
Lista 3 - Quântia B (2013)

1. Counting states

Consider a one-partile quantum mehanial system with a Hilbert spae spanned by three orthonormal states |n〉,
with n = 1, 2, 3. Three non-interating partiles oupy these states. Determine how many distint physial states

there are if these partiles are: (a) three idential fermions, (b) three idential bosons, () two idential fermions and

one boson, (d) two idential bosons and one fermion, (e) three distint fermions, and (f ) three distint bosons.

2. Exhange interation

Consider a one-dimensional system of two spin-1/2 fermions. The two fermions move in the �eld of an anharmoni

double-well osillator and interat with eah other through a repulsive pair interation V (|x|). The Hamiltonian for

this two-partile system is

H =
1

2m

(

p21 + p22
)

+ U(x1) + U(x2) + V (|x1 − x2|),

where the double-well potential is U(x) = U0

a4

(

x2 − a2
)2
. As for the pair potential V (x), we will only need to assume

that it is repulsive and that it dereases su�iently fast so that all the integrals involved are onvergent. Finally, let

〈x|R〉 = ψR(x) be the harmoni-osillator ground-state wavefuntion entered around x = a and 〈x|L〉 = ψL(x) be
the orresponding wave funtion entered around x = =a:

ψR =

(

1

πσ2

)1/4

e−
(x−a)2

2σ2
and ψL =

(

1

πσ2

)1/4

e−
(x+a)2

2σ2 , with σ2 =
~a√
8mU0

.

(a) Give a justi�ation for ψR,L. When are they expeted to be a good approximation of the true ground-state

wavefuntions? Compute the overlap ℓ = 〈L|R〉.
(b) Find the expressions for the matrix elements of the one-partile Hamiltonian H(1) = 1

2mp
2 + U(x) in the spae

spanned by the two single partile kets |R〉 and |L〉:

H
(1)
eff =

( 〈

R
∣

∣H(1)
∣

∣R
〉 〈

R
∣

∣H(1)
∣

∣L
〉

〈

L
∣

∣H(1)
∣

∣R
〉 〈

L
∣

∣H(1)
∣

∣L
〉

)

.

Now, diagonalize H
(1)
eff and �nd its two Eigenstates |±〉 and orresponding energies E±.

() What is the maximum number of linearly independent, properly anti-symmetrized two-partile states (inluding

spin)? Construt the two-partile basis using the single partile states |+, ↑〉 , |+, ↓〉, |−, ↑〉, and |−, ↓〉.
(d) Calulate the matrix elements of the interation term (V ) of the two-partile Hamiltonian in the unsymmetrized

(orbital) basis |R,R〉, |R,L〉, |L,R〉, and |L,L〉. Now, �nd an expression for the appropriately de�ned Diret (Coulomb)

and Exhange integrals.

(e) Use these expressions (and the overlap ℓ) to ompute the energy levels, their quantum numbers and their

degeneraies for this two-partile system. Find an expression for the Exhange onstant J . (Hint : Express your result

in terms of Heff = const + JS1 · S2, with Si being the spin operators.)

3. Free fermions

Consider a system of noninterating N spin-1/2 partiles whih are free to move in a smooth one-dimentional ring

of length L. The one-partile wavefuntions are

〈x, σ|ψ〉 = ψn,σ(x),

with σ =↑, ↓ representing the spin, and n a quantum number to be de�ned. Assume that N/2 is an odd integer.

(a) Write down the one-partile states wavefuntions ψσ,n(x) whih obey the boundary ondition given above.

What is the meaning of the quantum number n?
(b) Use the fermioni �eld operators a†σ(x) and aσ(x) in position spae (whih reate/annihilate a fermion in with

spin σ at position x) to write the Hamiltonian of this free fermion system in the Fok spae. Do the same now for

the operators in momentum spae.

() Compute the antiommutators

{

ãσ(p), ã
†
τ (q)

}

and {ãσ(p), ãτ (q)}.
(d) Construt the many-partile ground state |G〉 for this system in the Fok spae. Compute the Fermi energy

EF , namely the energy of the topmost oupied state. How many single-partile states are present in |G〉?



2

(e) Show that the wavefuntion of the ground state is an N ×N Slater determinant. In addition, show this deter-

minant an be fatorized to the produt of two

N
2 × N

2 determinants. (Hint : Notie that 〈xi,σ|ψn,τ 〉 = δσ,τψn,τ (xi,σ),
where xi,σ is the position of the i-th partile with spin σ.)
(f ) Show that

Ψ
(

x1,↑, x1,↓, . . . , xN
2 ,↑, xN

2 ,↓

)

= L−N
2 e−i( 2π

L )(N−2
4 )NXCM

N
2
∏

i<j=1

(zi,↑ − zj,↑) (zi,↓ − zj,↓) ,

where zi,σ = ei
2π
L

xi,σ
and XCM is the position of the enter of mass of the system. (Hint : Reall the Vandermonde

matrix.)

4. Two oupled bosons

Consider a system of two distint bosoni partiles (type A and B) in whih only one mode of eah is present:

H = ǫAa
†a+ ǫBb

†b+ V a†b + V ∗b†a.

(a) Show that c ≡ ua− vb and d ≡ v∗a+ u∗b, with |u|2 + |v|2 = 1 are bosoni operators.

(b) Show that when ǫA = ǫB and V = V ∗
, the hoie u = v = 1/

√
2 deouples the system of bosoni partiles C

and D.

() Determine u and v that diagonalizes the system in the general ase. Find the Eigenenergies and Eigenvetors

of the system.

5. Two oupled fermions

Consider a system of two spin-1/2 idential fermioni partiles that an oupy three di�erent states of energies Ei,

i = 1, 2, 3. The matrix elements allowing the transitions between these states are Mij .

(a) Write down the system Hamiltonian in terms of the riation and annihilation operators.

(b) Determine the equation that gives the Eigenenergies of the sytem.

() Diagonalize the system for the partiular ase Ei = E and Mij = M , and the spins of the partiles are the

same.

6. Grand-anonial ensamble

The Grand partition funtion is given by the trae

ZG = tr e−β(H−µN), where H =
∑

i

ǫia
†
iai and N =

∑

i

a†iai,

and the onstants β and µ are the inverse of temperature and the hemial potential, respetively. In the following

ompute the required quantities for both ases of idential bosoni and fermioni partiles.

(a) Compute ZG. (Hint : Use the trae in the Fok spae: trO =
∑

ni...n∞
〈n1 . . . n∞ |O|n1 . . . n∞〉, and reall that

in the Grand-anonial ensamble the number of partiles is not �xed.)

(b) Compute the average oupation number 〈ni〉, suh that N =
∑

i 〈ni〉. (Hint : Reall the thermodynami

Grand-potential Ω(T, V, µ) = β−1 lnZG, and that N = −
(

∂Ω
∂µ

)

T,V
.)

() Show that the frational deviation from the mean oupation number

〈

(ni − 〈ni〉)2
〉

〈ni〉2
= eβ(ǫi−µ) =

1

〈ni〉
+ ζ,

with the ζ = ±1 for bosons and fermions, respetively.

7. Holes in a magneti moment losed shell as an antipartile (Merzbaher, hap. 22 - 3rd ed.)

Let a†j,m be a riation operator of fermioni partile with angular momentum j and projetion in the z-diretion m.

(a) Construt the losed-shell state: a state in whih all one-partile states m = −j to = +j are oupied.
(b) Prove that the this state has zero total angular momentum.

() If a fermion with a ertain magneti quantum number m = k is missing from this losed-shell state of partiles,

show that, for angular momentum purposes, this hole state an be treated as the state of a single partile with

quantum number −k, and e�etive reation operator (−1)
j−k

aj,k.
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8. (Optional) More on exhange (Merzbaher, hap. 22 - 3rd ed.)

Consider the unperturbed states of n spin-1/2 partiles, a†n,σn
. . . a†k,σk

. . . a†1,σ1
|0〉, eah oupying one of the n

equivalent, degenerate orthogonal orbitals labeled by the quantum number k, with σk = ±1/2 denoting the spin

quantum number assoiate with the orbital k. Show that in the spae of the 2n unperturbed states a spin-independent

two-body interation may, in �rst-order perturbation theory, be replaed by the e�etive exhange (Heisenberg)

Hamiltonian

Heff = − 1

~2

∑

k,ℓ

〈k, ℓ |V | ℓ, k〉Sk · Sℓ + const, where Sk =
~

2

∑

σk,τk

a†k,σk
ak,τk 〈σk |σ| τk〉

is the loalized spin operator, and σ = (σx, σy , σz) are the Pauli matries.
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ANSWER:

1.

(a) One state, given by the antisymmetrization of |1, 2, 3〉 → (|1, 2, 3〉 + |2, 3, 1〉 + |3, 1, 2〉 − |2, 1, 3〉 − |3, 2, 1〉 −
|1, 3, 2〉)/

√
6.

(b) One state in whih all bosons are in distint sates (given by the symmetrization of |1, 2, 3〉). Six states in whih

one of the states are not oupied (they are of type |1, 1, 2〉). Three states in whih all bosons are in the same state:

|n, n, n〉 , with n = 1, 2, 3. Thus, total of 10 states.

() There are 3 states in the ase of two idential fermions. For one single boson, there are three states. Thus,

there is a total of 3× 3 = 9 states.

(d) For two idential bosons, there are six states. For one fermion, three states. Thus, 6× 3 = 18 states.

(e) and (f ) There are 3 states for eah distint partile. Thus, 3× 3× 3 = 27 states.

2.

(a) Notie the similarities between ψR,L with the ground-state wavefuntion of the 1D Harmoni Osillator (

1
2mp

2+
1
2mω

2x2)

ψ(x) =

(

1

πx20

)1/4

e
− 1

2

(

x
x0

)2

, with x20 =
~

mω
.

In our ase, we expet that an Harmoni potential be a good desription of the double-well potential around eah of

its minima ±a. Thus, expanding V around ±a we get

V (x∓ a) =
1

2
× 8U0

a2
(x∓ a)

2
+O (x∓ a)

3 ≈ 1

2
mω2 (x∓ a)

2
, with ω =

√

8U0

ma2
.

This is the orresponding frequeny in eah minima of V whih will give the lenght sale σ used in ψR,L. These

wavefuntions will be good approximations of the true wavefuntions when the two minima are well separated. This

an be quanti�ed by the overlap

ℓ =
1√
πσ

ˆ

dxe−
(x−a)2+(x+a)2

2σ2 =
1√
πσ

ˆ

dxe−
x2

σ2 e−
a2

σ2 = e−(
a
σ )

2

.

Thus, the two wells are well separated whenever ℓ≪ 1, ⇒ a≫ σ, i.e., a
√
mU0 ≫ ~.

(b) Using re�eion symmetry and that all funtions are real, we notie that

〈

R
∣

∣H(1)
∣

∣R
〉

=
〈

L
∣

∣H(1)
∣

∣L
〉

and that

〈

R
∣

∣H(1)
∣

∣L
〉

=
〈

L
∣

∣H(1)
∣

∣R
〉

.
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We then need to ompute

〈

R
∣

∣

∣H(1)
∣

∣

∣R
〉

=
1√
πσ

ˆ

dxe−
(x−a)2

2σ2

(

− ~
2

2m

d2

dx2
+
U0

a4
(

x2 − a2
)2
)

e−
(x−a)2

2σ2

=
1√
πσ

ˆ

dye−
y2

2σ2

(

− ~
2

2m

d2

dy2
+
U0

a4
y2 (y + 2a)

2

)

e−
y2

2σ2

=
1√
π

ˆ

dze−
1
2 z

2

(

− ~
2

2mσ2

d2

dz2
+ U0

σ4

a4
z2
(

z + 2
a

σ

)2
)

e−
1
2 z

2

=
1√
π

ˆ

dze−z2

(

− ~
2

2mσ2

(

z2 − 1
)

+ U0
σ4

a4
z2
(

z + 2
a

σ

)2
)

=
1√
π

(√
π

2
× ~

2

2mσ2
+ U0

σ4

a4
×

√
π

4

(

3 + 8
(a

σ

)2
))

=
~
2

4mσ2
+ U0

σ2
(

3σ2 + 8a2
)

4a4

=~

√

U0

2ma2
+ ~

√

U0

8ma2

(

3~

4
√
8mU0a2

+ 2

)

= U0

(

4α+
3

4
α2

)

,

〈

R
∣

∣

∣
H(1)

∣

∣

∣
L
〉

=
1√
πσ

ˆ

dxe−
(x−a)2

2σ2

(

− ~
2

2m

d2

dx2
+
U0

a4
(

x2 − a2
)2
)

e−
(x+a)2

2σ2

=
1√
πσ

ˆ

dxe
−
(

x2+a2

σ2

)
(

− ~
2

2mσ4

(

(x+ a)
2 − σ2

)

+
U0

a4
(

x2 − a2
)2
)

=− ~
2

2mσ4

(

a2 − 1

2
σ2

)

e−(
a
σ )

2

+
U0

a4

(

a4 − a2σ2 +
3

4
σ4

)

e−(
a
σ )

2

=e−
√

8ma2U0
~

(

−4U0

(

1− ~

2
√
8ma2U0

)

+ U0

(

1− ~√
8ma2U0

+
3~2

32a2mU0

))

=− U0

(

3− α− 3

4
α2

)

e−
1
α = −U0

(

3− α− 3

4
α2

)

ℓ,

where α2 = ~
2

8ma2U0
.

Sine the matrix is of the simple form

H
(1)
eff =

(

A −ℓB
−ℓB A

)

,

the Eigenstates are

|±〉 = 1√
2
(|R〉 ± |L〉) , with energies E± = A∓ ℓB.

(Notie that 〈R|L〉 = ℓ, thus 〈±|±〉 = 1± ℓ and 〈+|−〉 = 0.)

() Sine we have for single-partile states, 2 fermions an be distrubuted among them in

(

4
2

)

= 6 di�erent

ways. These states are obtained by antisymmetring any two-partile state, whih sums 4 × 4 = 16 states. Due

to Pauli priniple, 10 states annot be antisymmetrized. It is easy to hek that whenever the orbital part of the

wavefuntion is symmetri, then the spin part is antisymmetri and vie and versa. With respet to the spin, there are

three symmetri sates, dubbed triplet, and one antisymmetri state (singlet). They are respetively, |t1〉 = |↑〉1 |↑〉2,
|t0〉 = 1√

2
(|↑〉1 |↓〉2 + |↓〉1 |↑〉2), |t−1〉 = |↓〉1 |↓〉2, and |s〉 = 1√

2
(|↑〉1 |↓〉2 − |↓〉1 |↑〉2). Likewise, the symmetri orbital

wavefuntions are |S1〉 = |+〉1 |+〉2, |S0〉 = 1√
2
(|+〉1 |−〉2 + |−〉1 |+〉2), and |S−1〉 = |−〉1 |−〉2, and the antisymmetri

one is |A〉 = 1√
2
(|+〉1 |−〉2 − |−〉1 |+〉2).

Finally, the six states are |Si〉 ⊗ |s〉 and |A〉 ⊗ |ti〉, with i = −1, 0, 1
(d) Ignoring spin, we have 4 two-partile sates. We are then interested in the matrix elements

〈A,B |V |C,D〉 =
ˆ

dx1dx2ψ
∗
A (x1)ψ

∗
B (x2) V (|x1 − x2|)ψC (x1)ψD (x2) .



6

Sine V (x1, x2) = V (|x1 − x2|), then we set r = x1 − x2 and R = 1
2 (x1 + x2). Thus,

〈A,B |V |C,D〉 =
ˆ

drdRψ∗
A(R +

1

2
r)ψ∗

B(R− 1

2
r)V (|r|)ψC(R+

1

2
r)ψD(R− 1

2
r)

=
1

πσ2

ˆ

drdRe
− 1

2σ2

[

(R+ 1
2 r−ǫAa)2+(R− 1

2 r−ǫBa)2+(R+ 1
2 r−ǫCa)2+(R− 1

2 r−ǫDa)2
]

V (|r|)

=
1

πσ2

ˆ

drdRe−
1

2σ2 [4R
2+r2+4a2−2aR(ǫA+ǫB+ǫC+ǫD)−ar(ǫA−ǫB+ǫC−ǫD)]V (|r|)

=
1

πσ2

ˆ

drdRe
− 1

2σ2

[

4(R− 1
2ap)

2−a2p2+(r−aq)2−a2q2+4a2
]

V (|r|),

where ǫx = ±1 if x = R,L, respetively, 2p = ǫA + ǫB + ǫC + ǫD, and 2q = ǫA − ǫB + ǫC − ǫD. We are now able to

integrate over R yielding

〈A,B |V |C,D〉 = 1√
2πσ

e
1
2 (

a
σ )

2(p2+q2−4)
ˆ

dre−
1

2σ2 (r−aq)2V (|r|)

=
1√
2πσ

e
1
2 (

a
σ )

2
(ǫAǫC+ǫBǫD−2)

ˆ

dre−
1

2σ2 (r−aq)2V (|r|).

Thus,

VRR,RR =
1√
2πσ

ˆ

dre−
1

2σ2 r2V (|r|) = VLL,LL,

VRR,RL =
1√
2πσ

e−(
a
σ )

2
ˆ

dre−
1

2σ2 (r−a)2V (|r|) = VRL,RR = VLR,LL = VLL,LR,

VRR,LR =
1√
2πσ

e−(
a
σ )

2
ˆ

dre−
1

2σ2 (r+a)2V (|r|) = 1√
2πσ

e−(
a
σ )

2
ˆ

dre−
1

2σ2 (r−a)2V (|r|)

= VLR,RR = VRL,LL = VLL,RL,

VRR,LL =
1√
2πσ

e−2( a
σ )

2
ˆ

dre−
1

2σ2 r2V (|r|) = VLL,RR,

VRL,RL =
1√
2πσ

ˆ

dre−
1

2σ2 (r−2a)2V (|r|) = VLR,LR,

VRL,LR =
1√
2πσ

e−2( a
σ )

2
ˆ

dre−
1

2σ2 r2V (|r|) = VLR,RL.

Thus, the matrix elements of V has only 4 independent values. In the basis |RR〉 , |RL〉 , |LR〉 , |LL〉 , it is of type

V =







a ℓb ℓb ℓ2c
ℓb d ℓ2c ℓb
ℓb ℓ2c d ℓb
ℓ2c ℓb ℓb a






.

We now have to ompute the diret and exhange integrals. They are, respetively, 〈+− |V |+−〉 / 〈+− |+−〉
and 〈+− |V | −+〉 /

√

〈+− |+−〉 〈−+ | −+〉. Thus,
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VD =
1

(1 + ℓ) (1− ℓ)

(

1√
2

)4

(〈R|+ 〈L|)1 ⊗ (〈R| − 〈L|)2 V (|R〉+ |L〉)1 ⊗ (|R〉 − |L〉)1

=
1

4 (1− ℓ2)
(VRR,RR − VRR,RL + VRR,LR − VRR,LL − VRL,RR + VRL,RL − VRL,LR + VRL,LL

+VLR,RR − VLR,RL + VLR,LR − VLR,LL − VLL,RR + VLL,RL − VLL,LR + VLL,LL)

=
1

4 (1− ℓ2)

(

a− ℓ2c+ d− ℓ2c− ℓ2c+ d− ℓ2c+ a
)

=
1

2 (1− ℓ2)

(

a+ d− 2ℓ2c
)

,

VE =
1

4 (1− ℓ2)
(〈R|+ 〈L|)1 ⊗ (〈R| − 〈L|)2 V (|R〉 − |L〉)1 ⊗ (|R〉+ |L〉)1

=
1

4 (1− ℓ2)
(VRR,RR + VRR,RL − VRR,LR − VRR,LL − VRL,RR − VRL,RL + VRL,LR + VRL,LL

+VLR,RR + VLR,RL − VLR,LR − VLR,LL − VLL,RR − VLL,RL + VLL,LR + VLL,LL)

=
1

4 (1− ℓ2)

(

a− ℓ2c− d+ ℓ2c+ ℓ2c− d− ℓ2c+ a
)

=
1

2 (1− ℓ2)
(a− d) .

(e) The possible states are the six ones disussed item (). For now, let us fous on the orbital degree of freedom.

In the 4-states orbital basis, |Si〉 (i = 1, 0, −1) and |A〉, H1 is diagonal with Eigenenergies 2E+, E+ +E−, 2E−, and
E+ + E−, respetively. The interation in this basis is

V =













a+d
2 +2ℓb+ℓ2c

(1+ℓ)2
0 a−d

2(1−ℓ2) 0

0 a−ℓ2c
1−ℓ2 0 0

a−d
2(1−ℓ2) 0

a+d
2 −2ℓb+ℓ2c

(1−ℓ)2
0

0 0 0 d−ℓ2c
1−ℓ2













where we needed

V |S1〉 =
(

1√
2

)2

V (|RR〉+ |RL〉+ |LR〉+ |LL〉)

=

(

1√
2

)2
[(

a+ 2ℓb+ ℓ2c
)

(|RR〉+ |LL〉) +
(

d+ 2ℓb+ ℓ2c
)

(|RL〉+ |LR〉)
]

=

(

a+ d

2
+ 2ℓb+ ℓ2c

)

|S1〉+
(

a− d

2

)

|S−1〉 ,

V |S−1〉 =
(

1√
2

)2

V (|RR〉 − |RL〉 − |LR〉+ |LL〉)

=

(

1√
2

)2
[(

a− 2ℓb+ ℓ2c
)

(|RR〉+ |LL〉)−
(

d− 2ℓb+ ℓ2c
)

(|RL〉+ |LR〉)
]

=

(

a− d

2

)

|S1〉+
(

a+ d

2
− 2ℓb+ ℓ2c

)

|S−1〉 ,

V |S0〉 =
(

1√
2

)4

V (2 |RR〉 − 2 |LL〉) =
(

a− ℓ2c
)

|S0〉 ,

V |A〉 =
(

1√
2

)4

V (2 |RL〉 − 2 |LR〉) =
(

d− ℓ2c
)

|S0〉 .

Thus, we already have two of the Eigenstates: |A〉 with EA = E++E−+VD−VE, and |S0〉 with ES0 = E++E−+
VD+VE. Atually, this orresponds for 4 states when spin is onsidered: |A〉⊗ |ti〉, i = 1, 0, −1 and |S0〉⊗ |s〉. Notie
that this states are degenerate if only H(1)

is onsidered. The degeneray is lifted by the interation V splitting this

four states into triplet and singlet states. With respet with these two states, the Hamiltonian an be reast as

Heff = const + JS1 · S2,
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where Si are spin operators. Notie the Eigenstates ofHeff are spin singlet |s〉 and triplet |ti〉 with energies const− 3~2

4 J

and const + ~
2

4 J, respetively. In order to reast the spetrum of |S0〉 ⊗ |s〉 and |A〉 ⊗ |ti〉, we set const = E+ +E− +

VD − 1
2VE and the exhange onstant

J~2 = −2VE =
d− a

1− ℓ2
=

−1√
2π (1− ℓ2)σ

ˆ

dr
(

e−
1

2σ2 r2 − e−
1

2σ2 (r−2a)2
)

V (|r|).

If V (r) is positive and monotonially dereasing, this means that it osts energy for the partiles to be lose to eah

other. Thus, it is energetially favorable to their orbital wavefuntion to be antisymmetri [meaning ψ(R, r = 0) = 0℄.
In this ase, the spin part of the wavefuntion has to be symmetri, i.e., a triplet. The triplet state is favorable

whenever J < 0. This is indeed the ase as an be seen from the expression for J. On the other hand, if V < 0 and

drereases (in magnitude) monotonially, then we expet the orbital part to be symmetri [yielding ψ (R, r = 0) 6= 0℄.
Thus, the spin part has to be antisymmetri and, as a onsequene, J > 0.
Finally, we now have to diagonalize the subspae spanned by |S±1〉. The related matrix is





2E++ a+d
2 +ℓ2c+2ℓb

(1+ℓ)2
a−d

2(1−ℓ2)

a−d
2(1−ℓ2)

2E−+ a+d
2 +ℓ2c−2ℓb

(1−ℓ)2



 =

(

A C
C B

)

, ⇒ λ2 − (A+B)λ+AB − C2 = 0.

The Eigenenergies are

1
2 (A+B ±∆) with ∆ =

√

(A−B)
2
+ 4C2

, and (unnormalized) Eigenvetors [(A − B ±
∆) |++〉+ 2C |−−〉]⊗ |s〉.

3.

(a) The wavefuntions are those of free partiles, ψ = eikx/
√
L, with periodi boundary onditions ψ(x) = ψ(x+L).

Thus,

eikL = 1, ⇒ kn =
2π

L
n, with n ∈ Z. ⇒ ψn,σ =

1√
L
eiknxσ.

The quantum number n labels the momentum ~kn whih, due to translational symmetry, is a good quantum number.

Moreover, notie the enegies of these states are En = 1
2m~

2
(

2π
L

)2
n2
. Thus, sine En = E−n, the degeneray is twofold

for all states n 6= 0. The kn = 0 state is nondegerante. If spin is onsidered, all these degeneraies are multiplied by

2.

(b) Sine H = 1
2mp

2
, it is very simple to express H in terms of ãσ(p):

H =

ˆ

dpdq

(2π~)
2

∑

σ,τ

ã†σ (p)

〈

p, σ

∣

∣

∣

∣

1

2m
p2
∣

∣

∣

∣

qτ

〉

ãτ (q) =

ˆ

dpdq

(2π~)
2

∑

σ,σ′

ã†σ (p)δσ,τ
q2

2m
〈p|q〉 ãτ (q)

=
∑

σ

ˆ

dp

2π~
ã†σ(p)

p2

2m
ãσ(p), where 〈p|q〉 = 2π~δ (p− q) .

In the position spae, either we inverse Fourier transform the operators ã and ã†, or, simply

H =

ˆ

dxdy
∑

σ,τ

a†σ (x)

〈

x, σ

∣

∣

∣

∣

1

2m
p2
∣

∣

∣

∣

yτ

〉

aτ (y) =

ˆ

dxdx′
∑

σ,τ

a†σ (x)δσ,τ

(

− ~
2

2m

d2

dy2

)

〈x|y〉 aτ (y)

=
∑

σ

ˆ

dxa†σ(x)

(

− ~
2

2m

d2

dx2

)

aσ(x), where 〈x|y〉 = δ (x− y) .

() This an be done straightforwardly,

{

ãσ(p), ã
†
τ (q)

}

=

ˆ

dxdy
{

ãσ(x), ã
†
τ (y)

}

e−i px
~ ei

qy
~ =

ˆ

dxdyδσ,τδ (x− y) e−i px
~ ei

qy
~

= δσ,τ

ˆ

dxe−i
(p−q)x

~ = 2π~δ (p− q) δσ,τ .

Notie in this onvention, that bothã(p) and a(x) has dimension of square root of length. Beause the problem is in

a �nite-size ring, one ould make this operators dimensionless and the integrals should be normalized by L. Finally,
beause {aσ(x), aτ (y)} = 0, we have that {ãσ(p), ãτ (q)} = 0.
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(d) Beause

1
2N is odd, we write N = 4K + 2 with K being integer. To onstrut the ground state, we add 2

fermions in the n = 0 sates. Then, N − 2 = 4K fermions remains to �ll the other states. Notiing that a n 6= 0
energy-level is degenerate with the −n level, and that eah of these levels an aomodate 2 fermions (with opposite

spins), then there remains K levels to be �lled, i.e., EF = EK = 1
2m~

2
(

2π
L

)2
K2 = 1

2m~
2
(

2π
L

)2 (N−2
4

)2
. The ground

state is

|G〉 = a†0,↑a
†
0,↓

1
∏

i=N−2
4

a†i,↑a
†
i,↓a

†
−i,↑a

†
−i,↓ |0〉 ,

where a†n,σ reates a fermion the wavefuntion of whih is ψn,σ(x).
(e) The wavefuntion of a many-partile fermioni system is generially written as a slater determinant

Ψ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1 (x1) ψ2 (x1) . . . ψN (x1)
ψ1 (x2) ψ2 (x2) . . . ψN (x2)

.

.

.

.

.

.

.

.

.

.

.

.

ψ1 (xN ) ψ2 (xN ) . . . ψN (xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where ψj (xi) = 〈xi|ψj〉. If we want to onnet this with our problem where spin is expliitly involved, then 〈xi|ψj〉 →
〈xi,σ |ψj,τ 〉 = δσ,τψj,σ (xi,σ) = δσ,τψj (xi,σ). Thus,

Ψ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ0 (x1,↑) 0 ψ1 (x1,↑) 0 ψ−1 (x1,↑) 0 . . . ψ−K (x1,↑) 0
0 ψ0 (x1,↓) 0 ψ1 (x1,↓) 0 ψ−1 (x1,↓) . . . 0 ψ−K (x1,↓)
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 ψ0

(

xN
2 ,↓

)

. . . ψ1

(

xN
2 ,↓

)

0 ψ−1

(

xN
2 ,↓

)

. . . 0 ψ−K

(

xN
2 ,↓

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This matrix an be rearranged in the following way: set all the spin-up states to appear before the spin-down states.

[It is equivalent as doing

1
2N permutations of lines and rows, whih leaves the determinant unhanged, or rewritting

the ground state as

|G〉 =



a†0,↑

1
∏

i=N−2
4

a†i,↑a
†
−i,↑







a†0,↓

1
∏

i=N−2
4

a†i,↓a
†
−i,↓



 |0〉 .]

Moreover, notie that that resulting matrix will be blok diagonal. Thus, it an be fatorized as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ0 (x1,↑) ψ1 (x1,↑) ψ−1 (x1,↑) . . . ψ−K (x1,↑)
ψ0 (x2,↑) ψ1 (x2,↑) ψ−1 (x2,↑) . . . ψ−K (x2,↑)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ψ0

(

xN
2 ,↑

)

ψ1

(

xN
2 ,↑

)

ψ−1

(

xN
2 ,↑

)

. . . ψ−K

(

xN
2 ,↑

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ0 (x1,↓) ψ1 (x1,↓) ψ−1 (x1,↓) . . . ψ−K (x1,↓)
ψ0 (x2,↓) ψ1 (x2,↓) ψ−1 (x2,↓) . . . ψ−K (x2,↓)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ψ0

(

xN
2 ,↓

)

ψ1

(

xN
2 ,↓

)

ψ−1

(

xN
2 ,↓

)

. . . ψ−K

(

xN
2 ,↓

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(f ) Finally, we an ompute these determinants given that we know the wavefuntion ψn:

Ψ =

(

1√
L

)N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z01,↑ z11,↑ z−1
1,↑ . . . z−K

1,↑
z02,↑ z12,↑ z−1

2,↑ . . . z−K
2,↑

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

z01
2N,↑ z11

2N,↑ z−1
1
2N,↑ . . . z−K

1
2N,↑

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z01,↓ z11,↓ z−1
1,↓ . . . z−K

1,↓
z02,↓ z12,↓ z−1

2,↓ . . . z−K
2,↓

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

z01
2N,↓ z11

2N,↓ z−1
1
2N,↑ . . . z−K

1
2N,↓

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

1√
L

)N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z−K
1,↑ . . . z01,↑ . . . zK1,↑
z−K
2,↑ . . . z02,↑ . . . zK2,↑
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

z−K
1
2N,↑ . . . z01

2N,↑ . . . zK1
2N,↑

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z−K
1,↓ . . . z01,↓ . . . zK1,↓
z−K
2,↓ . . . z02,↓ . . . zK2,↓
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

z−K
1
2N,↓ . . . z01

2N,↓ . . . zK1
2N,↓

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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We now fatorize the �rst value in eah row in order to onstrut the orresponding Vandermond matrix:

Ψ = L−N
2

1
2N
∏

i=1

z−K
i,↑ z−K

i,↓

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . zK1,↑ . . . z2K1,↑
1 . . . zK2,↑ . . . z2K2,↑
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 . . . zK1
2N,↑ . . . z2K1

2N,↑

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . zK1,↓ . . . z2K1,↓
1 . . . zK2,↓ . . . z2K2,↓
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 . . . zK1
2N,↓ . . . z2K1

2N,↓

∣

∣

∣

∣

∣

∣

∣

∣

∣

= L−N
2

1
2N
∏

i=1

z−K
i,↑ z−K

i,↓
∏

1≤i<j≤N
2

(zi,↑ − zj,↑)
∏

1≤i<j≤N
2

(zi,↓ − zj,↓) ,

= L−N
2 e−i( 2π

L )(N−2
4 )NXCM

∏

1≤i<j≤N
2

(zi,↑ − zj,↑) (zi,↓ − zj,↓) ,

where NXCM =
∑

1
2N
i=1 (xi,↑ + xi,↓) .

4.

(a) We need to show that [c, c] = [d, d] = [c, d] = 0, whih is straightfoward sine [a, a] = [b, b] = [a, b] = 0. Let us
show that

[

c, d†
]

=
[

ua− vb, va† + ub†
]

= uv
([

a, a†
]

−
[

b, b†
])

= 0,

sine

[

a, b†
]

= 0. Finally, we need to show that

[

c, c†
]

=
[

d, d†
]

= 1.
[

c, c†
]

= |u|2
[

a, a†
]

+ |v|2
[

b, b†
]

= |u|2 + |v|2 = 1,
[

d, d†
]

= |v|2
[

a, a†
]

+ |u|2
[

b, b†
]

= |v|2 + |u|2 = 1.

(b) In this ase, a = 1√
2
(c+ d) and b = 1√

2
(−c+ d). Thus,

H = ǫ
(

a†a+ b†b
)

+ V
(

a†b+ b†a
)

= (ǫ− V ) c†c+ (ǫ+ V ) d†d = HC +HD.

() In the general ase, a = u∗c+ vd and b = ud− v∗c. Inserting this on the Hamiltonian yields,

H =ǫA

(

|u|2 c†c+ |v|2 d†d
)

+ ǫB

(

|v|2 c†c+ |u|2 d†d
)

+ V
(

−uv∗c†c+ uv∗d†d
)

+ V ∗ (−u∗vc†c+ u∗vd†d
)

+
[

(ǫA − ǫB)uv + V u2 − V ∗v2
]

c†d+
[

(ǫA − ǫB)u
∗v∗ + V ∗u∗2 − V v∗2

]

d†c.

Notie that the �rst four terms are deoupled and the C and D bosons are ompled only via the last two terms.

Setting them to zero yields,

(ǫA − ǫB)uv + V u2 − V ∗v2 = 0,

in addition to |u|2 + |v|2 = 1. This two equations determines u and v. The algebra is tedious and will not be done

here.

The Eigenenergies are obtained from the deoupled Hamiltonian

H = (ǫC − V ′) c†c+ (ǫD + V ′) d†d,

with ǫC = ǫA |u|2 + ǫB |v|2, ǫD = ǫA |v|2 + ǫB |u|2, and V ′ = 2ℜ(V uv∗). The Eigenenergies are then EnC ,nD
=

ǫCnC + ǫDnD + V ′ (nD − nC) , with nC ≥ 0 and nD ≥ 0 integers. The Eigenstates are

||nC , nD〉 =

(

c†
)nC

(

d†
)nD

√
nC !nD!

|0〉 .

This an be onneted to the original states |nA, nB〉 via the relations c† = u∗a† − v∗b† and d† = va† + ub†:

||nC , nD〉 =
1√

nC !nD!

(

nC
∑

i=0

(−1)
i

(

nC

i

)

(

u∗a†
)nC−i (

v∗b†
)i

)





nD
∑

j=0

(

nD

j

)

(

va†
)nD−j (

ub†
)j



 |0〉

=
1√

nC !nD!

nC
∑

i=0

nD
∑

j=0

(−1)
i

(

nC

i

)(

nD

j

)

uj (u∗)nC−i
vnD−j (v∗)i

(

a†
)nC+nD−i−j (

b†
)i+j |0〉

=
1√

nC !nD!

nC
∑

i=0

nD
∑

j=0

(−1)i
(

nC

i

)(

nD

j

)

uj (u∗)nC−i vnD−j (v∗)i |nC + nD − i− j, i + j〉 .
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5.

(a) In �rst quantization, the 1-partile Hamiltonian reads

H1−particle =





E1 M21 M31

M12 E2 M32

M13 M23 E3



 ,

where Mij =M∗
ji. Let a

†
i,σ be the riation operator of a fermion of spin σ at state i. Then,

H =
∑

i,σ

∑

j,τ

〈i, σ |H1−particle| j, τ〉 a†i,σaj,τ =
∑

i,σ

∑

j,τ

〈i |H1−particle| j〉 a†i,σaj,τ δσ,τ

=
∑

i,σ

Eia
†
i,σai,σ +

∑

i6=j,σ

Mi,ja
†
i,σaj,τ .

(b) Let us onsider the ase in whih the two fermions have (i) opposite and (ii) same spins.

(i) This is the simpler ase as we an onsider the fermions distint partiles. Thus, we only need to solve the

problem of one partile and seond quantization is not neessary. Let λi (with i = 1, 2, 3) be the Eigenvalues of

H1−particle, i.e.,
∣

∣

∣

∣

∣

∣

E1 − λi M21 M31

M12 E2 − λi M32

M13 M23 E3 − λi

∣

∣

∣

∣

∣

∣

= 0.

Then, the nine Eigenenergies of the systems are

En1,n2 = λn1 + λn2 ,

where ni labels the Eigenstate oupied by the i-th partile.

(ii) When the fermions have the same spin (say, spin-up), it is like there is no spin at all and we have only two

idential fermioni partiles. In this way, there are only three possible states: |1〉 = |1, 1, 0〉 , |2〉 = |1, 0, 1〉 , and
|3〉 = |0, 1, 1〉 . In this basis, the Hamiltonian reads

H =





E1 + E2 M23 −M13

M∗
23 E1 + E3 M12

−M∗
13 M∗

12 E2 + E3



 .

Notie the minus sign oming from antiommutation relation: M13a
†
1,σa3,σ |3〉 = M13a

†
1,σa3,σ |0, 1, 1〉 =

−M13a
†
1,σ |0, 1, 0〉 = −M13 |1, 1, 0〉 = −M13 |1〉. The three Eigenenergies of the system omes from the Eigenval-

ues of the above matrix. (Reall there are other 3 states orresponding to the ase in whih the partiles have

spin-down.)

() In the partiular ase of Ei = E and Mij =M, we have that:
(i)

(E − λ)3 + 2M3 − 3M2 (E − λ) = 0 = λ′3 + 2M3 − 3M2λ′ = λ′′3 − 3λ′′ + 2.

Notie that λ′′ = 1 is solution. Thus, λ′ =M = E−λ and λ1 = E−M . The other two eigenvalues are λ2 = λ1 = E−M
and λ3 = E + 2M .

Now we have to ontrut the Eigenstates whih follows from the reeipt of problem 3.

(ii) In this ase, the seular equation beomes

(2E − λ)3 − 2M3 − 3M2 (2E − λ) = 0 = λ′3 − 2M3 − 3M2λ′ = λ′′3 − 3λ′′ − 2.

Notie that λ′′ = 2 is solution. Thus, λ′ = 2M = 2E − λ and λ1 = 2 (E −M). The other Eigenvalues are

λ2 = λ3 = 2E +M.
The orresponding Eigenstates are

|λ1〉 =
1√
3
(|1〉 − |2〉+ |3〉) = 1√

3
(|1, 1, 0〉 − |1, 0, 1〉+ |0, 1, 1〉) ,

|λ2〉 =
1√
2
(|1〉 − |3〉) = 1√

2
(|1, 1, 0〉 − |0, 1, 1〉) ,

|λ3〉 =
1√
2
(|1〉+ |2〉) = 1√

2
(|1, 1, 0〉+ |1, 0, 1〉) .
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These are antisymmetri states. Thus, the Eigenstates (onsidering spin) are |λi〉 ⊗ |↑〉1 ⊗ |↑〉2 and |λi〉 ⊗ |↓〉1 ⊗ |↓〉2.

6.

(a) The partition funtion is

ZG =
∑

n1,...,n∞

〈

n1 . . . n∞
∣

∣

∣
e−β(H−µN)

∣

∣

∣
n1 . . . n∞

〉

=
∑

n1,...,n∞

e−β(
∑

i ǫini−µN).

Notie that N is not onstant and annot be taken away from the sum. Moreover, the sum is irrestrited beause N
is not �xed.

Let us fous now on the ase of bosons. First, we perform the sum over nj = 0, 1, . . . ,∞. Thus,

ZG =
∑

n1,...,nj−1,nj+1,...n∞

e−β(
∑

i6=j(ǫi−µ)ni)





∞
∑

nj=0

e−β(ǫj−µ)nj





=
∑

n1,...,nj−1,nj+1,...n∞

e−β(
∑

i6=j(ǫi−µ)ni)
(

1

1− e−β(ǫj−µ)

)

.

Repeating the same proess for all the remaining ni, we arrive at

ZG,bosons =
∞
∏

i=1

(

1− e−β(ǫi−µ)
)−1

.

For fermions, on the other hand, nj = 0 or 1. Thus, the single energy-level sum beomes

∑1
nj=0 e

−β(ǫj−µ)nj =

1 + e−β(ǫj−µ)
. Thus,

ZG,fermions =

∞
∏

i=1

(

1 + e−β(ǫi−µ)
)

.

(b) In general, we write

ZG =

∞
∏

i=1

(

1− ζe−β(ǫi−µ)
)−ζ

,

with ζ = ±1 for bosons and fermions, respetively. Then,

Ω = − 1

β
lnZG =

ζ

β

∞
∑

i=1

ln
(

1− ζe−β(ǫi−µ)
)

.

Using that

N =

∞
∑

i=1

〈ni〉 =−
(

∂Ω

∂µ

)

T,V

= − ζ

β

∞
∑

i=1

1

1− ζe−β(ǫi−µ)
×
(

−ζβe−β(ǫi−µ)
)

=
∞
∑

i=1

1

1− ζe−β(ǫi−µ)
×
(

e−β(ǫi−µ)
)

=
∞
∑

i=1

1

eβ(ǫi−µ) − ζ
.

Thus,

〈ni〉 =
1

eβ(ǫi−µ) − ζ
.

() The straightforward way would be omputing

〈(

∑

i

ni

)2〉

=
1

ZG
tr



e−β(H−µ
∑

i ni)

(

∑

i

ni

)2


 =
β−2

ZG

∂2ZG

∂µ2
=

1

β2

[

(

∂ lnZG

∂µ

)2

+
∂2 lnZG

∂µ2

]

=
∑

i

〈

n2
i

〉

+
∑

i6=j

〈ni〉 〈nj〉 =
(

∂Ω

∂µ

)2

+
1

β

∂2Ω

∂µ2
=

( ∞
∑

i=1

〈ni〉
)2

+
1

β

∂2Ω

∂µ2
.
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Thus,

∑

i

(

〈

n2
i

〉

− 〈ni〉2
)

=
∑

i

〈(

n2
i − 〈ni〉2

)〉

=
1

β

∂2Ω

∂µ2
= − 1

β

∂

∂µ

∑

i

〈ni〉 .

= − 1

β

∑

i

∂

∂µ
〈ni〉 =

∑

i

〈ni〉2 eβ(ǫi−µ).

Therefore,

〈(

n2
i − 〈ni〉2

)〉

〈ni〉2
=

〈

n2
i

〉

− 〈ni〉2

〈ni〉2
= eβ(ǫi−µ) =

1

〈ni〉
+ ζ.

Moreover, there is a more elegant way to show all of this whih is by diretly using the operator algebra. For

fermions, n2 = a†aa†a = a†
(

1− a†a
)

a = n− a†2a2 = n. Hene,

〈

n2
i

〉

− 〈ni〉2

〈ni〉2
=

〈ni〉 − 〈ni〉2

〈ni〉2
=

1

〈ni〉
− 1.

For bosons, this is not so simple (sine a2 6= 0). We have that n2 = a†aa†a = a†
(

1 + a†a
)

a = n+a†2a2. Thus,
〈

n2
〉

=

〈n〉+
〈

a†2a2
〉

. This seond term an be omputed using the Wik's theorem

〈

a†2a2
〉

= 2
〈

a†a
〉2

= 2 〈n〉2 .Therefore,
〈

n2
i

〉

− 〈ni〉2

〈ni〉2
=

〈ni〉+ 〈ni〉2

〈ni〉2
=

1

〈ni〉
+ 1.

7.

(a) Let a generi state be labeled by |nj , nj−1, . . . , n−j+1, n−j〉. The losed shell state is thus

|cs〉 = |1, 1, . . . , 1〉 =
j
∏

i=−j

a†j,i |0〉 .

(b) In seond quantization, the total angular momentum operator is

J =

j
∑

i=−j

j
∑

k=−j

〈i |J| k〉 a†j,iaj,k =
∑

i,k

Ji,ka
†
j,iaj,k,

where |i〉 = a†j,i |0〉 (and notie Ji,k is not an operator.)

Now let us ompute

J |cs〉 =
∑

i,k

Ji,ka
†
j,iaj,k |cs〉 =

∑

i,k

Ji,kδi,k |cs〉 = Jcs |cs〉 , where Jcs =

j
∑

k=−j

Jk,k.

Our task now is to show that Jcs = 0. Let us start with the z-omponent:

Jz |k〉 = ~k |k〉 , ⇒ Jz
k,k = ~k. Thus, Jz

cs =

j
∑

k=−j

Jz
k,k = 0.

With respet to the x-omponent, reall that Jx |k〉 = 1
2 (J

+ + J−) |k〉 = α |k + 1〉 + β |k − 1〉, where α =
1
2~
√

(j − k) (j + k + 1) and β = 1
2~
√

(j + k) (j − k + 1). Thus, Jx
k,k = 0, and onsequently, Jx

cs = 0. Analogously,
Jy
cs = 0.
() The hole state is

∣

∣k̄
〉

= |1, 1 . . . , 1, 0, 1, . . .1〉 =
k−1
∏

i=−j

j
∏

i=k+1

a†j,i |0〉 .
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Likewise, this state an be rewritten as

∣

∣k̄
〉

= a†j,j . . . a
†
j,k+1a

†
j,k−1 . . . a

†
j,−j |0〉 = a†j,j . . . a

†
j,k+1aj,ka

†
j,ka

†
j,k−1 . . . a

†
j,−j |0〉

= (−1)
j−k

aj,k

(

a†j,j . . . a
†
j,k+1a

†
j,ka

†
j,k−1 . . . a

†
j,−j |0〉

)

= (−1)
j−k

aj,k |cs〉 .

Thus, if we onsider |cs〉 as the vauum of the theory, the state

∣

∣k̄
〉

is reated upon ating an e�etive reation operator

(−1)
j−k

aj,k on this vauum.

Now, let us apply

J
∣

∣k̄
〉

=
∑

i,m

Ji,ma
†
j,iaj,m

∣

∣k̄
〉

=
∑

i,m

Ji,mδm,i (1− δk,i)
∣

∣k̄
〉

+
∑

i,m

Ji,mδk,i (1− δk,m) |m̄〉

=





∑

i6=k

Ji,i





∣

∣k̄
〉

+





∑

m 6=k

Jk,m |m̄〉



 =





∑

i6=k

Jz
i,iẑ





∣

∣k̄
〉

+





∑

m 6=k

Jx
k,mx̂ |m̄〉+

∑

m 6=k

Jy
k,mŷ |m̄〉



 .

In the last passage, we used that Jx,y
k,k = 0 = Jz

k,m 6=k. Notie that the diagonal term is just like Jz
∣

∣k̄
〉

= ~mk̄

∣

∣k̄
〉

. The

orresponding angular momentum in the z-diretion is

mk̄ =
∑

i6=k

i =





j
∑

i=−j

i



− k = 0− k = −k.

We now work on the o�-diagona terms. It is atually simpler to work with the ladder operator

J+
∣

∣k̄
〉

=
∑

i,m

J+
i,ma

†
j,iaj,m

∣

∣k̄
〉

=





∑

i6=k

J+
i,i





∣

∣k̄
〉

+





∑

m 6=k

J+
k,m |m̄〉



 .

The matrix element

〈

k
∣

∣J+
∣

∣m
〉

= ~

√

(j −m) (j +m+ 1) 〈k|m+ 1〉 = ~

√

(j −m) (j +m+ 1)δm,k−1.

Hene,

J+
∣

∣k̄
〉

= ~

√

(j − k + 1) (j + k)
∣

∣k − 1
〉

= ~

√

(j −mk̄) (j +mk̄ + 1)
∣

∣k + 1
〉

.

Likewise,

J− ∣
∣k̄
〉

= ~

√

(j +mk̄) (j −mk̄ + 1)
∣

∣k − 1
〉

.

Comparing with

Jz |k〉 = ~mk |k〉 , and J± |k〉 = ~

√

(j ∓mk) (j ±mk + 1) |k + 1〉 ,

we onlude that

∣

∣k̄
〉

is like a state |−k〉.


