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INTRODUCTION

HE principal theme of this discourse is the great
difference between the relation of special relativ-

ity and quantum theory on the one hand, and general
relativity and quantum theory on the other. Most of
the conclusions which will be reported on in connection
with the general theory have been arrived at in col-
laboration with Dr. H. Salecker, ' who has spent a
year in Princeton to investigate this question.

The difference between the two relations is, brieAy,
that while there are no conceptual problems to separate
the theory of special relativity from quantum theory,
there is hardly any common ground between the general
theory of relativity and quantum mechanics. The
statement, that there are no conceptual convicts
between quantum mechanics and the special theory,
should not mean that the mathematical formulations
of the two theories naturally mesh. This is not the case,
and it required the very ingenious work of Tomonaga,
Schwinger, Feynman, and Dyson' to adjust quantum
mechanics to the postulates of the special theory and
this was so far successful only on the working level.
What is meant is, rather, that the concepts which are
used in quantum mechanics, measurements of positions,
momenta, and the like, are the same concepts in terms
of which the special relativistic postulate is formulated.
Hence; it is at least possible to formulate the require-
ment of special relativistic invariance for quantum
theories and to ascertain whether these requirements
are met. The fact that the answer is more nearly no
than yes, that quantum mechanics has not yet been
fully adjusted to the postulates of the special theory,

*Address of retiring president of the American Physical
Society, January 31, 1957.' This will be reported jointly with H. Salecker in more detail
in another journal.

2 See, e.g. , J. M. Jauch and F. Rohrlich, The Theory of Protons
and Electrons (Addison-Wesley Press, Cambridge, Massachusetts,
1955).
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is perhaps irritating. It does not alter the fact that the
question of the consistency of the two theories can at
least be formulated, that the question of the special
relativistic invariance of quantum mechanics by now
has more nearly the aspect of a puzzle than that of a
problem.

This is not so with the general theory of relativity.
The basic premise of this theory is that coordinates
are only auxiliary quantities which can be given
arbitrary values for every event. Hence, the measure-
ment of position, that is, of the space coordinates, is
certainly not a significant measurement if the postulates
of the general theory are adopted: the coordinates can
be given any value one wants. The same holds for
momenta. Most of us have struggled with the problem
of how, under these premises, the general theory of
relativity can make meaningful statements and predic-
tions at all. Evidently, the usual statements about
future positions of particles, as specified by their
coordinates, are not meaningful statements in general
relativity. This is a point which cannot be emphasized
strongly enough and is the basis of a much deeper
dilemma than the more technical question of the
I.orentz invariance of the quantum 6eld equations.
It pervades all the general theory, and to some degree
we mislead both our students and ourselves when we
calculate, for instance, the mercury perihelion motion
without explaining how our coordinate system is fixed
in space, what defines it in such a way that it cannot
be rotated, by a few seconds a year, to follow the
perihelion's apparent motion. Surely the x axis of our
coordinate system could be defined in such a way that
it pass through all successive perihelions. There must
be some assumption on the nature of the coordinate
system which keeps it from following the perihelion.
This is not di%cult to exhibit in the case of the motion
of the perihelion, and it would be useful to exhibit it.
Neither is this, in general, an academic point, even
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though it may be academic in the case of the mercury
perihelion. A difference in the tacit assumptions which
6x the coordinate system is increasingly recognized to
be at the bottom of many convicting results arrived at
in calculations based on the general theory of relativity.
Expressing our results in terms of the values of co-
ordinates became a habit with us to such a degree that
we adhere to this habit also in general relativity where
values of coordinates are not Per se meaningful. In
order to make them meaningful, the mollusk-like
coordinate system must be somehow anchored to
space-time events and this anchoring is often done with
little explicitness. If we want to put general relativity
on speaking terms with quantum mechanics, our 6rst
task has to be to bring the statements of the general
theory of relativity into such form that they conform
with the basic principles of the general relativity theory
itself. It will be shown below how this may be attempted.

RELATIVISTIC QUANTUM THEORY OF ELEMENTARY
SYSTEMS

The relation between special theory and quantum
mechanics is most simple for single particles. The
equations and properties of these, in the absence of
interactions, can be deduced already from relativistic
invariance. Two cases have to be distinguished: the
particle either can, or cannot, be transformed to rest.
If it can, it will behave, in that coordinate system,
as any other particle, such as an atom. It will have an
intrinsic angular momentum called J in the case of
atoms and spin S in the case of elementary particles.
This leads to the various possibilities with which we
are familiar from spectroscopy, that is spins 0, ~, 1,
~, 2, each corresponding to a type of particle.
If the particle cannot be transformed to rest, its
velocity must always be equal to the velocity of light.
Every other velocity can be transformed to rest. The
rest-mass of these particles is zero because a nonzero
rest-mass would entail an infinite energy if moving
with light velocity.

Particles with zero rest-mass have only two directions
of polarization, no matter how large their spin is. This
contrasts with the 2S+1 directions of polarization for
particles with nonzero rest-mass and spin S. Electro-
magnetic radiation, that is, light, is the most familiar
example for this phenomenon. The "spin" of light is 1,
but it has only two directions of polarization, instead
of 2S+1=3. The number of polarizations seems to
jump discontinuously to two when the rest-mass
decreases and reaches the value 0. Bass and Schrodinger'
followed this out in detail for electromagnetic radiation,
that is, for $=1. It is good to realize, however, that
this decrease in the number of possible polarizations is
purely a property of the Lorentz transformation and
holds for any value of the spin.

There is nothing fundamentally new that can be said
3 L. Bass and E. Schrodinger, Proc. Roy. Soc. (London) A232, 1

(1955).

about the number of polarizations of a particle and the
principal purpose of the following paragraphs is to
illuminate it from a different point of view. 4 Instead of
the question: "Why do particles with zero rest-mass
have only two directions of polarization?" the slightly
different question, "Why do particles with a Rnite
rest-mass have more than two directions of polariza-
tion?" is proposed.

The intrinsic angular momentum of a particle with
zero rest-mass is parallel to its direction of motion,
that is, parallel to its velocity. Thus, if we connect
any internal motion with the spin, this is perpendicular
to the velocity. In case of light, we speak of transverse
polarization. Furthermore, and this is the salient point,
the statement that the spin is parallel to the velocity
is a relativistically invariant statement: it holds as
well if the particle is viewed from a moving coordinate
system. If the problem of polarization is regarded from
this point of view, it results in the question, "Why
can't the angular momentum of a particle with finite
rest-mass be parallel to its velocity?" or "Why can' t
a plane wave represent transverse polarization unless
it propagates with light velocity?" The answer is that
the angular momentum cue very well be parallel to
the direction of motion and the wave cue have trans-
verse polarization, but these are not Lorentz invariant
statements. In other words, even if velocity and spin
are parallel in one coordinate system, they do not
appear to be parallel in other coordinate systems.
This is most evident if, in this other coordinate system,
the particle is at rest: in this coordinate system the

p(a) g(o, q)
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FiG. 1. The short simple arrows illustrate the spin, the double
arrows the velocity of the particle, One obtains the same state,
no matter whether one first imparts to it a velocity in the direction
of the spin, then rotates it (R(8)A(0, q)), or whether one first
rotates it, then gives a velocity in the direction of the spin
(A (B,p)R(8)). See Eq. (1.3),

4 The essential point of the argument which follows is contained
in the present writer's paper, Ann. Math. 40, 149 (1939) and more
explicitly in his address at the Jubilee of Relativity Theory,
Bern, 1955 (Birkhauser Verlag, Basel, 1956), A. Mercier and
M. Kervaire, editors, p. 210.
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direction of its motion any more. In the nonrelativistic
case, that is, if all velocities are small as compared with
the velocity of light, the spin will still be parallel to s
and it will, therefore, enclose an angle with the particle's
direction of motion. This shows that the statement that
the spin is parallel to the direction of motion is not
invariant in the nonrelativisitic region. However, if
the original velocity of the particle is close to the light
velocity, the Lorentz contraction works out in such a
way that the angle between spin and velocity is given by

FiG. 2. The particle is erst given a small velocity in the direction
of its spin, then increasing velocities in a prependicular direction
(upper part of the figure). The direction of the spin remains
essentially unchanged; it includes an increasingly large angle
with the velocity as the velocity in the perpendicular direction
increases. If the velocity imparted to the particle is large (lower
part of the figure), the direction of the spin seems to follow the
direction of the velocity. See Eqs. (1.8) and (1.7).

angular momentum should be parallel to nothing.
However, every particle, unless it moves with light
velocity, can be viewed from a coordinate system in
which it is at rest. In this coordinate system its angular
momentum is surely not parallel to its velocity.
Hence, the statement that spin and velocity are
parallel cannot be universally valid for the particle
with 6nite rest-mass and such a particle must have
other states of polarization also.

It may be worthwhile to illustrate this point some-
what more in detail. Let us consider a particle at rest
with a given direction of polarization, say the direction
of the z axis. Let us consider this particle now from a
coordinate system which is moving in the —s direction.
The particle will then appear to have a velocity in the
s direction and its polarization will be parallel to its
velocity (Fig. 1). It will now be shown that this last
statement is nearly invariant if the velocity is high.
It is evident that the statement is entirely invariant
with respect to rotations and with respect to a further
increase of the velocity in the s direction. This is
illustrated at the bottom of the 6gure. The coordinate
system is first turned to the left and then given a
velocity in the direction opposite to the old s axis.
The state of the system appears to be exactly the same
as if the coordinate system had been first given a
velocity in the —s direction and then turned, which is
the operation illustrated at the top of the figure. The
state of the system appears to be the same not for any
physical reason but because the two coordinate systems
are identical and they view the same particle (see
Appendix I).

Let us now take our particle with a high velocity in
the s direction and view it from a coordinate system
which moves in the —y direction. The particle now will

appear to have a momentum also in the y direction, its
velocity will have a direction between the y and s
axes (Fig. 2). Its spin, however, will not be in the

tan (angle between spin and velocity)
= (1—v'/c') l sin0, (1)

where 8 is the angle between the velocity e in the
moving coordinate system and the velocity in the
coordinate system at rest. This last situation is illus-
trated at the bottom of the figure. If the velocity of
the particle is small as compared with the velocity
of light, the direction of the spin remains 6xed and is
the same in the moving coordinate system as in the
coordinate system at rest. On the other hand, if the
particle's velocity is close to light velocity, the velocity
carries the spin with itself and the angle between
direction of motion and spin direction becomesvery
small in the moving coordinate system. Finally, if the
particle has light velocity, the statement "spin and
velocity are parallel" remains true in every coordinate
system. Again, this is not a consequence of any physical
property of the spin, but is a consequence of the
properties of Lorentz transformations: it is a kind of
Lorentz contraction. It is the reason for the diGerent
behavior of particles with finite, and particles with
zero, rest-mass, as far as the number of states of
polarization is concerned. (Details of the calculation
are in Appendix I.)

The preceding consideration proves more than was
intended: it shows that the statement "spin and
velocity are parallel for zero mass particles" is invariant
and that, for relativistic reasons, one needs only owe

state of polarization, rather than two. This is true as
far as proper Lorentz transformations are concerned.
The second state of polarization, in which spin and
velocity are antiparallel, is a result of the reflection
symmetry. Again, this can be illustrated on the example
of light: right circularly polarized light appears as
right circularly polarized light in all Lorentz frames of
reference which can be continuously transformed into
each other. Only if one looks at the right circularly
polarized light in a mirror does it appear as left
circularly polarized light. The postulate of reaction
symmetry allows us to infer the existence of left
circularly polarized light from the existence of right
circularly polarized light —if there were no such
reAection symmetry in the real world, the existence
of Imo modes of polarization of light, with virtually
identical properties, would appear to be a miracle.
The situation is entirely different for particles with
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nonzero mass. For these, the 2S+ 1 directions of
polarization follow from the invariance of the theory
with respect to proper Lorentz transformations. In
particular, if the particle is at rest, the spin will have
diferent orientations with respect to coordinate
systems which have different orientations in space.
Thus, the existence of all the states of polarization follow
from the existence of one, if only the theory is invariant
with respect to proper Lorentz transformations. For
particles with zero rest-mass, there are only two
states of polarization, and even the existence of the
second one can be inferred only on the basis of reQection
symmetry.

REFLECTION SYMMETRY

The problem and existence of reQection symmetry
have been furthered in a brilliant way by recent
theoretical and experimental research. There is nothing
essential that can be added at present to the remarks
and conjectures of Lee, Yang, and Oehme, and all
that follows has been said, or at least implied, by
Salam, Lee, Yang, and Oehme. 5 The sharpness of the
break with past concepts is perhaps best illustrated by
the cobalt experiment of Wu, Ambler, Hayward,
Hoppes, and Hudson.

The ring current —this may be a permanent current
in a superconductor —creates a magnetic field. The Co
source is in the plane of the current and emits P particles
(Fig. 3). The whole experimental arrangement, as
shown in Fig. 3, has a symmetry plane and, if the
principle of sufficient cause is valid, the symmetry
plane should remain valid throughout the further fate
of the system. In other words, since the right and left
sides of the plane had originally identical properties,
there is no sufficient reason for any difference in their
properties at a later time. Nevertheless, the intensity
of the P radiation is larger on one side of the plane than
the other side. The situation is paradoxical no matter
what the mechanism of the e8ect is—in fact, it is
most paradoxical if one disregards its mechanism and
theory entirely. If the experimental circumstances can
be idealized as indicated, even the principle of sufficient
cause seems to be violated.

It is natural to look for an interpretation of the
experiment which avoids this very far-reaching conclu-
sion and, indeed, there is such an interpretation. ' It
is good to reiterate, however, that no matter what
interpretation is adopted, we have to admit that the
symmetry of the real world is smaller than we had
thought. However, the symmetry may still include
reQections.

~ Lee, Yang, and Oehme, Phys. Rev. 106, 340 (1957).
5 The interpretation referred to has been proposed indepen-

dently by numerous authors, including A. Salam, Nuovo cimento
5, 229 (1957); L. Landau, Nuclear Phys. 3, 127 (1957); H. D.
Smyth and L. Biedenharn (personal communication). Dr. S.
Deser has pointed out that the "perturbing possibility" was raised
already by Wick, Wightman, and Wigner LPhys. Rev. 88, 101
{1952)j but was held "remote at that time. " Naturally, the ap-
parent unanimity of opinion does not prove its correctness.

Am+i Co

FIG. 3. The right side is the mirror image of the left side,
according to the interpretation of the parity experiments" which
maintains the reflection as a symmetry element of all physical
laws. It must be assumed that the reflection transforms matter
into antimatter: the electronic ring current becomes a positronic
ring current, the radioactive cobalt is replaced by radioactive
anticobalt.

If it is true that a symmetry plane always remains a
symmetry plane, the initial state of the Co experiment
could not have contained a symmetry plane. This would
not be the case if the magnetic vector were polar —in
which case the electric vector would be axial. The charge
density, the divergence of the electric vector, would then
become a pseudoscalar rather than a simple scalar as in
current theory. The mirror image of a negative charge
would be positive, the mirror image of an electron a
positron, and conversely. The mirror image of matter
would be antimatter. The Co experiment, viewed
through a mirror, would not present a picture contrary
to established fact: it would present an experiment.
carried out with antimatter. The right side of Fig. 3
shows the mirror image of the left side. Thus, the
principle of sufficient cause, and the validity of sym-
metry planes, need not be abandoned if one is willing

to admit that the mirror image of matter is antimatter.
The possibility just envisaged would be technically

described as the elimination of the operations of
reQection and charge conjugation, as presently defined,
as true symmetry operations. Their product would
still be assumed to be a symmetry operation and
proposed to be named, simply, reQection. A few
further technical remarks are contained in Appendix
II. The proposition just made has two aspects: a very
appealing one, and a very alarming one.

Let us look first at the appealing aspect. Dirac has
said that the number of elementary particles shows an
alarming tendency of increasing. One is tempted to
add to this that the number of invariance properties
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also showed a similar tendency. It is not equally
alarming because, while the increase in the number of
elementary particles complicates our picture of nature,
that of the symmetry properties on the whole simplifies
it. Nevertheless the clear correspondence between
the invariance properties of the laws of nature, and the
symmetry properties of space-time, was most clearly
breached by the operation of charge conjugation.
This postulated that the laws of nature remain the
same if all positive charges are replaced by negative
charges and vice versa, or more generally, if all particles
are replaced by antiparticles. Reasonable as this
postulate appears to us, it corresponds to no symmetry
of the space-time continuum. If the preceding inter-
pretation of the Co experiments should be sustained,
the correspondence between the natural symmetry
elements of space-time, and the invariance properties
of the laws of nature, would be restored. It is true that
the role of the planes of reQection would not be that to
which we are accustomed —the mirror image of ali elec-
tron would become a positron —but the mirror image of
a sequence of events would still be a possible sequence
of events. This possible sequence of events would be
more difficult to realize in the actual physical world
than what we had thought, but it would still be possible.

The restoration of the correspondence between the
natural symmetry properties of space-time on one
hand, and the laws of nature on the other hand, is the
appealing feature of the proposition. It has, actually,
two alarming features. The first of these is that a
symmetry operation is, physically, so complicated.
If it should turn out that the operation of time inversion,
as we now conceive it, is not a valid symmetry operation
(e.g. , if one of the experiments proposed by Treiman
and Wyld gave a positive result) we could still maintain
the validity of this symmetry operation by reinterpr'et-
ing it. We could postulate, for instance, that time
inversion transforms matter into meta-matter which
will be discovered later when higher energy accelerators
will become available. Thus, maintaining the validity
of symmetry planes forces us to a more artificial view
of the concept of symmetry and of the invariance of
the laws of physics.

The other alarming feature of our new knowledge
is that we have been misled for such a long time to
believe in more symmetry elements than actually exist.
There was ample reason for this and there was ample
experimental evidence to believe that the mirror image
of a possible event is again a possible event with
electrons being the mirror images of electrons and not
of positrons. Let us recall in this connection first how
the concept of parity, resulting from the beautiful
though almost forgotten experiments of Laporte, '

60. Laporte, Z. Physik 23, 135 (1924). For the interpretation
of Laporte's rule in terms of the quantum-mechanical operation
of inversion, see the writer's Gruppentheorie und ihre Anmendungen
anf die Quantenmechenik der Atmospektren (Friedrich Vieweg und
Sohn, Braunschweig, 1931), Chap. XVIII.

appeared to be a perfectly valid concept in spectroscopy
and in nuclear physics. This concept could be explained
very naturally as a result of the reflection symmetry
of space-time, the mirror image of electrons being
electrons and not positrons. We are now forced to believe .

that this symmetry is only approximate and the
concept of parity, as used in spectroscopy and nuclear
physics, is also only approximate. Even more funda-
mentally, there is a vast body of experimental informa-
tion in the chemistry of optically active substances
which are mirror images of each other and which have
optical activities of opposite direction but. exactly
equal strength. There is the fact that molecules which
have symmetry planes are optically inactive; there is
the fact of symmetry planes in crystals. v All these
facts relate properties of right-handed matter to
left-handed maNer, not of right-handed matter to
left-handed aetimatter. The new experiments leave no
doubt that the symmetry plane in this sense is not
valid for all phenomena, in particular not valid for

P decay, that if the concept of symmetry plane is at all
valid for all phenomena, it can be valid only in the
sense of converting matter into antimatter.

Furthermore, the old-fashioned type of symmetry
plane is not the only symmetry concept that is only
approximatelyvalid. Charge conjugation was mentioned
before, and we are remainded also of isotopic spin,
of the exchange character, that is multiplet system,
for electrons and also of nuclei which latter holds so
accurately that, in practice, parahydrogen molecules
can be converted into orthohydrogen molecules only
by first destroying them. ' This approximate validity
of laws of symmetry is, therefore, a very general
phenomenon —it may be the general phenomenon. We
are reminded of Mach's axiom that the laws of nature
depend on the physical content of the universe, and
the physical content of the universe certainly shows
no symmetry. This suggests —and this may also be
the spirit of the ideas of Yang and Lee—that all
symmetry properties are only approximate. The
weakest interaction, the gravitational force, is the basis
of the distinction between inertial and accelerated
coordinate systems, the second weakest known inter-
action, that leading to P decay, leads to the distinction
between matter and antimatter. Let me conclude this
subject by expressing the conviction that the discoveries
of Wu, Ambler, Hayward, Hoppes, and Hudson, '
and of Garwin, Lederman, and Weinreich" will not
remain isolated discoveries. More likely, they herald a
revision of our concept of invariance and possibly

'For the role of the space and time inversion operators in
classical theory, see H. Zocher and C. Torok, Proc. Natl. Acad.
Sci. U.S. 39, 681 (1953) and literature quoted there.' See A. Farkas, Orthohydrogen, I'arahydrogen and IIeaey
Hydrogen (Cambridge University Press, New York, 1935).

9 Wu, Ambler, Hayward, Hoppes, and Hudson, Phys. Rev. IOS,
1413(L) (1957).

'0 Garwin, Lederman, and Weinreich, Phys. Rev. 105, 1415(L)
(1957);also, J. L. Friedman and V. L. Telegdi, ibid. 105, 1681(L)
(1957).
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of other concepts which are even more taken for
granted.
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FIG. 4. Measurement of space-like distances by means of a
clock. It is assumed that the metric tensor is essentially constant
within the space-time region contained in the figure. The space-like
distance between events 1 and 2 is measured by means of the light
signals which pass through event 2 and a geodesic which goes
through event 1. Explanation in Appendix IV.

QUANTUM LIMITATIONS OF THE CONCEPTS OF
GENERAL RELATIVITY

The last remarks naturally bring us to a discussion
of the general theory of relativity. The main premise
of this theory is that coordinates are only labels to
specify space-time points. Their values have no partic-
ular significance unless the coordinate system is
somehow anchored to events in space-time.

I.et us look at the question of how the equations of
the general theory of relativity could be verified.
The purpose of these equations, as of all equations of
physics, is to calculate, from the knowledge of the
present, the state of affairs that will prevail in the
future. The quantities describing the present state are
called initial conditions; the ways these quantities
change are called the equations of motion. In relativity
theory, the state is described by the metric which
consists of a network of points in space-time, that is
a network of events, and the distances between these
events. If we wish to translate these general statements
into something concrete, we must decide what events
are, and how we measure distances between erects.
The metric in the general theory of relativity is a
metric in space-time, its elements are distances between
space-time points, not between points in ordinary space.

The events of the general theory of relativity are
coincidences, that is, collisions between particles.
The founder of the theory, when he created this concept,
had evidently macroscopic bodies in mind. Coincidences,
that is, collisions between such bodies, are immediately
observable. This is not the case for elementary particles;
a collision between these is something much more
evanescent. In fact, the point of a collision between
two elementary particles can be closely localized in
space-time only in case of high-energy collisions. (See

Appendix III.) This shows that the establishment of a
close network of points in space-time requires a
reasonabk energy density, a dense forest of world
lines wherever the network is to be established. How-
ever, it is not necessary to discuss this in detail because
the measurement of the distances between the points of
the network gives more stringent requirements than
the establishment of the network.

It is often said that the distances between events
must be measured by yardsticks and rods. We found
that measurements with a yardstick are rather difficult
to describe and that their use would involve a great
deal of unnecessary complications. The yardstick gives
the distance between events correctly only if its marks
coincide with the two events simultaneously from the
point of view of the rest-system of the yardstick.
Furthermore, it is hard to image yardsticks as anything
but macroscopic objects. It is desirable, therefore,
to reduce all measurements in space-time to measure-
ments by clocks. Naturally, one can measure by
clocks directly only the distances of points which are
in time-like relation to each other. The distances of
events which are in space-like relation, and which
would be measured more naturally by yardsticks,
will have to be measured, therefore, indirectly.

It appears, thus, that the simplest framework in
space-time, and the one which is most nearly micro-
scopic, is a set of clocks, which are only slowly moving
with respect to each other, that is, with world lines
which are approximately parallel. These clocks tick
off periods and these ticks form the network of events
which we wanted to establish. This, at the same time,
establishes the distance of those adjacent points which
are on the same world line.

Figure 4 shows two world lines and also shows an
event, that is, a tick of the clock, on each. The figure
shows an artifice which enables one to measure the
distance of space-like events: a light signal is sent out
from the first clock which strikes the second clock
at event 2. This clock, in turn, sends out a light signal
which strikes the first clock at time t' after the event 1..
If the first light signal had to be sent out at time t

before the first event, the calculation given in Appendix
IV shows that the space-like distance of events 1 and 2
is the geometric average of the two measured time-like
distances t and t'. This is then a way to measure
distances between space-like events by clocks instead
of yardsticks.

It is interesting to consider the quantum limitations
on the accuracy of the conversion of time-like measure-
ments into space-like measurements, which is illustrated
in Fig. 4. Naturally, the times t and t' will be well
defined only if the light signal is a short pulse. This
implies that it is composed of many frequencies and,
hence, that its energy spectrum has a corresponding
width. As a result, it will give an indeterminate recoil
to the second clock, thus further increasing the un-
certainty of its momentum. All this is closely related



RELATIVI STI C I NVAR IANCE AND QUANTUM PHENOMENA

to Heisenberg's uncertainty principle. A more detailed
calculation' shows that the added uncertainty is of
the same order of magnitude as the uncertainty inherent
in the nature of the best clock that we could think of,
so that the conversion of time-like measurements
into space-like measurements is essentially free.

We finally come to the discussion of one of the
principal problems —the limitations on the accuracy
of the clock. It led us to the conclusion that the inherent
limitations on the accuracy of a clock of given weight
and size, which should run for a period of a certain
length, are quite severe. In fact, the result in summary
is that a clock is an essentially nonmicroscopic object.
In particular, what we vaguely call an atomic clock,
a single atom which ticks o6 its periods, is surely an
idealization which is in convict with fundamental
concepts of measurability. This part of our conclusions
can be considered to be well established. On the other
hand, the actual formula which will be given for the
limitation of the accuracy of time measurement, a sort
of uncertainty principle, should be considered as the
best present estimate.

I et us state the requirements as follows. The watch
shall run T seconds, shall measure time with an accuracy
ot T/e=t, its linear extension shall not exceed /, its
mass shall be below nz. Since the pointer of the watch
must be able to assume e diAerent positions, the system
will have to run, in the course of the time T, over at
least e orthogonal states. Its state must, therefore, be
the superposition of at least e stationary states. It is
clear, furthermore, that unless its total energy is at
least h/t, it cannot measure a time interval which is
smaller than t. This is equivalent to the usual un-
certainty principle. These two .requirements follow
directly from the basic principles of quantum theory;
they are also the requirements which could well have
been anticipated. A clock which conforms with these
postulates is, for instance, an oscillator, with a period
which is equal to the running time of the clock, if it
is with equal probabilty in any of the 6rst e quantum
states. Its energy is about e times the energy of the
6rst excited state. This corresponds to the uncertainty
principle with the accuracy t as time uncertainty.
Broadly speaking, the clock is a very soft oscillator, the
oscillating particle moving very slowly and with a
rather large amplitude. The pointer of the clock is
the position of the oscillating particle.

The clock of the preceding paragraph is still very
light. I.et us consider, however, the requirement that
the linear dimensions of the clock be limited. Since
there is little point in dealing with the question in

great generality, it may as well be assumed here that
the linear dimension shall correspond to the accuracy
in time. The requirement I=ct increases the mass of the
clock by e' which may be a very large factor indeed:

m) rl,'At/P =N%/c't.

For example, a clock, with a running time of a day and
an accuracy of 10 8 second, must weigh almost a
gram —for reasons stemming solely from uncertainty
principles and similar considerations.

So far, we have paid attention only to the physical
dimension of the clock and the requirement that it
be able to distinguish between events which are only
a distance t apart on the time scale. In order to make
it usable as part of the framework which was described
before, it is necessary to read the clock and to start it.
As part of the framework to map out the metric of
space-time, it must either register the readings at
which it receives impulses, or transmit these readings
to a part of space outside the region to be mapped out.
This point was already noted by Schrodinger. " How-
ever, we found it reassuring that, in the most interesting
case in which l = ct, that is, if space and time inaccuracies
are about equal, the reading requirement introduces
only an insignificant numerical factor but does not
change the form of the expression for the minimum
mass of the clock.

The arrangement to map the metric might consist,
therefore, of a lattice of clocks, all more or less at rest
with respect to each other. All these clocks can emit
light signals and receive them. They can also transmit
their reading at the time of the receipt of the light
signal to the outside. The clocks may resemble oscil-
lators, well in the nonrelativistic region. In fact, the
velocity of the oscillating particle is about e times
smaller than the velocity of light where e is the ratio
of the error in the time measurement, to the dlratioe
of the whole interval to be measured. This last quantity
is the spacing of the events on the time axis, it is also
the distance of the clocks from each other, divided by
the light velocity. The world lines of the clocks from
the dense forest which was mentioned before. Its
branches su6'use the region of space-time in which the
metric is to be mapped out.

We are not absolutely convinced that our clocks
are the best possible. Our principal concern is that we
have considered only one space-like dimension. One
consequence of this was that the oscillator had to be a
one-dimensional oscillator. It is possible that the size
limitation does not increase the necessary mass of the
clock to the same extent if use is made of all three
spatial dimensions.

The curvature tensor can be obtained from the
metric in the conventional way, if the metric is measured
with sufficient accuracy. It may be of interest, never-
theless, the describe a more direct method for measuring
the curvature of space. It involves an arrangement,
illustrated in Fig. 5, which is similar to that used for
obtaining the metric. There is a clock, and a mirror,
at such a distance from each other that the curvature
of space can be assumed to be constant in the interven-

"E. Schrodinger, Ber. Preuss. Akad. Wiss. phys. -math. Kl.
1931, 238.
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Fic. 5. Direct meas-
urement of the curva-
ture by means of a
clock and mirror. Only
one space-like dimension
is considered and the
curvature assumed to
be constant within the
space-time region con-
tained in the figure. The
explanation is given in
Appendix V.
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If classical theory would be valid also in the micro-
scopic domain, there would be no limit on the accuracy
of the measurement indicated in Fig. a. If h is infinitely
small, the time intervals t», t2, t3 can all be measured
with arbitrary accuracy with an infinitely light clock.
Similarly, the light signals between clock and mirror,
however short, need carry only an infinitesimal amount
of momentum and thus deflect clock and mirror
arbitrarily little from their geodesic paths. The quantum
phenomena considered before force us, however, to
use a clock with a minimum mass if the measurement
of the time intervals is to have a given accuracy. In
the present case, this accuracy must be relatively
high unless the time intervals t~, t2, t3 are of the same
order of magnitude as the curvature of space. Similarly,
the deQection of clock and mirror from their geodesic
paths must be very small if the result of the measure-
ment is to be meaningful. This gives an eGective limit

ing region. The two clocks need not be at rest with
respect to each other, in fact, such a requirement would
involve additional measurements to verify it. If the
space is Oat, the world lines of the clocks can be drawn
straight. In order to measure the curvature, a light
signal is emitted by the clock, and this is rejected by
the mirror. The time of return is read on the clock—it
is t~—and the light signal returned to the mirror.
The time which the light signal takes on its second trip
to return to the clock is denoted by t~. The process is
repeated a third time, the duration of the last roundtrip
denoted by t3. As shown in Appendix V, the radius of
curvature, a, and the relevant component Rpypy of
the Riemann tensor are given by

for the accuracy with which the curvature can be
measured. The result is, as could be anticipated, that
the curvature at a poin( in space-time cannot be
measured at all; only the average curvature over a
finite region of space-time can be obtained. The error of
the measurement' is inversely proportional to the
two-thirds power of the area available in space-time,
that is, the area around which a vector is carried,
always parallel to itself, in the customary definition of
the curvature. The error is also proportional to the cube
root of the Compton wavelength of the clock. Our
principal hesitation in considering this result as defini-
tive is again its being based on the consideration of
only one space-like dimension. The possibilities of
measuring devices, as well as the problems, may be
substantially different in three-dimensional space.

Whether or not this is the case, the essentially
nonmicroscopic nature of the general relativistic
concepts seems to us inescapable. If we look at this
first from a practical point of view, the situation is
rather reassuring. We can note first, that the measure-
ment of electric and magnetic fields, as discussed by
Bohr and Rosenfeld, " also requires macroscopic, in
fact very macroscopic, equipment and that this does
not render the electromagnetic field concepts useless
for the purposes of quantum electrodynamics. It is
true that the measurement of space-time curvature
requires a finite region of space and there is a minimum
for the mass, and even the mass uncertainty, of the

measuring equipment. However, numerically, the
situation is by no means alarming. Even in interstellar
space, it should be possible to measure the curvature

"X.Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab
Mat. -fys. Medd. 12, Xo. 8 (1933). See also further literature
quoted in L. Rosenfeld's article in Niels Bohr and the Development
of Physics (Pergamon Press, London, 1955).
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in a volume of a light second or so. Furthermore, the
mass of the clocks which one will wish to employ for
such a measurement is of the order of several micro-
grams so that the finite mass of elementary particles
does not cause any difficulty. The clocks will contain
many particles and there is no need, and there is not
even an incentive, to employ docks which are lighter
than the elementary particles. This is hardly surprising
since the mass which can be derived from the gravita-
tional constant, light velocity, and Planck's constant,
is about 20 micrograms.

It is well to repeat, however, that the situation is
less satisfactory from a more fundamental point of
view. It remains true that we consider, in ordinary
quantum theory, position operators as observables
without specifying what the coordinates mean. The
concepts of quantum field theories are even more
weird from the point of view of the basic observation
that only coincidences are meaningful. This again is
hardly surprising because even a 20-microgram clock
is too large for the measurement of atomic times or
distances. If we analyze the way in which we "get
away" with the use of an absolute space concept, we

simply find that we do not. In our experiments we
surround the microscopic objects with a very macro-
scopic framework and observe coiecideeces between
the particles emanating from the microscopic system,
and parts of the framework. This gives the collision
matrix, which is observable, and observable in terms of
macroscopic coincidences. However, the so-called
observables of the microscopic system are not only not
observed, they do not even appear to be meaningful.
There is, therefore, a boundary in our experiments
between the region in which we use the quantum
concepts without worrying about their meaning in
face of the fundamental observation of the genera)
theory of relativity, and the surrounding region in
which we use concepts which are meaningful also in
the face of the basic observation of the general theory
of relativity but which cannot be described by means of
quantum theory. This appears most unsatisfactory
from a strictly logical standpoint.

APPENDIX I
It will be necessary, in this appendix, to compare

various states of the same physical system. These
states will be generated by looking at the same state-
the standard state —from various coordinate systems.
Hence every Lorentz frame of reference will define a
state of the system —the state as which the standard
state appears from the point of view of this coordinate
system. In order to define the standard state, we
choose an arbitrary but fixed Lorentz frame of reference
and stipulate that, in this frame of reference, the
particle in the standard state be at rest and its spin
(if any) have the direction of the s axis. Thus, if we
wish to have a particle moving with a velocity e in
the s direction and with a spin also directed along this

axis, we look at the particle in the standard state from
a coordinate system moving with the velocity v in
the —s direction. If we wish to have a particle at rest
but with its spin in the ys plane, including an angle o,

with the s axis, we look at the standard state from a
coordinate system the y and s axes of which include an
angle o. with the y and s axes of the coordinate system
in which the standard state was defined. In order to
obtain a state in which both velocity and spin have the
aforementioned direction (i.e., a direction in the ys
plane, including the angles 0. and -', x—0, with the y
and z axes), we look at the standard state from the
point of view of a coordinate system in which the
spin of the standard state is described as this direction
and which is moving in the opposite direction.

Two states of the system will be identical only if the
Lorentz frames of reference which define them are
identical. Under this definition, the relations which
will be obtained will be valid independently of the
properties of the particle, such as spin or mass (as
long as the mass in nonzero so that the standard state
exists). Two states will be approximately the same if the
two Lorentz frames of reference which define them
can be obtained from each other by a very sma11
Lorentz transformation, that is, one which is near
the identity. Naturally, all states of a particle which
can be compared in this way are related to each other
inasmuch as they represent the same standard state
viewed from various coordinate systems. However, we
shall have to compare only these states.

Let us denote by A (O, p) the matrix of the trans-
formation in which the transformed coordinate system
moves with the velocity —~ in the s direction where
~= c tanhy

0 0
2 (O, rp) = 0 cosh' sinh rp

0 sinhp coshp

Since the x axis will play no role in the following
consideration, it is suppressed in (1.1) and the three
rows and the three columns of this matrix refer to the
y', s', ct' and to the y, s, ct axes, respectively. The
matrix (1.1) characterizes the state in which the
particle moves with a velocity e in the direction of the
s axis and its spin is parallel to this axis.

Let us further denote the matrix of the rotation by
an angle y in the yz plane by

cos8 sin8 0
R(8)= —sin8 cos8 0

0 0 1

Ke refer to the direction in the ys plane which lies
between the y and s axes and includes an angle 8 with
the z axis as the direction 8. The coordinate system
which moves with the velocity —e in the 8 direction is
obtained by the transformation

A(d, q) =E(8)A(0,y)E(—8).
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In order to obtain a particle which moves in the direc-
tion 8 and is polarized in this direction, we first rotate
the coordinate system counterclockwise by 8 (to have
the particle polarized in the proper direction) and
impart it then a velocity —v in the 6 direction. Hence,
it is the transformation

T(+,v ) =~ (+,v )&(&)
cos8 sin6 cosh@ sin8 sinhp

—sin8 cos8 cosh@ cos8 sinhq
0 sinhy cosh'

(1.4)

which characterizes the aforementioned state of the
particle. It. follows from (1.3) that

T(d, q)=R(i't)A(O, p)=E(0)T(0,q) (1.5)

so that the same state can be obtained also by viewing
the state characterized by (1.1) from a coordinate
system that is rotated bye. It follows that the statement
"velocity and spin are parallel" is invariant under
rotations. This had to be expected.

If the state generated by A (O, p) = T(0, pp) is viewed
from a coordinate system which is moving with the
velocity u in the direction of the s axis, the particle
will still appear to move in the s direction and its spin
will remain parallel to its direction of motion, unless
N)v in which case the two directions will become
antiparallel, or unless I= ~ in which case the statement
becomes meaningless, the particle appearing to be
at rest. Similarly, the other states in which spin and
velocity are parallel, i.e., the states generated by the
transformations T(i't, y), remain such states if viewed
from a coordinate system moving in the direction of the
particle's velocity, as long as the coordinate system is
not moving faster than the particle. This also had to
be expected. However, if the state generated by T(0,q )
is viewed from a coordinate system moving with velocity
v'= c tanhp' in the —y direction, spin and velocity will

riot appear parallel any more, provided the velocity v

of the particle is riot close to light velocity This last.
proviso is the essential one; it means that the high
velocity states of a particle for which spin and velocity
are parallel (i.e., the states generated by (1.4) with a
large pp) are states of this same nature if viewed from a
coordinate system which is not moving too fast in the
direction of motion of the particle itself. In the limiting
case of the particle moving with light velocity, the
aforementioned states become invariant under all
Lorentz transformations.

Let, us erst convince ourselves that if the state
(1.1) is viewed from a coordinate system moving in
the —y direction, its spin and velocity no longer appear
parallel. The state in question is generated from the
normal state by the transformation

2 (-,'n. , pp')A (0, p )
cosh@ sinhp sinhp cosh@ sinhp

0 cosh' sinhq
sinhq' sinhq cosh' ' cosh' cosh''

This transformation does not have the form (1.4). In
order to bring it into that form, it has to be multiplied
on the right by R(p), i.e., one has to rotate the spin
ahead of time. The angle e is given by the equation

tanhq' v'
=—(1—v /c') '

sinhy
(1.7)

and is called the angle between spin and velocity.
For v((c, it becomes equal to the angle which the
ordinary resultant of two perpendicular velocities, v

and v', includes with the first of these. However, e

becomes very small if e is close to c; in this case it is
hardly necessary to rotate the spin away from the s
axis before giving it a velocity in the s direction.
These statements express the identity

~ (p~ p')~(0, p)&(p) = T(» p") (1.8)

which can be verified by direct calculation. The right
side represents a particle with parallel spin and velocity,
the magnitude and direction of the latter being given
by the well-known equations

v"=c tanhp"= (v'+v" —v'v'%')' (1.8a)

sinhq'
tan8=

tanh pp v (1—v "%')l
(1.8b)

Equation (1) given in the text follows from (1.7) and
(1.8b) for v c.

The fact that the states T(@,pp)pp (where ltp is the
standard state and p))1) are approximately invariant
under all Lorentz transformations is expressed mathe-
matically by the equations,

~(~) T(O, p)fp=T(~, p)A,

A(0, p') T(0, pp)gp ——T(0,p'+ p)gp,

(1.5a)

(1 9a)

~(p~, p
') T(O, p )A~T(»~")A, (1.9b)

which give the wave function of the state T(0, pp)fp,
as viewed from other Lorentz frames of reference.
Naturally, similar equations apply to all T(n., p)@p.
In particular, (1.5a) shows that the states in question
are invariant under rotations of the coordinate system,
(1.9a) that they are invariant with respect to Lorentz
transformations with a velocity not too high im the
direction of motion (so that pp'+pp))0, i.e., pp' not too
large a negative number). Finally, in order to prove
(1.9b), we calculate the transition probability between
the states A(-,'ir, q&'). T(0,pp)gp and T(it.,p")Pp where
it and p" are given by (1.8a) and (1.8b). For this,
(1.8) gives

(~(pir pp') T(0 pp)4'p T(»p")A)
=(T(~ p")&(p) Vp, T(~,v")A)

=(&(p) VpA)~(AAp)
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The second line follows because T(6, y") represents a
coordinate transformation and is, therefore, unitary.
The last member follows because e—+0 as p—+oc as
can be seen from (1.7) and R(0)=1.

The preceding consideration is not fundamentally
new. It is an elaboration of the facts (a) that the
subgroup of the Lorentz group which leaves a null-vector
invariant is different from the subgroup which leaves
a time like vector invariant' and (b) that the representa-
tions of the latter subgroup decompose into one
dimensional representations if this subgroup. is "con-
tracted" into the subgroup which leaves a null-vector
invariant. "

APPENDIX II

Before the hypothesis of Lee and Yang" was put
forward, it was commonly assumed that there are, in
addition to the symmetry operations of the proper
Poincare group, three further independent symmetry
operations. The proper Poincare group consists of all
Lorentz transformations which can be continuously
obtained from unity and all translations in space-like
and time-like directions, as well as the products of all
these transformations. It is a continuous group; the
Lorentz transformations contained in it do not change
the direction of the time axis and their determinant is
1.The three independent further operations which were
considered to be rigorously valid, were

Space inversion I, that is, the transformation
x, y, z—+—x, —y, —z, without changing particles into
antiparticles.

Time inversion T, more appropriately described
by Liiders" as Umkehr der BmeglegsrichINeg, which
replaces every velocity by the opposite velocity
so that the position of the particles at +3 becomes
the same as it was, without time inversion, at —t.
The time inversion T (also called time inversion of
the first kind by Liidersi6) does not convert particles
into antiparticles either.

Charge conjugation C, that is, the replacement of
positive charges by negative charges and more
generally of particles by antiparticles, without chang-
ing either the position or the velocity of these par-
ticles."The quantum-mechanical expressions for the
symmetry operations I and C are unitary, that for T
is antiunitary.

"E. Inonu and E. P. Wigner, Proc. Natl. Acad. Sci. U.S.
39, 510 (1953).

'4 T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956). See
also E. M. Purcell and N. F. Ramsey, Phys. Rev. 78, 807 (1950)."G. Luders, Z. Physik 133, 325 (1952)."G. Luders, Kgl. Danske Videnskab. Selskab Mat. -fys. Medd.
28, No. 5 (1954).

'7 All three symmetry operations were first discussed in detail
by J. Schwinger, Phys. Rev. 74, 1439 (1948). See also H. A.
Kramers, Proc. Acad. Sci. Amsterdam 40, 814 (1937)and W. Pauli's
article in Xiels Bohr and the Development of Physics (Pergamon
Press, London, 1955). The significance of the first two symmetry
operations (and their connection with the concepts of parity and
the Kramers degeneracy respectively), were first pointed out by

APPENDIX III

Let us consider, first, the collision of two particles
of equal mass m in the coordinate system in which the
average of the sum of their momenta is zero. Let us
assume that, at a given time, the wave function of
both particles is confined to a distance / in the direction
of their average velocity with respect to each other. If
we consider only this space-like direction, and the time
axis, the area in space-time in which the. two wave
functions will substantially overlap is [see Fig. 6(a)j

a= P/2v;„, (3.1)

where ~;„ is the lowest velocity which occurs with
substantial probability in the wave packets of the
colliding particles. Denoting the average momentum
by 7i (this has the same value for both particles) the
half-width of the momentum distribution by 6, then
ii;„=(7i—8) (m'+ (p —8)'/c') '. Since l cannot be below
h/5, the area (3.1) is at least

A' (m2+ (p —5)'/c') i

2P p —5
(3.1a)

(Note that the area becomes infinite if 8)7i.) The

the present writer, Z. Physik 43, 624 (1927) and Nachr. Akad.
Wiss. Gottingen, Math. -physik. 1932, 546. See also T. D. Newton
and E&. P. Wigner, Revs. Modern Phys. 21, 400 (1949); S.
Watanabe, Revs. Modern Phys. 27, 26 (1945). The concept of
charge conjugation is based on the observation of W. Furry, Phys.
Rev. 51, 125 (1937).

The three operations I, T, C, together with their
products TC (Liiders' time inversion of the second
kind), IC, IT, ITC and the unit operation form a
group and the products of the elements of this group
with those of the proper Poincare group were considered
to be the symmetry operations of all laws of physics.
The suggestion given in the text amounts to eliminating
the operations I and C separately while continuing to
postulate their product IC as symmetry operation.
The discrete symmetry group then reduces to the unit
operation plus

IC, T, and ICT,

and the total symmetry group of the laws of physics
becomes the proper Poincare group plus its products
with the elements (2.1). This group is isomorphic
(essentially identical) with the unrestricted Poincare
group, i.e., the product of ul/ Lorentz transformations
with all the displacements in space and time. The
quantum mechanical expressions for the operations of
the proper Lorentz group and its product with IC are
unitary, those for T and ICT (as well as for their
products with the elements of the proper Poincarh
group) antiunitary. Liiders" has pointed out that,
under certain very natural conditions, ICT belongs to
the symmetry group of every /ocul field theory.
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Fzo. 6. (a) Localization of a collision of two particles of equal mass. The full lines indicate the effective boundaries
of the wave packet of the particle traveling to the right, the broken lines the effective boundaries of the wave packet
of the particle traveling to the left. The collision can take place in the shaded area of space-time. (b) Localization
of a collision between a particle with finite mass and a particle with zero rest-mass. The full lines, at a distance
& apart in the x direction, indicate the boundary of the particle with zero rest-mass, the broken lines apply to the
wave packet of the particle with nonzero rest-mass. The collision can take place in the shaded area.

minimum of (3.1a) is, apart from a numerical factor ties. Hence p=h/P. The kinetic energy of the particle
with finite restmass will be of the order of magnitude

where E is the kinetic energy (total energy minus
rest-energy) of the particles.

The kinetic energy E permits the contraction of the
wave functions of the colliding particles also in direc-
tions perpendicular to the average relative velocity,
to an area h, 'c'/E(E+2mc'). Hence, again apart from a
numerical factor, the volume to which the collision
can be con6ned in four dimensional space-time becomes

k4c'

(3.3)

since A/l is the momentum uncertainty. Since l&X,
one can neglect p in (3.4) if one is interested only in the
order of magnitude. This gives for the total kinetic
energy,

E=kc/k+(m'c +5 c /P)' mc' (—3.5)

while the area in Fig. 6(b) is of the order of magnitude

a= P /c) ((+Ave(c), (3.6)

where A~ is the uncertainty in the velocity of the second
particle

E is the average kinetic energy of the particles in the
coordinate system in which their center of mass is,
on the average, at rest. Equation (3.3) is valid apart
from a numerical constant of unit order of magnitude
but this constant depends on E/mc'.

I et us consider now the opposite limiting case,
the collision of a particle with finite rest-mass m with a
particle with zero rest-mass. The collision is viewed
again in the coordinate system in which the average
linear momentum is zero. In this case, one will wish to
confine the wave function of the particle with finite
rest-mass to a narrower region l than that of the particle
with zero rest-mass. If the latter is confined to a region
of thickness X, (see Fig. 6(b)j, its momentum and
energy uncertainties will be at least h/X and kc/X
and these expressions will also give, apart from a
numerical factor, the average values of these quanti-

This can again be replaced by (k/l) (yP+@'/Pq') —l.
For given E, the minimum value of a is assumed if the

kinetic energies of the two particles are of the same
order of magnitude. The two terms of (3.6) then become
about equal and l/X= (E/(m+E))'. The minimum
value of a, as far as order of magnitude is concerned,
is again given by (3.2). Similarly, (3.3) also remains
valid if one of the two particles has zero rest-mass.

The two-dimensional case becomes simplest if both
particles have zero rest-mass. In this case the wave
packets do not spread at all and (3.2) can be im-
mediately seen to be valid. In the four-dimensional case,
(3.3) again holds. However, its proof by means of
explicitly constructed wave packets (rather than
reference to the uncertainty relations) is by no means
simple. It requires wave packets which are confined in
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every direction, do not spread too fast and progress
essentially only into one halt space (one particle going
toward the right, the other toward the left). The
construction of such wave packets will not be given in
detail. They are necessary to prove (3.2) and (33)
more rigorously also in the case of finite masses; the
preceding proofs, based on the uncertainty relations
show only that a and ~ cannot be smaller than the right
sides of the corresponding equations. It is clear, in fact,
that the limits given by (3.2) and (3.3) would be very
dificult to realize, except in the two-dimensional case
and for the collision of two particles with zero restmass.
In all other cases, the relatively low values of a;„
and V;„are predicated on the assumption that the
wave packets of the colliding particles are so constituted
that they assume a minimum size at the time of the
collision. At any rate, (3.2) and (3.3) show that only
collisions with a relatively high collision energy, and
high energy uncertainty, can be closely localized in
space-time.

d line
irror

V/orld line
f clock

FIG. 7. Analysis of the experiment of Fig. 5. The 6gure represents
a view of the hyperboloid of deSitter space, viewed along its
axis. Every point of the plane which is outside the circle corre-
sponds to two points of the deSitter world with one spatial
dimension, those with oppositely equal times. The first light
signal is emitted at 1, reaches the mirror at 1', and returns to
the clock at 2. The paths of the second and third light signals
are 22'3 and 33'4.

APPENDIX IV

Let us denote the components of the vector from
event 1 to event 2 by x;, the components of the unit
vector along the world line of the first clock at event 1

by e;. The components of the first light signal are
x,+te;, that of the second light signal x;—t'e;. Hence

g'"(x,+te;) (xp+teg) =0 (4 1)

g*'(x, t'e;) (xI, t'e—I,) =0. — (4 2)

Elimination of the linear terms in t and t by multiplica-
tion of (4.1) with t and (4.2) with t and addition gives

2g'"x -xI,+2tt'g "e,e~ ——0. (4.3)

Since e is a unit vector g'"e,e~= 1 and (4.3) shows that
the space-like distance between points 1 and 2 is (tt')&

APPENDIX V

x+p —v =a, (5.1)

Since the measurement of the curvature, described
in the text, presupposes corjstarIt cNr~ature over the
space-time domain in which the measurement takes
place, we use a space with constant curvature, or, rather,
part of a space with constant curvature, to carry out
the calculation. We consider only one spatial dimension,

i.e., a two-dimensional deSitter space. This will be
embedded, in the usual way, in a three-dimensional
space" with coordinates x, y, ~. The points of the
deSitter space then form the hyperboloid

polar angles r, P. The metric form in terms of these is

ds'= dr' —r'de
r —a

(5 2)

42'= $2+~. (5.3)

The angles @~, @~', $3, @3' have similar meanings; they
are not indicated in the figure in order to avoid over-
crowding. For reasons similar to those leading to
(5.3), we have

Two points of deSitter space correspond to every pair r,
(except r=a): those with positive and negative

r= (r' —a2)l. This will not lead to any confusion as all
events take place at positive r. The null lines (paths ot
light signals) are the tangents to the r= a circle.

The experiment described in the text can be analyzed
by means of Fig. 7. For the sake of simplicity, the
clock and mirror are assumed to be "at rest, " i.e.,
their world lines have constant polar angles which
will be assumed as 0 and 8, respectively. The first light
signal travels from 1 to 1' and back to 2, the second
from 2 to 2' and back to 3, the third from 3 to 3' and
back to 4. The polar angle of the radius vector which
is perpendicular to the first part 22' of the world line
of the second light signal is denoted by P2. The con-
struction of Fig. 7 shows that angle g2' which the world
line of the mirror includes with the radius vector
perpendicular to the second part 2'3 of the second
light signal's world line is

where a is the "radius of the universe. "As coordinates
of a point we use x and y, or rather the corresponding

"See, e.g., H. P. Robertson, Revs. Modern Phys. 5, 62 (1933).

43=42'+~= &+2~
—28

$4= @3+26=/A+45.

(5.3a)

(5.3b)

(5.3c)



EUGENE P. SIGNER

The radial coordinates of the points 1, 2, 3, 4 are
denoted by r~, r2, r3, r4

r,=a/c os&;

The proper time t, registered by the clock, can be
obtained by integrating the metric form (5.2) along
the world line &=0 of the clock

Similar expressions apply for the traveling times of the
first and third light signals; all p can be expressed by
means of (5.3a), (5.3b), (5.3c) in terms of P~ and 8.
This allows the calculation of the expression (3). For
small 8, one obtains

fy —2tg+/g 11
t= a 1nLr+ (r' —a') l7. (5.5)

t22

(5 7)

Hence, the traveling time t2 of the second light signal
becomes

ted=a ln

and Riemann's invariant 8=2/a' is proportional to
r3+ (r32 —a') & cos&2(1 sin&3 the square of (5.7). In particular, it vanishes if the

r~+(rP —a')& cosp3(1+sing&) expression (3) is zero.


