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Several physical models have been studied in complex networks, which have proven to modify
their critical behavior and produce new phenomenology. We study the Bose-Hubbard model in
complex networks of sites under mean-field hypothesis. We apply numerical methods to draw the
phase diagram for annealed and quenched scale-free networks. We also use an analytical approach
to predict the mean-field quantum phase transition between a Mott insulator and a superfluid phase.
In agreement with previous findings in other models, we show that the critical point vanishes at the
thermodynamic limit, for annealed networks with diverging second degree moment and for quenched
networks with diverging maximum degree. Moreover, for the quenched case, we show how the local
superfluid activity correlates with the centrality of the sites. Despite the limitations of the mean-
field approximation, we argue that our results indicate the absence of a Mott insulating phase for
large scale-free populations of sites.

I. INTRODUCTION

Over the last two decades, the study of dynamic pro-
cesses and physical models in complex networks became
very popular in the scientific community [1–4], consid-
erably improving our understanding on how the hetero-
geneity and complexity of contacts in structured popula-
tions affect processes that run over them. Despite some
marginal development occurred over the 20th century, the
science of complex systems was mainly developed after
the discovery, in the late 90’s, that most real-world net-
works share some common properties, such as a scale-free
degree distribution [5] and the small-world property [6].

The body of research in complex systems have been
mainly developed over biological, social and technologi-
cal systems, such as protein [7] and biomolecular [8] net-
works, social media an propagation of information [9–11],
epidemic spreading [12–14], power grids [15] and many
other examples. However, considerable attention have
also been driven to physical problems in complex net-
works, such as the Ising model [16, 17], the Anderson
localization [18, 19], the XY model [20], spin-1/2 Hub-
bard model [21] and Bose-Einstein condensation [22–24].

Critical phenomena are very often found in such sys-
tems, and the structure of the network may have a crucial
influence over them. It has been shown that the degree
distribution (in particular, the second degree moment
〈k2〉)) and the spectrum of the adjacency matrix have
strong influence in the critical behavior of the Ising model
[17], synchronization models [25], epidemic spreading [12]
and the percolation process [26]. As an illustration, Bu-
rioni et al. [22] shows that the inhomogeneous structure
of a complex network can induce a Bose-Einstein con-
densation even in systems with low dimension (d ≤ 2)
and non-interacting bosons, a behavior that is not ob-
served in regular lattices. This happens due to anomalies
in the density of states, and the phenomenon is known
as “topology-induced Bose-Einstein condensation”. An-
other example is the critical temperature enhancement

of the superconducting phase transition using a scale-free
topology in the Random Transverse Ising model [27]. A
review of critical phenomena in complex networks can be
found in ref. [28].

The new phenomenology of physical models in com-
plex networks have potential applications for technologi-
cal purposes and basic physics development. Optical lat-
tices [29, 30] have been successfully used to experimen-
tally reproduce theoretical predictions of condensed mat-
ter systems [31] using ultracold atoms. More recently, the
production of arbitrary optical potentials [32–34] opens
the possibility of simulating more complex quantum sys-
tems, including heterogeneous contact topologies. The
combination of experimental and theoretical efforts in
this direction may give rise to important applications,
such as using the topology of sites to tune the critical
behavior of the system.

In this work, we study the Bose-Hubbard model in
complex networks in a mean-field framework. We study
the influence of a heterogeneous structure of contacts in
the model, giving particular attention to the scale-free
configuration. A scale-free network is such that the con-
nectivity of the nodes (sites) follows a power-law dis-
tribution P (k) ∝ k−α. We show that, similarly to the
epidemic onset in the SIS model [12], the ferromagnetic
transition in Ising model [17] and the percolation thresh-
old [26], the transition between the Mott insulator and
the superfluid phases has a vanishing critical point at
the thermodynamic limit for networks with power-law
exponent α ≤ 3. We apply the model for two differ-
ent network formulations - the annealed and quenched
- and discuss the differences between each formulation
for scale-free networks. We study the local site activ-
ity information given by the quenched formulation, and
compare the activity with the centrality of each site. Fi-
nally, we present a brief discussion about the Bose glass
phase, which cannot be predicted by mean-field theory,
but is important to correctly understand the meaning of
the vanishing phase transition.
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The paper is structured as follows: section II briefly
presents the mean-field formulation of the Bose-Hubbard
model. The equations are further developed in sections
III and IV, in which we present respectively the annealed
and the quenched formulations. In each of these two sec-
tions, we compute the site-decoupled Hamiltonian, calcu-
late the insulator/superfluid critical point and compare
with numerical simulations. In section IV C, we also dis-
cuss some results with the local field. In section V, we
discuss limitation of the mean-field approach and its con-
sequence for the interpretation of our results.

II. BOSE-HUBBARD MODEL IN THE
MEAN-FIELD APPROACH

The Bose-Hubbard model [35] is a simple and pow-
erful description for interacting bosons trapped in a set
of confining potential wells (sites). It can be experimen-
tally implemented in optical lattices [36, 37], and presents
rich phenomenology with a relatively small number of
parameters. The Bose-Hubbard Hamiltonian for spinless
bosons accounts for local boson-boson interactions and
nearest neighboring site tunnelling, and can be written
as:

Ĥ =
∑
i

{
U

2
ni(ni − 1)− µni

}
− t
∑
i,j

αijaia
†
j (1)

where i and j are indexes that run over the nodes
(sites) of the network, and the adjacency matrix αij is
such that αij = 1 if nodes i and j are connected and
αij = 0 otherwise. For this work, we consider undirected
graphs, meaning that the adjacency matrix is symmetric

(therefore, the h.c. of aia
†
j is present on the sum by ex-

changing indexes). The operators a†i and ai are respec-
tively the creator and annihilator of spinless bosons at

site i, and ni = a†iai is the number operator for bosons
at that site. The on-site boson-boson interactions are
represented by parameter U , and the hopping between
nearest neighboring ha amplitude given by parameter t.
The system can accept particles from or reject particles
to a reservoir, depending on the chemical potential µ.

At zero-temperature, and in the limit of no interac-
tion (U � t, µ), the bosons move independently over the
network, and the system presents a superfluid behavior.
On the other hand, for the limit of strong interactions
or weak hopping (U, µ � t), the Hamiltonian is diag-
onal on the particle number basis, and the bosons are
uniformly distributed over the sites in order to minimize
the energy, forming a Mott insulator. Using a mean-
field approach, we are able to study the model for inter-
mediate values of the parameters, and therefore capture
the transition between the Mott insulator and superfluid
phase. Moreover, the mean-field approach allows for eas-
ily studying the Bose-Hubbard model for more general

connection patterns than the regular lattice, such as a
complex network.

We follow the standard mean-field approach used for
the Bose-Hubbard model [38–40], generalizing it for an
arbitrary connection pattern (adjacency matrix αij). In
this mean-field approximation, the hopping term can be
site-decoupled by making:

a†iaj ≈ 〈a†i 〉aj + 〈aj〉a†i − 〈a
†
i 〉〈aj〉

≈ ψ∗i aj + ψja
†
i − ψ

∗
i ψj (2)

Where ψi = 〈ai〉 and ψ∗i = 〈a†i 〉. ψi is the superfluid
parameter for site i, which we shall often refer as field.
Despite, in principle, the field ψi is complex, we can cap-
ture the desired phenomenology by assuming it is a real
variable, i.e., ψ∗i = ψi, ∀i = 1, 2, ..., N - an assumption
that simplifies the numerical analysis.

Under the mean-field assumption (eq. 2), the total
Hamiltonian is decoupled in single-site non-interacting
components plus an overall term, with both depending on
the field {ψi}. The order parameter can be determined
self-consistently by minimizing the free energy, which for
T = 0 is the lowest eigenvalue of the Hamiltonian.

The mathematical procedure, however, is slightly dif-
ferent if we consider a fixed network of contacts (quenched
case) or a dynamical pattern, in which contacts evolve at
random in time (annealed case). We now present the
development of the mean-field equations for each case,
with particular attention to scale-free networks, in which
the heterogeneity of the contacts given by a power-law
degree distribution P (k) ∝ k−α plays an important role
on the criticality of the model.

III. ANNEALED COMPLEX NETWORKS

An annealed network is a time-evolving population in
which the contacts between nodes are randomly created
and annihilated over time, in such a way that the ex-
pected degree (number of contacts) of each node is pre-
served during the evolution.

The annealed network approximation is a simple and
very useful tool to study dynamical processes in complex
networks [28], and was used to understand the role of
complexity in the Ising model [17], the percolation pro-
cess [26], and epidemic spreading models [12]. It consists
into replacing the static (quenched) network of connec-
tions by the time-average of a an annealed network, in
which the expected degrees of each node are the same
as the static version. In spite of correctly predicting the
critical behavior of some dynamical processes in static
networks, the annealed network approximation can lead
to some qualitatively different results. Therefore, for
this work, we consider the annealed and quenched cases
strictly as different models with their own particular as-
pects.
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An annealed network can be modeled by the following
procedure: for each node i = 1, 2, ..., N , we first select a
random value θi from a distribution p(θ) (once selected,
each value remains the same for the rest of the process).
We then connect each pair of nodes (i, j) with probabil-
ity:

pij =
θiθj
〈θ〉N

(3)

Where:

〈θ〉 =
1

N

N∑
i=1

θi (4)

Is the average of θi over the nodes. Each execution of
this process results in a fixed network with degree distri-
bution approximately p(k) (the same as the θi variables).
Consider the ensemble of all possible executions. The an-
nealed network is then constructed by randomly picking
samples of this ensemble of networks over time. There-
fore, the time average of the annealed network is simply
the average over the ensemble. For instance, the degree
ki of node i is a Poisson random variable centered around
the expected value k̄i = θi, where the bar indicates the
average over time.

In order to obtain an analytical expression for the
Bose-Hubbard model in annealed networks, we consider
that the time evolution of the network is faster than the
typical time scale of the physical model. In this scenario,
we can replace the adjacency matrix elements αij in the
Bose-Hubbard Hamiltonian (eq. 1) by the probabilities
pij that each pair of nodes is connected, given by eq. 3.
Including also the mean-field assumption from eq. 2, the
hopping term becomes:

−t
∑
i,j

αijaia
†
j ≈− t

∑
i,j

[
θiθj
〈θ〉N

(
ψiaj + ψja

†
i − ψiψj

)]

≈− t

〈θ〉N

[∑
i

a†iθi
∑
j

ψjθj+

+
∑
j

ajθj
∑
i

ψiθj −
∑
i

ψiθi
∑
j

ψjθj

]
≈− tγ

∑
i

θi(a
†
i + ai) + t〈θ〉Nγ2 (5)

Where we defined the global order parameter as:

γ =
1

〈θ〉N
∑
i

ψiθi (6)

Therefore, the mean-field Hamiltonian is site-
decoupled as:

HMF =
∑
i

Hi + t〈θ〉Nγ2 (7)

With the single-site Hamiltonian defined as:

Hi =
U

2
ni(ni − 1)− µni − tγθi(ai + a†i ) (8)

For a given distribution p(θ), the Hamiltonian is a
function of γ, which must be determined by minimiz-
ing the fundamental energy. As mentioned, we focus on
scale-free networks, for which the degree distribution is
a power-law:

p(θ) = Aθ−α, α > 0 (9)

Where A is the convenient normalization constant.
Numerical methods can be used to find the fundamental
state and the zero-temperature value of the order param-
eter γ as a function of t, µ and U .

A. Numerical solution of the annealed mean-field
model

Knowing the distribution θi, the mean-field Hamilto-
nian HMF is a function of a single scalar variable, the or-
der parameter γ. The zero-temperature value of γ is that
for which the fundamental state energy (i.e., the lowest
eigenvalue of HMF ) is minimal. For a given γ, the lowest
eigenvalue of HMF is the sum of the lowest eigenvalues
of Hi for each site i plus the constant 〈θ〉Nγ2.

Notice that the single-site Hamiltonian is, in the bo-
son number basis {|n〉}, an infinite symmetric tridiago-
nal matrix, whose main diagonal elements are 〈n|Hi|n〉 =
Un(n− 1)/2 and the off-diagonal elements are 〈n|Hi|n−
1〉 = 〈n− 1|Hi|n〉 = −tγθi

√
n, all the other elements be-

ing zero. As the diagonal elements increase faster with
n than the off-diagonal ones, we expect that high-n ele-
ments should not contribute to the lowest eigenvalue of
Hi. Physically, this is equivalent to affirm that high occu-
pation number states do not contribute to the fundamen-
tal eigenstate. We can, therefore, truncate the matrix at
a sufficient order nmax and use numerical diagonalization
to find the lowest eigenvalue of each site (and thus of the
whole system) as a function of γ. Finally, a scalar min-
imization procedure can be used to find the value of γ
that minimizes the fundamental state energy.

By repeating this procedure for different values of t/U
and µ/U (the Hamiltonian is scalable by U), we can con-
struct a phase diagram for the superfluid order parameter
γ. Figure 1 shows the numerically determined value of γ,
exhibiting the quantum phase transition between a Mott
insulating phase (γ = 0) and a superfluid phase (γ 6= 0).
For the numerical diagonalization of Hi, the matrix is
truncated at nmax = 100, which we verified to be far
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FIG. 1. Global order parameter γ as a function of the relative
hopping t/U and chemical potential µ/U , for a scale-free dis-
tribution of N = 1000 sites with power-law exponent α = 2.5.
The dashed line is the transition curve between the Mott in-
sulator (γ = 0) and the superfluid (γ 6= 0) phase, as predicted
by eq. 17.

above the limit at which the results do not change with
nmax.

Figure 1 shows the first two of the so called Mott
lobes [40], inside which the number of particles per site
is a well-defined quantum number. The dashed lines
are the edges of the Mott lobes, defined by the super-
fluid/insulator phase transition. A precise expression for
the mean-field critical curve can be found using pertur-
bation theory.

B. Analytical expression for the
insulator/superfluid phase transition

Close to the phase transition, we expect that the value
of the order parameter γ is either zero or very small.
Therefore, one can analyze the site-Hamiltonian (eq. 8)
perturbatively with respect to tγθi.[41]

Rewriting eq. 8 as:

Hi = H
(0)
i − γVi (10)

Where:

H
(0)
i =

U

2
ni(ni − 1)− µni (11)

Vi = tθi(ai + a†i ) (12)

The unperturbed Hamiltonian (eq. 11) corresponds
to the so called atomic limit of the Bose-Hubbard
model [42], which is diagonal in the occupation num-
ber basis {|ni〉} and has eigenvalues given by E(0)(n) =

(U/2)n(n− 1)− µn. The eigenstate of H
(0)
i with lowest

eigenvalue is |n∗〉, where n∗ = dµ/Ue (the lowest integer
greater or equal to µ/U) if µ > 0 and n∗ = 0 if µ < 0.

The first order correction from the perturbation Vi is
zero, because it does not preserve particle number. The
second order correction is then:

E
(2)
i =γ2

∑
n 6=n∗

|〈n|Vi|n∗〉|2

E(0)(n∗)− E(0)(n)

=γ2t2θ2i

(
n∗

U(n∗ − 1)− µ
+

n∗ + 1

µ− Un∗

)
(13)

Using that n∗ = dµ/Ue for µ > 0, define the functions:

f(x) =
1

2
dxebxc − xdxe (14)

g(x) =
dxe

x− bxc
+
dxe+ 1

dxe − x
=

x+ 1

(bxc − x)(x− dxe)
(15)

Then the system ground state energy can be written,
up to second order, as:

EGS =
∑
i

{
Uf
( µ
U

)
− γ2t2θ2i

U
g
( µ
U

)}
+ γ2tN〈θ〉

=N

{
Uf
( µ
U

)
+ γ2

[
−t2〈θ2〉
U

g
( µ
U

)
+ t〈θ〉

]}
(16)

The mass term (the coefficient that multiplies γ2 in eq.
16) defines the stability of the γ = 0 solution. Making
the mass term equal to zero defines the quantum phase
transition. For the hopping term, this condition can be
written as:

tc =
U

g(µ/U)

〈θ〉
〈θ2〉

(17)

If t > tc, the system is a superfluid, whereas t < tc
defines the Mott insulator phase. In figure 1, the dashed
line represents the phase transition curve, calculated by
eq. 17 and using 〈θ〉/〈θ2〉 from the power-law distribu-
tion. The analytical expression for the critical curve is in
good agreement with the numerical results.

A remarkable fact for scale-free networks (whose de-
gree distribution satisfy eq. 9) is that, for large popu-
lation sizes N and assuming that the maximum degree
scales with N (i.e, max {θi} ∼ N), the second moment
〈θ2〉 diverges for any power-law exponent α that satis-
fies α ≤ 3. In particular, the quantity 〈θ〉/〈θ2〉 (which
is the inverse of the so called complexity of the network
[2]) scales as ∼ N−1 for 0 < α ≤ 2, as ∼ N−(3−α) for
2 < α < 3 and as ∼ 1/ lnN for α = 3. Therefore, for such
networks, the critical hopping term tc becomes smaller as
N increases, going to zero at the thermodynamic limit,
meaning that no Mott insulator can be observed in such



5

0.00 0.01 0.02 0.03 0.04 0.05
t/U

0.00

0.05

0.10

0.15

0.20

0.25
γ

N= 101

N= 102

N= 103

N= 104

N= 105

(a)α = 2.5

0.02 0.03 0.04 0.05 0.06 0.07 0.08
t/U

0.00

0.05

0.10

0.15

0.20

0.25

γ

N= 101

N= 102

N= 103

N= 104

N= 105

(b)α = 3.2

FIG. 2. Global order parameter γ as a function of the rela-
tive hopping term t/U , for different population sizes N . In
figure (a), the critical point goes asymptotically to zero as N
increases, because the power-law exponent is α = 2.5 < 3. In
figure (b), for which α = 3.2 > 3, the critical point remanis
finite. The black arrows indicate the values of tc as predicted
by eq. 17. All numerical results use nmax = 100.

a condition. This result is strongly analogous to that
for epidemic spreading in scale-free networks, for which
the critical point of an epidemic outbreak is also propor-
tional to the inverse of the complexity, meaning that no
healthy phase is observed at the thermodynamic limit
[12, 43]. Further discussion about the meaning of this
curious result is given in section V.

This effect can be observed in our model by compar-
ing the quantum critical point for annealed networks with
same exponent α and increasing population size N . Fig-
ure 2 shows the phase diagram for fixed µ and U , showing
the order parameter as a function of the hopping energy
t. The curves are plotted for different population sizes
from 10 to 104 and for two values of the power-law ex-
ponent α. Notice that, for α = 2.5, the critical point
goes to zero as N increases, whereas it approaches a fi-
nite value for α = 3.2. The analytical prediction from
eq. 17 is indicated by the black arrows, for comparison
with numerical data.

Annealed networks provides us a simple framework to
capture the essential influence of a heterogeneous contact
structure in our model. However, greater complexity is
considered by studying the model in static (quenched)
networks, which may present many other features and
correlations that were rejected in the annealed model.
Moreover, with a static network formalism, one can re-
cover the individual site information of the field ψ, which
was lost in the annealed approximation and replaced by
the global order parameter γ.

IV. QUENCHED COMPLEX NETWORKS

We refer as quenched a network whose connections are
static over time. A quenched theory over a network must
consider its whole contact structure. Therefore, along
this section, we do not replace the adjacency matrix el-
ements by an average value or probability as done in
section III.

One can still simplify the Bose-Hubbard Hamiltonian
using the mean-field approximation from eq. 2, with the
following procedure:

−t
∑
i,j

αijaia
†
j ≈− t

∑
i,j

[
αij

(
ψiaj + ψja

†
i − ψiψj

)]
≈− t

[∑
i

a†i
∑
j

αijψj+

+
∑
j

aj
∑
i

αijψi −
∑
i

ψi
∑
j

αijψj

]
≈− t

∑
i

ϕi(a
†
i + ai) + t

∑
i

ϕiψi (18)

Where we used the symmetry of the adjacency matrix
to flip the indexes i, j in one of the terms, and defined
the sum of the field ψi over the neighbors of site i (rep-
resented as ℵ(i)) as:

ϕi =
∑
j

αijψj =
∑
j∈ℵ(i)

ψj (19)

The Hamiltonian is then decoupled in single site terms:

H =
∑
i

Hi,

Hi =
U

2
ni(ni−1)− µni − tϕi(a†i + ai) + ϕiψi (20)

Which can be numerically diagonalized as a function
of each value of ϕi with the same procedure explained in
section III A.

A. Numerical solution for the quenched network
case

For the case of annealed networks, we have reduced the
problem of finding the correct mean-field parameters to
a scalar minimization problem, i.e., minimizing the total
Hamiltonian of eq.7 with respect to the global order pa-
rameter γ, getting rid of all the local information ψi. For
the quenched case, each single-site Hamiltonian Hi de-
pends on the value of the local (ψi) and neighboring (φi)
fields. A drawback is that the total ground state energy
(given by the sum over each local ground state energy)
is not bounded by below, meaning that a minimization
process would fail to determine the correct ψi values.
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Therefore, in this case, we must use a self-consistency
rule to solve the mean-field problem. Such rule is ob-
tained from the definition of the mean-field ψi = 〈ai〉
(recall eq. 2). For zero temperature, the average 〈ai〉 =
〈GS|ai|GS〉 is the expected value of the operator in the
system’s ground state. As the global Hamiltonian is site-
decoupled, one can write the total system ground state
as:

|GS〉 = |u1〉 ⊗ |u2〉 ⊗ ...⊗ |uN 〉 (21)

Where |ui〉 is the fundamental eigenstate of Hi, i.e.,
such that Hi|ui〉 = ε0i |ui〉 and ε0i is the lowest eigenvalue.
We can expand |ui〉 in the basis of occupation number
states {|n〉}:

|ui〉 =

∞∑
n=0

βni |n〉, βni = 〈n|ui〉 (22)

Where we removed the site index i from the boson
number states |n〉 to avoid loading the notation. The
field ψi can now be written in terms of the coefficients
βni :

ψi = 〈ui|ai|ui〉 =

∞∑
n=0

β̄ni β
n+1
i

√
n+ 1 (23)

As explained in section III A, one can truncate the
Hamiltonian Hi up to n = nmax and numerically de-
termine the lowest eigenvalue ε0i and its eigenvector |ui〉.
The normalized coefficients of |ui〉 then give us the val-
ues of βni , for n = 0, 1, ..., nmax. Notice, however, that
Hi depends on the neighboring field ϕi =

∑
j αijψj , and

so do the βni coefficients. Therefore, eq. 23 is a (non-
linear) self-consistency relation for the field ψi. Starting
from an initial set of values, one can use this equation
to iteratively find the physical solution of the system by
the fixed-point method (i.e., calculating the RHS with
the current ψ values and updating them with the results
until the values stop changing).

Once the physical solution is found, the global order
parameter γ can be calculated by eq. 6, replacing θi and
〈θ〉 respectively by the site degree ki and its average 〈k〉
over the network, thus γ = 1/(N〈k〉)

∑
i kiθi. Figure 3

shows the phase diagram for a quenched scale-free net-
work with N = 1000 sites, minimum degree kmin = 4 and
power-law exponent γ = 2.5. The network is generated
by the configuration model [1], by which random con-
nections are established according to a predefined degree
sequence.

The iterative version of eq. 23 defines a discrete dy-
namical process. The stability of the trivial solution
ψi = 0, i = 1, 2, ..., N can be determined by pertur-
bation theory over Hi, which provides the boundary of
the Mott insulator phase in the quenched model.
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FIG. 3. Phase diagram of the global order parameter γ as a
function of the relative hopping t/U and chemical potential
µ/U , for a scale-free quenched network of N = 1000 sites,
minimum degree kmin = 4 and power-law exponent α = 2.5.
The dashed line is the transition between the Mott insulator
(γ = 0) and the superfluid (γ 6= 0) phase, according to the
quenched model prediction (eq. 31).

B. Quenched critical point by perturbation theory

Assuming that the neighboring field ϕi is small for ev-
ery site i, we write the single-site Hamiltonian as an un-
perturbed term plus a perturbation proportional to ϕi:

Hi = H
(0)
i + Vi + tϕiψi (24)

H
(0)
i =

U

2
n̂(n̂− 1)− µn̂ (25)

Vi = −tϕ(â+ â†) (26)

Where in RHS of eqs. 25 and 26 we dropped the site
index i to simplify the notation for the next equations
(thus n̂ = ni, ϕ = ϕi and â = ai). As in the annealed
case, the first order energy correction of Hi vanishes, be-
cause the perturbation Vi does not preserve the particle
number. However, the eigenstates have a finite correc-
tion at the first order, whereas it can be shown that the
second order correction is null. In particular, for the fun-
damental state eigenvector |u〉 (originally |ui〉), the first
order correction is [44]:

|u〉 ≈ |n∗〉+ |u(1)〉

|u(1)〉 =−
∑
n 6=n∗

〈n| − tϕ(â+ â†)|n∗〉
E(0)(n)− E(0)(n∗)

|n〉 (27)

Where, as defined in section III B, E(0)(n) =
(U/2)n(n − 1) − µn, n∗ = 0 if µ < 0 and n∗ = dµ/Ue if
µ > 0, thus |n∗〉 is the unperturbed fundamental state.
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The only non-vanishing terms in summation from eq. 27
are those for which n = n∗ ± 1, yielding:

|u(1)〉 = tϕ

[ √
n∗ |n∗ − 1〉

U(n∗ − 1)− µ
+

√
n∗ + 1 |n∗ + 1〉
µ− Un∗

]
(28)

We can now use the first order correction of |u〉 to
expand the average 〈â〉, which is used to calculate ψi by
iteration:

〈u|â|u〉 ≈ tϕ
[

n∗

U(n∗ − 1)− µ
+

n∗ + 1

µ− Un∗

]
=
tϕ

U
g
( µ
U

)
(29)

Where we used the definition of g(x) from eq. 15.
Therefore, for small ϕi (putting back the omitted site
index i), the self-consistency rule (eq. 23) for the field ψi
becomes:

ψi ≈
tg(µ/U)

U
ϕi =

tg(µ/U)

U

∑
j

αijψj (30)

This is the linear expansion of the dynamical process
defined by iterating eq. 23. The stability condition of the
trivial solution ψi = 0∀i is that all eigenvalues of the Ja-
cobian of the map (which is given by the matrix elements
t g(µ/U)αij/U) are less than 1. Therefore, denoting by
Λ the maximal eigenvalue of the adjacency matrix αij ,
the Mott insulator phase is stable if:

t g(µ/U)

U
Λ < 1 =⇒ tc =

U

g(µ/U)

1

Λ
(31)

For a network with power-law degree distribution
P (k) ∝ k−α, the large-N scaling of the maximal eigen-
value Λ of the adjacency matrix was determined by
Chung et al. [45], for a very general class of graphs,
to be:

Λ ∼ max

[√
kmax,

〈k2〉
〈k〉

]
(32)

Independently of the convergence of the second mo-
ment 〈k2〉, Λ increases with kmax. Therefore, the critical
hopping term tc vanishes at the thermodynamic limit,
provided that for N → ∞ the maximal degree kmax
scales with some positive power of N . This is indepen-
dent of the power-law exponent α. For α > 3, then, the
quenched and annealed cases diverge from one another,
as the annealed model predicts a finite non-null critical
point. In the context of epidemic models, such diver-
gence between the two formulations was already widely
discussed [46–48], and its physical origin is related to the
role of the hubs (most connected sites) and k-cores [49]
(low-connected populations of nodes) into triggering ac-
tivity on the network [50].

Although the study of the global order parameter γ
and the critical point tc provides some understanding
on how the heterogeneity of contacts affects the Bose-
Hubbard model, more knowledge can be extracted by
analyzing the local field ψi.

C. Local field analysis: eigenvector centrality

In the science of complex networks, there is a wide
variety of metrics that reduce the complicated informa-
tion of the network structure into some scalar measures,
which try to capture fundamental aspects both in local
and global scale [1, 3]. One of the most important class
of such measures is the set of centrality metrics, which
attempt to classify the importance of each node (site)
in the network. The notion of importance of a node is
specific from each centrality metric.

Numerical solution of eq. 23 provides the value of ψi
for each site i = 1, 2, ..., N . One should expect that more
“important” sites may have greater values of ψi than less
“important” ones. This can be verified by comparing
each value of ψi with some centrality metric of the node
i, and then verify if there is a good correlation.

The simplest centrality measure is the degree ki itself,
i.e., the number of connections that site i has. Indeed,
nodes with many connections (hubs) are, in general, very
important for most dynamical processes in networks. For
this work, we also present the eigenvector centrality met-
ric [51]. The basic idea of this metric is that nodes which
are linked to other important nodes are also important.
In other words, the importance of a node is proportional
to the importance of its neighbors [1]. This intuitive idea
defines a recursive relation which can be expressed as
an eigenvalue equation with the adjacency matrix of the
network:

λxi =
∑
j

αijxj (33)

Motivated by this, the eigenvector centrality of a node i
is defined as the corresponding entry xi of the eigenvector
x with highest eigenvalue λ = Λ (preferably, x should be
normalized).

Recall that, when deducing the critical point of the
quenched model, we wrote the linearized version of the
update rule, eq. 30, which is precisely an eigenvalue equa-
tion for the adjacency matrix. Therefore, when the sys-
tem is close to the phase transition, one should expect a
great correlation between the eigenvector centrality and
the value of the local field ψi. On the other hand, this
idea can also be used to detect the critical point when
simulating the model with different parameters.

In figures 4, 5 we show scatter plots of the local field
ψ versus the degree and eigenvector centralities, respec-
tively, for the same scale-free network used in figure 3.
From the upper to the lower plot, the hopping term is
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FIG. 4. Local field ψi and the degree ki of each node, for
a a) subcritical, b) critical and c) supercritical system, for
the Bose-Hubbard model in the same network used in figure
3. The chemical potential is µ/U = 0.2 in all plots, and the
critical point, according to eq. 31, is tc/U ≈ 0.01203 for this
network. The vertical axis is scaled, in each plot, for better
visualization of the data.

a) subcritical (t < tc), b) critical (t ≈ tc) and c) super-
critical (t > tc). We also show the Pearson’s correlation
coefficient for each set of values, denoted as r on the
plots. For the plots a) and b), the order parameter is
essentially null (ψi = 0,∀i), so the field values are un-
physical remainings of the numerical procedure (notice
the powers of ten above each plot). In the critical case
(plot b)), the correlation between ψi and the eigenvector
centrality xi is, up to the 4th decimal place of the Pear-
son’s coefficient, equals to 1. This is a consequence of eq.
30, which shows that the system can be approximated to
a linear dynamical process around the phase transition.
Therefore, close to the critical point, the eigenvector cen-
trality is the most precise centrality measure to describe
the site-specific activity, as the calculation of x1 and the
solution of eq. 23 represent essentially the same process.

We finally show the dependence of the correlation co-
efficient r (between the centrality measure and the local
field ψi) with the hopping term t when crossing the in-
sulator/superfluid phase transition. For both degree and
eigenvector centrality metrics, the behavior of the cor-
relation is singular at the phase transition (represented
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FIG. 5. Local field ψi and the eigenvector centrality xi of
each node, for a a) subcritical, b) critical and c) supercritical
system, for the Bose-Hubbard model in the same network
used in figure 3. Data is the same as in the previous figure.

by the dashed line), but the eigenvector centrality clearly
shows better correlation around the transition. However,
for largest values of the hopping term t, the degree over-
comes the eigenvector centrality and becomes more cor-
related to the local field. It is important to notice that, at
the left of the transition, the field is essentially zero, and
therefore the correlations at this region relate only with
the remainings of the numerical method. Yet, using cor-
relation between the local field and centrality measures is
a good method to numerically identify the phase transi-
tion between the Mott insulator phase and the superfluid
phase.

V. LIMITATIONS OF THE MEAN FIELD: BOSE
GLASS PHASE

The numerical calculations performed in this work are
inside the scope of the mean-field Bose-Hubbard model.
The analytical method that we used predicts exactly the
mean-field critical point (which however may differ from
the exact value of the model).

The mean-field approach neglects quantum fluctua-
tions around the expected values of the quantum opera-

tors ai and a†i . Due to this crude approximation, an im-
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FIG. 6. Pearson’s r coefficient between the local field ψi and
the degree (red) and eigenvector (blue) centrality measures,
as a function of the relative hopping term. The critical point,
as predicted by eq. 31, is shown as a dashed black line. The
chemical potential is µ/U = 0.2, and the network is the same
as used in figure 3.

portant phenomenon may be lost: the Bose glass phase,
described by Fisher et. al. [38], which occurs as an in-
termediate phase between the Mott insulator and the su-
perfluid phases (therefore, for intermediate values of the
hopping term t). It is characterized by the absence of gap
for adding or removing particles (which is a characteris-
tics of a superfluid), but a zero global order parameter
(which is characteristic from the Mott insulator phase).
The system has diverging superfluid susceptibility but fi-
nite compressibility [38]. The Bose glass is considered a
Griffiths phase, in analogy to a similar result with the
ferromagnetic Ising model obtained by Griffiths [52] in
1969.

In regular lattices, the Bose glass phase appears when
random disorder is introduced on the model (for example,
at the chemical potential). It would also be expected to
appear for complex networks, which naturally presents
disorder by the heterogeneity of contacts between sites.
However, further study would be necessary to prove this
from our model.

An important consequence lies at our claim that the
model critical point vanishes for scale-free networks in
the thermodynamic limit. We can speculate that the in-
homogeneous topology of a complex network produces
a Bose glass phase, and that the phase transition that
we were able to predict is actually between the Mott
insulator and the Bose glass phase. We also speculate
that the critical point between the Bose glass and su-
perfluid phases actually remains finite (non-vanishing)
at the thermodynamic limit. Indeed, in Fisher’s work, it
is shown that, if the disorder in the chemical potential is
sufficiently high (or unbound), the Mott insulator phase
disappears, yet the Bose glass persists. Our claim is also
based on recent works with the contact process [53] and
epidemic models [54–56], which show that both quenched

and annealed mean-field theories can predict the “dirty”
transition, but not the existence of a Griffiths phase, in
which there is activity localized around the hubs. Com-
putational evidence suggest that the transition between
the Griffiths and the global active phase remains finite
at the thermodynamic limit [56]. For the Bose-Hubbard
model in complex networks, however, further work is de-
manded to test our proposals.

VI. CONCLUSIONS

We have studied the Bose-Hubbard model under mean-
field hypothesis, for sites that connect to each other as a
complex network structure. The mean-field assumption
decouples the Hamiltonian in independent components
for each site, allowing analytical and numerical treatment
even in the lack of translational symmetry present in the
complex network. For the annealed network case, we can
find the global superfluid order parameter γ by minimiz-
ing the total energy with respect to it. For the quenched
case, we find the local field parameter ψi for each site i
by numerically solving the restriction rule imposed by eq.
23. In both cases, we use our numerical solution to trace
the t versus µ phase diagram for the global order param-
eter. Using perturbation theory (which becomes exact in
the critical point), we can analytically calculate the phase
transition curve for both quenched and annealed formu-
lations, which show good agreement with the numerical
data.

The mean-field approach predict some dramatic con-
sequences for the networks with diverging second degree
moment 〈k2〉 or maximal degree kmax in the thermody-
namic limit, as already observed for several other mod-
els. However, as discussed, we must be careful at the
interpretation of our results, as we did not consider the
existence of a Bose glass phase during our analysis. Yet,
the inexistence of the Mott insulator phase (giving place
to the Bose glass) in scale-free topology may be physical,
although further study should be done on the subject.
This may have relevant consequences, allowing, for ex-
ample, the production of a Bose glass in networks with
low tunnelling amplitudes. The recent development of
engineered optical potentials opens the possibility of ex-
perimental realization of complex topologies for bosons,
and consequently the application of our findings.
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