
Lista 1 - Quântia B (2013)

1. Consider a quantum 1D Harmoni Osillator of mass m and natura frequeny ω whih is initially prepared

(t = 0) in the state

|ψS(0)〉 = exp

(

− i
~
PSx0

)

|0〉 ,

where |0〉 is the ground state, PS is the momentum operator, and x0 is a salar.

(a) In the Heisenberg piture, ompute 〈XH(t)〉 for t > 0 and relate it with the lassial trajetory.

(b) How do you interprete this result with the lassial initial onditions?

2. Consider a hidrogen atom in its ground state subjet to an eletri �eld E = E0 cosωt.
(a) What is the minimum frequeny of the �eld in order to have ionization?

(b) What is the transition rate (probability per unit of time) to an ionized state (assuming it an represented by

plane waves)?

() What is the angular distribution of the ejeted eletron in this proess?

(d) Now onsider that the atom is in a ertain Eigenstate |n, l,m〉 and that ω is lower than the orresponding

ionization frequeny. What an be said about the �nal Eigenstate |n′, ℓ′,m′〉?

3. Consider two spin-1/2 partiles interating as

V (t) =
E (t)

~2
S1 · S2,

where E(t) vanishes when t → ±∞ and approahes to a nonzero value of order Ē on the time interval of length τ .
(You may think on a gaussian, for instane.)

(a) At t→ −∞, the system is in the state |+−〉. Compute exatly the state of the system at time t. With this, show

that the probability of �nding the system in the state |−+〉 for t→ +∞ depends only on the integral I =
´∞
−∞E(t)dt.

(b) Compute the same probability in �rst-order of time-dependent perturbation theory. By omparing your results

with those of item (a), disuss the validity of this alulation.

() Make some estimations about the value of the ontribution to this probability in seond-order of perturbation

theory in the limits of τ → 0 and τ →∞ and disuss your results with the validity of the approximation onlude in

item (b).

(d) Now onsider that both spins are subjeted to a stati magneti �eld B = B0ẑ. The orresponding Zeeman

Hamiltonian is

H0 = −µB

~
B0 (g1S

z
1 + g2S

z
2) ,

where g1,2 are the gyromagneti ratios (assume them distint from eah other) and µB is the Bohr magneton. Consider

also that E(t) = Ē exp
(

− (t/τ)
2
)

. Compute the same probability of the previous itens in �rst-order of perturbation

theory, and disuss its dependene on B0 and on τ .

(e) (Optional) Like in item (), ompute the seond-order ontribution c
(2)
f←i (∞) in the limits τ → 0 and τ →∞.

(Hint : Notie that in the limits τ → 0 and τ →∞, for estimation purposes, the exhange an be approximated to

E(t) = Ēτδ (t) and E(t) = Ēθ (τ/2 − |t|), respetively.)

4. Cohen-Tannoudji - omplement E-XIII, problem 9.

Transition probability per unit time under the e�et of a random perturbation. Simple relaxation

model

A physial system, subjeted to a perturbation W (t), is at time t = 0 in the Eigenstate |ϕi〉 of its Hamiltonian

H0. Let Pf←i(t) be the probability of �nding the system at time t in another Eigenstate of H0, |ϕj〉. The transition
probability per unit time wf←i(t) is de�ned by wf←i(t) =

d
dtPf←i(t).

(a) Show that , to �rst order in perturbation theory, we have

wf←i(t) =
1

~2

ˆ t

0

dτWfi(τ)W
∗
fi(t− τ)eiωfiτ + c.c. (1)
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with ~ωfi = Ef − Ei.

(b) Consider a very large number N of systems (k), whih are idential and without mutual interations (k =
1, 2, . . . , N ). Eah of them has a di�erent mirosopi environment and, onsequently, �sees� a di�erent perturbation

W (k)(t). It is, of ourse, impossible to know eah of the individual perturbation W (k)
. We an speify only statistial

averages suh as:

Wfi(t) = lim
N→∞

1

N

N
∑

k=1

W
(k)
fi (t),

Wfi(t)W ∗fi(t− τ) = lim
N→∞

1

N
N
∑

k=1

W
(k)
fi (t)W

(k)∗
fi (t− τ).

This perturbation is said to be �random�.

This random perturbation is said to be stationary if the preeding averages are time independent. In this ase, we

an redi�ne H0 in order to make Wfi = 0 and set:

gfi(τ) =Wfi(t)W ∗fi(t− τ),

whih is alled the �orrelation funtion� of the perturbation. Usually, gfi(τ) goes to zero for |τ | ≫ τc, a harateristi
time sale, alled orrelation time of the perturbation, i.e., the perturbation has a �memory� whih extend into the

past (or future) only to an interval of order of τc.
(b.α) The N (whih an be onsidered in�nity for alulations) systems are in the state |ϕi〉 at time t = 0 and

are subjet to a random stationary perturbation, the orrelation funtion of whih is gfi(τ) with orrelation time τc.
Calulate the proportion πfi(t) of systems whih go to into the state |ϕj〉 per unit time. Show that after a ertain

value t1 of t, to be spei�ed, πfi(t) no longer depends on t.

(b.β) For �xed τc, how does πfi vary with ωfi? Consider the ase in whih gfi(τ) = |vfi|2 e−|τ |/τc , with vfi onstant.
(b.γ) The preeding theory is valid only for t ≪ t2 [sine Eq. (1) results from perturbation theory℄. What is the

order of magnitude of t2? Taking t2 ≫ t1, �nd the ondition for introduing a transition probability per unit time

whih is independent of t [use the form of gfi(τ) given in the preeding question℄. Would it be possible to extend the

preeding theory beyond t = t2?
() Appliation to a system. The N systems under onsideration are spin-1/2 partiles, with gyromagneti ratio

γ, plaed in a stati magneti �eld B0 (set ω0 = γB0). These partiles are enlosed in a spherial shell of radius R.
Eah of them bounes onstantly bak and forth between the walls. The mean time between the ollisions of the same

partile with the wall is alled �time of �ight� τv. During this time, the partile sees only the magneti �eld B0. In a

ollision with the wall, eah partile remains adsorbed on the surfae during a mean time τa (τa ≪ τv), during whih

it seems, in addition to B0, a onstant mirosopi �eld b due to paramagneti impurities ontained in the wall. The

diretion of b varies randomly from one ollision to another; the mean amplitude of b is b0.
(.α) What is the orrelation time of the perturbation seen by the spins? Give the physial justi�ation for the

following form, to be hosen for the orrelation funtion of the omponents of the mirosopi magneti �eld b:

bx(t)bx(t− τ) =
1

3
b20

(

τa
τb

)

e−|τ |/τa ,

and analogous expressions for the y- and z-omponents, and all the ross terms bx(t)by(t− τ) = bx(t)bz(t− τ) = · · · =
0.
(.β) Let Mz be the z-omponent of the total magnetization. (Consider B = B0ẑ.) Show that, under the e�et of

the ollisions with the walls, Mz �relaxes�, with a time onstant T1:

dMz

dt
= −Mz

T1

(T1 is alled the longitudinal relaxation time). Calulate T1 in terms of γ, B0, τv, τa, b0.
(.γ) Show that studying the variation of T1 with B0 permites the experimental determination of the mean adsorp-

tion time τa.
(.δ) We have at our disposition several ells, of di�erent radii R, onstruted of the same material. By measuring

T1, how an we determine experimentally the mean amplitude b0 of the mirosopi �eld in the wall.

5. Cohen-Tannoudji - omplement E-XIII, problem 10.
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Absorption of radiation by a many-partile system forming a bound state. The Doppler e�et. The

reoil energy. The Mössbauer e�et

In lass, we onsidered the absorption of radiation by a harged partile attrated by a �xed enter (Hydrogen atom

with in�nitely heavy nuleous). In this exerise, we treat a more realisti situation in whih the inident radiation

is absorbed by a system of many partiles of �nite masses interating with eah other and forming a bound state.

Thus we are studying the e�et on the absorption phenomenon of the degrees of freedom of the enter of mass of the

system.

I. Absorption of radiation by a free Hydrogen atom. The Doppler e�et. The reoil energy

Consider two partiles of masses m1,2 of opposite harges q1,2 and position and momentum operators R1,2 and P1,2

(a Hydrogen atom). Let R and P, and RG and PG be the position and momentum observables of the relative partile

and enter of mass of the system, respetively. M = m1 +m2 is the total mass and m = m1m2/M is the redued

mass. The Hamiltonian of the system an be written:

H0 = He +Hi,

where

He =
1

2M
P 2
G

desribes the translational kineti energy of the free atom (the �external� degrees of freedom), and Hi desribes

the internal energy of the atom (the �internal� degrees of freedom). We denote by |K〉 the eigenstates of He, with

Eigenvalues ~
2K2/(2M). We onern ourselves with only two Eigenstates of Hi, |χa〉 and |χb〉 of energies Ea and Eb

(with Eb > Ea), and set ~ω0 = Eb − Ea.
(a) What energy must be furnished to the atom to move it from state |K, χa〉 to state |K′, χb〉?
(b) This atom interats with a plane eletromagneti wave of wavevetor k and angular frequeny ω = ck polarized

along the unit vetor ê perpendiular to k. The orresponding vetor potential A(r, t) is

A(r, t) = A0e
i(k·r−ωt)ê+ c.c.,

with A0 onstant. The prinipal term of the interation Hamiltonian between this plane wave and the two partile

system an be written as

W (t) = −
2
∑

i=1

qi
mi

Pi ·A(Ri, t).

Express W in terms of R, P, RG PG, m, M , and q (set q1 = −q2 = q), and show that, in the eletri dipole

approximation (whih onsists of negleting k ·R, but not k ·RG, in omparison to 1), we have that

W =W0e
−iωt +W †0 e

iωt, with W0 = −qA0

m
ê ·Peik·RG . (2)

() Show that the matrix element 〈K′, χb |W0|K, χa〉 is di�erent from zero only if there exist a relation between k,
K and K

′
(to be spei�ed). Interpret this relation in terms of momentum onservation of the system atom+photon.

(d) Show that if the atom is in the state |K, χa〉 is plaed in the radiation �eld, resonane just ours when the

energy ~ω of the photons di�ers from the atomi transition energy ~ω0 by an amount δE whih is to be expressed in

terms of ~, ω0, K, k, M , and c (sine δE is a orretive term, we an replae ω by ω0 in the �nal expression for δE).
Show that δE is the sum of two terms, one of whih, δE1, depends on K and on the angle between K and k (the

Doppler e�et), the other term, δE2, is independs of K. Give a physial interpretation of δE1 and δE2 (showing that

δE2 is the reoil kineti energy of the atom when, having been initially motionless, it absorbs a resonant photon).

Show that δE2 is negligible ompared to δE1 when ~ω0 is of order of 10 eV (the domain of atomi physis). Choose,

for M , a mass of order of the proton (Mc2 ≈ 109 eV), and, for K, a value orresponding to the thermal veloity at

T = 300K. Would this still be true if ~ω0 were of order of 105 eV (the domain of nulear physis)?

II. Reoilles absorption of radiation by a nuleous vibrating about its equilibrium position in a

rystal. The Mössbauer e�et

The system under onsideration is now a nuleous of massM vibrating at angular frequeny Ω about its equilibrium

position in a rystalline lattie (the Einstein model). Again, denote by RG and PG the position and momentum

operators of the enter of mass of this nuleous, respetively. Its vibrational energy is given by

He =
1

2M
P 2
G +

1

2
MΩ

(

X2
G + Y 2

G + Z2
G

)

,
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whih is that of the 3D Harmoni Osillator. Denote by |nx, ny, nz〉 the Eigenstate of He with Eigenenergy

(nx + ny + nz + 3/2)~Ω. In addition to these �external� degrees of freedom, the nuleous possesses �internal� de-

grees of freedom whih are assoiated observables that ommute with RG and PG and are desribed by Hi. As

before, let us onern only with the two lowest levels of Hi: |χa〉 and |χb〉. Also, set ~ω0 = Eb − Ea > 0. Typially,
~ω0 is in the γ-ray domain, and thus, ω0 ≫ Ω.
(e) What energy must be given to the nuleous to allow it go from state |0, 0, 0, χa〉 to state |n, 0, 0, χb〉?
(f ) This nuleous is plaed in the same radiation �eld as before (and set k = kx̂). It an be shown that, in the

eletri dipole approximation, the interation Hamiltonian of the nuleous with the plane wave (responsible for the

absorption of γ-rays) an be written as in Eq. (2) with

W0 = A0Si(k)e
ikXG ,

where Si(k) is an operator whih ats on the internal degrees of freedom of the nuleous and, onsequently, ommutes

with RG and PG.

The nuleous is initially in the state |0, 0, 0, χa〉. Show that under the in�uene of the inident wave, a resonane

appears whenever ~ω oinides with one of the energies alulated in item (e). The intensity of the resonane is

|s(k)|2
∣

∣〈n, 0, 0| eikXG |0, 0, 0〉
∣

∣

2
, where the value of k is to be spei�ed and s(k) = 〈χb |Si(k)|χa〉. Show that, beause

ω0 ≫ Ω, we an replae k by k0 = ω0/c in the expression for the intensity of the resonane.

(g) Set

πn(k0) =
∣

∣

〈

ϕn

∣

∣eik0XG
∣

∣ϕ0

〉∣

∣

2
,

where |ϕn〉 are the Eigenstates of the 1D Hamorni Osillator of position XG, mass M , and angular frequeny Ω.
(g.α) Calulate πn(k0) in terms of ~, M , Ω, k0, and n. (Hint : stablish a reurrene relation between

〈

ϕn

∣

∣eik0XG

∣

∣ϕ0

〉

and

〈

ϕn−1
∣

∣eik0XG

∣

∣ϕ0

〉

, and express all πn(k0) as a funtion of π0(k0), whih is to be alulated diretly from the

wave funtion of the Harmoni Osillator. Show that πn(k0) are given by a Poisson distribution of n with average ξ,

where ξ =
(

~
2k2

0

2M

)

/ (~Ω).

(g.β) Verify that

∑∞
n=0 πn(k0) = 1.

(g.γ) Show that

∑∞
n=0 n~Ωπn(k0) =

~
2ω2

0

2Mc2 .

(h) Assume that ~Ω≫ ~
2ω2

0

2Mc2 , i.e., the vibrational energy is muh greater than the reoil energy (very rigid rystal).

Show that the absorption spetrum of the nuleous is essentially omposed of a single line at the angular frequeny

ω0. This line is alled the reoilless absorption line. Justify this name. Why does the Doppler e�et disappear?

(i) Now assume that ~Ω≪ ~
2ω2

0

2Mc2 (very weak rystalline bonds). Show that the absorption spetrum of the nuleous

is omposed of very large number of equidistant lines whose baryenter (obtained by weighting the absissa of eah line

by its relative intensity) oinides with the position of the absorption line of the free and motionless nuleous. What

is the order of magnitude of the width of this spetrum (the dispersion of the line with respet to the baryenter)?

Show that one reover the results of the �rst part in the limit Ω→ 0.

6. (Optional) Consider the 1D dynamis of a partile of harge e and mass m under a periodi potential V (x) =
V (x+ a). Assume that at t = 0 a vetor potential is turned on A(t) = −Et.
(a) Study the quasi-degenerate perturbation theory between the states eikx and ei(k−κ)x (onveniently normalized)

when k ≈ κ/2, where κ = 2π/a. Assume that A(t) varies slowly and that V (x) an be treated perturbatively.

(b) Compute the adiabati Eigenstates of the system around k = κ/2.
() Compute the transition probability from the lowest- to the highest-energy adiabati Eigenstate assuming that

the transition is more likely to happen around k = κ/2.
Make any approximation you may �nd onvenient in order to ompute the integrals involved.
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ANSWER:

1.

(a) The equation of motion in the Heisenberg piture is

i~
d

dt
XH = [XH,HH ] + i~

∂

∂t
XH ,

as XS does not depend on t, then ∂
∂tXH = U †

(

∂
∂tXS

)

U = 0. Taking the average value of the resulting,

〈

i~
d

dt
XH

〉

= i~
d

dt
〈XH〉 = 〈[XH,HH ]〉 ,

sine |ψH〉 does not depend on t. The ommutator an be evaluated:

[XH,HH ] = U † [XS , HS ]U = U †
[

XS ,
1

2m
P 2
S +

1

2
mω2X2

S

]

U

= U †
[

XS,
1

2m
P 2
S

]

U = U †
(

i~

m
PS

)

U =
i~

m
PH .

Thus,

d

dt
〈XH〉 =

1

m
〈PH〉 .

Repeating the same steps for PH , we arrive at

d

dt
〈PH〉 =

1

i~
〈[PH , HH ]〉 = −mω2 〈XH〉 .

Therefore,

〈XH(t)〉 = A cosωt+B sinωt,

where A and B are onstants whih depends on the initial onditions 〈XH(0)〉 and 〈PH(0)〉.

〈XH(0)〉 = 〈ψS(0) |XS|ψS(0)〉 =
〈

0
∣

∣

∣e
i
~
PSx0XSe

− i
~
PSx0

∣

∣

∣ 0
〉

.

Using the Baker-Haussdor� identity

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + . . . ,

we �nd that

e
i
~
PSx0XSe

− i
~
PSx0 = XS +

i

~
[PS , XS ]x0 = XS + x0.

Thus, 〈XH(0)〉 = 〈0 |XS | 0〉+ x0 = x0. As PS ommutes with e−iPsx0/~
, we have that 〈PH(0)〉 = 0. In this manner,

〈XH(t)〉 = x0 cosωt,

as in the lassial trajetory.

(b) The operator e−iPSx0/~
is the spatial translation operator, i.e., e−iPSx0/~ |x〉 = |x+ x0〉. Thus, we relate the

initial ondition as the quantum osillator being in the ground state shifted by an amount x0, i.e., 〈x| e−iPSx0/~ |0〉 =
〈x− x0|0〉 = ϕ (x− x0), where ϕ(x) is the ground-state wave funtion of the Harmoni Osillator. Thus the initial

�position� is x0. The inital veloity is zero sine 〈ψS(0) |PS |ψS(0)〉 = 〈0 |PS | 0〉 = 0. These are the same initial

onditions yielding to the trajetory x(t) = 〈XH(t)〉.

2.

Consider a hidrogen atom in its ground state subjet to an eletri �eld E = E0 cosωt.
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(a) The Eigenenergies of the Hydrogen atom are

En = −Z
2m

2~2

(

e2

4πǫ0

)2
1

n2
= −Z2 13.6 eV

n2
,

with Z = 1 for the Hydrogen. Thus, if the ionization is to happen in a single-photon absorption, then ~ω = hf = −E1.

Thus, the orresponding frequeny is

ω =
m

2~3

(

e2

4πǫ0

)2

≈ 2 1016
rad

s
whih orresponds to 3.3 1015Hz

(reall h = 4.135 10−15 eV.s).
(b) In 1st order of perturbation theory,

Pf←i(t) = |〈f |UI(t, t0)| i〉|2 ≈
1

~2

∣

∣

∣

∣

ˆ t

t0

dt′ 〈f |V (t′)| i〉 eiωfit
′

∣

∣

∣

∣

2

.

The initial state is the ground-state |1, 0, 0〉 and the �nal one is a plane wave |k〉:

〈r|1, 0, 0〉 = ψ1,0,0(r) =
1√
π

(

1

a0

)3/2

e−r/a0 ,

〈r|k〉 = 1√
V
e−ik·r,

where a0 = 4πǫ0~
2

me2 is the Bohr radius and V (the volume of the box ontaining the ejeted eletron) is a normalization

fator. The perturbation is given by

V (t) = −eE0 · r cosωt.

The matrix element

〈f |V (t′)| i〉 = −eE0 · 〈f |r| i〉 cosωt = −eE0 〈f |z| i〉 cosωt,

in whih, for simpliity, we hose E0 = E0ẑ.
Let us fous on the time-independent part

〈f |z| i〉 =
ˆ

d3r
1√
V
eik·rz

1√
π

(

1

a0

)3/2

e−r/a0 =
1√
V

1√
π

(

1

a0

)3/2 ˆ ∞

0

dr

ˆ

dΩr2eik·rr cos θe−r/a0 .

The angular integral is

ˆ

dΩeik·r × cos θ =

ˆ

dΩ

(

4π

∞
∑

ℓ=0

ℓ
∑

m=−ℓ
iℓY ∗ℓ,m(k̂)jℓ (kr) Yℓ,m(θ, ϕ)

)

×
(

√

4π

3
Y1,0(θ, ϕ)

)

,

where jℓ are the Spherial Bessel funtions. From the orthonormality of the Spherial Harmonis, we �nd that

ˆ

dΩeik·r cos θ = 4πi

√

4π

3
Y ∗1,0(k̂)j1 (kr) = 4πi

√

4π

3
Y ∗1,0(k̂)

(

sin (kr) − (kr) cos (kr)

(kr)2

)

.

Notie this implies that the ejeted eletron has angular momentum ℓ = 1. Moreover, m = 0 beause of our hoie

E0 = E0ẑ. If we had hosen other diretion, m would take the values ±1.
Integrating over the radial part, we need

ˆ ∞

0

drr3e−r/a0

(

sin (kr)− (kr) cos (kr)

(kr)
2

)

=
8a50

(

1 + (a0k)
2
)3 k.



7

Putting everything together, we �nally arrive at

〈f |z| i〉 = 1√
V

1√
π

(

1

a0

)3/2

× 8a50
(

1 + (a0k)
2
)3 k × 4πi

√

4π

3
Y ∗1,0(k̂) =

32
√
πi (a0k)

(

1 + (a0k)
2
)3

√

a30
V
× a0 cos θk,

where θk is the angle between the diretion of the eletri �eld E0 and the wavevetor k of the ejeted eletron.

(Notie with this result we an already answer question ().)

We now fous on the time-dependent part of the integral

∣

∣

∣

∣

ˆ t

t0=0

dt′ cosωt′eiωfit
′

∣

∣

∣

∣

2

=
sin2

(

(ω − ωif )
t
2

)

(ω − ωif )
2 +

sin2
(

(ω + ωif )
t
2

)

(ω + ωif )
2

− sin2
(

(ω + ωif )
t
2

)

+ sin2
(

(ω − ωif )
t
2

)

− sin2
(

ω t
2

)

(ω + ωif ) (ω − ωif )
.

Using that

lim
t→∞

sin2 (xt/2)

x2
=
π

2
δ (x) ,

we simplify the above integral to

lim
t→∞

∣

∣

∣

∣

ˆ t

0

dt′ cosωt′eiωfit
′

∣

∣

∣

∣

2

→ π

2
(δ (ω − ωfi) + δ (ω + ωfi)) t,

if ω 6= 0. For ω = 0, it beomes 2πδ (ωfi) t. This is beause the last term is only nonzero when ω = 0.
The total probability of exitation is given by

P{f}←i(t) =
∑

f

Pf←i(t).

As the �nal state is in a ontinuum (where k is a good quantum number), then the sum an be replaed by an integral

P{f}←i(t) =
∑

f

Pf←i(t)→
1

δk3

ˆ

d3kPf←i(t) =
V

(2π)
3

ˆ

d3kPf←i(t).

It is then onvenient to exhange the integral in k by an integral in energy:

d3k = dΩk2dk = dΩ
2mE

~2

(√
mdE

~
√
2E

)

= dΩ
m
√
2mE

~3
dE =

(2π)
3

V
ρ (E) dΩdE,

whih de�nes the density of states ρ (E) = V m
√
2mE/ (2π~)

3
. Notie also we used the free-eletron dispersion

relation 2mE = (~k)2 and that we are disregarding the spin degeneray sine the transition onserves the eletron

spin. Then,

P{f}←i(t) =

ˆ

dΩkρ (Ef ) dEf ×
1

~2

∣

∣

∣

∣

∣

∣

∣

−eE0
32
√
πi (a0k)

(

1 + (a0k)
2
)3

√

a30
V
× a0 cos θk

∣

∣

∣

∣

∣

∣

∣

2

π

2
(δ (ω + ωfi) + δ (ω − ωfi)) t

=2π

ˆ π

0

dθk sin θk cos θ
2
k (eE0a0)2







32
√
π (a0k)

(

1 + (a0k)
2
)3







2

× π

2~
ρ (Ei + ~ω)

a30
V
t

=2π
2

3
(eE0a0)2







32
√
π (a0k)

(

1 + (a0k)
2
)3







2

× π

2~

m
√

2m (Ei + ~ω)

(2π~)3
a30t

=(eE0a0)2






16 (a0k)
(

1 + (a0k)
2
)3







2

m
√

2m (Ei + ~ω)

3~4
a30t = (eE0a0)2







16 (a0k)
(

1 + (a0k)
2
)3







2

(ka0)
ma20
3~3

t,
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where we have kept only the possible transition (absorption) in whih ωf = ωi + ω, Ei = E0 = − m
2~2

(

e2

4πǫ0

)2

=

−13.6 eV. Notie also that the ejeted eletron has wavevetor k =
√

2m (E0 + ~ω)/~. Finally, the transition rate is

w =
d

dt
P{f}←i(t) =

256

3
(eE0a0)2

(a0k)
3

(

1 + (a0k)
2
)6

ma20
~3

.

If we onsider a �eld suh that ~ω = 2 |E0|, then the orresponding wavevetor is k =
√

2m |E0|/~ = 1/a0 ≈
1.9 10−10m−1. The deay rate is roughly w = 4 (eE0a0)2 ma2

0

3~3 . Let us assume a low �eld of order E0 = 100V/m (the

lassial �eld inside the atom is of order 1011V/m), we �nd that w ≈ 2 10−5Hz.
() This is given by the dependene on θk and ϕk of Pf←i(t). As we have shown that 〈f |z| i〉 ∝ cos θk, then we

onlude that the angular distribution of the ejeted eletrons is

Pf←i(t) = constk × cos2 θk,

where θk is the angle between the diretion of the ejeted eletron and the diretion of the external eletri �eld. The

multipliative prefator constk depends only on the magnitude of k.

(d) The seletion rules are given by

〈n′, ℓ′,m′ |V |n, ℓ,m〉 ∝ E0 · 〈n′, ℓ′,m′ |r| n, ℓ,m〉 = E0 · 〈n′, ℓ′,m′ |(x, y, z)|n, ℓ,m〉 .

Reall the Eigenfuntions are

〈r|n, ℓ,m〉 = Rn,ℓ(r)Yℓ,m(θ, ϕ),

where

Rn,ℓ =

√

(

2Z

na0

)3
(n− ℓ− 1)!

2n [(n+ ℓ)!]
3 e
−ρ/2ρℓL2ℓ+1

n+ℓ (ρ),

Yℓ,m = (−1)m
√

2ℓ

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimϕ

for m ≥ 0,

and Yℓ,m = (−1)m Y ∗ℓ,|m| for m < 0. Here, the ρ = 2Zr/(na0) (Z = 1 for Hydrogen), Lq
p is the assoiated Laguerre

polynomial de�ned as

Lq
p(ρ) =

dq

dρq
Lp (ρ) , and Lp (ρ) = eρ

dp

dρp
(

ρpe−ρ
)

.

The assoiated Legendre polynomials are (for m ≥ 0)

Pm
ℓ (x) =

(

1− x2
)

m
2

dm

dxm
Pℓ (x) , and Pℓ (x) =

(−1)ℓ
2ℓℓ!

dℓ

dρℓ
(

1− x2
)ℓ
.

The �rst seletion rule an be obtained from the azimutal angle ϕ. There will be integrals of the form

〈m′ |(x, y, z)|m〉 ∼
ˆ

dϕe−im
′ϕ
(

e±iϕ, e±iϕ, 1
)

eimϕ ∝ (δm′,m±1, δm′,m±1, δm′,m) .

Thus, m′ = m or m′ = m± 1.
With respet to the polar angle θ, we will have integrals of type

ˆ 1

−1
d cos θY ∗ℓ′,m′ (θ, ϕ) (sin θ, sin θ, cos θ)Yℓ,m (θ, ϕ) ∝

ˆ

dΩY ∗ℓ′,m′ (Y1,±1, Y1,±1, Y1,0)Yℓ,m

=

ˆ

dΩ
(

Pm+1
ℓ′ P 1

1P
m
ℓ , Pm

ℓ′ P
0
1P

m
ℓ

)

.

It an be shown that the integral is nonzero only when ℓ′ = ℓ ± 1. This omes from the fat that P1Pℓ = c+Pℓ+1 +
c−Pℓ−1.



9

There is another way of showing this seletion rule.

Let r± = x± iy. Then

[Lz, r±] = [xpy − ypx, r±] = x [py,±iy]− y [px, x] = ±~x+ i~y = ±~r±.

Now we ompute

〈n′, ℓ′,m′ |([Lz, r±]∓ ~r±)|n, ℓ,m〉 = 0 = ~ (m′ −m∓ 1) 〈n′, ℓ′,m′ |r±|n, ℓ,m〉 .

Thus, 〈n′, ℓ′,m′ |(x, y)|n, ℓ,m〉 is nonzero only when m′ = m ± 1. For z, sine [Lz, z] = 0, then

〈n′, ℓ′,m′ |[Lz, z]|n, ℓ,m〉 = 0 = ~ (m′ −m) 〈n′, ℓ′,m′ |z|n, ℓ,m〉 . Thus, the seletion rule m = m′.
Now we apply the same idea with the other quantum number

L2 = L2
X + L2

y + L2
z.

Computing the ommutator

[

L2, z
]

=
[

L2
x, z
]

+
[

L2
y, z
]

= Lx [ypz − zpy, z] + [Lx, z]Lx + Ly [zpx − xpz, z] + [Ly, z]Ly

=− i~Lxy − i~yLx + i~Lyx+ i~xLy = −i~Lxy − i~ (Lxy − i~z) + i~ (−i~z + xLy) + i~xLy

=2i~ (xLy − Lxy) = 2i~ (Lyx− Lxy + i~z) .

where we have used that [Lx, y] = [ypz − zpy, y] = i~z and [Ly, x] = [zpx − xpz, x] = −i~z . Notie the symmetry

between the ili interhange x→ y → z:

[

L2, x
]

=
[

L2
y, x
]

+
[

L2
z, x
]

= Ly [zpx − xpz , x] + [Ly, x]Ly + Lz [xpy − ypx, x] + [Lz, x]Lz

=− i~ (Lyz + zLy) + i~ (Lzy + yLz) = −i~ (i~x+ 2zLy) + i~ (i~x+ 2Lzy)

=2i~ (Lzy − zLy) = 2i~ (yLz − Lyz) ,
[

L2, y
]

=
[

L2
x, y
]

+
[

L2
z, y
]

= Lx [ypz − zpy, y] + [Lx, y]Lx + Lz [xpy − ypx, y] + [Lz, y]Lz

=i~ (Lxz + zLx)− i~ (Lzx+ xLz) = i~ (−i~y + 2zLx)− i~ (2Lzx− i~y)
=2i~ (zLx − Lzx) = 2i~ (Lxz − xLz) .

As the ommutator

[

L2, z
]

does not have L2
or z. We then ommute the entire thing with L2

one again

[

L2,
[

L2, z
]]

=2i~
(

Ly

[

L2, x
]

− Lx

[

L2, y
]

+ i~
[

L2, z
])

= −4~2
[

Ly (yLz − Lyz)− Lx (Lxz − xLz) +
1

2

[

L2, z
]

]

=− 4~2
[

yLyLz − L2
yz − L2

xz + xLxLz +
1

2

[

L2, z
]

]

= 4~2
[

(

L2
x + L2

y

)

z − (xLx + yLy)Lz −
1

2

[

L2, z
]

]

=4~2
[

L2z − (r · L)Lz −
1

2

[

L2, z
]

]

= 4~2
[

L2z − 1

2

[

L2, z
]

]

=2~2
(

L2z + zL2
)

.

By simple expetion, it an be shown that r · L = L · r = 0. The last equation is our desirable result

(

L2
)2
z −

2L2zL2 + z
(

L2
)2 − 2~2

(

L2z + zL2
)

= 0. Thus,

0 = ~
4
(

[ℓ′ (ℓ′ + 1)]
2 − 2ℓℓ′ (ℓ+ 1) (ℓ′ + 1) + [ℓ (ℓ+ 1)]

2 − 2ℓ′ (ℓ′ + 1)− 2ℓ (ℓ+ 1)
)

〈n′, ℓ′,m′ |z|n, ℓ,m〉
0 = ~

4
(

L′2 − 2L′ (L+ 1) + L (L − 2)
)

〈n′, ℓ′,m′ |z|n, ℓ,m〉 .

with L = ℓ (ℓ+ 1). Therefore, we onlude that 〈n′, ℓ′,m′ |z|n, ℓ,m〉 6= 0 only when 0 = L′2− 2L′ (L+ 1)+L (L− 2),
whih implies ℓ′ = ℓ± 1. (The other two solutions are unphysial ℓ′ = −ℓ and ℓ′ = −ℓ− 2.)
Finally, there is no seletion rule with respet to the prinipal quantum number n. The radial integral is of type

I =

ˆ ∞

0

r2dr ×R∗n′,ℓ′rRn,ℓ.
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Let us pik as an example, the ase in whih n′ = n. The simplest ase in whih there is still a transition, is when

n = 2, m′ = m = 0, and ℓ = 0 = ℓ′ − 1. In this ase,

I ∝
ˆ ∞

0

ρ2dρ
[

ρe−ρ/2
]

ρ
[

(2− ρ) e−ρ/2
]

= 72 6= 0.

Notie this ase would violate energy onservation beause Ef −Ei 6= ~ω. However, the energy onservation is taken

are by the time integral yielding to the delta funtion.

In Sum, the seletion rules are

ℓ′ = ℓ± 1 and m′ = m, m± 1.

3.

(a) The system an be diagonalized easily by notiing that the spin operators are time independent. Thus the usual

singlet-triplet states are the atual Eigenstates. We label them as

|s〉 = 1√
2
(|+−〉 − |−+〉) , |t0〉 =

1√
2
(|+−〉+ |−+〉) , |t1〉 = |++〉 , |t−1〉 = |−−〉 .

Inserting these in the Shrödinger equation

H |ψ〉 = i~
d

dt
|ψ〉 , ⇒ E (t)

2~2
(

S2 − S2
1 − S2

2

)

∑

k

ak (t) |k〉 = i~
∑

k

ȧk (t) |k〉 ,

where S = S1 + S2 is the total spin angular momentum, and the vetors |k〉 labels the singlet and triplet states, we

�nd that

−3

4
E(t)as = i~ȧs, and

1

4
E(t)ak = i~ȧk for k = t−1,0,1.

The solutions of whih are

as (t) = as (−∞) exp

(

3i

4~

ˆ t

−∞
E(t′)dt′

)

and ak (t) = ak (−∞) exp

(

− i

4~

ˆ t

−∞
E(t′)dt′

)

, for k = t−1,0,1.

As the initial state (t = −∞) is |+−〉 = 1√
2
(|s〉+ |t0〉), then, we have that as (−∞) = at0 (−∞) = 1√

2
, and

at±1
(−∞) = 0. Therefore

|ψ(t)〉 = 1√
2
e

3i
4~

It |s〉+ 1√
2
e−

i
4~

It |t0〉 ,

with It =
´ t

−∞E(t′)dt′. Notie I = I∞.
Finally, the probability of �nding the system in the |−+〉 state at t→∞ is

Pexact = |〈−+ |ψ (∞)〉|2 =
1

4

∣

∣

∣−e 3i
4~

I∞ + e−
i
4~

I∞
∣

∣

∣

2

=
1

4

∣

∣

∣e
i
4~

I
(

−e 2i
4~

I + e−
2i
4~

I
)∣

∣

∣

2

= sin2(I/ (2~)).

(b)

In �rst-order of perturbation theory, the probability amplitude of transition is given by

c
(1)
f←i(t) =

1

i~

ˆ t

−∞

〈

−+
∣

∣eiωfitV (t′)
∣

∣+−
〉

dt′.

Here, beause H0 = 0, we have that ωf = ωi = 0. Moreover,

〈−+ |V (t′)|+−〉 = E

~2

(〈

−+

∣

∣

∣

∣

1

2
S+
1 S
−
2 + h.c.

∣

∣

∣

∣

+−
〉

+ 〈−+ |Sz
1S

z
2 |+−〉

)

=
E

~2

(

1

2
~
2 + 0

)

.

Thus,

P1st =
∣

∣

∣c
(1)
f←i(∞)

∣

∣

∣

2

=
1

4~2

∣

∣

∣

∣

ˆ ∞

−∞
E(t)dt

∣

∣

∣

∣

2

=

(

I

2~

)2

.
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Comparing with the exat result Pexact = sin2(I/(2~)), it is straightforward to onlude that �rst-order of perturbation
theory gives a preise answer as long as I ≪ 2~.
() The senond-order ontribution to the probability amplitude is

c
(2)
f←i(∞) =

(

1

i~

)2
∑

k

ˆ ∞

−∞
dteiωfkt

ˆ t

−∞
dt′eiωkit

′ 〈−+|V (t) |k〉 〈k|V (t′) |+−〉

=

(

1

i~

)2
∑

k

ˆ ∞

−∞
dt

ˆ t

−∞
dt′ 〈−+|V (t) |k〉 〈k|V (t′) |+−〉

=

(

1

i~

)2 ˆ ∞

−∞
dt

ˆ t

−∞
dt′ (〈−+|V (t) |+−〉 〈+−|V (t′) |+−〉+ 〈−+|V (t) |−+〉 〈−+|V (t′) |+−〉)

=

(

1

i~

)2 ˆ ∞

−∞
dt

ˆ t

−∞
dt′
(

E(t)

4
× E(t′)

2
+
E(t)

2
× E(t′)

4

)

=
1

4

(

1

i~

)2 ˆ ∞

−∞
dtE(t)

ˆ t

−∞
dt′E(t′).

First, let us disuss the τ → 0 limit in whih we onsider E(t) = Ēτδ(t − t0) where t0 is the instant around whih

E(t) 6= 0. In this ase,

ˆ t

−∞
dt′E(t′) ∼ Ēτθ (t− t0) ,

where θ(x) is the Heaviside step funtion. Thus,

c
(2)
f←i(∞) ∼ 1

4~2
× 1

2

(

Ēτ
)2 ∼ 1

2
×
(

I

2~

)2

whih is smaller than c
(1)
f←i(∞) ∼ I/(2~).

Now, let us disuss on the τ →∞ limit. In this limit, let us say that E(t) = Ē = const. Now we have that

ˆ t

−∞
dt′E(t′) ∼ Ē ×

(

min {t, τ/2}+ 1

2
τ

)

.

The probability amplitude an now be estimated as

c
(2)
f←i(∞) ∼ 1

4~2
×
(

Ēτ
)2 ∼

(

I

2~

)2

,

whih is muh greater than c
(1)
f←i(∞). Notie that in both ases c

(2)
f←i(∞) ∼

(

Ēτ
)2
. The

(d) Now onsider that both spins are subjeted to a stati magneti �eld B = B0ẑ. The orresponding Zeeman

Hamiltonian is

H0 = −µB

~
B0 (g1S

z
1 + g2S

z
2) ,

where g1,2 are the gyromagneti ratios (assume them distint from eah other). Consider also that E(t) =

Ē exp
(

− (t/τ)
2
)

. Compute the same probability of the previous itens in �rst-order of perturbation theory and

disuss its dependene on the magnitude B0.

The only di�erene from item (b) is due to the fat that H0 6= 0. As the initial and �nal states are Eigenvetors of

H0, we have that

cf←i(t) =
1

i~

ˆ t

−∞

〈

−+
∣

∣eiωfitV (t′)
∣

∣+−
〉

dt′,
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with ~ωfi = E
(0)
−+ − E(0)

+− = µBB0 ((−g1 + g2)− (g1 − g2)) /2 = µBB0 (g2 − g1). Therefore,

P1st =
1

4~2

∣

∣

∣

∣

ˆ ∞

−∞
dteiωfitE(t)

∣

∣

∣

∣

2

=
Ē2

4~2

∣

∣

∣

∣

ˆ ∞

−∞
dte−(t

2/τ2−iωfit)
∣

∣

∣

∣

2

=
Ē2

4~2

∣

∣

∣

∣

∣

ˆ ∞

−∞
dte
−τ−2

(

(t− i
2
ωfiτ

2)
2−

(

iωfiτ
2

2

)2)∣

∣

∣

∣

∣

2

=
Ē2

4~2

∣

∣

∣

∣

∣

ˆ ∞

−∞
dte−τ

−2(t− i
2
ωfiτ

2)
2

e
τ−2

(

iωfiτ
2

2

)2∣

∣

∣

∣

∣

2

=
Ē2

4~2
e−(ωfiτ)

2/2

∣

∣

∣

∣

ˆ ∞

−∞
dte−τ

−2(t− i
2
ωfiτ

2)
2

∣

∣

∣

∣

2

=
Ē2

4~2
e−(ωfiτ)

2/2
∣

∣

√
πτ
∣

∣

2
= π

Ē2

4~2
τ2e−(ωfiτ)

2/2 ∼
(

I

2~

)2

e−(ωfiτ)
2/2.

Notie P1st is depends strongly on B0, namely, P1st ∼ τ2 exp
(

− (B0τ/α)
2
)

[with α = ~/(µB(g2− g1))℄. Bigger B0,

smaller the transition probability. This is beause B0 sets the energy di�erene between the inital and �nal states.

For small B, we reover the result of item (b) sine

In the samme manner, bigger τ also implies smaller P1st. This is beause the variation of the perturbation is

inversely proportional to τ . In the limit τ → ∞, it is like the system is extremely slowly perturbed. As a result, no

transition takes plae. (This is the essene of the Adiabati theorem.) On the other hand for small τ , we have that
P1st ∼ τ2 whih agrees with the fat that UI ≈

´

V dt ∼ t for small times.

(e) Again, we will have to ompute

c
(2)
f←i(∞) =

(

1

i~

)2
∑

k

ˆ ∞

−∞
dteiωfkt

ˆ t

−∞
dt′eiωkit

′ 〈−+|V (t) |k〉 〈k|V (t′) |+−〉

=

(

1

i~

)2 ˆ ∞

−∞
dt

ˆ t

−∞
dt′
(

〈−+|V (t) |−+〉 〈−+|V (t′) |+−〉 eiωfit
′

+ eiωfit 〈−+|V (t) |+−〉 〈+−|V (t′) |+−〉
)

=
1

8

(

1

i~

)2(ˆ ∞

−∞
dtE(t)

ˆ t

−∞
dt′eiωfit

′

E(t′) +
ˆ ∞

−∞
dtE(t)eiωfit

ˆ t

−∞
dt′E(t′)

)

.

Again, let us disuss the limits τ → 0 [E(t) = Ēτδ(t− t0)℄ and τ →∞ [E(t) = Ē)℄. In the former ase,

c
(2)
f←i(∞) =

1

8

(

1

i~

)2
(

Ēτ
)2
eiωfit0 ∼

(

I

2~

)2

,

whih is muh smaller than the �rst-order ontribution.

In the latter ase (τ →∞), we have that

c
(2)
f←i(∞) =

1

8

(

1

i~

)2

Ē2

(

ˆ τ/2

−τ/2
dt

ˆ t

−τ/2
dt′θ (τ/2− t) eiωfit

′

+

ˆ τ/2

−τ/2
dteiωfit

ˆ t

−τ/2
θ (τ/2− t) dt′

)

=
1

8

(

1

i~

)2

Ē2

[

i

ω2
fi

(

ωfiτe
−iωfi

τ
2 − 2 sin

(

ωfi
τ

2

))

− i

ω2
fi

(

ωfiτe
iωfi

τ
2 − 2 sin

(

ωfi
τ

2

))

]

=
1

4

(

1

i~

)2

Ē2 τ

ωfi
sin
(

ωfi
τ

2

)

,

whih reovers the result of item () when ωfi = 0, i.e., c
(2)
f←i ∼

(

Ēτ
)2
. However, for ωfi 6= 0, c

(2)
f←i is a rapid

osillatory funtion whih averages out to zero. But how do we ompare this result with c
(1)
f←i sine we annot expand

the result in item (d) in the limit τ → ∞? In order to make omparison, let us ompute c
(1)
f←i in the same limit

τ →∞ [E(t) = Ē)℄:

c
(1)
f←i (∞) =

1

i~

ˆ ∞

−∞
dteiωfit 〈−+|V (t′) |+−〉 = 1

i~

Ē

2

ˆ τ/2

−τ/2
dteiωfit =

1

i~

Ē

ωif
sin
(

ωif
τ

2

)

.

Then, we onlude that c
(1)
f←i (∞)≪ c

(2)
f←i (∞) as was the ase analyzed in item ().

4.
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(a) In �rst order of perturbation theory, the amplitude probability of transition is

cf←i =
1

i~

ˆ t

0

dt′ 〈ϕf |W (t′) |ϕi〉 eiωfit
′

.

Thus,

Pf←i = |cf←i|2 =
1

~2

ˆ t

0

dt′
ˆ t

0

dt′′ 〈ϕf |W (t′) |ϕi〉 (〈ϕf |W (t′) |ϕi〉)∗ eiωfi(t′−t′′).

The transition rate is then

wf←i =
1

~2

[

(

Wfi(t)e
iωfit

)

ˆ t

0

dt′′W ∗fi(t
′′)e−iωfit

′′

+

ˆ t

0

dt′Wfi(t
′)eiωfit

′ (

W ∗fi(t)e
−iωfit

)

]

.

Calling τ = t− t′′, we �nd that

wf←i =
1

~2

[
ˆ t

0

dτ
(

Wfi(t)W
∗
fi(t− τ)eiωfiτ

)

+ c.c.

]

.

(b.α)
We start with the previous result

w
(k)
f←i(t) =

1

~2

[
ˆ t

0

dτ
(

W
(k)
fi (t)W

(k)∗
fi (t− τ)eiωfiτ

)

+ c.c.

]

.

Averaging over the many systems, we arrive at

πfi(t) = lim
N→∞

1

N
N
∑

k=1

w
(k)
f←i(t) =

1

~2

[
ˆ t

0

dτ
(

gfi (τ) e
iωfiτ

)

+ c.c.

]

=
1

~2

[
ˆ τc

0

dτ
(

gfi (τ) e
iωfiτ

)

+

ˆ t

τc

dτ
(

gfi (τ) e
iωfiτ

)

+ c.c.

]

.

If t > τc, the seond integral vanishes and πfi beomes time independent. Thus, we onlude that t1 = τc.
(b.β)
From the previous result,

πfi(t) = 2
|vfi|2
~2

ˆ t

0

dτe−τ/τc cos(ωfiτ)

= 2
|vfi|2

~2
(

1 + ω2
fiτ

2
c

)

[

1 + e−t/τc [ωfiτc sin(ωfit)− cos(ωfit)]
]

τc.

Thus, for long times t≫ τc, πfi beomes time independent, as expeted. Moreover, in the limit ωfiτc ≫ 1 (but reall

τc ≪ t),

πfi(t) ≈ 2
|vfi|2

~2
(

1 + ω2
fiτ

2
c

)τc →
2π

~2
|vfi|2 δ (ωfi) ,

whih reovers Fermi's golden rule for transition between states in a disrete spetrum.

(b.γ)
We need to go further in perturbation theory:

cf←i =
1

i~

ˆ t

0

dt′Wfi(t
′)eiωfit

′

+
1

2

(

1

i~

)2
∑

j

ˆ t

0

dt′
ˆ t

0

dt′′T [Wfj(t
′)Wji(t

′′)] ei(ωfj t
′+ωjit

′′) + · · · = I1 + I2 + . . . ,

where T is the time ordering operator. Thus,

Pf←i = |cf←i|2 = |I1|2 + I1I
∗
2 + I∗1 I2 + |I2|2 = |I1|2

(

1 +
|I2|2

|I1|2

)

.
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Notie that we disregarded the ross terms beause they average to zero:

I1I∗2 ∝
∑

k

Wfi(t)Wfj(t′)Wji(t′′) = 0,

sine Wn
fi(t) = 0, for n odd.

For short times, |I1|2 ∼ |Wfi(0)|2
(

t
~

)2
and |I2|2 ∼ |Wfi(0)|4

(

t
~

)4
. Thus, for |I2|2 / |I1|2 ≪ 1, we have that

t≪ t2 =
~

|Wfi(0)|
∼ ~

|vfi|
.

This is the general result of perturbation theory. Let us now be more spei� and use the previous results:

π
(1)
fi = 2

|vfi|2

~2
(

1 + ω2
fiτ

2
c

)

[

1 + e−t/τcf(t)
]

τc,

with f(t) = ωfiτc sin(ωfit)− cos(ωfit). Notie that for t≪ τc, then

π
(1)
fi (t≪ τc) ∼

|vfi|2
~2

(ωfiτc)
2
t.

On the other hand, for t≫ τc,

π
(1)
fi (t≫ τc) ∼

|vfi|2
~2

τc.

As we show below, the seond-order orretion is

π
(2)
fi (t≪ τc) ∼

∑

j

|vfj |2 |vji|2
~4

t3 ∼ |vfi|
4

~4
t3, and π

(2)
fi (t≫ τc) ∼

∑

j

|vfj |2 |vji|2
~4

τ3c ∼
|vfi|4
~4

τ3c .

PSfrag replaements

π
(1)
fi

π
(1)
fi

π
(2)
fi

π
(2)
fi

τc τct tt2 t2

(a) (b)

0 0

Figure 1: The ontributions to the tran-

sition rates in �rst and seond order in

perturbation theory as a funtion of time.

Case (a) τc > t2, the �rst order perturba-

tion theory breaks down for t > t2. On

the other hand for (b) τc < t2, �rst order

remains valid for any t.

Therefore, for t2 ≪ t ≪ τc, there is no guarantee that π
(2)
fi ≪ π

(1)
fi .

However, if t2 ≫ τc, then we know that π
(2)
fi (τc) ≪ π

(1)
fi (τc). Sine both

of them beomes onstant for t≫ τc, i.e., π
(1,2)
fi (t≫ τc) ≈ π(1,2)

fi (τc), then
the approximation remains valid for t≫ t2. This will happen in all orders

of perturbation theory sine

π
(n)
fi (t≫ τc) ∼

|vfi|2n
~2n

(min {t, τc})2n−1 = t−2n2 (min {t, τc})2n−1 .

Then, for τc ≫ t2, the perturbation theory is valid as long as π
(n+1)
fi ≪

π
(n)
fi , thus t ≪ t2. On the other hand for τc ≪ t2, then perturbation

theory is valid whenever τ2n+1
c t−2n−22 ≪ τ2n−1c t−2n2 , whih implies that

τ2c ≪ t22, but this follows from our assumption that τc ≪ t2. Therefore,

when τc ≪ t2 ∼ ~ |vfi|−1, then perturbation theory works for any t. This
is illustrated in Fig. 1

Let us now show that π
(2)
fi has indeed the forementioned behavior. For

simpliity, let us onsider that Wif is real. Thus, W
(k)
fi (t)W

(k)∗
fi (t− τ) =

g(τ) =W
(k)
fi (t)W

(k)
fi (t− τ).
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It is useful to write the seond-order orretion separating real and imaginary parts:

c
(2)
f←i =

(

1

i~

)2
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2)

=

(

1

i~

)2
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

[

Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2) +W ∗fj(t1)W

∗
ji(t2)e

−i(ωfjt1+ωjit2)

2

]

+

(

1

i~

)2
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

[

Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2) −W ∗fj(t1)W ∗ji(t2)e−i(ωfjt1+ωjit2)

2

]

=

(

1

i~

)2

[FR(t)− FR(0) + i (FI(t)− FI(0))] .

Then, the derivative with respet to time beomes simple:

~
4w

(2)
f←i =~

4 d

dt
P

(2)
f←i = 2 (FR(t)− FR(0)) ∂tFR(t) + 2 (FI(t)− FI(0)) ∂tFI(t)

=
1

2





∑

j

ˆ t

0

dt1

ˆ t1

0

dt2Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2) +W ∗fj(t1)W

∗
ji(t2)e

−i(ωfjt1+ωjit2)



×

∑

l

ˆ t

0

dt3Wfl(t)Wli(t3)e
i(ωflt+ωlit3) +W ∗fl(t)W

∗
li(t3)e

−i(ωflt+ωlit3)

+
1

2





∑

j

ˆ t

0

dt1

ˆ t1

0

dt2Wfj(t1)Wji(t2)e
i(ωfjt1+ωjit2) −W ∗fj(t1)W ∗ji(t2)e−i(ωfjt1+ωjit2)



×

∑

l

ˆ t

0

dt3Wfl(t)Wli(t3)e
i(ωflt+ωlit3) −W ∗fl(t)W ∗li(t3)e−i(ωflt+ωlit3).

When averaging, the only surviving terms are of two types: diret terms, suh asW
(k)
fj (t1)W

(k)
fl (t) = gfj(t1− t)δj,l and

W
(k)∗
ji (t2)W

(k)∗
li (t3) = gji(t2− t3)δj,l, and ross terms, suh asW

(k)
fj (t1)W

(k)∗
fl (t) = gfj(t1− t)δj,l, W (k)

ji (t2)W
(k)∗
li (t3) =

g(t3 − t2)δj,l. Thus, the ross terms vanish

~
4π

(2)
fi =

1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)e−iωfj(t−t1)gji(t3 − t2)e−iωji(t3−t2)

+
1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t1 − t)eiωfj(t−t1)gji(t3 − t2)eiωji(t3−t2)

− 1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t1 − t)eiωfj(t1−t)gji(t2 − t3)eiωji(t2−t3)

− 1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)eiωfj(t−t1)gji(t3 − t2)eiωji(t3−t2)

=0,
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beause g(τ) = g(−τ). The diret terms yields to

~
4π

(2)
fi =

1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)eiωfj(t+t1)gji(t3 − t2)eiωji(t3+t2)

+
1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t1 − t)e−iωfj(t+t1)gji(t3 − t2)e−iωji(t3+t2)

+
1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t1 − t)eiωfj(t1+t)gji(t2 − t3)eiωji(t2+t3)

+
1

2

∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)e−iωfj(t+t1)gji(t3 − t2)e−iωji(t3+t2).

=
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)eiωfj(t+t1)gji(t3 − t2)eiωji(t3+t2)

+
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)e−iωfj(t+t1)gji(t3 − t2)e−iωji(t3+t2)

=2
∑

j

ˆ t

0

dt1

ˆ t1

0

dt2

ˆ t

0

dt3gfj(t− t1)gji(t3 − t2) cos (ωfj (t+ t1) + ωji (t3 + t2)) .

For t≪ τc, we an approximate g(t) = |v|2. In this ase, we �nd that

~
4π

(2)
fi (t≪ τc) =

∑

j

|vfj |2 |vji|2
(

t3 +O(t5)
)

.

On the other hand for t≫ τc, we have the following approximation

~
4π

(2)
fi =2

∑

j

ˆ t

0

dt1gfj(t− t1)
ˆ t1

0

dt2

ˆ t

0

dt3gji(t3 − t2) cos (ωfj (t+ t1) + ωji (t3 + t2))

∝
∑

j

ˆ t

0

dt1gfj(t− t1)
ˆ t1

0

dt2

ˆ t2

0

dt3gji(t3 − t2) cos (ωfj (t+ t1) + ωji (t3 + t2))

=
∑

j

|vfj |2 |vji|2 τ3c
ˆ x

0

dx1e
−(x−x1)

ˆ x1

0

dx2

ˆ x2

0

dx3e
−(x2−x3) cos (τcωfj (x+ x1) + τcωji (x3 + x2)) .

This an be integrated exatly. In the limit x→∞, it simpli�es to

~
4π

(2)
fi ∝

∑

j

|vfj |2 |vji|2 τ3c × f(t, ωji, ωfj),

with f(t, ωji, ωfj) being a funtion of sin(ωt) and cos(ωt), i.e., a funtion that does not diverges with t in the limit

t→∞.

PSfrag replaements

∼ τa ∼ τv

τ

t
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b
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)
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)

Figure 2: The x-omponent of the impurity magneti

�eld as a funtion of time. Analogous behavior is found

for the other diretions.

(.α)
We sketh in Fig. 2 the perturbing magneti �eld seen

by the partiles as a funtion of time for a given diretion.

Clearly, the orrelation time is set by the adsorption time τa.
Thus, bx(t)bx(t− τ) ∼ e−t/τa for τ ≫ τa.

Analysing Fig. 2, we an also obtain bx(t)bx(t). It is simply

the mean value of the of all those peaks squared:

b2x × τa + 0× τv
τa + τv

≈ τa
τv
b2x =

1

3
b20

(

τa
τv

)

,

sine τv ≫ τa, and that b2x = b2y = b2z = 1
3b

2
0 and bx(t)by(t

′) =
0. Therefore, the orrelation funtion of the omponents of
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the mirosopi magneti �eld b beomes

bn(t)bn′(t− τ) = 1

3
b20

(

τa
τb

)

e−|τ |/τaδn,n′ ,

with n, n′ = x, y, z or any other diretion.

(.β)
The dimensionless magnetization is given by Mz = N↑ −

N↓ = 2N↑ −N , where N = N↑ +N↓. Then Ṁz = 2Ṅ↑. The number of up-spins are given by

N↑(t+ dt) = N↑(t)−N↑(t)π↓↑dt+N↓(t)π↑↓dt,

where π↓↑ is the transition rate from the initial state |↑〉 to the �nal one |↓〉. Thus,

Ṅ↑ = −N↑(t)π↓↑ +N↓(t)π↑↓.

The transition rates an be obtained using the previous results:

π↑↓ = 2
|v↑↓|2

~2
(

1 + ω2
↑↓τ

2
c

)

[

1 + e−t/τa [ω↑↓τa sin(ω↑↓t)− cos(ω↑↓t)]
]

τa → 2
|v↑↓|2

~2
(

1 + ω2
↑↓τ

2
a

)τa,

where we used the the interesting regime t≫ τa. Notie also that π↑↓ = π↓↑, sine ω↑↓ = −ω↓↑ = γB0 = ω0 and that

|v↑↓|2 = |v↓↑|2. We now need to ompute |v↓↑|2. In order to do so, let us give a step bak and ompute

w↓←↑ =
d

dt

1

~2

∣

∣

∣

∣

ˆ t

0

dt′eiω↓↑t
′ 〈↓| − γb(t) · S |↑〉

∣

∣

∣

∣

2

=
d

dt

1

~2

∣

∣

∣

∣

ˆ t

0

dt′e−iω0t
′ 〈↓| − γ (bxSx + bySy) |↑〉

∣

∣

∣

∣

2

=
d

dt

1

~2

∣

∣

∣

∣

ˆ t

0

dt′e−iω0t
′

(−γ~
2

)

(bx + iby)

∣

∣

∣

∣

2

=
d

dt

1

~2

∣

∣

∣

∣

ˆ t

0

dt′e−iω0t
′

W↓↑(t
′)

∣

∣

∣

∣

2

,

with W↓↑ = − 1
2γ~ (bx(t) + iby(t)). Thus

π↓↑ = ~
−2
ˆ t

0

dτe−iω0τW↓↑(t)W ∗↓↑(t− τ) + c.c. =
γ2

4

ˆ t

0

dτe−iω0τ (bx(t) + iby(t)) (bx(t− τ) − iby(t− τ)) + c.c.

=
γ2

4

ˆ t

0

dτe−iω0τ
[

bx(t)bx(t− τ) + by(t)by(t− τ)
]

+ c.c. = ~
−2
ˆ t

0

dτe−iω0τg(τ) + c.c.,

with g(τ) = |v↓↑|2 e−τ/τa, with |v↓↑|2 = τa
6τv

(~γb0)
2
. Finally,

π↑↓ = π↓↑ =
1

2T1
=

|v↑↓|2

~2
(

1 + ω2
↑↓τ

2
a

)τa =
1

6

(γb0τa)
2

1 + (ω0τa)
2

(

1

τv

)

.

Returning the the rate equation

Ṅ↑ = −N↑(t)π↓↑ +N↓(t)π↑↓ = −
1

2T1
(N↑ −N↓) = −

Mz

2T1
.

Therefore,

dMz

dt
= 2Ṅ↑ = −

Mz

T1
, with T1 = 3

(

1 + (γB0τa)
2

(γb0τa)
2

)

τv.

(.γ)
Measuring T1 as a funtion of B0, we should �nd a paraboli behavior suh as T1 = a0 + a1B0+ a2B

2
0 , with a1 = 0.

Fitting the experimental data, we an determine the oe�ients a0 and a2. The ratio between them gives us the

adsorption time:

a0
a2

=
1

(γτa)
2 , ⇒ τa =

1

γ

√

a2
a0
.
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(.δ)

Cells of di�erent radii R have di�erent time of �ights τv, whih are related via R = vτv, with v =
√

8kBT
πm being

the mean veloity of the partiles (whih an be obtained from a Maxwell-Boltzmann distribution). Repeat the same

experiment done in the previous item, we an measure the oe�ients a0 and a2 as a funtion of R:

a0 =
3v

(γb0τa)
2R = αR and a2 = 3v

(γτa)
2

(γb0τa)
2R = βR.

Then, after �tting α and β from the experiments, the mirosopi �eld an be obtained either as

b0 =
1

γτa

√

3v

α
or b0 =

√

3v

β
.

(Notie the mass of the partiles are needed. We an perform the same experiments but hanging the temperature in

order to obtain preise values for b0 in the above expressions.)

Notie the exponential deay law here derived is rigorously valid as long as τc ≪ t2 [.f. item (b.γ)℄. In this

partiular ase, τc ≈ τa and t2 ≈ 1/ (γb0). The results of the experiments in (.γ) and (.δ) will permit us to ompare

these time sales. Speially, from item (.δ), we notie that τc/t2 ≈ τaγb0 =
√

3v/α ∼
√

kBT/ (mα).

5.

(a) Let EK,α be the Eigenenergy for state |K, χα〉, with α = a, b. Then,

∆E = EK′,b − EK,a =

(

~
2K ′2

2M
+ Eb

)

−
(

~
2K2

2M
+ Ea

)

=
~
2

2M

(

K ′2 −K2
)

+ ~ω0.

(b)

W (t) = −qA0

(

1

m1
P1 · êeik·R1 − 1

m2
P2 · êeik·R2

)

e−iωt + c.c.

We now need the de�nitions

R1 = RG +
m2

M
R, R2 = RG −

m1

M
R,

P1 =
m1

M
PG +P, P2 =

m2

M
RG −P.

Then, in the eletri dipole approximation, we will have that exp ik ·R1 ≈ exp ik ·R2 ≈ exp ik ·RG, yielding

P1

m1
· êeik·R1 − P2

m2
· êeik·R2 ≈

[(

PG

M
+

P

m1

)

−
(

PG

M
− P

m2

)]

· êeik·RG =
1

m
P · êeik·RG.

Therefore,

W =W0e
−iωt +W †0 e

iωt, with W0 = −qA0

m
ê ·Peik·RG .

Notie the negative sign is irrelevant. By interhanging the partile labels, we an make it positive.

()

〈K′, χb |W0|K, χa〉 = −
qA0

m
ê · 〈χb |P|χa〉

〈

K
′ ∣
∣eik·RG

∣

∣K
〉

.

Notie P is the momentum of the relative partile and thus, do not ats on the �external� degrees of freedom. We

now need to study the �seletion rules� arising from

〈

K
′ ∣
∣eik·RG

∣

∣K
〉

:

〈

K
′ ∣
∣eik·RG

∣

∣K
〉

=
1

N

ˆ

d3RGe
−iK′·RGeik·RGeiK·RG ∝ δ(3) (K′ − k−K) ,

whereN is a normalization onstant. Thus, the transition happens only when momentum is onserved: ~K
′ = ~k+~K,

i.e., the momentum of the �nal state equals the sum of the momenta of the initial state and that of the absorbed

photon.
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(d) The resonane ours when

~ω = EK′,b − EK,a =
~
2

2M

(

K ′2 −K2
)

+ ~ω0, ⇒ δE = ~ (ω − ω0) =
~
2

2M

(

K ′2 −K2
)

.

Now using the momentum onservation

δE =
~
2

2M

(

2K · k+ k2
)

=
~
2

2M

(

2K · k+
(ω

c

)2
)

= δE1 + δE2,

with δE1 = ~
2Kk cos θ/M ≈ ~

2ω0K cos θ/ (Mc) , and δE2 = (~ω)
2
/
(

2Mc2
)

≈ (~ω0)
2
/
(

2Mc2
)

.

Physial interpretation:

If the atom were motionless, δ2 would be the energy aquired by the enter of mass of the atom due to momentum

onservation: Final momentum equals that of the photon, thus K
′ = k. Thus, the energy is δE2 = ~

2k2/(2M). But

the momentum of the photon is related to its frequeny by ω = ck. Finaly, δE2 = (~ω)
2
/
(

2Mc2
)

, as omputed

before.

Due to the motion of the atom, the frequeny of the photon seen by the atom is di�erent from ω. Due to the Doppler
e�et, it is equal to ω′ = ω (c− vobserver) / (c− vsource) = ω (c− ~K cos θ/M) /c, where ~K cos θ/M is the veloity

of the atom in the diretion of the photon, and vsource = 0. Thus, ~ω′ = ~ω − ~
2ωK cos θ/ (Mc). Therefore, the

inident energy seen by the atom is less by an amount equal to δE1 = ~ω− ~ω′ = ~
2ωK cos θ/(Mc) = ~

2kK cos θ/M .

Therefore, there is an o�set in the resonane equal to δE1, as omputed before.

For ~ω0 = 10 eV and M = 109 eV/c2, we have that δE2 = 5 10−8 eV. At T = 300K, the thermal energy is of

order

1
2mv

2 = ~
2K2

2M = kBT = 8.6 10−5 eV/K × 300K = 2.6 10−2 eV. Then, for cos θ = 1, we have that δE1 =

(~ω0) (~K) / (Mc) = (~ω0)

√

(~K)2

2M ×
√

2
Mc2 = 10 eV

√
2.6 10−2 ×

√

2
109 = 7.2 10−5 eV. Finally, δE1 ≈ 103δE2.

Repeating the same alulations for ~ω0 = 105 eV, we have that δE2 = 5 eV and δE1 = 0.72 eV, i.e., δE1 ≈ 10−1δE2.
In the realm of atomi physis, the Dopple e�et is muh more relevant than the kineti e�ets (reoil energy). On

the other hand, in the realm of nulear physis, the reoil energy annot be disregarded.

(e) As in item (a),

∆E = En,0,0,b − E0,0,0,a = ~ (nΩ + ω0) = ~ωfi.

(f ) We have that W (t) =W0e
−iωt + h.c., with W0 = A0Si(k)e

ikXG , and [Si(k),RG] = [Si(k),PG] = 0. Up to �rst

order in perturbation theory

Pf←i(t) =
1

~2

∣

∣

∣

∣

ˆ t

0

dt′eiωfit
′
(

〈n, 0, 0, χb|W0 |0, 0, 0, χa〉 e−iωt′ + c.c
)

∣

∣

∣

∣

2

=
1

~2

∣

∣〈n, 0, 0, χb|A0Si(k)e
ikXG |0, 0, 0, χa〉

∣

∣

2
∣

∣

∣

∣

ˆ t

0

dt′ei(ωfi−ω)t′
∣

∣

∣

∣

2

+
1

~2

∣

∣

∣〈n, 0, 0, χb|A0S
†
i (k)e

−ikXG |0, 0, 0, χa〉
∣

∣

∣

2
∣

∣

∣

∣

ˆ t

0

dt′ei(ωfi+ω)t′
∣

∣

∣

∣

2

.

Notie the ross term was negleted beause it vanishes in the t → ∞ limit. As we know from the Fermi's golde

rule, the time-integrals yields to delta funtions at the resonane frequenies: ω = ± (nΩ+ ω0). [
∣

∣

∣

´ t

0
dt′ei(ωfi+ω)t′

∣

∣

∣

2

=

sin2(ωfi∓ω)t/2
(ωfi∓ω)2 ∝ δ (ωfi ∓ ω).℄ The negative sign is related to the seond term whih orresponds to the transition

|0, 0, 0, χa〉 → |n, 0, 0, χb〉 , i.e., the stimulated emission, and therefore, will be negleted. Finally, the relative intensity

of the resonanes are proportional to

∣

∣

∣

∣

〈n, 0, 0, χb|
A0

~2
Si(k)e

ikXG |0, 0, 0, χa〉
∣

∣

∣

∣

2

∝ |〈χb|Si(k) |χa〉|2
∣

∣〈n, 0, 0| eikXG |0, 0, 0〉
∣

∣

2
= |s(k)|2

∣

∣〈n, 0, 0| eikXG |0, 0, 0〉
∣

∣

2
.

Notie that the resonanes our when ω = ωfi = (nΩ+ ω0) . For ω0 ≫ Ω and for n small (suh that ω0 ≫ nΩ),
then the resonane ours approximately when ω = ω0. As the radiation �eld wavevetor is k = ω/c, then it an be

replaed by k0 = ω0/c.
(g.α)
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Let us rewrite XG in terms of the riation and anihillation operators:

XG =

√

~

2MΩ

(

a+ a†
)

=
1

k0

√

~2k20
2M

× 1

~Ω

(

a+ a†
)

=
1

k0

√

ξ
(

a+ a†
)

.

Moreover, let us make use of the Glauber's formula: eA+B = eAeBe−
1
2
[A,B]

, whenever [A, [A,B]] = [B, [A,B]] = 0.
As

[

a, a†
]

= 1, then
[

i
√
ξa, i
√
ξa†
]

= −ξ. Finally, we are able to ompute

〈

ϕn

∣

∣eik0XG
∣

∣ϕ0

〉

=
〈

ϕn

∣

∣

∣ei
√
ξ(a+a†)

∣

∣

∣ϕ0

〉

= e
ξ
2

〈

ϕn

∣

∣

∣ei
√
ξaei

√
ξa†
∣

∣

∣ϕ0

〉

= e
ξ
2

∞
∑

j,l=0

〈

ϕn

∣

∣

∣

∣

∣

(

i
√
ξa
)j

j!
×
(

i
√
ξa†
)l

l!

∣

∣

∣

∣

∣

ϕ0

〉

.

From this, it is lear that the surviving terms are those in whih l− j = n. In order to get the orret prefators, we

need

a† |ϕk〉 =
√
k + 1 |ϕk+1〉 , ⇒

(

a†
)l |ϕ0〉 =

√
l! |ϕl〉 ,

a |ϕk〉 =
√
k |ϕk−1〉 , ⇒ aj |ϕl〉 =

√

l!

(l− j)! |ϕj〉 , provided that j ≤ l.

Thus,

〈

ϕn

∣

∣eik0XG
∣

∣ϕ0

〉

= e
ξ
2

∞
∑

j,l=0

(

i
√
ξ
)l+j

j!l!

√

l!

(j − l)!
√
l! 〈ϕn|ϕl−j〉 = e

ξ
2

∞
∑

j,l=0

(

i
√

ξ
)l+j

√

l!

(j − l)!
√
l!δn,l−j

= e
ξ
2

∞
∑

j=0

(

i
√
ξ
)n+2j

j!

√

1

n!
= e

ξ
2

(

i
√
ξ
)n

√
n!

∞
∑

j=0

(−ξ)j
j!

=

(

i
√
ξ
)n

√
n!

e−
ξ
2 .

Therefore,

πn(k0) =
∣

∣

〈

ϕn

∣

∣eik0XG
∣

∣ϕ0

〉∣

∣

2
=
ξn

n!
e−ξ,

whih is a Poisson distribution.

(g.β) The normalization of the Poisson distribution is veri�ed

∞
∑

n=0

πn(k0) =

∞
∑

n=0

ξn

n!
e−ξ = e+ξe−ξ = 1.

Notie this result omes from the ompleteness of the wavefuntions 〈XG|ϕn〉 and that eik0XG
has modulus 1:

∑∞
n=0 πn(k0) =

∑∞
n=0

〈

ϕ0

∣

∣e−ik0XG

∣

∣ϕn

〉 〈

ϕn

∣

∣eik0XG

∣

∣ϕ0

〉

= 〈ϕ0|ϕ0〉 = 1.

(g.γ) The mean energy of the funtion eik0XG
(shifted by the zero-point energy ~Ω/2) is

∞
∑

n=0

n~Ωπn(k0) = ~Ωe−ξ
∞
∑

n=0

n
ξn

n!
= ~Ωe−ξ

∞
∑

n=1

ξn

(n− 1)!
= ~Ωe−ξξ

∞
∑

n=1

ξn−1

(n− 1)!

= ~Ωe−ξξ
∞
∑

m=0

ξm

m!
= ~Ωξ = ~Ω

(

~
2k20

2M~Ω

)

=
~
2ω2

0

2Mc2
,

whih is the energy of a free partile of momentum ~k0. This should be the ase sine eik0XG |ϕ0〉 is the ground state

of the 1D Harmoni Osillator with additional moment k0. The kineti part of the Hamiltonian will give this kineti

energy (whih should be related to the reoil energy if a photon is absorbed by this osillator) while the potential

part of the Hamiltonian will give ~Ω/2 (whih was originally shifted out).

(h) The ondition ~Ω ≫ ~
2ω2

0

2Mc2 means that the energy of the �internal� degrees of freedom are muh less than the

energy sale of the enter of mass (�external� degrees of freedom). This orresponds to the ase ξ ≪ 1. As we have
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seen in item (f ), the absorption amplitude is proportional to Pn←0 ∝ |s(k)|2
∣

∣〈n, 0, 0| eikXG |0, 0, 0〉
∣

∣

2
. Thus, it is

proportional to πn(k0) in 1D. As ξ ≪ 1, the only relevant transition is to state n = 0:

πn =
ξn

n!
e−ξ ≈ ξn

n!
(1− ξ) ,

thus, P0←0 ∝ 1 − ξ ≫ P1←0 ∝ (1− ξ) ξ. Thus, the enter of mass remains still, and the energy is totally absorbed

by the internal degrees of freedom. This justify the name of the line: reoilless absorption line. This line will be

peaked at the absorbed energy. The inident energy is ~ω. The internal transition is resonant at ~ω0. The di�erene

between these energies were disussed in item (d): the Doppler e�et energy shift, δE1, and the reoil energy δE2.

As we have just argued, the reoil energy does not appear in the 0 ← 0 transition. The Doppler energy shift is

also absent beause the nuleous is bounded about its equilibrium position. Naively, one ould say that the initial

momentum of the nuleous is zero, K = 0. This diretly yields δE1 = 0. However, K is not a good quantum number

for the Harmoni Osillator. The argument is that its mean value is zero. Thefore, the mean value of the shift is

approximately zero. The fat that

〈

K2
〉

6= 0 will provide a width to the resonane line. If the nuleous were in a

higher exited state, the width of the line would be broader. Thus, sine δE1 = δE2 = 0, we onlude the resonane
will appear exatly when ~ω = ~ω0.

(i) The limit ~Ω ≪ ~
2ω2

0

2Mc2 (or ξ ≫ 1) orresponds to the limit in whih it is muh easier to exite the motion

of the enter mass of the nuleous than to exite its internal degrees of freedom. Thus, we are simply exiting an

1D Harmoni Osillator. The spetrum of suh is disrete and the distane between onseutive levels are onstant

equal to ~Ω [as shown in item (e)℄. The intensity of this lines are given by πn. From the properties of the Poisson

distribution, we onlude that the highest peak will happen for n̄ ≈ ξ (the most probable target state n̄) and the

width of this transition is ∆n ≈ √ξ. As ξ ≫ 1, there will be many equidistant transition lines.

Let us ompute the baryenter of the spetrum (shifted by the zero-point energy

1
2~Ω):

~ω =

∞
∑

n=0

~ωnπn =

∞
∑

n=0

~nΩ× ξn

n!
e−ξ =

~
2ω2

0

2Mc2
,

as we have seen in item (g.γ). This oinides with the absorption line of a free nuleous initially at rest: the reoil

energy δE2 as seen in item (d) and argued in item (g.γ). Notie that we are not onsidering the frequeny ω0 found

in item (e) beause we are negleting a transition between the internal states |χa〉 → |χb〉.
Let us ompute the width of these lines:

∆ω =

√

ω2 − ω2.

We need to ompute

∞
∑

n=0

n2 ξ
n

n!
e−ξ =

∞
∑

n=1

n
ξn

(n− 1)!
e−ξ = e−ξ

∞
∑

j=0

(j + 1)
ξj+1

j!
= e−ξξ





∞
∑

j=1

ξj

(j − 1)!
+
∞
∑

j=1

ξj

j!



 = ξ (ξ + 1) .

Therefore,

∆ω = ~Ω

√

ξ2 + ξ − (ξ)2 = ~Ω
√

ξ =

√

~2ω2
0

2Mc2
× ~Ω.

Notie the line width ∆ω → 0 in the limit Ω → 0. This limit orresponds to a free nuleous (no potential energy).

Thus, we expet a single resonane at the free energy partile ~ω.

6.

Firstly, let us fous on the stati problem. The Hamiltonian reads

H =
1

2m
P 2 + V (x),

where V (x) is perturbative. The Eigenfuntions of H0 are plane waves: 〈x|k〉 = ϕk(x) = eikx/
√
L, where L (whih

will be set to in�nity later) is the size of the 1D box ontaining the partile. Using periodi boundary onditions, we

have that eikL = 1, and thus, kn = 2πn/L, with n ∈ Z. Sine V is periodi, we an write its Fourier series:

V (x) =
∑

n

Vne
inκx, with κ =

2π

a
, and Vn = 〈k + nκ |V (x)| k〉 = 1

L

ˆ

dxV (x)e−inκx. (3)
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The dispersion relation is simple: H0 |k〉 = ǫk |k〉 , with ǫk = ~
2 (k − nκ)2 /(2m). Thus, there is degeneray around

the points k = nκ/2 (the boarders of the Brillouin zones) (see Fig. 3).

0

PSfrag replaements

ǫk+κ

ǫk−κ

ǫk

−κ κ k

Figure 3: The dispersion relation of a free parti-

le in a periodi potential. Degeneraies happen

whenever the parabolas meet.

Lets apply quasi-degenerate perturbation theory. The main idea

is to solve exatly the quasi-degenerate states while applying on-

ventional perturbation theory for the remaining states. Denoting

by |i〉 the Eigenvetors of H0, we rewritte the perturbation as

V =
∑

i,j

|i〉 〈i|V |j〉 〈j| = V1 + V2,

where

V1 = |n〉 〈n|V |n〉 〈n|+ |n〉 〈n|V |m〉 〈m|
+ |m〉 〈m|V |n〉 〈n|+ |m〉 〈m|V |m〉 〈m| ,

V2 =
∑

i,j 6=m,n

|i〉 〈i|V |j〉 〈j| ,

where |m〉 and |n〉 are the quasi-degenerate states, i.e., ǫn ≈ ǫm.
We now treat the subspae spanned by |m〉 and |n〉 in the best

way possible (exatly, for instane) while treating the remaining

Hilbert spae approximately. This means we treat H ′ = H0 + V1 exatly beause V2 does not ats on this subspae:

〈n |V2|n〉 = 〈n |V2|m〉 = 〈m |V2|n〉 = 〈m |V2|m〉 = 0. Thus, the orresponding matrix of H ′ in this subspae reads

H ′ =

(

ǫn + 〈n |V |n〉 〈n |V |m〉
〈m |V |n〉 ǫm + 〈m |V |m〉

)

=

(

ǫn + Vnn Vnm
Vmn ǫm + Vmm

)

,

whih an be easily diogonalized. The new Eigenenergies are

ǫ± =
ǫm + ǫn

2
+
Vnn + Vmm

2
±
√

(

ǫn + Vnn − ǫm − Vmm

2

)2

+ |Vmn|2.

Notie that when ǫm = ǫn, this reovers the the usual �rst order of degenerate perturbation theory.

(a) Let us now onsider the vetor potential:

H0 =
1

2m
(p− eA)2 , with A(t) = −Et.

Assuming that A(t) varies slowly in time, then we an apply the addiabati approximation. The instanteneous basis

|k〉 remains the same:

〈x|k〉ϕ(x) = 1√
L
eikx.

However, its spetrum beomes time-dependent ǫk−κ = ~
2

2m (k − κ− eA/~)2, as we show below:

H0 |k〉 =
1

2m

(

p2 − 2eAp+ (eA)
2
)

|k〉 = 1

2m

(

~
2k2 − 2~eAk + (eA)

2
)

|k〉

=
~
2

2m

(

k − eA(t)

~

)2

|k〉 .

We are now able to study the quasi-degenerate pertubation theory of state |k〉 and |k − κ〉 around k = 1
2κ. We will

have to diagonalize the matrix

H ′ =

(

ǫk + V0 V ∗1
V1 ǫk−κ + V0

)

,

where Vn = 〈k + jκ |V | k + (j + n)κ〉 = 1
L

´

dxeinκV (x) [see Eq. (3)℄. The Eigenenergies are

E± =
ǫk + ǫk−κ

2
+ V0 ±

√

(

ǫk − ǫk−κ
2

)2

+ |V1|2.
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As we are interested near the degenerate point, set q = k − 1
2κ, the momentum measured from the Brillouin zone.

Thus,

E± =
ǫk + ǫk−κ

2
+ V0 ±

√

(

~2

2m

(

q − eA

~

)

κ

)2

+ |V1|2.

Therefore, there is a level splitting around the nκ
2 points as shown in Fig. 4. The arising gap ∆ equals E+−E− when

q = 0, i.e., ∆ =

√

|V1|2 +
(

~2

2m
eA
~
κ
)2
.

0

PSfrag replaements

−κ κ k

∆

Figure 4: The dispersion relation of a free partile

in a periodi potential. Degeneraies are lifted

around the Brillouin zones.

The Eigenstates are the Eigenvetors of H ′:

|+〉 = α |k〉+ β |k − κ〉 , and |−〉 = β |k〉 − α |k − κ〉 ,

whih have umbersome expressions. However, at k = 1
2κ, notie

ǫk = ǫk−κ, The expressions simplify yielding to

|±〉 = 1√
2
(|k〉 ± |k − κ〉) .

(b)

The adiabati Eigenstates are the instanteneous Eigenstates mul-

tiplied by the dynamial phase (there is no Berry phase sine

∂t |k〉 = 0):

∣

∣±̃
〉

= e
1
i~

φ±(t) |±〉 .

The dynamial phases at k = 1
2κ (q = 0) are

φ±(t) =
ˆ t

0

dt′E±(t
′) =

ˆ t

0

dt′
~
2

2m

(

1

4
κ2 +

(

eEt′

~

)2
)

+ V0 ±
√

(

~2

2m

(

eEt′

~

)

κ

)2

+ |V1|2.

=
~
2

2m

(

1

4
κ2t+

1

3

(

eE

~

)2

t3

)

+ V0t±
ˆ t

0

dt′

√

(

~2

2m

(

eEt′

~

)

κ

)2

+ |V1|2.

The last integral is umbersome but we will not need it in what follows.

()

The transition should happen where the distane between the lower and uper bands is smallest. Thus, at k = 1
2κ.

In �rst order of adiabati perturbation theory, we have that

P+←−(t) =

∣

∣

∣

∣

∣

∣

ˆ t

0

dt′

〈

+̃
∣

∣

∣Ḣ(t′)
∣

∣

∣ −̃
〉

E+(t′)− E−(t′)

∣

∣

∣

∣

∣

∣

2

.

The matrix element

〈

+̃
∣

∣

∣Ḣ(t′)
∣

∣

∣ −̃
〉

= e
i
~
(E+−E−)

〈

+

∣

∣

∣

∣

1

m
(p− eA)

(

−eȦ
)

∣

∣

∣

∣

−
〉

= e
i
~
(φ+−φ−) eE

m
〈+ |p| −〉 .

We now have to ompute

〈+ |p| −〉 = 1

2

(〈

1

2
κ |p| 1

2
κ

〉

+

〈

−1

2
κ |p| 1

2
κ

〉

−
〈

1

2
κ |p| − 1

2
κ

〉

−
〈

−1

2
κ |p| − 1

2
κ

〉)

=
1

2

(

1

2
~κ+ 0− 0−

(

−1

2
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))

=
1

2
~κ.

Thus,

P+←−(t) =

(

eE

2m
~κ

)2
∣

∣

∣

∣

∣

∣

ˆ t

0

dt′
exp

[

i
~

(

2V0t
′ +m

(

1
4κ

2t′ + 1
3

(

eE
~

)2
t′3
))]

~2

m

(

1
4κ

2 +
(

eEt′

~

)2
)

+ 2V0

∣

∣

∣

∣

∣

∣

2

.
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For small time and eletri �eld, i.e., eEt≪ ~κ,
√
mV0, then we an approximate the integral to

P+←−(t) ≈
(

eE

2m
~κ

)2
∣

∣

∣

∣

∣

ˆ t

0

dt′
exp

[

i
~
(∆t)

]

∆

∣

∣

∣

∣

∣

2

=

(

eE

2m
~κ

)2 ∣
∣

∣

∣

2
~

∆2
sin (ωt)

∣

∣

∣

∣

2

,

where ∆ = 2
(

~
2K2

2m + V0

)

, where K = 1
2κ, and ~ω = ∆. Finally,

P+←−(t) ≈
4~2

∆4

(

eE

2m
~κ

)2

sin2 ωt.


