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Chiral filtering in graphene with coupled valleys
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We analyze the problem of electronic transmission through different regions of a graphene sheet that are
characterized by different types of connections between the Dirac points. These valley symmetry breaking
Hamiltonians might arise from electronic self-interaction mediated by the dielectric environment of distinct parts
of the substrate on which the graphene sheet is placed. We show that it is possible to have situations in which we
can use these regions to select or filter states of one desired chirality.
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I. INTRODUCTION

Graphene is a truly two-dimensional (2D) crystal with
Dirac-like quasiparticles.1,2 These charge carriers are the result
of the wave-function interference due to the honeycomb lattice
structure and hence they cannot exist outside the many-body
system (electrons plus lattice). From this perspective, the
low-energy, long-wavelength Lorentz invariance in this system
is an emergent phenomenon and, as such, can be influenced
by external factors such as disorder, applied electric and
magnetic fields, and structural deformations of the lattice such
as pressure, strain, and shear.3

The low-energy physics of these Dirac quasiparticles is
strongly influenced by the fact that the two Dirac cones sit at
the corners of the hexagonal Brillouin zone (K and K ′). These
cones are related by time-reversal symmetry and define the
chirality of these quasiparticles in terms of their momentum
relative to each cone. Unlike the case of neutrinos, where only
one chiral flavor exists, Dirac particles in graphene have both
flavors, and they can be either right-handed or left-handed
depending on whether they reside in one cone or the other.
While in a perfect, noninteracting, graphene sheet these chiral
states are decoupled, in a real graphene sample they can be
coupled by the external perturbations mentioned above. At
low energies, one can have either intravalley processes, with
small momentum transfer that preserve chirality, or intervalley
processes, with large momentum transfer that mixes chiralities.
It is well known that, in the presence of weak disorder,
intravalley processes lead to weak antilocalization effects,4

whereas intervalley processes lead to weak localization.5

Hence, the coupling between K and K ′ points plays an
important role in the physics of graphene.

In this work, we study transport through regions where the
K and K ′ points are not coupled and regions in which they
are actually coupled. Although the Hamiltonians with which
we deal are manifestly noninteracting, these couplings might
arise from the interactions between the electrons, as we argue
below. Our main goal is to understand how the Dirac electrons
behave across the interfaces separating those two regions
as a way to classify the possible scattering mechanisms in
graphene. Such a situation can also be artificially created by
depositing graphene across substrates with different dielectric
constants. For instance, there are quantum Monte Carlo6 calcu-
lations that indicate that suspended graphene (i.e., on vacuum
with dielectric constant ε0 = 1) is an excitonic insulator and

graphene on SiO2 (εSiO2 ≈ 3) should be a semimetal.7 An
interface between those regions would have a transistorlike
effect with a large on-off ratio for current flow.

Our starting point is the well-known low-energy effective
Hamiltonian for neutral graphene that is given by1 (we use
units such that vF = h̄ = 1)

H =
∫

d2r( �̂
†
1 �̂

†
2 )

(
σ · P̂ 0

0 σ ∗ · P̂

)(
�̂1

�̂2

)
, (1)

where �̂
†
i = (a†

i ,b
†
i ), a†

i and b
†
i being the creation operators for

electrons in sublattice A or B, respectively, in the Dirac cone i

(i = 1,2), and σ = (σx,σy) is a 2D vector whose components
are Pauli matrices (we ignore spin variables).

In the representation of the Hamiltonian (1), there are many
ways to couple the K and K ′ points.8 These couplings have
different symmetries and hence represent different physical
processes. Notice, however, that all the processes that couple
the two cones can be represented in terms of combinations of
the identity matrix and Pauli matrices in the “valley” space.
We will deal only with real coupling potentials in such a way
that we can write explicitly all the generators of the different
couplings as combinations of basic matrices:

Vx = �

(
0 σx

σx 0

)
, (2)

Vy = �

(
0 −iσy

iσy 0

)
, (3)

Vz = �

(
0 σz

σz 0

)
, (4)

and

VI = �

(
0 1

1 0

)
, (5)

where � is a parameter that is assumed to be positive
throughout the paper since negative deltas will bring no new
physics. Of course the most arbitrary potential would be a
linear combination of these with different delta parameters
(and in this case, the sign difference between them might be
relevant).

As we are going to show, only Vy and Vx are of real
interest and will be the focus of our studies. We will also
show that the transmission through regions described by these
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matrices presents very unusual properties and can presumably
be measured experimentally (we stress, nevertheless, that it is
not our aim to fully solve the transport problem considering
finite-size and disorder effects, but to analyze the physics of
our proposed model, which we believe can account for the
main properties behind, for instance, the contact resistance of
nanoscopic graphene junctions).

The paper is organized as follows. In Sec. II, we give a
very brief introduction to the problem of “free” graphene and
some of our notation. In Sec. III, we present and analyze
the Hamiltonians with which we work, giving a somewhat
general notion of their nature and why we have chosen
them, solving the corresponding eigenvalue problems and
analyzing the symmetries they obey. In Sec. IV, we (less)
briefly discuss the transmission problem in two dimensions.
In Sec. V, we solve the problem of transmission through
the interface between two semi-infinite regions of graphene,
one with “free” electrons and the other with self-interacting
quasiparticles. In Sec. VI, we solve the finite-barrier-like prob-
lem of transmission through a finite region of the interacting
material. In Sec. VII, we make a connection of our results
with the Landauer formalism in order to gain some insight
into the more realistic problem of electronic transmission
through nanoscopic graphene sheets. In Sec. VIII, we present
our conclusions.

II. BASIC PROPERTIES

The eigenvalue problem given by (1) can be solved by going
into the momentum representation(

σ · k 0

0 σ ∗ · k

)
ψ±K(K′)(k) = E±ψ±K(K′)(k) (6)

with energy eigenvalues, E = ±k, and eigenstates of well-
defined momenta around the Dirac points (with their cor-
responding spinors, see below). Going back to the position
representation, one has ψK(K′)(r) = ψ±K(K′)(k)eik·r, where the
spinors are

ψ±K(k) = 1√
2

⎛
⎜⎜⎜⎝

e−iθ/2

±eiθ/2

0

0

⎞
⎟⎟⎟⎠ ,

(7)

ψ±K′ (k) = 1√
2

⎛
⎜⎜⎜⎝

0

0

eiθ/2

±e−iθ/2

⎞
⎟⎟⎟⎠ ,

with θ = arctan(ky/kx), and the vector k, whose modulus is
connected to the Fermi energy by the dispersion relation, is
centered either around K or K′, respectively. These eigenstates,
which are symmetric and antisymmetric linear combinations
of the states referring to the A and B sublattices, allow us to
introduce a particle-hole representation that reads

H =
∑
i=1,2

k[f †
k,ifk,i − h

†
k,ihk,i], (8)

where the hole states have negative energy. Thus, we describe
the electron behavior in the free graphene by a theory of

noninteracting massless fermionic quasiparticles with two
different “flavors” (and their corresponding antiparticles).

III. INTERACTING HAMILTONIANS

Electron-electron interaction plays an important role in
graphene physics and transport problems.9,10 Its effects depend
strongly on the dielectric function and it is independent of
the electronic density.9 Since the dielectric function can be
affected in many ways, as, for instance, by adsorbed atoms on
the surface or deposition substrates, we propose that there may
be situations in which the resulting effective electron-electron
interaction can cause mixing of the Dirac cones, and we
show how it could happen, at least in a heuristic mean-
field approximation. Our approach is phenomenological, and,
therefore, the specific shape of the interaction potentials
will not be given and should be chosen from microscopic
arguments. There are many possible situations, one of them
being the possibility that the (Coulomb) interaction becomes
screened.9,11 Hence, we justify the choice of our approach and
we will make the symmetry assumptions we find reasonable
to cope with our proposed models.

So, let us suppose that the electron-electron interaction
contribution to the usual tight-binding Hamiltonian is of the
form

HI =
∑
i �=j

Uijninj . (9)

Separating the terms in the summation corresponding to each
sublattice, we arrive at

HIA =
∑
i �=j

UijnAinAj (10)

HIB =
∑
i �=j

UijnBinBj (11)

HIAB =
∑
i,j

VijnAinBj . (12)

We have assumed that the interaction between the electrons
within each sublattice is equal, which actually need not be the
case.

Now we perform the mean-field approximation. The values
of the mean fields should actually be determined in a self-
consistent way, which will not be done here, and be justified
by microscopic arguments. Our point is that if there is any
physical process that gives rise to these mean fields, the
proposed decoupling will lead to our model Hamiltonians.
We make more comments below on the physical nature of this
approximation. That being said, we can choose, for example,
the first Hamiltonian and get, to first order in the deviations
from a mean density of electrons in sublattice A,

HIA ≈
∑
i �=j

Uij [nAi〈nAj 〉 + nAj 〈nAi〉 − 〈nAi〉〈nAj 〉]

=
∑

i

�inAi − const, (13)
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where � is the effective on-site potential generated by the
self-interaction between the particles. In Fourier space, we
can write

ai = 1√
NS

∑
k

eik·Ri ak, (14)

where NS is the number of sites in the lattice. Hence, we have
a Hamiltonian that couples the k vectors,

HIA ≈
∑
kk′

�k−k′a
†
kak′ , (15)

where we have ignored the constant term. If we keep only the
the long-wavelength contribution to the expression just above,
we find that this term leads to the four couplings (following
our notation, aK → a1,aK′ → a2)

a
†
1a1, a

†
2a2, (16)

and

a
†
1a2, a

†
2a1. (17)

The first two lead to diagonal terms that are of no interest
to us, whereas the two others give contributions exactly of
the type we want. The same arguments can be carried over
to HIB . Since the potential must be such that Uij = Uji , its
Fourier transform is real. The mean fields should also be real,
and this justifies our choice of only analyzing the four real V
Hamiltonians. As for the physical realization of these mean
fields, we believe that the presence of the substrate might, in
specific cases, affect the electrons in the material and break
the symmetries between the sublattices in such a way that
ordered states such as, for example, a CDW could develop.
These possibilities should be more deeply analyzed, but this
will not be pursued in this paper.

A more thorough approach to this problem can be found in
the contribution of Alicea and Fisher.12 There, it is shown how
the long- and short-range interactions give rise to terms like
staggered densities in each sublattice,

ρstag = nA1 + nA2 − nB1 − nB2, (18)

where nA,Bi , i = 1,2, refers to the number operator in the
sublattice A or B and the Dirac cone 1 or 2. In the Alicea and
Fisher model, the long-wavelength Hamiltonian has (local)
contributions due to electronic densities given by

ρ2
tot + ρ2

stag = a
†
1a1a

†
1a1 + a

†
2a2a

†
2a2

+ b
†
1b1b

†
1b1 + b

†
2b2b

†
2b2 + b

†
1b1b

†
2b2

+ a
†
2a2a

†
1a1 + a

†
1a1a

†
2a2 + b

†
2b2b

†
1b1. (19)

This term comes from the on-site repulsion interaction (a
more detailed analysis can be found in the original paper12).
We can see that a mean-field decoupling might also generate
our Hamiltonians in this case, however the mean fields result
directly from the replacement a1a

†
2 → 〈a1a

†
2〉, for example.

As we had formerly proposed, we have given some heuristic
arguments for our ad hoc choice of the form of the Vi

interactions. We proceed now to exploit the consequences of
these model Hamiltonians in some specific cases.

A. Spectrum in the presence of V y

In the presence of the disturbance (3), the Hamiltonian is
given by

H =

⎛
⎜⎜⎜⎝

0 ke−iθ 0 −�

keiθ 0 � 0

0 � 0 keiθ

−� 0 ke−iθ 0

⎞
⎟⎟⎟⎠ . (20)

The solution of the eigenvalue problem gives EA,B± =
±√

k2 + �2 ≡ ±ε (Fig. 1) with a gap of size � in the
spectrum. The spinorial part of the eigenvectors (we omit the
plane waves for simplicity in this whole section)

|χ+
A 〉 = 1√

2

⎛
⎜⎜⎜⎝

A+e−iθ/2

A+eiθ/2

A−eiθ/2

−A−e−iθ/2

⎞
⎟⎟⎟⎠ , |χ−

A 〉 = 1√
2

⎛
⎜⎜⎜⎝

A−e−iθ/2

A−eiθ/2

−A+eiθ/2

A+e−iθ/2

⎞
⎟⎟⎟⎠ ,

(21)

|χ+
B 〉 = 1√

2

⎛
⎜⎜⎜⎝

A−e−iθ/2

−A−eiθ/2

−A+eiθ/2

−A+e−iθ/2

⎞
⎟⎟⎟⎠ , |χ−

B 〉 = 1√
2

⎛
⎜⎜⎜⎝

A+e−iθ/2

−A+eiθ/2

A−eiθ/2

A−e−iθ/2

⎞
⎟⎟⎟⎠ ,

(22)

where A± =
√

ε±k
2ε

. Here, A and B do not refer to the different
triangular sublattices but to the different degenerate states
originating from the dispersion relation.

As we saw, can use Eq. (7) to put this Hamiltonian in a
particle-hole representation, where particle and hole states are
described as symmetric and antisymmetric combinations of the
different sublattice wave functions. The effective interaction
between the particles and holes is then written as

Hph =

⎛
⎜⎜⎜⎝

k 0 0 �

0 −k −� 0

0 −� k 0

� 0 0 −k

⎞
⎟⎟⎟⎠ , (23)

0

k

E

FIG. 1. (Color online) Schematic representation of the dispersion
relation for the Hamiltonian in the presence of the Vy term (arbitrary
units).
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where “ph” refers to the particle-hole representation. Equa-
tion (20) can be seen to obey orthogonal time-reversal
symmetry (exchanging the valleys by time reversal) and it is
seen to generate a band gap. We see that this kind of effective
potential is equivalent to the introduction of an asymmetric
coupling between particles and holes from different Dirac
cones.

B. Spectrum in the presence of Vx

In the presence of a perturbation of the form (2), the full
Hamiltonian becomes

H =

⎛
⎜⎜⎜⎝

0 ke−iθ 0 �

keiθ 0 � 0

0 � 0 keiθ

� 0 ke−iθ 0

⎞
⎟⎟⎟⎠ . (24)

Diagonalization will lead us to E±± = ±k ± � (Fig. 2)
with no gap in the spectrum but a shift of the Dirac cones
relative to each other by �. The eigenvectors are now

|χ++〉 = 1

2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

eiθ/2

e−iθ/2

⎞
⎟⎟⎟⎠ , |χ+−〉 = 1

2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

−eiθ/2

−e−iθ/2

⎞
⎟⎟⎟⎠ , (25)

|χ−+〉 = 1

2

⎛
⎜⎜⎜⎝

e−iθ/2

−eiθ/2

−eiθ/2

e−iθ/2

⎞
⎟⎟⎟⎠ , |χ−−〉 = 1

2

⎛
⎜⎜⎜⎝

−e−iθ/2

eiθ/2

−eiθ/2

e−iθ/2

⎞
⎟⎟⎟⎠ , (26)

and, in the particle-hole representation, we have

Hph =

⎛
⎜⎜⎜⎝

k 0 � 0

0 −k 0 −�

� 0 k 0

0 −� 0 −k

⎞
⎟⎟⎟⎠ . (27)

The Hamiltonian now obeys S time-reversal symmetry and
there is no energy gap (S is the symplectic time-reversal

0

k

E

FIG. 2. (Color online) Schematic representation of the dispersion
relation for the Hamiltonian in the presence of the Vx term (arbitrary
units).

symmetry in the sense described in Ref. 13). However, there
is another interesting property that shows up. Because of the
different translations in energy of the two Dirac cones, there
can be phenomena akin to the Klein paradox in transmission
problems. The particle-hole representation reveals an effective
interaction that favors the coupling of different valley particles
over the coupling of different valley hole states.

C. Spectrum in the presence of VI and Vz

Two other Hamiltonians that possibly connect valleys are
given by (4) and (5), and therefore

H =

⎛
⎜⎜⎜⎝

0 ke−iθ � 0

keiθ 0 0 �

� 0 0 keiθ

0 � ke−iθ 0

⎞
⎟⎟⎟⎠ (28)

and

H =

⎛
⎜⎜⎜⎝

0 ke−iθ � 0

keiθ 0 0 −�

� 0 0 keiθ

0 −� ke−iθ 0

⎞
⎟⎟⎟⎠ . (29)

These are of no actual interest to transmission problems.
The dispersion relations will be, respectively,

E±±x = ±
√

k2 + �2 ± 2k� cos θ (30)

and

E±±y = ±
√

k2 + �2 ± 2k� sin θ. (31)

These problems are related to each other by rotations of
π/2 around the z axis, and hence do not introduce any new
physics. Besides, we see that the effect of this potential on the
dispersion relations of the particles reduces to just a change
by ±� in the x (first case) or y (second case) components
of the particles’ momenta, which can be renormalized, and
the resulting quasiparticles behave no differently from free
particles. Therefore, in the regions affected by these potentials,
the transmission probabilities will be equal to 1, as can be
shown by solving the semi-infinite or finite interacting regions
problem. We will not deal with these two cases any further
and show, only for completeness, the expressions for the
spinors associated with the Hamiltonians above, which read,
respectively,

|χ−+〉 = 1

2

⎛
⎜⎜⎜⎝

1

− E++x

ke−iθ +�

− E++x

ke−iθ +�

1

⎞
⎟⎟⎟⎠ |χ++〉 = 1

2

⎛
⎜⎜⎜⎝

1
E++x

ke−iθ +�
E++x

ke−iθ +�

1

⎞
⎟⎟⎟⎠ |χ+−〉

= 1

2

⎛
⎜⎜⎜⎝

−1

− E+−x

ke−iθ −�
E+−x

ke−iθ−�

1

⎞
⎟⎟⎟⎠ |χ−−〉 = 1

2

⎛
⎜⎜⎜⎝

−1
E+−x

ke−iθ −�

− E+−x

ke−iθ −�

1

⎞
⎟⎟⎟⎠ , (32)
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|χ−+〉 = 1

2

⎛
⎜⎜⎜⎝

1

− E++y

ke−iθ +�

− E++y

ke−iθ +�

1

⎞
⎟⎟⎟⎠ |χ++〉 = 1

2

⎛
⎜⎜⎜⎝

1
E++y

ke−iθ+�
E++y

ke−iθ+�

1

⎞
⎟⎟⎟⎠ |χ+−〉

= 1

2

⎛
⎜⎜⎜⎝

−1

− E+−y

ke−iθ −�
E+−y

ke−iθ−�

1

⎞
⎟⎟⎟⎠ |χ−−〉 = 1

2

⎛
⎜⎜⎜⎝

−1
E+−y

ke−iθ −�

− E+−y

ke−iθ −�

1

⎞
⎟⎟⎟⎠ . (33)

IV. THE TRANSMISSION PROBLEM IN 2D: “BARRIERS”
AND “STEPS”

From this point on, we will be dealing with situations
in which there is transmission of electronic waves from
“free” electron graphene into semi-infinite or finite regions of
“disturbed” graphene, and also reflection back into the original
region. We call these two situations step and barrier problems,
respectively.

Although there has been extensive use of wave-function
matching to describe problems of electronic behavior in
graphene (some examples can be seen in Refs. 14 and 15),
we would like to make some comments of our own. We shall
start by briefly talking about the simple 2D scattering from
straight interfaces. Although it is a simple problem, it is very
useful to establish the terminology we employ in the more
complex cases. All problems of transmission begin with the
determination of the wave functions in different regions and
the enforcement of the boundary conditions they obey. We
assume that the particle in medium I has positive energy with
momentum on the Dirac cone K and moves to the right. Since
both types of interactions connect states of the different Dirac
cones, conservation of the valley “flavor” need not take place
any more and the states corresponding to medium I must be
given by

�I =

⎡
⎢⎢⎢⎣ 1√

2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

0

0

⎞
⎟⎟⎟⎠ + r1√

2

⎛
⎜⎜⎜⎝

−ieiθ/2

ie−iθ/2

0

0

⎞
⎟⎟⎟⎠

+ r2√
2

⎛
⎜⎜⎜⎝

0

0

ie−iθ/2

−ieiθ/2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ eik·r. (34)

Moreover, if the problem is of barrier type, we should be able
to find in medium III the particles with momenta around both
valleys, independent of its flavor in medium I. Conservation of
energy demands that these particles in medium III must also
have positive energy, and then we have

�III =

⎡
⎢⎢⎢⎣ t1√

2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

0

0

⎞
⎟⎟⎟⎠ + t2√

2

⎛
⎜⎜⎜⎝

0

0

eiθ/2

e−iθ/2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ eik·r. (35)

The states accessible to the particles in medium II depend on
the dispersion relations of the Hamiltonian, and we will deal
with each specific case in the next sections.

Since the Hamiltonians are of first order in P̂, we need
only to invoke the continuity of the wave functions at the
interfaces of the different media to be able to determine the
coefficients ri and ti . However, some care must be taken when
evaluating the transmission and reflection amplitudes in the
step problems. These must be determined by the conservation
of the probability current in the direction normal to the
interface (in our case, the x direction). Beginning with the
continuity equation, we have, for medium i = I, II, III,

∇ · Ji = −∂ρi

∂t
, (36)

which in the stationary regime implies that ρi = |�i |2 is time-
independent, and we have

∇ · Ji = 0. (37)

Now, since our problem is translational invariant along the
y direction, Ji is independent of the y variable and it finally
reduces to a one-dimensional conservation problem,

Jix = const. (38)

Although the conservation of the probability current is relevant
only in one dimension, the coefficients ri and ti and the
eigenstates (with which we will calculate the probability
current) all depend on the angles that the momenta of the
particles make with the normal to the interfaces in each
medium. Since the states are equal to each other at the
interfaces (boundary conditions), we have that

JIx = JIIx = JIIIx, (39)

the last equality happening only for barrier problems.
We calculate the probability current in each medium by

taking the mean values of the current operator defined by

J = −δH

δA
= e�σ , (40)

with the states �i , where A is the electromagnetic vector
potential. Notice that, depending on the type of interaction
(for instance, if it is momentum-dependent), the expression
for the current will not assume this usual simple form, and the
definition through the functional derivative must be used to find
the correct expression. The x component of the probability
currents in media I and III will always be the same in our
problem, and are found to be

JIx = [1 − |r1|2 − |r2|2] cos θ (41)

and

JIIIx = [|t1|2 + |t2|2] cos θ. (42)

With these, we see that, for barrier problems,

JIx = JIIIx ⇒ 1 = |r1|2 + |r2|2 + |t1|2 + |t2|2 , (43)

and we recover the usual result. In step problems, we will have
different coefficients, depending on the states involved in the
scattering at the interface.
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V. SEMI-INFINITE REGIONS: STEP PROBLEM

A. V y interaction

This problem is very much like the usual quantum-
mechanical problem of transmission through a potential energy
step smaller than the particle’s energy. In Fig. 3, we show the
energetics of the problem and we easily see that for k < �,
k being the energy of the incident particle, there will be no
transmission, and hence we need the energy of the incident
particle to be larger than �. Moreover, conservation of energy
and momentum along the y direction demands that

k =
√

q2 + �2, (44)

k sin θ = q sin α, (45)

where α is the angle between the y and x components of the
wave vector of the transmitted wave. The transmission can take
place with any of the two degenerate states of positive energy,
and, consequently, the boundary conditions at the interface
lead us to the system

1√
2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

0

0

⎞
⎟⎟⎟⎠ + r1√

2

⎛
⎜⎜⎜⎝

−ieiθ/2

ie−iθ/2

0

0

⎞
⎟⎟⎟⎠ + r2√

2

⎛
⎜⎜⎜⎝

0

0

ie−iθ/2

−ieiθ/2

⎞
⎟⎟⎟⎠

= t1√
2

⎛
⎜⎜⎜⎝

A+e−iα/2

A+eiα/2

A−eiα/2

−A−e−iα/2

⎞
⎟⎟⎟⎠ + t2√

2

⎛
⎜⎜⎜⎝

A−e−iα/2

−A−eiα/2

−A+eiα/2

−A+e−iα/2

⎞
⎟⎟⎟⎠ . (46)

Its solutions are

r1 = q sin α − k sin θ

k + q cos(α + θ )
, (47)

r2 = −i�
cos θ

k + q cos(α + θ )
, (48)

t1 =
√

2k(k + q)
cos θ cos

(
α+θ

2

)
k + q cos(α + θ )

, (49)

t2 = i
√

2k(k − q)
cos θ sin

(
α+θ

2

)
k + q cos(α + θ )

, (50)

which shows that there are reflection and transmission to all
energy degenerate states. Similar expressions for the transmis-

FIG. 3. (Color online) Schematic representation of the step
transmission problem for the Vy Hamiltonian. The red (light gray)
curves are associated with hole states and the blue (dark gray) ones
with particles states.

sion and reflection amplitudes and probabilities (which follow
below) are always found when dealing with wave-function
matching in graphene and have previously been derived in the
literature.14,15

The evaluation of the probability current in medium II
reveals that JIIx = q

k
(|t1|2 + |t2|2) cos α. Hence, by (39) and

(41),

T = (|t1|2 + |t2|2)
q

k

cos α

cos θ
. (51)

We can use (44), the coefficients (47)–(50), and the definition
of α = tan−1(qy/qx) to express this transmission probability
(TP) as a function of the given parameters of the disturbing
potential and of the incident wave.

Therefore, we get

T = 2
√

1 − η2 cos α

1 +
√

1 − η2 cos α
, (52)

with the angle of emergence given by

α = tan−1

(
sin θ√

cos2 θ − η2

)
, (53)

where we defined η ≡ �/k (this procedure will be repeated
throughout the whole paper in a more succinct fashion, unless
some special warning is necessary).

One should be careful about some details of these solutions.
First of all, one notices from (53) that there are situations in
which, even if the energy of the particle is greater than the
interaction energy, for large enough incidence angles, α will be
complex, also leading to a complex TP, which has no physical
meaning. This phenomenon is analogous to total reflection
in electromagnetism. This happens because, although in the
expressions of the transmission and reflection probabilities
(TP and RP) the corresponding amplitudes appear only in
squared moduli, the probability current also depends on the
angles. Making the substitution of imaginary qx and α first in
the wave functions and then proceeding with the calculation of
JIIx reveals that actually JIIx = 0, as expected. This is the same
as happens for scattering by step potentials in usual quantum
mechanics when we deal with energies above and below the
step energy.

In Fig. 4, we show the general behavior of the TP. Some
interesting features of the problem arise now, as we see that
state 2 only contributes to transmission about the extreme
values of the allowed angles. As we raise the barrier in
relation to the particle’s energy, we see that the probability
of transmission drops to zero, as expected. We also note
that there is a focalization of the beam with respect to the
possible incidence angles, which allow for transmission with
nonzero probability. Looking at the behavior of the “angles
of refraction” (which characterize the direction of propagation
of the wavefronts) as a function of the angle of incidence, we
see that for small values they are about the same, at least for
low η. One should notice that these angles need not have an
actual relation to the direction of propagation of the probability
current, since the spinors also depend on the momenta and this
affects the mean value of the current operator (it is connected
to the spinors through the �σ matrices).
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FIG. 4. (Color online) Behavior of the TP for the Vy step problem. In the upper and lower figures on the right, we have η equals to 0.3,
0.6, and 0.9 for the green (light gray), red (medium gray), and blue (dark gray) curves, respectively. (Upper left) Total TP as a function of the
angle of incidence. (Upper right) We separate here the TP associated with states 1 (full line) and 2 (dashed line). (Lower left) TP for normal
incidence as a function of the ratio of the energies of interaction and incidence. It is important to notice that the contributions here come only
from state 1. (Lower right) “Refraction angle” as a function of the incident angle for the same values of η above.

B. Vx interaction

The scheme of the dispersion relations for this physical
situation is shown in Fig. 5.

We notice that there are two nondegenerate bands accessible
to the incident particles (we will call these states 1 and 2),
which lead to particles moving with different momenta inside
the medium, due to the conservation of energy. This will lead to
two different angles αi , i = 1,2, for the emergent particles on
the right side of the interface, related to the angle of incidence
θ by

qi sin αi = k sin θ. (54)

There can also be two different cases, which will change the
states accessible to the emergent particles, namely k > � and
k < �. These considerations lead to the following situations:

(i) k > �.

In this case (Fig. 5, left), the accessible states in medium II
are given by |χ++〉 and |χ+−〉 from Eq. (25) and we have

k = q1 + � = q2 − �, (55)

and the boundary condition at the interface leads to

1√
2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

0

0

⎞
⎟⎟⎟⎠ + r1√

2

⎛
⎜⎜⎜⎝

−ieiθ/2

ie−iθ/2

0

0

⎞
⎟⎟⎟⎠ + r2√

2

⎛
⎜⎜⎜⎝

0

0

ie−iθ/2

−ieiθ/2

⎞
⎟⎟⎟⎠

= t1

2

⎛
⎜⎜⎜⎝

e−iα1/2

eiα1/2

eiα1/2

e−iα1/2

⎞
⎟⎟⎟⎠ + t2

2

⎛
⎜⎜⎜⎝

e−iα2/2

eiα2/2

−eiα2/2

−e−iα2/2

⎞
⎟⎟⎟⎠ . (56)

x x0 0

E(k) E(k)

k k

FIG. 5. (Color online) Scheme of the dispersion relation for the step transmission problem for the Hamiltonian Vx . The red (light gray)
curves are associated with hole states and the blue ones (dark gray) with particles states. (Left) Transmission for k > �. (Right) Transmission
for k < �.
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The solution of the linear system in this case is

r1 = 1

2

[
sin

(
α1+α2

2

) − cos
(

α1−α2
2

)
sin θ

]
cos

(
α1+θ

2

)
cos

(
α2+θ

2

) , (57)

r2 = 1

2

sin
(

α1−α2
2

)
cos θ

cos
(

α1+θ
2

)
sin

(
α2+θ

2

) , (58)

t1 = cos θ√
2 cos

(
α1+θ

2

) , (59)

t2 = cos θ√
2 cos

(
α2+θ

2

) . (60)

The probability current in the x direction is given by

JIIx = e(|t1|2 cos α1 + |t2|2 cos α2), (61)

leading to the transmission coefficient

T = cos α1

cos θ
|t1|2 + cos α2

cos θ
|t2|2 . (62)

Substituting the transmission amplitudes of the solution gives

T = cos θ

{
cos α1

1 + cos[α1 + θ ]
+ cos α2

1 + cos[α2 + θ ]

}
. (63)

Proceeding in the same way as in the preceding section, we
get

α1 = tan−1

(
sin θ√

(1 − η)2 − sin2 θ

)
, (64)

α2 = tan−1

(
sin θ√

(1 + η)2 − sin2 θ

)
, (65)

with which one can plot the behavior of the TP, analogously
to what we have shown in Fig. 6.

Conservation of the y component of the particle’s momen-
tum would reveal that, in analogy to the classical electromag-
netic case, particles of band 1 feel the medium II as “less
refractive” and, consequently, are fully reflected. However, for
particles of band 2, the medium is “more refractive” and there
will always be transmission.

We notice that the main contribution to the total TP of states
of band 1 (those subject to total reflection) comes mostly from
small angles θ , so the current must be almost normal to the

interface if one expects to transmit these particles. Looking
at the “angles of refraction” as a function of the angle of
incidence, one can easily recognize which band is subject to
total reflection.

(ii) k < �.
In this case, we have the possibility of conversion of a

particle state into a hole state, as shown in the right diagram
of Fig. 5, and the conservation of energy gives us

k = −q1 + � = q2 − �. (66)

The linear system to be solved involves now the states |χ−+〉
and |χ+−〉 from (25) and (26), respectively, and reads

1√
2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

0

0

⎞
⎟⎟⎟⎠ + r1√

2

⎛
⎜⎜⎜⎝

−ieiθ/2

ie−iθ/2

0

0

⎞
⎟⎟⎟⎠ + r2√

2

⎛
⎜⎜⎜⎝

0

0

ie−iθ/2

−ieiθ/2

⎞
⎟⎟⎟⎠

= t1

2

⎛
⎜⎜⎜⎝

e−iα1/2

−eiα1/2

−eiα1/2

e−iα1/2

⎞
⎟⎟⎟⎠ + t2

2

⎛
⎜⎜⎜⎝

e−iα2/2

eiα2/2

−eiα2/2

−e−iα2/2

⎞
⎟⎟⎟⎠ . (67)

Its solution is

r1 = −1

2

[
cos

(
α1+α2

2

) + sin
(

α1−α2
2

)
sin θ

]
sin

(
α1+θ

2

)
cos

(
α2+θ

2

) , (68)

r2 = −1

2

cos
(

α1−α2
2

)
cos θ

sin
(

α1+θ
2

)
cos

(
α2+θ

2

) , (69)

t1 = i
cos θ√

2 sin
(

α1+θ
2

) , (70)

t2 = cos θ√
2 sin

(
α2+θ

2

) , (71)

and the probability current and TP are given by

JIIx = e(− |t1|2 cos α1 + |t2|2 cos α2), (72)

T = −cos α1

cos θ
|t1|2 + cos α2

cos θ
|t2|2 , (73)

which, after proper substitution of the coefficients, leads to

T = cos θ

{
− cos α1

1 − cos[α1 + θ ]
+ cos α2

1 + cos[α2 + θ ]

}
.

(74)

FIG. 6. (Color online) Behavior of the TP for theVx k > � step problem. The curves plotted are for η equal to 0.3, 0.6, and 0.9 corresponding
to green (light gray), red (medium gray), and blue (dark gray), respectively. (Left) Total TP as a function of the angle of incidence. (Middle)
Contributions to the TP given by the separate states 1 (full line) and 2 (dashed line). (Right) “Refraction angles” as a function of the incidence
angle for the same values of η as above. Full lines correspond to α1 and dashed lines to α2.

245432-8



CHIRAL FILTERING IN GRAPHENE WITH COUPLED VALLEYS PHYSICAL REVIEW B 84, 245432 (2011)

FIG. 7. (Color online) Behavior of the TP for theVx k < � step problem. The curves plotted are for η equal to 1.4, 2.0, and 8.0 corresponding
to green (light gray), red (medium gray), and blue (dark gray), respectively. (Left) Total TP as a function of the angle of incidence. (Middle)
Contributions to the TP given by the separate states 1 (full lines) and 2 (dashed lines). (Right) behavior of α1 − π (full lines) and α2 (dashed
lines) as a function of θ .

One can see from this expression the expected appearance
of the Klein paradox by looking at the denominator of this
expression’s first term in the case of normal incidence. The
solution of this is the well-known argument that the holelike
particle must have an inverted momentum, so that it will
continue traveling from left to right in the expected direction.16

For such, we demand

α1 = π + tan−1

(
sin θ√

(1 − η)2 − sin2 θ

)
, (75)

α2 = tan−1

(
sin θ√

(1 + η)2 − sin2 θ

)
. (76)

We notice that, with these conventions for the angles, the
expression (63) is actually valid independently of the energy
of the particles and their interaction energy, but we will keep
the solutions separated. The general behavior of the TP for this
case is shown in Fig. 7.

We notice that as we keep raising the barrier (or lowering
the particle’s energy), the contributions of both bands tend to
become equal. It is interesting to see that when η = 2, particles
of band 1 go through the barrier as if there was nothing there,
independent of the angle of incidence. The behavior of the
particle in band 1 as a function of η > 1 is such that the
transmission starts around zero for η ≈ 1, increases to uniform
probability when η = 2, and then tends to the same type of
behavior of the particle in band 2.

From the behavior of the angles α1 and α2 as a function of
θ , it is clear how, as we keep raising the barrier (or lowering
the energies), the directions of propagation of the wavefronts
tend to become equal. For η = 2, there is the explicit inversion
of behavior for the particle in band 1 and it stops being subject
to total reflection (notice that the rightmost plot of Fig. 7 is
actually of α1 − π , but, since the holes move contrary to their
momenta, this is the actual direction of motion of the particle’s
wavefront).

We can use the results of these last two cases to prepare
a quasiparticle current in the material in a definite quantum
state or even in a known linear combination of states. For the
normal incidence problem, we also see that there will be full
transmission, independent of the relation of the energy of the
particle to the strength of the interaction.

VI. FINITE REGIONS : BARRIER PROBLEMS

Now we revisit the problems of the previous sections for the
case of a finite region of disturbed graphene. The mathematical
developments proceed in almost the same way as before, the
only difference being that we need to match the wave functions
from medium I and medium II at x = 0 and from medium II
and medium III at x = d, d being the width of the barrier,
which will lead to a more complex linear system. Hence, we
have the following situations.

A. V y interaction

The matching of the wave function leads to the system

1√
2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

0

0

⎞
⎟⎟⎟⎠ + r1√

2

⎛
⎜⎜⎜⎝

−ieiθ/2

ie−iθ/2

0

0

⎞
⎟⎟⎟⎠ + r2√

2

⎛
⎜⎜⎜⎝

0

0

ie−iθ/2

−ieiθ/2

⎞
⎟⎟⎟⎠

= A1√
2

⎛
⎜⎜⎜⎝

A+e−iα/2

A+eiα/2

A−eiα/2

−A−e−iα/2

⎞
⎟⎟⎟⎠ + A2√

2

⎛
⎜⎜⎜⎝

A−e−iα/2

−A−eiα/2

−A+eiα/2

−A+e−iα/2

⎞
⎟⎟⎟⎠ + B1√

2

⎛
⎜⎜⎜⎝

−iA+eiα/2

iA+e−iα/2

iA−e−iα/2

iA−eiα/2

⎞
⎟⎟⎟⎠ + B2√

2

⎛
⎜⎜⎜⎝

−iA−eiα/2

−iA−e−iα/2

−iA+e−iα/2

iA+eiα/2

⎞
⎟⎟⎟⎠ , (77)
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⎡
⎢⎢⎢⎣ A1√

2

⎛
⎜⎜⎜⎝

A+e−iα/2

A+eiα/2

A−eiα/2

−A−e−iα/2

⎞
⎟⎟⎟⎠ + A2√

2

⎛
⎜⎜⎜⎝

A−e−iα/2

−A−eiα/2

−A+eiα/2

−A+e−iα/2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ eiqxd +

⎡
⎢⎢⎢⎣ B1√

2

⎛
⎜⎜⎜⎝

−iA+eiα/2

iA+e−iα/2

iA−e−iα/2

iA−eiα/2

⎞
⎟⎟⎟⎠ + B2√

2

⎛
⎜⎜⎜⎝

−iA−eiα/2

−iA−e−iα/2

−iA+e−iα/2

iA+eiα/2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ e−iqxd

=

⎡
⎢⎢⎢⎣ t1√

2

⎛
⎜⎜⎜⎝

e−iθ/2

eiθ/2

0

0

⎞
⎟⎟⎟⎠ + t2√

2

⎛
⎜⎜⎜⎝

0

0

eiθ/2

e−iθ/2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ eikxd . (78)

Notice that in medium II, we can now have both transmitted
and reflected waves because of the presence of two interfaces.
We can solve this to find the coefficients Ai and Bi in terms of
ti and then solve a problem analogous to those of the previous
sections. The dependence of JIIx on the position variables can
be easily seen to vanish, as one should expect, and the resulting
transmission probability can be directly obtained,

T = |t1|2 + |t2|2 . (79)

The expressions for the coefficients are cumbersome, but we
show the ones corresponding to the ti’s and ri’s. They are

r1 = i
sin (dqx) (−q sin α + k sin θ )

q cos (dqx) cos α cos θ + i sin(dqx)(k−q sin α sin θ )
,

r2 = −
√

k2 − q2 cos θ sin (dqx)

q cos (dqx) cos α cos θ − i sin(dqx)(k−q sin α sin θ )
,

t1 = e−idkx q cos α cos θ

q cos (dqx) cos α cos θ − i sin(dqx)(k − q sin α sin θ )
,

t2 = 0. (80)

We are not able to write the expressions for the TP’s in terms
of the ratio of the incident particle’s energy to the potential
strength � anymore. In order to get an expression for the TP’s,
given only in terms of known variables, we now use

α = tan−1

⎛
⎝ sin θ√

cos2 θ − (
�
k

)2

⎞
⎠ , (81)

qx = k

√
cos2 θ −

(
�

k

)2

, (82)

finding

T = (k2 cos2 θ − �2)

k2 cos2 θ − �2 cos2(d
√

k2 cos2 θ − �2)
. (83)

The behavior of the TP is shown in Fig. 8. Since the emergent
particles come out in a medium equal to the one from which
they enter, we do not need to consider the incident and
emergent angles because they are the same. We also have
the situation of total reflection in this case, although, due to
tunneling, the kinky behavior of the TP we had in the step
problems is not apparent any more.

One should notice the oscillatory behavior generated by the
self-interference of the wave reflected inside the medium II

(Fabry-Perot-like interferences). In the middle plot, we realize
that these oscillations are affected mainly by the width of the
barrier. We also notice that raising the relative value of � over
k causes again a focalization of the beam and gives rise to a
resonant phenomenon of full TP.

These resonant points can easily be analyzed. The TP for
θ = 0 reduces to

T |θ=0 = k2 − �2

k2 − �2 cos2 (dq)
, (84)

whose maxima are seen to be given by

dqn = nπ ⇒ kn =
√(

nπ

d

)2

+ �2, (85)

which resembles the energy of massive relativistic particles in
a box. Expanding t1(θ = 0) for q around nπ/d, we also get

t1(θ = 0) ≈ ±i
�n/2

k − kn + i�n/2
, (86)

where the kn’s are, as above, the energy levels of virtual bound
states whose inverse lifetimes (decay rates) are given by

�n = 2

[
k

q

(
dq

dk

)]∣∣∣∣
q= nπ

d

= 2

[
1 +

(
�d

nπ

)2 ]−1

. (87)

Similar lifetimes should appear for different values of the
incidence angle. We see that if, for fixed n and �, the barrier
gets wider, the particle lifetime also increases. This is an
expected result since the mean number of times the particle
should reflect back and forth does not change and neither does
its velocity, so the time spent inside the barrier should be longer
if it is wider. If the interaction is stronger, i.e., the barrier is
“higher,” one expects the particle’s quantum behavior to be
more important and, therefore, even if the particle’s energy is
above the barrier, it will spend “more time” inside it and we
expect a longer lifetime.

If in the normal incidence TP (84) both the interaction �

and the energy k are small, we have, up to second order in k2

and �2,

T |θ=0 ≈ k2 − �2

k2 − �2 + �2d2(k2 − �2)
. (88)

Decreasing the energy to arbitrarily low values leads to

T |θ=0 ≈ 1

1 + d2�2
. (89)
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FIG. 8. (Color online) Behavior of the TP for the Vy barrier problem. Since t2 = 0, we only plot the total TP. On the left, we have d = 2.0
and � = 3.0 fixed and vary the energy k of the particles as 3.35 (gray, dashed light gray), 4.3 (green, full line light gray), 5.0 (red, medium
gray), and 10.0 (blue, dark gray). In the middle, we fix � = 4.45 and k = 9.0 and vary the width d through 1.0 (dashed green, light gray), 2.0
(dashed red, medium gray), and 3.0 (full line blue, dark gray). On the right, we plot the normal TP as a function of k for d = 1.5, and � is
equal to 1.0 (green, light gray), 2.0 (red, medium gray), and 3.0 (blue, dark gray).

Hence, if the interaction energy is low enough (or even if the
barrier width is small enough, as can be easily checked), it is
possible to have transmission for arbitrarily low energies, even
if they are smaller than �. This is a phenomenon analogous
to tunneling in usual quantum-mechanical barrier problems.
The wave-function component dependent on the x direction
becomes a real exponential, which can in some situations
penetrate in the other medium.

Notice that the transmission amplitude for states 2 (t2)
is identically zero. This means that there can be no flipping
of the pseudospin due to the Vy coupling Hamiltonian. The
situation is different for the Vx interaction, as will be shown
in the next sections.

B. Vx interaction

(i) k > �.
The linear system in this particular case is now
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The expressions for the solutions in this case are even more
cumbersome than in the previous case, although they still
resemble the expressions presented in the preceding section
for this particular situation. We will show only the different
behavior of the TP patterns related to the former ones (Fig. 9).
The angles α1 and α2 and the x components of the momenta
of states 1 and 2 are the same as those of the corresponding

case of the previous section. We see that, for small angles,
the resonant phenomena induced by the finite barrier are
irrelevant. There is some selection of states for larger angles,
and only states of type 2 contribute to the central region. For the
normal incidence, we also have a perfectly resonant behavior
between the two TP’s (which cause the total transmission to
be always equal to 1), as a function of the width of the barrier,
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FIG. 9. (Color online) Behavior of the TP for the Vx barrier problem (k > �). (Upper left) We have d = 3.0 and � = 1.0 fixed and vary
the energy k of the particles as 2.0 (green, light gray), 4.0 (red, medium gray), and 9.0 (blue, dark gray). (Upper right) We separate here the
contributions to the total TP from the states 1 (full lines) and 2 (dashed lines). (Lower left) Contributions to the normal incidence given by
state 1 (green, light gray) and state 2 (red, dark gray) for � = 4.0 and the same width of the barrier. (Lower right) Contributions to the normal
incidence given by state 1 (green, light gray) and state 2 (red, dark gray) for � = 4.0 and k = 5, for a varying width of the barrier.

which can be used to select the different states. There is no
resonance for fixed width and variable energies of incident
particles.

(ii) k < �.
The system will change only through the transmitted state

1 within region II and reads
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FIG. 10. (Color online) Behavior of the TP for the Vx barrier problem (k < �). (Upper left) We have d = 3.0 and � = 6.0 fixed and vary
the energy k of the particles as 3.0 (green, full line light gray), 4.0 (red, medium gray), and 5.0 (blue, dark gray). In the middle, we separate
the contributions to the total TP from the states 1 (full lines) and 2 (dashed lines) for the same values of d, �, k. (Lower left) Contributions to
the normal incidence given by state 1 (green, light gray) and state 2 (red, dark gray) for � = 4.0. Notice the continuation of this last graphic
in comparison to the lower left graphic in Fig. 9. (Lower right) Contributions to the normal incidence given by state 1 (green, light gray) and
state 2 (red, dark gray) for � = 4.0 and k = 3, as a function of the width of the barrier.

whose solution gives the TP plotted in Fig. 10. Here again
we notice the already familiar behavior of the selection of
states 2 only in the central region. We notice that the solutions
behave just like a continuation of the k > � problem, and
we have no energy resonances for the normal transmission
problem. For small energy, we have a transmission probability
with poorly defined peaks, although if we look at the separate
contributions of the two states, we see that they are such
that the maxima and minima are opposite, except for normal
transmission. Changing the size of the barrier, once again,
induces resonances.

VII. CONDUCTANCE AND THE LANDAUER FORMALISM

We will try to use now the results obtained above to access
a measurable quantity, namely the conductance of the material
due to the presence of the barriers. We understand that our
solution here might be an oversimplification, since we are
not dealing with disorder, finite-size effects, contacts, etc.
Nevertheless, we believe that this might give us some insight
into the usefulness of results like ours. We shall use a reasoning
based on the Landauer formalism.17–19 The total transmitted
current through our sample should be given by

I ≈ (μ1 − μ2)
∫

dE
∑

i

Di
1 (E) J i

t (E)

[
−∂f0 (E)

∂E

]
, (94)

where Di
1 (E) is the one-dimensional density of states per unit

length for channel i, J i
t (E) is the total transmitted current

through our barrier through channel i, and the sum is over all
the channels. μ1 and μ2 are the respective chemical potentials

of the two particle reservoirs between which the electrons
will flow, and f0 is the Fermi distribution with null chemical
potential.

This leads to

I

(μ1 − μ2) e
= I

�φ
(95)

G ≈ e

∫
dE

∑
i

Di
1 (E) J i

t (E)

[
−∂f0 (E)

∂E

]
,

where �φ is the potential difference and G is the conductance
between the reservoirs.

The channels i are given by the discrete values that ky

would assume in a finite-sized sample, in such a way that the
dispersion relation is to be given by (recovering the h̄’s)

E2 = p2 ⇒ E2 = p2
x + h̄2 (iπ/W )2 ,

p2
x = E2 − h̄2 (iπ/W )2 ,

p2
i ≡ E2 − ε2

i ,

where εi takes the value of py , pi the value of px , i is an
integer, and W is the width of the sample. Notice that pi

would give the energy for a Dirac particle moving in graphene
in one dimension along the channel i. The total current we
are dealing with here, J i

t (E), is normal to the barrier. The
possibility of the existence of different angles of incidence is
reflected by the appearance of the channels, as we make clear
below.
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Therefore, with this prescription, the transmission proba-
bility for the Vy interaction is given by

T = (E2 cos2 θ − �2)

E2 cos2 θ − �2 cos2(d
√

E2 cos2 θ − �2)

=
(
E2 − p2

y − �2
)

E2 − p2
y − �2 cos2

(
d
√

E2 − p2
y − �2

)
⇒ T i (E) =

(
E2 − ε2

i − �2
)

E2 − ε2
i − �2 cos2

(
d

√
E2 − ε2

i − �2
)

or T [E (pi)] =
(
p2

i − �2
)

p2
i − �2 cos2

(
d

√
p2

i − �2
) , (96)

where E (pi) = pi , which makes explicit our argument that
the contributions to the full transmission are 1D-like, normal
to the barrier, and separated into different channels.

Now let us analyze the expression for the current. We can
write,∑

i

Di
1(E)J i

t (E) =
∑

i

J i
t (E)

1

L

∑
pi

δ(E − E(pi))

= 1

L

∑
pi ,i

δ(E − E(pi))J i
t (E), (97)

where L is the length of the sample. Then, using the results
of Sec. IV for the transmission direction only, J i

t (E) ≡
eT i(E)|vx(pi)| = eT [E(pi)]|vx(pi)| (the transmission is as-
sumed to be along the x direction and the modulus is present to
guarantee that only the positive x direction is to be considered),
one has∑

i

Di
1(E)J i

t (E) = e
1

L

∑
pi ,i

δ(E − E(pi))T [E(pi)]|vx(pi)|

= e
1

L

∑
pi ,i

δ(E − E(pi))T (E)|vx(pi)|

= e
1

L
T (E)

∑
pi ,i

δ(E − Ei(pi))|vx(pi)|.

(98)

Now we can stop looking at the values of py as different modes
and sum over all the values of the vector k (in two dimensions),
obtaining∑

i

Di
1(E)J i

t (E) = e
1

L
T (E)

∑
pi ,i

δ(E − E(pi))|vx(pi)|

= e

πh̄
T (E)

∑
p

δ(E − E(k))
πh̄

L
|vx(p)|

= e

πh̄
T (E)

∑
p

δ(E − E(p))
πh̄

L
|vx(p)|

︸ ︷︷ ︸
≡M(E)

= e

πh̄
T (E)M(E). (99)

The function M(E) defines our number of transverse modes.
It can be evaluated by the usual method, transforming the sum

into an integral and remembering to count the spin degeneracy.
Valley degeneracy should not be included because the electrons
are chosen in a very well defined valley, otherwise we should
add another factor of 2 multiplying the final expression. It
gives, once again, for width W ,

M (E) = 2W

πh̄
|E| , (100)

or, recovering the Fermi velocity (remember that our units
were such that vF = 1),

M (E) = 2W

πh̄vF

|E| . (101)

We can easily determine now the value of the conductance
due to the presence of our barrier. For zero temperature (in
which case the integral is trivial), we get

G = e2

πh̄
T (EF )

2W

πh̄vF

EF . (102)

Hence, we show that the conductance is expected to be
proportional to the TP in the normal direction with the energy
set at EF . As we have analyzed the behavior of this TP in
the last section, we will neither write the explicit expressions
nor go through the analysis of its graphic representation once
again. The only thing we wish to stress is the fact that in the
Vx case, we expect to be able to choose the contributions to
the conductance for each different cone as a function of the
width of the barrier. We also expect oscillatory behavior of the
conductance as we vary the energy in the case Vy .

VIII. CONCLUSIONS

We have analyzed the problem of electronic transmission
in graphene through interfaces between regions in which
quasiparticles belonging to different valleys (Dirac cones)
interact or not. The relevant Hamiltonians we have employed
are seen to be able to either create a gap in the quasiparticle
spectrum or shift the Dirac cones with respect to each other. In
the latter case, hole states become available to positive energy
incident particles, and the Klein paradox arises.

The behavior of the TP indicates that, for both Hamil-
tonians, in barrierlike and steplike like problems, there is
focalization of the incident beam. In barrier problems, due
to the behavior of the wave functions in each different region,
we see that it should be possible to have situations in which
we can enter the system with particles with momenta around
one of the Dirac cones and come out with a superposition of
electronic states about both cones. We could also act in the
reverse way and filter states from one specific cone out of a
general superposition of electronic states involving different
valleys. If systems in which the electron-electron interactions
we proposed can be isolated, this physical phenomenon could
be useful for the development of “valleytronics” without
dealing with edge modes.20,21

Another possibility is to use this kind of transmission
to entangle a pair of originally separable electronic states
belonging to different cones. This would be very useful if
one wishes to employ a graphene sheet in the development of
quantum processors.

245432-14



CHIRAL FILTERING IN GRAPHENE WITH COUPLED VALLEYS PHYSICAL REVIEW B 84, 245432 (2011)

In order to observe these effects, one should measure
the contact resistance of small graphene samples placed
on appropriate substrates, which would induce the desired
electron-electron interaction. Some considerations toward this
were given in the preceding section, where we showed that
the behavior of the conductance, at very low temperatures,
is expected to be proportional to the TP normal to the given
barrier.

Finally, a word of caution is in order about the Hamiltonians
we have used to induce the coupling between different valleys.
Although we have appealed to general arguments to propose
the phenomenological forms we have employed, we do not
yet know of any microscopic mechanism to deduce them.
Nevertheless, we believe that they can indeed be obtained from

a more microscopic approach, and we shall be investigating
this possibility in the near future.
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