Lista 3 - Quantica B (2013)

1. Counting states

Consider a one-particle quantum mechanical system with a Hilbert space spanned by three orthonormal states |n),
with n = 1,2,3. Three non-interacting particles occcupy these states. Determine how many distinct physical states
there are if these particles are: (a) three identical fermions, (b) three identical bosons, (¢) two identical fermions and
one boson, (d) two identical bosons and one fermion, (e) three distinct fermions, and (f) three distinct bosons.

2. Exchange interaction

Counsider a one-dimensional system of two spin-1/2 fermions. The two fermions move in the field of an anharmonic
double-well oscillator and interact with each other through a repulsive pair interaction V(|z|). The Hamiltonian for
this two-particle system is

1
H = o (pi +13) + Ulw1) + U(w) + V(Jor — 2)),

where the double-well potential is U(z) = % (:1:2 — a2)2. As for the pair potential V' (z), we will only need to assume
that it is repulsive and that it decreases sufficiently fast so that all the integrals involved are convergent. Finally, let
(x|R) = ¥g(x) be the harmonic-oscillator ground-state wavefunction centered around x = a and (z|L) = ¢ (z) be
the corresponding wave function centered around x = —a:
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(a) Give a justification for ¢r . When are they expected to be a good approximation of the true ground-state
wavefunctions? Compute the overlap ¢ = (L|R).
(b) Find the expressions for the matrix elements of the one-particle Hamiltonian H") = ﬁpQ + U(zx) in the space
spanned by the two single particle kets |R) and |L):
L)
Ly)

Now, diagonalize H é;f) and find its two Eigenstates |+) and corresponding energies F. .

(¢) What is the maximum number of linearly independent, properly anti-symmetrized two-particle states (including
spin)? Construct the two-particle basis using the single particle states |+, 1) , |[+,4), |—, 1), and |—, ]).

(d) Calculate the matrix elements of the interaction term (V') of the two-particle Hamiltonian in the unsymmetrized
(orbital) basis |R, R), |R, L), |L, R), and | L, L). Now, find an expression for the appropriately defined Direct (Coulomb)
and Exchange integrals.

(e) Use these expressions (and the overlap ¢) to compute the energy levels, their quantum numbers and their
degeneracies for this two-particle system. Find an expression for the Exchange constant J. (Hint: Express your result
in terms of Hes = const + JS; - So, with S; being the spin operators.)
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3. Free fermions
Counsider a system of noninteracting N spin-1/2 particles which are free to move in a smooth one-dimentional ring
of length L. The one-particle wavefunctions are

(z,00)) = P o(T),

with o =7, | representing the spin, and n a quantum number to be defined. Assume that N/2 is an odd integer.

(a) Write down the one-particle states wavefunctions ¢, ,(z) which obey the boundary condition given above.
What is the meaning of the quantum number n?

(b) Use the fermionic field operators a (z) and a, () in position space (which create/annihilate a fermion in with
spin o at position z) to write the Hamiltonian of this free fermion system in the Fock space. Do the same now for
the operators in momentum space.

(¢) Compute the anticommutators {a.(p),al(q)} and {a,(p),a-(q)}-

(d) Construct the many-particle ground state |G) for this system in the Fock space. Compute the Fermi energy
Er, namely the energy of the topmost occupied state. How many single-particle states are present in |G)?



(e) Show that the wavefunction of the ground state is an N x N Slater determinant. In addition, show this deter-
minant can be factorized to the product of two £ x & determinants. (Hint: Notice that (i o |tn r) = 0o Un - (Ti0),
where x; , is the position of the i-th particle with spin o.)

(f) Show that
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where z; , = e F oo and Xcwm is the position of the center of mass of the system. (Hint: Recall the Vandermonde
matrix.)

4. Two coupled bosons
Consider a system of two distinct bosonic particles (type A and B) in which only one mode of each is present:

H =¢epa'a+ egb’b+ Va'o + V*vta.

(a) Show that ¢ = ua — vb and d = v*a + u*b, with |u|* + |v|> = 1 are bosonic operators.

(b) Show that when ex = eg and V = V*, the choice u = v = 1/4/2 decouples the system of bosonic particles C
and D.

(¢) Determine u and v that diagonalizes the system in the general case. Find the Eigenenergies and Eigenvectors
of the system.

5. Two coupled fermions

Consider a system of two spin-1/2 identical fermionic particles that can occupy three different states of energies F;,
1 =1, 2, 3. The matrix elements allowing the transitions between these states are M;;.

(a) Write down the system Hamiltonian in terms of the criation and annihilation operators.

(b) Determine the equation that gives the Eigenenergies of the sytem.

(¢) Diagonalize the system for the particular case E; = E and M;; = M, and the spins of the particles are the
same.

6. Grand-canonical ensamble
The Grand partition function is given by the trace

Za = tr e*ﬁ(H*“N), where H = Z eiazai and N = Zazai,

and the constants f and p are the inverse of temperature and the chemical potential, respectively. In the following
compute the required quantities for both cases of identical bosonic and fermionic particles.

(a) Compute Zg. (Hint: Use the trace in the Fock space: trO =3~ (n1...n00|O[n1...7), and recall that
in the Grand-canonical ensamble the number of particles is not fixed.)

(b) Compute the average occupation number (n;), such that N' = Y. (n;). (Hint: Recall the thermodynamic

Grand-potential Q(T,V,u) = 71 1In Zg, and that N = (gﬁ)T V-)

(¢) Show that the fractional deviation from the mean occupation number

<(m <;j;z>) > _ Ble—n) _ & s

with the ¢ = +1 for bosons and fermions, respectively.

7. Holes in a magnetic moment closed shell as an antiparticle (Merzbacher, chap. 22 - 3rd ed.)

Let a m be a criation operator of fermionic particle with angular momentum j and projection in the z-direction m.

(a) Construct the closed-shell state: a state in which all one-particle states m = —j to = 4 are occupied.

(b) Prove that the this state has zero total angular momentum.

(¢) If a fermion with a certain magnetic quantum number m = k is missing from this closed-shell state of particles,
show that, for angular momentum purposes, this hole state can be treated as the state of a single particle with
quantum number —k, and effective creation operator (—1)7 " @ k-



8. (Optional) More on exchange (Merzbacher, chap. 22 - 3rd ed.)

Consider the unperturbed states of n spin-1/2 particles, a:fwn . a,lgk ) ..aJ{’Ul |0), each occupying one of the n
equivalent, degenerate orthogonal orbitals labeled by the quantum number k, with o, = +1/2 denoting the spin
quantum number associate with the orbital k. Show that in the space of the 2" unperturbed states a spin-independent
two-body interaction may, in first-order perturbation theory, be replaced by the effective exchange (Heisenberg)
Hamiltonian

1 h
Heog = 7 Z (k,0|V]L,k) Sk - Sy + const, where Sy = B Z cL,waka,“,c (o) |o| k)
kb

Ok>Tk

is the localized spin operator, and o = (0%, 0¥, 0%) are the Pauli matrices.



ANSWER:

1.

(a) One state, given by the antisymmetrization of |1,2,3) — (|1,2,3) + [2,3,1) +|3,1,2) — |2,1,3) — [3,2,1) —
11,3,2))/V6.

(b) One state in which all bosons are in distinct sates (given by the symmetrization of |1,2,3)). Six states in which
one of the states are not occupied (they are of type |1,1,2)). Three states in which all bosons are in the same state:
|n,n,n), with n = 1,2,3. Thus, total of 10 states.

(¢) There are 3 states in the case of two identical fermions. For one single boson, there are three states. Thus,
there is a total of 3 x 3 =9 states.

(d) For two identical bosons, there are six states. For one fermion, three states. Thus, 6 x 3 = 18 states.

(e) and (f) There are 3 states for each distinct particle. Thus, 3 x 3 x 3 = 27 states.

2.

(a) Notice the similarities between ¢r 1, with the ground-state wavefunction of the 1D Harmonic Oscillator (ﬁp2 +
1, 2.2
smwz?)

[N
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In our case, we expect that an Harmonic potential be a good description of the double-well potential around each of
its minima +a. Thus, expanding V' around +a we get

18U 1 8U,
V(zFa)= g X a—zo(:t$a)2+(9(x$a)3 ~ Emw2(:1c$a)2, with w = ”m—ag'
This is the corresponding frequency in each minima of V' which will give the lenght scale o used in ¢¥g 1. These
wavefunctions will be good approximations of the true wavefunctions when the two minima are well separated. This
can be quantified by the overlap

Tr—a 2 xT a 2 3
/= —1 /dxef( )2:2( S —1 /dxef%ef% = e_(%)2.
Vo Vo

Thus, the two wells are well separated whenever { < 1, = a > o, i.e., an/mUy > h.
(b) Using reflecion symmetry and that all functions are real, we notice that (R|HM|R) = (L|H®W|L) and that

(RIHD|L) = (L|HW] R).



We then need to compute
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Since the matrix is of the simple form

[y

the Eigenstates are

1
|£) = —= (|R) &+ |L)), with energies F1 = A F {B.
V2
(Notice that (R|L) = ¢, thus (+|+) =1+ ¢ and (+|—) =0.)
(¢) Since we have for single-particle states, 2 fermions can be distrubuted among them in (;1) = 6 different

ways. These states are obtained by antisymmetring any two-particle state, which sums 4 x 4 = 16 states. Due
to Pauli principle, 10 states cannot be antisymmetrized. It is easy to check that whenever the orbital part of the
wavefunction is symmetric, then the spin part is antisymmetric and vice and versa. With respect to the spin, there are
three symmetric sates, dubbed triplet, and one antisymmetric state (singlet). They are respectively, |[t1) = [1); [1),
lto) = \% (M1 )2 + 1)1 11)2), [t-1) = )1 [1)2, and |s) = % (1M1 )2 = 1)1 [1)2). Likewise, the symmetric orbital
wavefunctions are |S1) = [+); [+)4, [So) = \/Li ([4)1 =)o + 1)1 [+)3), and |[S—1) = |=); |—),, and the antisymmetric
one is |A) = % (1)1 1=)2 = [=)1 [4)2)-

Finally, the six states are |S;) ® |s) and |A) ® |t;), with i = —1, 0, 1

(d) Ignoring spin, we have 4 two-particle sates. We are then interested in the matrix elements

(ABIVIC.D) = [ dordest () b (2) V(1 = 2l (1) o (2).



Since V (21, x2) = V(|z1 — 22|), then we set 7 = 21 — 22 and R = (1 + 22). Thus,

(ABIV|C,D) = [ drdRs (R + 3r)0s(R - 3V (rhbe(R + 5rvn(R - 51)
_ 12 drdRe" 7 [(R+ r— 6Aa)2+(R—%r—eBa)z—i-(R—i-%r—eca)z—i-(R—%r—eDa)2]V(|T|)
7T0'
— deRefﬁ[4R2+r2+4a272aR(eA+eB+ec+eD)far(€A7EB+5075D)]V(|T|)
- drdRe” 22 [4(R—%ap)2—a2p2+(r—aq)2—a2q2+4a2]V(|T|),

where ¢, = +1 if x = R, L, respectively, 2p = €4 + € + €c + €p, and 2qg = €4 — € + €¢c — ep. We are now able to
integrate over R yielding

1

\V2mo

1 a
= _271_06%(?)2(5“0“5“’72)/drei2 z(r-ag)® V(Ir]).

(ABIV|C,D) = AV (7 0) [aremzztmany )

Thus,

1 12
VRrRr,RR = m/dre 22" V(|r]) =Vir.LL,

1 —(2)? — L (r—a)?
VRR,RL = e (%) /dre 22 (7=) V(|r]) = Vrr,rr = Ver,or = ViL,LR,

\V2mo
1 o 1 o
VRR.LR = \/%06_(?)2 /dre_ga%(r+a)2v(|r|) — \/%Ue_(?)z/dre_ﬁ(r—afv(h«l)

=Vir,rr = Vrr,LL = VLL,RL,
1

VrRr,LL = Ner:
o

a

e2(%)° /dre_ﬁer(M) = VLL RR,

1 T — (l
Vi i = == / dre” 7720V (1)) = Vi Lp,

1
Ve, LR = T
yivea

Thus, the matrix elements of V' has only 4 independent values. In the basis |RR), |RL), |[LR), |LL), it is of type

o2(2)’ / dre= =" V(|r|) = Vir.ge.

a b b Pc

v — e d e b
| b Pc d b
Pe b b a

We now have to compute the direct and exchange integrals. They are, respectively, (+ — |V|+ =) /(+— |+ —)
and (+ — [V|—+) //(+ = |+ —) (— +| — +). Thus,




1 1\*
Yo =g (T5) (RI+ED® (RI= LD,V (R + 120, & (R) - |2,

1
) (Vrr,rr — VRR,RL + VRR.LR — VRR,LL — VRL,RR + VRL RL — VRL,LR + VRL LL

+Virrr — Verrr + Ver,ir — Ver,or — Vi, rr + Vir,rr — Ver,or + Vir,or)

1 1 )
1A 2= T

1o (Rl + (L1); ® (B = (LD, V (IR) = [1)); @ (IR) + L)),

a—€20+d—€20—£20+d—€2c+a):

D) (VeRr.rr + VeRr,rL — VRr.LR — VeRr.LL — VeL.RR — VRL.RL + VRL.LR + VRL.LL

+Virrr +Virrr — Ver,er — Ver,or — Vi, rr — Voo, rr + Ver.or +Vir,or)
1
:m (a—€2c—d+€2c+f2c—d—f2c+a) =
(e) The possible states are the six ones discussed item (¢). For now, let us focus on the orbital degree of freedom.
In the 4-states orbital basis, |S;) (¢ =1, 0, —1) and |.A), H; is diagonal with Eigenenergies 2E,, E; + E_, 2E_, and
E, + E_ | respectively. The interaction in this basis is

atd 1 20b+0%c a—d
(140)? 02 2(1—17) 0
v 0 — 0 0
- a—d 0 atd _20b+0%c 0
2(1—12) (1-0)2
0 0 0 d—0%¢
1—72

where we needed

VIS = (%)21/ IRR) + |RL) + |LR) + |LL))
_ <%) [(a+ 26+ £¢) (IRR) + |LL)) + (d+20b + £%¢) (|RL) + |LR))]
=(“;d+2ezy+z2 ) |51>+(“;d> 5_1)
VIS, _<%) V (IRR) — |RL) — |LR) + |LL))
= (%) [(a—26b+ ¢%c) (|RR) + |LL)) — (d — 2¢b + ¢*c) (|RL) + |LR))]
_ <“ . d) 1S1) + (“;d - 2£b+€20> S1)
V|So) = ( )4V (2|RR) —2|LL)) = (a — £%¢) |So),
VIA) = (ﬁ) V (2|RL) —2|LR)) = (d — £*c) |So) .

Thus, we already have two of the Eigenstates: |A) with E4 = E4 + E_ 4 Vp — Vg, and |Sp) with Es, = E4 + E_ +
Vb + Vi. Actually, this corresponds for 4 states when spin is considered: |A) ® |t;), 7 =1, 0, —1 and |Sp) ®|s). Notice
that this states are degenerate if only H(!) is considered. The degeneracy is lifted by the interaction V splitting this
four states into triplet and singlet states. With respect with these two states, the Hamiltonian can be recast as

H.g = const + JS1 - So,



where S; are spin operators. Notice the Eigenstates of Hog are spin singlet |s) and triplet |¢;) with energies const— 34i2J

and const + %2J, respectively. In order to recast the spectrum of |Sp) ® |s) and |A) ® |t;), we set const = F, + F_ +
Vb — %VE and the exchange constant

d—a —1 1,2 1 2
2 — = = T 25 T _ e~ o (r72a)
Jhe = -2Vg T m(l_éz)a/dr (6 202 e 202 ) [/(|T|)

It V(r) is positive and monotonically decreasing, this means that it costs energy for the particles to be close to each
other. Thus, it is energetically favorable to their orbital wavefunction to be antisymmetric [meaning ¢ (R, = 0) = 0].
In this case, the spin part of the wavefunction has to be symmetric, i.e., a triplet. The triplet state is favorable
whenever J < 0. This is indeed the case as can be seen from the expression for J. On the other hand, if V < 0 and
drecreases (in magnitude) monotonically, then we expect the orbital part to be symmetric |yielding ¢ (R, r = 0) # 0].
Thus, the spin part has to be antisymmetric and, as a consequence, J > 0.

Finally, we now have to diagonalize the subspace spanned by |S11). The related matrix is

2B, +*F4 402 c+26b a—d 4 C
1+¢)? 2(1-£2) _ 2 2 _
(a_; 2l 4ot e o _<OB>’ = MNM-(A+B)A+AB-C*=0.
2(1-7) - a-0T
The Eigenenergies are 1 (A+ B+ A) with A = /(A - B)? 4+ 4C2, and (unnormalized) Eigenvectors [(A — B +

A) [++) +2C |—=)] @ |s).

3.
(a) The wavefunctions are those of free particles, 1) = ¢*** /y/L, with periodic boundary conditions ¢(z) = ¢(z+L).
Thus,

_ 9 1 .
L1 = k= tn, withneZ ikna

D= Ype=—=
L Yno = 75

The quantum number n labels the momentum hk,, which, due to translational symmetry, is a good quantum number.

a.

Moreover, notice the enegies of these states are F,, = ﬁhz (27”)2 n?. Thus, since E,, = E_,,, the degeneracy is twofold
for all states n # 0. The k,, = 0 state is nondegerante. If spin is considered, all these degeneracies are multiplied by
2.

(b) Since H = %pQ, it is very simple to express H in terms of a,(p):

= 2k el 2 ik v

o0’

dp P
= Z/ (T, )=—a, (p), where (p|q) =27hdé (p —q).
27h 2m
In the position space, either we inverse Fourier transform the operators @ and a', or, simply
n? d?
H= /dgcdyZa]L7 (x) <x o > /dxd;v Za do.r (_%d—zﬂ) (zly) a,(y)

_Z/dxa ( ;;dd;>a (x), where (zly) =d(x —vy).

(¢) This can be done straightforwardly,

{a.(p),al(q)} = /d:z:dy {as(2),a }eii el = /dxdyégﬂ.é (z—y)e "Fel

= 0or / dwe™ T = 27h8 (p — q) 0,

1
om P’

2

Notice in this convention, that botha(p) and a(x) has dimension of square root of length. Because the problem is in
a finite-size ring, one could make this operators dimensionless and the integrals should be normalized by L. Finally,
because {a,(z),ar(y)} = 0, we have that {a,(p),a-(q)} = 0.



(d) Because %N is odd, we write N = 4K + 2 with K being integer. To construct the ground state, we add 2
fermions in the n = 0 sates. Then, N — 2 = 4K fermions remains to fill the other states. Noticing that a n # 0
energy-level is degenerate with the —n level, and that each of these levels can accomodate 2 fermions (with opposite
spins), then there remains K levels to be filled, i.c., Ep = Ex = 5-h? (%”)2 K? = ;Ln? (%’)2 (%)2. The ground
state is

1
_ i i
G) =agrab, [ alsal el al 10),
. N-2

1=

4

where af , creates a fermion the wavefunction of which is ¢ , ().
(e) The wavefunction of a many-particle fermionic system is generically written as a slater determinant

Y1 (v1) P2 (x1) ... YN (1)
Y1 (z2) P2 (22) ... YN (22)

. . . - )

(o (:’EN) Yo (:’EN) YN (TN)

where ¢, (z;) = (x;|¢;). If we want to connect this with our problem where spin is explicitly involved, then (x;|¢;) —
<xi,a|¢j,‘r> = 50,T¢j,o’ (:Ei,o') = 50’,T¢j (xi,a)- ThllS,

Yo (z1,1) 0 Y1 (z1,1) 0 Y1 (21,1) 0 oo Yok (T11) 0
0 Yo (1,1) 0 Y1 (w1,)) 0 Yo (z1y) - 0 Y-k (21,])

v = : : : . . : . : :
0 1/)0(:E%1¢) 1/)1 (I%ql) 0 1/),1 (I%&) 0 1/),[( (I%>¢)

This matrix can be rearranged in the following way: set all the spin-up states to appear before the spin-down states.
[It is equivalent as doing %N permutations of lines and rows, which leaves the determinant unchanged, or rewritting
the ground state as

1 1
_ Pt ¢
Gy ={abs IT alalis) {aby IT olialiy)i0)]
. . N—
i

N-—2 _ 2
1 =77

Moreover, notice that that resulting matrix will be block diagonal. Thus, it can be factorized as

Yo (xi4)  Y1(zig) Yo (zig) ..o Yok (z14) Yo (x1,y)  Yi(xry) V-1 (zy) ... Yo
Yo (z2p) 1 (x2y) Vo1 (z2p) ... Y-k (z21) Yo (x2,1) V1 (w2y) Y_1(x2y) ...

() 91 (on) v (o) oo (o) [0 (o) o (o) v (o) o v (o)

(f) Finally, we can compute these determinants given that we know the wavefucntion ,,:

0 1 -1 -K 0 1 -1 -K
ZLT ZLT Zlq\ e 2’17}( ZL\L Zl#\l/ 2’17% e Zl,
N 0 1 - - 0 1 - -
1 20 A2 F2p o P2 20 P24 P2y o P2y
0 1 -1 -K 0 1 -1 -K
sNT TEN TEND N sN4 3N TIND ING
_K 0 K -K 0 K
ZL}{ Zl»T ZLT 21)%{ Zth Zth
N oz, 29 2K 25 2 2K
( 1 ) 20 0 f2p et A2 2,0 o F2l e P2y
N S S
K 0 K —-K K
z z z z z z
INT INT INT iNL $N4 $N
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We now factorize the first value in each row in order to construct the corresponding Vandermond matrix:

K 2K K 2K
Ly 1 ... Zl},{? 251,2 1 ... Zkl z%%{
N ek ooz o0 257 ... 2z, Z5|
v=r">[a8=0 . 0 0 :
i=1 . ) -
2 2K
1 PN Zing |11 FINL FINL
- -K_-K
=L [[z54F I Ga-z0 ] G-z,
i=1 1<i<j<i 1<i<j<Zi
: i N—2
= [~ ¥~ i(F) (5%) N Xeu II Gt —2in) iy = 20),
1<i<j<%

1
where N Xcu = Zfﬁ (@i + Uﬁm) :

4.

(a) We need to show that [c,c] = [d,d] = [¢,d] = 0, which is straightfoward since [a,a] = [b,b] = [a,b] = 0. Let us
show that

[c, dw = [ua —vb,val + ubw = uv ([a, aw — [b, bT]) =0,
since [a,b'] = 0. Finally, we need to show that [c,c] = [d,dT] = 1.
e, c'] = |ul® la,a’] + v|? [6,51]

ul* + of* =1,
v

ld, dw = |o]? [a,aT] + |uf? [b,bT] = o + |u)® = 1.
(b) In this case, a = % (c+d)and b= % (—c+d). Thus,

H:e(aTa—FbTb)—FV(aTb—FbTa) =(e—V)cle4 (e+V)d'd= Hc + Hp.

(¢) In the general case, a = u*c+ vd and b = ud — v*c. Inserting this on the Hamiltonian yields,
H =e4 (|u|2 cfe+of? de) +ep (|v|2 cfe+Jul? de> +V (—uwv*cle+uv*d'd) + V* (—u*vele + u*vd'd)
+ [(ea —ep)uv + Vu? = Vo] cld + [(ea — ep) u*v* + V*u? — Vo] dle.

Notice that the first four terms are decoupled and the C and D bosons are compled only via the last two terms.
Setting them to zero yields,

(€a —ep)uv + Vu? — Vo2 =0,
in addition to |u|* 4 |v]”
here.

The Eigenenergies are obtained from the decoupled Hamiltonian

H=(ec —V')cle+ (ep + V') dld,

= 1. This two equations determines v and v. The algebra is tedious and will not be done

with e = ea|ul> + es|v]®, ep = e |v|” + ep|ul?, and V' = 2R(Vuv*). The Eigenenergies are then B,
ecnc +epnp + V' (np —ne), with ng > 0 and np > 0 integers. The Eigenstates are
N (qh)"P
c
||nCanD> — u |0> .

nc!nD!

This can be connected to the original states [na,ng) via the relations ¢/ = u*a’ — v*b" and df = val + ub':

lIne, np) = \/ﬁ (f (—1)’ (”ic ) (wal) (U*bf)z) i ( " ) (a7 ()’ | 1)

i=0 =0

c,np —

1 el X i n n T L Y L
:WZZ(_” ( iC)( Jp>w(“)c V" (0*)" [ng +np —i — j,i+j).
D20 =0



11

5.
(a) In first quantization, the 1-particle Hamiltonian reads
By Moy Mz,
Hi_particle = | M2 Ea Mz |,
Mz Maz Ej3

where M;; = M;. Let a ., be the criation operator of a fermion of spin ¢ at state 7. Then,

H = ZZ Z UlHl partlcle|.77 “7 a; - ZZ |Hl partlcle|]>a1 o q, 7-507'

’LO' _], ’LO' _],

_ZEala zcr ZMJ zcr g‘r

i#£],0

(b) Let us consider the case in which the two fermions have (i) opposite and (ii) same spins.

(i) This is the simpler case as we can consider the fermions distinct particles. Thus, we only need to solve the
problem of one particle and second quantization is not necessary. Let A; (with ¢ = 1, 2, 3) be the Eigenvalues of
Hl—particleu i-e-7

Ey— )\ My M3,
M12 E2 — )\z M32 =0.
Mys Mas  Es3— N\
Then, the nine Eigenenergies of the systems are
En1,n2 = )\n1 + )\ngu

where n; labels the Eigenstate occupied by the i-th particle.

(ii) When the fermions have the same spin (say, spin-up), it is like there is no spin at all and we have only two
identical fermionic particles. In this way, there are only three possible states: |1) = [1,1,0), |2) = |1,0,1), and
|3) =10,1,1). In this basis, the Hamiltonian reads

Ey+Ey Mg — M3
H = M3, FE1+ Ej Mo
— M Miy Bz + B
Notice the minus sign coming from anticommutation relation: M13a]£)ga3)g 13) = M13a;ga3)g 0,1,1) =
—M13aLT [0,1,0) = —My311,1,0) = —M;3]|1). The three Eigenenergies of the system comes from the Eigenval-

ues of the above matrix. (Recall there are other 3 states corresponding to the case in which the particles have
spin-down.)
(¢) In the particular case of E; = E and M,; = M, we have that:
(i
(E—N)?4+2M°% —3M?(E—X) =0=X342M% —3M2\N = X" —3\" +2.
Notice that A” = 1 is solution. Thus, ' = M = F—Xand A\; = F— M. The other two eigenvalues are \o = A\ = E—M
and /\3 =FE+2M.

Now we have to contruct the Eigenstates which follows from the receipt of problem 3.
(i) In this case, the secular equation becomes

(2E — N> —2M> —3M? (2E —X) =0 = N3 —2M3 — 3M2XN = X3 — 3\ —2

Notice that A’ = 2 is solution. Thus, N’ = 2M = 2F — X\ and Ay = 2(FE — M). The other Eigenvalues are
A2 = A3 =2E + M.
The corresponding Eigenstates are

A1) = 7(|1>—|2>+|3>) 7(|1,170> [1,0,1) +10,1,1)),
1
A2) = T(ID |3>):E(|11 0)—10,1,1)),
1
As) = 7(|1>+|2>) 7(|1,170>+I101>)
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These are antisymmetric states. Thus, the Eigenstates (considering spin) are [\;) ® [1); @ |1), and [X;) @ [1); @ [1),.

6.
(a) The partition function is

ZG: Z <n1...noo‘e—ﬂ(H—uN)’nllunoo> — Z e—B(Zieini—uN)'
fottes N1, Noo

Notice that N is not constant and cannot be taken away from the sum. Moreover, the sum is irrestricted because A/
is not fixed.

Let us focus now on the case of bosons. First, we perform the sum over n; =0,1,...,00. Thus,
o0
Za = Z o B(T iz (cimmni) Z e Bleg—mm;
Mo M= 1,150 Moo n;=0

_ B sy (cimpms) 1
Z ¢ . (1 — eﬁ(qu)) ’

M1y —1,5M5 4150+ Too

Repeating the same process for all the remaining n;, we arrive at

o —1
ZG,bosons = H (1 — e*ﬁ(éi*u)) '
1=1

For fermions, on the other hand, n; = 0 or 1. Thus, the single energy-level sum becomes Z:lj:o e Blei—mm; =
1+ e Pl&—1) Thus,

ZG,fermions = H (1 4+ e_B(Ei—H)) '
=1

(b) In general, we write

> ¢

Za = H (1 _ Ce*ﬁ(éi*#))_ ,

i=1
with ¢ = 41 for bosons and fermions, respectively. Then,

0= —% In Zg = %Zln (1 . Ce_ﬁ(ei_“)) .

i=1

Using that
_ c- N o0 < e o
N—E(nﬁ——(a—u)f‘/— le—g‘e Sl ( CBe P u))
3 ! —pPl&i— - 1
:;mx e “))=;m.
Thus,

1
(i) = eBlei—p) C

(¢) The straightforward way would be computing

-2 92 2 2
_ B(H-p Y, ni 26_3 ZG:i 0ln Zg 0°InZ¢
< (Z m) > tr e (Z nz> Zc —3,u2 3 o + 7('9#2

2
o0\? 1920 > 1920
“T et T o= (51) + 558 = (S0) + 558

7] i=1
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Thus,
2 2 1 0%Q 10
Zl: (<”12> = (nq) ) = zl:<( 7 (na) >> = 302 = —Ba—uzi:@w
_ _% Z 85 (i) = Z (i) P,
Therefore,
<(n% - <m>2)> (n2) — (n;)? P
R v B v R

Moreover, there is a more elegant way to show all of this which is by directly using the operator algebra. For
fermions, n? = afaata = af (1 — aTa) a=n—a?a® = n. Hence,

() = () _ () —(n)* _ 1
(ni)? (i)* ()

For bosons, this is not so simple (since a? # 0). We have that n? = afaa’a = af (1 + aTa) a = n+a?a?. Thus, <n2> =
(n) + (aa?) . This second term can be computed using the Wick’s theorem (a?a?) = 2 <aTa>2 = 2(n)? .Therefore,
(n2) = (na)® _ (i) + (n)” _ 1

S S R T

7.
(a) Let a generic state be labeled by |n;,nj_1,...,n_j+1,n_;). The closed shell state is thus

J
les) =1,1,...,1) = [] o, 10).

1=—7

(b) In second quantization, the total angular momentum operator is

J J
I=5" 5" (i[k)ala;, =D Jisala
i,k

i=—j k=—]j

where |i) = a;r-)l- |0) (and notice J; ;, is not an operator.)
Now let us compute

J
Jles) = ZJi7ka;,iaj,k |es) = ZJi>k5ivk les) = Jes |cs), where Jeos = Z Tk ke
ik ik

k=—j

Our task now is to show that J.s = 0. Let us start with the z-component:

J
JAk)y =hk|k), = Ji,=hk Thus, J = > Ji,=0.

k=—j

With respect to the z-component, recall that J®|k) = 2 (JT+J7)[k) = alk+1) + B|k—1), where o =
sh/(G—k) (G +k+1) and 8 = $h\/(j + k) (j —k+1). Thus, J¢, = 0, and consequently, JZ = 0. Analogously,
Jy = 0.

(¢) The hole state is

k—1 J
‘k>:|17171707171>:H H a;>1|0>

i=—j i=k+1
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Likewise, this state can be rewritten as

_ T T T Tt

‘k a;g 0511 - j*] |0) = %g jk+1aj kO Qg1 - gfj 0)
1Y (o (R 0 1j,k_
= (=17 "ajx A5 195 Q551 -~ J,—g 0)) = (=1)" " ajklcs) .

Thus, if we consider |cs) as the vacuum of the theory, the state |15> is created upon acting an effective creation operator

(=1Y "% a; 1, on this vacuum.
Now, let us apply

J|k) = ZJi,ma},iaj,m k) = ZJi,m(sm,i (1= 0ki) [k) + > TimOhi (1= pm) )

i,m

ST | 1B+ Y Ty | = (S gzz | 1B+ | Y Jealm) + Y g0 lm)

i#k m#k i#k m#k m#k

In the last passage, we used that J,f = 0= Jg ;- Notice that the diagonal term is just like J* ’k> = hmy, ‘k> The
corresponding angular momentum in the z- direction is

mp =Y i= ZJ:Z —k=0—Fk=—Fk

i#k i=—j

We now work on the off-diagona terms. It is actually simpler to work with the ladder operator

TR = 2 Tty s B) = | 200 | B0+ | 2 I

ik m#k
The matrix element
(k|Jt|m)y=hy/(j—m) (G +m~+1)klm+1) =ha/(G—m) (G +m+1)0mp-1
Hence,
JUE)=h(i—k+1)(G+k)[E—1) =h/(G—mg) G +mz + 1) [k+1).
Likewise,

k) = h G mg) G —mp + D[k - 1).

Comparing with

J? k) = hmy, |k), and JF|k) = hn/(G F ) (G mp + 1) [k +1),

we conclude that |k) is like a state |—k).



