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Classical dynamics

Newton’s equations describe the time evolution of a given initial
state of classical particles.
Deterministic: Velocities and positions are known at all times

Thermalization:
• Expectation values of generic observables, for long times,

should become time independent.
• Values depend only on few parameters, e.g. energy, not the

initial state itself.
• They can be equally well described by a statistical average.

Ergodicity: Time average ↔ statistical average
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Classical dynamics

Ideal gas: Thermalization by
a) Minimal energy exchange with reservoir (dynamic walls)
b) Minimal interaction between the particles

Ideal gas law:
pV = NkBT

Jesko Sirker Relaxation and thermalization
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Quantum dynamics
Schrödinger equation: time evolution of a given initial state

i~
d
dt
|Ψ〉 = H|Ψ〉

Deterministic: The state |Ψ(t)〉 is known

(How) Does a quantum system thermalize?

Interaction with a bath: Weak coupling to environment

Thermalization of closed quantum system; Ô observable:

• Ō = lim
τ→∞

1
τ

∫ τ

0
dt〈Ψ(t)|Ô|Ψ(t)〉[

= lim
t→∞

〈Ψ(t)|Ô|Ψ(t)〉 ≡ O∞ (time independent)
]

• Time ↔ statistical average: Ō = Tr{Ôρ}
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dt〈Ψ(t)|Ô|Ψ(t)〉[

= lim
t→∞
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Jesko Sirker Relaxation and thermalization



Outline Introduction Dephasing, relaxation and thermalization Particle injection into a chain The lightcone renormalization group Doublon decay in (extended) Hubbard models Conclusions

Quantum dynamics
Schrödinger equation: time evolution of a given initial state

i~
d
dt
|Ψ〉 = H|Ψ〉

Deterministic: The state |Ψ(t)〉 is known

(How) Does a quantum system thermalize?

Interaction with a bath: Weak coupling to environment

Thermalization of closed quantum system; Ô observable:
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Obvious questions

• Which density matrix ρ (ensemble)?

• Which observables O do we want to consider?

• Do we require only Ō = Tr{Ôρ}

or in addition Ō = O∞ time independent?

• Thermodynamic limit; otherwise recurrence
• True relaxation ↔ interacting vs. non-int. system
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Thermalization of a closed quantum system

• Only a subsystem can be in a mixed state described e.g. by a
canonical ensemble ρ = exp(−βH)/Z

• rest might act as an effective bath

closed system subsystem

• However, coupling is not small, “bath” can have memory, ...
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Dynamics in quantum systems: Experiments
Ultracold gases: Quenches

Closed quantum system, tunable → simple Hamiltonians

H. Ott

Measurements: Position and time resolved measurements of
observables and correlations are becoming possible
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Long-time mean: Diagonal ensemble and fluctuations

The long-time mean: Ō = lim
τ→∞

1
τ

∫ τ

0
dt〈Ψ(t)|Ô|Ψ(t)〉

Lehmann representation: |Ψ(0)〉 =
∑

n

cn|En〉

Ō = lim
τ→∞

∑
n,m

1
τ

∫ τ

0
dt ei(Em−En)tc∗ncm〈Em|Ô|En〉 =

∑
n

|cn|2Ônn

Diagonal ensemble (up to degeneracies)

Fluctuations around long-time mean can decay due to
• dephasing: already for non-interacting systems
• exponential relaxation: only in interacting systems
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Ō = Tr{Ôρ}: What is the right ensemble?

Conserved quantities Q̂n cannot change in time:

〈Ψ(t)|Q̂n|Ψ(t)〉 = 〈Ψ(0)|Q̂n|Ψ(0)〉 ≡ 〈Q̂n〉I

Generalized Gibbs ensemble: Choose ρ = exp(
∑

n

λnQ̂n)/Z with

Lagrange multipliers λn determined such that

〈Q̂n〉I = Tr{Q̂nρ}

• Projectors onto eigenstates: Qn ≡ Pn = |n〉〈n|
• Free fermions, H = εknk : Qk = nk

Jesko Sirker Relaxation and thermalization
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Qn ≡ Pn = |n〉〈n|

• H|n〉 = En|n〉, [H, |n〉〈n|] = 0, ρGGE = exp(−λnPn)/Z

• Lagrange multipliers λn:

〈Ψ0|Pn|Ψ0〉 = |〈Ψ0|n〉|2 = Tr(ρGGE Pn) =
e−λn

Z
• Time average: Diagonal ensemble (up to degeneracies)

Ō =
∑

n

|〈Ψ0|n〉|2Onn

• Statistical average: Tr(ρGGE O) =
∑

n

e−λn

Z
Onn

Diagonal ensemble reproduced by fixing exponentially many
Lagrange multipliers M. Rigol et al., Nature 852, 454 (08)

Jesko Sirker Relaxation and thermalization



Outline Introduction Dephasing, relaxation and thermalization Particle injection into a chain The lightcone renormalization group Doublon decay in (extended) Hubbard models Conclusions

Qn ≡ Pn = |n〉〈n|

• H|n〉 = En|n〉, [H, |n〉〈n|] = 0, ρGGE = exp(−λnPn)/Z

• Lagrange multipliers λn:

〈Ψ0|Pn|Ψ0〉 = |〈Ψ0|n〉|2 = Tr(ρGGE Pn) =
e−λn

Z

• Time average: Diagonal ensemble (up to degeneracies)
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GGE for free fermion models
• H =

∑
k

εknk

• ρGGE =
1
Z

exp(−
∑

k

λknk)

• 〈Ψ0|nk |Ψ0〉 = Tr(ρGGE nk) Rigol et al. PRA 74, 053616 (2006) + many others

Works for observables where Ō can be expressed as function of the
nk . Does not work in general e.g. for P = |{nk}〉〈{nk}|

In general, no relaxation:

For non-conserved observables we have 〈Ψ(t)|O|Ψ(t)〉 oscillating
(undamped) or power law decay towards O∞ (dephasing)
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An example: Particle injection into a chain

γ1 γ2 γL−1 γL

J

H = −J
L−1∑
l=1

(
ĉ†l+1ĉl + h.c.

)
+ γ

L−1∑
l=1

(
ĉ†l ŝl + h.c.

)

initial state : |Ψ(0)〉 =
L∏

l=1

ŝ†l |vac〉

[F. Gebhard, JS et al. Ann. Phys. (2012)]
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Particle density in the chain in the TD limit for γ/J = 10

0 100 200 300 400 500
Jt

0

0.2

0.4

0.6

0.8

1

n
c

(d)

Non-interact.: Slow dephasing of two-level systems ∼
√

γ/J
Jt
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Ak,k for γ/J = 1, L = 1000 at Jt = 5000

0 0.2 0.4 0.6 0.8 1
k/π

0

0.2

0.4

0.6

0.8

1

A
k,

k(t
)

• Ak,k = 〈Ψ(t)|c†kck |Ψ(t)〉 is collection of undamped oscillators.
• Size of fluctuations depends on initial state;

can be as large as the long-time mean Āk,k

• Determining mean by ensemble average seems fairly useless in
this case
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Relaxation in the interacting case

0 5 10 15
Jt

0

0.1

0.2

0.3

0.4

0.5

n
c

• t-DMRG for L = 50 and γ/J = 1 with nearest neighbor
interaction V = 1, 2, 3, 4

• Interaction leads to exponential relaxation

GGE seems unobservable even in weakly interacting systems
• slow power-law versus fast exponential relaxation
• no separation of time scales
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One possibly interesting question

Can O∞ = lim
t→∞

O(t) in an interacting system in the TD limit with
O a local observable be described by a statistical average including
only the local conservation laws Qj?

If answer is yes this is potentially useful because calculating

O∞ = lim
t→∞

〈Ψ(t)|O|Ψ(t)〉

is hard (dynamical problem) whereas

〈O〉ρ =
1
Z

Tr{O exp(−
∑

j

λjQj)}

is usually much easier (static problem)
Universality: Independent of initial state
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Integrable versus non-integrable 1D models

• Every quantum system in the thermodyn. limit has infinitely
many non-local conserved quantities, e.g.: [H, |En〉〈En|] = 0

• (Bethe ansatz) integrable models have infinitely many local
conserved quantities Q̂n =

∑
j

q̂n,j with a density q̂n,j acting

on a finite number of lattice sites.

Generic quantum system with short-range interactions:

• Only H is locally conserved
• canonical ensemble: ρ = e−βH/Z
• T = 1/β fixes initial energy
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Dynamical density-matrix renormalization group

DMRG: Approximate |Ψ(t)〉 in a finite dimensional Hilbert space
consisting of matrix product states

• Dynamical DMRG (DDMRG) (Jeckelmann, 2002)

• Time-dependent DMRG (White,Feiguin; Daley et al., 2004)
sweepUsweep

• Trotter-Suzuki decomposition of time evolution: U = eiδt hi,i+1

• Very versatile: Equ. dynamics, quenches, transport
• finite systems; eigenstates are calculated explicitly

• TEBD and iTEBD (Vidal, 2004, 2007)

• Direct matrix product state representation
• Time evolution by Trotter-Suzuki decomposition
• Thermodynamic limit if system is translationally invariant
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• Very versatile: Equ. dynamics, quenches, transport
• finite systems; eigenstates are calculated explicitly

• TEBD and iTEBD (Vidal, 2004, 2007)

• Direct matrix product state representation
• Time evolution by Trotter-Suzuki decomposition
• Thermodynamic limit if system is translationally invariant
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Specifications of an efficient algorithm

• Thermodynamic limit: For a finite system there will always be
a recurrence time trec where |Ψ(trec)〉 ≈ |Ψ(0)〉

• Flexibility: Impurities, disorder, trapping potentials;
thermodynamic limit should not depend on translational
invariance

• High computational efficiency

• Long simulation times: At least we want to understand what
limits the simulation time

We have developed the lightcone renormalization group (LCRG)
algorithm which makes progress concerning many of the points
listed above [T. Enss, JS, New J. Phys. 14, 023008 (2012)]
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The Lieb-Robinson bound

Consider a (Spin-)Hamiltonian with finite range interactions and
two strictly local operators A, B: (Lieb,Robinson, Comm. Math. Phys 28, 251 (72))

||[A(L, t), B(0, 0)]|| ≤ C exp
(
−L− vLR |t|

ξ

)

• If spatial separation L � v |t| (outside the light cone) then
operators always commute—up to exponentially small tails

• Information, correlations, and entanglement propagate with a
finite velocity vLR

Define S as the set of sites having distance of at least l from the
local operator A: (Bravyi et al PRL 97, 050401 (06))

Al(t) ∝ TrS [A(t)]⊗ 1S
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The Lieb-Robinson bound (II)

It follows: ||A(t)− Al(t)|| . C exp
(
− l − vLR |t|

ξ

)

The time evolution of an operator can be restricted to an effective
light cone with spatial extent l � vLR |t|
Thermodynamic limit without requiring translational invariance!

−t

A

+t
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Recent experimental test

• Bose-Hubbard model,
filling n̄ = 1

• Quench:
U/J = 40 → U/J = 9

• Parity correlation:
Cd(t) =
〈eiπ[nj (t)−n̄]eiπ[nj+d (t)−n̄]〉conn.

• Lightcone for doublon/holon
propagation

[Cheneau et al. Nature 481, 484 (2012)]
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Light cone renormalization group algorithm
We want to calculate:

〈o[j ,j+n]〉I (t) ≡ 〈ΨI |eiHto[j ,j+n]e−iHt |ΨI 〉

• H =
∑

hj ,j+1 local Hamiltonian
• |ΨI 〉 initial product state (thermal state also possible)
• o[j ,j+n] local observable

Use Trotter-Suzuki decomposition of time evolution operator:

eitH = lim
N→∞

(
eiδtH

)N
= lim

N→∞

(
eiδtHeveneiδtHodd

)N

=

( ∏
j even

eiδthj,j+1︸ ︷︷ ︸
τj,j+1(δt)

∏
j odd

eiδthj,j+1

)N
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Light cone renormalization group algorithm

time

t=0

t=δt

t=2δt

t=δt

t=0

s1 s2 sj sj+1 .......

s1 s2 sj sj+1 .......

τ(δt)

τ(-δt)

• τj ,j+1(δt)τj ,j+1(−δt) = id
• “Speed” in T-S decomposition � vLR → Thermodyn. limit
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Light cone renormalization group algorithm

C

L

R

• Light cone grows by adding diagonal transfer matrices
• Optimal Hilbert space chosen by appropriate reduced density

matrix (Density-matrix renormalization group)
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Decay of double occupancies in fermionic Hubbard models
Experiments on ultracold fermions in 3D optical lattices

[Strohmaier et al. PRL 104, 080401 (10)]

Metastability: If U � 6J (bandwidth) then several scattering
processes are necessary to dissipate large energy U
→ lifetime of double occupancies ∼ exp(U/6J)
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Model, initial state and symmetries
We consider the (extended) Hubbard model:

HU,V = −J
∑

j ,σ=↑,↓
(c†j ,σcj+1,σ + h.c.) + U

∑
j

(nj↑ − 1/2)(nj↓ − 1/2)

+ V
∑

j

(nj − 1)(nj+1 − 1)

We want to study the following initial state and observable:

• Doublon lattice: |ΨD〉 =
∏

j

c†2j↑c
†
2j↓|0〉

• Double occupancy: dD
U,V (t) =

1
L

∑
j

〈ΨD(t)|nj↑nj↓|ΨD(t)〉

• Symmetries: dD
U,V (t) = dD

−U,−V (t)

Jesko Sirker Relaxation and thermalization



Outline Introduction Dephasing, relaxation and thermalization Particle injection into a chain The lightcone renormalization group Doublon decay in (extended) Hubbard models Conclusions

Model, initial state and symmetries
We consider the (extended) Hubbard model:

HU,V = −J
∑

j ,σ=↑,↓
(c†j ,σcj+1,σ + h.c.) + U

∑
j

(nj↑ − 1/2)(nj↓ − 1/2)

+ V
∑

j

(nj − 1)(nj+1 − 1)

We want to study the following initial state and observable:

• Doublon lattice: |ΨD〉 =
∏

j

c†2j↑c
†
2j↓|0〉

• Double occupancy: dD
U,V (t) =

1
L

∑
j

〈ΨD(t)|nj↑nj↓|ΨD(t)〉

• Symmetries: dD
U,V (t) = dD

−U,−V (t)

Jesko Sirker Relaxation and thermalization



Outline Introduction Dephasing, relaxation and thermalization Particle injection into a chain The lightcone renormalization group Doublon decay in (extended) Hubbard models Conclusions

Free fermions: A test case
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• Error up to the point where simulation breaks down is
controlled by the Trotter error

• The entanglement entropy grows linearly in time
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Limitations of DMRG-type algorithms

The eigenvalues of a reduced density matrix ρs = TrEρ are used to
determine the states which are kept to approximate |Ψ(t)〉

Entanglement entropy
Sent = −Trρs ln ρs ≤ ln(dim ρs)

von Neumann entropy of reduced density matrix

The entanglement entropy which can be faithfully represented is
limited for finite matrix dimension
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Doublon decay in the Hubbard model
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• Fit: dd
±U(t) = dD

±U(∞) + e−γt [A+ B cos(Ωt − φ)]/tα

• γ ≈ 0: Pure power law decay (?)
• Sent = aJt: large U → longer simulation times
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Doublon decay in the extended Hubbard model
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• Exponential relaxation in the extended Hubbard model
• Extrapolation problematic for large U
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Thermalization in the extended Hubbard model

• We use canonical ensemble, ignore other local conservation
laws in integrable case, V = 0

• Energy is fixed by: 〈H〉I = 〈ΨD |H|ΨD〉/L = U/4− V
• Temperature determined by 〈H〉I = 〈H〉th = Tr{He−H/T}/LZ

The spectrum is bounded → Negative temperatures are natural

〈Ô〉U,V ,T
th = 〈Ô〉−U,−V ,−T

th

Repulsive case
• T > 0 for V > U/4
• T < 0 for V < U/4
• Vice versa in attractive case
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Thermalization in the extended Hubbard model
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• Excellent agreement for Hubbard model (V = 0)
• Deviations larger the larger V /U and U are
• Additional relaxation for Jt � exp(U/J) not covered by fit?
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Conclusions
• Thermalization in closed interacting quantum systems:

• Time average ↔ statistical average
• Including all projection op. Pn reproduces time average
• Free-model GGE seems not very useful: no damping or only

slow power law decay versus exp. decay in interacting case

Can long-time mean of local observables for int. systems in the TD
limit be described by including only local conserved quantities?

• Doublon decay in 1D extended Hubbard models

• Analysis of data: pure power-law relaxation of double occ. in
the integrable case; exp. relaxation in the non-integrable case

• Thermalization: Eff. temperatures can be positive/negative
• Additional relaxation at Jt � exp(U/J)? Influence of other

conservation laws in integrable case?
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