
Lista 2 - Quânti
a B (2013)

1. Quantization of the ele
tromagneti
 �eld

Consider the mode expansion of the ve
tor potential (in the S
hrödinger representation)

A(r) =

√

~

2ǫ0V

∑

k

∑

λ=±

√

1

ωk
ak,λe

ik·rêk,λ + h.c.,

Ȧ(r) = −i
√

~

2ǫ0V

∑

k

∑

λ=±

√
ωkak,λe

ik·rêk,λ + h.c.,

where a†k,λ (ak,λ) are 
reation (annihilation) operators of photons the waveve
tor and polarization of whi
h are

respe
tively k = k (sin θ cosφ, sin θ sinφ, cos θ) and λ, ωk = ck is their angular frequen
y, and êk,± are the polarization

ve
tors

êk,1 = (cos θ cosφ, cos θ sinφ,− sin θ) ,

êk,2 = (− sinφ, cosφ, 0) ,

êk,± =
1√
2
(∓êk,1 − iêk,2) .

(a) Show that ∇ ·A = 0. What is the physi
al interpretation of this result?

(b) Show that the angular momentum

L =
1

µ0c2

ˆ

d3rr× (E×B) = L(o) + L(s), with

L(o) =
1

µ0c2

ˆ

d3r

3
∑

i=1

Ei

(

~ℓAi

)

, with ~ℓψ = r×∇ψ,

L(s) =
1

µ0c2

ˆ

d3rE×A.

Hint : It is 
onvenient to use te
hniques of tensor 
al
ulus, in parti
ular the Levi-Civita antisymmetri
al tensor εijk:
εijk = 0 if i = j, or i = k, or , j = k; εijk = 1 if (ijk) equals (123) or any 
y
li
 permutation of these indi
es, and

εijk = −1 otherwise. In addition, use the �
ontra
t epsilon identy�

∑3
k=1 εijkεklm = δi,lδj,m − δi,mδj,l. Then show

that

[r× (E×B)]i =
∑

j,k,l

El

(

εijkxj
∂

∂xk
Al

)

−
∑

j,k,l

∂

∂xl
(εijkxjElAk) +

∑

j,k

εijkEjAk.

Re
all that ∇ ·E = 0, (a× b)i =
∑

j,k εijkajbk and (∇× b)i =
∑

j,k εijk
∂

∂xj
bk. Finally, use the boundary 
onditions

that the �elds vanish when r → ∞.

(
) Show that

L(s) =
ǫ0i

~

ˆ

d3rE · S ·A,

with S being 3× 3 matri
es satis�ng angular momentum 
ommutation relations and having eigenvalues 0, ±~.

(d) Show and give the physi
al interpretation of the result

L(s) =
∑

k

~

(

a†k,+ak,+ − a†k,−ak,−

)

k̂.

(e) Write A, E and B in the Heisenberg representation. (Consider the free-�eld Hamiltonian H =
∑

k,λ ~ωk,λa
†
k,λak,λ, and ignore the zero-point energy.) Compute the 
ommutation relations [Ai(r, t), Aj(r

′, t′)],
[Ei(r, t), Ej(r

′, t′)], [Ai(r, t), Ej(r
′, t′)], and [Ei(r, t), Bj(r

′, t′)]? Give a physi
al 
onsequen
e of latter one.
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(f ) Do E(r, t) and B(r, t) 
ommute with the total photon number operator

N(t) =
∑

k,λ

a†k,λak,λ?

Interpret or give a physi
al 
onsequen
e of your result.

(g) Consider a 
oherent state of photons with momentum p = ~k and heli
ity λ given by

|α〉 = e−
1

2
|α|2eαa

†

k,λ |0〉 ,

where |0〉 is the va
uum state and α is a s
alar. Compute the time evolution of ∆X =

√

〈X2〉 − 〈X〉2 and ∆P =
√

〈P 2〉 − 〈P 〉2 where X =
√

~

2ωk

(

a†k,λ + ak,λ

)

and P = i
√

~ωk

2

(

a†k,λ − ak,λ

)

are position and momentum operators

of the asso
iated harmoni
 os
illator, respe
tively.

(h) Show that the S
hrödinger equation i~ ∂
∂t |α(t)〉 = H |α(t)〉 has a solution |α(t)〉 = |β〉 , where β = αe−iωkt

.

(Ignore the zero-point energy.) Now 
ompute 〈α(t) |A|α(t)〉. (Dis
uss your result relating it with 
lassi
al ele
tro-

magneti
 waves su
h as laser.)

2. Intera
tion between matter and radiation: emission and absorption

(a) Consider a stru
tureless free quantum parti
le in the in�nity spa
e. Show that this parti
le 
annot spontaneously

emit a single photon. Physi
ally, why this is the 
ase? Hint : Use that the initial and �nal states of the free parti
le

have well de�ne momenta and that the dispersion relation for the parti
le is quadrati
 while for the photon it is linear.

(b) Consider the spontaneous de
ay of the Hydrogen atom (�xed in spa
e) in state |2, 1, 1〉. Compute the amplitude

of the de
ay using plane waves for photons, and explain the angular dependen
e of the amplitude for ea
h heli
ity

±1 of the �nal-state photon in terms of the angular momentum 
onservation. Show that the rate is the same as the

de
ay rate of the |2, 1, 0〉 state.
(
) (Optional) Compare the previous de
ay rate with the 
ase of a free Hydrogen atom, i.e., for the 
ase of a

�nite-mass proton. Without doing any 
al
ulation, in whi
h 
ase do you expe
t the transition rate to be larger?

Justify.

(d) How 
an the 2s state de
ay to the 1s state? There is no need in 
omputing it, but dis
uss in detail. Dis
uss

about the ele
tri
 and magneti
 dipolar transitions. Dis
uss about the de
ay route 2s →2p→1s. (Re
all that due

to Lamb shift splitting, 2s and 2p are not degenerate.) (Optional) Compute this amplitude transition (see Advan
ed

Quantum Me
hani
s, J. J. Sakurai, problem 2.6).

3. Consider the Jaynes- Cummings Hamiltonian given by

H = ~ωa†a+
1

2
~ω0σ

z +
1

2
~Ω
[

a† (σx − iσy) + a (σx + iσy)
]

.

The 
reation and anihillation operators a† and a a
t on the radiation �eld while the Pauli matri
es σx,y,z
a
t on the

matter. ω, ω0 and Ω are 
onstants (frequen
ies).

(a) Give a detailed physi
al interpretation of ea
h term in the Hamiltonian.

(b) Compute all the Eigenenergies and Eigenve
tors of H . (They are 
alled dressed states of the matter.)

(
) Consider now that the system is prepared in the state |ψ0〉 =
∑

n Cn |n〉radiation ⊗ |0〉matter , with C1 = C2 and

all others Ci = 0. Compute the probability of �nding the two-level system in the ex
ited state as a fun
tion of time.

4. Intera
tion between matter and radiation: s
attering

We are interested in the s
attering pro
ess in whi
h the initial and �nal states are

|I〉 = |i〉 ⊗ |nk,λ, 0k′,λ′〉 , and |F 〉 = |f〉 ⊗
∣

∣

∣
(n− 1)k,λ , 1k′,λ′

〉

,

i.e., in the beginning, there are n photons of momentum ~k and polarization λ while, in the end, there is one less

photon in su
h state whi
h was s
attered into a photon of momentum ~k′
and polarization λ′. Su
h pro
ess involves

two photons and have 
ontribution in se
ond order of perturbation theory from the term

e
m

∑

i pi ·A(ri) (where pi

are the momentum of the i-th ele
tron in the system), and 
ontribution in �rst order in perturbation theory from the

diamagneti
 term V = e2

2m

∑

i A(ri) ·A(ri). Here, 
onsider only the e�e
ts of this latter term.

(a) Rewrite V in terms of the density operator ρ(r).
(b) Compute the matrix element 〈I |V |F 〉.
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(
) Compute the di�erential 
ross se
tion and show that

dσI→F

dΩ
= r20

ω

ω′ |ǫ̂k,λ · ǫ̂k′,λ′ |2 |〈f |ρ̃(k− k′)| i〉|2 ,

where r0 = e2

4πǫ0mc2 is the 
lassi
al radius of the ele
tron, and ρ̃(k) is the Fourier transform of ρ (r).

(d) Consider the simplest 
ase of the s
attering by a single free ele
tron in whi
h |i〉 = |~qi〉 and |f〉 = |~qf 〉 and

ompute the 
orresponding di�erential 
ross se
tion (dubbed the Thomson 
ross se
tion). Explain why this pro
ess

is allowed.
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ANSWER:

1.

(a) The spatial dependen
e appears only in the exponential:

∇ ·
(

êe±ik·r) = ±iê · keik·r.
Moreover êk,1 ·k = êk,2 ·k = 0. Sin
e the 
ir
ular polarized ve
tors are 
ombinations of êk,1 and êk,2, then ∇ ·A = 0.
Thus, this ve
tor potential satisfy the transverse gauge. The physi
al interpretation is that the propagation dire
tion

k is perpendi
ular to the polarization, i.e., the light is a transverse wave.

(b) Lets use the identity

[r× (E×B)]i =
∑

j,k,l

El

(

εijkxj
∂

∂xk
Al

)

−
∑

j,k,l

∂

∂xl
(εijkxjElAk) +

∑

j,k

εijkEjAk. (1)

Then, integrating over spa
e,

ˆ

d3r [r× (E×B)]i =

ˆ

d3r
∑

j,k,l

El

(

εijkxj
∂

∂xk
Al

)

−
ˆ

d2r
∑

j,k,l

(εijkxjElAk)|xl=+∞
xl=−∞ +

ˆ

d3r
∑

j,k

εijkEjAk.

Noti
e that (εijkxjElAk)|xi=+∞
xi=−∞ = 0, sin
e xi 6= xj (guaranteed by εijk) and that the �elds vanish at r → ∞. Finally,

noti
ing that [El (r×∇)Al]i =
∑

j,k [El (εijkxj∂k)Al]i, we arrive at the �nal result

ˆ

d3r [r× (E×B)] =

ˆ

d3r

3
∑

i=1

Ei

(

~ℓAi

)

+

ˆ

d3rE×A.

We now swit
h to the prove of Eq. (1):

[r× (E×B)]i =
∑

j,k

εijkxj (E×B)k =
∑

j,k

εijkxj
∑

l,m

εklmElBm =
∑

j,k

εijkxj
∑

l,m

εklmEl

∑

n,o

εmno
∂

∂xn
Ao

=
∑

j,k

εijkxj
∑

l,n,o

El
∂

∂xn
Ao

∑

m

εklmεmno =
∑

j,k

εijkxj
∑

l,n,o

El
∂

∂xn
Ao (δk,nδl,o − δk,oδl,n)

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijkxjEl
∂

∂xl
Ak

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijkxj
∂

∂xl
(ElAk) +

∑

j,k,l

εijkxj

(

∂El

∂xl

)

Ak

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijkxj
∂

∂xl
(ElAk) +

∑

j,k

εijkxjAk∇ · E

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijk
∂

∂xl
(xjElAk) +

∑

j,k,l

εijkElAk

(

∂xj
∂xl

)

=
∑

j,k,l

εijkxjEl
∂

∂xk
Al −

∑

j,k,l

εijk
∂

∂xl
(xjElAk) +

∑

j,k

εijkEjAk,

where we used that ∇ · E = 0 (there are no 
harges).

(
)

L
(s)
i =

1

µ0c2

ˆ

d3r
∑

j,k

εijkEjAk =
ǫ0i

~

ˆ

d3r
∑

j,k

Ej
~εijk
i

Ak

=
ǫ0i

~

ˆ

d3r
∑

j,k

EjS
(i)
j,kAk =

ǫ0i

~

ˆ

d3rE · S(i) ·A,

where

S(1) = i~





0 0 0
0 0 −1
0 1 0



 , S(2) = i~





0 0 1
0 0 0
−1 0 0



 , S(3) = i~





0 −1 0
1 0 0
0 0 0



 .
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It is easy to verify that the Eigenvalues of S(i)
are +~, 0, and −~. Moreover, a simple inspe
tion show that

[

S(j), S(k)
]

= i~εjklS
(l).

Thus, S are spin-1 matri
es.

(d) From the de�nition

L(s) =
1

µ0c2

ˆ

d3rE×A = −ǫ0
ˆ

d3rȦ ×A

= iǫ0

(

~

2ǫ0V

)
ˆ

d3r
∑

k,k′

∑

λ,λ′

√

ωk′

ωk

(

ak,λe
ik·rêk,λ − a†k,λe

−ik·rê∗k,λ

)

×
(

ak′,λ′eik
′·rêk′,λ′ + h.c.

)

.

We then have four terms. Integrating over spa
e yields

1

V

ˆ

d3rei(±k±k′)·r = δ±k,∓k′,

and thus,

L(s) = i

(

~

2

)

∑

k

∑

λ,λ′

(

ak,λa−k,λ′ êk,λ × ê−k,λ′ + ak,λa
†
k,λ′ êk,λ × ê∗k,λ′ − . . .

)

.

The sum over the terms ak,λa−k,λ′ êk,λ × ê−k,λ′
and a†k,λa

†
−k,λ′ ê∗k,λ × ê∗−k,λ′ vanish be
ause they are odd fun
tions of

k. This is easily shown by summing over the pair of ve
tors q and −q:

aq,λa−q,λ′ (êq,λ × ê−q,λ′) + a−q,λaq,λ′ (ê−q,λ × êq,λ′) = 0,

sin
e [aq,λ, a−q,λ′ ] = 0. The spin angular momentum then redu
es to

L(s) = i

(

~

2

)

∑

k

∑

λ,λ′

(

ak,λa
†
k,λ′ êk,λ × ê∗k,λ′ − a†

k,λak,λ′ ê∗k,λ × êk,λ′

)

.

We now sum over the polarizations. Using that

ê∗k,± × êk,± =
1

2
(±iêk,1 × êk,2 ∓ iêk,2 × êk,1) = ±ik̂,

ê∗k,+ × êk,− = ê∗k,− × êk,+ = 0,

sin
e êk,1 × êk,2 = k̂, we arrive at the �nal result

L(s) = i

(

~

2

)

∑

k

(

ak,+a
†
k,+

(

−ik̂
)

+ ak,−a
†
k,−

(

ik̂
)

− a†k,+ak,+
(

ik̂
)

− a†k,−ak,−
(

−ik̂
))

=
~

2

∑

k

(

ak,+a
†
k,+k̂ − ak,−a

†
k,−k̂ + a†

k,+ak,+k̂ − a†
k,−ak,−k̂

)

=
∑

k

(

a†k,+ak,+ − a†k,−ak,−
)

~k̂,

where we used that [ak,λ, a
†
k,λ] = 1. This result means that the spin angular momentum of the photon is parallel

to the dire
tion of propagation k̂. Moreorver, the possible values are only ±~. If the L
(s)
k = +~, then the heli
ity

is positive (+1), i.e., the 
lassi
al pi
ture of the photon is that it has 
lo
kwise 
ir
ular polarization. In the same

manner, If the L
(s)
k = −~, then the heli
ity is negative. Finally, noti
e the 
omponent L

(s)
k = 0 is absent. This a

feature of massless parti
les travelling at light speed.

(e) In the Heisenberg representation

A(r, t) = ei
H
~
tA(r)e−iH

~
t,



6

where H =
∑

~ωka
†
k,λak,λ. We then need to 
ompute

eiωta†aae−iωta†a = a+ iωt
[

a†a, a
]

+
1

2!
(iωt)2

[

a†a,
[

a†a, a
]]

+ . . .

= a− iωta+
1

2!
(−iωt)2 a+ · · · = e−iωta.

Thus,

A(r, t) =

√

~

2ǫ0V

∑

k

∑

λ=±

√

1

ωk

(

ak,λe
i(k·r−ωkt)êk,λ + a†k,λe

−i(k·r−ωkt)ê∗k,λ

)

.

As a 
onsequen
e,

E(r, t) = −∂A
∂t

= i

√

~

2ǫ0V

∑

k

∑

λ=±

√
ωk

(

ak,λe
i(k·r−ωkt)êk,λ − a†k,λe

−i(k·r−ωkt)ê∗k,λ

)

,

B(r, t) = ∇×A = i

√

~

2ǫ0V

∑

k

∑

λ=±

√

1

ωk

(

ak,λe
i(k·r−ωkt)k× êk,λ − a†k,λe

−i(k·r−ωkt)k× ê∗k,λ

)

.

We now turn to the 
ommutations relations:

[Ai, Aj ] =
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

ei(k·r−k′·r′−ωkt+ωk′ t′) (êk,λ)i
(

ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

e−i(k·r−k′·r′−ωkt+ωk′ t′) (ê∗k,λ
)

i
(êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
~

2ǫ0V

∑

k,λ

1

ωk

(

ei(k·(r−r′)−ωk(t−t′)) (êk,λ)i
(

ê∗k,λ
)

j
− e−i(k·(r−r′)−ωk(t−t′)) (ê∗k,λ

)

i
(êk,λ)j

)

.

Summing over the polarizations,

∑

λ

(êk,λ)i
(

ê∗k,λ
)

j
=

1

2
(ê1 + iê2)i (ê1 − iê2)j +

1

2
(ê1 − iê2)i (ê1 + iê2)j

= (ê1)i (ê1)j + (ê2)i (ê2)j =
∑

λ

(

ê∗k,λ
)

i
(êk,λ)j

= δi,j −
kikj
k2

,

where the last equality 
an be 
he
ked by inspe
tion. Finally, we arrive at

[Ai, Aj ] =
~

2ǫ0V

∑

k

1

ωk

(

ei(k·(r−r′)−ωk(t−t′)) − e−i(k·(r−r′)−ωk(t−t′))
)

(

δi,j −
kikj
k2

)

=
i~

ǫ0V

∑

k

1

ωk
sin (k · (r− r′)− ck (t− t′))

(

δi,j −
kikj
k2

)

.

We now use the 
ontinuum limit

∑

k → (2π)−3 V
´

d3k and set, without loss of generality, that r − r′ points in the

k̂z dire
tion. For i 6= j, it is easy to see that the integral vanishes sin
e the integration over the φ angle (whi
h runs

from 0 to 2π) will involve either sinφ cosφ, or sinφ, or cosφ. For i = j = z, we have

ˆ π

0

dθ

ˆ ∞

0

dk

(

k2 sin θ sin (k (∆r cos θ − c∆t))
1

ck

(

1− cos2 θ
)

)

=
4

c (∆r)
3

ˆ ∞

0

dk sin (ck∆t) (k∆r cos (k∆r)− sin (k∆r)) = 0.
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The last result is obtained by regularizing the integrand: multiply it by e−αk
and after integration, take the limit

α→ 0+. Analogously, for i = j = x, we have the integral

ˆ 2π

0

dφ

ˆ π

0

dθ

ˆ ∞

0

dk

(

k2 sin θ sin (k (∆r cos θ − c∆t))
1

ck

(

1− cos2 φ sin2 θ
)

)

=
π

c

ˆ π

0

dθ

ˆ ∞

0

dk
(

k sin θ sin (k (∆r cos θ − c∆t))
(

2− sin2 θ
))

= − 4π

c (∆r)
3

ˆ ∞

0

dk sin (ck∆t)
(

k∆r cos (k∆r) −
(

1− (k∆r)
2
)

sin (k∆r)
)

= 0.

Symmetry arguments ensures the same happens for i = j = y. Therefore, we 
on
lude that [Ai(r, t), Aj(r
′, t′)] = 0.

The 
ommutator between the ele
tri
 �elds is similar:

[Ei, Ej ] =
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√
ωkωk′ei(k·r−k′·r′−ωkt+ωk′ t′) (êk,λ)i

(

ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

e−i(k·r−k′·r′−ωkt+ωk′ t′) (ê∗k,λ
)

i
(êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
i~

ǫ0V

∑

k

ωk sin (k · (r− r′)− ck (t− t′))

(

δi,j −
kikj
k2

)

.

The di�eren
e between the previous integrals is that ωk now appears in the numerator, and thus 
ontributes with k
fa
tor instead of k−1

. It turns out that, as before, all the integrals vanish. Thus,[Ei(r, t), Ej(r
′, t′)] = 0.

The 
ommutator for the magneti
 �elds is

[Bi, Bj ] =
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

ei(k·r−k′·r′−ωkt+ωk′ t′) (k× êk,λ)i
(

k′ × ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

1

ωkωk′

e−i(k·r−k′·r′−ωkt+ωk′ t′) (k× ê∗k,λ
)

i
(k′ × êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
−i~
2ǫ0V

∑

k,λ

k2

ωk
λ
(

ei(k·(r−r′)−ωk(t−t′)) (êk,λ)i
(

ê∗k,λ
)

j
− e−i(k·(r−r′)−ωk(t−t′)) (ê∗k,λ

)

i
(êk,λ)j

)

,

sin
e k × êk,λ = −iλkêk,λ. The integrals involved are similar to those of the ele
tri
 �eld, and hen
e,

[Bi(r, t), Bj(r
′, t′)] = 0.

Let us now turn to the 
ommutator

[Ai, Ej ] =
−i~
2ǫ0V

∑

k,k′

∑

λ,λ′

√

ωk′

ωk
ei(k·r−k′·r′−ωkt+ωk′ t′) (êk,λ)i

(

ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
i~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

ωk′

ωk
e−i(k·r−k′·r′−ωkt+ωk′ t′) (ê∗k,λ

)

i
(êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
−i~
2ǫ0V

∑

k,λ

(

ei(k·(r−r′)−ωk(t−t′)) (êk,λ)i
(

ê∗k,λ
)

j
+ e−i(k·(r−r′)−ωk(t−t′)) (ê∗k,λ

)

i
(êk,λ)j

)

=
i~

ǫ0V

∑

k

cos (k · (r− r′)− ck (t− t′))

(

δi,j −
kikj
k2

)

.

At this point, it is already 
lear that not all 
ommutators vanish, spe
ially when k · (r− r′) = ck (t− t′). Let us fo
us
on the equal time 
ommutator (t = t′). Then,

[Ai(r, t), Ej(r
′, t)] =

i~

ǫ0

[

δ (r− r′) δij −
∂2

∂xi∂x′j

∑

k

cos (k · (r− r′))

V k2

]

=
i~

ǫ0

[

δ (r− r′) δij −
∂2

∂xi∂x′j

(

1

4π |r− r′|

)

]

.
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The �nal 
ommutator is

[Ei, Bj ] =
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

ωk′

ωk
ei(k·r−k′·r′−ωkt+ωk′ t′) (êk,λ)i

(

k′ × ê∗k′,λ′

)

j

[

ak,λ, a
†
k′,λ′

]

+
~

2ǫ0V

∑

k,k′

∑

λ,λ′

√

ωk′

ωk
e−i(k·r−k′·r′−ωkt+ωk′ t′) (ê∗k,λ

)

i
(k′ × êk′,λ′)j

[

a†k,λ, ak′,λ′

]

=
~

2ǫ0V

∑

k,λ

∑

l,m

εjlm

(

ei(k·(r−r′)−ωk(t−t′)) (êk,λ)i kl
(

ê∗k,λ
)

m
− e−i(k·(r−r′)−ωk(t−t′)) (ê∗k,λ

)

i
kl (êk,λ)m

)

.

=
i~

ǫ0V

∑

k

∑

l,m

εjlmkl sin (k · (r− r′)− ck (t− t′))

(

δi,m − kikm
k2

)

.

Noti
e that

∑

εjlmklkm = (k× k)j = 0. Thus, for the equal time 
ommutator

[Ei (r, t) , Bj (r
′, t)] =

i~

ǫ0V

∑

k

∑

l,m

εjlmkl sin (k · (r− r′)) δim =
i~

ǫ0V

∑

k,l

εijlkl sin (k · (r− r′))

=
i~

ǫ0V

∑

l

εijl
∂

∂x′l

∑

k

kl cos (k · (r− r′)) =
i~

ǫ0

∑

l

εijl
∂

∂x′l
(δ (r− r′)) .

The 
onsequen
e of this result is that it is not possible to simultaneously measure the ele
tri
 and magneti
 �eld

with arbitrarily pre
ision.

(f ) The ele
tri
 and magneti
 �eld do not 
ommutate with the number operator. In order to show this, 
onsider a

single mode. Then, we need the 
ommutators

[

ak′,λ′ , a†
k,λak,λ

]

= δk,k′δλ,λ′ak,λ,
[

a†k′,λ′ , a
†
k,λak,λ

]

= −δk,k′δλ,λ′a†k,λ,

in order to 
ompute

[E, N ] = i

√

1

2ǫ0V

∑

k

∑

λ=±
(~ωk)

3

2

(

ak,λe
i(k·r−ωkt)êk,λ + a†k,λe

−i(k·r−ωkt)ê∗k,λ

)

6= 0,

[B, N ] = i

√

~

2ǫ0V

∑

k

∑

λ=±
(~ωk)

1

2

(

ak,λe
i(k·r−ωkt)k× êk,λ + a†k,λe

−i(k·r−ωkt)k× ê∗k,λ

)

6= 0.

Thus, the number of photons is not 
onserved when the ele
tromagneti
 �eld is 
oupled to matter.

(g) Using the result of item (h), we have that

〈X〉 =
√

~

2ωk

〈

α(t)
∣

∣

∣a
†
k,λ + ak,λ

∣

∣

∣α(t)
〉

.

=

√

~

2ωk

(〈

0
∣

∣

∣e−
1

2
|β|2eβ

∗ak,λa†k,λe
− 1

2
|β|2eβa

†

k,λ

∣

∣

∣ 0
〉

+
〈

0
∣

∣

∣e−
1

2
|β|2eβ

∗ak,λak,λe
− 1

2
|β|2eβa

†

k,λ

∣

∣

∣ 0
〉)

=

√

~

2ωk
e−|β|2

(〈

0
∣

∣

∣
eβ

∗ak,λa†k,λe
βa†

k,λ

∣

∣

∣
0
〉

+
〈

0
∣

∣

∣
eβ

∗ak,λak,λe
βa†

k,λ

∣

∣

∣
0
〉)

=

√

~

2ωk
e−|β|2

(〈

0
∣

∣

∣

[

eβ
∗ak,λ , a†k,λ

]

eβa
†

k,λ

∣

∣

∣ 0
〉

+
〈

0
∣

∣

∣eβ
∗ak,λ

[

ak,λ, e
βa†

k,λ

]∣

∣

∣ 0
〉)

.

We then need to 
ompute the 
ommutators:

e−αa†

aeαa
†

=a+
[

−αa†, a
]

+
1

2!

[

−αa†,
[

−αa†, a
]]

+ . . .

=a+ α+
1

2!

[

−αa†, α
]

+ · · · = a+ α,
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whi
h yields

aeαa
†

= eαa
†

a+ e−αa†

α, ⇒
[

a, eαa
†
]

= αe−αa†

.

Thus,

〈X〉 =
√

~

2ωk
e−|β|2

(

β∗
〈

0
∣

∣

∣e−β∗ak,λeβa
†

k,λ

∣

∣

∣ 0
〉

+ β
〈

0
∣

∣

∣eβ
∗ak,λeβa

†

k,λ

∣

∣

∣ 0
〉)

=

√

~

2ωk
(β∗ + β) .

In the same manner,

〈P 〉 = i

√

~ωk

2
(β∗ − β) .

Now, we turn to the quadratri
 mean values (where we drop out the subinde
es)

〈

X2
〉

=
~

2ωk

〈

a†a† + aa† + a†a+ aa
〉

=
~

2ωk

〈

a†a† + 1 + 2a†a+ aa
〉

=
~

2ωk
e−|β|2

〈

0
∣

∣

∣

[

e−β∗a, a†a†
]

eβa
†

+ 1 + 2
[

e−β∗a, a†
] [

a, eβa
†
]

+ e−β∗a
[

aa, eβa
†
]∣

∣

∣ 0
〉

.

We need the 
ommutators

[

aa, eαa
†
]

= αae−αa†

+ αe−αa†

a = α2e−αa†

+ 2αe−αa†

a,

[

eα
∗a, a†a†

]

=
[

aa, eαa
†
]†

= α∗2e−α∗a + 2α∗a†e−α∗a.

Therefore,

〈

X2
〉

=
~

2ωk

(

β∗2 + 1 + 2ββ∗ + β2
)

=
~

2ωk

(

1 + (β + β∗)2
)

=
~

2ωk

(

1 + (β + β∗)2
)

,

〈

P 2
〉

=− ~ωk

2

(

β∗2 − 1− 2ββ∗ + β2
)

=
~ωk

2

(

1− (β − β∗)2
)

.

Finally,

∆X =

√

~

2ωk
, and ∆P =

√

~ωk

2
,

whi
h do not depend on time, whi
h is the main feature of 
oherent states. Moreover, ∆X∆P = 1
2~, whi
h saturates

the Heisenberg un
ertainty prin
iple.

(h) Let us show this result by inspe
tion. The left-hand side of the equation is

i~
∂

∂t
|β〉 = i~

∂

∂t

(

e−
1

2
|β|2eβa

†
)

|0〉 = i~e−
1

2
|β|2 ∂

∂t

(

eβa
†
)

|0〉

= i~e−
1

2
|β|2 β̇a†eβa

† |0〉 = ~ωke
− 1

2
|β|2βa†eβa

† |0〉 .

The right-hand side is

H |β〉 =
∑

k′,λ′

~ωk′a†k′,λ′ak′,λ′e−
1

2
|β|2eβa

†

k,λ |0〉 = ~ωka
†
k,λak,λe

− 1

2
|β|2eβa

†

k,λ |0〉

=~ωke
− 1

2
|β|2a†k,λ

[

ak,λ, e
βa†

k,λ

]

|0〉 = ~ωke
− 1

2
|β|2a†k,λβe

βa†

k,λ |0〉 .

Noti
e that this equals the left-hand side. This ends the proof that

α(t) = β = αe−iωkt.
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Let us now 
ompute

〈β |A|β〉 =
√

~

2ǫ0V

∑

q

∑

σ=±

√

1

ωq

(

〈aq,σ〉 eiq·rêq,σ +
〈

a†q,σ
〉

e−iq·rê∗q,σ
)

=

√

~

2ǫ0V ωk

(

βeik·rêk,λ + β∗e−ik·rê∗k,λ
)

=

√

~

2ǫ0V ωk

(

αei(k·r−ωkt)êk,λ + α∗e−i(k·r−ωkt)ê∗k,λ

)

.

This is an important result. Noti
e it is simply the k-wave solution of the plane equation

(

1
c2

∂2

∂t2 −∇2
)

A = 0. Thus,

the state |β〉 is a 
oherent ele
tromagneti
 wave, just like a laser. (Some people like to say that laser is a Bose-Einstein


ondensate of photons.)

Let explore some insightful 
ases as p = pẑ, λ = +1, and α ∈ ℜ. Thus, êk,± = − 1√
2
(1, i, 0), and

〈A〉 = −
√

~

ǫ0V ωk
α (cos (k (z − ct)) x̂− sin (k (z − ct)) ŷ) ,

whi
h is a 
ir
ular polarized ve
tor whi
h rotates in time 
lo
kwise in the xy-plane (the z-dire
tion 
oming out of the

plane).

2.

(a) The reason why the spontaneous emission is not possible is due to the impossibility of 
onserving both energy

and linear momentum in the pro
ess. Linear momentum requires

ki = kf + q,

where ki,f are the initial and �nal momentum of the parti
le, respe
tively, and q is the momentum of the emitted

photon. Energy 
onservation requires

~
2k2i
2m

=
~
2k2f
2m

+ ~cq.

In the referen
e frame of the parti
le in its initial state, ki = 0. Then, without loss of generality, it is 
lear that energy

onservation 
an not be ful�lled unless k = kf = 0, whi
h means that no photon was emitted.

All this arguments 
an be made pre
ise 
onsidering the transition amplitude

∑

λ

〈kf ;nq,λ|ki; 0, (t)〉 = 0,

where ||ki; 0, t〉 = e−iHt/~ ||ki; 0〉. In order to a

omplish this, we just need to study the matrix element

〈kf ;nq,λ |H |ki; 0〉 ,

where the only interesting term in the Hamiltonian is the intera
tion Hint = − 1
mqA · p+ 1

2mq
2A2

. The se
ond term


onserves the number of photons and thus 
an be negle
ted. The �rst term 
hanges the number of photons by one

and thus 
an allow the emission:

〈kf ;nq,λ |H |ki; 0〉 ∝ ê∗q,λ ·
〈

kf

∣

∣e−iq·rp
∣

∣ki

〉

∝
ˆ

d3re−ikf ·re−iq·reiki·r ∝ δ (ki − kf − q) ,

whi
h is the momentum 
onservation. To 
omplete the story, we need to 
onsider the Dyson series where the energy


onservation 
omes from (Fermi's golden rule). The energy 
onservation will happen in all orders of perturbation

theory (re
all the 
lasses on light s
attering) be
ause the whole Hamiltonian is time-independent. Thus, we also have

to satisfy energy 
onservation. As argued in the beginning, both 
onservation laws 
an not be satis�ed simultaneously.

Thus, a single photon emission 
an not happen.

Noti
e that the total number of photons does not 
ommute with the Hamiltonian (due to the ve
tor �eld term).

Can you think whi
h pro
ess 
an happen in order to not 
onserve the number of photons?
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(b) As seen in 
lass, in �rst order of perturbation theory the transition rate is given by

WFI =
2π

~
|〈f |Hint,static| i〉|2 ρ|~ω=Ei−Ef

=
2π

~

e2

m2

~ (nq,λ + 1)

2ωqǫ0V

∣

∣ê∗q,λ ·
〈

1, 0, 0
∣

∣eiq·rp
∣

∣ 2, 1, 1
〉∣

∣

2 V

(2π)
3

ω2
qdΩ

~c3

=
∣

∣ê∗q,λ ·
〈

1, 0, 0
∣

∣eiq·rp
∣

∣ 2, 1, 1
〉∣

∣

2 e2ωfi

2 (2π)
2
m2ǫ0~c3

dΩ,

where, for spontaneous emission, nq,λ = 0. In the ele
tri
 dipole approximation eiq·r ≈ 1. Moreover, we use that

p = im [H0, r] /~. Thus,

WFI =

(

e2

4πǫ0~c

)

ω3
fi

2πc2

∣

∣ê∗q,λ · 〈1, 0, 0 |r| 2, 1, 1〉
∣

∣

2
dΩ = α

ω3
fi

2πc2

∣

∣ê∗q,λ · 〈1, 0, 0 |r| 2, 1, 1〉
∣

∣

2
dΩ,

where α ≈ 1/137 is the �ne stru
ture 
onstant. We now have to 
ompute the matrix element

〈1, 0, 0 |r| 2, 1, 1〉 =
ˆ

d3rR∗
10 (r) Y

∗
00 (θ, φ) r (sin θ sinφ, sin θ cosφ, cos θ)R21 (r) Y11 (θ, φ)

=

ˆ

d3r

√

1

πa30
e
− r

a0 r (sin θ cosφ, sin θ sinφ, cos θ)
r

8a0

√

1

πa30
e
− r

2a0 sin θeiφ

=
27

35
a0 (1, i, 0) .

The polariation ve
tors are ê∗q,± = 1√
2
(∓ cos θ cosφ− i sinφ,∓ cos θ sinφ+ i cosφ,± sin θ), and hen
e,

WFI,± = α
ω3
fi

2πc2

(

27

35
a0

)2 ∣
∣

∣

∣

1√
2
(∓ cos θ cosφ− i sinφ∓ i cos θ sinφ− cosφ)

∣

∣

∣

∣

2

dΩ

= α
ω3
fi

2πc2

(

27

35
a0

)2 ∣
∣

∣

∣

1√
2
(1± cos θ) eiφ

∣

∣

∣

∣

2

dΩ = α
ω3
fi

4πc2

(

27

35
a0

)2

(1± cos θ)2 dΩ.

We now interpret this result with respe
t to angular momentum 
onservation. Consider for instan
e the 
ase λ = +1,
whi
h means that the emitted photon has angular momentum ~q̂. For θ = 0, this means that the total alngular

momentum of the �nal state is +~. Sin
e the ele
tron in the �nal state has no angular momentum, this means

that the maximum 
han
e of the emitted photon with heli
ity +1 is at this the z-dire
tion where the momentum is


lassi
ally 
onserved, as expe
ted. On the other hand for λ = −1, the probability amplitude that the emitted photon

is in the positive z-dire
tion is null, sin
e this dire
tion maximally violates the 
lassi
al pi
ture of angular momentum


onservation. Conversely, the photon with negative heli
ity has higher probability of being emitted in the negative

z-dire
tion (θ = π), sin
e in this 
ase, the angular momentum it 
arries is +~.

Finally, in order to 
ompute the total transition rate, we integrate over all possible out
omes dΩ and sum over all

heli
ities:

α
ω3
fi

4πc2

(

27

35
a0

)2 ˆ

(1± cos θ)2 dΩ = α
ω3
fi

4πc2

(

27

35
a0

)2

× 16π

3
= α

ω3
fi

c2
216

311
a20,

=

(

27

38

)

α5mc
2

~
,

where a0 = ~

mcα and ~ωfi = 3
4

(

mc2α2

2

)

. Noti
e it independs on λ and equals half of the transition rate between

states |2, 1, 0〉 and |1, 0, 0〉, as would be expe
ted from the isotropy of the Coulomb potential. Finally, summing over

the heli
ities, we arrive at the desired result

WFI =
∑

λ

WFI,λ =

(

2

3

)2

α5mc2~2 ≈ (1.6 ns)−1 .

(
) We expe
t that transition rate for the �nite-mass Hydrogen atom to be smaller sin
e it approa
hes to the 
ase

of a stru
tureless parti
le and both energy and momentum have to be 
onserved simultaneously.
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Performing the 
al
ulations, we �nd that

WFI,finite−mass =WFI,infinite−mass ×
µ

m

(

2

1 + x+
√
1 + x

)

,

where µ = mM/ (M +m) is the redu
ed mass, M is the proton mass, and x = 3
4

µ
M α2 ≈ 3 10−8

.

(d) As the photon 
arries angular momentum of ~, there 
an not be a single-photon ele
tri
-dipole transition

between two atomi
 states having the same angular momentum. Thus, it seems the transition between states 2s→1s

is highly suppressed. There is a route in whi
h this transition 
an take pla
e by emitting a single photon whi
h is

via a magneti
 dipole transition 2s1/2→1s1/2 in whi
h the ele
tron spin �ips. It turns out this transition rate is very

small as we will argue later. Therefore, the main de
ay pro
ess must be a 2-photon emission pro
ess.

We then look ba
k to the intera
tion Hamiltonian in order to understand the possible 2-photon de
ay routes. There

are two terms: one is V = − e
mp ·A and the other is V = e2

2m2A
2
. The latter one does not 
ontribute in the ele
tri


dipole approximation (eik·r ≈ 1) be
ause it will vanish identi
ally: 〈1s|2s〉 = 0. We need to 
onsider the next term

and thus, the overall transition rate will pi
k up a fa
tor of (k · r)2. The other possibility (of same order of magnitude)

is to 
onsider the former term in se
ond-order of perturbation theory. Then, we will have matrix elements of type

∑

l

〈100; 2γ |V | l; 1γ〉 〈l; 1γ |V | 200; 0γ〉
E200 − El

,

where |l〉 are atomi
 intermediate states and |nγ〉 depi
ts states with n photons. The order of magnitude 
an be easily

worked out (dropping out all numeri
al fa
tors). As 
an be seen from the previous item, the ele
tri
-dipole transition

matrix elements

〈f |V | i〉 ∼ e

m

√

~

ǫ0ωV

m

~
E0a0 ∼

√

α~cE0

V
a0,

and the phase spa
e of a single emitted photon (proportional to the density of states) is ∼ V E2
0 (~c)

−3
. For a 2-photon

pro
ess, we will have to integrate over the 2-photon phase spa
e, and thus we pi
k this fa
tor squared. In addition,

noti
e we have only one delta fun
tion δ (E2s − E1s − ~ω1 − ~ω2), thus, there will be an additional fa
tor of energy,

whi
h will be of order of the transition energy E0. Then, in se
ond order we have that the transition rate will be of

order

∼ 1

~

(

α~cE0

V
a20 ×

1

E0

)2

×
(

V E2
0

(~c)
3

)2

E0 ∼ α2a40E
5
0 × 1

~5c4
∼ α2

(

~

mcα

)4
(

mc2α2
)5 1

~5c4
∼ α8mc

2

~
,

whi
h is α3 ≈ 4 10−7
smaller than the single-photon transition 2p→1s. A detailed 
al
ulation shows that the 
orre
t

transition rate is ≈ 8.229 s−1
, whi
h is one order of magnitude smaller than our naive 
al
ulation. Therefore, the

transition rates is 8 orders of magnitude smaller for the 2s state, meaning it is a metastable state. This 
ould be used

to produ
e entangled photon pairs.

The alternative route de
ay 2s→2p→1s seems to be an important one be
ause the transition rate 2p→1s is very

high (of order 108 bigger than the 
urrent rate). However, the splitting between the 2s and 2p (due to Lamb shift) is

very small. This makes the transition rate indeed even smaller than the previous 2-photon de
ay 
onsidered. We 
an

estimate the order of magnitude of the 2s→2p ele
tri
 dipole transition. As before,

∼ 1

~

(

α~c∆E

V
a20

)

×
(

V∆E2

(~c)
3

)

∼ αa20∆E
3

~3c2
,

where ∆E is of order of the splitting between the 2s and 2p states, whi
h is of order of 1GHz (as seen in 
lass) or

hν ≈ 4 10−6 eV. Thus,

W2s→2p ∼W2p→1s ×
(

∆E

E0

)3

∼ 2.5 10−20W2p→1s.

This is extreme smaller than the previous 2-photon de
ays. Thus, although the route de
ay 2s→2p→1s is favored by

the fast de
ay of the last pro
ess, it is hindered by the very �rst step due to the almost degenera
y between states 2s

and 2p.

3. Will be typed soon...



13

(a)

(b)

(
)

(d)

4.

(a)

(b)

(
)

5.

(a)

(b)

(
)

(d)

(e)

(f )

6.

(a)

(b)

(
)


