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Statistical mechanics is one of the most successful areas

of physics. Yet, almost 150 years since its inception,

its foundations and basic postulates are still the subject

of debate. Here we suggest that the main postulate

of statistical mechanics, the equal a priori probability

postulate, should be abandoned as misleading and

unnecessary. We argue that it should be replaced by a

general canonical principle, whose physical content is

fundamentally different from the postulate it replaces: it

refers to individual states, rather than to ensemble or

time averages. Furthermore, whereas the original postulate

is an unprovable assumption, the principle we propose

is mathematically proven. The key element in this proof

is the quantum entanglement between the system and

its environment. Our approach separates the issue of

finding the canonical state from finding out how close a

system is to it, allowing us to go even beyond the usual

boltzmannian situation.

The great conceptual puzzle of statistical mechanics is how a
physical system, despite always being in some definite state,
and evolving deterministically, can exhibit thermodynamical

properties pertinent to statistical averages, such as the entropy1.
Here we consider an alternative approach to the foundations

of statistical mechanics, suggested to one of us by Yakir Aharonov
about twenty years ago. In this approach the usual devices of
subjective randomness, ensemble-averaging or time-averaging2,
are not required. We show that, although the universe (that
is, the system together with a sufficiently large environment)
is in a quantum pure state subject to a global constraint,
thermalization results from entanglement between the system and
the environment. This leads to a finite entropy of the system, despite
the universe itself having zero entropy. Significant results along
similar lines have been obtained by Bocchieri and Loinger3, Lloyd4

and Gemmer et al.5; see also very recent work by Goldstein et al6.
We formulate and prove a ‘general canonical principle’, which

states that the system will be thermalized (that is, in the canonical
state) for almost all pure states of the universe, and provide
rigorous quantitative bounds. In fact, we actually go beyond
ordinary thermalization: in the standard statistical setting, energy
constraints are imposed on the state of the universe, which
determine a corresponding temperature and thermal canonical
state for the system. In contrast, we allow completely arbitrary
constraints, which leads to the system being in a corresponding
generalized canonical state.

Our results are kinematic, rather than dynamical, as we do not
consider any particular evolution of the state. However, because
almost all states of the universe are such that the system is
thermalized, we anticipate that most evolutions will quickly carry
any initial state to a thermal state. Furthermore, as information
about the system will tend to leak into the environment over time,
we might expect that their entanglement, and hence entropy, will
increase. It is conceivable that this is the mechanism behind the
second law of thermodynamics.

Consider a large isolated quantum mechanical system, ‘the
universe’, that we decompose into two parts, the ‘system’ S and
the ‘environment’ E. We will assume that the dimension of the
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Figure 3 Example: A system of spins. As a concrete application of our theorem,
consider a set of n spin-1/2 systems in an external magnetic field B, where a
particular subset of k spins form the system S, and the remaining n− k spins form
the environment E. We consider a restriction to the energy eigenspace HR in which
np spins are in the excited state |1⟩ (aligned with the field) and the remaining
n(1− p) spins are in the ground state |0⟩ (opposite to the field). With this setup,
dS = 2k and dR ≈ 2nH(p) , where H(p)= −p log2 (p)− (1− p) log2 (1− p) is the
Shannon entropy of a single spin. Using our theorem, we obtain D(ρS ,ΩS )≈ 0 for
almost all states whenever nH(p)≫ 2k. Projecting onto the typical subspace in
which the system contains approximately kp excitations allows us to replace k by
kH(p) with very little additional error. This yields D(ρS ,ΩS )≈ 0 for almost all states
whenever n≫ 2k (that is, whenever the system is fractionally larger than
the environment).

In many cases, it is possible to improve the bounds obtained
from the main theorem by projecting the state |φ⟩ onto a typical
subspace of HR before proceeding with the analysis. This can
allow us to decrease the effective dimension of the system dS (by
eliminating components with negligible amplitude), and increase
the effective dimension of the environment deff

E (by eliminating
components of ΩE with disproportionately high amplitudes),
whilst leaving the equiprobable state ER largely unchanged.

In addition to altering dS and deff
E , this projection will introduce

an additional error term in η (equation (2)) given by 4
√

δ, where
δ is the relative volume of states in HR outside the typical
subspace. However, for an appropriately chosen typical subspace,
the reduction in

√
dS/deff

E will often more than compensate for
this additional source of error. This is particularly evident for the
example of a collection of spin-1/2 particles given in Fig. 3.

Let us look back at what we have done. Concerning the problem
of thermalization of a system interacting with an environment in
statistical mechanics, there are several standard approaches. One
way of looking at it is to say that the only thing we know about
the state of the universe is a global constraint such as its total
energy. Thus, the way to proceed is to take a bayesian point of view
and consider all states consistent with this global constraint to be
equally probable. The average over all these states indeed leads to
the state of any small subsystem being canonical. But the question
then arises: what is the meaning of this average, when we deal
with just one state? Also, these probabilities are subjective, and this
raises the problem of how to argue for an objective meaning of the
entropy. A formal way out is that suggested by Gibbs, to consider
an ensemble of systems, but of course this does not solve the puzzle,
because there is usually only one actual system. Alternatively, it was
suggested that the state of the universe, as it evolves in time, can
reach any of the states that are consistent with the global constraint.
Thus, if we look at time averages, they are the same as the average

that results from considering each state of the universe to be equally
probable. To make sense of this image, assumptions of ergodicity
are needed to ensure that the universe explores all the available
space equally, and of course this does not solve the problem of what
the state of the subsystem is at a given time.

What we showed here is that these averages are not necessary.
Rather, (almost) any individual state of the universe is such that
any sufficiently small subsystem behaves as if the universe was in
the equiprobable average state. This is due to massive entanglement
between the subsystem and the rest of the universe, which is a
generic feature of the vast majority of states. To obtain this result,
we have introduced measures of the effective size of the system,
dS, and its environment (that is, the rest of the universe), deff

E , and
showed that the average distance between the individual reduced
states and the canonical state is directly related to dS/deff

E . Levy’s
lemma is then invoked to conclude that all but an exponentially
small fraction of all states are close to the canonical state.

The main message of our paper is that averages are not needed
to justify the canonical state of a system in contact with the rest of
the universe—almost any individual state of the universe is enough
to lead to the canonical state. In effect, we propose to replace
the postulate of equal a priori probabilities by the principle of
apparently equal a priori probabilities, which states that as far as
the system is concerned almost every state of the universe seems
similar to the average.

We stress once more that we are concerned only with the
distance between the state of the system and the canonical state,
and not with the precise mathematical form of this canonical state.
Indeed, it is an advantage of our method that these two issues are
completely separated. For example, our result is independent of
the canonical state having boltzmannian form, of degeneracies of
energy levels, of interaction strength, or of energy (of the system,
the environment or the universe) at all.

In future work, we hope to go beyond the kinematic viewpoint
presented here to address the dynamics of thermalization. In
particular, we will investigate under what conditions the state of
the universe will evolve into (and spend almost all of its later time
in) the large region of its Hilbert space in which its subsystems
are thermalized. Some results in this direction have already been
obtained19–22, and we hope that the new results and techniques
introduced in this paper will lead to further exciting advances in
this area.
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References
1. Mandl, F. Statistical Physics 2nd edn, Ch. 2, 40–41 (Wiley, New York, 1988).
2. Khinchin, A. I. Mathematical Foundations of Statistical Mechanics Ch. 3, 44–47 (Dover,

New York, 1949).
3. Bocchieri, P. & Loinger, A. Ergodic foundation of quantum statistical mechanics. Phys. Rev. 114,

948–951 (1959).
4. Lloyd, S. Black Holes, Demons, and the Loss of Coherence. Ch. 3, 79–93, Thesis, Rockefeller

Univ. (1988).
5. Gemmer, J., Michel, M. & Mahler, G. Quantum Thermodynamics Vol. 657 (Lecture Notes in Physics,

Springer, Berlin, 2004).
6. Goldstein, S., Lebowitz, J. L., Tumulka, R. & Zanghı̀, N. Canonical typicality. Phys. Rev. Lett. 96,

050403 (2006).
7. Landau, L. D. & Lifshitz, E. M. Statistical Physics Ch. 3, 78–80 (Pergamon, London, 1958).
8. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information Ch. 9, 403–409

(Cambridge Univ. Press, Cambridge, 2000).
9. Lubkin, E. Entropy of an n-system from its correlation with a k-reservoir. J. Math. Phys. 19,

1028–1031 (1978).
10. Lloyd, S. & Pagels, H. Complexity as thermodynamic depth. Ann. Phys. 188, 186–213 (1988).
11. Page, D. N. Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).
12. Sen, S. Average entropy of a quantum subsystem. Phys. Rev. Lett. 77, 1–3 (1996).
13. Sommers, H.-J. & Zyczkowski, K. Statistical properties of random density matrices. J. Phys. A: Math.

Gen. 37, 8457–8466 (2004).
14. Milman, V. D. & Schechtman, G. Asymptotic Theory of Finite-Dimensional Normed Spaces Ch. 2, 5–6

(Lecture Notes in Mathematics, Vol. 1,200, Springer, Berlin, 1986) and 140–141 Appendix V.
15. Hayden, P., Leung, D. W. & Winter, A. Aspects of generic entanglement. Commun. Math. Phys. 265,

95–117 (2006).
16. Lloyd, S. Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997).

nature physics VOL 2 NOVEMBER 2006 www.nature.com/naturephysics 757

Untitled-1   4 20/10/06, 4:43:59 pm

Nature  Publishing Group ©2006



3

tim
e

chaos

Initial state

Thermal state

E

E

E a

E b

E c

E a

E b

E c

thermal

thermal

thermal

co
he

re
nc

e

Thermal state

dephasing

tim
e

thermal

thermal

thermal

co
he

re
nc

e

EIGENSTATE THERMALIZATION

Initial state

A B

FIG. 2: Thermalization in classical vs quantum mechanics. a, In
classical mechanics, time evolution constructs the thermal state from
an initial state that generally bears no resemblance to the former.
b, In quantum mechanics, according to the eigenstate thermaliza-
tion hypothesis, every eigenstate of the Hamiltonian always implic-
itly contains a thermal state. The coherence between the eigenstates
initially hides it, but time dynamics reveals it through dephasing.

Discussion) energy window centered at E0, and the normal-
ization NE0, ∆E is the number of energy eigenstates with en-
ergies in the window [E0 − ∆E, E0 + ∆E]. Thermodynam-
ical universality is evident in this equality: while the left hand
side depends on the details of the initial conditions through
the set of coefficientsCα, the right hand side depends only on
the total energy, which is the same for many different initial
conditions. Three mechanisms suggest themselves as possi-
ble explanations of this universality (assuming the initial state
is sufficiently narrow in energy, as is normally the case—see
Supplementary Discussion):
(i) Even for eigenstates close in energy, there are large

eigenstate-to-eigenstate fluctuations of both the eigenstate ex-
pectation values Aαα and of the eigenstate occupation num-
bers |Cα|2. However, for physically interesting initial condi-
tions, the fluctuations in the two quantities are uncorrelated.
A given initial state then performs an unbiased sampling of
the distribution of the eigenstate expectation values Aαα, re-
sulting in Eq. (3).
(ii) For physically interesting initial conditions, the eigen-

state occupation numbers |Cα|2 practically do not fluctuate at
all between eigenstates that are close in energy. Again, Eq.
(3) immediately follows.
(iii) The eigenstate expectation values Aαα practically do

not fluctuate at all between eigenstates that are close in energy.
In that case Eq. (3) holds for literally all initial states narrow
in energy.
J. M. Deutsch and M. Srednicki have independently pro-

posed the scenario (iii), dubbed the

Eigenstate thermalization hypothesis (ETH)
[Deutsch[12] (1991), Srednicki[13] (1994)].
The expectation value ⟨Ψα|Â|Ψα⟩ of a few-body

observable Â in an eigenstate of the Hamiltonian |Ψα⟩,
with energy Eα, of a large interacting many-body
system equals the thermal (microcanonical in our case)
average ⟨A⟩microcan.(Eα) of Â at the mean energy Eα:

⟨Ψα|Â|Ψα⟩ = ⟨A⟩microcan.(Eα). (4)

The ETH suggests that classical and quantum thermal states
have very different natures, as depicted in Fig. 2. While at
present there are no general theoretical arguments supporting
the ETH, some results do exist for restricted classes of sys-
tems. To begin with, Deutsch [12] showed that the ETH holds
in the case of an integrable Hamiltonian weakly perturbed
by a single matrix taken from a random Gaussian ensemble.
Next, nuclear shell model calculations have shown that indi-
vidual wavefunctions reproduce thermodynamic predictions
[20]. Then there are rigorous proofs that some particular
quantum systems, whose classical counterparts are chaotic,
satisfy the ETH in the semiclassical limit [21, 22, 23, 24].
More generally, for low density billiards in the semiclassical
regime, the ETH follows from Berry’s conjecture [13, 25],
which in turn is believed to hold in semiclassical classically-
chaotic systems [26]. Finally, at the other end of the chaos-
integrability continuum, in systems solvable by Bethe ansatz,
observables are smooth functions of the integrals of motion.
This allows the construction of single energy eigenstates that
reproduce thermal predictions [27].
In Figs. 3a-c we demonstrate that the ETH is in fact the

mechanism responsible for thermal behavior in our noninte-
grable system. Fig. 3c additionally shows that scenario (ii)
mentioned above plays no role, because the fluctuations in the
eigenstate occupation numbers |Cα|2 are large. Thermal be-
havior also requires that both the diagonal and the chosen ther-
mal ensemble have sufficiently narrow energy distributions
ρ(E) [= probability distribution × the density of states], so
that in the energy region where the energy distributions ρ(E)
are appreciable, the derivative of the curve eigenstate expecta-
tion value Aαα vs the energy (here n(kx = 0) vs the energy)
does not change much; see Supplementary Discussion. As
shown in Fig. 3b, this holds for the microcanonical and diago-
nal ensembles but not for the canonical ensemble, explaining
the failure of the latter to describe the relaxation in Fig. 1.
Note that the fluctuations of the eigenstate occupation num-
bers |Cα|2 in Fig. 3b are lowered by the averaging involved
in the computation of the density of states (compare with Fig.
3c).
To strengthen the case for the ETH, we tested another ob-

servable. We chose it with the following consideration in
mind: in our system interactions are local in space, and mo-
mentum distribution is a global, approximately spatially addi-
tive property. Thus one might wonder if the ETH for momen-
tum distribution arises through some spatial averaging mech-
anism (we thank the anonymous referee 2 for bringing this
point to our attention). It does not: for our final test of the ETH
we chose an observable that is manifestly local in space, the
expectation value of the occupation of the central site of the
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Thermalization and its mechanism for generic
isolated quantum systems
Marcos Rigol1,2, Vanja Dunjko1,2 & Maxim Olshanii2

An understanding of the temporal evolution of isolated many-
body quantum systems has long been elusive. Recently, meaning-
ful experimental studies1,2 of the problem have become possible,
stimulating theoretical interest3–7. In generic isolated systems,
non-equilibrium dynamics is expected8,9 to result in thermaliza-
tion: a relaxation to states in which the values of macroscopic
quantities are stationary, universal with respect to widely differing
initial conditions, and predictable using statistical mechanics.
However, it is not obvious what feature of many-body quantum
mechanics makes quantum thermalization possible in a sense ana-
logous to that in which dynamical chaos makes classical therma-
lization possible10. For example, dynamical chaos itself cannot
occur in an isolated quantum system, in which the time evolution
is linear and the spectrum is discrete11. Some recent studies4,5 even
suggest that statistical mechanics may give incorrect predictions
for the outcomes of relaxation in such systems. Here we demon-
strate that a generic isolated quantum many-body system does
relax to a state well described by the standard statistical-mechanical
prescription. Moreover, we show that time evolution itself plays
a merely auxiliary role in relaxation, and that thermalization
instead happens at the level of individual eigenstates, as first pro-
posed by Deutsch12 and Srednicki13. A striking consequence of this
eigenstate-thermalization scenario, confirmed for our system, is
that knowledge of a single many-body eigenstate is sufficient to
compute thermal averages—any eigenstate in the microcanonical
energy window will do, because they all give the same result.

If we pierce an inflated balloon inside a vacuum chamber, very
soon we find that the released air has uniformly filled the enclosure
and that the air molecules have attained the Maxwell velocity distri-
bution, the width of which depends only on the total number and
energy of the air molecules. Different balloon shapes, placements, or
piercing points all lead to the same spatial and velocity distributions.
Classical physics explains this ‘thermodynamical universality’ as fol-
lows10: almost all particle trajectories quickly begin to look alike, even
if their initial points are very different, because nonlinear equations
drive them to explore the constant-energy manifold ergodically, cov-
ering it uniformly with respect to precisely the microcanonical mea-
sure. However, if the system possesses further conserved quantities
that are functionally independent of the hamiltonian and each other,
then time evolution is confined to a highly restricted hypersurface of
the energy manifold. Hence, microcanonical predictions fail and the
system does not thermalize.

In contrast, in isolated quantum systems not only is dynamical
chaos absent owing to the linearity of time evolution and the dis-
creteness of spectra11, but also it is not clear under what conditions
conserved quantities provide independent constraints on the relaxa-
tion dynamics. On the one hand, any operator commuting with
a generic, and thus non-degenerate, hamiltonian is functionally

dependent on it14, seemingly implying that conservation of energy
is the only independent constraint. On the other hand, even when
operators are functionally dependent, their expectation values—
considered as functionals of states—generally are not: for example,
two states may have the same mean energies but different means of
squared energies. For non-degenerate hamiltonians a maximal set of
constants of motion with functionally independent expectation
values is as large as the dimension of the Hilbert space; examples
include the projectors P̂a~ Yaj i Yah j to the energy eigenstates14

and the integer powers of the hamiltonian5.
The current numerical and analytic evidence from the study of

integrable systems suggests that there exists a minimal set of inde-
pendent constraints the size of which is much less than the dimension
of the Hilbert space but may still be much greater than one. In pre-
vious work3 we showed that an isolated integrable one-dimensional
system of lattice hard-core bosons relaxes to an equilibrium charac-
terized not by the usual Gibbs ensemble but by a generalized Gibbs
ensemble. Instead of just the energy, the Gibbs exponent contains
a linear combination of conserved quantities—the occupation
numbers of the eigenstates of the corresponding Jordan–Wigner fer-
mions—the number of which is still only a tiny fraction of the dimen-
sion of the Hilbert space. Yet this ensemble works, although the usual
one does not, for a wide variety of initial conditions15 as well as for a
fermionic system16; it also explains a recent experimental result, the
absence of thermalization in the Tonks–Girardeau gas1. Thus,
although at least some constraints other than the conservation of
energy must be kept, it turns out that only a relatively limited number
of additional conserved quantities with functionally independent
expectation values are needed; adding further ones is redundant.

As it is not clear which sets of conserved quantities—and some are
always present—constrain relaxation and which do not, it becomes
even more urgent to determine whether or not generic isolated
quantum systems relax to the usual thermal state. This question
has received increased theoretical attention recently, because of the
high levels of isolation1,2,17 and control18,19 possible in experiments
with ultracold quantum gases. However, despite numerous studies of
specific models, there is not yet consensus on how or even whether
relaxation to the usual thermal values occurs for non-integrable sys-
tems7. The conventional wisdom is that it does8,9, but some recent
numerical results indicate otherwise, either under certain conditions4

or in general5.
To study relaxation of an isolated quantum system, we considered

the time evolution of five hard-core bosons with additional weak
nearest-neighbour repulsions, on a 21-site, two-dimensional lattice,
initially confined to a portion of the lattice and prepared in their
ground state there. Figure 1a shows the exact geometry (see also
Supplementary Discussion); the relaxation dynamics begins when
the confinement is lifted. Expanding the initial-state wavefunction

1Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA. 2Department of Physics, University of Massachusetts Boston, Boston,
Massachusetts 02125, USA.
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prescription. Moreover, we show that time evolution itself plays
a merely auxiliary role in relaxation, and that thermalization
instead happens at the level of individual eigenstates, as first pro-
posed by Deutsch12 and Srednicki13. A striking consequence of this
eigenstate-thermalization scenario, confirmed for our system, is
that knowledge of a single many-body eigenstate is sufficient to
compute thermal averages—any eigenstate in the microcanonical
energy window will do, because they all give the same result.

If we pierce an inflated balloon inside a vacuum chamber, very
soon we find that the released air has uniformly filled the enclosure
and that the air molecules have attained the Maxwell velocity distri-
bution, the width of which depends only on the total number and
energy of the air molecules. Different balloon shapes, placements, or
piercing points all lead to the same spatial and velocity distributions.
Classical physics explains this ‘thermodynamical universality’ as fol-
lows10: almost all particle trajectories quickly begin to look alike, even
if their initial points are very different, because nonlinear equations
drive them to explore the constant-energy manifold ergodically, cov-
ering it uniformly with respect to precisely the microcanonical mea-
sure. However, if the system possesses further conserved quantities
that are functionally independent of the hamiltonian and each other,
then time evolution is confined to a highly restricted hypersurface of
the energy manifold. Hence, microcanonical predictions fail and the
system does not thermalize.

In contrast, in isolated quantum systems not only is dynamical
chaos absent owing to the linearity of time evolution and the dis-
creteness of spectra11, but also it is not clear under what conditions
conserved quantities provide independent constraints on the relaxa-
tion dynamics. On the one hand, any operator commuting with
a generic, and thus non-degenerate, hamiltonian is functionally

dependent on it14, seemingly implying that conservation of energy
is the only independent constraint. On the other hand, even when
operators are functionally dependent, their expectation values—
considered as functionals of states—generally are not: for example,
two states may have the same mean energies but different means of
squared energies. For non-degenerate hamiltonians a maximal set of
constants of motion with functionally independent expectation
values is as large as the dimension of the Hilbert space; examples
include the projectors P̂a~ Yaj i Yah j to the energy eigenstates14

and the integer powers of the hamiltonian5.
The current numerical and analytic evidence from the study of

integrable systems suggests that there exists a minimal set of inde-
pendent constraints the size of which is much less than the dimension
of the Hilbert space but may still be much greater than one. In pre-
vious work3 we showed that an isolated integrable one-dimensional
system of lattice hard-core bosons relaxes to an equilibrium charac-
terized not by the usual Gibbs ensemble but by a generalized Gibbs
ensemble. Instead of just the energy, the Gibbs exponent contains
a linear combination of conserved quantities—the occupation
numbers of the eigenstates of the corresponding Jordan–Wigner fer-
mions—the number of which is still only a tiny fraction of the dimen-
sion of the Hilbert space. Yet this ensemble works, although the usual
one does not, for a wide variety of initial conditions15 as well as for a
fermionic system16; it also explains a recent experimental result, the
absence of thermalization in the Tonks–Girardeau gas1. Thus,
although at least some constraints other than the conservation of
energy must be kept, it turns out that only a relatively limited number
of additional conserved quantities with functionally independent
expectation values are needed; adding further ones is redundant.

As it is not clear which sets of conserved quantities—and some are
always present—constrain relaxation and which do not, it becomes
even more urgent to determine whether or not generic isolated
quantum systems relax to the usual thermal state. This question
has received increased theoretical attention recently, because of the
high levels of isolation1,2,17 and control18,19 possible in experiments
with ultracold quantum gases. However, despite numerous studies of
specific models, there is not yet consensus on how or even whether
relaxation to the usual thermal values occurs for non-integrable sys-
tems7. The conventional wisdom is that it does8,9, but some recent
numerical results indicate otherwise, either under certain conditions4

or in general5.
To study relaxation of an isolated quantum system, we considered

the time evolution of five hard-core bosons with additional weak
nearest-neighbour repulsions, on a 21-site, two-dimensional lattice,
initially confined to a portion of the lattice and prepared in their
ground state there. Figure 1a shows the exact geometry (see also
Supplementary Discussion); the relaxation dynamics begins when
the confinement is lifted. Expanding the initial-state wavefunction
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