Gases quânticos: a matéria mais fria do Universo Sérgio R. Muniz IFSC - USP

Matéria <u>ultrafria</u>?

Por que é a matéria mas fria do Universo?

NASA - projeto WMAP

Temperatura de fundo do Universo

O que é Matéria ?

Do que é feito o Universo?

Bósons

Férmions

O MODELO PADRÃO

das partículas elementares

OBSERVADAS NO UNIVERSO ATUAL As partículas elementares da matéria a nossa volta

Sérgio R. Muniz – IFSC-USP (2012)

A matéria é feita de...

O ÁTOMO

e partículas subatômicas (matéria comum ou visível)

MATÉRIA NO UNIVERSO

Distribuição dos tipos de Matéria/Energia conhecidos (o que sabemos até este momento)

Sérgio R. Muniz – IFSC-USP (2012)

quinta-feira, 19 de julho de 12

(Números aproximados)

O que é BEC ?

"Bose-Einstein Condensation"

Sérgio R. Muniz – IFSC-USP (2012)

Propriedade que distingue as partículas em dois grandes grupos.

Bósons - Férmions Spin inteiro Spin fracionário

PROPRIEDADES DAS PARTÍCULAS

BEC in a nutshell

Altas Temperaturas

 $\lambda_{dB}/d<<1$

"Corpusculos Massivos"

Baixas Temperaturas

 $\lambda_{dB} \propto T^{\text{-}1/2}$

"Pacotes de Onda"

Condensação de Bose-Einstein

 $n_i = \frac{1}{(e^{(\varepsilon_i - \mu)/k_B T} - 1)}$

 $\mu \le 0$ (bósons)

 $T = T_c$: BEC

 $\lambda_{dB} \approx d$

"Overlap de Ondas de Matéria"

Comprimento de onda de de Broglie

 $\lambda_{dB} \equiv \sqrt{\frac{2\pi\hbar^2}{mk_BT}}$

T = 0 : Condensado Puro

"Onda de Matéria

Macroscópica"

Receita da família para produzir gases quânticos

Primeiras observações experimentais de um condesado de Bose-Einstein

em átomos de Na. E imagens de expansão livre de um condensado puro.

Observação de BEC,

Demonstração do princípio de funcionamento de um LASER ATÔMICO

Medida da ocupação macroscópica do estado fundamental!!

Sérgio R. Muniz – IFSC-USP (2012)

Como se faz matéria ultrafria & BECs?

Basicamente dois passos:

Resfriamento Evaporativo: *Evaporação Forçada*

• Magnetic traps or Optical traps

MOT sódio – S.R.Muniz (2002)

Como funciona?

"Laser Cooling" = Resfriamento Laser

Dois tipos de interação luz-matéria:

Força espontânea → Pressão de radiação
Força de dipolo → Potenciais conservativos

Força da Luz!

Pressão de radiação

Força da luz sobre os átomos

Luz próxima à ressonância: aquecimento/resfriamento (Força Dissipativa)

Resfriamento Doopler:

Espalhamento de fótons

$$\vec{F} = \hbar \vec{k} \ \gamma_{S} = \hbar \vec{k} \ \frac{\Gamma \Omega^{2}}{4\Delta^{2}}$$

Sérgio R. Muniz – IFSC-USP (2012)

Demo: Laser Cooling

Força da luz sobre os átomos

em Optica e Fotônica

Demo: Pinças ópticas

Zeeman Slowing: ("opcional") Desaceleração de feixes atômicos

- Laser: "metralhadora" de fótons freia os átomos
- Campo magnético compensa efeito Doppler
- Temperaturas ~ 1 K

MOT: Armadilha Magneto-Óptica

- Armadilha viscosa (melaço) feita de "luz"
- Campo magnético produz sistema 2-níveis
- Temperaturas ~ 100 µK

MagTrap: Armadilha puramente Magnética

- spin dos átomos é como pequenos imãs
- Campo magnético produz um "poço" de potencial
- Temperaturas << 1 μK

Dipole Trap: Armadilha puramente Óptica

- Armadilha de "luz"
- Campo <u>elétrico</u> produz potencial conservativo
- Temperaturas << 1µK</p>

BEC no IFSC (Rb-I)

Sérgio R. Muniz – IFSC-USP (2012)

Novo condensado do IFSC (Rb-II)

Magnetismo quântico Superfluidez & Supercondutividade Informação & Computação quântica

Sérgio R. Muniz – IFSC-USP (2012)

Porque BEC ?

Novas Áreas de Pesquisa

• Simulação quântica de sistemas complexos

• Explorar novos caminhos em QIP: emaranhamento em sistemas de muitos corpos

 Potenciais ópticos dinâmicos de altíssima precisão e novas técnicas de imagem (reconstrução holografica e NMR)

Sérgio R. Muniz – IFSC-USP (2012)

Potenciais ópticos no IFSC

(em uso)

- "Engenharia" de potenciais ópticos arbitrários: SLMs, AODs
 - Holografia
 - contraste de fase (demonstrada)
 - Técnicas acusto-ópticas (em uso)

Sérgio R. Muniz – IFSC-USP (2012)

BEC = função de onda macroscopica

$$\Psi = \sqrt{n(x)}e^{i\phi(x)}$$

densidade atômica

fase macroscópica

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Equação de Schrödinger não linear

$$i\frac{\partial}{\partial t}\Psi = \left(\frac{-\hbar^2}{2M}\nabla^2 + V(x) + \frac{4\pi\hbar^2 a}{M}|\Psi|^2\right)\Psi = \mu\Psi$$

Campo médio de interação atômica

Sérgio R. Muniz – IFSC-USP (2012)

From quantum twisters to quantum simulation and information

NIST

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Georgialnstitute of Technology

Katrina/2005

• *Tremendous amount of energy* can cause massive destruction through *friction* and large scale (macroscopic) weather changes...

Sérgio R. Muniz – IFSC-USP (2012)

O mundo quântico é um lugar estranho...

"A hurricane is perhaps Earth's most devastating <u>vortex</u>. But even the deadliest hurricanes die out as they move away from warm waters that power them. Not so in the frictionless world of <u>superfluids</u>."

Superfluidos são 'irrotacionais'!!

Creating vortices in a superfluid : (Rotating BECs in the TOP trap)

 $B_{x}(t) = B_{0} \operatorname{Cos}(\omega_{TOP} + \Omega)t + \varepsilon \operatorname{Cos}(\omega_{TOP} - \Omega)t$ $B_{y}(t) = B_{0} \operatorname{Sin}(\omega_{TOP} + \Omega)t - \varepsilon \operatorname{Sin}(\omega_{TOP} - \Omega)t$

Spatial Density Distribution, as seen by TOF imaging... 'holes' represent the vortex cores!

Vendo redes de vórtices quantizados no laboratório

Imagens mostram densidade mas não informação da fase... *i.e.:* Qual o sentido de rotação? E o campo de velocidade <u>microscópico</u>?

Spatial information in the diffracted cloud

10 ms

No vortices

Clockwise Rotation

Counter-Clockwise Rotation

Direct sensing of rotation!

A short digression: Ring-shaped Matter Wave propagation

Pulse on a 70 micron plug after switching off the trap

Tec

10 ms $5 \, \text{ms}$ Georgia

Correctly focused...

View from the side

Ring

BEC

20 microns width

2.8 mm

20 ms TOF

Dinâmica de vórtices em Superfluidos

Vórtices estão âmago da superfluidez, entender sua dinâmica é a chave para entender e controlar a supercondutividade do tipo-II...

Vórtices em Superconductores de alta temperatura

<u>******</u>

<u>Fluxóides</u>: Campo Magnético penetra nos materiais do do tipo-II na forma de tubos (vórtices) quantizados

Multi-pulse Bragg Scattering

Vortex matter, (Nb-film @ 4.5K) (*Phys. Rev. Lett.* **80**, 2693)

Mapeamento espectroscópico da dinâmica de vórtices via técnica de difração Bragg

Muniz et al., Math. Comput. Simul., 74, 397 (2007)

Sérgio R. Muniz – IFSC-USP (2012)

NIST all-optical toroidal trap for BEC

 $ω_z$: 500-2000 Hz $ω_R$: 20-160 Hz

N ~
$$1.5 \times 10^{5}$$
 atoms
 μ ~ $50 \text{ nK} (1 \text{ kHz})$

T < 40nK

Geometria típica da armadilha (BEC)

<u>R~20</u> um r_z ~1 μn

Frequência vertical ~ 500 Hz Frequência 'Radial' ~ 80 Hz

N ~ 1.5 x 10⁵ átomos ρ ~ 5 x 10¹³ átomos/cm³

T < 40 nK $\mu \sim 1 kHz$

Sérgio R. Muniz – IFSC-USP (2012)

Expansão em tempo de vôo (TOF) (sem circulação)

Top View

Side View

Sérgio R. Muniz – IFSC-USP (2012)

Detectando Circulação em TOF

(Images taken after 10 ms expansion)

Supercorrente persiste por até 40 segundos(!)

Limitada por Vácuo (~30 sec. BEC tempo de vida) Não uniformidade da armadilha (<5 nK)

"Quebrando" o superfluxo com uma Barreira

0 µW 8 µW 3μW 6 μW 12 µW

Sérgio R. Muniz – IFSC-USP (2012)

BEC e os super-fenômenos

Superfluidez

Supercondutividade

Matéria quântica... super computadores(?)!

"Proto-processador" quântico

Demo: BEC e antigravidade...

Obrigado!

srmuniz@usp.br

srmuniz@ifsc.usp.br