agencies in 
France, Germany, Italy, 
Japan and Sweden

3
Mission Lifetime: 5 year 
requirement, 10 year goal

Slide: Julie McEnery
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Figure 8. X-ray flux vs. radio flux for blazars in the Clean Sample. Red: FSRQs,
green: LSP-BL Lac objects, light blue: ISP-BL Lac objects, and dark blue: HSP-
BL Lac objects.
(A color version of this figure is available in the online journal.)

107 are now firmly associated with AGNs and listed in the
2LAC. Interestingly, 84 of these were predicted to be AGNs
in Ackermann et al. (2011a). In the following, only the Clean
Sample is considered in tallies and figures. The Clean Sample
comprises 886 sources in total, 395 BL Lac objects, 310 FSRQs,
157 sources of unknown type, 22 other AGNs, and 2 starburst
galaxies. For BL Lac objects, 302 (76% of the total) have an
SED classification (i.e., 93 sources cannot be classified for lack
of archival data), with HSPs representing the largest subclass
(53% of SED-classified sources), ISPs the second largest (27%),
and LSPs the smallest subclass (20%, see Figure 6). FSRQs with
SED classification (224/310 = 72%) are essentially all LSPs
(99%).

Figure 9 shows the locations of the 2LAC sources. Some
relative voids are present, the most prominent centered on

Table 5
Census of Sources

AGN Type Entire 2LAC 2LAC Clean Samplea Low-lat Sample

All 1017 886 104
FSRQ 360 310 19
LSP 246 221 7
ISP 4 3 2
HSP 2 0 0
No classification 108 86 10

BL Lac 423 395 16
LSP 65 61 3
ISP 82 81 3
HSP 174 160 5
No classification 102 93 5

Blazar of unknown type 204 157 67
LSP 24 19 10
ISP 13 11 3
HSP 65 53 13
No classification 102 74 41

Other AGNs 30 24 2

Note. a Sources with single counterparts and without analysis flags. See
Section 5 for the definitions of this sample.

(l, b) = (−45◦,−45◦) reflecting a relative lack of counterparts
in the BZCAT catalog at that location. More generally, the ob-
served anisotropy is mainly governed by the non-uniformity of
the counterpart catalogs. A difference in the numbers of sources
between the northern and the southern Galactic hemispheres is
clearly visible for BL Lac objects in Figure 9. This conclusion
is confirmed in Figure 10 displaying the Galactic latitude distri-
butions for FSRQs and BL Lac objects and blazars of unknown
type. While the FSRQs show an approximately isotropic distri-
bution,71 only 40% of the total number of BL Lac objects are
found in the southern Galactic hemisphere (152 at b < −10◦,
243 at b > 10◦). At least approximately 100 other 2FGL sources
at b < −10◦ are thus expected to be BL Lac blazars. Some of
them fall into the category blazars of unknown type, which are
indeed found to be more numerous at b < −10◦ than at b > 10◦

71 Although a relative deficit exists at intermediate northern Galactic latitudes,
this is somewhat offset by blazars of unknown type.

00 -3030 -6060 -9090 -120120 -150150 -180180

30

-30

60

-60

90

-90

Figure 9. Locations of the sources in the Clean Sample. Red: FSRQs, blue: BL Lac objects, magenta: non-blazar AGNs, and green: AGNs of unknown type.
(A color version of this figure is available in the online journal.)
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Note. a Sources with single counterparts and without analysis flags. See
Section 5 for the definitions of this sample.

(l, b) = (−45◦,−45◦) reflecting a relative lack of counterparts
in the BZCAT catalog at that location. More generally, the ob-
served anisotropy is mainly governed by the non-uniformity of
the counterpart catalogs. A difference in the numbers of sources
between the northern and the southern Galactic hemispheres is
clearly visible for BL Lac objects in Figure 9. This conclusion
is confirmed in Figure 10 displaying the Galactic latitude distri-
butions for FSRQs and BL Lac objects and blazars of unknown
type. While the FSRQs show an approximately isotropic distri-
bution,71 only 40% of the total number of BL Lac objects are
found in the southern Galactic hemisphere (152 at b < −10◦,
243 at b > 10◦). At least approximately 100 other 2FGL sources
at b < −10◦ are thus expected to be BL Lac blazars. Some of
them fall into the category blazars of unknown type, which are
indeed found to be more numerous at b < −10◦ than at b > 10◦

71 Although a relative deficit exists at intermediate northern Galactic latitudes,
this is somewhat offset by blazars of unknown type.
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Figure 9. Locations of the sources in the Clean Sample. Red: FSRQs, blue: BL Lac objects, magenta: non-blazar AGNs, and green: AGNs of unknown type.
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Gamma-ray sky dominated by blazars
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“X-ray bubbles”
Black hole jets can affect the growth/
formation of galaxies, groups and clusters
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connection

AGNs

Fermi, Swift
+ BeppoSAX, HETE, AGILE, 

Integral, BATSE, ...

The basic question: is there a physical connection 
between these phenomena? Can we unify them?
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bursts



Jet energetics: data from Fermi, Swift and 
others 
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Estimating the ϒ-ray luminosity and jet power

Blazars

Lϒiso: Fermi 2FGL

Jet power Pjet from 
“cavity power”: using 

extended radio emission and 
Lradio-Pcav correlation 

(Cavagnolo+ 10)

GRBs

Eϒ: prompt emission
pre-Swift, Swift and Fermi GRBs

Jet kinetic energy Ek: 
afterglow modeling with 

fireball

Lϒiso = Eϒiso (1+z)/ t90

Pjet = EK (1+z)/ t90

We calculate the uncertainty in Liso propagating the error associated with ↵
�

and S
�

quoted
in the 2FGL. The average uncertainty in Liso corresponds to 0.05 dex.

In order to estimate the uncertainty affecting the collimation-corrected luminosities L we
first evaluate the error in the beaming angle ✓ or correspondingly �. The uncertainty in � is
dominated by the uncertainty in the variability Doppler factor whereas the uncertainty in the
apparent speed does not contribute significantly to the error budget of �. The uncertainty in
the variability Doppler factor is ⇡ 27% (1 s.d.; 48). Therefore, for the blazars with direct
estimates of � available, the relative uncertainty in � is 0.3 (24, 48) which translates to an
average uncertainty of 0.26 dex in L for these blazars. For the blazars without direct estimates
of �, we estimate the uncertainty in L using the prediction band of the Liso � f

b

relation shown
in Fig. 2. The plotted prediction band corresponds to a relative uncertainty of 0.69 in ✓. The
resulting average uncertainty affecting L for the blazars without direct estimates of � is then 0.6
dex.

Kinetic power:

Following (17), we estimate the jet kinetic power by using the correlation between the ex-
tended radio emission and the jet power (18,49). Cavagnolo et al. searched for X-ray cavities in
different systems including giant elliptical galaxies and cD galaxies and estimated the jet power
required to inflate these cavities or bubbles, obtaining the tight correlation

P
cav

⇡ 6⇥ 10

43

✓
P
radio

10

40

erg s

�1

◆
0.7

erg s

�1 (4)

between the “cavity” power and the radio luminosity. Hence, assuming P
jet

= P
cav

we can
estimate the jet kinetic power for the blazars which have extended radio emission observed with
the VLA (17).

The uncertainty in P
jet

is dominated by the scatter in the correlation of (18) and corresponds
to 0.7 dex.

GRBs

�-ray luminosity:

The current scenario for GRBs (50, 51) posits that initially most of the energy produced by
the GRB is in kinetic form produced during the short “active” state of the stellar-mass central
engine. A certain fraction of initial energy is converted after a few seconds mostly to �-rays
observed during the prompt emission, by means of internal shocks in the jet (52). The ultrarel-
ativistic jet produced in the explosion later on collides with the circumburst medium producing
the afterglow. Two crucial quantities which we use in this work are the radiative and kinetic
energies released by the GRBs during their short period of activity.

The isotropically equivalent energy radiated in �-rays E iso

�

is directly available from mea-
surements. It was measured for the GRBs using a variety of different telescopes including
pre-Swift telescopes (BeppoSAX, BATSE, HETE, HETE-2 and Integral) as well as Swift and

2
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“Collimation-corrected” energetics:
L = (beaming factor) x Liso
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Figure 1. The basal metabolic rale oE mam-
mals and birds was originally plolted by Max
Kleiber in 1932. In this reconstruction, the
slope of the best straight-line tit is 0.74, illus-
trating the scaling of metabolic rate with the
'A power of mass. The diameters of the
circles represent estimated data errors of
±10%. Present-day plots based on many
hundreds of data points support the ^k
exponent, although evidence exists of a
deviation to a smaller value for the smallest
mammals. [Adapted from ref. 5.)

LOG MASS (kg)

body temperature is determined by their surroundings),
unicellular organisms, and even plants. It was then fur-
ther extended to intracellular levels, terminating at the
mitochondria] oxidase molecules (the respiratory machin-
ery of aerobic metaholism). The metabolic exponent h ^ %
is found over 27 orders of magnitude;*^ figure 2 shows data
spanning most of that range. Other examples of allomet-
ric scaling include heart rate (6 - - V4, figure 3a), life span
(6 - 'A), the radii of aortas and tree trunks Kb ^ %), uni-
cellular genome lengths {h = V4, figure 3b), and RNA con-
centration (6 - -'A).

An intriguing consequence of these "quarter-power"
scaling laws is the emergence of invariant quantities,^
which physicists recognize as usually reflecting funda-
mental underlying constraints. For example, mammalian
life span increases as approximately J W \ whereas heart
rate decreases as M ''', so the number of heartbeats per
lifetime is approximately invariant (about 1.5 x 10^), in-

c2 —5

-10

O-15

-20

Shrew
El epbant

Mammals

Average mammalian
cell, in culture

Mitochondrion
(mammalian

Respiratory myoeytei
- complex

-20 -15 -10 -0 0
LOG MASS igl

10

dependent of size. Hearts are not funda-
mental, hut the molecular machinery of aer-
ohic metabolism is, and it has an analogous
invariant: the number of ATP (adenosine
triphosphate) molecules synthesized in a
lifetime (of order 10"*). Another example
arises in forest communities where popula-
tion density decreases with individual body
size as Af ''', whereas individual power use

increases as W^"-, thus the power used hy all individuals in
any size class is invariant.^

The enormous amount of allometric scaling data ac-
cumulated by the early 1980s was synthesized in four
books that convincingly showed the predominance of quar-
ter powers across all scales and life forms.̂ '̂  Although sev-
eral mechanistic models were proposed, they focused
mostly on very specific features of a particular taxonomic
group. For example, in his explanation of mammalian
metahohc rates, Thomas McMahon assumed the elastic
similarity of limbs and the invariance of muscle speed,'
whereas Mark Patterson addressed aquatic organisms
hased on the diffusion of respiratory gases.'' The broader
challenge is to understand the ubiquity of quarter powers
and to explain them in terms of unifying principles that
determine how life is organized and the constraints under
which it has evolved.

Origins of scaling
A general theory should provide a scheme for making quan-
titative dynamical calculations in addition to explaining
the predominance of quarter powers. The kinds of prob-
lems that a theory might address include. How many oxi-
dase molecules and mitochondria are there in a cell? Why
do we live approximately 100 years, not a million years or
a few weeks, and how is life span related to molecular
scales? What are the flow rate, pulse rate, pressure, and

Figure 2. The V4-power law for the metabolic rate as a
function of mass is observed over 27 orders of magnitude.
The masses covered in this plot range from those of indi-
vidual mammals (blue), to unicellular organisms (green), to
uncoupled mammalian cells, mitochondria, and terminal
oxidase molecules of the respiratory complex (red). The
blue and red lines indicate 'A-power scaling. The dashed
line is a linear extrapolation that extends to masses below
that of the shrew, the lightest mammal. In reference 6, it
was predicted that the extrapolation would intersect the
datum for an isolated cell in vitro, where the 'A-power
reemerges and extends to the cellular and intracellular
levels. (Adapted from ref. 6.)

http://www.physicstoday.org September 2004 Physics Today 37West & Brown 04, 
Physics Today
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. measure the formation of double-stranded DNA 

in folding processes or single-stranded DNA in 
unfolding. Reaction conditions were identifi ed 
that sped up folding by orders of magnitude 
and increased yields of the 3D nanoscale objects 
to nearly 100%. 

Assessing Creepy Crawlies
Arthropods are the most diverse group of ter-
restrial animal species, yet estimates of the total 
number of arthropod species have varied widely, 
especially for tropical forests. Basset et al. 

(p. 1481, see the cover) now provide more 
reliable estimates of total arthropod species 
richness in a tropical rainforest in Panama. 
Intensive sampling of a half hectare of forest 
yielded just over 6000 arthropod species. 
Scaling up this result to the whole forest 
suggests that the total species diversity lies 
between 17,000 and 40,000 species.  

www.sciencemag.org    SCIENCE    VOL 338    14 DECEMBER 2012

Long Noncoding RNAs
The past 5 years have uncovered thousands 
of long (>100 nucleotides) noncoding RNAs 
(lncRNAs) outpacing our understanding of their 
functions and mechanisms in regulating the 
genome.  Lee (p. 1435) reviews the known and 
suspected means by which these intriguing mole-
cules control gene expression locally and at great 
distances, considers potential universal roles 
for lncRNAs, and warns that classifying these 
intriguing molecules may be quite challenging 
given their diversity. The very long noncoding 
RNA, Airn, silences the Igf2r (insulin-like growth 
factor 2 receptor) imprinted gene cluster in 
mammals. Latos et al. (p. 1469) show in mouse 
cells that, rather than recruiting enzymes that 
modify histones to repress the locus, it is the act 
of transcription of Airn (and not the Airn gene 
product) that results in the silencing.

Spots to Remember
Scent marking is an essential component of 
communication for most mammals. Individu-
als remember the location of scent marks and 
regularly revisit marked sites, presumably to 
assess the condition and status of the animal 
doing the marking. It is known that individu-
als can follow odor or pheromone gradients to 
locate another individual, but relocating scent 
marks is a much more diffi cult task given the 
small amount of volatile compounds deposited, 
and their static nature. Roberts et al. (p. 1462) 
show that a nonvolatile component of male 
urine, the protein pheromone darcin, stimulates 
spatial preference and learning in mice. Female 
mice preferred locations where male urine 
(or synthesized darcin) had been found, and 
remembered these spatial locations for 2 weeks 
post-exposure. 

Strength Under Pressure
Above a lower cutoff value, shrinking the grain 
size of a metal tends to strengthen it because 
the overall increase in grain boundaries limits 
the activity of the dislocations as the material 
undergoes plastic deformation. Chen et 

al. (p. 1448) explore the question of 
whether this restriction in dislo-
cation activity occurs when a 
metal is subjected to high 
pressures. Foils of nickel 
made from particles 
of different sizes 
were subjected 
to high 
pressures 

inside a diamond anvil cell. An 
increase in pressure extended 
dislocation activity to smaller 
grain sizes, indicating that 
pressure compensates for the 
inhibition of dislocation activity 
in small volumes.

From C=C to C=O
The palladium-catalyzed Heck 
reaction is widely used to form 
carbon-carbon bonds between 
aryl rings and olefi ns, after which 
elimination of a hydrogen atom 
restores the olefi n’s double bond. 
Werner et al. (p. 1455; see the 
Perspective by Gilbertson) pres-
ent a variant of this reaction in 
which a hydrogen atom is instead 
lost from an alcohol center else-
where in the molecule, yielding a 
ketone and a chiral center where 
the arene is bound. The process is 
highly enantioselective and also 
versatile: The alcohol can be sited 
one, two, or even three carbons 
away from the olefi n.

So Different Yet 
So Similar
Gamma-ray bursts (GRBs) are 
associated with the collapse of 
stars into black holes. Blazars are 
a class of active galaxies powered 
by accretion onto central black 
holes with masses a million to a billion times that 
of the Sun. Nemmen et al. (p. 1445) show that, 
despite tremendous differences in luminosity and 
black hole mass, the relativistic jets produced 
in GRBs and blazars follow the same correlation 
between the kinetic power carried by the acceler-
ated particles and the energy radiated away in 
the jet, suggesting that there may be a single 
mechanism for producing relativistic jets. 

Speeding Up Nanoscale 
DNA Assembly
An impressive array of three-dimensional (3D)
nanoscale objects has been assembled by 
folding a long, single-stranded DNA scaffold 
by binding of short DNA staples. However, 
these processes tend to be slow and ineffi cient. 
Sobczak et al. (p. 1458) examined the folding 
process with an intercalating fl uorescence dye to 

Digit Determination

Pentadactyly has been an early and rapid innovation of 

tetrapods. Sheth et al. (p. 1476) report that a dramatic 

reduction in distally expressed Hox genes, in the absence 

of a functional morphogen signaling pathway, results in 

extreme polydactyly in mice. Mutant digits exhibited pat-

terns reminiscent of the endoskeleton of fi ns, suggesting 

that an ancestral patterning mechanism has been deeply 

conserved in evolution.

Published by AAAS
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A Universal Scaling for the
Energetics of Relativistic Jets
from Black Hole Systems
R. S. Nemmen,1* M. Georganopoulos,1,2 S. Guiriec,1 E. T. Meyer,3,5 N. Gehrels,1 R. M. Sambruna4

Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts
(GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet
physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown.
Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the
kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs
lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that
the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders
of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

Relativistic jets are ubiquitous in the cos-
mos and have been observed in a diverse
range of black hole systems spanning

from stellar mass (~10M⊙; M⊙, solar mass) to
supermassive scales (~105 to 1010M⊙), particu-
larly in the bright flashes of gamma-rays [known
as gamma-ray bursts (GRBs)] (1, 2), the mini-
ature versions of quasars lurking in our Galaxy
(known as microquasars) (3), and active galactic
nuclei (AGN) (4, 5). Despite decades of obser-
vations at almost all wavelengths and consid-

erable theoretical efforts, many aspects of black
hole jets still remain mysterious, such as the
mechanism(s) responsible for their formation and
the nature of their energetics, as well as their
high-energy radiation (6, 7). Jets and outflows
from supermassive black holes have important
feedback effects on scales ranging from their host
galaxies to groups and clusters of galaxies (8).
Hence, a better understanding of the physics of
jets is required to have a more complete picture
of the formation and evolution of large-scale struc-

tures in the universe and the coevolution of black
holes and galaxies (9).

One outstanding question is how the jet
physics scale with mass from stellar to super-
massive black holes. Interestingly, there is evi-
dence to suggest that jets behave in similar ways
in microquasars and radio-loud AGN (10–12).
However, a clear connection between AGN
and GRBs has not yet been established,
though recent work provides encouraging re-
sults (13, 14).

As a first step in understanding how the prop-
erties of jets vary across the mass scale, we fo-
cus on the energetics of jets produced in AGN
and GRBs. Therefore, we searched the literature
for published and archival observations that al-
low us to estimate the jet radiative output and
the kinetic power for a sample of black hole
systems in which the jet is closely aligned with
our line of sight and characterized by a broad
range of masses. For this reason, our sample con-
sists of blazars—AGNs with their jets oriented

REPORTS
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Fig. 1. Relation between the jet kinetic power and the
isotropically equivalent gamma-ray luminosity for AGNs and
GRBs. Error bars denote 1s uncertainty. We fitted the two
populations separately using a symmetric least-squares
method (orthogonal bivariate correlated errors and intrinsic
scatter with bootstrapping) (35). The blazar and GRB best-fit
models correspond to the solid and dashed lines, respectively
(logPjet = AlogLiso + B). The best-fit parameters obtained for
the blazars are A = 0.51 T 0.02 and B = 21.2 T 1.1; for the
GRBs, A = 0.74 T 0.08 and B = 11.8 T 4.1. The scatter about
the best-fit is 0.5 and 0.8 dex for the blazars and GRBs,
respectively. The 2s confidence band of the fits is shown as
the gray shaded regions (barely visible for blazars). The two
correlations do not agree at the >5s level. For illustrative
purposes, we also include XRF 020903 and GRB 090423
(yellow circles), as well as the two recent tidal disruption flares
(TDFs) detected with Swift, which are presumably due to the
onset of relativistic jets from the tidal disruption of stars by
supermassive black holes (36). We do not consider these
sources in the statistics, because we only have limits on their
luminosities. FSRQs, flat-spectrum radio quasars.
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Jets are efficient channels for energy dissipation in 
“black hole engines”: εrad >3% for most sources
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Low-luminosity AGNs and Fermi LAT
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Conclusions I

We live in a violent universe
Active galactic nuclei, gamma-ray bursts, neutron stars

Gamma-ray observations are required to decode the extreme 
side of the Cosmos

Fermi Telescope: amazing advances
Synergies with other missions: CTA



Conclusions II

A new symmetry: Jets from galactic centers and gamma-ray 
bursts follow the universal scaling

Independent of black hole nutrition diet and its environment
Valid over 10 orders of magnitude of luminosity/jet power

Evidence for same physics operating in relativistic jets across 
the mass scale

Radiative dissipation in jets can be quite efficient: εrad > 3%

Whole new territory for exploration: 
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