
Lista 1 - Quânti
a B (2013)

1. Consider a quantum 1D Harmoni
 Os
illator of mass m and natura frequen
y ω whi
h is initially prepared

(t = 0) in the state

|ψS(0)〉 = exp

(

− i
~
PSx0

)

|0〉 ,

where |0〉 is the ground state, PS is the momentum operator, and x0 is a s
alar.

(a) In the Heisenberg pi
ture, 
ompute 〈XH(t)〉 for t > 0 and relate it with the 
lassi
al traje
tory.

(b) How do you interprete this result with the 
lassi
al initial 
onditions?

2. Consider a hidrogen atom in its ground state subje
t to an ele
tri
 �eld E = E0 cosωt.
(a) What is the minimum frequen
y of the �eld in order to have ionization?

(b) What is the transition rate (probability per unit of time) to an ionized state (assuming it 
an represented by

plane waves)?

(
) What is the angular distribution of the eje
ted ele
tron in this pro
ess?

(d) Now 
onsider that the atom is in a 
ertain Eigenstate |n, l,m〉 and that ω is lower than the 
orresponding

ionization frequen
y. What 
an be said about the �nal Eigenstate |n′, ℓ′,m′〉?

3. Consider two spin-1/2 parti
les intera
ting as

V (t) =
E (t)

~2
S1 · S2,

where E(t) vanishes when t → ±∞ and approa
hes to a nonzero value of order Ē on the time interval of length τ .
(You may think on a gaussian, for instan
e.)

(a) At t→ −∞, the system is in the state |+−〉. Compute exa
tly the state of the system at time t. With this, show

that the probability of �nding the system in the state |−+〉 for t→ +∞ depends only on the integral I =
´∞
−∞E(t)dt.

(b) Compute the same probability in �rst-order of time-dependent perturbation theory. By 
omparing your results

with those of item (a), dis
uss the validity of this 
al
ulation.

(
) Make some estimations about the value of the 
ontribution to this probability in se
ond-order of perturbation

theory in the limits of τ → 0 and τ →∞ and dis
uss your results with the validity of the approximation 
on
lude in

item (b).

(d) Now 
onsider that both spins are subje
ted to a stati
 magneti
 �eld B = B0ẑ. The 
orresponding Zeeman

Hamiltonian is

H0 = −µB

~
B0 (g1S

z
1 + g2S

z
2) ,

where g1,2 are the gyromagneti
 ratios (assume them distin
t from ea
h other) and µB is the Bohr magneton. Consider

also that E(t) = Ē exp
(

− (t/τ)
2
)

. Compute the same probability of the previous itens in �rst-order of perturbation

theory, and dis
uss its dependen
e on B0 and on τ .

(e) (Optional) Like in item (
), 
ompute the se
ond-order 
ontribution c
(2)
f←i (∞) in the limits τ → 0 and τ →∞.

(Hint : Noti
e that in the limits τ → 0 and τ →∞, for estimation purposes, the ex
hange 
an be approximated to

E(t) = Ēτδ (t) and E(t) = Ēθ (τ/2 − |t|), respe
tively.)

4. Cohen-Tannoudji - 
omplement E-XIII, problem 9.

Transition probability per unit time under the e�e
t of a random perturbation. Simple relaxation

model

A physi
al system, subje
ted to a perturbation W (t), is at time t = 0 in the Eigenstate |ϕi〉 of its Hamiltonian

H0. Let Pf←i(t) be the probability of �nding the system at time t in another Eigenstate of H0, |ϕj〉. The transition
probability per unit time wf←i(t) is de�ned by wf←i(t) =

d
dtPf←i(t).

(a) Show that , to �rst order in perturbation theory, we have

wf←i(t) =
1

~2

ˆ t

0

dτWfi(τ)W
∗
fi(t− τ)eiωfiτ + c.c. (1)



2

with ~ωfi = Ef − Ei.

(b) Consider a very large number N of systems (k), whi
h are identi
al and without mutual intera
tions (k =
1, 2, . . . , N ). Ea
h of them has a di�erent mi
ros
opi
 environment and, 
onsequently, �sees� a di�erent perturbation

W (k)(t). It is, of 
ourse, impossible to know ea
h of the individual perturbation W (k)
. We 
an spe
ify only statisti
al

averages su
h as:

Wfi(t) = lim
N→∞

1

N

N
∑

k=1

W
(k)
fi (t),

Wfi(t)W ∗fi(t− τ) = lim
N→∞

1

N
N
∑

k=1

W
(k)
fi (t)W

(k)∗
fi (t− τ).

This perturbation is said to be �random�.

This random perturbation is said to be stationary if the pre
eding averages are time independent. In this 
ase, we


an redi�ne H0 in order to make Wfi = 0 and set:

gfi(τ) =Wfi(t)W ∗fi(t− τ),

whi
h is 
alled the �
orrelation fun
tion� of the perturbation. Usually, gfi(τ) goes to zero for |τ | ≫ τc, a 
hara
teristi

time s
ale, 
alled 
orrelation time of the perturbation, i.e., the perturbation has a �memory� whi
h extend into the

past (or future) only to an interval of order of τc.
(b.α) The N (whi
h 
an be 
onsidered in�nity for 
al
ulations) systems are in the state |ϕi〉 at time t = 0 and

are subje
t to a random stationary perturbation, the 
orrelation fun
tion of whi
h is gfi(τ) with 
orrelation time τc.
Cal
ulate the proportion πfi(t) of systems whi
h go to into the state |ϕj〉 per unit time. Show that after a 
ertain

value t1 of t, to be spe
i�ed, πfi(t) no longer depends on t.

(b.β) For �xed τc, how does πfi vary with ωfi? Consider the 
ase in whi
h gfi(τ) = |vfi|2 e−|τ |/τc , with vfi 
onstant.
(b.γ) The pre
eding theory is valid only for t ≪ t2 [sin
e Eq. (1) results from perturbation theory℄. What is the

order of magnitude of t2? Taking t2 ≫ t1, �nd the 
ondition for introdu
ing a transition probability per unit time

whi
h is independent of t [use the form of gfi(τ) given in the pre
eding question℄. Would it be possible to extend the

pre
eding theory beyond t = t2?
(
) Appli
ation to a system. The N systems under 
onsideration are spin-1/2 parti
les, with gyromagneti
 ratio

γ, pla
ed in a stati
 magneti
 �eld B0 (set ω0 = γB0). These parti
les are en
losed in a spheri
al shell of radius R.
Ea
h of them boun
es 
onstantly ba
k and forth between the walls. The mean time between the 
ollisions of the same

parti
le with the wall is 
alled �time of �ight� τv. During this time, the parti
le sees only the magneti
 �eld B0. In a


ollision with the wall, ea
h parti
le remains adsorbed on the surfa
e during a mean time τa (τa ≪ τv), during whi
h

it seems, in addition to B0, a 
onstant mi
ros
opi
 �eld b due to paramagneti
 impurities 
ontained in the wall. The

dire
tion of b varies randomly from one 
ollision to another; the mean amplitude of b is b0.
(
.α) What is the 
orrelation time of the perturbation seen by the spins? Give the physi
al justi�
ation for the

following form, to be 
hosen for the 
orrelation fun
tion of the 
omponents of the mi
ros
opi
 magneti
 �eld b:

bx(t)bx(t− τ) =
1

3
b20

(

τa
τb

)

e−|τ |/τa ,

and analogous expressions for the y- and z-
omponents, and all the 
ross terms bx(t)by(t− τ) = bx(t)bz(t− τ) = · · · =
0.
(
.β) Let Mz be the z-
omponent of the total magnetization. (Consider B = B0ẑ.) Show that, under the e�e
t of

the 
ollisions with the walls, Mz �relaxes�, with a time 
onstant T1:

dMz

dt
= −Mz

T1

(T1 is 
alled the longitudinal relaxation time). Cal
ulate T1 in terms of γ, B0, τv, τa, b0.
(
.γ) Show that studying the variation of T1 with B0 permites the experimental determination of the mean adsorp-

tion time τa.
(
.δ) We have at our disposition several 
ells, of di�erent radii R, 
onstru
ted of the same material. By measuring

T1, how 
an we determine experimentally the mean amplitude b0 of the mi
ros
opi
 �eld in the wall.

5. Cohen-Tannoudji - 
omplement E-XIII, problem 10.
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Absorption of radiation by a many-parti
le system forming a bound state. The Doppler e�e
t. The

re
oil energy. The Mössbauer e�e
t

In 
lass, we 
onsidered the absorption of radiation by a 
harged parti
le attra
ted by a �xed 
enter (Hydrogen atom

with in�nitely heavy nu
leous). In this exer
ise, we treat a more realisti
 situation in whi
h the in
ident radiation

is absorbed by a system of many parti
les of �nite masses intera
ting with ea
h other and forming a bound state.

Thus we are studying the e�e
t on the absorption phenomenon of the degrees of freedom of the 
enter of mass of the

system.

I. Absorption of radiation by a free Hydrogen atom. The Doppler e�e
t. The re
oil energy

Consider two parti
les of masses m1,2 of opposite 
harges q1,2 and position and momentum operators R1,2 and P1,2

(a Hydrogen atom). Let R and P, and RG and PG be the position and momentum observables of the relative parti
le

and 
enter of mass of the system, respe
tively. M = m1 +m2 is the total mass and m = m1m2/M is the redu
ed

mass. The Hamiltonian of the system 
an be written:

H0 = He +Hi,

where

He =
1

2M
P 2
G

des
ribes the translational kineti
 energy of the free atom (the �external� degrees of freedom), and Hi des
ribes

the internal energy of the atom (the �internal� degrees of freedom). We denote by |K〉 the eigenstates of He, with

Eigenvalues ~
2K2/(2M). We 
on
ern ourselves with only two Eigenstates of Hi, |χa〉 and |χb〉 of energies Ea and Eb

(with Eb > Ea), and set ~ω0 = Eb − Ea.
(a) What energy must be furnished to the atom to move it from state |K, χa〉 to state |K′, χb〉?
(b) This atom intera
ts with a plane ele
tromagneti
 wave of waveve
tor k and angular frequen
y ω = ck polarized

along the unit ve
tor ê perpendi
ular to k. The 
orresponding ve
tor potential A(r, t) is

A(r, t) = A0e
i(k·r−ωt)ê+ c.c.,

with A0 
onstant. The prin
ipal term of the intera
tion Hamiltonian between this plane wave and the two parti
le

system 
an be written as

W (t) = −
2
∑

i=1

qi
mi

Pi ·A(Ri, t).

Express W in terms of R, P, RG PG, m, M , and q (set q1 = −q2 = q), and show that, in the ele
tri
 dipole

approximation (whi
h 
onsists of negle
ting k ·R, but not k ·RG, in 
omparison to 1), we have that

W =W0e
−iωt +W †0 e

iωt, with W0 = −qA0

m
ê ·Peik·RG . (2)

(
) Show that the matrix element 〈K′, χb |W0|K, χa〉 is di�erent from zero only if there exist a relation between k,
K and K

′
(to be spe
i�ed). Interpret this relation in terms of momentum 
onservation of the system atom+photon.

(d) Show that if the atom is in the state |K, χa〉 is pla
ed in the radiation �eld, resonan
e just o

urs when the

energy ~ω of the photons di�ers from the atomi
 transition energy ~ω0 by an amount δE whi
h is to be expressed in

terms of ~, ω0, K, k, M , and c (sin
e δE is a 
orre
tive term, we 
an repla
e ω by ω0 in the �nal expression for δE).
Show that δE is the sum of two terms, one of whi
h, δE1, depends on K and on the angle between K and k (the

Doppler e�e
t), the other term, δE2, is independs of K. Give a physi
al interpretation of δE1 and δE2 (showing that

δE2 is the re
oil kineti
 energy of the atom when, having been initially motionless, it absorbs a resonant photon).

Show that δE2 is negligible 
ompared to δE1 when ~ω0 is of order of 10 eV (the domain of atomi
 physi
s). Choose,

for M , a mass of order of the proton (Mc2 ≈ 109 eV), and, for K, a value 
orresponding to the thermal velo
ity at

T = 300K. Would this still be true if ~ω0 were of order of 105 eV (the domain of nu
lear physi
s)?

II. Re
oilles absorption of radiation by a nu
leous vibrating about its equilibrium position in a


rystal. The Mössbauer e�e
t

The system under 
onsideration is now a nu
leous of massM vibrating at angular frequen
y Ω about its equilibrium

position in a 
rystalline latti
e (the Einstein model). Again, denote by RG and PG the position and momentum

operators of the 
enter of mass of this nu
leous, respe
tively. Its vibrational energy is given by

He =
1

2M
P 2
G +

1

2
MΩ

(

X2
G + Y 2

G + Z2
G

)

,
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whi
h is that of the 3D Harmoni
 Os
illator. Denote by |nx, ny, nz〉 the Eigenstate of He with Eigenenergy

(nx + ny + nz + 3/2)~Ω. In addition to these �external� degrees of freedom, the nu
leous possesses �internal� de-

grees of freedom whi
h are asso
iated observables that 
ommute with RG and PG and are des
ribed by Hi. As

before, let us 
on
ern only with the two lowest levels of Hi: |χa〉 and |χb〉. Also, set ~ω0 = Eb − Ea > 0. Typi
ally,
~ω0 is in the γ-ray domain, and thus, ω0 ≫ Ω.
(e) What energy must be given to the nu
leous to allow it go from state |0, 0, 0, χa〉 to state |n, 0, 0, χb〉?
(f ) This nu
leous is pla
ed in the same radiation �eld as before (and set k = kx̂). It 
an be shown that, in the

ele
tri
 dipole approximation, the intera
tion Hamiltonian of the nu
leous with the plane wave (responsible for the

absorption of γ-rays) 
an be written as in Eq. (2) with

W0 = A0Si(k)e
ikXG ,

where Si(k) is an operator whi
h a
ts on the internal degrees of freedom of the nu
leous and, 
onsequently, 
ommutes

with RG and PG.

The nu
leous is initially in the state |0, 0, 0, χa〉. Show that under the in�uen
e of the in
ident wave, a resonan
e

appears whenever ~ω 
oin
ides with one of the energies 
al
ulated in item (e). The intensity of the resonan
e is

|s(k)|2
∣

∣〈n, 0, 0| eikXG |0, 0, 0〉
∣

∣

2
, where the value of k is to be spe
i�ed and s(k) = 〈χb |Si(k)|χa〉. Show that, be
ause

ω0 ≫ Ω, we 
an repla
e k by k0 = ω0/c in the expression for the intensity of the resonan
e.

(g) Set

πn(k0) =
∣

∣

〈

ϕn

∣

∣eik0XG
∣

∣ϕ0

〉∣

∣

2
,

where |ϕn〉 are the Eigenstates of the 1D Hamorni
 Os
illator of position XG, mass M , and angular frequen
y Ω.
(g.α) Cal
ulate πn(k0) in terms of ~, M , Ω, k0, and n. (Hint : stablish a re
urren
e relation between

〈

ϕn

∣

∣eik0XG

∣

∣ϕ0

〉

and

〈

ϕn−1
∣

∣eik0XG

∣

∣ϕ0

〉

, and express all πn(k0) as a fun
tion of π0(k0), whi
h is to be 
al
ulated dire
tly from the

wave fun
tion of the Harmoni
 Os
illator. Show that πn(k0) are given by a Poisson distribution of n with average ξ,

where ξ =
(

~
2k2

0

2M

)

/ (~Ω).

(g.β) Verify that

∑∞
n=0 πn(k0) = 1.

(g.γ) Show that

∑∞
n=0 n~Ωπn(k0) =

~
2ω2

0

2Mc2 .

(h) Assume that ~Ω≫ ~
2ω2

0

2Mc2 , i.e., the vibrational energy is mu
h greater than the re
oil energy (very rigid 
rystal).

Show that the absorption spe
trum of the nu
leous is essentially 
omposed of a single line at the angular frequen
y

ω0. This line is 
alled the re
oilless absorption line. Justify this name. Why does the Doppler e�e
t disappear?

(i) Now assume that ~Ω≪ ~
2ω2

0

2Mc2 (very weak 
rystalline bonds). Show that the absorption spe
trum of the nu
leous

is 
omposed of very large number of equidistant lines whose bary
enter (obtained by weighting the abs
issa of ea
h line

by its relative intensity) 
oin
ides with the position of the absorption line of the free and motionless nu
leous. What

is the order of magnitude of the width of this spe
trum (the dispersion of the line with respe
t to the bary
enter)?

Show that one re
over the results of the �rst part in the limit Ω→ 0.

6. (Optional) Consider the 1D dynami
s of a parti
le of 
harge e and mass m under a periodi
 potential V (x) =
V (x+ a). Assume that at t = 0 a ve
tor potential is turned on A(t) = −Et.
(a) Study the quasi-degenerate perturbation theory between the states eikx and ei(k−κ)x (
onveniently normalized)

when k ≈ κ/2, where κ = 2π/a. Assume that A(t) varies slowly and that V (x) 
an be treated perturbatively.

(b) Compute the adiabati
 Eigenstates of the system around k = κ/2.
(
) Compute the transition probability from the lowest- to the highest-energy adiabati
 Eigenstate assuming that

the transition is more likely to happen around k = κ/2.
Make any approximation you may �nd 
onvenient in order to 
ompute the integrals involved.
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ANSWER:

1.

(a) The equation of motion in the Heisenberg pi
ture is

i~
d

dt
XH = [XH,HH ] + i~

∂

∂t
XH ,

as XS does not depend on t, then ∂
∂tXH = U †

(

∂
∂tXS

)

U = 0. Taking the average value of the resulting,

〈

i~
d

dt
XH

〉

= i~
d

dt
〈XH〉 = 〈[XH,HH ]〉 ,

sin
e |ψH〉 does not depend on t. The 
ommutator 
an be evaluated:

[XH,HH ] = U † [XS , HS ]U = U †
[

XS ,
1

2m
P 2
S +

1

2
mω2X2

S

]

U

= U †
[

XS,
1

2m
P 2
S

]

U = U †
(

i~

m
PS

)

U =
i~

m
PH .

Thus,

d

dt
〈XH〉 =

1

m
〈PH〉 .

Repeating the same steps for PH , we arrive at

d

dt
〈PH〉 =

1

i~
〈[PH , HH ]〉 = −mω2 〈XH〉 .

Therefore,

〈XH(t)〉 = A cosωt+B sinωt,

where A and B are 
onstants whi
h depends on the initial 
onditions 〈XH(0)〉 and 〈PH(0)〉.

〈XH(0)〉 = 〈ψS(0) |XS|ψS(0)〉 =
〈

0
∣

∣

∣e
i
~
PSx0XSe

− i
~
PSx0

∣

∣

∣ 0
〉

.

Using the Baker-Haussdor� identity

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + . . . ,

we �nd that

e
i
~
PSx0XSe

− i
~
PSx0 = XS +

i

~
[PS , XS ]x0 = XS + x0.

Thus, 〈XH(0)〉 = 〈0 |XS | 0〉+ x0 = x0. As PS 
ommutes with e−iPsx0/~
, we have that 〈PH(0)〉 = 0. In this manner,

〈XH(t)〉 = x0 cosωt,

as in the 
lassi
al traje
tory.

(b) The operator e−iPSx0/~
is the spatial translation operator, i.e., e−iPSx0/~ |x〉 = |x+ x0〉. Thus, we relate the

initial 
ondition as the quantum os
illator being in the ground state shifted by an amount x0, i.e., 〈x| e−iPSx0/~ |0〉 =
〈x− x0|0〉 = ϕ (x− x0), where ϕ(x) is the ground-state wave fun
tion of the Harmoni
 Os
illator. Thus the initial

�position� is x0. The inital velo
ity is zero sin
e 〈ψS(0) |PS |ψS(0)〉 = 〈0 |PS | 0〉 = 0. These are the same initial


onditions yielding to the traje
tory x(t) = 〈XH(t)〉.

2.

Consider a hidrogen atom in its ground state subje
t to an ele
tri
 �eld E = E0 cosωt.
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(a) The Eigenenergies of the Hydrogen atom are

En = −Z
2m

2~2

(

e2

4πǫ0

)2
1

n2
= −Z2 13.6 eV

n2
,

with Z = 1 for the Hydrogen. Thus, if the ionization is to happen in a single-photon absorption, then ~ω = hf = −E1.

Thus, the 
orresponding frequen
y is

ω =
m

2~3

(

e2

4πǫ0

)2

≈ 2 1016
rad

s
whi
h 
orresponds to 3.3 1015Hz

(re
all h = 4.135 10−15 eV.s).
(b) In 1st order of perturbation theory,

Pf←i(t) = |〈f |UI(t, t0)| i〉|2 ≈
1

~2

∣

∣

∣

∣

ˆ t

t0

dt′ 〈f |V (t′)| i〉 eiωfit
′

∣

∣

∣

∣

2

.

The initial state is the ground-state |1, 0, 0〉 and the �nal one is a plane wave |k〉:

〈r|1, 0, 0〉 = ψ1,0,0(r) =
1√
π

(

1

a0

)3/2

e−r/a0 ,

〈r|k〉 = 1√
V
e−ik·r,

where a0 = 4πǫ0~
2

me2 is the Bohr radius and V (the volume of the box 
ontaining the eje
ted ele
tron) is a normalization

fa
tor. The perturbation is given by

V (t) = −eE0 · r cosωt.

The matrix element

〈f |V (t′)| i〉 = −eE0 · 〈f |r| i〉 cosωt = −eE0 〈f |z| i〉 cosωt,

in whi
h, for simpli
ity, we 
hose E0 = E0ẑ.
Let us fo
us on the time-independent part

〈f |z| i〉 =
ˆ

d3r
1√
V
eik·rz

1√
π

(

1

a0

)3/2

e−r/a0 =
1√
V

1√
π

(

1

a0

)3/2 ˆ ∞

0

dr

ˆ

dΩr2eik·rr cos θe−r/a0 .

The angular integral is

ˆ

dΩeik·r × cos θ =

ˆ

dΩ

(

4π

∞
∑

ℓ=0

ℓ
∑

m=−ℓ
iℓY ∗ℓ,m(k̂)jℓ (kr) Yℓ,m(θ, ϕ)

)

×
(

√

4π

3
Y1,0(θ, ϕ)

)

,

where jℓ are the Spheri
al Bessel fun
tions. From the orthonormality of the Spheri
al Harmoni
s, we �nd that

ˆ

dΩeik·r cos θ = 4πi

√

4π

3
Y ∗1,0(k̂)j1 (kr) = 4πi

√

4π

3
Y ∗1,0(k̂)

(

sin (kr) − (kr) cos (kr)

(kr)2

)

.

Noti
e this implies that the eje
ted ele
tron has angular momentum ℓ = 1. Moreover, m = 0 be
ause of our 
hoi
e

E0 = E0ẑ. If we had 
hosen other dire
tion, m would take the values ±1.
Integrating over the radial part, we need

ˆ ∞

0

drr3e−r/a0

(

sin (kr)− (kr) cos (kr)

(kr)
2

)

=
8a50

(

1 + (a0k)
2
)3 k.
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Putting everything together, we �nally arrive at

〈f |z| i〉 = 1√
V

1√
π

(

1

a0

)3/2

× 8a50
(

1 + (a0k)
2
)3 k × 4πi

√

4π

3
Y ∗1,0(k̂) =

32
√
πi (a0k)

(

1 + (a0k)
2
)3

√

a30
V
× a0 cos θk,

where θk is the angle between the dire
tion of the ele
tri
 �eld E0 and the waveve
tor k of the eje
ted ele
tron.

(Noti
e with this result we 
an already answer question (
).)

We now fo
us on the time-dependent part of the integral

∣

∣

∣

∣

ˆ t

t0=0

dt′ cosωt′eiωfit
′

∣

∣

∣

∣

2

=
sin2

(

(ω − ωif )
t
2

)

(ω − ωif )
2 +

sin2
(

(ω + ωif )
t
2

)

(ω + ωif )
2

− sin2
(

(ω + ωif )
t
2

)

+ sin2
(

(ω − ωif )
t
2

)

− sin2
(

ω t
2

)

(ω + ωif ) (ω − ωif )
.

Using that

lim
t→∞

sin2 (xt/2)

x2
=
π

2
δ (x) ,

we simplify the above integral to

lim
t→∞

∣

∣

∣

∣

ˆ t

0

dt′ cosωt′eiωfit
′

∣

∣

∣

∣

2

→ π

2
(δ (ω − ωfi) + δ (ω + ωfi)) t,

if ω 6= 0. For ω = 0, it be
omes 2πδ (ωfi) t. This is be
ause the last term is only nonzero when ω = 0.
The total probability of ex
itation is given by

P{f}←i(t) =
∑

f

Pf←i(t).

As the �nal state is in a 
ontinuum (where k is a good quantum number), then the sum 
an be repla
ed by an integral

P{f}←i(t) =
∑

f

Pf←i(t)→
1

δk3

ˆ

d3kPf←i(t) =
V

(2π)
3

ˆ

d3kPf←i(t).

It is then 
onvenient to ex
hange the integral in k by an integral in energy:

d3k = dΩk2dk = dΩ
2mE

~2

(√
mdE

~
√
2E

)

= dΩ
m
√
2mE

~3
dE =

(2π)
3

V
ρ (E) dΩdE,

whi
h de�nes the density of states ρ (E) = V m
√
2mE/ (2π~)

3
. Noti
e also we used the free-ele
tron dispersion

relation 2mE = (~k)2 and that we are disregarding the spin degenera
y sin
e the transition 
onserves the ele
tron

spin. Then,

P{f}←i(t) =

ˆ

dΩkρ (Ef ) dEf ×
1

~2

∣

∣

∣

∣

∣

∣

∣

−eE0
32
√
πi (a0k)

(

1 + (a0k)
2
)3

√

a30
V
× a0 cos θk

∣

∣

∣

∣

∣

∣

∣

2

π

2
(δ (ω + ωfi) + δ (ω − ωfi)) t

=2π

ˆ π

0

dθk sin θk cos θ
2
k (eE0a0)2







32
√
π (a0k)

(

1 + (a0k)
2
)3







2

× π

2~
ρ (Ei + ~ω)

a30
V
t

=2π
2

3
(eE0a0)2







32
√
π (a0k)

(

1 + (a0k)
2
)3







2

× π

2~

m
√

2m (Ei + ~ω)

(2π~)3
a30t

=(eE0a0)2






16 (a0k)
(

1 + (a0k)
2
)3







2

m
√

2m (Ei + ~ω)

3~4
a30t = (eE0a0)2







16 (a0k)
(

1 + (a0k)
2
)3







2

(ka0)
ma20
3~3

t,
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where we have kept only the possible transition (absorption) in whi
h ωf = ωi + ω, Ei = E0 = − m
2~2

(

e2

4πǫ0

)2

=

−13.6 eV. Noti
e also that the eje
ted ele
tron has waveve
tor k =
√

2m (E0 + ~ω)/~. Finally, the transition rate is

w =
d

dt
P{f}←i(t) =

256

3
(eE0a0)2

(a0k)
3

(

1 + (a0k)
2
)6

ma20
~3

.

If we 
onsider a �eld su
h that ~ω = 2 |E0|, then the 
orresponding waveve
tor is k =
√

2m |E0|/~ = 1/a0 ≈
1.9 10−10m−1. The de
ay rate is roughly w = 4 (eE0a0)2 ma2

0

3~3 . Let us assume a low �eld of order E0 = 100V/m (the


lassi
al �eld inside the atom is of order 1011V/m), we �nd that w ≈ 2 10−5Hz.
(
) This is given by the dependen
e on θk and ϕk of Pf←i(t). As we have shown that 〈f |z| i〉 ∝ cos θk, then we


on
lude that the angular distribution of the eje
ted ele
trons is

Pf←i(t) = constk × cos2 θk,

where θk is the angle between the dire
tion of the eje
ted ele
tron and the dire
tion of the external ele
tri
 �eld. The

multipli
ative prefa
tor constk depends only on the magnitude of k.

(d) The sele
tion rules are given by

〈n′, ℓ′,m′ |V |n, ℓ,m〉 ∝ E0 · 〈n′, ℓ′,m′ |r| n, ℓ,m〉 = E0 · 〈n′, ℓ′,m′ |(x, y, z)|n, ℓ,m〉 .

Re
all the Eigenfun
tions are

〈r|n, ℓ,m〉 = Rn,ℓ(r)Yℓ,m(θ, ϕ),

where

Rn,ℓ =

√

(

2Z

na0

)3
(n− ℓ− 1)!

2n [(n+ ℓ)!]
3 e
−ρ/2ρℓL2ℓ+1

n+ℓ (ρ),

Yℓ,m = (−1)m
√

2ℓ

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimϕ

for m ≥ 0,

and Yℓ,m = (−1)m Y ∗ℓ,|m| for m < 0. Here, the ρ = 2Zr/(na0) (Z = 1 for Hydrogen), Lq
p is the asso
iated Laguerre

polynomial de�ned as

Lq
p(ρ) =

dq

dρq
Lp (ρ) , and Lp (ρ) = eρ

dp

dρp
(

ρpe−ρ
)

.

The asso
iated Legendre polynomials are (for m ≥ 0)

Pm
ℓ (x) =

(

1− x2
)

m
2

dm

dxm
Pℓ (x) , and Pℓ (x) =

(−1)ℓ
2ℓℓ!

dℓ

dρℓ
(

1− x2
)ℓ
.

The �rst sele
tion rule 
an be obtained from the azimutal angle ϕ. There will be integrals of the form

〈m′ |(x, y, z)|m〉 ∼
ˆ

dϕe−im
′ϕ
(

e±iϕ, e±iϕ, 1
)

eimϕ ∝ (δm′,m±1, δm′,m±1, δm′,m) .

Thus, m′ = m or m′ = m± 1.
With respe
t to the polar angle θ, we will have integrals of type

ˆ 1

−1
d cos θY ∗ℓ′,m′ (θ, ϕ) (sin θ, sin θ, cos θ)Yℓ,m (θ, ϕ) ∝

ˆ

dΩY ∗ℓ′,m′ (Y1,±1, Y1,±1, Y1,0)Yℓ,m

=

ˆ

dΩ
(

Pm+1
ℓ′ P 1

1P
m
ℓ , Pm

ℓ′ P
0
1P

m
ℓ

)

.

It 
an be shown that the integral is nonzero only when ℓ′ = ℓ ± 1. This 
omes from the fa
t that P1Pℓ = c+Pℓ+1 +
c−Pℓ−1.
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There is another way of showing this sele
tion rule.

Let r± = x± iy. Then

[Lz, r±] = [xpy − ypx, r±] = x [py,±iy]− y [px, x] = ±~x+ i~y = ±~r±.

Now we 
ompute

〈n′, ℓ′,m′ |([Lz, r±]∓ ~r±)|n, ℓ,m〉 = 0 = ~ (m′ −m∓ 1) 〈n′, ℓ′,m′ |r±|n, ℓ,m〉 .

Thus, 〈n′, ℓ′,m′ |(x, y)|n, ℓ,m〉 is nonzero only when m′ = m ± 1. For z, sin
e [Lz, z] = 0, then

〈n′, ℓ′,m′ |[Lz, z]|n, ℓ,m〉 = 0 = ~ (m′ −m) 〈n′, ℓ′,m′ |z|n, ℓ,m〉 . Thus, the sele
tion rule m = m′.
Now we apply the same idea with the other quantum number

L2 = L2
X + L2

y + L2
z.

Computing the 
ommutator

[

L2, z
]

=
[

L2
x, z
]

+
[

L2
y, z
]

= Lx [ypz − zpy, z] + [Lx, z]Lx + Ly [zpx − xpz, z] + [Ly, z]Ly

=− i~Lxy − i~yLx + i~Lyx+ i~xLy = −i~Lxy − i~ (Lxy − i~z) + i~ (−i~z + xLy) + i~xLy

=2i~ (xLy − Lxy) = 2i~ (Lyx− Lxy + i~z) .

where we have used that [Lx, y] = [ypz − zpy, y] = i~z and [Ly, x] = [zpx − xpz, x] = −i~z . Noti
e the symmetry

between the 
i
li
 inter
hange x→ y → z:

[

L2, x
]

=
[

L2
y, x
]

+
[

L2
z, x
]

= Ly [zpx − xpz , x] + [Ly, x]Ly + Lz [xpy − ypx, x] + [Lz, x]Lz

=− i~ (Lyz + zLy) + i~ (Lzy + yLz) = −i~ (i~x+ 2zLy) + i~ (i~x+ 2Lzy)

=2i~ (Lzy − zLy) = 2i~ (yLz − Lyz) ,
[

L2, y
]

=
[

L2
x, y
]

+
[

L2
z, y
]

= Lx [ypz − zpy, y] + [Lx, y]Lx + Lz [xpy − ypx, y] + [Lz, y]Lz

=i~ (Lxz + zLx)− i~ (Lzx+ xLz) = i~ (−i~y + 2zLx)− i~ (2Lzx− i~y)
=2i~ (zLx − Lzx) = 2i~ (Lxz − xLz) .

As the 
ommutator

[

L2, z
]

does not have L2
or z. We then 
ommute the entire thing with L2

on
e again

[

L2,
[

L2, z
]]

=2i~
(

Ly

[

L2, x
]

− Lx

[

L2, y
]

+ i~
[

L2, z
])

= −4~2
[

Ly (yLz − Lyz)− Lx (Lxz − xLz) +
1

2

[

L2, z
]

]

=− 4~2
[

yLyLz − L2
yz − L2

xz + xLxLz +
1

2

[

L2, z
]

]

= 4~2
[

(

L2
x + L2

y

)

z − (xLx + yLy)Lz −
1

2

[

L2, z
]

]

=4~2
[

L2z − (r · L)Lz −
1

2

[

L2, z
]

]

= 4~2
[

L2z − 1

2

[

L2, z
]

]

=2~2
(

L2z + zL2
)

.

By simple expe
tion, it 
an be shown that r · L = L · r = 0. The last equation is our desirable result

(

L2
)2
z −

2L2zL2 + z
(

L2
)2 − 2~2

(

L2z + zL2
)

= 0. Thus,

0 = ~
4
(

[ℓ′ (ℓ′ + 1)]
2 − 2ℓℓ′ (ℓ+ 1) (ℓ′ + 1) + [ℓ (ℓ+ 1)]

2 − 2ℓ′ (ℓ′ + 1)− 2ℓ (ℓ+ 1)
)

〈n′, ℓ′,m′ |z|n, ℓ,m〉
0 = ~

4
(

L′2 − 2L′ (L+ 1) + L (L − 2)
)

〈n′, ℓ′,m′ |z|n, ℓ,m〉 .

with L = ℓ (ℓ+ 1). Therefore, we 
on
lude that 〈n′, ℓ′,m′ |z|n, ℓ,m〉 6= 0 only when 0 = L′2− 2L′ (L+ 1)+L (L− 2),
whi
h implies ℓ′ = ℓ± 1. (The other two solutions are unphysi
al ℓ′ = −ℓ and ℓ′ = −ℓ− 2.)
Finally, there is no sele
tion rule with respe
t to the prin
ipal quantum number n. The radial integral is of type

I =

ˆ ∞

0

r2dr ×R∗n′,ℓ′rRn,ℓ.
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Let us pi
k as an example, the 
ase in whi
h n′ = n. The simplest 
ase in whi
h there is still a transition, is when

n = 2, m′ = m = 0, and ℓ = 0 = ℓ′ − 1. In this 
ase,

I ∝
ˆ ∞

0

ρ2dρ
[

ρe−ρ/2
]

ρ
[

(2− ρ) e−ρ/2
]

= 72 6= 0.

Noti
e this 
ase would violate energy 
onservation be
ause Ef −Ei 6= ~ω. However, the energy 
onservation is taken


are by the time integral yielding to the delta fun
tion.

In Sum, the sele
tion rules are

ℓ′ = ℓ± 1 and m′ = m, m± 1.

3.

(a) The system 
an be diagonalized easily by noti
ing that the spin operators are time independent. Thus the usual

singlet-triplet states are the a
tual Eigenstates. We label them as

|s〉 = 1√
2
(|+−〉 − |−+〉) , |t0〉 =

1√
2
(|+−〉+ |−+〉) , |t1〉 = |++〉 , |t−1〉 = |−−〉 .

Inserting these in the S
hrödinger equation

H |ψ〉 = i~
d

dt
|ψ〉 , ⇒ E (t)

2~2
(

S2 − S2
1 − S2

2

)

∑

k

ak (t) |k〉 = i~
∑

k

ȧk (t) |k〉 ,

where S = S1 + S2 is the total spin angular momentum, and the ve
tors |k〉 labels the singlet and triplet states, we

�nd that

−3

4
E(t)as = i~ȧs, and

1

4
E(t)ak = i~ȧk for k = t−1,0,1.

The solutions of whi
h are

as (t) = as (−∞) exp

(

3i

4~

ˆ t

−∞
E(t′)dt′

)

and ak (t) = ak (−∞) exp

(

− i

4~

ˆ t

−∞
E(t′)dt′

)

, for k = t−1,0,1.

As the initial state (t = −∞) is |+−〉 = 1√
2
(|s〉+ |t0〉), then, we have that as (−∞) = at0 (−∞) = 1√

2
, and

at±1
(−∞) = 0. Therefore

|ψ(t)〉 = 1√
2
e

3i
4~

It |s〉+ 1√
2
e−

i
4~

It |t0〉 ,

with It =
´ t

−∞E(t′)dt′. Noti
e I = I∞.
Finally, the probability of �nding the system in the |−+〉 state at t→∞ is

Pexact = |〈−+ |ψ (∞)〉|2 =
1

4

∣

∣

∣−e 3i
4~

I∞ + e−
i
4~

I∞
∣

∣

∣

2

=
1

4

∣

∣

∣e
i
4~

I
(

−e 2i
4~

I + e−
2i
4~

I
)∣

∣

∣

2

= sin2(I/ (2~)).

(b)

In �rst-order of perturbation theory, the probability amplitude of transition is given by

c
(1)
f←i(t) =

1

i~

ˆ t

−∞

〈

−+
∣

∣eiωfitV (t′)
∣

∣+−
〉

dt′.

Here, be
ause H0 = 0, we have that ωf = ωi = 0. Moreover,

〈−+ |V (t′)|+−〉 = E

~2

(〈

−+

∣

∣

∣

∣

1

2
S+
1 S
−
2 + h.c.

∣

∣

∣

∣

+−
〉

+ 〈−+ |Sz
1S

z
2 |+−〉

)

=
E

~2

(

1

2
~
2 + 0

)

.

Thus,

P1st =
∣

∣

∣c
(1)
f←i(∞)

∣

∣

∣

2

=
1

4~2

∣

∣

∣

∣

ˆ ∞

−∞
E(t)dt

∣

∣

∣

∣

2

=

(

I

2~

)2

.
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Comparing with the exa
t result Pexact = sin2(I/(2~)), it is straightforward to 
on
lude that �rst-order of perturbation
theory gives a pre
ise answer as long as I ≪ 2~.
(
) The sen
ond-order 
ontribution to the probability amplitude is

c
(2)
f←i(∞) =

(

1

i~

)2
∑

k

ˆ ∞

−∞
dteiωfkt

ˆ t

−∞
dt′eiωkit

′ 〈−+|V (t) |k〉 〈k|V (t′) |+−〉

=

(

1

i~

)2
∑

k

ˆ ∞

−∞
dt

ˆ t

−∞
dt′ 〈−+|V (t) |k〉 〈k|V (t′) |+−〉

=

(

1

i~

)2 ˆ ∞

−∞
dt

ˆ t

−∞
dt′ (〈−+|V (t) |+−〉 〈+−|V (t′) |+−〉+ 〈−+|V (t) |−+〉 〈−+|V (t′) |+−〉)

=

(

1

i~

)2 ˆ ∞

−∞
dt

ˆ t

−∞
dt′
(

E(t)

4
× E(t′)

2
+
E(t)

2
× E(t′)

4

)

=
1

4

(

1

i~

)2 ˆ ∞

−∞
dtE(t)

ˆ t

−∞
dt′E(t′).

First, let us dis
uss the τ → 0 limit in whi
h we 
onsider E(t) = Ēτδ(t − t0) where t0 is the instant around whi
h

E(t) 6= 0. In this 
ase,

ˆ t

−∞
dt′E(t′) ∼ Ēτθ (t− t0) ,

where θ(x) is the Heaviside step fun
tion. Thus,

c
(2)
f←i(∞) ∼ 1

4~2
× 1

2

(

Ēτ
)2 ∼ 1

2
×
(

I

2~

)2

whi
h is smaller than c
(1)
f←i(∞) ∼ I/(2~).

Now, let us dis
uss on the τ →∞ limit. In this limit, let us say that E(t) = Ē = const. Now we have that

ˆ t

−∞
dt′E(t′) ∼ Ē ×

(

min {t, τ/2}+ 1

2
τ

)

.

The probability amplitude 
an now be estimated as

c
(2)
f←i(∞) ∼ 1

4~2
×
(

Ēτ
)2 ∼

(

I

2~

)2

,

whi
h is mu
h greater than c
(1)
f←i(∞). Noti
e that in both 
ases c

(2)
f←i(∞) ∼

(

Ēτ
)2
. The

(d) Now 
onsider that both spins are subje
ted to a stati
 magneti
 �eld B = B0ẑ. The 
orresponding Zeeman

Hamiltonian is

H0 = −µB

~
B0 (g1S

z
1 + g2S

z
2) ,

where g1,2 are the gyromagneti
 ratios (assume them distin
t from ea
h other). Consider also that E(t) =

Ē exp
(

− (t/τ)
2
)

. Compute the same probability of the previous itens in �rst-order of perturbation theory and

dis
uss its dependen
e on the magnitude B0.

The only di�eren
e from item (b) is due to the fa
t that H0 6= 0. As the initial and �nal states are Eigenve
tors of

H0, we have that

cf←i(t) =
1

i~

ˆ t

−∞

〈

−+
∣

∣eiωfitV (t′)
∣

∣+−
〉

dt′,
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with ~ωfi = E
(0)
−+ − E(0)

+− = µBB0 ((−g1 + g2)− (g1 − g2)) /2 = µBB0 (g2 − g1). Therefore,

P1st =
1

4~2

∣

∣

∣

∣

ˆ ∞

−∞
dteiωfitE(t)

∣

∣

∣

∣

2

=
Ē2

4~2

∣

∣

∣

∣

ˆ ∞

−∞
dte−(t

2/τ2−iωfit)
∣

∣

∣

∣

2

=
Ē2

4~2

∣

∣

∣

∣

∣

ˆ ∞

−∞
dte
−τ−2

(

(t− i
2
ωfiτ

2)
2−

(

iωfiτ
2

2

)2)∣

∣

∣

∣

∣

2

=
Ē2

4~2

∣

∣

∣

∣

∣

ˆ ∞

−∞
dte−τ

−2(t− i
2
ωfiτ

2)
2

e
τ−2

(

iωfiτ
2

2

)2∣

∣

∣

∣

∣

2

=
Ē2

4~2
e−(ωfiτ)

2/2

∣

∣

∣

∣

ˆ ∞

−∞
dte−τ

−2(t− i
2
ωfiτ

2)
2

∣

∣

∣

∣

2

=
Ē2

4~2
e−(ωfiτ)

2/2
∣

∣

√
πτ
∣

∣

2
= π

Ē2

4~2
τ2e−(ωfiτ)

2/2 ∼
(

I

2~

)2

e−(ωfiτ)
2/2.

Noti
e P1st is depends strongly on B0, namely, P1st ∼ τ2 exp
(

− (B0τ/α)
2
)

[with α = ~/(µB(g2− g1))℄. Bigger B0,

smaller the transition probability. This is be
ause B0 sets the energy di�eren
e between the inital and �nal states.

For small B, we re
over the result of item (b) sin
e

In the samme manner, bigger τ also implies smaller P1st. This is be
ause the variation of the perturbation is

inversely proportional to τ . In the limit τ → ∞, it is like the system is extremely slowly perturbed. As a result, no

transition takes pla
e. (This is the essen
e of the Adiabati
 theorem.) On the other hand for small τ , we have that
P1st ∼ τ2 whi
h agrees with the fa
t that UI ≈

´

V dt ∼ t for small times.

(e) Again, we will have to 
ompute

c
(2)
f←i(∞) =

(

1

i~

)2
∑

k

ˆ ∞

−∞
dteiωfkt

ˆ t

−∞
dt′eiωkit

′ 〈−+|V (t) |k〉 〈k|V (t′) |+−〉

=

(

1

i~

)2 ˆ ∞

−∞
dt

ˆ t

−∞
dt′
(

〈−+|V (t) |−+〉 〈−+|V (t′) |+−〉 eiωfit
′

+ eiωfit 〈−+|V (t) |+−〉 〈+−|V (t′) |+−〉
)

=
1

8

(

1

i~

)2(ˆ ∞

−∞
dtE(t)

ˆ t

−∞
dt′eiωfit

′

E(t′) +
ˆ ∞

−∞
dtE(t)eiωfit

ˆ t

−∞
dt′E(t′)

)

.

Again, let us dis
uss the limits τ → 0 [E(t) = Ēτδ(t− t0)℄ and τ →∞ [E(t) = Ē)℄. In the former 
ase,

c
(2)
f←i(∞) =

1

8

(

1

i~

)2
(

Ēτ
)2
eiωfit0 ∼

(

I

2~

)2

,

whi
h is mu
h smaller than the �rst-order 
ontribution.

In the latter 
ase (τ →∞), we have that

c
(2)
f←i(∞) =

1

8

(

1

i~

)2

Ē2

(

ˆ τ/2

−τ/2
dt

ˆ t

−τ/2
dt′θ (τ/2− t) eiωfit

′

+

ˆ τ/2

−τ/2
dteiωfit

ˆ t

−τ/2
θ (τ/2− t) dt′

)

=
1

8

(

1

i~

)2

Ē2

[

i

ω2
fi

(

ωfiτe
−iωfi

τ
2 − 2 sin

(

ωfi
τ

2

))

− i

ω2
fi

(

ωfiτe
iωfi

τ
2 − 2 sin

(

ωfi
τ

2

))

]

=
1

4

(

1

i~

)2

Ē2 τ

ωfi
sin
(

ωfi
τ

2

)

,

whi
h re
overs the result of item (
) when ωfi = 0, i.e., c
(2)
f←i ∼

(

Ēτ
)2
. However, for ωfi 6= 0, c

(2)
f←i is a rapid

os
illatory fun
tion whi
h averages out to zero. But how do we 
ompare this result with c
(1)
f←i sin
e we 
annot expand

the result in item (d) in the limit τ → ∞? In order to make 
omparison, let us 
ompute c
(1)
f←i in the same limit

τ →∞ [E(t) = Ē)℄:

c
(1)
f←i (∞) =

1

i~

ˆ ∞

−∞
dteiωfit 〈−+|V (t′) |+−〉 = 1

i~

Ē

2

ˆ τ/2

−τ/2
dteiωfit =

1

i~

Ē

ωif
sin
(

ωif
τ

2

)

.

Then, we 
on
lude that c
(1)
f←i (∞)≪ c

(2)
f←i (∞) as was the 
ase analyzed in item (
).

4.
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(a) In �rst order of perturbation theory, the amplitude probability of transition is

cf←i =
1

i~

ˆ t

0

dt′ 〈ϕf |W (t′) |ϕi〉 eiωfit
′

.

Thus,

Pf←i = |cf←i|2 =
1

~2

ˆ t

0

dt′
ˆ t

0

dt′′ 〈ϕf |W (t′) |ϕi〉 (〈ϕf |W (t′) |ϕi〉)∗ eiωfi(t′−t′′).

The transition rate is then

wf←i =
1

~2

[

(

Wfi(t)e
iωfit

)

ˆ t

0

dt′′W ∗fi(t
′′)e−iωfit

′′

+

ˆ t

0

dt′Wfi(t
′)eiωfit

′ (

W ∗fi(t)e
−iωfit

)

]

.

Calling τ = t− t′′, we �nd that

wf←i =
1

~2

[
ˆ t

0

dτ
(

Wfi(t)W
∗
fi(t− τ)eiωfiτ

)

+ c.c.

]

.

(b.α)
We start with the previous result

w
(k)
f←i(t) =

1

~2

[
ˆ t

0

dτ
(

W
(k)
fi (t)W

(k)∗
fi (t− τ)eiωfiτ

)

+ c.c.

]

.

Averaging over the many systems, we arrive at

πfi(t) = lim
N→∞

1

N
N
∑

k=1

w
(k)
f←i(t) =

1

~2

[
ˆ t

0

dτ
(

gfi (τ) e
iωfiτ

)

+ c.c.

]

=
1

~2

[
ˆ τc

0

dτ
(

gfi (τ) e
iωfiτ

)

+

ˆ t

τc

dτ
(

gfi (τ) e
iωfiτ

)

+ c.c.

]

.

If t > τc, the se
ond integral vanishes and πfi be
omes time independent. Thus, we 
on
lude that t1 = τc.
(b.β)
From the previous result,

πfi(t) = 2
|vfi|2
~2

ˆ t

0

dτe−τ/τc cos(ωfiτ)

= 2
|vfi|2

~2
(

1 + ω2
fiτ

2
c

)

[

1 + e−t/τc [ωfiτc sin(ωfit)− cos(ωfit)]
]

τc.

Thus, for long times t≫ τc, πfi be
omes time independent, as expe
ted. Moreover, in the limit ωfiτc ≫ 1 (but re
all

τc ≪ t),

πfi(t) ≈ 2
|vfi|2

~2
(

1 + ω2
fiτ

2
c

)τc →
2π

~2
|vfi|2 δ (ωfi) ,

whi
h re
overs Fermi's golden rule for transition between states in a dis
rete spe
trum.

(b.γ)
We need to go further in perturbation theory:

cf←i =
1

i~

ˆ t

0

dt′Wfi(t
′)eiωfit

′

+
1

2

(

1

i~

)2
∑

j

ˆ t

0

dt′
ˆ t

0

dt′′T [Wfj(t
′)Wji(t

′′)] ei(ωfj t
′+ωjit

′′) + · · · = I1 + I2 + . . . ,

where T is the time ordering operator. Thus,

Pf←i = |cf←i|2 = |I1|2 + I1I
∗
2 + I∗1 I2 + |I2|2 = |I1|2

(

1 +
|I2|2

|I1|2

)

.



14

Noti
e that we disregarded the 
ross terms be
ause they average to zero:

I1I∗2 ∝
∑

k

Wfi(t)Wfj(t′)Wji(t′′) = 0,

sin
e Wn
fi(t) = 0, for n odd.

For short times, |I1|2 ∼ |Wfi(0)|2
(

t
~

)2
and |I2|2 ∼ |Wfi(0)|4

(

t
~

)4
. Thus, for |I2|2 / |I1|2 ≪ 1, we have that

t≪ t2 =
~

|Wfi(0)|
∼ ~

|vfi|
.

This is the general result of perturbation theory. Let us now be more spe
i�
 and use the previous results:

π
(1)
fi = 2

|vfi|2

~2
(

1 + ω2
fiτ

2
c

)

[

1 + e−t/τcf(t)
]

τc,

with f(t) = ωfiτc sin(ωfit)− cos(ωfit). Noti
e that for t≪ τc, then

π
(1)
fi (t≪ τc) ∼

|vfi|2
~2

(ωfiτc)
2
t.

On the other hand, for t≫ τc,

π
(1)
fi (t≫ τc) ∼

|vfi|2
~2

τc.

As we show below, the se
ond-order 
orre
tion is

π
(2)
fi (t≪ τc) ∼

∑

j

|vfj |2 |vji|2
~4

t3 ∼ |vfi|
4

~4
t3, and π

(2)
fi (t≫ τc) ∼

∑

j

|vfj |2 |vji|2
~4

τ3c ∼
|vfi|4
~4

τ3c .

PSfrag repla
ements

π
(1)
fi

π
(1)
fi

π
(2)
fi

π
(2)
fi

τc τct tt2 t2

(a) (b)

0 0

Figure 1: The 
ontributions to the tran-

sition rates in �rst and se
ond order in

perturbation theory as a fun
tion of time.

Case (a) τc > t2, the �rst order perturba-

tion theory breaks down for t > t2. On

the other hand for (b) τc < t2, �rst order

remains valid for any t.

Therefore, for t2 ≪ t ≪ τc, there is no guarantee that π
(2)
fi ≪ π

(1)
fi .

However, if t2 ≫ τc, then we know that π
(2)
fi (τc) ≪ π

(1)
fi (τc). Sin
e both

of them be
omes 
onstant for t≫ τc, i.e., π
(1,2)
fi (t≫ τc) ≈ π(1,2)

fi (τc), then
the approximation remains valid for t≫ t2. This will happen in all orders

of perturbation theory sin
e

π
(n)
fi (t≫ τc) ∼

|vfi|2n
~2n

(min {t, τc})2n−1 = t−2n2 (min {t, τc})2n−1 .

Then, for τc ≫ t2, the perturbation theory is valid as long as π
(n+1)
fi ≪

π
(n)
fi , thus t ≪ t2. On the other hand for τc ≪ t2, then perturbation

theory is valid whenever τ2n+1
c t−2n−22 ≪ τ2n−1c t−2n2 , whi
h implies that

τ2c ≪ t22, but this follows from our assumption that τc ≪ t2. Therefore,

when τc ≪ t2 ∼ ~ |vfi|−1, then perturbation theory works for any t. This
is illustrated in Fig. 1

Let us now show that π
(2)
fi has indeed the forementioned behavior. For

simpli
ity, let us 
onsider that Wif is real. Thus, W
(k)
fi (t)W

(k)∗
fi (t− τ) =

g(τ) =W
(k)
fi (t)W

(k)
fi (t− τ).
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It is useful to write the se
ond-order 
orre
tion separating real and imaginary parts:

c
(2)
f←i =

(

1

i~

)2
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2)

=

(

1

i~

)2
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

[

Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2) +W ∗fj(t1)W

∗
ji(t2)e

−i(ωfjt1+ωjit2)

2

]

+

(

1

i~

)2
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

[

Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2) −W ∗fj(t1)W ∗ji(t2)e−i(ωfjt1+ωjit2)

2

]

=

(

1

i~

)2

[FR(t)− FR(0) + i (FI(t)− FI(0))] .

Then, the derivative with respe
t to time be
omes simple:

~
4w

(2)
f←i =~

4 d

dt
P

(2)
f←i = 2 (FR(t)− FR(0)) ∂tFR(t) + 2 (FI(t)− FI(0)) ∂tFI(t)

=
1

2





∑

j

ˆ t

0

dt1

ˆ t1

0

dt2Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2) +W ∗fj(t1)W

∗
ji(t2)e

−i(ωfjt1+ωjit2)



×

∑

l

ˆ t

0

dt3Wfl(t)Wli(t3)e
i(ωflt+ωlit3) +W ∗fl(t)W

∗
li(t3)e

−i(ωflt+ωlit3)

+
1

2





∑

j

ˆ t

0

dt1

ˆ t1

0

dt2Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2) −W ∗fj(t1)W ∗ji(t2)e−i(ωfjt1+ωjit2)



×

∑

l

ˆ t

0

dt3Wfl(t)Wli(t3)e
i(ωflt+ωlit3) −W ∗fl(t)W ∗li(t3)e−i(ωflt+ωlit3).

When averaging, the only surviving terms are of two types: dire
t terms, su
h asW
(k)
fj (t1)W

(k)
fl (t) = gfj(t1− t)δj,l and

W
(k)∗
ji (t2)W

(k)∗
li (t3) = gji(t2− t3)δj,l, and 
ross terms, su
h asW

(k)
fj (t1)W

(k)∗
fl (t) = gfj(t1− t)δj,l, W (k)

ji (t2)W
(k)∗
li (t3) =

g(t3 − t2)δj,l. Thus, the 
ross terms vanish

~
4π

(2)
fi =

1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)e−iωfj(t−t1)gji(t3 − t2)e−iωji(t3−t2)

+
1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t1 − t)eiωfj(t−t1)gji(t3 − t2)eiωji(t3−t2)

− 1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t1 − t)eiωfj(t1−t)gji(t2 − t3)eiωji(t2−t3)

− 1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)eiωfj(t−t1)gji(t3 − t2)eiωji(t3−t2)

=0,



16

be
ause g(τ) = g(−τ). The dire
t terms yields to

~
4π

(2)
fi =

1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)eiωfj(t+t1)gji(t3 − t2)eiωji(t3+t2)

+
1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t1 − t)e−iωfj(t+t1)gji(t3 − t2)e−iωji(t3+t2)

+
1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t1 − t)eiωfj(t1+t)gji(t2 − t3)eiωji(t2+t3)

+
1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)e−iωfj(t+t1)gji(t3 − t2)e−iωji(t3+t2).

=
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)eiωfj(t+t1)gji(t3 − t2)eiωji(t3+t2)

+
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)e−iωfj(t+t1)gji(t3 − t2)e−iωji(t3+t2)

=2
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)gji(t3 − t2) cos (ωfj (t+ t1) + ωji (t3 + t2)) .

For t≪ τc, we 
an approximate g(t) = |v|2. In this 
ase, we �nd that

~
4π

(2)
fi (t≪ τc) =

∑

j

|vfj |2 |vji|2
(

t3 +O(t5)
)

.

On the other hand for t≫ τc, we have the following approximation

~
4π

(2)
fi =2

∑

j

ˆ t

0

dt1gfj(t− t1)
ˆ t1

0

dt2

ˆ t

0

dt3gji(t3 − t2) cos (ωfj (t+ t1) + ωji (t3 + t2))

∝
∑

j

ˆ t

0

dt1gfj(t− t1)
ˆ t1

0

dt2

ˆ t2

0

dt3gji(t3 − t2) cos (ωfj (t+ t1) + ωji (t3 + t2))

=
∑

j

|vfj |2 |vji|2 τ3c
ˆ x

0

dx1e
−(x−x1)

ˆ x1

0

dx2

ˆ x2

0

dx3e
−(x2−x3) cos (τcωfj (x+ x1) + τcωji (x3 + x2)) .

This 
an be integrated exa
tly. In the limit x→∞, it simpli�es to

~
4π

(2)
fi ∝

∑

j

|vfj |2 |vji|2 τ3c × f(t, ωji, ωfj),

with f(t, ωji, ωfj) being a fun
tion of sin(ωt) and cos(ωt), i.e., a fun
tion that does not diverges with t in the limit

t→∞.

PSfrag repla
ements

∼ τa ∼ τv

τ

t

t

b
x
(t
)

b
x
(t

−
τ
)

Figure 2: The x-
omponent of the impurity magneti


�eld as a fun
tion of time. Analogous behavior is found

for the other dire
tions.

(
.α)
We sket
h in Fig. 2 the perturbing magneti
 �eld seen

by the parti
les as a fun
tion of time for a given dire
tion.

Clearly, the 
orrelation time is set by the adsorption time τa.
Thus, bx(t)bx(t− τ) ∼ e−t/τa for τ ≫ τa.

Analysing Fig. 2, we 
an also obtain bx(t)bx(t). It is simply

the mean value of the of all those peaks squared:

b2x × τa + 0× τv
τa + τv

≈ τa
τv
b2x =

1

3
b20

(

τa
τv

)

,

sin
e τv ≫ τa, and that b2x = b2y = b2z = 1
3b

2
0 and bx(t)by(t

′) =
0. Therefore, the 
orrelation fun
tion of the 
omponents of
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the mi
ros
opi
 magneti
 �eld b be
omes

bn(t)bn′(t− τ) = 1

3
b20

(

τa
τb

)

e−|τ |/τaδn,n′ ,

with n, n′ = x, y, z or any other dire
tion.

(
.β)
The dimensionless magnetization is given by Mz = N↑ −

N↓ = 2N↑ −N , where N = N↑ +N↓. Then Ṁz = 2Ṅ↑. The number of up-spins are given by

N↑(t+ dt) = N↑(t)−N↑(t)π↓↑dt+N↓(t)π↑↓dt,

where π↓↑ is the transition rate from the initial state |↑〉 to the �nal one |↓〉. Thus,

Ṅ↑ = −N↑(t)π↓↑ +N↓(t)π↑↓.

The transition rates 
an be obtained using the previous results:

π↑↓ = 2
|v↑↓|2

~2
(

1 + ω2
↑↓τ

2
c

)

[

1 + e−t/τa [ω↑↓τa sin(ω↑↓t)− cos(ω↑↓t)]
]

τa → 2
|v↑↓|2

~2
(

1 + ω2
↑↓τ

2
a

)τa,

where we used the the interesting regime t≫ τa. Noti
e also that π↑↓ = π↓↑, sin
e ω↑↓ = −ω↓↑ = γB0 = ω0 and that

|v↑↓|2 = |v↓↑|2. We now need to 
ompute |v↓↑|2. In order to do so, let us give a step ba
k and 
ompute

w↓←↑ =
d

dt

1

~2

∣

∣

∣

∣

ˆ t

0

dt′eiω↓↑t
′ 〈↓| − γb(t) · S |↑〉

∣

∣

∣

∣

2

=
d

dt

1

~2

∣

∣

∣

∣

ˆ t

0

dt′e−iω0t
′ 〈↓| − γ (bxSx + bySy) |↑〉

∣

∣

∣

∣

2

=
d

dt

1

~2

∣

∣

∣

∣

ˆ t

0

dt′e−iω0t
′

(−γ~
2

)

(bx + iby)

∣

∣

∣

∣

2

=
d

dt

1

~2

∣

∣

∣

∣

ˆ t

0

dt′e−iω0t
′

W↓↑(t
′)

∣

∣

∣

∣

2

,

with W↓↑ = − 1
2γ~ (bx(t) + iby(t)). Thus

π↓↑ = ~
−2
ˆ t

0

dτe−iω0τW↓↑(t)W ∗↓↑(t− τ) + c.c. =
γ2

4

ˆ t

0

dτe−iω0τ (bx(t) + iby(t)) (bx(t− τ) − iby(t− τ)) + c.c.

=
γ2

4

ˆ t

0

dτe−iω0τ
[

bx(t)bx(t− τ) + by(t)by(t− τ)
]

+ c.c. = ~
−2
ˆ t

0

dτe−iω0τg(τ) + c.c.,

with g(τ) = |v↓↑|2 e−τ/τa, with |v↓↑|2 = τa
6τv

(~γb0)
2
. Finally,

π↑↓ = π↓↑ =
1

2T1
=

|v↑↓|2

~2
(

1 + ω2
↑↓τ

2
a

)τa =
1

6

(γb0τa)
2

1 + (ω0τa)
2

(

1

τv

)

.

Returning the the rate equation

Ṅ↑ = −N↑(t)π↓↑ +N↓(t)π↑↓ = −
1

2T1
(N↑ −N↓) = −

Mz

2T1
.

Therefore,

dMz

dt
= 2Ṅ↑ = −

Mz

T1
, with T1 = 3

(

1 + (γB0τa)
2

(γb0τa)
2

)

τv.

(
.γ)
Measuring T1 as a fun
tion of B0, we should �nd a paraboli
 behavior su
h as T1 = a0 + a1B0+ a2B

2
0 , with a1 = 0.

Fitting the experimental data, we 
an determine the 
oe�
ients a0 and a2. The ratio between them gives us the

adsorption time:

a0
a2

=
1

(γτa)
2 , ⇒ τa =

1

γ

√

a2
a0
.
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(
.δ)

Cells of di�erent radii R have di�erent time of �ights τv, whi
h are related via R = vτv, with v =
√

8kBT
πm being

the mean velo
ity of the parti
les (whi
h 
an be obtained from a Maxwell-Boltzmann distribution). Repeat the same

experiment done in the previous item, we 
an measure the 
oe�
ients a0 and a2 as a fun
tion of R:

a0 =
3v

(γb0τa)
2R = αR and a2 = 3v

(γτa)
2

(γb0τa)
2R = βR.

Then, after �tting α and β from the experiments, the mi
ros
opi
 �eld 
an be obtained either as

b0 =
1

γτa

√

3v

α
or b0 =

√

3v

β
.

(Noti
e the mass of the parti
les are needed. We 
an perform the same experiments but 
hanging the temperature in

order to obtain pre
ise values for b0 in the above expressions.)

Noti
e the exponential de
ay law here derived is rigorously valid as long as τc ≪ t2 [
.f. item (b.γ)℄. In this

parti
ular 
ase, τc ≈ τa and t2 ≈ 1/ (γb0). The results of the experiments in (
.γ) and (
.δ) will permit us to 
ompare

these time s
ales. Spe
ially, from item (
.δ), we noti
e that τc/t2 ≈ τaγb0 =
√

3v/α ∼
√

kBT/ (mα).

5.

(a) Let EK,α be the Eigenenergy for state |K, χα〉, with α = a, b. Then,

∆E = EK′,b − EK,a =

(

~
2K ′2

2M
+ Eb

)

−
(

~
2K2

2M
+ Ea

)

=
~
2

2M

(

K ′2 −K2
)

+ ~ω0.

(b)

W (t) = −qA0

(

1

m1
P1 · êeik·R1 − 1

m2
P2 · êeik·R2

)

e−iωt + c.c.

We now need the de�nitions

R1 = RG +
m2

M
R, R2 = RG −

m1

M
R,

P1 =
m1

M
PG +P, P2 =

m2

M
RG −P.

Then, in the ele
tri
 dipole approximation, we will have that exp ik ·R1 ≈ exp ik ·R2 ≈ exp ik ·RG, yielding

P1

m1
· êeik·R1 − P2

m2
· êeik·R2 ≈

[(

PG

M
+

P

m1

)

−
(

PG

M
− P

m2

)]

· êeik·RG =
1

m
P · êeik·RG.

Therefore,

W =W0e
−iωt +W †0 e

iωt, with W0 = −qA0

m
ê ·Peik·RG .

Noti
e the negative sign is irrelevant. By inter
hanging the parti
le labels, we 
an make it positive.

(
)

〈K′, χb |W0|K, χa〉 = −
qA0

m
ê · 〈χb |P|χa〉

〈

K
′ ∣
∣eik·RG

∣

∣K
〉

.

Noti
e P is the momentum of the relative parti
le and thus, do not a
ts on the �external� degrees of freedom. We

now need to study the �sele
tion rules� arising from

〈

K
′ ∣
∣eik·RG

∣

∣K
〉

:

〈

K
′ ∣
∣eik·RG

∣

∣K
〉

=
1

N

ˆ

d3RGe
−iK′·RGeik·RGeiK·RG ∝ δ(3) (K′ − k−K) ,

whereN is a normalization 
onstant. Thus, the transition happens only when momentum is 
onserved: ~K
′ = ~k+~K,

i.e., the momentum of the �nal state equals the sum of the momenta of the initial state and that of the absorbed

photon.
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(d) The resonan
e o

urs when

~ω = EK′,b − EK,a =
~
2

2M

(

K ′2 −K2
)

+ ~ω0, ⇒ δE = ~ (ω − ω0) =
~
2

2M

(

K ′2 −K2
)

.

Now using the momentum 
onservation

δE =
~
2

2M

(

2K · k+ k2
)

=
~
2

2M

(

2K · k+
(ω

c

)2
)

= δE1 + δE2,

with δE1 = ~
2Kk cos θ/M ≈ ~

2ω0K cos θ/ (Mc) , and δE2 = (~ω)
2
/
(

2Mc2
)

≈ (~ω0)
2
/
(

2Mc2
)

.

Physi
al interpretation:

If the atom were motionless, δ2 would be the energy a
quired by the 
enter of mass of the atom due to momentum


onservation: Final momentum equals that of the photon, thus K
′ = k. Thus, the energy is δE2 = ~

2k2/(2M). But

the momentum of the photon is related to its frequen
y by ω = ck. Finaly, δE2 = (~ω)
2
/
(

2Mc2
)

, as 
omputed

before.

Due to the motion of the atom, the frequen
y of the photon seen by the atom is di�erent from ω. Due to the Doppler
e�e
t, it is equal to ω′ = ω (c− vobserver) / (c− vsource) = ω (c− ~K cos θ/M) /c, where ~K cos θ/M is the velo
ity

of the atom in the dire
tion of the photon, and vsource = 0. Thus, ~ω′ = ~ω − ~
2ωK cos θ/ (Mc). Therefore, the

in
ident energy seen by the atom is less by an amount equal to δE1 = ~ω− ~ω′ = ~
2ωK cos θ/(Mc) = ~

2kK cos θ/M .

Therefore, there is an o�set in the resonan
e equal to δE1, as 
omputed before.

For ~ω0 = 10 eV and M = 109 eV/c2, we have that δE2 = 5 10−8 eV. At T = 300K, the thermal energy is of

order

1
2mv

2 = ~
2K2

2M = kBT = 8.6 10−5 eV/K × 300K = 2.6 10−2 eV. Then, for cos θ = 1, we have that δE1 =

(~ω0) (~K) / (Mc) = (~ω0)

√

(~K)2

2M ×
√

2
Mc2 = 10 eV

√
2.6 10−2 ×

√

2
109 = 7.2 10−5 eV. Finally, δE1 ≈ 103δE2.

Repeating the same 
al
ulations for ~ω0 = 105 eV, we have that δE2 = 5 eV and δE1 = 0.72 eV, i.e., δE1 ≈ 10−1δE2.
In the realm of atomi
 physi
s, the Dopple e�e
t is mu
h more relevant than the kineti
 e�e
ts (re
oil energy). On

the other hand, in the realm of nu
lear physi
s, the re
oil energy 
annot be disregarded.

(e) As in item (a),

∆E = En,0,0,b − E0,0,0,a = ~ (nΩ + ω0) = ~ωfi.

(f ) We have that W (t) =W0e
−iωt + h.c., with W0 = A0Si(k)e

ikXG , and [Si(k),RG] = [Si(k),PG] = 0. Up to �rst

order in perturbation theory

Pf←i(t) =
1

~2

∣

∣

∣

∣

ˆ t

0

dt′eiωfit
′
(

〈n, 0, 0, χb|W0 |0, 0, 0, χa〉 e−iωt′ + c.c
)

∣

∣

∣

∣

2

=
1

~2

∣

∣〈n, 0, 0, χb|A0Si(k)e
ikXG |0, 0, 0, χa〉

∣

∣

2
∣

∣

∣

∣

ˆ t

0

dt′ei(ωfi−ω)t′
∣

∣

∣

∣

2

+
1

~2

∣

∣

∣〈n, 0, 0, χb|A0S
†
i (k)e

−ikXG |0, 0, 0, χa〉
∣

∣

∣

2
∣

∣

∣

∣

ˆ t

0

dt′ei(ωfi+ω)t′
∣

∣

∣

∣

2

.

Noti
e the 
ross term was negle
ted be
ause it vanishes in the t → ∞ limit. As we know from the Fermi's golde

rule, the time-integrals yields to delta fun
tions at the resonan
e frequen
ies: ω = ± (nΩ+ ω0). [
∣

∣

∣

´ t

0
dt′ei(ωfi+ω)t′

∣

∣

∣

2

=

sin2(ωfi∓ω)t/2
(ωfi∓ω)2 ∝ δ (ωfi ∓ ω).℄ The negative sign is related to the se
ond term whi
h 
orresponds to the transition

|0, 0, 0, χa〉 → |n, 0, 0, χb〉 , i.e., the stimulated emission, and therefore, will be negle
ted. Finally, the relative intensity

of the resonan
es are proportional to

∣

∣

∣

∣

〈n, 0, 0, χb|
A0

~2
Si(k)e

ikXG |0, 0, 0, χa〉
∣

∣

∣

∣

2

∝ |〈χb|Si(k) |χa〉|2
∣

∣〈n, 0, 0| eikXG |0, 0, 0〉
∣

∣

2
= |s(k)|2

∣

∣〈n, 0, 0| eikXG |0, 0, 0〉
∣

∣

2
.

Noti
e that the resonan
es o

ur when ω = ωfi = (nΩ+ ω0) . For ω0 ≫ Ω and for n small (su
h that ω0 ≫ nΩ),
then the resonan
e o

urs approximately when ω = ω0. As the radiation �eld waveve
tor is k = ω/c, then it 
an be

repla
ed by k0 = ω0/c.
(g.α)



20

Let us rewrite XG in terms of the 
riation and anihillation operators:

XG =

√

~

2MΩ

(

a+ a†
)

=
1

k0

√

~2k20
2M

× 1

~Ω

(

a+ a†
)

=
1

k0

√

ξ
(

a+ a†
)

.

Moreover, let us make use of the Glauber's formula: eA+B = eAeBe−
1
2
[A,B]

, whenever [A, [A,B]] = [B, [A,B]] = 0.
As

[

a, a†
]

= 1, then
[

i
√
ξa, i
√
ξa†
]

= −ξ. Finally, we are able to 
ompute

〈

ϕn

∣

∣eik0XG
∣

∣ϕ0

〉

=
〈

ϕn

∣

∣

∣ei
√
ξ(a+a†)

∣

∣

∣ϕ0

〉

= e
ξ
2

〈

ϕn

∣

∣

∣ei
√
ξaei

√
ξa†
∣

∣

∣ϕ0

〉

= e
ξ
2

∞
∑

j,l=0

〈

ϕn

∣

∣

∣

∣

∣

(

i
√
ξa
)j

j!
×
(

i
√
ξa†
)l

l!

∣

∣

∣

∣

∣

ϕ0

〉

.

From this, it is 
lear that the surviving terms are those in whi
h l− j = n. In order to get the 
orre
t prefa
tors, we

need

a† |ϕk〉 =
√
k + 1 |ϕk+1〉 , ⇒

(

a†
)l |ϕ0〉 =

√
l! |ϕl〉 ,

a |ϕk〉 =
√
k |ϕk−1〉 , ⇒ aj |ϕl〉 =

√

l!

(l− j)! |ϕj〉 , provided that j ≤ l.

Thus,

〈

ϕn

∣

∣eik0XG
∣

∣ϕ0

〉

= e
ξ
2

∞
∑

j,l=0

(

i
√
ξ
)l+j

j!l!

√

l!

(j − l)!
√
l! 〈ϕn|ϕl−j〉 = e

ξ
2

∞
∑

j,l=0

(

i
√

ξ
)l+j

√

l!

(j − l)!
√
l!δn,l−j

= e
ξ
2

∞
∑

j=0

(

i
√
ξ
)n+2j

j!

√

1

n!
= e

ξ
2

(

i
√
ξ
)n

√
n!

∞
∑

j=0

(−ξ)j
j!

=

(

i
√
ξ
)n

√
n!

e−
ξ
2 .

Therefore,

πn(k0) =
∣

∣

〈

ϕn

∣

∣eik0XG
∣

∣ϕ0

〉∣

∣

2
=
ξn

n!
e−ξ,

whi
h is a Poisson distribution.

(g.β) The normalization of the Poisson distribution is veri�ed

∞
∑

n=0

πn(k0) =

∞
∑

n=0

ξn

n!
e−ξ = e+ξe−ξ = 1.

Noti
e this result 
omes from the 
ompleteness of the wavefun
tions 〈XG|ϕn〉 and that eik0XG
has modulus 1:

∑∞
n=0 πn(k0) =

∑∞
n=0

〈

ϕ0

∣

∣e−ik0XG

∣

∣ϕn

〉 〈

ϕn

∣

∣eik0XG

∣

∣ϕ0

〉

= 〈ϕ0|ϕ0〉 = 1.

(g.γ) The mean energy of the fun
tion eik0XG
(shifted by the zero-point energy ~Ω/2) is

∞
∑

n=0

n~Ωπn(k0) = ~Ωe−ξ
∞
∑

n=0

n
ξn

n!
= ~Ωe−ξ

∞
∑

n=1

ξn

(n− 1)!
= ~Ωe−ξξ

∞
∑

n=1

ξn−1

(n− 1)!

= ~Ωe−ξξ
∞
∑

m=0

ξm

m!
= ~Ωξ = ~Ω

(

~
2k20

2M~Ω

)

=
~
2ω2

0

2Mc2
,

whi
h is the energy of a free parti
le of momentum ~k0. This should be the 
ase sin
e eik0XG |ϕ0〉 is the ground state

of the 1D Harmoni
 Os
illator with additional moment k0. The kineti
 part of the Hamiltonian will give this kineti


energy (whi
h should be related to the re
oil energy if a photon is absorbed by this os
illator) while the potential

part of the Hamiltonian will give ~Ω/2 (whi
h was originally shifted out).

(h) The 
ondition ~Ω ≫ ~
2ω2

0

2Mc2 means that the energy of the �internal� degrees of freedom are mu
h less than the

energy s
ale of the 
enter of mass (�external� degrees of freedom). This 
orresponds to the 
ase ξ ≪ 1. As we have
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seen in item (f ), the absorption amplitude is proportional to Pn←0 ∝ |s(k)|2
∣

∣〈n, 0, 0| eikXG |0, 0, 0〉
∣

∣

2
. Thus, it is

proportional to πn(k0) in 1D. As ξ ≪ 1, the only relevant transition is to state n = 0:

πn =
ξn

n!
e−ξ ≈ ξn

n!
(1− ξ) ,

thus, P0←0 ∝ 1 − ξ ≫ P1←0 ∝ (1− ξ) ξ. Thus, the 
enter of mass remains still, and the energy is totally absorbed

by the internal degrees of freedom. This justify the name of the line: re
oilless absorption line. This line will be

peaked at the absorbed energy. The in
ident energy is ~ω. The internal transition is resonant at ~ω0. The di�eren
e

between these energies were dis
ussed in item (d): the Doppler e�e
t energy shift, δE1, and the re
oil energy δE2.

As we have just argued, the re
oil energy does not appear in the 0 ← 0 transition. The Doppler energy shift is

also absent be
ause the nu
leous is bounded about its equilibrium position. Naively, one 
ould say that the initial

momentum of the nu
leous is zero, K = 0. This dire
tly yields δE1 = 0. However, K is not a good quantum number

for the Harmoni
 Os
illator. The argument is that its mean value is zero. Thefore, the mean value of the shift is

approximately zero. The fa
t that

〈

K2
〉

6= 0 will provide a width to the resonan
e line. If the nuleous were in a

higher ex
ited state, the width of the line would be broader. Thus, sin
e δE1 = δE2 = 0, we 
on
lude the resonan
e
will appear exa
tly when ~ω = ~ω0.

(i) The limit ~Ω ≪ ~
2ω2

0

2Mc2 (or ξ ≫ 1) 
orresponds to the limit in whi
h it is mu
h easier to ex
ite the motion

of the 
enter mass of the nu
leous than to ex
ite its internal degrees of freedom. Thus, we are simply ex
iting an

1D Harmoni
 Os
illator. The spe
trum of su
h is dis
rete and the distan
e between 
onse
utive levels are 
onstant

equal to ~Ω [as shown in item (e)℄. The intensity of this lines are given by πn. From the properties of the Poisson

distribution, we 
on
lude that the highest peak will happen for n̄ ≈ ξ (the most probable target state n̄) and the

width of this transition is ∆n ≈ √ξ. As ξ ≫ 1, there will be many equidistant transition lines.

Let us 
ompute the bary
enter of the spe
trum (shifted by the zero-point energy

1
2~Ω):

~ω =

∞
∑

n=0

~ωnπn =

∞
∑

n=0

~nΩ× ξn

n!
e−ξ =

~
2ω2

0

2Mc2
,

as we have seen in item (g.γ). This 
oin
ides with the absorption line of a free nu
leous initially at rest: the re
oil

energy δE2 as seen in item (d) and argued in item (g.γ). Noti
e that we are not 
onsidering the frequen
y ω0 found

in item (e) be
ause we are negle
ting a transition between the internal states |χa〉 → |χb〉.
Let us 
ompute the width of these lines:

∆ω =

√

ω2 − ω2.

We need to 
ompute

∞
∑

n=0

n2 ξ
n

n!
e−ξ =

∞
∑

n=1

n
ξn

(n− 1)!
e−ξ = e−ξ

∞
∑

j=0

(j + 1)
ξj+1

j!
= e−ξξ





∞
∑

j=1

ξj

(j − 1)!
+
∞
∑

j=1

ξj

j!



 = ξ (ξ + 1) .

Therefore,

∆ω = ~Ω

√

ξ2 + ξ − (ξ)2 = ~Ω
√

ξ =

√

~2ω2
0

2Mc2
× ~Ω.

Noti
e the line width ∆ω → 0 in the limit Ω → 0. This limit 
orresponds to a free nu
leous (no potential energy).

Thus, we expe
t a single resonan
e at the free energy parti
le ~ω.

6.

Firstly, let us fo
us on the stati
 problem. The Hamiltonian reads

H =
1

2m
P 2 + V (x),

where V (x) is perturbative. The Eigenfun
tions of H0 are plane waves: 〈x|k〉 = ϕk(x) = eikx/
√
L, where L (whi
h

will be set to in�nity later) is the size of the 1D box 
ontaining the parti
le. Using periodi
 boundary 
onditions, we

have that eikL = 1, and thus, kn = 2πn/L, with n ∈ Z. Sin
e V is periodi
, we 
an write its Fourier series:

V (x) =
∑

n

Vne
inκx, with κ =

2π

a
, and Vn = 〈k + nκ |V (x)| k〉 = 1

L

ˆ

dxV (x)e−inκx. (3)
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The dispersion relation is simple: H0 |k〉 = ǫk |k〉 , with ǫk = ~
2 (k − nκ)2 /(2m). Thus, there is degenera
y around

the points k = nκ/2 (the boarders of the Brillouin zones) (see Fig. 3).

0

PSfrag repla
ements

ǫk+κ

ǫk−κ

ǫk

−κ κ k

Figure 3: The dispersion relation of a free parti-


le in a periodi
 potential. Degenera
ies happen

whenever the parabolas meet.

Lets apply quasi-degenerate perturbation theory. The main idea

is to solve exa
tly the quasi-degenerate states while applying 
on-

ventional perturbation theory for the remaining states. Denoting

by |i〉 the Eigenve
tors of H0, we rewritte the perturbation as

V =
∑

i,j

|i〉 〈i|V |j〉 〈j| = V1 + V2,

where

V1 = |n〉 〈n|V |n〉 〈n|+ |n〉 〈n|V |m〉 〈m|
+ |m〉 〈m|V |n〉 〈n|+ |m〉 〈m|V |m〉 〈m| ,

V2 =
∑

i,j 6=m,n

|i〉 〈i|V |j〉 〈j| ,

where |m〉 and |n〉 are the quasi-degenerate states, i.e., ǫn ≈ ǫm.
We now treat the subspa
e spanned by |m〉 and |n〉 in the best

way possible (exa
tly, for instan
e) while treating the remaining

Hilbert spa
e approximately. This means we treat H ′ = H0 + V1 exa
tly be
ause V2 does not a
ts on this subspa
e:

〈n |V2|n〉 = 〈n |V2|m〉 = 〈m |V2|n〉 = 〈m |V2|m〉 = 0. Thus, the 
orresponding matrix of H ′ in this subspa
e reads

H ′ =

(

ǫn + 〈n |V |n〉 〈n |V |m〉
〈m |V |n〉 ǫm + 〈m |V |m〉

)

=

(

ǫn + Vnn Vnm
Vmn ǫm + Vmm

)

,

whi
h 
an be easily diogonalized. The new Eigenenergies are

ǫ± =
ǫm + ǫn

2
+
Vnn + Vmm

2
±
√

(

ǫn + Vnn − ǫm − Vmm

2

)2

+ |Vmn|2.

Noti
e that when ǫm = ǫn, this re
overs the the usual �rst order of degenerate perturbation theory.

(a) Let us now 
onsider the ve
tor potential:

H0 =
1

2m
(p− eA)2 , with A(t) = −Et.

Assuming that A(t) varies slowly in time, then we 
an apply the addiabati
 approximation. The instanteneous basis

|k〉 remains the same:

〈x|k〉ϕ(x) = 1√
L
eikx.

However, its spe
trum be
omes time-dependent ǫk−κ = ~
2

2m (k − κ− eA/~)2, as we show below:

H0 |k〉 =
1

2m

(

p2 − 2eAp+ (eA)
2
)

|k〉 = 1

2m

(

~
2k2 − 2~eAk + (eA)

2
)

|k〉

=
~
2

2m

(

k − eA(t)

~

)2

|k〉 .

We are now able to study the quasi-degenerate pertubation theory of state |k〉 and |k − κ〉 around k = 1
2κ. We will

have to diagonalize the matrix

H ′ =

(

ǫk + V0 V ∗1
V1 ǫk−κ + V0

)

,

where Vn = 〈k + jκ |V | k + (j + n)κ〉 = 1
L

´

dxeinκV (x) [see Eq. (3)℄. The Eigenenergies are

E± =
ǫk + ǫk−κ

2
+ V0 ±

√

(

ǫk − ǫk−κ
2

)2

+ |V1|2.
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As we are interested near the degenerate point, set q = k − 1
2κ, the momentum measured from the Brillouin zone.

Thus,

E± =
ǫk + ǫk−κ

2
+ V0 ±

√

(

~2

2m

(

q − eA

~

)

κ

)2

+ |V1|2.

Therefore, there is a level splitting around the nκ
2 points as shown in Fig. 4. The arising gap ∆ equals E+−E− when

q = 0, i.e., ∆ =

√

|V1|2 +
(

~2

2m
eA
~
κ
)2
.

0

PSfrag repla
ements

−κ κ k

∆

Figure 4: The dispersion relation of a free parti
le

in a periodi
 potential. Degenera
ies are lifted

around the Brillouin zones.

The Eigenstates are the Eigenve
tors of H ′:

|+〉 = α |k〉+ β |k − κ〉 , and |−〉 = β |k〉 − α |k − κ〉 ,

whi
h have 
umbersome expressions. However, at k = 1
2κ, noti
e

ǫk = ǫk−κ, The expressions simplify yielding to

|±〉 = 1√
2
(|k〉 ± |k − κ〉) .

(b)

The adiabati
 Eigenstates are the instanteneous Eigenstates mul-

tiplied by the dynami
al phase (there is no Berry phase sin
e

∂t |k〉 = 0):

∣

∣±̃
〉

= e
1
i~

φ±(t) |±〉 .

The dynami
al phases at k = 1
2κ (q = 0) are

φ±(t) =
ˆ t

0

dt′E±(t
′) =

ˆ t

0

dt′
~
2

2m

(

1

4
κ2 +

(

eEt′

~

)2
)

+ V0 ±
√

(

~2

2m

(

eEt′

~

)

κ

)2

+ |V1|2.

=
~
2

2m

(

1

4
κ2t+

1

3

(

eE

~

)2

t3

)

+ V0t±
ˆ t

0

dt′

√

(

~2

2m

(

eEt′

~

)

κ

)2

+ |V1|2.

The last integral is 
umbersome but we will not need it in what follows.

(
)

The transition should happen where the distan
e between the lower and uper bands is smallest. Thus, at k = 1
2κ.

In �rst order of adiabati
 perturbation theory, we have that

P+←−(t) =

∣

∣

∣

∣

∣

∣

ˆ t

0

dt′

〈

+̃
∣

∣

∣Ḣ(t′)
∣

∣

∣ −̃
〉

E+(t′)− E−(t′)

∣

∣

∣

∣

∣

∣

2

.

The matrix element

〈

+̃
∣

∣

∣Ḣ(t′)
∣

∣

∣ −̃
〉

= e
i
~
(E+−E−)

〈

+

∣

∣

∣

∣

1

m
(p− eA)

(

−eȦ
)

∣

∣

∣

∣

−
〉

= e
i
~
(φ+−φ−) eE

m
〈+ |p| −〉 .

We now have to 
ompute

〈+ |p| −〉 = 1

2

(〈

1

2
κ |p| 1

2
κ

〉

+

〈

−1

2
κ |p| 1

2
κ

〉

−
〈

1

2
κ |p| − 1

2
κ

〉

−
〈

−1

2
κ |p| − 1

2
κ

〉)

=
1

2

(

1

2
~κ+ 0− 0−

(

−1

2
~κ

))

=
1

2
~κ.

Thus,

P+←−(t) =

(

eE

2m
~κ

)2
∣

∣

∣

∣

∣

∣

ˆ t

0

dt′
exp

[

i
~

(

2V0t
′ +m

(

1
4κ

2t′ + 1
3

(

eE
~

)2
t′3
))]

~2

m

(

1
4κ

2 +
(

eEt′

~

)2
)

+ 2V0

∣

∣

∣

∣

∣

∣

2

.
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For small time and ele
tri
 �eld, i.e., eEt≪ ~κ,
√
mV0, then we 
an approximate the integral to

P+←−(t) ≈
(

eE

2m
~κ

)2
∣

∣

∣

∣

∣

ˆ t

0

dt′
exp

[

i
~
(∆t)

]

∆

∣

∣

∣

∣

∣

2

=

(

eE

2m
~κ

)2 ∣
∣

∣

∣

2
~

∆2
sin (ωt)

∣

∣

∣

∣

2

,

where ∆ = 2
(

~
2K2

2m + V0

)

, where K = 1
2κ, and ~ω = ∆. Finally,

P+←−(t) ≈
4~2

∆4

(

eE

2m
~κ

)2

sin2 ωt.


