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Quantum simulation of the Dirac equation
R. Gerritsma1,2, G. Kirchmair1,2, F. Zähringer1,2, E. Solano3,4, R. Blatt1,2 & C. F. Roos1,2

The Dirac equation1 successfully merges quantum mechanics with
special relativity. It provides a natural description of the electron
spin, predicts the existence of antimatter2 and is able to reproduce
accurately the spectrum of the hydrogen atom. The realm of the
Dirac equation—relativistic quantum mechanics—is considered
to be the natural transition to quantum field theory. However, the
Dirac equation also predicts some peculiar effects, such as Klein’s
paradox3 and ‘Zitterbewegung’, an unexpected quivering motion
of a free relativistic quantum particle4. These and other predicted
phenomena are key fundamental examples for understanding
relativistic quantum effects, but are difficult to observe in real
particles. In recent years, there has been increased interest in
simulations of relativistic quantum effects using different physical
set-ups5–11, in which parameter tunability allows access to different
physical regimes. Here we perform a proof-of-principle quantum
simulation of the one-dimensional Dirac equation using a single
trapped ion7 set to behave as a free relativistic quantum particle.
We measure the particle position as a function of time and study
Zitterbewegung for different initial superpositions of positive-
and negative-energy spinor states, as well as the crossover from
relativistic to non-relativistic dynamics. The high level of control
of trapped-ion experimental parameters makes it possible to simu-
late textbook examples of relativistic quantum physics.

The Dirac equation for a spin-1/2 particle with rest mass m is given
by1
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~(ca.p̂pzbmc2)y

Here c is the speed of light, p̂p is the momentum operator, aj (j 5 1,
2, 3; (a)j 5 aj) and b are the Dirac matrices (which are usually given
in terms of the Pauli matrices, sx, sy and sz), the wavefunctions y are
four-component spinors and B is Planck’s constant divided by 2p. A
general Dirac spinor can be decomposed into parts with positive and

negative energies E 5 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2zm2c4

p
. Zitterbewegung is under-

stood to be an interference effect between the positive- and negative-
energy parts of the spinor and does not appear for spinors that consist
entirely of positive-energy (or negative-energy) parts. Furthermore, it
is only present when these parts have significant overlap in position
and momentum space and is therefore not a sustained effect under
most circumstances1. For a free electron, the Dirac equation predicts
the Zitterbewegung to have an amplitude of the order of the Compton
wavelength, RZB < 10212 m, and a frequency of vZB < 1021 Hz, and
the effect has so far been experimentally inaccessible. The existence of
Zitterbewegung, in relativistic quantum mechanics and in quantum
field theory, has been a recurrent subject of discussion in the past
years12,13.

Quantum simulation aims to simulate a quantum system using a
controllable laboratory system that underlies the same mathematical
model. In this way, it is possible to simulate quantum systems that
can be neither efficiently simulated on a classical computer14 nor

easily accessed experimentally, while allowing parameter tunability
over a wide range. The difficulties in observing real quantum rela-
tivistic effects have generated significant interest in the quantum
simulation of their dynamics. Examples include black holes in
Bose–Einstein condensates5 and Zitterbewegung for massive fermions
in solid-state physics6, neither of which have been experimentally
realized so far. Also, graphene is studied widely in connection to the
Dirac equation15–17.

Trapped ions are particularly interesting for the purpose of
quantum simulation18–20, as they allow exceptional control of experi-
mental parameters, and initialization and read-out can be achieved
with high fidelity. Recently, for example, a proof-of-principle simu-
lation of a quantum magnet was performed21 using trapped ions. The
full, three-dimensional, Dirac equation Hamiltonian can be simu-
lated using lasers coupling to the three vibrational eigenmodes and
the internal states of a single trapped ion7. The set-up can be signifi-
cantly simplified when simulating the Dirac equation in 1 1 1
dimensions, yet the most unexpected features of the Dirac equation,
such as Zitterbewegung and the Klein paradox, remain. In the Dirac
equation in 1 1 1 dimensions, that is
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there is only one motional degree of freedom and the spinor is
encoded in two internal levels, related to positive- and negative-
energy states7. We find that the velocity of the free Dirac particle is
dx̂x=dt~½x̂x, HD�=iB~csx in the Heisenberg picture. For a massless
particle, [sx, HD] 5 0 and, hence, sx is a constant of motion. For a
massive particle, [sx, HD] ? 0 and the evolution of the particle is
described by

x̂x(t)~x̂x(0)zp̂pc2H{1
D tziĵj(e2iHDt=B{1)

where ĵj~(1=2)Bc(sx{p̂pcH{1
D )H{1

D . The first two terms represent
evolution that is linear in time, as expected for a free particle, whereas
the third, oscillating, term may induce Zitterbewegung.

For the simulation, we trapped a single 40Ca1 ion in a linear Paul
trap22 with axial trapping frequency vax 5 2p3 1.36 MHz and radial
trapping frequency vrad 5 2p3 3 MHz. Doppler cooling, optical
pumping and resolved sideband cooling on the S1/2 « D5/2 transition
in a magnetic field of 4 G prepare the ion in the axial motional ground
state and in the internal state jS1/2, mJ 5 1/2æ (mJ, magnetic quantum
number). A narrow-linewidth laser at 729 nm couples the states

0
1

� �
; jS1/2, mJ 5 1/2æ and 1

0

� �
; jD5/2, mJ 5 3/2æ, which we identify

as our spinor states. A bichromatic light field resonant with the upper
and lower axial motional sidebands of the 1

0

� �
« 0

1

� �
transition with

appropriately set phases and frequency realizes the Hamiltonian7

HD~2gD ~VVsx p̂pzBVsz ð1Þ

Here D 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=2 ~mmvax

p
is the size of the ground-state wavefunction,

with ~mm the ion’s mass (not to be confused with the mass, m, of the
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simulated particle); g 5 0.06 is the Lamb–Dicke parameter; and
p̂p 5 iB(a{ 2 a)/2D is the momentum operator, with a{ and a the usual
raising and lowering operators for the motional state along the axial
direction. The first term in equation (1) describes a state-dependent

motional excitation with coupling strength g ~VV, corresponding to a
displacement of the ion’s wave packet in the harmonic trap. The

parameter ~VV is controlled by setting the intensity of the bichromatic
light field. The second term is equivalent to an optical Stark shift and
occurs when the bichromatic light field is detuned from resonance by
2V. Equation (1) reduces to the 1 1 1 dimensional Dirac Hamiltonian

if we make the identifications c ; 2g ~VVD and mc2 ; BV. The
momentum and position of the Dirac particle are then mapped
onto the corresponding quadratures of the trapped-ion harmonic
oscillator.

To study relativistic effects such as Zitterbewegung, it is necessary
to measure Æx̂x(t)æ, the expectation value of the position operator of
the harmonic oscillator. It has been noted theoretically that such
expectation values could be measured using very short probe times,
without reconstructing the full quantum state7,23,24. To measure Æx̂xæ
for a motional state rm, we have to (1) prepare the ion’s internal state
in an eigenstate of sy, (2) apply a unitary transformation, U(t), that
maps information about rm onto the internal states and (3) record
the changing excitation as a function of the probe time t, by mea-
suring fluorescence22. In this protocol, the unitary operator
U(t) 5 exp(2igVpsxx̂xt/D), with x̂x 5 (a{ 1 a)D and probe Rabi
frequency Vp, effectively transforms the observable sz into sin kx̂x,
with k 5 2gVpt/D, meaning that Æx̂xæ can be determined by monitor-
ing the rate of change of Æsin kx̂xæ for short probe times (Methods).
Because the Dirac Hamiltonian generally entangles the motional and
internal states of the ion, we first incoherently recombine the internal
state population in 0

1

� �
(Methods) before proceeding to step 1. Then

we apply the Hamiltonian generating U with the probe Rabi fre-
quency set to Vp 5 2p3 13 kHz for interaction times t of up to
14 ms, in 1–2-ms steps. The change of excitation was obtained by linear
fits, each based on 104 to 3 3 104 measurements.

We simulate the Dirac equation by applying HD for varying
amounts of time and for different particle masses. In the experiment,

we set ~VV 5 2p3 68 kHz, corresponding to a simulated speed of light
of c 5 0.052D ms21. The measured expectation values, Æx̂x(t)æ, are
shown in Fig. 1 for a particle initially prepared in the spinor state
y(x; t 5 0) 5 (

ffiffiffiffiffi
2p
p

2D)21/2e{x2=4D2 1
1

� �
by sideband cooling and

application of a p/2 pulse. Zitterbewegung appears for particles with
non-zero mass, and is obtained by varying V in the range
0 , V # 2p3 13 kHz by changing the detuning of the bichromatic
lasers.

We investigate the particle dynamics in the crossover from relat-
ivistic to non-relativistic dynamics. The data in Fig. 1 well match
numerical simulations based on equation (1), which are shown as
solid lines. The error bars are obtained from a linear fit assuming
quantum projection noise, which dominates noise caused by fluctua-
tions of control parameters. In addition, the data were fitted with a
heuristic model function of the form Æx̂x(t)æ 5 at 1 RZBsin vZBt to
extract the effective amplitude, RZB, and frequency, vZB, of the
Zitterbewegung shown in the inset. As the particle’s initial
momentum is not dispersion free, the amplitude and frequency are
only approximate concepts. From these data, it can be seen that the
frequency, vZB < 2V, grows linearly with increasing mass, whereas
the amplitude decreases as the mass is increased. Because the mass of
the particle increases but the momentum and the simulated speed of
light remain constant, the data in Fig. 1 show the crossover from the
far relativistic to non-relativistic limits. Hence, the data confirm that
Zitterbewegung decreases in both limits, as theoretically expected. In
the far-relativistic case, this is because vZB vanishes; in the non-
relativistic case, it is because RZB vanishes.

The tools with which we simulate the Dirac equation can also be
used to set the initial state of the simulated particle precisely. The
particle in Fig. 2a was given an average initial momentum
Æp̂p(t 5 0)æ 5 B/D by means of a displacement operation using the
Hamiltonian H~Bg ~VVsx x̂x=D. The initial state of this particle consists
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Figure 1 | Expectation values, Æx̂x(t)æ, for particles with different masses.
The linear curve (squares) represents a massless particle (V 5 0) moving at
the speed of light, which is given by c 5 2g ~VVD5 0.052Dms21 for all curves.
From the top, the other curves represent particles of increasing masses. Their
Compton wavelengths are given by lC ; 2g ~VVD/V 5 5.4D (down triangles),
2.5D (diamonds), 1.2D (circles) and 0.6D (up triangles), respectively. The
solid curves represent numerical simulations. The figure shows
Zitterbewegung for the crossover from the relativistic limit, 2g ~VV?V, to the
non-relativistic limit, 2g ~VV=V. Inset, fitted Zitterbewegung amplitude, RZB

(squares), and frequency, vZB (circles), versus the parameter V/g ~VV (which is
proportional to the mass). Error bars, 1s.
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Figure 2 | Zitterbewegung for a state with non-zero average momentum.
a, Initially, Zitterbewegung appears owing to interference of positive- and
negative-energy parts of the state,
y(x; t 5 0) 5 eix=De{x2=4D2

(
ffiffiffiffiffi
2p
p

2D){1=2 1
1

� �
. As these parts separate, the

oscillatory motion fades away. The solid curve represents a numerical
simulation. Error bars, 1s. b, Measured (filled areas) and numerically
calculated (solid lines) probability distributions, | y(x) | 2, at times t 5 0, 75
and 150ms (as indicated by the arrows in a). The probability distribution
corresponding to the state 0

1

� �
is inverted for clarity. The vertical solid line

represents Æx̂xæ as plotted in a. The two dashed lines indicate the respective
expectation values for the positive- and negative-energy parts of the spinor.
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of a positive-energy component with positive velocity and a negative-
energy component with negative velocity25. The positive-energy
component moves to the right and is contributed to by both spinor
states (Methods), whereas the negative-energy component moves to
the left. Zitterbewegung is observed as long as these parts overlap, and
dies out as they separate. Further information is obtained by a com-
plete reconstruction of the probability distribution26 jy(x)j2, shown
in Fig. 2b. It is also possible to initialize the spinor in a pure negative-
or positive-energy state (Methods). In Fig. 3a, we show the time
evolution, Æx̂x(t)æ, of a negative-energy spinor with average momentum
Æp̂pæ 5 2.2B/D. The corresponding reconstructed probability distribu-
tions are displayed in Fig. 3b, and it can be seen that there is neither
Zitterbewegung nor splitting of the wavefunction, which occurs only
if there are positive- and negative-energy contributions to the
wavefunction.

We have implemented a proof-of-principle quantum optical simu-
lation of a tunable relativistic quantum mechanical system. We have
demonstrated that the simulated one-dimensional Dirac dynamics for
a free particle shows Zitterbewegung and several of its counterintuitive
quantum relativistic features. A natural route for the near future will be
to move theoretically and experimentally towards the simulation of
dynamics that are impossible (or difficult) to calculate in real systems,
such as in quantum chemistry27 or quantized Dirac fields in the context
of quantum field theory1. Our experiment serves as a first step towards
more complex quantum simulations. Furthermore, the mapping
between quantum optical systems and relativistic quantum mechanics
may be followed by further analogies between the Dirac dynamics and
the Jaynes–Cummings model8,28,29, and in photonic9 or sonic systems30.

METHODS SUMMARY

Measurements in position space are carried out by mapping the observable of

interest onto the ion’s internal state. Applying a state-dependent displacement

operation, U 5 exp(2ikx̂xsx/2), to the quantum state r, followed by a measure-

ment of sz, is equivalent to measuring the observable

A(k)~U {sz U~cos(kx̂x)szzsin(kx̂x)sy

on the original state r, where k 5 2gVpt/D is proportional to the interaction time, t.

If the ion’s internal initial state is the eigenstate of sz belonging to eigenvalue 11,

then ÆA(k)æ 5 Æcos kx̂xæ. Similarly, for the eigenstate of sy belonging to eigenvalue

11, ÆA(k)æ 5 Æsin kx̂xæ. A Fourier transformation of these measurements yields the

probability density jy(x)j2 in position space (or equivalently Æd(x̂x 2 x)æ if the state is

not pure but mixed). Moreover, the coefficients of the Taylor expansion of the

observable A(k) are proportional to the moments x̂xn, and in particular dÆA(k)æ/
dkjt50 / Æx̂xæ. The reconstruction of the wave packets associated with the spinor

components 1
0

� �
and 0

1

� �
, shown in Figs 2 and 3, is achieved by projecting either part

of the wavefunction onto the D5/2 state using a fluorescence measurement followed

by the measurement scheme based on post-selected data, described above.

To construct spinors with either purely positive- or negative-energy solutions, it

is useful to express a general spinor as y 5 P1y 1 P2y, that is, using the projection

operations projecting onto the positive- and negative-energy contributions

(E6 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2zm2c4

p
). In momentum space, the projection operators are given by

P+(p)~
1

2
I2+

cpsxzmc2szffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2zm2c4

p
 !

Here I2 is the 2 3 2 identity matrix. The spinor state in Fig. 3 was ‘reverse-

engineered’ by projecting out the negative-energy part of a wave packet with average

momentum Æp̂pæ 5 2.2B/D and renormalizing the spinor. The relative contributions

of the two spinor states, and the phase between them, can be set straightforwardly in

the experiment. The momentum distributions can be approximated by Gaussians

with appropriately set average momenta.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 3 | Time evolution of a negative-energy eigenstate with lC 5 1.2D.
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,

which approximates a negative-energy spinor with average momentum
Æp̂pæ 5 2.2B/D. The corresponding initial momentum distribution, j~yy(p)j2, is
shown in the inset. The filled curves represent data, whereas the solid lines
represent a numerical calculation. The data in a show no Zitterbewegung.
The solid curve represents a numerical simulation. Error bars, 1s.
b, Measured probability distributions, | y(x) | 2, for three different evolution
times (indicated by the arrows in a). There is no splitting of the wavefunction
and the evolution and spreading is as intuitively expected for a free particle.
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METHODS
Measurement of Æx̂xæ and jy(x)j2. In ion-trap experiments, the only observable

that can directly be measured by fluorescence detection is sz. Additional laser

pulses can be used to map other observables onto sz. In the experiment, we apply

a state-dependent displacement operation, U 5 exp(2ikx̂xsx/2), to the quantum

state r, and then measure sz, which is equivalent to measuring the observable

A(k)~U {sz U~cos(kx̂x)szzsin(kx̂x)sy

on the initial state r, because Tr((U{rU)sz) 5 Tr(r(UszU
{)). Here k 5 2gVpt/D

is proportional to the interaction time, t. We have ÆA(k)æ 5 Æcos kx̂xæ if the ion’s

internal initial state is prepared in the eigenstate of sz belonging to eigenvalue

11; for an ion prepared in the eigenstate of sy belonging to eigenvalue 11, we

obtain ÆA(k)æ 5 Æsin kx̂xæ. A Fourier transformation of these measurements yields

the probability density jy(x)j2 in position space.

For the position operator, we have dÆA(k)æ/dkjt50 / Æx̂xsyæ. Measuring Æx̂xæ
thus requires the preparation of an eigenstate of sy, which cannot be done

directly when the motional state is entangled with the internal state. To solve

this problem, we first incoherently recombine the internal state in 0
1

� �
. This is

done by first shelving the population initially in 0
1

� �
to jD5/2, mJ 5 5/2æ using a

rapid adiabatic passage transfer. A second such transfer shifts the population in
1
0

� �
to 0

1

� �
. A 100-ms laser pulse at 854 nm transfers the population in

jD5/2, mJ 5 5/2æ to jP3/2, mJ 5 3/2æ, from which it spontaneously decays to 0
1

� �
.

The transfer efficiency is .99%, limited by the small branching ratio to the D3/2

state. In the transfer steps, a probability exists that the motional state of the ion is

changed. This probability is however very small, owing to the small Lamb–Dicke

parameter, but could be eliminated completely by a separate measurement of the

motional states of the spinor states 0
1

� �
and 1

0

� �
, at the expense of a longer data

acquisition time.

To distinguish between populations in the states 1
0

� �
and 0

1

� �
, when reconstruct-

ing jy(x)j2 (as shown in Figs 2 and 3), we applied a short (200-ms) fluorescence

detection to measure the internal state. We used only cases in which 1
0

� �
was

measured (leaving the motional state unchanged as no photons were scattered)

for the subsequent analysis. To reconstruct jy(x)j2 belonging to 0
1

� �
, a ppulse

before the short detection was used to interchange the internal state populations.

Constructing a pure negative-energy spinor. A general spinor is built up out of

positive- and negative-energy components (energies E6 5 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2zm2c4

p
)

such that y 5 P1y 1 P2y. In momentum space, the projection operators are

given by

P+(p)~
1

2
I2+

cpsxzmc2szffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2zm2c4

p
 !

ð2Þ

Here I2 is the 2 3 2 identity matrix. In general, the projection operators do not

project onto the spinor basis states. The exception is when p 5 0, because in this

case the projector in equation (2) becomes diagonal in the spinor basis. The

spinor state in Fig. 3 was ‘reverse-engineered’ by projecting out the negative-

energy part of a wave packet with average momentum Æp̂pæ 5 2.2B/D and renor-

malizing the spinor.

The complete sequence for approximating the negative-energy state is con-

veniently described in the basis of the eigenstates j6æy 5 (1/
ffiffiffi
2
p

) 1
+i

� �
of sy. After

ground-state cooling, we prepare the state j1æy. Then we displace this state to one

with average momentum Æp̂pæ 5 2.2B/D by using the displacement Hamiltonian

H 5 Bg ~VVsy x̂x=D. Next, a far-detuned laser pulse rotates the internal state to

0.84j1æy 1 i0.53j2æy. The displacement Hamiltonian H 5 2Bg ~VVsy x̂x=D shifts

these parts in opposite directions to create the required asymmetry between the

average momenta of the components. A final p/2 pulse creates the state shown in

Fig. 3. This state has .99% overlap with the desired negative-energy state.
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