Ising model

$$
E\left(\left\{\sigma_{i}\right\}\right)=-J \sum_{i} \sum_{j \in V_{i}} \sigma_{i} \sigma_{j}-\mu_{B} H \sum_{i} \sigma_{i}
$$

Ising model

$$
E\left(\left\{\sigma_{i}\right\}\right)=-J \sum_{i} \sum_{j \in V_{i}} \sigma_{i} \sigma_{j}-\mu_{B} H \sum_{i} \sigma_{i}
$$

$$
Z=\sum_{\left\{\sigma_{i}\right\}} e^{-\beta E\left(\left\{\sigma_{i}\right\}\right)}
$$

Aplicações

Proc. Natl. Acad. Sci. USA
Vol. 84, pp. 7524-7528, November 1987
Biophysics

Spin glasses and the statistical mechanics of protein folding

(disordered systems/irreversible denaturation/molten-globule state/biomolecular self-assembly)
Joseph D. Bryngelson and Peter G. Wolynes
along the chain, e.g., hydrogen bonding in α-helices. We will use the standard approximation of taking this interaction to be between nearest-neighbor residues (15), so we may write the energy of each bond of this type as $-J_{i, i+1}\left(\alpha_{i}, \alpha_{i+1}\right)$. Finally, there are the long-range interactions, i.e., interaction between residues that are far apart along the chain. These occur when bends in the chain bring two amino acids close together, e.g., by hydrophobic forces. We will write their energies $-K_{i, j}\left(\alpha_{i}, \alpha_{j}, r_{i}, r_{j}\right)$, where r_{i} is the position of the i th residue.

We may write the energy of the protein as

$$
\begin{aligned}
E= & -\sum_{i} \varepsilon_{i}\left(\alpha_{i}\right)-\sum_{i} J_{i, i+1}\left(\alpha_{i}, \alpha_{i+1}\right) \\
& -\sum_{i, j} K_{i, j}\left(\alpha_{i}, \alpha_{j}, r_{i}, r_{\mathrm{j}}\right) .
\end{aligned}
$$

Proc. Natl. Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

Neural networks and physical systems with emergent collective computational abilities

(associative memory/parallel processing/categorization/content-addressable memory/fail-soft devices)
J. J. Hopfield

The model system

The processing devices will be called neurons. Each neuron i has two states like those of McCullough and Pitts (12): $V_{i}=0$ ("not firing") and $V_{i}=1$ ("firing at maximum rate"). When neuron i has a connection made to it from neuron j, the strength of connection is defined as $T_{i j}$. (Nonconnected neurons have $T_{i j}$ $\equiv 0$.) The instantaneous state of the system is specified by listing the N values of V_{i}, so it is represented by a binary word of N bits.

REVIEWS OF MODERN PHYSICS, VOLUME 81, APRIL-JUNE 2009

Statistical physics of social dynamics

Claudio Castellano*

SMC, INFM-CNR and Dipartimento di Fisica, "Sapienza" Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy

Santo Fortunato ${ }^{\dagger}$
Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133 Torino, Italy
Vittorio Loreto ${ }^{\ddagger}$
Dipartimento di Fisica, "Sapienza" Università di Roma and SMC, INFM-CNR, Piazzale A. Moro 2, 00185 Roma, Italy
and Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133 Torino, Italy

FIG. 4. MR model. The majority opinion inside a discussion group (here of size 3) is taken by all agents.

Social applications of two-dimensional Ising models

D. Stauffer

Institute for Theoretical Physics, Cologne University, D-50923 Köln, Euroland
Abstract
I review three socio-economic models of economic opinions, urban segregation, and language change and show that the well known two-dimensional Ising model gives about the same results in each case.

