Lista 3 - Quantica B (2013)

1. Counting states

Consider a one-particle quantum mechanical system with a Hilbert space spanned by three orthonormal states |n),
with n = 1,2,3. Three non-interacting particles occcupy these states. Determine how many distinct physical states
there are if these particles are: (a) three identical fermions, (b) three identical bosons, (¢) two identical fermions and
one boson, (d) two identical bosons and one fermion, (e) three distinct fermions, and (f) three distinct bosons.

2. Exchange interaction

Consider a one-dimensional system of two spin-1/2 fermions. The two fermions move in the field of an anharmonic
double-well oscillator and interact with each other through a repulsive pair interaction V(|z|). The Hamiltonian for
this two-particle system is

1
H=g— (p1 +p3) + U(x1) + U(x2) + V(|21 — 22]),

where the double-well potential is U(z) = % (:1:2 — a2)2. As for the pair potential V' (z), we will only need to assume
that it is repulsive and that it decreases sufficiently fast so that all the integrals involved are convergent. Finally, let

(x|R) = ¥g(x) be the harmonic-oscillator ground-state wavefunction centered around x = a and (z|L) = ¢ (z) be
the corresponding wave function centered around x = —a:
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(a) Give a justification for ¢p . When are they expected to be a good approximation of the true ground-state
wavefunctions? Compute the overlap ¢ = (L|R).
(b) Find the expressions for the matrix elements of the one-particle Hamiltonian H) = ﬁ]ﬂ + U(z) in the space
spanned by the two single particle kets |R) and |L):
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Now, diagonalize H é;f) and find its two Eigenstates |+) and corresponding energies F. .

(¢) What is the maximum number of linearly independent, properly anti-symmetrized two-particle states (including
spin)? Construct the two-particle basis using the single particle states |+, 1) , |[+,4), |—, 1), and |—, ]).

(d) Calculate the matrix elements of the interaction term (V') of the two-particle Hamiltonian in the unsymmetrized
(orbital) basis |R, R), |R, L), |L, R), and | L, L). Now, find an expression for the appropriately defined Direct (Coulomb)
and Exchange integrals.

(e) Use these expressions (and the overlap ¢) to compute the energy levels, their quantum numbers and their
degeneracies for this two-particle system. Find an expression for the Exchange constant J. (Hint: Express your result
in terms of Hes = const + JS; - So, with S; being the spin operators.)

3. Free fermions
Consider a system of noninteracting N spin-1/2 particles which are free to move in a one-dimentional ring of length
L. The one-particle wavefunctions are

<‘T7 U|¢> = ¢n,a($),

with o =7, | representing the spin, and n a quantum number to be defined. Assume that N/2 is an odd integer.

(a) Write down the one-particle states wavefunctions ¢, ,(z) which obey the boundary condition given above.
What is the meaning of the quantum number n?

(b) Use the fermionic field operators af, ,(z) and an ,(z) in position space to write the Hamiltonian of this free
fermion system in the Fock space. Do the same now for the operators in momentum space.

(¢) Compute the anticommutators {a,(p),al(p)} and {a,(p),a-(p)}.

(d) Construct the many-particle ground state |G) for this system in the Fock space. Compute the Fermi energy
Er, namely the energy of the topmost occupied state. How many single-particle states are present in |G)?



(e) Show that the wavefunction of the ground state is an N x N Slater determinant. In addition, show this
determinant can be factorized to the product of two % X % determinants. (Hint: Notice that (; ¢ |tn.r) = 05+ Vn - (i),
where ; , is the position of the i-th particle with spin o.)

(f) Show that
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(Hint: Recall the Vandermonde matrix.)

4. Two coupled bosons
Consider a system of two distinct bosonic particle (type A and B) in which only one mode is present:

H=-¢cpra'a+egb’b+Va'b+V*la.

(a) Show that ¢ = ua — vb and d = v*a + u*b, with |u|* + |v|* = 1 are bosonic operators.

(b) Show that when ex = eg and V = V*, the choice u = v = 1/\/_ decouples the system of bosonic particles C
and D.

(¢) Determine u and v that diagonalizes the system in the general case. Find the Eigenenergies and Eigenvectors
of the system.

5. Two coupled fermions

Consider a system of two spin-1/2 identical fermionic particles that can occupy three different states of energies F;,
1 =1, 2, 3. The matrix elements allowing the transitions between these states are M;;.

(a) Write down the system Hamiltonian in terms of the criation and annihilation operators.

(b) Determine the equation that gives the Eigenenergies of the sytem.

(¢) Diagonalize the system for the particular case E; = E and M;; = M, and the spins of the particles are the
same.

6. Grand-canonical ensamble
The Grand partition function is given by the trace

Za = tr e_B(H_”N), where H = Z eiazai and N = Zazai,
i i

and the constants f and p are the inverse of temperature and the chemical potential, respectively. In the following
compute the required quantities for both cases of identical bosonic and fermionic particles.

(a) Compute Zg. (Hint: Use the trace in the Fock space: trO = (n1...n|0|n1...n), and recall that in the
Grand-canonical ensamble the number of particles if not fixed.)

(b) Compute the average occupation number (n;), such that N = >, (n;). (Hint: Recall the thermodynamic

Grand-potential Q(T,V,u) = 37 '1In Zg, and that N = — (g_SJ)T v')

(¢) Show that the fractional deviation from the mean occupation number
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with the ¢ = +£1 for bosons and fermions, respectively.

7. Holes in a magnetic moment closed shell as an antiparticle (Merzbacher, chap. 22)

Let a . be a criation operator of fermionic particle with angular momentum j and projection in the z-direction m.

(a) Construct the closed-shell state: a state in which all one-particle states m = —j to = +j are occupied.

(b) Prove that the this state has zero total angular momentum.

(¢) If a fermion with a certain magnetic quantum number m = k is missing from this closed-shell state of particles,
show that, for angular momentum purposes, this hole state can be treated as the state of a single particle with
quantum number —k, and effective creation operator (—1)j_k aj k-

8. (Optional) More on exchange (Merzbacher, chap. 22)
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Consider the unperturbed states of n spin-1/2 particles, aimn e aL i ..aLUl |0), each occupying one of the n

equivalent, degenerate orthogonal orbitals labeled by the quantum number k, with o, = +1/2 denoting the spin
quantum number associate with the orbital k. Show that in the space of the 2" unperturbed states a spin-independent
two-body interaction may, in first-order perturbation theory, be replaced by the effective exchange (Heisenberg)
Hamiltonian

1

Heff = _ﬁ
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(k. L|V]l, k)Sy - Sy + const, where Sj, = 3 Z a;gkakﬂ_k (o |o| %)
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is the localized spin operator, and o = (¢%,0%,0%) are the Pauli matrices.



