
Lista 2 - Quântia B (2013)

1. Quantization of the eletromagneti �eld

Consider the mode expansion of the vetor potential (in the Shrödinger representation)

A(r) =

√

~

2ǫ0V

∑

k

∑

λ=±

√

1

ωk
ak,λe

ik·rêk,λ + h.c.,

Ȧ(r) = −i
√

~

2ǫ0V

∑

k

∑

λ=±

√
ωkak,λe

ik·rêk,λ + h.c.,

where a†k,λ (ak,λ) are reation (annihilation) operators of photons the wavevetor and polarization of whih are

respetively k = k (sin θ cosφ, sin θ sinφ, cos θ) and λ, ωk = ck is their angular frequeny, and êk,± are the polarization

vetors

êk,1 = (cos θ cosφ, cos θ sinφ,− sin θ) ,

êk,2 = (− sinφ, cosφ, 0) ,

êk,± =
1√
2
(∓êk,1 − iêk,2) .

(a) Show that ∇ ·A = 0. What is the physial interpretation of this result?

(b) Show that the angular momentum

L =
1

µ0c2

ˆ

d3rr× (E×B) = L(o) + L(s), with

L(o) =
1

µ0c2

ˆ

d3r

3
∑

i=1

Ei

(

~ℓAi

)

, with ~ℓψ = r×∇ψ,

L(s) =
1

µ0c2

ˆ

d3rE×A.

Hint : It is onvenient to use tehniques of tensor alulus, in partiular the Levi-Civita antisymmetrial tensor εijk:
εijk = 0 if i = j, or i = k, or , j = k; εijk = 1 if (ijk) equals (123) or any yli permutation of these indies, and

εijk = −1 otherwise. In addition, use the �ontrat epsilon identy�

∑3
k=1 εijkεklm = δi,lδj,m − δi,mδj,l. Then show

that

[r× (E×B)]i =
∑

j,k,l

El

(

εijkxj
∂

∂xk
Al

)

−
∑

j,k,l

∂

∂xl
(εijkxjElAk) +

∑

j,k

εijkEjAk.

Reall that ∇ ·E = 0, (a× b)i =
∑

j,k εijkajbk and (∇× b)i =
∑

j,k εijk
∂

∂xj
bk. Finally, use the boundary onditions

that the �elds vanish when r → ∞.

() Show that

L(s) =
ǫ0i

~

ˆ

d3rE · S ·A,

with S being 3× 3 matries satis�ng angular momentum ommutation relations and having eigenvalues 0, ±~.

(d) Show and give the physial interpretation of the result

L(s) =
∑

k

~

(

a†k,+ak,+ − a†k,−ak,−

)

k̂.

(e) Write A, E and B in the Heisenberg representation. (Consider the free-�eld Hamiltonian H =
∑

k,λ ~ωk,λa
†
k,λak,λ, and ignore the zero-point energy.) Compute the ommutation relations [Ai(r, t), Aj(r

′, t′)],
[Ei(r, t), Ej(r

′, t′)], [Ai(r, t), Ej(r
′, t′)], and [Ei(r, t), Bj(r

′, t′)]? Give a physial onsequene of latter one.
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(f ) Do E(r, t) and B(r, t) ommute with the total photon number operator

N(t) =
∑

k,λ

a†k,λak,λ?

Interpret or give a physial onsequene of your result.

(g) Consider a oherent state of photons with momentum p = ~k and heliity λ given by

|α〉 = e−
1

2
|α|2eαa

†

k,λ |0〉 ,

where |0〉 is the vauum state and α is a salar. Compute the time evolution of ∆X =

√

〈X2〉 − 〈X〉2 and ∆P =
√

〈P 2〉 − 〈P 〉2 where X =
√

~

2ωk

(

a†k,λ + ak,λ

)

and P = i
√

~ωk

2

(

a†k,λ − ak,λ

)

are position and momentum operators

of the assoiated harmoni osillator, respetively.

(h) Show that the Shrödinger equation i~ ∂
∂t |α(t)〉 = H |α(t)〉 has a solution |α(t)〉 = |β〉 , where β = αe−iωkt

.

(Ignore the zero-point energy.) Now ompute 〈α(t) |A|α(t)〉. (Disuss your result relating it with lassial eletro-

magneti waves suh as laser.)

2. Interation between matter and radiation: emission and absorption

(a) Consider a strutureless free quantum partile in the in�nity spae. Show that this partile annot spontaneously

emit a single photon. Physially, why this is the ase? Hint : Use that the initial and �nal states of the free partile

have well de�ne momenta and that the dispersion relation for the partile is quadrati while for the photon it is linear.

(b) Consider the spontaneous deay of the Hydrogen atom (�xed in spae) in state |2, 1, 1〉. Compute the amplitude

of the deay using plane waves for photons, and explain the angular dependene of the amplitude for eah heliity

±1 of the �nal-state photon in terms of the angular momentum onservation. Show that the rate is the same as the

deay rate of the |2, 1, 0〉 state.
() (Optional) Compare the previous deay rate with the ase of a free Hydrogen atom, i.e., for the ase of a

�nite-mass proton. Without doing any alulation, in whih ase do you expet the transition rate to be larger?

Justify.

(d) How an the 2s state deay to the 1s state? There is no need in omputing it, but disuss in detail. Disuss

about the eletri and magneti dipolar transitions. Disuss about the deay route 2s →2p→1s. (Reall that due

to Lamb shift splitting, 2s and 2p are not degenerate.) (Optional) Compute this amplitude transition (see Advaned

Quantum Mehanis, J. J. Sakurai, problem 2.6).

3. Consider the Jaynes- Cummings Hamiltonian given by

H = ~ωa†a+
1

2
~ω0σ

z +
1

2
~Ω
[

a† (σx − iσy) + a (σx + iσy)
]

.

The reation and anihillation operators a† and a at on the radiation �eld while the Pauli matries σx,y,z
at on the

matter. ω, ω0 and Ω are onstants (frequenies).

(a) Give a detailed physial interpretation of eah term in the Hamiltonian.

(b) Compute all the Eigenenergies and Eigenvetors of H . (They are alled dressed states of the matter.)

() Consider now that the system is prepared in the state |ψ0〉 =
∑

n Cn |n〉radiation ⊗ |0〉matter , with C1 = C2 and

all others Ci = 0. Compute the probability of �nding the two-level system in the exited state as a funtion of time.

4. Interation between matter and radiation: sattering

We are interested in the sattering proess in whih the initial and �nal states are

|I〉 = |i〉 ⊗ |nk,λ, 0k′,λ′〉 , and |F 〉 = |f〉 ⊗
∣

∣

∣
(n− 1)k,λ , 1k′,λ′

〉

,

i.e., in the beginning, there are n photons of momentum ~k and polarization λ while, in the end, there is one less

photon in suh state whih was sattered into a photon of momentum ~k′
and polarization λ′. Suh proess involves

two photons and have ontribution in seond order of perturbation theory from the term

e
m

∑

i pi ·A(ri) (where pi

are the momentum of the i-th eletron in the system), and ontribution in �rst order in perturbation theory from the

diamagneti term V = e2

2m

∑

i A(ri) ·A(ri). Here, onsider only the e�ets of this latter term.

(a) Rewrite V in terms of the density operator ρ(r).
(b) Compute the matrix element 〈I |V |F 〉.
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() Compute the di�erential ross setion and show that

dσI→F

dΩ
= r20

ω

ω′ |ǫ̂k,λ · ǫ̂k′,λ′ |2 |〈f |ρ̃(k− k′)| i〉|2 ,

where r0 = e2

4πǫ0mc2 is the lassial radius of the eletron, and ρ̃(k) is the Fourier transform of ρ (r).

(d) Consider the simplest ase of the sattering by a single free eletron in whih |i〉 = |~qi〉 and |f〉 = |~qf 〉 and
ompute the orresponding di�erential ross setion (dubbed the Thomson ross setion). Explain why this proess

is allowed.
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ANSWER:

1.

(a) The spatial dependene appears only in the exponential:

∇ ·
(

êe±ik·r) = ±iê · keik·r.
Moreover êk,1 ·k = êk,2 ·k = 0. Sine the irular polarized vetors are ombinations of êk,1 and êk,2, then ∇ ·A = 0.
Thus, this vetor potential satisfy the transverse gauge. The physial interpretation is that the propagation diretion

k is perpendiular to the polarization, i.e., the light is a transverse wave.

(b) Lets use the identity

[r× (E×B)]i =
∑

j,k,l

El

(

εijkxj
∂

∂xk
Al

)

−
∑

j,k,l

∂

∂xl
(εijkxjElAk) +

∑

j,k

εijkEjAk. (1)

Then, integrating over spae,

ˆ

d3r [r× (E×B)]i =

ˆ

d3r
∑

j,k,l

El

(

εijkxj
∂

∂xk
Al

)

−
ˆ

d2r
∑

j,k,l

(εijkxjElAk)|xl=+∞
xl=−∞ +

ˆ

d3r
∑

j,k

εijkEjAk.

Notie that (εijkxjElAk)|xi=+∞
xi=−∞ = 0, sine xi 6= xj (guaranteed by εijk) and that the �elds vanish at r → ∞. Finally,

notiing that [El (r×∇)Al]i =
∑

j,k [El (εijkxj∂k)Al]i, we arrive at the �nal result

ˆ

d3r [r× (E×B)] =

ˆ

d3r

3
∑

i=1

Ei

(

~ℓAi

)

+

ˆ

d3rE×A.

We now swith to the prove of Eq. (1):

[r× (E×B)]i =
∑

j,k

εijkxj (E×B)k =
∑

j,k

εijkxj
∑

l,m

εklmElBm =
∑

j,k

εijkxj
∑

l,m

εklmEl

∑

n,o

εmno
∂

∂xn
Ao

=
∑

j,k

εijkxj
∑

l,n,o

El
∂

∂xn
Ao

∑

m

εklmεmno =
∑

j,k

εijkxj
∑

l,n,o

El
∂

∂xn
Ao (δk,nδl,o − δk,oδl,n)

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijkxjEl
∂

∂xl
Ak

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijkxj
∂

∂xl
(ElAk) +

∑

j,k,l

εijkxj

(

∂El

∂xl

)

Ak

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijkxj
∂

∂xl
(ElAk) +

∑

j,k

εijkxjAk∇ · E

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijk
∂

∂xl
(xjElAk) +

∑

j,k,l

εijkElAk

(

∂xj
∂xl

)

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijk
∂

∂xl
(xjElAk) +

∑

j,k

εijkEjAk,

where we used that ∇ · E = 0 (there are no harges).

()

L
(s)
i =

1

µ0c2

ˆ

d3r
∑

j,k

εijkEjAk =
ǫ0i

~

ˆ

d3r
∑

j,k

Ej
~εijk
i

Ak

=
ǫ0i

~

ˆ

d3r
∑

j,k

EjS
(i)
j,kAk =

ǫ0i

~

ˆ

d3rE · S(i) ·A,

where

S(1) = i~





0 0 0
0 0 −1
0 1 0



 , S(2) = i~





0 0 1
0 0 0
−1 0 0



 , S(3) = i~





0 −1 0
1 0 0
0 0 0



 .
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It is easy to verify that the Eigenvalues of S(i)
are +~, 0, and −~. Moreover, a simple inspetion show that

[

S(j), S(k)
]

= i~εjklS
(l).

Thus, S are spin-1 matries.

(d) From the de�nition

L(s) =
1

µ0c2

ˆ

d3rE×A = −ǫ0
ˆ

d3rȦ ×A

= iǫ0

(

~

2ǫ0V

)
ˆ

d3r
∑

k,k′

∑

λ,λ′

√

ωk′

ωk

(

ak,λe
ik·rêk,λ − a†k,λe

−ik·rê∗k,λ

)

×
(

ak′,λ′eik
′·rêk′,λ′ + h.c.

)

.

We then have four terms. Integrating over spae yields

1

V

ˆ

d3rei(±k±k′)·r = δ±k,∓k′,

and thus,

L(s) = i

(

~

2

)

∑

k

∑

λ,λ′

(

ak,λa−k,λ′ êk,λ × ê−k,λ′ + ak,λa
†
k,λ′ êk,λ × ê∗k,λ′ − . . .

)

.

The sum over the terms ak,λa−k,λ′ êk,λ × ê−k,λ′
and a†k,λa

†
−k,λ′ ê∗k,λ × ê∗−k,λ′ vanish beause they are odd funtions of

k. This is easily shown by summing over the pair of vetors q and −q:

aq,λa−q,λ′ (êq,λ × ê−q,λ′) + a−q,λaq,λ′ (ê−q,λ × êq,λ′) = 0,

sine [aq,λ, a−q,λ′ ] = 0. The spin angular momentum then redues to

L(s) = i

(

~

2

)

∑

k

∑

λ,λ′

(

ak,λa
†
k,λ′ êk,λ × ê∗k,λ′ − a†

k,λak,λ′ ê∗k,λ × êk,λ′

)

.

We now sum over the polarizations. Using that

ê∗k,± × êk,± =
1

2
(±iêk,1 × êk,2 ∓ iêk,2 × êk,1) = ±ik̂,

ê∗k,+ × êk,− = ê∗k,− × êk,+ = 0,

sine êk,1 × êk,2 = k̂, we arrive at the �nal result

L(s) = i

(

~

2

)

∑

k

(

ak,+a
†
k,+

(

−ik̂
)

+ ak,−a
†
k,−

(

ik̂
)

− a†k,+ak,+
(

ik̂
)

− a†k,−ak,−
(

−ik̂
))

=
~

2

∑

k

(

ak,+a
†
k,+k̂ − ak,−a

†
k,−k̂ + a†

k,+ak,+k̂ − a†
k,−ak,−k̂

)

=
∑

k

(

a†k,+ak,+ − a†k,−ak,−
)

~k̂,

where we used that [ak,λ, a
†
k,λ] = 1. This result means that the spin angular momentum of the photon is parallel

to the diretion of propagation k̂. Moreorver, the possible values are only ±~. If the L
(s)
k = +~, then the heliity

is positive (+1), i.e., the lassial piture of the photon is that it has lokwise irular polarization. In the same

manner, If the L
(s)
k = −~, then the heliity is negative. Finally, notie the omponent L

(s)
k = 0 is absent. This a

feature of massless partiles travelling at light speed.

(e) In the Heisenberg representation

A(r, t) = ei
H
~
tA(r)e−iH

~
t,
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where H =
∑

~ωka
†
k,λak,λ. We then need to ompute

eiωta†aae−iωta†a = a+ iωt
[

a†a, a
]

+
1

2!
(iωt)2

[

a†a,
[

a†a, a
]]

+ . . .

= a− iωta+
1

2!
(−iωt)2 a+ · · · = e−iωta.

Thus,

A(r, t) =

√

~

2ǫ0V

∑

k

∑

λ=±

√

1

ωk

(

ak,λe
i(k·r−ωkt)êk,λ + a†k,λe

−i(k·r−ωkt)ê∗k,λ

)

.

As a onsequene,

E(r, t) = −∂A
∂t

= i

√

~

2ǫ0V

∑

k

∑

λ=±

√
ωk

(

ak,λe
i(k·r−ωkt)êk,λ − a†k,λe

−i(k·r−ωkt)ê∗k,λ

)

,

B(r, t) = ∇×A = i

√

~

2ǫ0V

∑

k

∑

λ=±

√

1

ωk

(

ak,λe
i(k·r−ωkt)k× êk,λ − a†k,λe

−i(k·r−ωkt)k× ê∗k,λ

)

.

We now turn to the ommutations relations:

[Ai, Aj ] =
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

ei(k·r−k′·r′−ωkt+ωk′ t′) (êk,λ)i
(

ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

e−i(k·r−k′·r′−ωkt+ωk′ t′) (ê∗k,λ
)

i
(êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
~

2ǫ0V

∑

k,λ

1

ωk

(

ei(k·(r−r′)−ωk(t−t′)) (êk,λ)i
(

ê∗k,λ
)

j
− e−i(k·(r−r′)−ωk(t−t′)) (ê∗k,λ

)

i
(êk,λ)j

)

.

Summing over the polarizations,

∑

λ

(êk,λ)i
(

ê∗k,λ
)

j
=

1

2
(ê1 + iê2)i (ê1 − iê2)j +

1

2
(ê1 − iê2)i (ê1 + iê2)j

= (ê1)i (ê1)j + (ê2)i (ê2)j =
∑

λ

(

ê∗k,λ
)

i
(êk,λ)j

= δi,j −
kikj
k2

,

where the last equality an be heked by inspetion. Finally, we arrive at

[Ai, Aj ] =
~

2ǫ0V

∑

k

1

ωk

(

ei(k·(r−r′)−ωk(t−t′)) − e−i(k·(r−r′)−ωk(t−t′))
)

(

δi,j −
kikj
k2

)

=
i~

ǫ0V

∑

k

1

ωk
sin (k · (r− r′)− ck (t− t′))

(

δi,j −
kikj
k2

)

.

We now use the ontinuum limit

∑

k → (2π)−3 V
´

d3k and set, without loss of generality, that r − r′ points in the

k̂z diretion. For i 6= j, it is easy to see that the integral vanishes sine the integration over the φ angle (whih runs

from 0 to 2π) will involve either sinφ cosφ, or sinφ, or cosφ. For i = j = z, we have

ˆ π

0

dθ

ˆ ∞

0

dk

(

k2 sin θ sin (k (∆r cos θ − c∆t))
1

ck

(

1− cos2 θ
)

)

=
4

c (∆r)
3

ˆ ∞

0

dk sin (ck∆t) (k∆r cos (k∆r)− sin (k∆r)) = 0.
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The last result is obtained by regularizing the integrand: multiply it by e−αk
and after integration, take the limit

α→ 0+. Analogously, for i = j = x, we have the integral

ˆ 2π

0

dφ

ˆ π

0

dθ

ˆ ∞

0

dk

(

k2 sin θ sin (k (∆r cos θ − c∆t))
1

ck

(

1− cos2 φ sin2 θ
)

)

=
π

c

ˆ π

0

dθ

ˆ ∞

0

dk
(

k sin θ sin (k (∆r cos θ − c∆t))
(

2− sin2 θ
))

= − 4π

c (∆r)
3

ˆ ∞

0

dk sin (ck∆t)
(

k∆r cos (k∆r) −
(

1− (k∆r)
2
)

sin (k∆r)
)

= 0.

Symmetry arguments ensures the same happens for i = j = y. Therefore, we onlude that [Ai(r, t), Aj(r
′, t′)] = 0.

The ommutator between the eletri �elds is similar:

[Ei, Ej ] =
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√
ωkωk′ei(k·r−k′·r′−ωkt+ωk′ t′) (êk,λ)i

(

ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

e−i(k·r−k′·r′−ωkt+ωk′ t′) (ê∗k,λ
)

i
(êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
i~

ǫ0V

∑

k

ωk sin (k · (r− r′)− ck (t− t′))

(

δi,j −
kikj
k2

)

.

The di�erene between the previous integrals is that ωk now appears in the numerator, and thus ontributes with k
fator instead of k−1

. It turns out that, as before, all the integrals vanish. Thus,[Ei(r, t), Ej(r
′, t′)] = 0.

The ommutator for the magneti �elds is

[Bi, Bj ] =
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

ei(k·r−k′·r′−ωkt+ωk′ t′) (k× êk,λ)i
(

k′ × ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

e−i(k·r−k′·r′−ωkt+ωk′ t′) (k× ê∗k,λ
)

i
(k′ × êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
−i~
2ǫ0V

∑

k,λ

k2

ωk
λ
(

ei(k·(r−r′)−ωk(t−t′)) (êk,λ)i
(

ê∗k,λ
)

j
− e−i(k·(r−r′)−ωk(t−t′)) (ê∗k,λ

)

i
(êk,λ)j

)

,

sine k × êk,λ = −iλkêk,λ. The integrals involved are similar to those of the eletri �eld, and hene,

[Bi(r, t), Bj(r
′, t′)] = 0.

Let us now turn to the ommutator

[Ai, Ej ] =
−i~
2ǫ0V

∑

k,k′

∑

λ,λ′

√

ωk′

ωk
ei(k·r−k′·r′−ωkt+ωk′ t′) (êk,λ)i

(

ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
i~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

ωk′

ωk
e−i(k·r−k′·r′−ωkt+ωk′ t′) (ê∗k,λ

)

i
(êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
−i~
2ǫ0V

∑

k,λ

(

ei(k·(r−r′)−ωk(t−t′)) (êk,λ)i
(

ê∗k,λ
)

j
+ e−i(k·(r−r′)−ωk(t−t′)) (ê∗k,λ

)

i
(êk,λ)j

)

=
i~

ǫ0V

∑

k

cos (k · (r− r′)− ck (t− t′))

(

δi,j −
kikj
k2

)

.

At this point, it is already lear that not all ommutators vanish, speially when k · (r− r′) = ck (t− t′). Let us fous
on the equal time ommutator (t = t′). Then,

[Ai(r, t), Ej(r
′, t)] =

i~

ǫ0

[

δ (r− r′) δij −
∂2

∂xi∂x′j

∑

k

cos (k · (r− r′))

V k2

]

=
i~

ǫ0

[

δ (r− r′) δij −
∂2

∂xi∂x′j

(

1

4π |r− r′|

)

]

.
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The �nal ommutator is

[Ei, Bj ] =
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

ωk′

ωk
ei(k·r−k′·r′−ωkt+ωk′ t′) (êk,λ)i

(

k′ × ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

ωk′

ωk
e−i(k·r−k′·r′−ωkt+ωk′ t′) (ê∗k,λ

)

i
(k′ × êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
~

2ǫ0V

∑

k,λ

∑

l,m

εjlm

(

ei(k·(r−r′)−ωk(t−t′)) (êk,λ)i kl
(

ê∗k,λ
)

m
− e−i(k·(r−r′)−ωk(t−t′)) (ê∗k,λ

)

i
kl (êk,λ)m

)

.

=
i~

ǫ0V

∑

k

∑

l,m

εjlmkl sin (k · (r− r′)− ck (t− t′))

(

δi,m − kikm
k2

)

.

Notie that

∑

εjlmklkm = (k× k)j = 0. Thus, for the equal time ommutator

[Ei (r, t) , Bj (r
′, t)] =

i~

ǫ0V

∑

k

∑

l,m

εjlmkl sin (k · (r− r′)) δim =
i~

ǫ0V

∑

k,l

εijlkl sin (k · (r− r′))

=
i~

ǫ0V

∑

l

εijl
∂

∂x′l

∑

k

kl cos (k · (r− r′)) =
i~

ǫ0

∑

l

εijl
∂

∂x′l
(δ (r− r′)) .

The onsequene of this result is that it is not possible to simultaneously measure the eletri and magneti �eld

with arbitrarily preision.

(f ) The eletri and magneti �eld do not ommutate with the number operator. In order to show this, onsider a

single mode. Then, we need the ommutators

[

ak′,λ′ , a†
k,λak,λ

]

= δk,k′δλ,λ′ak,λ,
[

a†k′,λ′ , a
†
k,λak,λ

]

= −δk,k′δλ,λ′a†k,λ,

in order to ompute

[E, N ] = i

√

1

2ǫ0V

∑

k

∑

λ=±
(~ωk)

3

2

(

ak,λe
i(k·r−ωkt)êk,λ + a†k,λe

−i(k·r−ωkt)ê∗k,λ

)

6= 0,

[B, N ] = i

√

~

2ǫ0V

∑

k

∑

λ=±
(~ωk)

1

2

(

ak,λe
i(k·r−ωkt)k× êk,λ + a†k,λe

−i(k·r−ωkt)k× ê∗k,λ

)

6= 0.

Thus, the number of photons is not onserved when the eletromagneti �eld is oupled to matter.

(g) Using the result of item (h), we have that

〈X〉 =
√

~

2ωk

〈

α(t)
∣

∣

∣a
†
k,λ + ak,λ

∣

∣

∣α(t)
〉

.

=

√

~

2ωk

(〈

0
∣

∣

∣e−
1

2
|β|2eβ

∗ak,λa†k,λe
− 1

2
|β|2eβa

†

k,λ

∣

∣

∣ 0
〉

+
〈

0
∣

∣

∣e−
1

2
|β|2eβ

∗ak,λak,λe
− 1

2
|β|2eβa

†

k,λ

∣

∣

∣ 0
〉)

=

√

~

2ωk
e−|β|2

(〈

0
∣

∣

∣
eβ

∗ak,λa†k,λe
βa†

k,λ

∣

∣

∣
0
〉

+
〈

0
∣

∣

∣
eβ

∗ak,λak,λe
βa†

k,λ

∣

∣

∣
0
〉)

=

√

~

2ωk
e−|β|2

(〈

0
∣

∣

∣

[

eβ
∗ak,λ , a†k,λ

]

eβa
†

k,λ

∣

∣

∣ 0
〉

+
〈

0
∣

∣

∣eβ
∗ak,λ

[

ak,λ, e
βa†

k,λ

]∣

∣

∣ 0
〉)

.

We then need to ompute the ommutators:

e−αa†

aeαa
†

=a+
[

−αa†, a
]

+
1

2!

[

−αa†,
[

−αa†, a
]]

+ . . .

=a+ α+
1

2!

[

−αa†, α
]

+ · · · = a+ α,
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whih yields

aeαa
†

= eαa
†

a+ e−αa†

α, ⇒
[

a, eαa
†
]

= αe−αa†

.

Thus,

〈X〉 =
√

~

2ωk
e−|β|2

(

β∗
〈

0
∣

∣

∣e−β∗ak,λeβa
†

k,λ

∣

∣

∣ 0
〉

+ β
〈

0
∣

∣

∣eβ
∗ak,λeβa

†

k,λ

∣

∣

∣ 0
〉)

=

√

~

2ωk
(β∗ + β) .

In the same manner,

〈P 〉 = i

√

~ωk

2
(β∗ − β) .

Now, we turn to the quadratri mean values (where we drop out the subindees)

〈

X2
〉

=
~

2ωk

〈

a†a† + aa† + a†a+ aa
〉

=
~

2ωk

〈

a†a† + 1 + 2a†a+ aa
〉

=
~

2ωk
e−|β|2

〈

0
∣

∣

∣

[

e−β∗a, a†a†
]

eβa
†

+ 1 + 2
[

e−β∗a, a†
] [

a, eβa
†
]

+ e−β∗a
[

aa, eβa
†
]∣

∣

∣ 0
〉

.

We need the ommutators

[

aa, eαa
†
]

= αae−αa†

+ αe−αa†

a = α2e−αa†

+ 2αe−αa†

a,

[

eα
∗a, a†a†

]

=
[

aa, eαa
†
]†

= α∗2e−α∗a + 2α∗a†e−α∗a.

Therefore,

〈

X2
〉

=
~

2ωk

(

β∗2 + 1 + 2ββ∗ + β2
)

=
~

2ωk

(

1 + (β + β∗)2
)

=
~

2ωk

(

1 + (β + β∗)2
)

,

〈

P 2
〉

=− ~ωk

2

(

β∗2 − 1− 2ββ∗ + β2
)

=
~ωk

2

(

1− (β − β∗)2
)

.

Finally,

∆X =

√

~

2ωk
, and ∆P =

√

~ωk

2
,

whih do not depend on time, whih is the main feature of oherent states. Moreover, ∆X∆P = 1
2~, whih saturates

the Heisenberg unertainty priniple.

(h) Let us show this result by inspetion. The left-hand side of the equation is

i~
∂

∂t
|β〉 = i~

∂

∂t

(

e−
1

2
|β|2eβa

†
)

|0〉 = i~e−
1

2
|β|2 ∂

∂t

(

eβa
†
)

|0〉

= i~e−
1

2
|β|2 β̇a†eβa

† |0〉 = ~ωke
− 1

2
|β|2βa†eβa

† |0〉 .

The right-hand side is

H |β〉 =
∑

k′,λ′

~ωk′a†k′,λ′ak′,λ′e−
1

2
|β|2eβa

†

k,λ |0〉 = ~ωka
†
k,λak,λe

− 1

2
|β|2eβa

†

k,λ |0〉

=~ωke
− 1

2
|β|2a†k,λ

[

ak,λ, e
βa†

k,λ

]

|0〉 = ~ωke
− 1

2
|β|2a†k,λβe

βa†

k,λ |0〉 .

Notie that this equals the left-hand side. This ends the proof that

α(t) = β = αe−iωkt.
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Let us now ompute

〈β |A|β〉 =
√

~

2ǫ0V

∑

q

∑

σ=±

√

1

ωq

(

〈aq,σ〉 eiq·rêq,σ +
〈

a†q,σ
〉

e−iq·rê∗q,σ
)

=

√

~

2ǫ0V ωk

(

βeik·rêk,λ + β∗e−ik·rê∗k,λ
)

=

√

~

2ǫ0V ωk

(

αei(k·r−ωkt)êk,λ + α∗e−i(k·r−ωkt)ê∗k,λ

)

.

This is an important result. Notie it is simply the k-wave solution of the plane equation

(

1
c2

∂2

∂t2 −∇2
)

A = 0. Thus,

the state |β〉 is a oherent eletromagneti wave, just like a laser. (Some people like to say that laser is a Bose-Einstein

ondensate of photons.)

Let explore some insightful ases as p = pẑ, λ = +1, and α ∈ ℜ. Thus, êk,± = − 1√
2
(1, i, 0), and

〈A〉 = −
√

~

ǫ0V ωk
α (cos (k (z − ct)) x̂− sin (k (z − ct)) ŷ) ,

whih is a irular polarized vetor whih rotates in time lokwise in the xy-plane (the z-diretion oming out of the

plane).

2.

(a) The reason why the spontaneous emission is not possible is due to the impossibility of onserving both energy

and linear momentum in the proess. Linear momentum requires

ki = kf + q,

where ki,f are the initial and �nal momentum of the partile, respetively, and q is the momentum of the emitted

photon. Energy onservation requires

~
2k2i
2m

=
~
2k2f
2m

+ ~cq.

In the referene frame of the partile in its initial state, ki = 0. Then, without loss of generality, it is lear that energy
onservation an not be ful�lled unless k = kf = 0, whih means that no photon was emitted.

All this arguments an be made preise onsidering the transition amplitude

∑

λ

〈kf ;nq,λ|ki; 0, (t)〉 = 0,

where ||ki; 0, t〉 = e−iHt/~ ||ki; 0〉. In order to aomplish this, we just need to study the matrix element

〈kf ;nq,λ |H |ki; 0〉 ,

where the only interesting term in the Hamiltonian is the interation Hint = − 1
mqA · p+ 1

2mq
2A2

. The seond term

onserves the number of photons and thus an be negleted. The �rst term hanges the number of photons by one

and thus an allow the emission:

〈kf ;nq,λ |H |ki; 0〉 ∝ ê∗q,λ ·
〈

kf

∣

∣e−iq·rp
∣

∣ki

〉

∝
ˆ

d3re−ikf ·re−iq·reiki·r ∝ δ (ki − kf − q) ,

whih is the momentum onservation. To omplete the story, we need to onsider the Dyson series where the energy

onservation omes from (Fermi's golden rule). The energy onservation will happen in all orders of perturbation

theory (reall the lasses on light sattering) beause the whole Hamiltonian is time-independent. Thus, we also have

to satisfy energy onservation. As argued in the beginning, both onservation laws an not be satis�ed simultaneously.

Thus, a single photon emission an not happen.

Notie that the total number of photons does not ommute with the Hamiltonian (due to the vetor �eld term).

Can you think whih proess an happen in order to not onserve the number of photons?
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(b) As seen in lass, in �rst order of perturbation theory the transition rate is given by

WFI =
2π

~
|〈f |Hint,static| i〉|2 ρ|~ω=Ei−Ef

=
2π

~

e2

m2

~ (nq,λ + 1)

2ωqǫ0V

∣

∣ê∗q,λ ·
〈

1, 0, 0
∣

∣eiq·rp
∣

∣ 2, 1, 1
〉∣

∣

2 V

(2π)
3

ω2
qdΩ

~c3

=
∣

∣ê∗q,λ ·
〈

1, 0, 0
∣

∣eiq·rp
∣

∣ 2, 1, 1
〉∣

∣

2 e2ωfi

2 (2π)
2
m2ǫ0~c3

dΩ,

where, for spontaneous emission, nq,λ = 0. In the eletri dipole approximation eiq·r ≈ 1. Moreover, we use that

p = im [H0, r] /~. Thus,

WFI =

(

e2

4πǫ0~c

)

ω3
fi

2πc2

∣

∣ê∗q,λ · 〈1, 0, 0 |r| 2, 1, 1〉
∣

∣

2
dΩ = α

ω3
fi

2πc2

∣

∣ê∗q,λ · 〈1, 0, 0 |r| 2, 1, 1〉
∣

∣

2
dΩ,

where α ≈ 1/137 is the �ne struture onstant. We now have to ompute the matrix element

〈1, 0, 0 |r| 2, 1, 1〉 =
ˆ

d3rR∗
10 (r) Y

∗
00 (θ, φ) r (sin θ sinφ, sin θ cosφ, cos θ)R21 (r) Y11 (θ, φ)

=

ˆ

d3r

√

1

πa30
e
− r

a0 r (sin θ cosφ, sin θ sinφ, cos θ)
r

8a0

√

1

πa30
e
− r

2a0 sin θeiφ

=
27

35
a0 (1, i, 0) .

The polariation vetors are ê∗q,± = 1√
2
(∓ cos θ cosφ− i sinφ,∓ cos θ sinφ+ i cosφ,± sin θ), and hene,

WFI,± = α
ω3
fi

2πc2

(

27

35
a0

)2 ∣
∣

∣

∣

1√
2
(∓ cos θ cosφ− i sinφ∓ i cos θ sinφ− cosφ)

∣

∣

∣

∣

2

dΩ

= α
ω3
fi

2πc2

(

27

35
a0

)2 ∣
∣

∣

∣

1√
2
(1± cos θ) eiφ

∣

∣

∣

∣

2

dΩ = α
ω3
fi

4πc2

(

27

35
a0

)2

(1± cos θ)2 dΩ.

We now interpret this result with respet to angular momentum onservation. Consider for instane the ase λ = +1,
whih means that the emitted photon has angular momentum ~q̂. For θ = 0, this means that the total alngular

momentum of the �nal state is +~. Sine the eletron in the �nal state has no angular momentum, this means

that the maximum hane of the emitted photon with heliity +1 is at this the z-diretion where the momentum is

lassially onserved, as expeted. On the other hand for λ = −1, the probability amplitude that the emitted photon

is in the positive z-diretion is null, sine this diretion maximally violates the lassial piture of angular momentum

onservation. Conversely, the photon with negative heliity has higher probability of being emitted in the negative

z-diretion (θ = π), sine in this ase, the angular momentum it arries is +~.

Finally, in order to ompute the total transition rate, we integrate over all possible outomes dΩ and sum over all

heliities:

α
ω3
fi

4πc2

(

27

35
a0

)2 ˆ

(1± cos θ)2 dΩ = α
ω3
fi

4πc2

(

27

35
a0

)2

× 16π

3
= α

ω3
fi

c2
216

311
a20,

=

(

27

38

)

α5mc
2

~
,

where a0 = ~

mcα and ~ωfi = 3
4

(

mc2α2

2

)

. Notie it independs on λ and equals half of the transition rate between

states |2, 1, 0〉 and |1, 0, 0〉, as would be expeted from the isotropy of the Coulomb potential. Finally, summing over

the heliities, we arrive at the desired result

WFI =
∑

λ

WFI,λ =

(

2

3

)2

α5mc2~2 ≈ (1.6 ns)−1 .

() We expet that transition rate for the �nite-mass Hydrogen atom to be smaller sine it approahes to the ase

of a strutureless partile and both energy and momentum have to be onserved simultaneously.
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Performing the alulations, we �nd that

WFI,finite−mass =WFI,infinite−mass ×
µ

m

(

2

1 + x+
√
1 + x

)

,

where µ = mM/ (M +m) is the redued mass, M is the proton mass, and x = 3
4

µ
M α2 ≈ 3 10−8

.

(d) As the photon arries angular momentum of ~, there an not be a single-photon eletri-dipole transition

between two atomi states having the same angular momentum. Thus, it seems the transition between states 2s→1s

is highly suppressed. There is a route in whih this transition an take plae by emitting a single photon whih is

via a magneti dipole transition 2s1/2→1s1/2 in whih the eletron spin �ips. It turns out this transition rate is very

small as we will argue later. Therefore, the main deay proess must be a 2-photon emission proess.

We then look bak to the interation Hamiltonian in order to understand the possible 2-photon deay routes. There

are two terms: one is V = − e
mp ·A and the other is V = e2

2m2A
2
. The latter one does not ontribute in the eletri

dipole approximation (eik·r ≈ 1) beause it will vanish identially: 〈1s|2s〉 = 0. We need to onsider the next term

and thus, the overall transition rate will pik up a fator of (k · r)2. The other possibility (of same order of magnitude)

is to onsider the former term in seond-order of perturbation theory. Then, we will have matrix elements of type

∑

l

〈100; 2γ |V | l; 1γ〉 〈l; 1γ |V | 200; 0γ〉
E200 − El

,

where |l〉 are atomi intermediate states and |nγ〉 depits states with n photons. The order of magnitude an be easily

worked out (dropping out all numerial fators). As an be seen from the previous item, the eletri-dipole transition

matrix elements

〈f |V | i〉 ∼ e

m

√

~

ǫ0ωV

m

~
E0a0 ∼

√

α~cE0

V
a0,

and the phase spae of a single emitted photon (proportional to the density of states) is ∼ V E2
0 (~c)

−3
. For a 2-photon

proess, we will have to integrate over the 2-photon phase spae, and thus we pik this fator squared. In addition,

notie we have only one delta funtion δ (E2s − E1s − ~ω1 − ~ω2), thus, there will be an additional fator of energy,

whih will be of order of the transition energy E0. Then, in seond order we have that the transition rate will be of

order

∼ 1

~

(

α~cE0

V
a20 ×

1

E0

)2

×
(

V E2
0

(~c)
3

)2

E0 ∼ α2a40E
5
0 × 1

~5c4
∼ α2

(

~

mcα

)4
(

mc2α2
)5 1

~5c4
∼ α8mc

2

~
,

whih is α3 ≈ 4 10−7
smaller than the single-photon transition 2p→1s. A detailed alulation shows that the orret

transition rate is ≈ 8.229 s−1
, whih is one order of magnitude smaller than our naive alulation. Therefore, the

transition rates is 8 orders of magnitude smaller for the 2s state, meaning it is a metastable state. This ould be used

to produe entangled photon pairs.

The alternative route deay 2s→2p→1s seems to be an important one beause the transition rate 2p→1s is very

high (of order 108 bigger than the urrent rate). However, the splitting between the 2s and 2p (due to Lamb shift) is

very small. This makes the transition rate indeed even smaller than the previous 2-photon deay onsidered. We an

estimate the order of magnitude of the 2s→2p eletri dipole transition. As before,

∼ 1

~

(

α~c∆E

V
a20

)

×
(

V∆E2

(~c)
3

)

∼ αa20∆E
3

~3c2
,

where ∆E is of order of the splitting between the 2s and 2p states, whih is of order of 1GHz (as seen in lass) or

hν ≈ 4 10−6 eV. Thus,

W2s→2p ∼W2p→1s ×
(

∆E

E0

)3

∼ 2.5 10−20W2p→1s.

This is extreme smaller than the previous 2-photon deays. Thus, although the route deay 2s→2p→1s is favored by

the fast deay of the last proess, it is hindered by the very �rst step due to the almost degeneray between states 2s

and 2p.

3. Will be typed soon...
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(a)

(b)

()

(d)

4.

(a)

(b)

()

5.

(a)

(b)

()

(d)

(e)

(f )
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