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ABSTRACT The theory of spin glasses was used to study
a simple model of protein folding. The phase diagram of the
model was calculated, and the results of dynamics calculations
are briefly reported. The relation of these results to folding
experiments, the relation of these hypotheses to previous
protein folding theories, and the implication of these hypoth-
eses for protein folding prediction schemes are discussed.

The mechanism of globular-protein folding remains a central
problem of molecular biology (1). Folding is the final stage in
the translation of genetic information to a working protein
and is one of the simplest examples of biological self-
organization. A complete understanding of protein folding
should lead to a scheme for predicting three-dimensional
protein structure from one-dimensional sequence informa-
tion, which would have important applications in biotechnol-
ogy. Even falling short of a complete theory, there are many
puzzling features of the kinetics and thermodynamics of
protein folding that require qualitative explanation. In this
paper we hope to highlight these features and to explain how
some hypotheses drawn from the theory of spin glasses can
illuminate some features of protein folding in a very simpli-
fied model.

Physicochemical studies of protein folding have a long
history (1-5). Despite these studies, a unified account of the
dynamics of the process has failed to arise. Thermodynam-
ically near physiological conditions the smaller proteins often
exhibit all-or-none behavior, going discontinuously from the
unfolded phase to the folded phase. This is reminiscent of a
phase transition in a finite system (5). In larger proteins,
deviations from this behavior have been ascribed to the
domain structure of proteins. Farther away from physiolog-
ical conditions more complex behavior has been observed,
suggesting that a third "misfolded" or "collapsed" phase for
protein molecules exists.
The kinetic behavior of protein folding is more complicated

than the thermodynamic behavior. Generally multiexponen-
tial kinetics is observed and in some cases discrete interme-
diates inferred (6). The range of time scale is puzzling.
Refolding of denatured protein into a biologically active form
takes 1 msec to 100 sec or longer. This period of time may be
viewed in two different ways. On one hand the time is much
too short for an exhaustive random search for the minimum
free-energy structure; on the other hand it is clearly much
longer than a simple "downhill run" to the minimum free-
energy structure. Nucleation models suggested by the all-or-
none character of the thermodynamics also do not fit the
kinetics.

In the absence of microscopic models the solution of the
time-scale problem has been attributed to the existence of
"folding pathways." The relative slowness of folding is
ascribed to the existence of many local minima of the free
energy (7).

We should also bear in mind that the in vivo studies of
folding may give a biased view of the biological process.
Robust, easily foldable proteins are the easiest to study. In
vivo, some proteins may fold sequentially following their
synthesis on the ribosome, so that the search for a thermo-
dynamic equilibrium may be too slow to be relevant. Occa-
sionally irreversible denaturation that is not ascribable to
aggregation is observed (2). In addition the speculative
concept of "protein drift" has been introduced to explain
aging of proteins (8-11) and to explain unusual cooperativity
observed in some cases of oligomer association (12). Time
dependent free energies of folding were postulated by Xu and
Weber (12) to analyze this cooperativity.
Many of the issues raised in the preceding paragraphs are

similar to issues in the statistical mechanics of glasses and
glass transitions. For example we often think of crystalline,
liquid, and glassy states of simple material. Clearly in the
glassy state many different free-energy minima can coexist
and interconvert. The properties of glasses can be dependent
on the history oftheir preparation, and in the glassy state very
slow aging processes occur.
The relevance of the application of theories from glass

physics to the dynamics of completely folded proteins has
already been discussed (13, 14). These dynamics involve the
motion of residues over small distances on the order of0.1 to
1.0 A. Folding dynamics occur on a larger length scale from
a few to tens of angstroms. Thus a rather "coarse-grained"
Hamiltonian should suffice to describe the overall features of
folding. Some coarse-grained descriptions are familiar in the
Ising model descriptions of the various secondary structure
transitions such as the helix-coil transition in polymers (15).
We use a similar description here. In folding, however, the
establishment of tertiary structure requires interaction of
residues that are distantly separated along the sequence. In
addition, the heterogeneity of the amino acid sequence
implies a complicated form for the coarse-grained Hamilton-
ian. Despite this complexity a low-energy structure in which
secondary and tertiary structural features are all in harmony
exists. We will argue here that these features of the interac-
tions can be captured by a many-state spin glass model with
random and ferromagnetic interactions, and we will use a
random-energy approximation to calculate the equilibrium
properties of our model.
We will also briefly comment on folding dynamics, partic-

ularly on the existence of intermediates. To conclude we
discuss our results in relation to the experimental results and
to other theories ofprotein folding, such as the nucleation and
diffusion-collision models. We also comment on the rela-
tionship of our model and of spin glass theories in general to
protein-folding prediction schemes.

THE MODEL AND ITS PROPERTIES
Protein folds may be represented by specifying the three-
dimensional conformation of the polypeptide backbone
(16-18), and the backbone is usually described by listing two
dihedral angles per amino acid residue. Some careful exper-
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imental work by Brandts (19) has shown that the entropy loss
of the chain from folding is about 5.1 cal/molK residue* (1
cal = 4.184 J); so, if we consider the folded structure to be a
single state, then the unfolded protein has =10 states avail-
able to each residue. These results suggest a coarse-grained
model where the gross protein conformation is described by
listing the discrete conformational state of every amino acid
in the chain with every amino acid having one native
conformation and v other conformations (v is on the order of
10).
The examination of successfully folded proteins leads to an

important general feature of a model Hamiltonian to describe
folding. The folded structure is very compact, and the
secondary and tertiary structures are not in conflict. Super
secondary structures accommodate both local hydrogen
bonding and packing requirements. If it were not for this
relative lack of frustration in final, folded structures, sec-
ondary-structure prediction schemes would fail spectacular-
ly. This feature was used extensively by Go in his models of
folding (5), and we make use of it also. We call it the principle
ofminimal frustration. There are several kinds of interactions
in protein folding. First, there is an energy associated with the
state of each amino acid residue that we call -ei(a1), where
i refers to the amino acid under consideration and ai refers to
the state of the ith amino acid. Second, there are interactions
along the chain, e.g., hydrogen bonding in a-helices. We will
use the standard approximation of taking this interaction to
be between nearest-neighbor residues (15), so we may write
the energy of each bond of this type as -J,,+1(a,, aj+1).
Finally, there are the long-range interactions, i.e., interaction
between residues that are far apart along the chain. These
occur when bends in the chain bring two amino acids close
together, e.g., by hydrophobic forces. We will write their
energies -Kjj(a1, aj, ri, rj), where ri is the position of the ith
residue.
We may write the energy of the protein as

E =->Ei(ad)-> Juj+1(aj, ai+,)

-Z Kjj(a,, a>, ri, rj). [1]
ij

Naively, we may view the ei(a,) as being related to the
primary structure, the Jij+1(aj, ai+1) as being responsible for
the secondary structure, and the Kej(aj, aj, ri, rj) as being
responsible for the tertiary structure. We will label the (v +
1) discrete states of each residue with the integers 0 through
v. We will always label the properly folded, native state of a
residue with zero. We call the interaction between two
native-state residues a native interaction. All other two-
residue interactions are called nonnative.
Suppose that we are given a molecule of a particular

protein with N amino acids that is in a specific conformation
with No amino acids in their native state. The energy of this
molecule is given by Eq. 1, an exceedingly complex function
of {ai} and {r,}. The traditional application of statistical
mechanics to an ensemble of these conformations results in
a relatively intractable problem. We will make progress with
an indirect method. Our strategy is to replace a complex
Hamiltonian with a stochastic one that has the same statis-
tical characteristics, i.e., we study the distribution ofenergies
associated with different microstates. This idea is reminis-
cent of Wigner's use of random matrices to describe the
highly excited states of heavy nuclei (20). We will take the
energy of the protein molecule to be a random variable
assigned from a distribution P(E, No), whose statistical
properties have some of the same characteristics as the

distribution of energy levels that arises from the Hamiltonian
in Eq. 1. Random energy levels have been used by Derrida
(21, 22) to study spin glasses, and our work uses many of his
results. A spin glass is a magnetic system where ferromag-
netic and antiferromagnetic bonds are randomly distributed
(23-25). The connection between Derrida's work and more
traditional methods of statistical mechanics has been dis-
cussed in the context of spin glasses by Gross and Mdzard
(26). Our model differs from conventional solid-state spin
glasses where disorder is fixed on a lattice, because in our
case the complex sequence is free to move in space. We will
assume that the energies of different protein conformations
are uncorrelated. Mathematically this means that the joint
probability distribution for n configurations with No native
residues and energies E1, E2, ... , En is given by P(E1,
E2, ..* , E, No) = H7,=1 P(Ei, No). This assumption is an
approximation, and Derrida has shown (21, 22) that it
reproduces the phase diagram of an infinite-range spin glass
with qualitative accuracy. We call this approximation the
random-energy approximation. The random-energy approx-
imation is clearly reasonable for protein folding because
changing a single amino acid state will bring very different
parts of the chain together. This approximation may be
systematically improved by taking account of pair correla-
tions, triplet correlations, etc., among the energies. Derrida
and Gardner (27, 28) have already shown how the approxi-
mation may be extended to include pair correlations. Now we
return to our protein molecule and use Eq. 1 to estimate the
probability that it has energy E. First, we consider the tertiary
structure terms, i.e., the {Kij}. The forces responsible for
these interactions are fairly short ranged, so we will assume
that they are significant only for residues that adjoin each
other in space. Typically each residue will be neighbored by
z other residues that are distant from it along the sequence.
The parameter z will vary slightly with the degree of folding,
and we will take z to be on the order of 2 or 3, which is
between the value of z we expect in the completely unfolded
and the completely folded states. The nonnative interactions
of these adjoining residues will have a distribution of energies
with mean -K and standard deviation AK. The native
interactions must satisfy the principle of minimal frustration,
and the simplest way to ensure this is to set all native tertiary
interaction energies equal to -K where K> K. Similarly we
take the nonnative secondary-structure interaction energies
to be distributed with the mean -J and the standard deviation
AJ, all native secondary-structure interaction energies to
equal -J, nonnative primary-structure energies to be distrib-
uted with the mean -E and the standard deviation AE, and all
native primary-structure energies to equal -7o, where J >
J and so > E. Finally we will assume that the native and
nonnative residues are distributed randomly throughout the
protein. This is equivalent to the mean-field approximation
that has been successfully used to describe the behavior of
numerous many-particle systems (29, 30), e.g., the Flory
theory of polymer solutions (31). Now the stochastic incar-
nation of the Hamiltonian of Eq. 1 is a sum of random
variables with known probability distributions so P(E,NO) is
a Gaussian with the mean

EDNO (N-N) -(N-NoW-NoNO)-(N- )-jL,[2]
NI

where L = J + zK, L = 1 + zK, and the standard deviation

AE(No) = [(N - No)Ae2 + (N -)ALj2

where AL2 = AJ2 + zAK2.

[3]*The quoted entropy takes into account only the entropy loss of the
degrees of freedom of the chain and applies only to residues that go
from an unfolded to a folded state.
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ABSTRACT Computational properties of use to biological or-
ganisms or to the construction of computers can emerge as col-
lective properties of systems -having a large number of simple
equivalent components (or neurons). The physical meaning ofcon-
tent-addressable memory is described by an appropriate phase
space flow of the state of a system. A model of such a system is
given, based on aspects of neurobiology but readily adapted to in-
tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing. Additional emergent collective properties in-
clude some capacity for generalization, familiarity recognition,
categorization, error correction, and time sequence retention.
The collective properties are only weakly sensitive to details of the
modeling or the failure of individual devices.

Given the dynamical electrochemical properties ofneurons and
their interconnections (synapses), we readily understand schemes
that use a few neurons to obtain elementary useful biological
behavior (1-3). Our understanding of such simple circuits in
electronics allows us to plan larger and more complex circuits
which are essential to large computers. Because evolution has
no such plan, it becomes relevant to ask whether the ability of
large collections of neurons to perform "computational" tasks
may in part be a spontaneous collective consequence of having
a large number of interacting simple neurons.

In physical systems made from a large number of simple ele-
ments, interactions among large numbers of elementary com-
ponents yield collective phenomena such as the stable magnetic
orientations and domains in a magnetic system or the vortex
patterns in fluid flow. Do analogous collective phenomena in
a system of simple interacting neurons have useful "computa-
tional" correlates? For example, are the stability of memories,
the construction of categories of generalization, or time-se-
quential memory also emergent properties and collective in
origin? This paper examines a new modeling of this old and fun-
damental question (4-8) and shows that important computa-
tional properties spontaneously arise.

All modeling is based on details, and the details of neuro-
anatomy and neural function are both myriad and incompletely
known (9). In many physical systems, the nature of the emer-
gent collective properties is insensitive to the details inserted
in the model (e.g., collisions are essential to generate sound
waves, but any reasonable interatomic force law will yield ap-
propriate collisions). In the same spirit, I will seek collective
properties that are robust against change in the model details.
The model could be readily implemented by integrated cir-

cuit hardware. The conclusions suggest the design of a delo-

calized content-addressable memory or categorizer using ex-
tensive asynchronous parallel processing.
The general content-addressable memory of a physical
system
Suppose that an item stored in memory is "H. A. Kramers &
G. H. Wannier Phys. Rev. 60, 252 (1941)." A general content-
addressable memory would be capable of retrieving this entire
memory item on the basis of sufficient partial information. The
input "& Wannier, (1941)" might suffice. An ideal memory
could deal with errors and retrieve this reference even from the
input "Vannier, (1941)". In computers, only relatively simple
forms of content-addressable memory have been made in hard-
ware (10, 11). Sophisticated ideas like error correction in ac-
cessing information are usually introduced as software (10).

There are classes of physical systems whose spontaneous be-
havior can be used as a form of general (and error-correcting)
content-addressable memory. Consider the time evolution of
a physical system that can be described by a set of general co-
ordinates. A point in state space then represents the instanta-
neous condition of the system. This state space may be either
continuous or discrete (as in the case of N Ising spins).
The equations ofmotion ofthe system describe a flow in state

space. Various classes offlow patterns are possible, but the sys-
tems of use for memory particularly include those that flow to-
ward locally stable points from anywhere within regions around
those points. A particle with frictional damping moving in a
potential well with two minima exemplifies such a dynamics.

If the flow is not completely deterministic, the description
is more complicated. In the two-well problems above, if the
frictional force is characterized by atemperature, it must also
produce a random driving force. The limit points become small
limiting regions, and the stability becomes not absolute. But
as long as the stochastic effects are small, the essence of local
stable points remains.

Consider a physical system described by many coordinates
X1 XN, the components of a state vector X. Let the system
have locally stable limit points Xa, Xb, **. Then, if the system
is started sufficiently near any Xa, as at X = Xa + A, it will
proceed in time until X Xa. We can regard the information
stored in the system as the vectors Xa, Xb, . The starting
point X = Xa + A represents a partial knowledge of the item
Xa, and the system then generates the total information Xa.
Any physical system whose dynamics in phase space is dom-

inated by a substantial number of locally stable states to which
it is attracted can therefore be regarded as a general content-
addressable memory. The physical system will be a potentially
useful memory if, in addition, any prescribed set of states can
readily be made the stable states of the system.
The model system
The processing devices will be called neurons. Each neuron i
has two states like those of McCullough and Pitts (12): Vi = 0
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ganisms or to the construction of computers can emerge as col-
lective properties of systems -having a large number of simple
equivalent components (or neurons). The physical meaning ofcon-
tent-addressable memory is described by an appropriate phase
space flow of the state of a system. A model of such a system is
given, based on aspects of neurobiology but readily adapted to in-
tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing. Additional emergent collective properties in-
clude some capacity for generalization, familiarity recognition,
categorization, error correction, and time sequence retention.
The collective properties are only weakly sensitive to details of the
modeling or the failure of individual devices.

Given the dynamical electrochemical properties ofneurons and
their interconnections (synapses), we readily understand schemes
that use a few neurons to obtain elementary useful biological
behavior (1-3). Our understanding of such simple circuits in
electronics allows us to plan larger and more complex circuits
which are essential to large computers. Because evolution has
no such plan, it becomes relevant to ask whether the ability of
large collections of neurons to perform "computational" tasks
may in part be a spontaneous collective consequence of having
a large number of interacting simple neurons.

In physical systems made from a large number of simple ele-
ments, interactions among large numbers of elementary com-
ponents yield collective phenomena such as the stable magnetic
orientations and domains in a magnetic system or the vortex
patterns in fluid flow. Do analogous collective phenomena in
a system of simple interacting neurons have useful "computa-
tional" correlates? For example, are the stability of memories,
the construction of categories of generalization, or time-se-
quential memory also emergent properties and collective in
origin? This paper examines a new modeling of this old and fun-
damental question (4-8) and shows that important computa-
tional properties spontaneously arise.

All modeling is based on details, and the details of neuro-
anatomy and neural function are both myriad and incompletely
known (9). In many physical systems, the nature of the emer-
gent collective properties is insensitive to the details inserted
in the model (e.g., collisions are essential to generate sound
waves, but any reasonable interatomic force law will yield ap-
propriate collisions). In the same spirit, I will seek collective
properties that are robust against change in the model details.
The model could be readily implemented by integrated cir-

cuit hardware. The conclusions suggest the design of a delo-

calized content-addressable memory or categorizer using ex-
tensive asynchronous parallel processing.
The general content-addressable memory of a physical
system
Suppose that an item stored in memory is "H. A. Kramers &
G. H. Wannier Phys. Rev. 60, 252 (1941)." A general content-
addressable memory would be capable of retrieving this entire
memory item on the basis of sufficient partial information. The
input "& Wannier, (1941)" might suffice. An ideal memory
could deal with errors and retrieve this reference even from the
input "Vannier, (1941)". In computers, only relatively simple
forms of content-addressable memory have been made in hard-
ware (10, 11). Sophisticated ideas like error correction in ac-
cessing information are usually introduced as software (10).

There are classes of physical systems whose spontaneous be-
havior can be used as a form of general (and error-correcting)
content-addressable memory. Consider the time evolution of
a physical system that can be described by a set of general co-
ordinates. A point in state space then represents the instanta-
neous condition of the system. This state space may be either
continuous or discrete (as in the case of N Ising spins).
The equations ofmotion ofthe system describe a flow in state

space. Various classes offlow patterns are possible, but the sys-
tems of use for memory particularly include those that flow to-
ward locally stable points from anywhere within regions around
those points. A particle with frictional damping moving in a
potential well with two minima exemplifies such a dynamics.

If the flow is not completely deterministic, the description
is more complicated. In the two-well problems above, if the
frictional force is characterized by atemperature, it must also
produce a random driving force. The limit points become small
limiting regions, and the stability becomes not absolute. But
as long as the stochastic effects are small, the essence of local
stable points remains.

Consider a physical system described by many coordinates
X1 XN, the components of a state vector X. Let the system
have locally stable limit points Xa, Xb, **. Then, if the system
is started sufficiently near any Xa, as at X = Xa + A, it will
proceed in time until X Xa. We can regard the information
stored in the system as the vectors Xa, Xb, . The starting
point X = Xa + A represents a partial knowledge of the item
Xa, and the system then generates the total information Xa.
Any physical system whose dynamics in phase space is dom-

inated by a substantial number of locally stable states to which
it is attracted can therefore be regarded as a general content-
addressable memory. The physical system will be a potentially
useful memory if, in addition, any prescribed set of states can
readily be made the stable states of the system.
The model system
The processing devices will be called neurons. Each neuron i
has two states like those of McCullough and Pitts (12): Vi = 0

2554

The publication costs ofthis article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertise-
ment" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

Proc. Natl. Acad. Sci. USA 79 (1982) 2555

("not firing") and Vi = 1 ("firing at maximum rate"). When neu-
ron i has a connection made to it from neuron j, the strength
of connection is defined as Tij. (Nonconnected neurons have Tij

0.) The instantaneous state ofthe system is specified by listing
the N values of Vi, so it is represented by a binary word of N
bits.
The state changes in time according to the following algo-

rithm. For each neuron i there is a fixed threshold U,. Each
neuron i readjusts its state randomly in time but with a mean
attempt rate W, setting

Vi °1
< Ui

]Vi0if IT.,V.
joi

Thus, each neuron randomly and asynchronously evaluates
whether it is above or below threshold and readjusts accord-
ingly. (Unless otherwise stated, we choose Ui = 0.)

Although this model has superficial similarities to the Per-
ceptron (13, 14) the essential differences are responsible for the
new results. First, Perceptrons were modeled chiefly with
neural connections in a "forward" direction A -> B -* C -- D.
The analysis of networks with strong backward coupling

proved intractable. All our interesting results arise
as consequences of the strong back-coupling. Second, Percep-
tron studies usually made a random net ofneurons deal directly
with a real physical world and did not ask the questions essential
to finding the more abstract emergent computational proper-
ties. Finally, Perceptron modeling required synchronous neu-
rons like a conventional digital computer. There is no evidence
for such global synchrony and, given the delays of nerve signal
propagation, there would be no way to use global synchrony
effectively. Chiefly computational properties which can exist
in spite of asynchrony have interesting implications in biology.
The information storage algorithm
Suppose we wish to store the set of states V8, s = 1 n. We
use the storage prescription (15, 16)

Tij= (2V - 1)(2Vj - 1) [2]
S

but with Tii = 0. From this definition

Tijjs =E (2V,- 1) I VJ(2Vj-1) Hjs. [3]
The mean value of the bracketed term in Eq. 3 is 0 unless s
- s', for which the mean is N/2. This pseudoorthogonality
yields

> TiVs (Hs') (2Vs' - 1) N/2
i

[4]

and is positive if VW' = 1 and negative if Vf' = 0. Except for the
noise coming from the s # s' terms, the stored state would al-
ways be stable under our processing algorithm.

Such matrices T,. have been used in theories of linear asso-
ciative nets (15-19) to produce an output pattern from a paired
input stimulus, S1 -* 01. A second association S2 -° 02 can be
simultaneously stored in the same network. But the confusing
simulus 0.6 Si + 0.4 S2 will produce a generally meaningless
mixed output 0.6 01 + 0.4 02 Our model, in contrast, will use
its strong nonlinearity to make choices, produce categories, and
regenerate information and, with high probability, will generate
the output 01 from such a confusing mixed stimulus.
A linear associative net must be connected in a complex way

with an external nonlinear logic processor in order to yield true

computation (20, 21). Complex circuitry is easy to plan but more
difficult to discuss in evolutionary terms. In contrast, our model
obtains its emergent computational properties from simple
properties of many cells rather than circuitry.
The biological interpretation of the model
Most neurons are capable of generating a train of action poten-
tials-propagating pulses ofelectrochemical activity-when the
average potential across their membrane is held well above its
normal resting value. The mean rate at which action potentials
are generated is a smooth function of the mean membrane po-
tential, having the general form shown in Fig. 1.
The biological information sent to other neurons often lies

in a short-time average of the firing rate (22). When this is so,
one can neglect the details of individual action potentials and
regard Fig. 1 as a smooth input-output relationship. [Parallel
pathways carrying the same information would enhance the
ability of the system to extract a short-term average firing rate
(23, 24).]
A study of emergent collective effects and spontaneous com-

putation must necessarily focus on the nonlinearity of the in-
put-output relationship. The essence of computation is nonlin-
ear logical operations. The particle interactions that produce
true collective effects in particle dynamics come from a nonlin-
ear dependence of forces on positions of the particles. Whereas
linear associative networks have emphasized the linear central
region (14-19) of Fig. 1, we will replace the input-output re-
lationship by the dot-dash step. Those neurons whose operation
is dominantly linear merely provide a pathway of communica-
tion between nonlinear neurons. Thus, we consider a network
of "on or off" neurons, granting that some of the interconnec-
tions may be by way of neurons operating in the linear regime.

Delays in synaptic transmission (of partially stochastic char-
acter) and in the transmission of impulses along axons and den-
drites produce a delay between the input of a neuron and the
generation of an effective output. All such delays have been
modeled by a single parameter, the stochastic mean processing
time 1/W.

The input to a particular neuron arises from the current leaks
of the synapses to that neuron, which influence the cell mean
potential. The synapses are activated by arriving action poten-
tials. The input signal to a cell i can be taken to be

[5]I Tijvj

where Tij represents the effectiveness of a synapse. Fig. 1 thus

/

Q ~~~~~~~~~/
0 ,

P° I I'

0 a)-jaz-Present Model
W t --Linear Modelingw .'C

E -0.1 / 0
Membrane Potential (Volts) or "Input"

FIG. 1. Firing rate versus membrane voltage for a typical neuron
(solid line), dropping to 0 for large negative potentials and saturating
for positive potentials. The broken lines show approximations used in
modeling.
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Social applications of two-dimensional Ising models
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Abstract

I review three socio-economic models of economic opinions, urban segregation, and language

change and show that the well known two-dimensional Ising model gives about the same results in

each case.
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Statistical physics has proven to be a fruitful framework to describe phenomena outside the realm of
traditional physics. Recent years have witnessed an attempt by physicists to study collective
phenomena emerging from the interactions of individuals as elementary units in social structures. A
wide list of topics are reviewed ranging from opinion and cultural and language dynamics to crowd
behavior, hierarchy formation, human dynamics, and social spreading. The connections between these
problems and other, more traditional, topics of statistical physics are highlighted. Comparison of
model results with empirical data from social systems are also emphasized.
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Aplicações

other versions of voter dynamics on graphs, a linear de-
pendence of the consensus time on N for link-update
dynamics !independent of the degree distribution" and
TN#N for any !"2 for the reverse-voter dynamics,
again in good agreement with simulations !Castellano,
2005; Sood et al., 2008". A general analysis of voterlike
dynamics on generic topologies has been presented by
Baxter et al. !2008", with particular reference to applica-
tions in population genetics and biodiversity studies.

Another interesting effect of the topology occurs
when voter dynamics is considered on small-world net-
works !Watts and Strogatz, 1998". After an initial regime
equal to the one-dimensional behavior, the density of
active interfaces forms a plateau !Fig. 3", because short-
cuts hinder their diffusive motion. The system remains
trapped in a metastable state with coexisting domains of
opposite opinions, whose typical length scales as 1/p
!Castellano et al., 2003; Vilone and Castellano, 2004",
where p is the fraction of long-range connections.

The lifetime of the metastable state scales with the
linear system size L so that for finite systems consensus
is eventually reached on a temporal scale shorter than
on a regular one-dimensional lattice !L2". For infinite
systems instead the state with coexisting opinions is ac-
tually stable, leading to the conclusion that long-range
connections prevent the complete ordering of the voter
model, in a way similar to what occurs for Glauber dy-
namics !Boyer and Miramontes, 2003". A general discus-
sion of the interplay between topology and dynamics for
the voter model has been presented by Suchecki et al.
!2005b". A comparison between the behavior of the
voter dynamics and the AB model on modular networks
has been given by Castelló et al. !2007".

C. Majority rule model

In a population of N agents, endowed with binary
opinions, a fraction p+ of agents has opinion +1 while a
fraction p−=1−p+ has opinion −1. For simplicity, sup-
pose that all agents can communicate with each other, so
that the social network of contacts is a complete graph.
At each iteration, a group of r agents is selected at ran-
dom !discussion group": as a consequence of the interac-
tion, all agents take the majority opinion inside the
group !Fig. 4". This is the basic principle of the majority
rule !MR" model, which was proposed to describe public
debates !Galam, 2002".

The group size r is not fixed, but is selected at each
step from a given distribution. If r is odd, there is always
a majority in favor of either opinion. If r is even, instead,
there is the possibility of a tie, i.e., that either opinion is
supported by exactly r /2 agents. In this case, one intro-
duces a bias in favor of one of the opinions, say +1, and
that opinion prevails in the group. This prescription is
inspired by the principle of social inertia, for which
people are reluctant to accept a reform if there is no
clear majority in its favor !Friedman and Friedman,
1984". Majority rule with opinion bias was originally ap-
plied within a simple model describing hierarchical vot-
ing in a society !Galam, 1986, 1990, 1999, 2000".

Defined as p+
0 the initial fraction of agents with the

opinion +1, the dynamics is characterized by a threshold
pc such that, for p+

0 "pc !p+
0 #pc", all agents will have

opinion +1 !−1" in the long run. The time to reach con-
sensus !in number of updates per spin" scales like log N
!Tessone et al., 2004". If the group sizes are odd, pc!r"
=1/2, due to the symmetry of the two opinions. If there
are groups with r even, pc#1/2, i.e., the favored opinion
will eventually be the dominant one, even if it is initially
shared by a minority of agents.

The MR model1 with a fixed group size r was analyti-
cally solved in the mean-field limit !Krapivsky and Red-
ner, 2003". The group size r is odd, to keep the symmetry

1The term majority rule model was coined by Krapivsky and
Redner !2003". Since this model is a special case of the one by
Galam !2002", we adopt this name from the beginning of the
section.
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FIG. 3. Log-log plot of the fraction nA of active bonds be-
tween nodes with different opinions. Empty symbols are for
the one-dimensional case !p=0". Filled symbols are for rewir-
ing probability p=0.05. Data are for N=200 !circles", N=400
!squares", N=800 !diamonds", N=1600 !triangles up", and
N=3200 !triangles left". From Castellano et al., 2003.

FIG. 4. MR model. The majority opinion inside a discussion
group !here of size 3" is taken by all agents.
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