Lista 2 - Quéantica B (2013)

1. Quantization of the electromagnetic field
Consider the mode expansion of the vector potential (in the Schrodinger representation)
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where aL/\ (ay ) are creation (annihilation) operators of photons the wavevector and polarization of which are
respectively k = k (sin 6 cos ¢, sin 0sin ¢, cos 0) and A\, wy, = ck is their angular frequency, and éx 1 are the polarization
vectors

ék,1 = (cos B cos ¢, cos O sin ¢, —sin ) ,

ék,Q = (_ Sin¢a COsS (bv 0) )
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éx,+ = —= (Fék,1 — i€k2).
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(a) Show that V- A = 0. What is the physical interpretation of this result?
(b) Show that the angular momentum
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Hint: It is convenient to use techniques of tensor calculus, in particular the Levi-Civita antisymmetrical tensor €;;:
gk =01 i =j,ori =k, or, j=k; g = 1if (ijk) equals (123) or any cyclic permutation of these indices, and
€ijk = —1 otherwise. In addition, use the “contract epsilon identy” 22:1 €ijkEkim = 04,105,m — 0;m0;j;. Then show
that
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Recall that V-E =0, (ax b), = >, eixa;by and (V x b); =3, ¢ 5ijk%bk. Finally, use the boundary conditions

that the fields vanish when » — oc.
(¢) Show that

L<S>:€—§/d37~E.S-A,

with S being 3 x 3 matrices satisfing angular momentum commutation relations and having eigenvalues 0, +h.
(d) Show and give the physical interpretation of the result

L) = Z h (a};&ak’_|r — aL_ak)_) k.
k

(e) Write A, E and B in the Heisenberg representation. (Consider the free-field Hamiltonian H =
Dk hwk,AaL/\akM\, and ignore the zero-point energy.) Compute the commutation relations [A,(r,t), A;(r',t")],
[Ei(r,t), E; (v, )], [Ai(r,t), E;(x',t")], and [E;(r,t), B;(r/,t")]? Give a physical consequence of latter one.



(f) Do E(r,t) and B(r,t) commute with the total photon number operator
N(t) = Z GL,Aak)\?
P

Interpret or give a physical consequence of your result.
(g) Cousider a coherent state of photons with momentum p = fik and helicity A given by

o) = 7312 e o),

where [0) is the vacuum state and « is a scalar. Compute the time evolution of AX = 1/(X2) — (X)* and AP =

\/(P?) — (P)2 where X = ,/% (aL/\ + ak7/\) and P =i/ % (aL/\ — ak7/\) are position and momentum operators
of the associated harmonic oscillator, respectively.

(h) Show that the Schrédinger equation ih% la(t)) = H |a(t)) has a solution |a(t)) = |8), where 8 = ae™ k!,
(Ignore the zero-point energy.) Now compute (a(t) |A|a(t)). (Discuss your result relating it with classical electro-
magnetic waves such as laser.)

2. Interaction between matter and radiation: emission and absorption

(a) Consider a structureless free quantum particle in the infinity space. Show that this particle cannot spontaneously
emit a single photon. Physically, why this is the case? Hint: Use that the initial and final states of the free particle
have well define momenta and that the dispersion relation for the particle is quadratic while for the photon it is linear.

(b) Consider the spontaneous decay of the Hydrogen atom (fixed in space) in state |2,1,1). Compute the amplitude
of the decay using plane waves for photons, and explain the angular dependence of the amplitude for each helicity
+1 of the final-state photon in terms of the angular momentum conservation. Show that the rate is the same as the
decay rate of the |2,1,0) state.

(¢) (Optional) Compare the previous decay rate with the case of a free Hydrogen atom, i.e., for the case of a
finite-mass proton. Without doing any calculation, in which case do you expect the transition rate to be larger?
Justify.

(d) How can the 2s state decay to the 1s state? There is no need in computing it, but discuss in detail. Discuss
about the electric and magnetic dipolar transitions. Discuss about the decay route 2s —2p—1s. (Recall that due
to Lamb shift splitting, 2s and 2p are not degenerate.) (Optional) Compute this amplitude transition (see Advanced
Quantum Mechanics, J. J. Sakurai, problem 2.6).

3. Consider the Jaynes- Cummings Hamiltonian given by
t 1 . 1 fox -
H = hwa'a + Ehwoa —|—§ﬁQ [aT (6 —ioY) +a(o” +ic")].

The creation and anihillation operators a' and a act on the radiation field while the Pauli matrices ¢®¥* act on the
matter. w, wy and §2 are constants (frequencies).

(a) Give a detailed physical interpretation of each term in the Hamiltonian.

(b) Compute all the Eigenenergies and Eigenvectors of H. (They are called dressed states of the matter.)

(¢) Consider now that the system is prepared in the state [10) = >, Cn |7) 0diation © |0 matter » With C1 = C2 and
all others C; = 0. Compute the probability of finding the two-level system in the excited state as a function of time.

4. Interaction between matter and radiation: scattering
We are interested in the scattering process in which the initial and final states are

1) = i) @ [nke,x, O, nv) 5 and [F) = [f) @ |(n — 1)y 4, 1k',w>,

i.e., in the beginning, there are n photons of momentum 7k and polarization A while, in the end, there is one less
photon in such state which was scattered into a photon of momentum hk’ and polarization \. Such process involves
two photons and have contribution in second order of perturbation theory from the term £ 3~ p; - A(r;) (where p;
are the momentum of the i-th electron in the system), and contribution in first order in perturbation theory from the
diamagnetic term V = % > ;A(ri) - A(r;). Here, consider only the effects of this latter term.

(a) Rewrite V in terms of the density operator p(r).

(b) Compute the matrix element (I |V|F).



(¢) Compute the differential cross section and show that
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where ¢ = 477;,% is the classical radius of the electron, and p(k) is the Fourier transform of p (r).

(d) Consider the simplest case of the scattering by a single free electron in which |i) = |hq;) and |f) = |hqs) and

compute the corresponding differential cross section (dubbed the Thomson cross section). Explain why this process
is allowed.



ANSWER:
1.
(a) The spatial dependence appears only in the exponential:

V- (ee®™T) = ie - ke
Moreover éx 1 -k = éx 2 -k = 0. Since the circular polarized vectors are combinations of éx ; and éx 2, then V- A = 0.
Thus, this vector potential satisfy the transverse gauge. The physical interpretation is that the propagation direction

k is perpendicular to the polarization, i.e., the light is a transverse wave.
(b) Lets use the identity
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Then, integrating over space,
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Notice that (e;xz;E1Ar) o — oo = 0, since z; # x; (guaranteed by €,;;) and that the fields vanish at » — co. Finally,
noticing that [Ey (r x V) A, = 32, [Ei (€ijxw;0k) All;, we arrive at the final result

3
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We now switch to the prove of Eq. (1):
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where we used that V- E = 0 (there are no charges).

(¢)
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where
00 0 0 01 0-10
SO =inl o0 -1, SP=in|l 0 00|, S®=in{1 0 0
01 0 ~100 0 0 0



It is easy to verify that the Eigenvalues of S are +h, 0, and —h. Moreover, a simple inspection show that
[Sm, S<’ﬂ = ihe S,

Thus, S are spin-1 matrices.
(d) From the definition
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We then have four terms. Integrating over space yields
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and thus,
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The sum over the terms ax ya_k x €k x X é_k » and aI{ )\atk vEk y X "y vanish because they are odd functions of
k. This is easily shown by summing over the pair of vectors q and —q:

agG—qx (Eqr X €—qx) +a-qrdqx (E—qx X éqx) =0,

since [aq,x, @—q,x] = 0. The spin angular momentum then reduces to
(D Z Z . . . X
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We now sum over the polarizations. Using that
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since éx 1 X éx,2 = k, we arrive at the final result
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where we used that [ax,», aL 4) = 1. This result means that the spin angular momentum of the photon is parallel
to the direction of propagation k. Moreorver, the possible values are only +hA. If the L,(f) = +h, then the helicity
is positive (41), i.e., the classical picture of the photon is that it has clockwise circular polarization. In the same

manner, If the L( ) = —h, then the helicity is negative. Finally, notice the component L,(f) = 0 is absent. This a
feature of massless particles travelling at light speed.
(e) In the Heisenberg representation

A(r,t) = ei%tA(r)eﬂTt7



where H = hwkaL 20k, x- We then need to compute
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Thus,
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As a consequence,
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We now turn to the commutations relations:
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Summing over the polarizations,
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where the last equality can be checked by inspection. Finally, we arrive at

[4;, Aj] = % Zk: wik (ei(k-(r*r’)fwk(tft’)) . e*i(k(rfr’)w(tft’))) (% _ kk’;a>

S k) — ekt —t)) (6, - TR
_EOV;w]g81n(k (r—r")—ck(t—1")) (5%3 2 )

We now use the continuum limit ), — (2m) v [ d3k and set, without loss of generality, that r — r’ points in the

k. direction. For i = j, it is easy to see that the integral vanishes since the integration over the ¢ angle (which runs
from 0 to 2m) will involve either sin ¢ cos ¢, or sin ¢, or cos¢. For i = j = z, we have

/ d0/ dk <k2 sin @sin (k (Ar cos @ — cAt)) ik (1 — cos® 9)>
0 0 c

= ﬁ /OOO dksin (ckAt) (kAr cos (kAr) — sin (kAr)) = 0.



The last result is obtained by regularizing the integrand: multiply it by e~®* and after integration, take the limit
a — 04. Analogously, for ¢ = j = x, we have the integral

2m ks 00
/ dqﬁ/ d9/ dk <k2 sin @ sin (k (Ar cos 0 — cAt)) ik (1 — cos® ¢sin? 9))
0 0 0 ¢
= f/ d9/ dk (ksin@sin (k (Arcos — cAt)) (2 — sin®0))
c

= —% /00 dk sin (ckAt) (kAr cos (kAr) — (1 - (kAr)Q) sin (k:Ar)) =

Symmetry arguments ensures the same happens for ¢ = j = y. Therefore, we conclude that [A;(r,t), 4;(r/,t")]
The commutator between the electric fields is similar:
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The difference between the previous integrals is that wy now appears in the numerator, and thus contributes with k
factor instead of k1. It turns out that, as before, all the integrals vanish. Thus,[E;(r,t), E;(r',t')] = 0.
The commutator for the magnetic fields is
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since k X éxy = —iAkéx ). The integrals involved are similar to those of the electric field, and hence,

[Bi(r,t), B (x',t')] =

Let us now turn to the commutator
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At this point, it is already clear that not all commutators vanish, specially when k- (r —r’) = ¢k (¢t — ). Let us focus
on the equal time commutator (¢ = ¢’). Then,

o] sy - P cosle (o)
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The final commutator is

[ ., j 260V ZZ / kr k- /,wkterk/t ) (ek )\) (k X ek, )\/). |:ak )\,CLL )\,:|
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Notice that > ejimkikn, = (k x k)j = 0. Thus, for the equal time commutator

[E; (v,t), B; (', t)] = eoV Z Z giimkisin (k- (r —1')) dim eoV qulkl sin(k- (r—1'))
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The consequence of this result is that it is not possible to simultaneously measure the electric and magnetic field
with arbitrarily precision.
(f) The electric and magnetic field do not commutate with the number operator. In order to show this, consider a
single mode. Then, we need the commutators
[ak/,x, GL,\ak,A} = Ok, k' 0x N Gk, A,

t _
[ak',A” aIc,)\ak)\} = Ok 0y ¥ 0 5.

in order to compute

[E N = Z” Z Z hwk 3 (akﬁAeZ(k = wkt)ek AT ak A€ (k'riwkt)él*{y)\) #£0,
k

[B N = /260 Z Z hLUk % (ak)kei(k'r—wkt)k X ék,)\ + G/Tky)\e_i(k'r_wkt)k X éli)\) 7& 0.
k A=+t

Thus, the number of photons is not conserved when the electromagnetic field is coupled to matter.
(g9) Using the result of item (h), we have that

h
(X) =[5 (a(0) af s + axa|a(t))
~ 2i (<O‘ 210 e e T A€ —3181° Ba s O> + <0 ‘67%‘[}'26”““**&1( ,\efé‘mzeﬁallA 0>)
Wi ’
h *|ﬁ|2 BaT ﬂaT
e (el (o] )

0)).

* T
[65 ak,x,al)\} PELE NN

i
|:ak,>\a eﬂak’k:|

_&ew (( 0)+ (0]e

We then need to compute the commutators:

e~ geaal —g + [—aaT,a} + % [—aaT, [—aaT,aH + ...

! t
_a+a+2'[ aa 7a}+---:a+a,



which yields

Thus,

h 2 * 1
— -8l * —B%aK,x pBay 5
(X) = kae (ﬂ <O‘e o
[ B
= m(ﬂ +8).

Py =i/ (5~ ).

Now, we turn to the quadratric mean values (where we drop out the subindeces)

O> + <0 ‘eﬁ*a‘”e'@“ltvk

)

In the same manner,

h h
(X?) = 2w (a'a" + aa’ + a'a + aa) = 2wy, (a'a’ +1+2a%a + aq)
= et (o|[e7 e atal] e’ 4142 [ al] [a,e%'] 4 e [aa, "] 0).
Wk

We need the commutators

t —oat —oat —oat —oat
[aa,eo‘a} =aae” Y +ae % g =a’e 4 2ae Y q,

[ea*a, aTaq = {aa, ea‘ﬂr =a*?e % 4 2a%afe",

Therefore,
2 7i *2 * 2y " *\2 7i *\2
<X>_2Wk([3 +1+288 +ﬂ)_2wk(1+(ﬂ+6))—2wk(1+(6+ﬂ)),
hwg . _ hwy 2
<P2>:_T(ﬂ2—1—2[3ﬂ +62)—T(1—(ﬁ—ﬂ))-
Finally,

AX:Mi, and AP:M%,
2wk 2

which do not depend on time, which is the main feature of coherent states. Moreover, AXAP = %h, which saturates
the Heisenberg uncertainty principle.
(h) Let us show this result by inspection. The left-hand side of the equation is

B) O/ _1ip2 pat Lo O [ pat
5.9 18y _in D (o318 80" 10y — ipe— 3187 9 [ Ba
ihgg 19) = ihg; (e ¢ ) 0) = ihe ot (e ) 02

= ihe~ 2181 BaTel" |0) = hwpe 218 BaTePa’ |0) .
The right-hand side is

T T
HIB) =Y hwwal, v 370 eP M |0) = hugal yaxre™ 217 e J0)
KN

i i
zhwke*%mzaLA [ak),\, eﬂ“k,k} |0) = hwkef%m‘zal))ﬁeﬁak’* |0} .
Notice that this equals the left-hand side. This ends the proof that

aft) = B = ae KT,
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Let us now compute

h 1 iq-T A —iQ-T A%
<ﬁ|A|B> - V 2¢qV ;a;l: w_q (<aq”7>eq eq,g+<ag,o>e 4 eqya)

h ike-r 4 *  —iker 4%
=V aevay, (P e+ 87T

h (ke r—w ~ * _—i(kr—w A%
“V 2V (an(kr e +ate /T kt)ek,/\>'

This is an important result. Notice it is simply the k-wave solution of the plane equation (0%88—; — V2) A = 0. Thus,

the state |3) is a coherent electromagnetic wave, just like a laser. (Some people like to say that laser is a Bose-Einstein
condensate of photons.)

Let explore some insightful cases as p = pZ, A = +1, and a € %. Thus, éx 4+ = —iz (1,4,0), and
(A) =— n a(cos (k(z—ct)) T —sin(k(z —ct)) g)
a eoVwy vl

which is a circular polarized vector which rotates in time clockwise in the zy-plane (the z-direction coming out of the
plane).

2.
(a) The reason why the spontaneous emission is not possible is due to the impossibility of conserving both energy
and linear momentum in the process. Linear momentum requires

where k; ¢ are the initial and final momentum of the particle, respectively, and q is the momentum of the emitted
photon. Energy conservation requires

n2k; WPk
—2mz =5 + heg

In the reference frame of the particle in its initial state, k; = 0. Then, without loss of generality, it is clear that energy
conservation can not be fulfilled unless £ = ky = 0, which means that no photon was emitted.
All this arguments can be made precise considering the transition amplitude

Z <kf; an\|ki; 0, (t)> =0,

A
where |[k;;0,t) = e *#*/" ||k;;0). In order to accomplish this, we just need to study the matrix element
<kf’ UTPN |H| ki 0> )

where the only interesting term in the Hamiltonian is the interaction Hiny = —%qA -p+ ﬁqQAQ. The second term
conserves the number of photons and thus can be neglected. The first term changes the number of photons by one
and thus can allow the emission:

(kp;ngx |[H| ki 0) éfm . <kf |e_iq'rp‘ ki> o /d31'e_“‘f"re_w"re“‘“r x0(k;—k;—q),

which is the momentum conservation. To complete the story, we need to consider the Dyson series where the energy
conservation comes from (Fermi’s golden rule). The energy conservation will happen in all orders of perturbation
theory (recall the classes on light scattering) because the whole Hamiltonian is time-independent. Thus, we also have
to satisfy energy conservation. As argued in the beginning, both conservation laws can not be satisfied simultaneously.
Thus, a single photon emission can not happen.

Notice that the total number of photons does not commute with the Hamiltonian (due to the vector field term).
Can you think which process can happen in order to not conserve the number of photons?
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(b) As seen in class, in first order of perturbation theory the transition rate is given by

27 -\ 12
Wer == |(f | Hint static| 7)] p|hw:Ei—Ef
174 wng
(27T)3 hed

27T e? h(nqA—Fl)

q-r 2
=T e -(1,0,0]e"™p|2,1,1)|

ewai

o (1,00 e pl2,1,1)]F — 2
A <, ' |e p| o >‘ 2(277)2m260hc3

)

where, for spontaneous emission, nqx = 0. In the electric dipole approximation e’d™ ~ 1. Moreover, we use that
p = im[Ho,r| /h. Thus,

W Gl W B 1,0,0(r[2,1,1)|* d0 = o0 e 0 0l 2,1 1) do
Fr Ameohc | 2mc? Caa ! ] | T2 g (1,0,0r[2,1, >‘ ;

where « &~ 1/137 is the fine structure constant. We now have to compute the matrix element

<1,0,0|r|2,1,1>:/d3rR (1) Yo (0, ¢) 7 (sin 0 sin ¢, sin @ cos ¢, cos 0) Ray (1) Y11 (6, ¢)

1 — r 1 P ;
= / d3r —e oy (sin 6 cos ¢, sin 0sin ¢, cos ) — [ —z e 20 sin fe'?
Tag 8ag \/ mag

27
= ¥a0 (1,i, 0) .

The polariation vectors are ég | = % (F cosB cos ¢ — isin g, F cosfsin ¢ + i cos @, £sinf), and hence,

w3, /97 2
fi
|/|/ = _— —_—
F1.x a27T02 (35a0>

wfci (27 )2 1
= —= Qo B
2me? \ 3% V2
We now interpret this result with respect to angular momentum conservation. Consider for instance the case A = +1,
which means that the emitted photon has angular momentum #q. For 8 = 0, this means that the total alngular
momentum of the final state is +A. Since the electron in the final state has no angular momentum, this means
that the maximum chance of the emitted photon with helicity +1 is at this the z-direction where the momentum is
classically conserved, as expected. On the other hand for A = —1, the probability amplitude that the emitted photon
is in the positive z-direction is null, since this direction maximally violates the classical picture of angular momentum
conservation. Conversely, the photon with negative helicity has higher probability of being emitted in the negative

z-direction (6 = ), since in this case, the angular momentum it carries is +7.

Finally, in order to compute the total transition rate, we integrate over all possible outcomes d2 and sum over all

helicities:
Wi (27 Wi (27 \? 16 w§; 216
Ii 240 — o i T _ LA
O (35a0> /(1:l:c059) dQ—a47TC2 (35a0> X =3~ = a5 o,
_ 2T\ smc?
=\3) "%
h 202

where ap = —— and hwy; = % (%) Notice it independs on A and equals half of the transition rate between

2

(Fcosfcosp —ising Ficosfsing — cosg)| dQ

1

V2
w? 7 2

dQ = a - f2 (;5%) (1 4 cos)* dQ.

(1 £ cos0) ew

states |2,1,0) and |1,0,0), as would be expected from the isotropy of the Coulomb potential. Finally, summing over
the helicities, we arrive at the desired result

2\ ? _
Wpgr = ZWFI,A = <§) a®mc?h? ~ (1.6 ns) !
h

(¢) We expect that transition rate for the finite-mass Hydrogen atom to be smaller since it approaches to the case
of a structureless particle and both energy and momentum have to be conserved simultaneously.
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Performing the calculations, we find that

I 2
WFI,ﬁnite—mass = WFI,inﬁnite—mass X E (m) )

where 1 = mM/ (M + m) is the reduced mass, M is the proton mass, and z = 3£ a? ~ 31075

(d) As the photon carries angular momentum of £, there can not be a single-photon electric-dipole transition
between two atomic states having the same angular momentum. Thus, it seems the transition between states 2s—1s
is highly suppressed. There is a route in which this transition can take place by emitting a single photon which is
via a magnetic dipole transition 2s; ,—1s; o in which the electron spin flips. It turns out this transition rate is very
small as we will argue later. Therefore, the main decay process must be a 2-photon emission process.

We then look back to the interaction Hamiltonian in order to understand the possible 2-photon decay routes. There
are two terms: one is V' = —=p- A and the other is V = 25732 A2, The latter one does not contribute in the electric
dipole approximation (e'** 2 1) because it will vanish identically: (1s|2s) = 0. We need to consider the next term
and thus, the overall transition rate will pick up a factor of (k - r)2. The other possibility (of same order of magnitude)
is to consider the former term in second-order of perturbation theory. Then, we will have matrix elements of type

3 (100; 2y [V] 5 1) (I; 1 [V 200; 0)
Esp0 — B ’

l

where |l) are atomic intermediate states and |n~y) depicts states with n photons. The order of magnitude can be easily
worked out (dropping out all numerical factors). As can be seen from the previous item, the electric-dipole transition
matrix elements

h mE ahcEy
cowV 040 %

(FIV]i)~ =

and the phase space of a single emitted photon (proportional to the density of states) is ~ V E2 (hc)_3. For a 2-photon
process, we will have to integrate over the 2-photon phase space, and thus we pick this factor squared. In addition,
notice we have only one delta function § (Eos — E15 — fw — hws), thus, there will be an additional factor of energy,
which will be of order of the transition energy Ey. Then, in second order we have that the transition rate will be of

order
1 [ ahcEy 1?2 viez\’ 1 Ao\ 5 1 me?
2 0 2 475 2 2 2 8
~z ( v %0 % EO) X <(hc)3> Ey ~ afagEy x 5 ™ (mca) (mc*a?) w5~ T

which is a® ~ 41077 smaller than the single-photon transition 2p—1s. A detailed calculation shows that the correct
transition rate is &~ 8.229s7!, which is one order of magnitude smaller than our naive calculation. Therefore, the
transition rates is 8 orders of magnitude smaller for the 2s state, meaning it is a metastable state. This could be used
to produce entangled photon pairs.

The alternative route decay 2s—2p—1s seems to be an important one because the transition rate 2p—1s is very
high (of order 108 bigger than the current rate). However, the splitting between the 2s and 2p (due to Lamb shift) is
very small. This makes the transition rate indeed even smaller than the previous 2-photon decay considered. We can
estimate the order of magnitude of the 2s—2p electric dipole transition. As before,

1 (ahcAE 2) y <VAE2> aaAE3

~ ﬁ % (%) (FLC)3 B3c2

where AF is of order of the splitting between the 2s and 2p states, which is of order of 1 GH, (as seen in class) or
hv ~ 410~ %eV. Thus,

AE\? ~
Was—ap ~ Waps1s X (E—> ~2.5107 " Wy 1.
0

This is extreme smaller than the previous 2-photon decays. Thus, although the route decay 2s—2p—1s is favored by
the fast decay of the last process, it is hindered by the very first step due to the almost degeneracy between states 2s
and 2p.

3. Will be typed soon...
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