Lista 1 - Quéantica B (2013)

1. Counsider a quantum 1D Harmonic Oscillator of mass m and natura frequency w which is initially prepared
(t = 0) in the state

65(0) = exp (3 Psan ) 0]

where |0) is the ground state, Ps is the momentum operator, and xg is a scalar.
(a) In the Heisenberg picture, compute (X g (t)) for ¢ > 0 and relate it with the classical trajectory.
(b) How do you interprete this result with the classical initial conditions?

2. Consider a hidrogen atom in its ground state subject to an electric field E = Eq coswt.

(a¢) What is the minimum frequency of the field in order to have ionization?

(b) What is the transition rate (probability per unit of time) to an ionized state (assuming it can represented by
plane waves)?

(¢) What is the angular distribution of the ejected electron in this process?

(d) Now counsider that the atom is in a certain Eigenstate |n,l,m) and that w is lower than the corresponding
ionization frequency. What can be said about the final Eigenstate |n/, ¢/, m’)?

3. Consider two spin-1/2 particles interacting as

E(t)
h?

V(t) = S1- S,
where E(t) vanishes when ¢+ — 400 and approaches to a nonzero value of order £ on the time interval of length 7.
(You may think on a gaussian, for instance.)

(a) At t — —o0, the system is in the state |[+—). Compute exactly the state of the system at time ¢. With this, show
that the probability of finding the system in the state |—+) for ¢ — +oco depends only on the integral I = [*_F(t)dt.

(b) Compute the same probability in first-order of time-dependent perturbation theory. By comparing your results
with those of item (a), discuss the validity of this calculation.

(¢) Make some estimations about the value of the contribution to this probability in second-order of perturbation
theory in the limits of 7 — 0 and 7 — oo and discuss your results with the validity of the approximation conclude in
item (b).

(d) Now consider that both spins are subjected to a static magnetic field B = Byz. The corresponding Zeeman
Hamiltonian is

Ho = =52 By (9157 +9255)

where g7 2 are the gyromagnetic ratios (assume them distinct from each other) and pp is the Bohr magneton. Consider
also that E(t) = Eexp (— (t/7‘)2). Compute the same probability of the previous itens in first-order of perturbation

theory, and discuss its dependence on By and on 7.
(e) (Optional) Like in item (c¢), compute the second-order contribution c(f%)_i (00) in the limits 7 — 0 and 7 — co.

(Hint: Notice that in the limits 7 — 0 and 7 — oo, for estimation purposes, the exchange can be approximated to
E(t) = ETé (t) and E(t) = EO(7/2 — |t|), respectively.)

4. Cohen-Tannoudji - complement E-XIII, problem 9.

Transition probability per unit time under the effect of a random perturbation. Simple relaxation
model

A physical system, subjected to a perturbation W (t), is at time ¢ = 0 in the Eigenstate |p;) of its Hamiltonian
Hy. Let Pr;(t) be the probability of finding the system at time ¢ in another Eigenstate of Hy, |¢;). The transition
probability per unit time wy. ;(t) is defined by wy.;(t) = %Pfei (t).

(a) Show that , to first order in perturbation theory, we have

1

t
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wyei(t)



with hwy; = By — E;.

(b) Consider a very large number A of systems (k), which are identical and without mutual interactions (k =
1, 2,..., N). Each of them has a different microscopic environment and, consequently, sees” a different perturbation
W(k)( ) It is, of course, impossible to know each of the individual perturbatlon W), We can specify only statistical
averages such as:

Wri(t) =

N

Z

JQ
Wri(OWF,(t—7) = Jim_ Z OW Rt — 7).
k:

This perturbation is said to be “random”.
This random perturbation is said to be stationary if the preceding averages are time independent. In this case, we
can redifine Hy in order to make Wy; = 0 and set:

95i(T) = Wy (W}, (t — 1),

which is called the “correlation function” of the perturbation. Usually, gs;(7) goes to zero for |7| > 7, a characteristic
time scale, called correlation time of the perturbation, i.e., the perturbation has a “memory” which extend into the
past (or future) only to an interval of order of 7.

(b.c) The N (which can be considered infinity for calculations) systems are in the state |¢;) at time ¢ = 0 and
are subject to a random stationary perturbation, the correlation function of which is g;(7) with correlation time 7.
Calculate the proportion 7s;(t) of systems which go to into the state |¢;) per unit time. Show that after a certain
value t; of ¢, to be specified, 7;(t) no longer depends on t.

(b.8) For fixed 7., how does 7 7; vary with w;? Consider the case in which g () = |vsi|* e |71/™ with vy; constant.

(b.y) The preceding theory is valid only for ¢ < t3 [since Eq. (1) results from perturbation theory]. What is the
order of magnitude of 57 Taking t; > ¢, find the condition for introducing a transition probability per unit time
which is independent of ¢ |use the form of ¢g;;(7) given in the preceding question|. Would it be possible to extend the
preceding theory beyond ¢ = t57

(¢) Application to a system. The N systems under consideration are spin-1/2 particles, with gyromagnetic ratio
7, placed in a static magnetic field By (set wo = vBp). These particles are enclosed in a spherical shell of radius R.
Each of them bounces constantly back and forth between the walls. The mean time between the collisions of the same
particle with the wall is called “time of flight” 7,,. During this time, the particle sees only the magnetic field Bg. In a
collision with the wall, each particle remains adsorbed on the surface during a mean time 7, (7, < 7,), during which
it seems, in addition to By, a constant microscopic field b due to paramagnetic impurities contained in the wall. The
direction of b varies randomly from one collision to another; the mean amplitude of b is bg.

(c.c) What is the correlation time of the perturbation seen by the spins? Give the physical justification for the
following form, to be chosen for the correlation function of the components of the microscopic magnetic field b:

BT = _b2< a>e|f/n7

Tb

and analogous expressions for the y- and z-components, and all the cross terms by (£)b, (t — 7) = by (£)b,(t —7) =--- =
0.

(¢.f) Let M. be the z-component of the total magnetization. (Consider B = Byz.) Show that, under the effect of
the collisions with the walls, M, “relaxes”, with a time constant T7:

dM. M.
dt T

(T4 is called the longitudinal relaxation time). Calculate T in terms of 7, By, Ty, Ta, bo-

(c.y) Show that studying the variation of T3 with By permites the experimental determination of the mean adsorp-
tion time 7.

(¢.0) We have at our disposition several cells, of different radii R, constructed of the same material. By measuring
Ty, how can we determine experimentally the mean amplitude by of the microscopic field in the wall.

5. Cohen-Tannoudji - complement E-XIII, problem 10.



Absorption of radiation by a many-particle system forming a bound state. The Doppler effect. The
recoil energy. The Mossbauer effect

In class, we considered the absorption of radiation by a charged particle attracted by a fixed center (Hydrogen atom
with infinitely heavy nucleous). In this exercise, we treat a more realistic situation in which the incident radiation
is absorbed by a system of many particles of finite masses interacting with each other and forming a bound state.
Thus we are studying the effect on the absorption phenomenon of the degrees of freedom of the center of mass of the
system.

I. Absorption of radiation by a free Hydrogen atom. The Doppler effect. The recoil energy

Consider two particles of masses m » of opposite charges g; 2 and position and momentum operators R 2 and Py o
(a Hydrogen atom). Let R and P, and R¢ and P¢ be the position and momentum observables of the relative particle
and center of mass of the system, respectively. M = mj + mq is the total mass and m = mimso/M is the reduced
mass. The Hamiltonian of the system can be written:

Hy= H,+ H;,
where
1
H, = -—P}
oM~ ¢

describes the translational kinetic energy of the free atom (the “external” degrees of freedom), and H; describes
the internal energy of the atom (the “internal” degrees of freedom). We denote by |K) the eigenstates of H., with
Eigenvalues h2K?/(2M). We concern ourselves with only two Eigenstates of H;, |x,) and |y,) of energies E, and E,
(with E}, > E,), and set hiwy = Ep — E,.

(a) What energy must be furnished to the atom to move it from state |K, y.) to state |K', xp)?

(b) This atom interacts with a plane electromagnetic wave of wavevector k and angular frequency w = ck polarized
along the unit vector é perpendicular to k. The corresponding vector potential A(r,t) is

A(r,t) = Age!®T=Ye 4 cc.,

with Ay constant. The principal term of the interaction Hamiltonian between this plane wave and the two particle
system can be written as

2
wit)y=-> Lp;. AR, 1).

i=1 "

Express W in terms of R, P, Rg¢ Pg, m, M, and ¢ (set ¢1 = —¢2 = ¢), and show that, in the electric dipole
approximation (which consists of neglecting k - R, but not k - R¢, in comparison to 1), we have that

. _ A .
W = Woe ™! + Wiet, with Wy = — L-2¢ . Pe'*Ra| 2)
m

(¢) Show that the matrix element (K', x; |[Wo| K, xq) is different from zero only if there exist a relation between k,
K and K’ (to be specified). Interpret this relation in terms of momentum conservation of the system atom+photon.

(d) Show that if the atom is in the state |K, x,) is placed in the radiation field, resonance just occurs when the
energy hw of the photons differs from the atomic transition energy fwg by an amount § £ which is to be expressed in
terms of 7, wo, K, k, M, and ¢ (since 0F is a corrective term, we can replace w by wp in the final expression for JF).
Show that JF is the sum of two terms, one of which, 7, depends on K and on the angle between K and k (the
Doppler effect), the other term, § F, is independs of K. Give a physical interpretation of 0 E; and 0E» (showing that
0 Es is the recoil kinetic energy of the atom when, having been initially motionless, it absorbs a resonant photon).

Show that d F is negligible compared to d 1 when fuw is of order of 10eV (the domain of atomic physics). Choose,
for M, a mass of order of the proton (Mc? ~ 10°eV), and, for K, a value corresponding to the thermal velocity at
T = 300 K. Would this still be true if 7wy were of order of 10°eV (the domain of nuclear physics)?

II. Recoilles absorption of radiation by a nucleous vibrating about its equilibrium position in a
crystal. The Mossbauer effect

The system under consideration is now a nucleous of mass M vibrating at angular frequency € about its equilibrium
position in a crystalline lattice (the Einstein model). Again, denote by R¢ and Pg the position and momentum
operators of the center of mass of this nucleous, respectively. Its vibrational energy is given by

1 2 1 2 2 2



which is that of the 3D Harmonic Oscillator. Denote by |ng,n,,n.) the Eigenstate of H. with Eigenenergy
(ng +ny +n, +3/2) Q. In addition to these “external” degrees of freedom, the nucleous possesses “internal” de-
grees of freedom which are associated observables that commute with R and Pg and are described by H;. As
before, let us concern only with the two lowest levels of H;: |x,) and |xp). Also, set hwy = Ep — E, > 0. Typically,
hwy is in the y-ray domain, and thus, wg > €.

(e) What energy must be given to the nucleous to allow it go from state |0, 0,0, x,) to state |n,0,0, xp)?

(f) This nucleous is placed in the same radiation field as before (and set k = kZ). It can be shown that, in the
electric dipole approximation, the interaction Hamiltonian of the nucleous with the plane wave (responsible for the
absorption of y-rays) can be written as in Eq. (2) with

WQ = A()Si (k)eikXG,

where S;(k) is an operator which acts on the internal degrees of freedom of the nucleous and, consequently, commutes
with Rg and Pg.

The nucleous is initially in the state |0,0,0, xq). Show that under the influence of the incident wave, a resonance
appears whenever fiw coincides with one of the energies calculated in item (e). The intensity of the resonance is
|s(k)[? |(n,0,0]e*X< 0,0, O>‘2 , where the value of k is to be specified and s(k) = (xs |Si(k)| xa). Show that, because
wo > ), we can replace k by kg = wo/c in the expression for the intensity of the resonance.

(9) Set

(ko) = [{pn [e#0X¢] o)

where |p,,) are the Eigenstates of the 1D Hamornic Oscillator of position X, mass M, and angular frequency €.
(g.«) Calculate 7, (ko) in terms of h, M, Q, ko, and n. (Hint: stablish a recurrence relation between <cpn ‘eikoXG| g00>

and (pn—1 }eik"XG} ©0), and express all 7, (ko) as a function of o (ko), which is to be calculated directly from the

wave function of the Harmonic Oscillator. Show that 7, (kg) are given by a Poisson distribution of n with average ¢,

where £ = (%) / (hY).

(9.8) Verify that Y~ ( m, (ko) = 1.
2 2
(9-7) Show that 3°°°  nkSdm, (ko) = 2o

2Mc2 "
2, 2
(h) Assume that A2 > ;]\/fc% , L.e., the vibrational energy is much greater than the recoil energy (very rigid crystal).
Show that the absorption spectrum of the nucleous is essentially composed of a single line at the angular frequency

wp- This line is called the recoilless absorption line. Justify this name. Why does the Doppler effect disappear?

(i) Now assume that 7 < % (very weak crystalline bonds). Show that the absorption spectrum of the nucleous
is composed of very large number of equidistant lines whose barycenter (obtained by weighting the abscissa of each line
by its relative intensity) coincides with the position of the absorption line of the free and motionless nucleous. What
is the order of magnitude of the width of this spectrum (the dispersion of the line with respect to the barycenter)?
Show that one recover the results of the first part in the limit Q@ — 0.

6. (Optional) Consider the 1D dynamics of a particle of charge e and mass m under a periodic potential V(z) =
V(z + a). Assume that at ¢t = 0 a vector potential is turned on A(t) = —FEt.

(a) Study the quasi-degenerate perturbation theory between the states e’** and e*( (conveniently normalized)
when k ~ k/2, where k = 27 /a. Assume that A(t) varies slowly and that V' (x) can be treated perturbatively.

(b) Compute the adiabatic Eigenstates of the system around k = r/2.

(¢) Compute the transition probability from the lowest- to the highest-energy adiabatic Eigenstate assuming that
the transition is more likely to happen around k = /2.

Make any approximation you may find convenient in order to compute the integrals involved.

k—kK)x



ANSWER:
1.
(a) The equation of motion in the Heisenberg picture is

d 0
W Xy = Xy Hyl +ih—X
thaggXn = [Xu Hul +ihg X,

as Xg does not depend on ¢, then %XH =Uf (%Xs) U = 0. Taking the average value of the resulting,

<h%XH> =0 (Xn) = (X H)

since |¢r) does not depend on ¢. The commutator can be evaluated:

1 1
[Xu Hp) = U' [Xs, Hs)U = UT [XS, 2—P§ + §mw2X§} U
m

1 ih ih
—yt [Xs, —Pg} U=ut (Z—PS> v="p,
2m m m
Thus,

%<XH>:%<PH>-

Repeating the same steps for Py, we arrive at

%<PH> = % ([Pu,Hgl) = —mw* (Xg) .

Therefore,
(Xu(t)) = Acoswt + Bsinwt,
where A and B are constants which depends on the initial conditions (X (0)) and (P (0)).

o>.

e%PsIoXsef%Psmo

(X (0)) = (¥5(0)| X5l :5(0)) = (0

Using the Baker-Haussdorff identity

eABe’A:B+[A,B]+%[A,[A,B]]+...,

we find that

A _ i (2
ehPsIUXSe # Pszo _ Xg+ -

7 [Ps, Xs]xg = X5 + wo.

Thus, (Xz(0)) = (0|Xs|0) + 2o = z¢. As Ps commutes with e~ F+%0/" e have that (Pz(0)) = 0. In this manner,
(Xu(t)) = zg coswt,

as in the classical trajectory.

(b) The operator e *’s¥0/" is the spatial translation operator, i.e., e |z) = |z + 20). Thus, we relate the
initial condition as the quantum oscillator being in the ground state shifted by an amount zq, i.e., (x| e~ 5%/ |0) =
(x — 20]0) = ¢ (x — o), where ¢(z) is the ground-state wave function of the Harmonic Oscillator. Thus the initial
“position” is xg. The inital velocity is zero since (¥g(0)|Ps|¥s(0)) = (0|Ps|0) = 0. These are the same initial
conditions yielding to the trajectory z(t) = (X (t)).

—iPsxzo/h

2.
Consider a hidrogen atom in its ground state subject to an electric field E = Eq coswt.



(a) The Eigenenergies of the Hydrogen atom are

_ _ 2
Bn == e

n2 n

Z2m [ 2 \° 1 13.6eV
4eq ’

with Z = 1 for the Hydrogen. Thus, if the ionization is to happen in a single-photon absorption, then hiw = hf = —FEj.
Thus, the corresponding frequency is

2 2 d
w=2 () ~210" 2% Which corresponds to 3.310'° Hz
2h3 \ 47eg S

(recall h = 4.13510" % eV.s).
(b) In 1st order of perturbation theory,

2

/ at’ (f [V ()] i) et

The initial state is the ground-state |1,0,0) and the final one is a plane wave |k):

1 1 3/2
<r|15070> = ’(Z)L()yo(r) = ﬁ (a_0> e*’f‘/ag,

1 )
rlk :_e—zk»r,
(Kl = =

where ag = 4”605 is the Bohr radius and V' (the volume of the box containing the ejected electron) is a normalization

factor. The perturbation is given by
V(t) = —eEq - rcoswt.
The matrix element
(FIV()i) = —eEq - (f|r]| i) coswt = —e& (f |2] i) coswt,

in which, for simplicity, we chose Eq = &jZ.
Let us focus on the time-independent part

(flzl1) /d3 /—1 s < 1 >3/2 o \/1 1 < 1 )3/2 /Ood /dQ 201Ky o5 fe "/ a0
zZ|1) = r—ee Z— | — € _ = — r re T € .
V \/E ap V ﬁ ao 0

The angular integral is
) 47
/dQe“"r X cos ) = /dQ <47r§ Z Yy (k) je (k) Yom (6, <p)> X (V?HO(G’@)) ;

where j; are the Spherical Bessel functions. From the orthonormality of the Spherical Harmonics, we find that

ikor AT, 4w ~ [ sin (kr) — (kr) cos (kr)
/dQe KT cosh = 47TZ\/;}/1)0(1€)_]1 (kr) = 471'1\/;}/1 o(k) < hr)? > .

Notice this implies that the ejected electron has angular momentum ¢ = 1. Moreover, m = 0 because of our choice
Eo = & 2. If we had chosen other direction, m would take the values +1.
Integrating over the radial part, we need

/oo dpydor /o (sm (kr) — (kr) cos (kr)) _ 8aj i
0 (kr)* (1 + (aok)2)3




Putting everything together, we finally arrive at
11 1)\*? 8aj 4 . 32y7i(ak) [a}
(f lzl4) = NG ( ) X %k X 47ri %Yl*o(k) = M C‘L/O X ag cos O,
(1 + (aok)Q) (1 + (aok)2)

where 6 is the angle between the direction of the electric field Ey and the wavevector k of the ejected electron.
(Notice with this result we can already answer question (c).)
We now focus on the time-dependent part of the integral

t 2
/ dt’ coswt' e rit’
to=0

:sin2 (w—wip) %) | sin® ((wtwip) 5)
(w—wif)2 (w+wif)2

B sin® ((w + wig) 3) +sin® ((w — wig) §) — sin® (wi)
(W +wif) (W — wir) '

Using that
.2
Ji S = S,
we simplify the above integral to
' 2
lim / dt' coswt'erit'| 5 T (0 (w—wp) + 0 (w+wpi))t,
t—o0 0 2

it w # 0. For w = 0, it becomes 27§ (wy;) t. This is because the last term is only nonzero when w = 0.
The total probability of excitation is given by

Pigyei(t) =Y Prei(t)

As the final state is in a continuum (where k is a good quantum number), then the sum can be replaced by an integral

|4
Ppeil) = Y Prei(t) = 55 [ @kPrestt) = —5 [ @hpyito)
7 ok (2m)
It is then convenient to exchange the integral in k£ by an integral in energy:
2 E VmdE 2mE 2m)°
43k = dOk? m ( m ) — a0 g E — @) () dadE,
hW2E I} \%

which defines the density of states p(E) = Vmy2mE/ (2wh)®. Notice also we used the free-electron dispersion

relation 2mFE = (hk)2 and that we are disregarding the spin degeneracy since the transition conserves the electron
spin. Then,

1 32y/mi (apk a? T
Pryyei(t) :/koP(Ef>dEf X2 _650\/_7(0)3 I/(') X ag cos Oy, 3 (6 (w+wpi) +6(w—wp))t
(1 + (aok)2>
2
i 3
:27r/ dy, sin 0y, cos 07 (650a0)2 32/ (aok) —D | x 2—7;1p (E; + hw) %t
0 (1+ (aoh)’)
2
2 32v/7 (apk T my/2m (E; + hw
:27T§ (6500/0)2 \/—7(0)3 X ﬁ ( 3 )(I(B)t
(14 (aok)?) (2mh)
2 2

— (eoap)? 16 (aok)2 . my 2m3(hE4i + hw) adt = (e&oag)’ _10tk) (QOkL 5 | (kao) %af)t,
(1 + (aok) ) (1 + (aok) )
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2
where we have kept only the possible transition (absorption) in which wy = w; +w, E; = Ey = —gp (%) =

—13.6eV. Notice also that the ejected electron has wavevector k = \/2m (Ey + hw)/h. Finally, the transition rate is

d 256
w = &P{f}ei(t) =3 (e€oap)?

(agk)® mag'
(1+ (aok)2>6 he

If we consider a field such that fiw = 2|Ep|, then the corresponding wavevector is k = +/2m |Ey|/h = 1/ag =~

1.91070m~!. The decay rate is roughly w = 4 (e€oao)” "3%2 Let us assume a low field of order & = 100 V/m (the
classical field inside the atom is of order 101! V/m), we find that w ~ 21075 Hz.

(¢) This is given by the dependence on 6, and ¢y, of Pr;(t). As we have shown that (f |z|i) x cosfy, then we
conclude that the angular distribution of the ejected electrons is

Py i(t) = consty x cos? 0y,

where 6y, is the angle between the direction of the ejected electron and the direction of the external electric field. The
multiplicative prefactor const, depends only on the magnitude of k.
(d) The selection rules are given by

<n/7€/7m/ |V| nvév m> X EO : <n/7€/7m/ |I'| naga m> = EO : <n/7€/a m/ |(‘I7y5 Z)| nvév m> .
Recall the Eigenfunctions are
<r|n,€, m> = Rn,é(T)Yf,m(eu 50)7

where

2Z\° (n—¢—1)
Rn — e efp/Q EL2€+1 ,
! \/(nao> anfma o’ P et )

m |20 (0 —m)! e
—(_ m im >
Yim = (—1) Tt P;" (cos0)e'™? for m > 0,

and Yy, = (-1)™ Y\ for m < 0. Here, the p = 2Zr/(nag) (Z = 1 for Hydrogen), L{ is the associated Laguerre
polynomial defined as

d? ar _
Ly (p), and Ly (p) = e’ — (Ppe p) :

Lq _
2(p) a7 1

The associated Legendre polynomials are (for m > 0)

m dm _1y gt
sz(x) = (1 —;Ez)? d—Pg (:E), and P, (CL‘) = %dd_pe ( —:E2)Z'

daxm

The first selection rule can be obtained from the azimutal angle ¢. There will be integrals of the form
<m/ |(£L', Y, Z)| m> ~ /dspeiim,kp (ezl:iap7 eiiwa 1) eim«p X (5m/,milu 6m’,mi17 5m/,m) .

Thus, m' =m or m’ =m &+ 1.
With respect to the polar angle 6, we will have integrals of type

1
/ dcos0Yy . (0,¢) (sinf,sin 6, cos 0) Yy o, (6, ) o< /dQY[ﬁym, (Y141, Y141, Y10) Yom
-1

— / dQ (Pt PP P PP .

It can be shown that the integral is nonzero only when ¢ = ¢ £ 1. This comes from the fact that P1P, = ¢, Ppy1 +
C_Pg_l.



There is another way of showing this selection rule.
Let r4 = 2 £ 4y. Then

[L.,r+] = [xpy — YDw, r+] = T [y, TiY] — Y [Pe, 2] = £ha + ihy = £hry.

Now we compute

' 0 m" |([Lsyre] Fhre)|n,lym) =0=h(m' —mF 1) (0, ;m |re|n,,m).
Thus, (n/,¢,m'|(z,y)|n,¢,m) is nonzero only when m’ = m + 1. For z, since [L.,z] = 0, then
(n' 0, m'|[L,, 2]|n,l,m) =0=Hh(m —m){n ¢, m|z|n,,m). Thus, the selection rule m = m’.

Now we apply the same idea with the other quantum number
L? = L% + L + L2.

Computing the commutator

[Lza Z] = [Li, Z] + [L12/7 Z} =L, [ypz — %Py, Z] + [Lma Z] L, + Lu [me — TPz, Z] + [Lyu Z] Lu
= —ihLyy —ihyL, + ihLyx + ihaL, = —ihLyy — ih (Lyy — ihz) 4+ ih (—ihz + xLy) + ihxL,
=2ih (L, — Lyy) = 2ih (Lyx — Lyy + thz).

where we have used that [L.,y] = [yp. — 2py,y] = ihz and [Ly, z] = [2py — 2p.,x] = —ihz . Notice the symmetry
between the ciclic interchange z — y — z:

[L2,:E] = [Lz,x} + [Li,x} = L, [2py — 2ps, x| + [Ly, x| Ly + L, [xpy — yps, x| + [Ls, 2] L,
= —ih(Lyz + zLy) +ih (L,y + yL,) = —ih (iha 4+ 2zLy) + ih (tha + 2Ly)
=2ih(L,y — zLy) = 2ih (yL, — Lyz),

[L?,y] = [LZ,y] + [L2,y] = Lz [yp: — 29y ) + (Lo, y] Lo + L [2py — ypa,y] + [Layy] La
=il (Lyz + zLy) — ik (Lyx + xL,) = ih (—ihy + 2zL,) — ih (2L,x — ihy)
=2ih (2L, — L,x) = 2ih (L,z — zL,).

As the commutator [L2, z} does not have L? or z. We then commute the entire thing with L? once again

[L?,[L?,z]] =2ih (L, [L? 2] — Ly [L?,y] +ih [L?, 2]) = —4R® [Ly (yL.— Ly2) — Ly (Lyz — L) + % (L2, zﬂ

1 1
=—4n® [yLyLz —Lz—Llz+aL, L.+ 5 [L?, z]] = 4n? [(L§ +L2)z— (zLy +yLy) L. — 3 (L, zﬂ
=4h |:L22 —(r-L)L.— % [L%;;}} = 4n® |:L22 — % [LQ,Z}:|
=2h* (L?z + zL?) .

By simple expection, it can be shown that r - L = L -r = 0. The last equation is our desirable result (LQ)2 z—
212212 + 2 (12)” — 202 (L2z + 2L2) = 0. Thus,

0= At ([z' (C+ D)2 =200 (C+1) (€ + 1)+ [0(+1)2 =20 (¢ +1) — 20 (0 + 1)) (', €', m’ |2| n, €, m)

0="n" (L% =2L'(L+1)+ L(L—-2)) (0, 0, m |z|n,l,m).
with £ = ¢ (¢ + 1). Therefore, we conclude that (n/,¢',m’|z|n,f,m) # 0 only when 0 = L2 — 2L (L + 1)+ L (L - 2),

which implies ¢/ = ¢ £+ 1. (The other two solutions are unphysical ' = —¢ and ¢/ = —¢ — 2.)
Finally, there is no selection rule with respect to the principal quantum number n. The radial integral is of type

o0
I = / T2d7“ X RZ/ﬁZ/TRn’g.
0
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Let us pick as an example, the case in which n’ = n. The simplest case in which there is still a transition, is when
n=2m =m=0,and £ =0=/¢ — 1. In this case,

I /00 p2dp [pe_p/z} p [(2 -p) e_p/ﬂ =T72#0.
0

Notice this case would violate energy conservation because E; — E; # hw. However, the energy conservation is taken
care by the time integral yielding to the delta function.
In Sum, the selection rules are

0! =f£1land m' =m, m£1.

3.
(a) The system can be diagonalized easily by noticing that the spin operators are time independent. Thus the usual
singlet-triplet states are the actual Eigenstates. We label them as

5) = % (=) = =) [to) = 7 (=) + =) [01) = |44}, [t1) = [——).

Inserting these in the Schrodinger equation

d
aw =i, = 20 g a0 =ih i 0

where S = S; + S5 is the total spin angular momentum, and the vectors |k) labels the singlet and triplet states, we
find that

3 1
—ZE(t)as = tha,, and ZE(t)ak = ihay for k =t_101.

The solutions of which are

. t . t
as (t) = as (—o0) exp (i—; E(t')dt') and ay, (t) = ap (—o0) exp (—ﬁ/ E(t')dt’) ,fork=t_101.

As the initial state (t =—o0) is |+—) = %(| s) + |to)), then, we have that as(—00) = a4, (—o0) = %, and
aty, (—o0) = 0. Therefore

with I; = f E(t)dt'. Notice I = I.
Finally, the probab1l1ty of finding the system in the |—+) state at t — oo is

2 i i i 2
‘ _ EEI(_e%IH*%I)’ = sin®(I/ (2h)).

RN

chact = |< + |1/1 ‘—ei’;z[oo + e 7ﬁloo

()

In first-order of perturbation theory, the probability amplitude of transition is given by

1 ! w
L0 =g [l v+ i
Z Qz E 12
—>+<—+|Sls2|+—>) _ﬁ<§h +0).
27 I 2
=5 )

Here, because Hy = 0, we have that wy = w; = 0. Moreover,

(=+ V) +-) = h—E2 <<— + ES{PS; +hee.| +

Thus,

2 1
Plst— ‘ =

(1)
¢rei>)] = gz

/_ O:O E(t)dt
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Comparing with the exact result Poyacr = sin®(I/(2h)), it is straightforward to conclude that first-order of perturbation
theory gives a precise answer as long as [ < 2h.
(¢) The sencond-order contribution to the probability amplitude is

(o >=(ih); [t [ a0 -
= <%)22/m dt/t At (—+| V(@) |k) (k| V() |[+-)

(m)/ dt/ At ((—+| V() [+=) (F=| V(") [+=) + (= V() | =) (= V(') [+-))

() [ o (B B E2) < () Lo [t

First, let us discuss the 7 — 0 limit in which we consider E(t) = ET6(t — to) where t; is the instant around which
E(t) # 0. In this case,

t
/ dE(t') ~ ET0 (t — to),

— 00

where 0(z) is the Heaviside step function. Thus,
(2) 1 1 2 1 I\?
cfel(oo) ~ W X 5 (ET) ~ 5 X (%)

which is smaller than ¢t ;(00) ~ I/(2h).

fe B
Now, let us discuss on the 7 — oo limit. In this limit, let us say that F(t) = E = const. Now we have that

/t dVE(t') ~ E x (min {t,7/2} + %7) .

— 00

The probability amplitude can now be estimated as
2
(2) 1 = \2 I
Crei(00) ~ 5 X (BT)" ~ (ﬁ) ;

which is much greater than W .(00). Notice that in both cases 2 (00) ~ (ET)2. The

[ f<i
(d) Now consider that both spins are subjected to a static magnetic field B = Byz. The corresponding Zeeman
Hamiltonian is

Ho = =52 By (9157 +9255)

where g¢12 are the gyromagnetic ratios (assume them distinct from each other). Consider also that FE(t) =

E exp (— (t/r)2). Compute the same probability of the previous itens in first-order of perturbation theory and
discuss its dependence on the magnitude By.

The only difference from item (b) is due to the fact that Hy # 0. As the initial and final states are Eigenvectors of
Hy, we have that

1 t
creilt) = ﬁi/ < + |6WfltV ‘ + — >

— 00
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with hwp; = B} — B = upBo ((—g1 + g2) — (91 — 92)) /2 = 5 Bo (92 — 91). Therefore,

_ _ ) 2N 2\ (2
1 > Wit ? E2 > — tz/Tzfiw it : E2 > —r? (tfé“"fﬂ'zf* Wf;T
Plst-w‘/_oodte f E(t) :W /_Oodte ( f ) :W /_Oodte ( ( >>
2 0 ) F—2 iwpyT? 22 2 oo ) 2
= ‘ [ S B e e
E? 2 2 E? 2 I\?2 2
— = —(wgiT)?/2 2 —(wgiT)?/2 ~ | = —(wypiT)?/2
Tk | V7| LToR (271) e )

Notice Py is depends strongly on By, namely, Pg ~ 72 exp (— (BOT/a)2> [with « = h/(up(92 — g1))]. Bigger Bo,
smaller the transition probability. This is because By sets the energy difference between the inital and final states.
For small B, we recover the result of item (b) since

In the samme manner, bigger 7 also implies smaller Pg. This is because the variation of the perturbation is
inversely proportional to 7. In the limit 7 — oo, it is like the system is extremely slowly perturbed. As a result, no
transition takes place. (This is the essence of the Adiabatic theorem.) On the other hand for small 7, we have that
Pyg ~ 72 which agrees with the fact that U; ~ [ Vdt ~ ¢ for small times.

(e) Again, we will have to compute

2 (00) = (%) > [ et [ aten v w1V o)

(&) [ [ (V@ Y ) e e Vi ) (o VO 1)

- é <%>2_</00 dtE(t) /too dt'e™ri B(t') + /Z dtE(t)e™ st /too dt’E(t’)) :

Again, let us discuss the limits 7 — 0 [E(t) = ET(t — to)] and 7 — oo [E(t) = E)]. In the former case,

2 2
(2) B 1/1 SN2 st I
i =5 () e~ (55)

which is much smaller than the first-order contribution.
In the latter case (7 — o0), we have that

(2) 1 1 : 2 T/2 ! / dwpit! T/2 Tweit i /

cyl (00) == —= T/2 — + T/2 —

T ;(00) E dt dt'o (r/2 —t) ' dte™ 7 0(r/2—t)dt
8 \ih —7/2 —7/2 —7/2 —7/2

1 1 2 =9 (3 iwe T . T 1 w5 : T
] 8 R e )

32
fi
1/1\2 o T . T
=1 (ﬁi) E o sin (Wfii) ,

which recovers the result of item (¢) when wy; = 0, i.e., c(f%)_i ~ (ET)Z. However, for wy; # 0, cf}_i is a rapid

oscillatory function which averages out to zero. But how do we compare this result with c}il since we cannot expand

the result in item (d) in the limit 7 — co? In order to make comparison, let us compute cgclli in the same limit

T— o0 [E(t) = E)]

0 n T/2 n
1 :i dte™rit (L V() |+ — :iﬁ dtiwfit:iE . ( .Z)
o) =g [ et vy e = 5 5 [ et = 5o in (w 7).

Then, we conclude that cl(flj_i (00) < c(f%)_l (c0) as was the case analyzed in item (c).

4.
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(a) In first order of perturbation theory, the amplitude probability of transition is

1t o
Cfei = '_/ At’ (o | W(t') i) e
Zh 0

Thus,

1 t ¢ * g (t—t"
Prei=lepeil” = h_/ ‘“'/0 dt” (os| W(') o) (g W(E') i)™ e (7).
The transition rate is then

1 : t - " t - ’ -
Whe i = ﬁ [(Wfi(t)eZWfit)A dt//Wf*i(t//)efzwfit +/Q dt/Wﬁ(t/)ezwﬁt (Wf*i(t)eflwfit)

Calling 7 = ¢ — ", we find that

L[/ .
Wiei = 33 [/0 dr (Wyi ()Wt — 7)e’rT) + c.c.] .

(b.c)
We start with the previous result

1 t N .
w;]jli(t) =12 {/ dr (Wf(f) (t)W;f) (t— 7')6“"“7) + c.c.] .
. 0 ,
Averaging over the many systems, we arrive at

1

N t
: 1 (k) Wi T
milt) = Jim 5 D ) = g [/ dr (gsi () €07) + }

1 [ [ , ¢ ,
2 [/ dr (gfi (1) ewf”) +/ dr (gfi (1) e“”f”) + c.c} )
0 .

If t > 7, the second integral vanishes and my; becomes time independent. Thus, we conclude that ¢; = 7.

(b.5)

From the previous result,

. 2 t
mpi(t) = 2_|v;;| / dre= /7 cos(wyiT)
0
|”fi|2 t
=2— {1 + €77 [wiiTe sin(w pit) — COS(Wf»L't)]:| Te.
i (1+whi?)

Thus, for long times t > 7., my; becomes time independent, as expected. Moreover, in the limit wy;7. > 1 (but recall
Te K t),

2
Vi 2w
Wfi(t)z2—| fl' TC—)§|’Uﬁ|25(wﬁ),
h2 (1 + wfciTQ)

(&

which recovers Fermi’s golden rule for transition between states in a discrete spectrum.

(b-7)
We need to go further in perturbation theory:

1 t ) , 1 1 2 t t . ’ i
Crei = 7 / A Wa(t)e' s 4 2 (‘n) Z/O d’“"/o AT (Wi (1YW ()] /55t Ft) o= 4 B+
J

where 7T is the time ordering operator. Thus,

* I g
Pros = legs® = | + LI + I I + |Bf? = |2 (1 i H) |
1
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Notice that we disregarded the cross terms because they average to zero:

LT o > We(We ()W (") =0,
k
since W, (t) = 0, for n odd.
For short times, |12 ~ [W;;(0)* (£)? and |Io[* ~ [Wy;(0)]* (£)". Thus, for [I|* / [I1]* < 1, we have that
h

h
t<tg= ——— ~ ——.
SRR Ton

This is the general result of perturbation theory. Let us now be more specific and use the previous results:

2
SUJSE L — A1) P
i (1+whi?)

with f(t) = wyTe sin(wyit) — cos(wyit). Notice that for ¢ < 7., then

2

(1) |Ufi|2 "
5 )

T (8 << 7e) ~ T (wriTe)

On the other hand, for ¢t > .,
|ogil?
2 Te

71'§1) (t > Tc) ~

2

As we show below, the second-order correction is
@) gl viil* 5 Jvsil* 5 @) ogil* viil® 5 Jvgi
T (<)~ Y et~ et and t>7)~Y 3~

J J

h4

Therefore, for to < t < 7., there is no guarantee that w;? < W;li).

However, if t5 > 7., then we know that w.;? (1) < W;li) (1c). Since both

of them becomes constant for ¢ > 7, i.e., ﬂ(t’z)(t > 7)) & 7T§»1i’2) (T¢), then
the approximation remains valid for ¢ > t5. This will happen in all orders

of perturbation theory since

2n

vyl

H2n Te t2 ¢

(min {t,7.})*""" = 52" (min {t,7.})*" .

F;?) (t>71.)~

) ) ] (n+1) Figure 1: The contributions to the tran-
Then, for 7. > t9, the perturbation theory is valid as long as T, < sition rates in first and second order in

(n) : erturbation theory as a function of time.
Y thus t < ta. On the other hand for < t9, then perturbation P Y
Tfi 2 e > P Case (a) 7. > to, the first order perturba-

theory is valid whenever 72""1¢; n-2 < =l nwhich implies that tion theory breaks down for t > to. On
72 < t3, but this follows from our assumption that 7. < ta. Therefore,  the other hand for (b) 7o < to, first order
when 7. < ta ~ hlv fi|_l, then perturbation theory works for any ¢. This  remains valid for any ¢.
is illustrated in Fig. 1

Let us now show that 7T§»2i) has indeed the forementioned behavior. For

simplicity, let us consider that W;¢ is real. Thus, W}f) (t)W;.f)*(t —7) =
k %
g(r) = Wi OWR (- 7).

2
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It is useful to write the second-order correction separating real and imaginary parts:
(2) 1 ’ E ' " i t t2)
(& = W W: (wyrit1twji
f1 (Zh) j / dtl/ dt2 fi (tl) gz(t2)€ fitl jit2

~(2) X [an [ [ij () Wyi(t2)ererstraents 4 W;Mﬁ@?)e“Wﬂm]
. 0 0
J

ih 2
. i 2 Z /t & /151 " ij (tl)Wji(t2)ei(wfjt1+wjit2) _ W;j (tl)Wﬁ (t2)e—i(Uijt1+wjit2)
7 "~ Jo 1 ; 2 5
1 2
~(55) [Feto) ~ Fr©) +i(F3(0) ~ FiO)].

Then, the derivative with respect to time becomes simple:

d
Whwil, =t = P, =2 (Fr(t) = Fr(0)) 9iFr(t) + 2 (Fi(t) - F1(0)) 9, Fi (1)
1 t t1 . .
"2 Z/o dtl/o bW (b)) Wi (t2)e! i) 4 Wi (8) W (ta)e (rstteta) |
J

t
S [ AW Was(ta)e ) W (W tg)e et
1 0

1 t t1 . )
vy EjAdnA Ao W, (1) Wi (t2) e (©rats Ht2) VW7 (6 )W (ta)e~ @it tents) |
i
t . .
ZA%MMM@MWMM—WMW@MMWW%
l

When averaging, the only surviving terms are of two types: direct terms, such as W;f) (tl)W]Ef) (t) = g5 (t1 —t)d;,; and

Wj(f)*(tg)Wl(ik)*(tg) = g;i(t2 —t3)d; 1, and cross terms, such as Wf(f) (tl)Wf(f)*(t) =gy, (t1—1)d;,, ngf)(tz)Wl(ik)*(tg) =
g(ts — t2)d;,;. Thus, the cross terms vanish

1 t t1 t . .
Rl :52 / dty / dts / dtagpj(t — tr)e 5071 gy (tg — tg)e~ ailia=tz)
’ . 0 0 0
J
1 t t1 t . .
+ 5 Z/ dtl / dtg/ dt3gfj (tl - t)ezwfj(titl)gji(b — tg)@zwﬁ(taih)
. 0 0 0
J
1 t 11 t . .
~3 Z/ dtl/ dtg/ dtsgy(t1 — t)ewfj(tl_t)gji(tz — ts)ewﬂ(tz_t?’)
. 0 0 0
J

1 t t1 t . .
“32 / déy / dt2/ diggps(t — t1)e™1 =1 gt — ta)etr (s 12)
j 0 0 0
=0

)



16

because g(7) = g(—7). The direct terms yields to

t t1 t
_% Z/O dtl/o dt?/o dtagr;(t — 1) 30 gy (15 — to et tott2)
ty
+ = Z/ dtl/ dtz/ dtgng t1 —t)e Wfﬂ(tlJFt) (2 —t3)e iwji(ta+tz)
t1 ] ]
+ 5 Z/ dtl / dtz/ dt3gfj(t - tl)e—zw“ (t+t1)gji(t3 — tz)e_zwji(t?’—i_tz).
j 0 0 0
t t1 t
= Z/ dtl/ dtz/ dtagp;(t — t1)e™ 30 gji (15 — o) et (fottz)
j 0 0 0
t t1 t
+ Z/ dtl/ dtg/ dlfggfj(t —tl)e_iwfj(t+t1)gji(f3 —tg)e_iwji(t?’-i_tz)
j 0 0 0
t t1 t
=2 Z/O dtl /0 dt2/0 dtggfj (t — tl)gji(tg — tz) COS (CUfj (t + tl) + Wi (tg + tz)) .
J

For t < 7., we can approximate g(t) = |v|”. In this case, we find that
Wi (6 <) = 3 gl sl (82 4+ O())
J

On the other hand for ¢ > 7., we have the following approximation

t1
h47rfz 22/ dtlgjj t—tl / dtz/ dtggﬂ tg —tg) COS (WfJ (t+t1)+wﬂ (t3+t2))
X Z/ dtlgfj(t — tl) / dtz / dt3gji(t3 — tz) COSs (wfj (f + tl) + Wii (t3 + tg))
j 0 0 0
x 1 z2
= Z |’Ufj|2 |vji|2 73 / dzie~ (@21 / dxs / daze™(®27%3) cos (Tewyj (@ + 21) + Tewji (T3 + 2)) .
- 0 0 0

This can be integrated exactly. In the limit x — oo, it simplifies to

R o3 o ugil 72 % f(t wsi,wps),
J

with f(t,w;j;,wys;) being a function of sin(wt) and cos(wt), i.e., a function that does not diverges with ¢ in the limit
t — 0.

(c.qt)

We sketch in Fig. 2 the perturbing magnetic field seen ~ Ta
by the particles as a function of time for a given direction. —f e ~ Ty
Clearly, the correlation time is set by the adsorption time 7.
Thus, b, (t)b,(t — 7) ~ et/ for 7> 7,.

Analysing Fig. 2, we can also obtain b,,(t)b,.(t). It is simply j\
the mean value of the of all those peaks squared: V U +

@xm—l—OXTvNT— 12<Ta)

b (t)

B2 = ~b
Ta + To 7 & 309

be(t —7)
—
3
f
o

since 7, > 7,, and that b2 = b2 = b2 = b3 and b, (t)b, (') = V t
0. Therefore, the correlation function of the components of

Figure 2: The z-component of the impurity magnetic
field as a function of time. Analogous behavior is found
for the other directions.
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the microscopic magnetic field b becomes

—_— 1 o\
b ()b (£ — 7) = §b3 (T_> T

Ty

with n,n’ = x, y, 2z or any other direction.

(c.0)

The dimensionless magnetization is given by M, = N; —
Ny =2N; — N, where N = Ny + N;. Then M, = 2N;. The number of up-spins are given by

NT(t + dt) = NT(t) - NT(t)ﬂ'\mdt + Ni(t)ﬂ}¢dt,
where 74 is the transition rate from the initial state |1) to the final one [|). Thus,
Ny = =Ni(t)myg + Ny (t)mry.
The transition rates can be obtained using the previous results:

2
[upy|

op|”
————~ Ta,
i (14w, 2)

[1 + et/ [wWhyTa sin(wyyt) — cos(wut)]} Ta — 2
2 2 2
h (1 + wNTC)

T, =2

where we used the the interesting regime ¢ > 7,. Notice also that my| = )4, since wy) = —w)y = 7By = wp and that
lopy]? = |v¢¢|2. We now need to compute |vy+]>. In order to do so, let us give a step back and compute

2 2

d 1| ", e d 1|t
Wt = / ar'e= (|| = b(e) -S| = S / a0t (1]~ (by.S + by Sy) 11)
a1/ o [ —=h oda - 2
=——|[ dle™" [ —— | (b, +iby)| = —— / dt'e "ol WL (¢
at 2 /0 ‘ ( 2 >( Fib)| =g, e w®)

with Wiy = =37k (b, (t) + iby(t)). Thus

t 2 t
rir = B2 /O dre SO (= 7) + .= 2 /O dre= 07 (Bn (D) T iy (D) ba(E = 7) = iby (= 7)) + c.c.

2t . t ‘
= WZ / dre™"woT {bm(t)bm(t —T) 4 by (t)by (t — 7')] +ce = h_2/ dre”"°7g(7) + c.c.,
0 0
with g(7) = |vys|* e~/ with |v4|* = o (hybo)?. Finally,

I o o] (vboa)? (i)

Ta| = Mp = — = W= =
=TT o B2 (1 + w%w%) 61+ (wora)® \ T

Returning the the rate equation

. 1 M,
Ny = =Np(t)mp + Ny(t)mey = “or (Ny = Ny) = ~or
Therefore,
dM, : M, 1+ (vBot,)?
AWM oy = M Gy — g (L0 B0Ta) 07'2) To.
dt Ty (vboTa)
(c7)

Measuring 77 as a function of By, we should find a parabolic behavior such as Ty = ag + a1 By + agBS, with a1 = 0.
Fitting the experimental data, we can determine the coefficients ag and as. The ratio between them gives us the
adsorption time:
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(c.9)
Cells of different radii R have different time of flights 7,, which are related via R = vr,, with 7 =
the mean velocity of the particles (which can be obtained from a Maxwell-Boltzmann distribution). Repeat the same
experiment done in the previous item, we can measure the coefficients ag and as as a function of R:
3v (”YTa)2
ag = ———R=aR and as = IW—=R= BR.
(vboTa) (vboTa)

Then, after fitting « and 5 from the experiments, the microscopic field can be obtained either as

boziﬂ3—vorl)0: 3_1)
VTa & V 3

(Notice the mass of the particles are needed. We can perform the same experiments but changing the temperature in
order to obtain precise values for by in the above expressions.)

Notice the exponential decay law here derived is rigorously valid as long as 7. < tz [c.f. item (b.y)]. In this
particular case, 7. &~ 7, and t3 & 1/ (vbg). The results of the experiments in (c.7) and (c.d) will permit us to compare

these time scales. Specially, from item (c.§), we notice that 7./ts ~ 7,70y = \/30/a ~ \/kpT/ (ma).

5.
(a) Let Ex o be the Eigenenergy for state |K, xq), with & = a,b. Then,

h2K12 ﬁ2K2 h2 P 5
AE_EK%—EK),I—( S +Eb)—< 53 +Ea)—m(K — K?) + hwo.

We now need the definitions
- mo _ _m
R, =R¢g+ o R, R:=Rg i R,
mi ma
P,=—P P Py,=— - P.
1= 57 Pe +P, Py i Rg

Then, in the electric dipole approximation, we will have that expik - Ry = expik - Ry ~ expik - Rg, yielding

E etk R _ & . etk Rz o [(E + i) _ (E _ 3)} . e’k Re — lp . e’k Ra
m

mi mso M mi M mo
Therefore,
_ —iwt T oiwt . - qAo . ik-Ro
W = Wye + Wye™", with Wy = ———¢ - Pe .
m

Notice the negative sign is irrelevant. By interchanging the particle labels, we can make it positive.

(c)
A .
(K, X0 [Wol K, xa) = = E-0¢ - (0 [P xa) (K 7| K).

Notice P is the momentum of the relative particle and thus, do not acts on the “external” degrees of freedom. We
now need to study the “selection rules” arising from (K’ [e™®R¢| K):

. 1 7 . .
<K/ ‘elk-Rg‘ K> — N /ngceizK 'RGeZk'RGeZK'RG x 6(3) (K/ —k— K) ,

where N is a normalization constant. Thus, the transition happens only when momentum is conserved: hK’' = hk+hK,
i.e., the momentum of the final state equals the sum of the momenta of the initial state and that of the absorbed
photon.
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(d) The resonance occurs when

h? h?

hw = Bxrp = Bxa = o7z (K% = K?) + hwo, = 6E = h(w—wo) = 577 (K? = K7).

Now using the momentum conservation

h2

5E—2M

h? w2
2\ _ . - —
(2K - k+k)—2 (2K k+(c))_5E1+5E2,

with 6 = W2 Kk cos /M ~ hPwoK cos/ (Mc), and 0By = (hw)® / (2M¢?) = (hwo)? / (2Mc?).

Physical interpretation:

If the atom were motionless, d would be the energy acquired by the center of mass of the atom due to momentum
conservation: Final momentum equals that of the photon, thus K’ = k. Thus, the energy is 6E> = h?k?/(2M). But
the momentum of the photon is related to its frequency by w = ck. Finaly, 6By = (hw)®/ (2Mc?), as computed
before.

Due to the motion of the atom, the frequency of the photon seen by the atom is different from w. Due to the Doppler
effect, it is equal to W’ = w (¢ — Vobserver) / (€ — Vsource) = w (¢ — R cos /M) /¢, where hK cos@/M is the velocity
of the atom in the direction of the photon, and vsource = 0. Thus, M’ = hw — h2wK cosf/ (Mc). Therefore, the
incident energy seen by the atom is less by an amount equal to 6y = fiw — hw' = h2wK cos0/(Mc) = h?kK cos /M.
Therefore, there is an offset in the resonance equal to dE7, as computed before.

For hwg = 10eV and M = 10° eV/c2 we have that 6FEy = 510 8eV. At T = 300K, the thermal energy is of

order mv2 = h K2 = kpT = 8.6107%eV/K x 300K = 2.610"2eV. Then, for cosf = 1, we have that §E; =
(hwo) (hK) | (M) = (hwo) \/BEL /=25 = 10eVV2.6 102 x /25 = 7.210~5eV. Finally, 6y ~ 10°6E,.

Repeating the same calculations for hwy = 10° eV, we have that §F» = 5eV and 6FE; = 0.72eV, i.e., 0E; ~ 107§ E;.

In the realm of atomic physics, the Dopple effect is much more relevant than the kinetic effects (recoil energy). On
the other hand, in the realm of nuclear physics, the recoil energy cannot be disregarded.

(e) As in item (a),

AE =E, 005 — E£0,0,0,a = h(nQ 4+ wo) = hwy;.
(f) We have that W (t) = Woe™ ™" + h.c., with Wy = ApS;(k)e*X¢ | and [S;(k), Rg] = [Si(k), Pg] = 0. Up to first
order in perturbation theory

1 2

t
Proi(t) =5 /0 dt eiwrit’ ((n,O,O,Xb|W0 |0,0,0,Xa>e*i“t'+c.c)

t
2 / At ¢l @ri—w)t
0

2 t
/ dt/ei(wfi-i-w)t'
0

Notice the cross term was neglected because it vanishes in the ¢ — oo limit. As we know from the Fermi’s golde

2
1 )
=53 [(1,0,0, x| Ao Si (k)< 10,0, 0, xa)|

2

1 —1
+ 7| (7,0.0, 6] A0S] (k)™ 10,0,0, x,)

. /12
rule, the time-integrals yields to delta functions at the resonance frequencies: w = + (n€) + wy). [‘fot dt’eiwsito)t’ | —
sin?(wp; Fw)t/2

(wriFw)?
[0,0,0,x4) — |n,0,0, xp) , i.e., the stimulated emission, and therefore, will be neglected. Finally, the relative intensity
of the resonances are proportional to

x ¢ (wp; Fw).] The negative sign is related to the second term which corresponds to the transition

A : 2 . 2 ; 2
<n,0,0,><b|h—35i(k)e““x" 10,0,0,xa)| o |{xs| Si(k) [xa)|* |[(n,0,0™¥ [0,0,0)| = |s(k)|* |(n, 0,0] ¥ |0,0,0)|".

Notice that the resonances occur when w = wy; = (nf) + wp) . For wy > Q and for n small (such that wy > nQ),
then the resonance occurs approximately when w = wp. As the radiation field wavevector is k = w/c, then it can be
replaced by ko = wop/c.

(g-@)
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Let us rewrite X in terms of the criation and anihillation operators:

Xo = n (a+aT): h2k2><—(a+aT) 1\/g(a+a)
2MQ ko V. 2M  hQ ko
Moreover, let us make use of the Glauber’s formula: A8 = e4eBe~2l4B] whenever [A, [A, B]] = [B,[A, B]] = 0.

As [a,a'] =1, then [iv/Za,iv/Ea'] = —¢. Finally, we are able to compute
ei\/f(a+aT)’(pO> = e% <90n e

) G

i\/faei\/ﬁ_aT

o)

Il
P
©
3

(on e e | o)

i Il

Il
)
Wl
.
T 3
o
—
o

From this, it is clear that the surviving terms are those in which [ — j = n. In order to get the correct prefactors, we
need

af lor) = VEF Llorsr), = (al) lpo) = VITgn)

alpn) = VElps), = alla) = [ i) provided that j < 1.
Thus,
ko X& _ s - (\/E)HJ l _ s > I+j
<Q0 |€ |Q0 >—€ JJZZO j'l' (,] l)|\/ﬁ<§0n|§0l—]>—e jJZZO (Z\/g) ( )\/_6nl j
B % 0o (i\/g)n+2j i_ %('L\/z)n 0o (—f)J B (Z\/E)n _%
_e; ! n'_e\/ﬁ;ﬂ_x/ﬁe
Therefore,

which is a Poisson distribution.
(¢9.8) The normalization of the Poisson distribution is verified

an ko) = Zg—ne_g—e"’& £ =1.

n=0

Notice this result comes from the completeness of the wavefunctions (X¢|en) and that e*X¢ has modulus 1:
2o (ko) = 32020 (wo |7 0% on) (on 0% | o) = (polipo) = 1.
(¢.7) The mean energy of the function e**oX¢ (shifted by the zero-point energy h§2/2) is

ionhQﬂ'n(ko) = hQe~¢ ing = th*Ei (ng_n — HQe 7552 5" '

n=1

o m 21.2 2
e e R2E2 Y\ R
= e 5%% = FRE = Ay <2Mh9> T 2Me2

which is the energy of a free particle of momentum hkq. This should be the case since e?*0X¢ |pg) is the ground state
of the 1D Harmonic Oscillator with additional moment kg. The kinetic part of the Hamiltonian will give this kinetic
energy (which should be related to the recoil energy if a photon is absorbed by this oscillator) while the potential
part of the Hamiltonian will give /2 (which was originally shifted out).

2 2
(h) The condition A > 2h % means that the energy of the “internal” degrees of freedom are much less than the
energy scale of the center of mass (“external” degrees of freedom). This corresponds to the case £ < 1. As we have
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seen in item (f), the absorption amplitude is proportional to P,o o |s(k)|? |(n,0,0]e’kXc |O,O,O>‘2. Thus, it is
proportional to m, (ko) in 1D. As £ < 1, the only relevant transition is to state n = 0:

wnz%e_gﬁu%(l—@,

thus, Poeg x 1 —& > Piog x (1 —¢)& Thus, the center of mass remains still, and the energy is totally absorbed
by the internal degrees of freedom. This justify the name of the line: recoilless absorption line. This line will be
peaked at the absorbed energy. The incident energy is hw. The internal transition is resonant at fuwg. The difference
between these energies were discussed in item (d): the Doppler effect energy shift, dEq, and the recoil energy dFs.
As we have just argued, the recoil energy does not appear in the 0 « 0 transition. The Doppler energy shift is
also absent because the nucleous is bounded about its equilibrium position. Naively, one could say that the initial
momentum of the nucleous is zero, K = 0. This directly yields 7 = 0. However, K is not a good quantum number
for the Harmonic Oscillator. The argument is that its mean value is zero. Thefore, the mean value of the shift is
approximately zero. The fact that <K 2> # 0 will provide a width to the resonance line. If the nuleous were in a
higher excited state, the width of the line would be broader. Thus, since 0F; = dF5 = 0, we conclude the resonance
will appear exactly when 27%.2) = hwy.

(i) The limit AQ) < QEM—WC% (or £ > 1) corresponds to the limit in which it is much easier to excite the motion
of the center mass of the nucleous than to excite its internal degrees of freedom. Thus, we are simply exciting an
1D Harmonic Oscillator. The spectrum of such is discrete and the distance between consecutive levels are constant
equal to A2 [as shown in item (e)]. The intensity of this lines are given by m,. From the properties of the Poisson
distribution, we conclude that the highest peak will happen for n ~ £ (the most probable target state n) and the
width of this transition is An ~ /€. As £ > 1, there will be many equidistant transition lines.

Let us compute the barycenter of the spectrum (shifted by the zero-point energy %hQ):

B =S oo =S i x S — 28
_Z "W"_Z n Xme T oM’
n=0

n=0

as we have seen in item (g.7y). This coincides with the absorption line of a free nucleous initially at rest: the recoil
energy dFs as seen in item (d) and argued in item (g.v). Notice that we are not considering the frequency wy found
in item (e) because we are neglecting a transition between the internal states |x.) — |[xp)-

Let us compute the width of these lines:
Aw =1/ w2 — 2.

We need to compute

0 25_71 e 0 gn e e e ) §j+1 e 0 gj e 5_] B
nzzon e _;ni(n—l)!e =c jgo(j—i—l) 7 =e 5¢ ;(j_l)!—i-j;j! =¢(E+1).

Therefore,

2 h2w2
Aw = IO\ €2 + € — (6)° = hQU/€ = 2M002 x HQ.

Notice the line width Aw — 0 in the limit & — 0. This limit corresponds to a free nucleous (no potential energy).
Thus, we expect a single resonance at the free energy particle hw.

6.
Firstly, let us focus on the static problem. The Hamiltonian reads

1
H=-—P>+V
5 P2+ V(@),

where V (z) is perturbative. The Eigenfunctions of Hy are plane waves: (z|k) = i (x) = ¢** /\/L, where L (which
will be set to infinity later) is the size of the 1D box containing the particle. Using periodic boundary conditions, we
have that e’* = 1, and thus, k,, = 27n/L, with n € Z. Since V is periodic, we can write its Fourier series:

_ 9 1 .
V(r) = ZVnem’“, with kK = %, and V,, = (k+ ns |V (2)| k) = 7 /dan(aj)eﬂ”m. (3)
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The dispersion relation is simple: Hy |k) = e |k), with e, = h2 (k — nx)® /(2m). Thus, there is degeneracy around
the points k = nk/2 (the boarders of the Brillouin zones) (see Fig. 3).
Lets apply quasi-degenerate perturbation theory. The main idea
is to solve exactly the quasi-degenerate states while applying con-
ventional perturbation theory for the remaining states. Denoting

by |i) the Eigenvectors of Hy, we rewritte the perturbation as

V=310 @V Gl =i+ Ve,
i

€Ltk

(S
where —K k
Vi =[n) (0| V' n) (n| + [n) (n| V' |m) (m| Figure 3: The dispersion relation of a free parti-
+ |m) (m|V |n) (n| + |m) (m|V |m) (m|, cle in a periodic potential. Degeneracies happen

whenever the parabolas meet.
Vo= > [i) GV 15 Gl
ij#mn
where |m) and |n) are the quasi-degenerate states, i.e., €, & €.
We now treat the subspace spanned by |m) and |n) in the best
way possible (exactly, for instance) while treating the remaining

Hilbert space approximately. This means we treat H' = Hy + V exactly because V5 does not acts on this subspace:
(n|Va|n)y = (n|Valm) = (m|Vz|n) = (m|Va|m) = 0. Thus, the corresponding matrix of H' in this subspace reads

g — (et Vi) (n|V]m) _(entVan  Vam
U mVin)  ent+m[Vim) )\ Vin  emt+Vom )7

which can be easily diogonalized. The new Eigenenergies are

g st ffat e

Notice that when €, = €,, this recovers the the usual first order of degenerate perturbation theory.
(a) Let us now consider the vector potential:
1 2
Hy=— (p—eA)", with A(t) = —Ft.
0= 5 (pcA) 0
Assuming that A(t) varies slowly in time, then we can apply the addiabatic approximation. The instanteneous basis
|k) remains the same:

1

(alk) o) = e

However, its spectrum becomes time-dependent €x_,, = % (k — k — eA/h)?, as we show below:

Ho k) = % (p2 — 2edp + (eA)z) k) = % (h2k2 — 2heAk + (eA)2) 1K)
- % (k— eAh(t))QIkw

We are now able to study the quasi-degenerate pertubation theory of state |k) and |k — x) around k = 5. We will
have to diagonalize the matrix

’ er + Vo V1*
H—( Vi etV )

where V,, = (k + jr|V|k + (j +n) k) = 1 [ dze™ V(z) [see Eq. (3)]. The Eigenenergies are

€+ € € — € 2
Be=2TFE v (7’“ ’“‘“) + Wl

2 2
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As we are interested near the degenerate point, set ¢ = k — %FL, the momentum measured from the Brillouin zone.

Thus,
I h? eA 2 9

Therefore, there is a level splitting around the n5 points as shown in Fig. 4. The arising gap A equals £y — E_ when

. 2
q:07 l'e'7 A: \/|‘/i|2+ (%%K) :
The Eigenstates are the Eigenvectors of H':

[+) =alk)+Blk—r), and |=) = B|k) —ak —~K),

1

which have cumbersome expressions. However, at k = 3, notice
€k = €x—x, LThe expressions simplify yielding to
O /»\ VAT
—K 0

Mo
= L (k) £k n)). AN
K k

I+) 7

(b)

The adiabatic Eigenstates are the instanteneous Eigenstates mul-
tiplied by the dynamical phase (there is no Berry phase since
6t |k5> = 0)

Figure 4: The dispersion relation of a free particle
in a periodic potential. Degeneracies are lifted
around the Brillouin zones.

|£) = emnd=®) | 1)

The dynamical phases at k = %FL (q =0) are
d+(t) /tdt’E (t") /tdt’ (L 2 (BT 2 vy (2 (B 2+|V|2
= = — —K —_— K .
* o 7 o 2m\14 h 0 2 h !
n (1 1 (eE\® ! n2 (eBt'\ \?
5 (ZHQt—I— 3 <%) t3> +V0tj:/0 dt’ <% <eh >n) + W]

The last integral is cumbersome but we will not need it in what follows.

(c)
The transition should happen where the distance between the lower and uper bands is smallest. Thus, at k = %n.
In first order of adiabatic perturbation theory, we have that
(F|re)] =)

P || R

The matrix element

<$L }H(t’)

;> — et (By—E-) <+ ‘% (p — eA) (_eA)} _> - e%(mwﬁ)% (+|p| -).

(3l 5e) + (~5rlol 30 ) = (3rlol = 30 ) = (~3rlol - 35))

1
2
1/1 1 1

We now have to compute

(+1[pl =)

Thus,

2

| el om0 )
0

P+(7,(t) = <—hli
e (e (59)) + 20



For small time and electric field, i.e., et < hk,+/mVj, then we can approximate the integral to

. 2
E 2t exp [L (At E 2

where A = 2 (hz’cz + Vo) , where IC = %Ii, and fw = A. Finally,

2

h
2 Az sin (wt)

)

2m

4R% [ eF
Py (t) <

2
~— | —hk)| sinwt.
A* \ 2m >
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