
Lista 1 - Quântica B (2013)

1. Consider a quantum 1D Harmonic Oscillator of mass m and natura frequency ω which is initially prepared
(t = 0) in the state

|ψS(0)⟩ = exp

(
− i

ℏ
PSx0

)
|0⟩ ,

where |0⟩ is the ground state, PS is the momentum operator, and x0 is a scalar.
(a) In the Heisenberg picture, compute ⟨XH(t)⟩ for t > 0 and relate it with the classical trajectory.
(b) How do you interprete this result with the classical initial conditions?

2. Consider a hidrogen atom in its ground state subject to an electric �eld E = E0 cosωt.
(a) What is the minimum frequency of the �eld in order to have ionization?
(b) What is the transition rate (probability per unit of time) to an ionized state (assuming it can represented by

plane waves)?
(c) What is the angular distribution of the ejected electron in this process?
(d) Now consider that the atom is in a certain Eigenstate |n, l,m⟩ and that ω is lower than the corresponding

ionization frequency. What can be said about the �nal Eigenstate |n′, ℓ′,m′⟩?

3. Consider two spin-1/2 particles interacting as

V (t) =
E (t)

ℏ2
S1 · S2,

where E(t) vanishes when t → ±∞ and approaches to a nonzero value of order Ē on the time interval of length τ .
(You may think on a gaussian, for instance.)
(a) At t→ −∞, the system is in the state |+−⟩. Compute exactly the state of the system at time t. With this, show

that the probability of �nding the system in the state |−+⟩ for t→ +∞ depends only on the integral I =
´∞
−∞E(t)dt.

(b) Compute the same probability in �rst-order of time-dependent perturbation theory. By comparing your results
with those of item (a), discuss the validity of this calculation.
(c) Make some estimations about the value of the contribution to this probability in second-order of perturbation

theory in the limits of τ → 0 and τ → ∞ and discuss your results with the validity of the approximation conclude in
item (b).
(d) Now consider that both spins are subjected to a static magnetic �eld B = B0ẑ. The corresponding Zeeman

Hamiltonian is

H0 = −µB

ℏ
B0 (g1S

z
1 + g2S

z
2 ) ,

where g1,2 are the gyromagnetic ratios (assume them distinct from each other) and µB is the Bohr magneton. Consider

also that E(t) = Ē exp
(
− (t/τ)

2
)
. Compute the same probability of the previous itens in �rst-order of perturbation

theory, and discuss its dependence on B0 and on τ .

(e) (Optional) Like in item (c), compute the second-order contribution c
(2)
f←i (∞) in the limits τ → 0 and τ → ∞.

(Hint : Notice that in the limits τ → 0 and τ → ∞, for estimation purposes, the exchange can be approximated to
E(t) = Ēτδ (t) and E(t) = Ēθ (τ/2− |t|), respectively.)

4. Cohen-Tannoudji - complement E-XIII, problem 9.
Transition probability per unit time under the e�ect of a random perturbation. Simple relaxation

model

A physical system, subjected to a perturbation W (t), is at time t = 0 in the Eigenstate |φi⟩ of its Hamiltonian
H0. Let Pf←i(t) be the probability of �nding the system at time t in another Eigenstate of H0, |φj⟩. The transition
probability per unit time wf←i(t) is de�ned by wf←i(t) =

d
dtPf←i(t).

(a) Show that , to �rst order in perturbation theory, we have

wf←i(t) =
1

ℏ2

ˆ t

0

dτWfi(τ)W
∗
fi(t− τ)eiωfiτ + c.c. (1)
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with ℏωfi = Ef − Ei.
(b) Consider a very large number N of systems (k), which are identical and without mutual interactions (k =

1, 2, . . . , N ). Each of them has a di�erent microscopic environment and, consequently, �sees� a di�erent perturbation
W (k)(t). It is, of course, impossible to know each of the individual perturbation W (k). We can specify only statistical
averages such as:

Wfi(t) = lim
N→∞

1

N

N∑
k=1

W
(k)
fi (t),

Wfi(t)W ∗fi(t− τ) = lim
N→∞

1

N

N∑
k=1

W
(k)
fi (t)W

(k)∗
fi (t− τ).

This perturbation is said to be �random�.
This random perturbation is said to be stationary if the preceding averages are time independent. In this case, we

can redi�ne H0 in order to make Wfi = 0 and set:

gfi(τ) =Wfi(t)W ∗fi(t− τ),

which is called the �correlation function� of the perturbation. Usually, gfi(τ) goes to zero for |τ | ≫ τc, a characteristic
time scale, called correlation time of the perturbation, i.e., the perturbation has a �memory� which extend into the
past (or future) only to an interval of order of τc.
(b.α) The N (which can be considered in�nity for calculations) systems are in the state |φi⟩ at time t = 0 and

are subject to a random stationary perturbation, the correlation function of which is gfi(τ) with correlation time τc.
Calculate the proportion πfi(t) of systems which go to into the state |φj⟩ per unit time. Show that after a certain
value t1 of t, to be speci�ed, πfi(t) no longer depends on t.

(b.β) For �xed τc, how does πfi vary with ωfi? Consider the case in which gfi(τ) = |vfi|2 e−|τ |/τc , with vfi constant.
(b.γ) The preceding theory is valid only for t ≪ t2 [since Eq. (1) results from perturbation theory]. What is the

order of magnitude of t2? Taking t2 ≫ t1, �nd the condition for introducing a transition probability per unit time
which is independent of t [use the form of gfi(τ) given in the preceding question]. Would it be possible to extend the
preceding theory beyond t = t2?
(c) Application to a system. The N systems under consideration are spin-1/2 particles, with gyromagnetic ratio

γ, placed in a static magnetic �eld B0 (set ω0 = γB0). These particles are enclosed in a spherical shell of radius R.
Each of them bounces constantly back and forth between the walls. The mean time between the collisions of the same
particle with the wall is called �time of �ight� τv. During this time, the particle sees only the magnetic �eld B0. In a
collision with the wall, each particle remains adsorbed on the surface during a mean time τa (τa ≪ τv), during which
it seems, in addition to B0, a constant microscopic �eld b due to paramagnetic impurities contained in the wall. The
direction of b varies randomly from one collision to another; the mean amplitude of b is b0.
(c.α) What is the correlation time of the perturbation seen by the spins? Give the physical justi�cation for the

following form, to be chosen for the correlation function of the components of the microscopic magnetic �eld b:

bx(t)bx(t− τ) =
1

3
b20

(
τa
τb

)
e−|τ |/τa ,

and analogous expressions for the y- and z-components, and all the cross terms bx(t)by(t− τ) = bx(t)bz(t− τ) = · · · =
0.
(c.β) Let Mz be the z-component of the total magnetization. (Consider B = B0ẑ.) Show that, under the e�ect of

the collisions with the walls, Mz �relaxes�, with a time constant T1:

dMz

dt
= −Mz

T1

(T1 is called the longitudinal relaxation time). Calculate T1 in terms of γ, B0, τv, τa, b0.
(c.γ) Show that studying the variation of T1 with B0 permites the experimental determination of the mean adsorp-

tion time τa.
(c.δ) We have at our disposition several cells, of di�erent radii R, constructed of the same material. By measuring

T1, how can we determine experimentally the mean amplitude b0 of the microscopic �eld in the wall.

5. Cohen-Tannoudji - complement E-XIII, problem 10.
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Absorption of radiation by a many-particle system forming a bound state. The Doppler e�ect. The

recoil energy. The Mössbauer e�ect

In class, we considered the absorption of radiation by a charged particle attracted by a �xed center (Hydrogen atom
with in�nitely heavy nucleous). In this exercise, we treat a more realistic situation in which the incident radiation
is absorbed by a system of many particles of �nite masses interacting with each other and forming a bound state.
Thus we are studying the e�ect on the absorption phenomenon of the degrees of freedom of the center of mass of the
system.
I. Absorption of radiation by a free Hydrogen atom. The Doppler e�ect. The recoil energy

Consider two particles of masses m1,2 of opposite charges q1,2 and position and momentum operators R1,2 and P1,2

(a Hydrogen atom). Let R and P, and RG and PG be the position and momentum observables of the relative particle
and center of mass of the system, respectively. M = m1 +m2 is the total mass and m = m1m2/M is the reduced
mass. The Hamiltonian of the system can be written:

H0 = He +Hi,

where

He =
1

2M
P 2
G

describes the translational kinetic energy of the free atom (the �external� degrees of freedom), and Hi describes
the internal energy of the atom (the �internal� degrees of freedom). We denote by |K⟩ the eigenstates of He, with
Eigenvalues ℏ2K2/(2M). We concern ourselves with only two Eigenstates of Hi, |χa⟩ and |χb⟩ of energies Ea and Eb

(with Eb > Ea), and set ℏω0 = Eb − Ea.
(a) What energy must be furnished to the atom to move it from state |K, χa⟩ to state |K′, χb⟩?
(b) This atom interacts with a plane electromagnetic wave of wavevector k and angular frequency ω = ck polarized

along the unit vector ê perpendicular to k. The corresponding vector potential A(r, t) is

A(r, t) = A0e
i(k·r−ωt)ê+ c.c.,

with A0 constant. The principal term of the interaction Hamiltonian between this plane wave and the two particle
system can be written as

W (t) = −
2∑

i=1

qi
mi

Pi ·A(Ri, t).

Express W in terms of R, P, RG PG, m, M , and q (set q1 = −q2 = q), and show that, in the electric dipole
approximation (which consists of neglecting k ·R, but not k ·RG, in comparison to 1), we have that

W =W0e
−iωt +W †0 e

iωt, with W0 = −qA0

m
ê ·Peik·RG . (2)

(c) Show that the matrix element ⟨K′, χb |W0|K, χa⟩ is di�erent from zero only if there exist a relation between k,
K and K′ (to be speci�ed). Interpret this relation in terms of momentum conservation of the system atom+photon.
(d) Show that if the atom is in the state |K, χa⟩ is placed in the radiation �eld, resonance just occurs when the

energy ℏω of the photons di�ers from the atomic transition energy ℏω0 by an amount δE which is to be expressed in
terms of ℏ, ω0, K, k, M , and c (since δE is a corrective term, we can replace ω by ω0 in the �nal expression for δE).
Show that δE is the sum of two terms, one of which, δE1, depends on K and on the angle between K and k (the
Doppler e�ect), the other term, δE2, is independs of K. Give a physical interpretation of δE1 and δE2 (showing that
δE2 is the recoil kinetic energy of the atom when, having been initially motionless, it absorbs a resonant photon).
Show that δE2 is negligible compared to δE1 when ℏω0 is of order of 10 eV (the domain of atomic physics). Choose,

for M , a mass of order of the proton (Mc2 ≈ 109 eV), and, for K, a value corresponding to the thermal velocity at
T = 300K. Would this still be true if ℏω0 were of order of 105 eV (the domain of nuclear physics)?
II. Recoilles absorption of radiation by a nucleous vibrating about its equilibrium position in a

crystal. The Mössbauer e�ect

The system under consideration is now a nucleous of massM vibrating at angular frequency Ω about its equilibrium
position in a crystalline lattice (the Einstein model). Again, denote by RG and PG the position and momentum
operators of the center of mass of this nucleous, respectively. Its vibrational energy is given by

He =
1

2M
P 2
G +

1

2
MΩ

(
X2

G + Y 2
G + Z2

G

)
,
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which is that of the 3D Harmonic Oscillator. Denote by |nx, ny, nz⟩ the Eigenstate of He with Eigenenergy
(nx + ny + nz + 3/2) ℏΩ. In addition to these �external� degrees of freedom, the nucleous possesses �internal� de-
grees of freedom which are associated observables that commute with RG and PG and are described by Hi. As
before, let us concern only with the two lowest levels of Hi: |χa⟩ and |χb⟩. Also, set ℏω0 = Eb − Ea > 0. Typically,
ℏω0 is in the γ-ray domain, and thus, ω0 ≫ Ω.
(e) What energy must be given to the nucleous to allow it go from state |0, 0, 0, χa⟩ to state |n, 0, 0, χb⟩?
(f ) This nucleous is placed in the same radiation �eld as before (and set k = kx̂). It can be shown that, in the

electric dipole approximation, the interaction Hamiltonian of the nucleous with the plane wave (responsible for the
absorption of γ-rays) can be written as in Eq. (2) with

W0 = A0Si(k)e
ikXG ,

where Si(k) is an operator which acts on the internal degrees of freedom of the nucleous and, consequently, commutes
with RG and PG.
The nucleous is initially in the state |0, 0, 0, χa⟩. Show that under the in�uence of the incident wave, a resonance

appears whenever ℏω coincides with one of the energies calculated in item (e). The intensity of the resonance is

|s(k)|2
∣∣⟨n, 0, 0| eikXG |0, 0, 0⟩

∣∣2 , where the value of k is to be speci�ed and s(k) = ⟨χb |Si(k)|χa⟩. Show that, because
ω0 ≫ Ω, we can replace k by k0 = ω0/c in the expression for the intensity of the resonance.
(g) Set

πn(k0) =
∣∣⟨φn

∣∣eik0XG
∣∣φ0

⟩∣∣2 ,
where |φn⟩ are the Eigenstates of the 1D Hamornic Oscillator of position XG, mass M , and angular frequency Ω.
(g.α) Calculate πn(k0) in terms of ℏ, M , Ω, k0, and n. (Hint : stablish a recurrence relation between

⟨
φn

∣∣eik0XG
∣∣φ0

⟩
and

⟨
φn−1

∣∣eik0XG
∣∣φ0

⟩
, and express all πn(k0) as a function of π0(k0), which is to be calculated directly from the

wave function of the Harmonic Oscillator. Show that πn(k0) are given by a Poisson distribution of n with average ξ,

where ξ =
(

ℏ2k2
0

2M

)
/ (ℏΩ).

(g.β) Verify that
∑∞

n=0 πn(k0) = 1.

(g.γ) Show that
∑∞

n=0 nℏΩπn(k0) =
ℏ2ω2

0

2Mc2 .

(h) Assume that ℏΩ ≫ ℏ2ω2
0

2Mc2 , i.e., the vibrational energy is much greater than the recoil energy (very rigid crystal).
Show that the absorption spectrum of the nucleous is essentially composed of a single line at the angular frequency
ω0. This line is called the recoilless absorption line. Justify this name. Why does the Doppler e�ect disappear?

(i) Now assume that ℏΩ ≪ ℏ2ω2
0

2Mc2 (very weak crystalline bonds). Show that the absorption spectrum of the nucleous
is composed of very large number of equidistant lines whose barycenter (obtained by weighting the abscissa of each line
by its relative intensity) coincides with the position of the absorption line of the free and motionless nucleous. What
is the order of magnitude of the width of this spectrum (the dispersion of the line with respect to the barycenter)?
Show that one recover the results of the �rst part in the limit Ω → 0.

6. (Optional) Consider the 1D dynamics of a particle of charge e e mass m under a periodic potential V (x) =
V (x+ a). Assume that at t = 0 a vector potential is turned on A(t) = −Et.
(a) Study the quasi-degenerate perturbation theory between the states eikx and ei(k−κ)x (conveniently normalized)

when k ≈ κ/2, where κ = 2π/a. Assume that A(t) varies slowly and that V (x) can be treated perturbatively.
(b) Compute the adiabatic Eigenstates of the system around k = κ/2.
(c) Compute the transition probability from the lowest- to the highest-energy adiabatic Eigenstate assuming that

the transition is more likely to happen around k = κ/2.
Make any approximation you may �nd convenient in order to compute the integrals involved.


