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In this work we are going to introduce the concepts about quantum �uids of light , starting from
what are the characteristics of the system in which �uids of light are studied and know a set o
new quasiparticles as exciton and polaritons. Also, we are going to show how are trapped this
particles in a microcavity, generating a con�ning potential for photons and quasi-particles. We are
going to show two experiments in which are reached Bose-Einstein condensate of light showing the
characteristic of their super�uid properties
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I. INTRODUCTION

One of the most striking quantum e�ects in an in-
teracting Bose gas at low temperature is super�uidity.
First observed in liquid 4He[1, 6], this phenomenon has
been intensively studied in a variety of systems for its
remarkable features such as the persistence of super�ows
and the proliferation of quantized vortices. The achieve-
ment of Bose�Einstein condensation in dilute atomic
gases provided the opportunity to observe and study
super�uidity in an extremely clean and wellcontrolled
environment[2, 5]. In the solid state, Bose�Einstein con-
densation of exciton polaritons now allows to plan for
the observation of similar phenomenology[3, 7]. Po-
laritons are interacting light�matter quasiparticles that
occur naturally in semiconductor microcavities in the
strong coupling regime and constitute an interesting ex-
ample of composite bosons. Historically, the area of
quantum �uids of light research (theoretical and exper-
imental) deals with massive material particules (atoms,
electrons). However, we know since the early days of
quantum mechanics, that photons in a box can be in-
terpreted as a massless Bose gas of non-interacting par-
ticules. This fruitful interpretation leads for example to
the correct black-body radiation spectrum. Recently, it
has been realized that under suitable circumstances pho-
tons can acquire an e�ective mass and will behave as a
quantum �uid of light with photon-photon interactions.

II. FUNDAMENTAL CONCEPTS

An optical cavity is an arrangement of mirrors that
form a standing wave for light waves. Light con�ned
in the cavity re�ects multiple times producing standing
waves for certain resonant frequencies. The standing
wave patterns produced are called modes; longitudinal
modes di�er only in frequency while transverse modes
di�er for di�erent frequencies and have di�erent inten-
sity patterns across the cross section of the beam. The
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most common type of optical cavities consist of two mir-
rors that can be �at, named of planar cavities, or curved,
which are for example spherical cavities as show in �g-
ure 1. Depending of the mirrors geometry its possible
to obtain a cavity with di�erent properties, allowing the
control on the cavity modes or even provide a high qual-
ity factor for the cavity.

Figure 1. Examples of planar optical cavity and spherical
optical cavity.

A. The two-dimensional photon �eld

The planar cavity is invariant under plane translation,
but is better to use the wave vector k of the photons
inside the cavity. So, vector propagation k form an angle
θ respect to the normal vector of the planar cavity.
The free photons into the cavity can be described by

the Hamiltonian.

Hcav =

∫
d2k

(2π)
2

∑
σ

~ωcav(k)a†C,σ (k) aC,σ (k) , (1)

where aC,σ (k) and a†C,σ (k) destroy and create a cavity
photon C with polarization σ and in-plane wave vector k.
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ωcav (k) is the frequency for photons with mode k. Pho-
tons are Bosons that satisfy the commutation relations
rules:

[
aC,σ (k) , a†C,σ′ (k

′)
]

= (2π)
2
δ (k− k′) (2)

δσ,σ′ [aC,σ (k) , aC,σ′ (k
′)] = 0 (3)

Two -dimensional cavity photons �eld operator ΨC,σ

and Ψ†C,σ are de�ned through the Fourier transform of
creation and annihilation operators,

ΨC,σ (r) =

∫
d2k

(2π)
2 aC,σ (k) eik·r,

which also satisfy the Bose commutation rules.
The physical observable into the cavity is the electric

�eld, that could be expressed in term of the �eld opera-
tors by

E (r,z) =

∫
d2k

(2π)
2

∑
σ

eik·rEσ (k, z) aC,σ (k) + h.c

where the z dependence of the electric �eld depends of the
nature of the cavity mirrors. When they are separated
by a distance lz and are planar, which is the case, the
pro�le of the electric �eld along the z directions has the
typical pro�le for the lowest mode as follows,

Eσ (k, z) =

√
4π~ωcav
lzn20

sin

(
πz

lz

)
êσ,

where, n0 is the refractive index of the planar cavity
and êσ is the unit vectors in the polarization basis. The
e�ects of the polarization light when we consider modes
from k � 1 (small k limit) and di�erent from zero, be-
comes into the splitting of the transverse electric (TE)
and transverse magnetic (TM) linear polarization states,
which can be understood as for example the spin-orbit
interaction, in which the orbital term is the wave vector
k and the �spin� term correspond to polarization in the
basis σ±. If we go further, into the description of the
physics of free photons in a cavity, we are going to �nd
two extra terms in the Hamiltonian (1), that correspond
to the pumping and losses terms, leaving the discussion
to the input-output theory of optical cavities, which is
out of the scope of this work. Now we are focus on the
production of the interactions between photons and the
origin of the new set of quasi-particles as excitons and
polaritons.

B. Optical nonlinearities and e�ective

photon-photon interactions

In the previous section the physics was conduced by the
linear e�ects in the optical cavity but, when the cavity is

immersed in a sizable nonlinear material new phenomena
appears, as a consequence of the wave mixing processes
that coupling the modes of the cavity with the material
media.
For a large number of photons in the nonlinear media,

the interactions of photons due to the material can be
described by the form:

Hcav−cav =
1

2

1

(2π)
3

∫
d2kd2k′d2q

∑
σ,σ′

V cav−cavσ,σ′ (k,k′q)

×a†C,σ (k + q) a†C,σ′ (k
′ − q)

aC,σ′ (k
′) aC,σ (k) (4)

where V cav−cavσ,σ′ (k,k′q) is the photon-photon interac-

tion potential and the polarization σ and σ′ are in the
circular polarization basis, where the total momentum
is conserved. As the typical length scale of the electron
dynamics in typical bulk material media and in semi-
conductor heterostructures used for quantum �uid ef-
fects is much shorter than the optical wavelength along
the plane, the interaction potential V cav−cavσ,σ′ ;0 can

be approximated with its zero-momentum value V 0
σ,σ′

k = k′ = q =0: In real space, this corresponds to assum-
ing that photon-photon interaction occur via a local po-
tential,

Hcav−cav =

∫
d2r

V 0
σ,σ′

2
Ψ†C,σ (r) Ψ†C,σ′ (r) ΨC,σ′ (r) ΨC,σ (r)

As we shall see, this photon-photon interaction is medi-
ated by the excitation of pair particle-hole of the non-
linear material. In the simplest case when the photon
frequencies that are involved in the photon �uid dynam-
ics are very far away from electronic resonances in the
nonlinear optical material, the optical transitions are vir-
tual and the populations of the excited electronic states
remains negligible. On the other hand the strong limit
regime is achieved when the mode of the cavity is strongly
coupled to narrow transition in the optical medium, in
this case, the photon inherits the strong nonlinearity of
the matter excitation. To talk a little bit about the com-
position of the nonlinear media, we are going to consider
that a thin layer of a semiconductor that are parallel with
the cavity plane, in which are embedded one or more
quantum well (QW). The chemical composition of the
well is chose to have the botton of the conduction band
at a lower energy and the top of the valence band at a
higher energy than the surrounding material, thus pro-
ducing quantum con�nement of both electrons and holes.
The excitation in the optical material is composed for a
hole that has positive charge, and an electron interact-
ing through coulomb potential. This pair particle-hole is
treated as a quasiparticle named exciton.
In order to undertand how is the formation of an ex-

citon, we are going to consider a photon incoming into
the semiconductor exciting an electron from valence band
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to conduction band , creating a bounded pair particle-
hole. This new quasiparticle is hydrogenlike in which
the bound energy is less that the hydrogen atom bound
energy. To maximize the strong coupling of their elec-
tronic degrees of freedom, the layer with the quantum
well is placed in the antinodes of the cavity �eld, and
the cavity �eld ω0

cav is tuned in the vicinity of the
QW exciton frequency ωexc. The exciton frequency is
weakly dependent on the in-plane wave vector k, where
ωexc (k) ≈ ω0

exc+~k2/2mexc. The behavior of the exciton

is like bosonic particles that can be expressed in function
of the creation and annihilation operators, a (k)X,σ and

a (k)
†
X,σ, respectively.

The dynamic and the coupling with the cavity �eld can
be expressed with the Hamiltonian,

Hexc =

∫
d2k

(2π)
2

∑
σ

~{ωexc (k) a (k)
†
X,σ a (k)X,σ

+ΩR

[
a (k)

†
X,σ a (k)C,σ + a (k)

†
C,σ a (k)X,σ

]
}(5)

where the �rst term of the hamiltonian represent the
dynamics of the free excitons and the second term, the
coupling with photon cavities, when a cavity photon is
�absorbed� (destroyed) an exciton is created and vice-

versa. All of this with amplitude of the Rabi frequency Ωr
that couple the quantum well excitation and the cavity
photon electric �eld.
The total Hamiltonian of the system until now a combi-

nation of the free photon cavity and the exciton dynamics
which result into an e�ective Hamiltonian,

Hcav +Hexc =

∫
d2k

(2π)
2

∑
σ

(~ωcav(k)a†C,σ (k) aC,σ (k)

+~{ωexc (k) a (k)
†
X,σ a (k)X,σ

+ΩRa (k)
†
X,σ a (k)C,σ

+ΩRa (k)
†
C,σ a (k)X,σ}) (6)

which can be expressed in a diagonal form through the
bogoulivov transformations,

aC,σ (k) = uLPc (k) aLP,σ (k) + uUPc (k) aUP,σ (k)

aX,σ (k) = uLPx (k) aLP,σ (k) + uUPx (k) aUP,σ (k) ,

where uc and ux are the Hop�eld coe�cients that rep-
resents the excitonic and photonic weights in the new
system. If we replacing this into the hamiltonian 6 we
can obtain:

H0 =

∫
d2k

(2π)
2 {a

†
LP,σ (k) aLP,σ (k)

(
~ωcav

∣∣uLPc ∣∣2 + ~ωexc
∣∣uLPx ∣∣2 + ΩR

[(
uLPx

)∗
uLPc +

(
uLPc

)∗
uLPx

])
+ a†UP,σ (k) aUP,σ (k)

(
~ωcav

∣∣uUPc ∣∣2 + ~ωexc
∣∣uUPx ∣∣2 + ΩR

[(
uUPx

)∗
uUPc +

(
uLPc

)∗
uLPx

])
+NLT (7)

where NLT means nonlienar terms that depends

on a(LP,UP ),σ (k) aLP,σ (k) and a†LP,σ (k) a†LP,σ (k)This

Hamiltonian is diagonal in the new basis aLP (k) and
aUP (k) taking the coe�cients for the nonliear part equal
to zero. This leads to the simpli�ed Hamiltonian,

H0 =

∫
d2k

(2π)
2

∑
σ

[~ωLP,σ (k) a†LP,σ (k) aLP,σ (k)

+~ωUP,σ (k) a†UP,σ (k) aUP,σ (k)] (8)

where aLP,σ (k) and aUP,σ (k) are operators that make
diagonal the Hamiltonian resulting from the linear su-
perposition of exciton and cavity modes, the so-called
exciton polaritons. LP and UP refers to lower and up-
per polariton, and the dispersion ωLP and ωUP are given
by

ω(UP,LP ) (k) =
ωcav,σ (k) + ωexc,σ (k)

2

±

[
Ω2
R +

(
ωcav,σ (k)− ωexc (k)

2

)2
]1/2

.(9)

in which, the plus-minus terms correspond to the upper
polariton and lower polariton branch respectively and the
minimum di�erence between the two branches is depen-
dent of ΩR. In the �gure 2 we can see the the plot of
the dispersion energy for two branch as a function of
wave vector in z direction kz in a CdTe-based microcav-

ity. We can observe that for the strong coupling limit,
which mean in the limit for small k, both branches has
a minimum of energy. Close to the crossing point, both
polariton modes have approximately equal photon and

exciton content ,
∣∣uLPx,c ∣∣2 =

∣∣uUPx,c ∣∣2 ≈ 1/2, while farther
away the two polariton branches acquire a purely exci-
tonic or photonic character.
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Figure 2. Energy spectrum of polariton as a function of the
in-plane wavevector kz in a CdTe-based microcavity. Interac-
tion between exciton and photon modes, with parabolic dis-
persions (dashed curves), gives rise to lower and upper po-
lariton branches (solid curves) with dispersions featuring an
anticrossing typical of the strong coupling regime. The exci-
tation laser is at high energy and excites free carrier states of
the quantum well. Relaxation towards the exciton level and
the bottom of the lower polariton branch occurs by acoustic
and optical phonon interaction and polariton scattering. The
radiative recombination of polaritons results in the emission
of photons that can be used to probe their properties. Pho-
tons emitted at angle v correspond to polaritons of energy E
and in-plane wavevector kz = (E/~c) sin θ[7].

C. External potentials a�ecting the in-plane

motion of cavity excitation

The e�ective external potential that cavity photons
and excitons can see, can be expressed using the Hamil-
tonian

Hpot =

∫
d2r

∑
σ,σ′

[V cavσ,σ′ (r) Ψ†cav,σ (r) Ψcav,σ′ (r)

+V excσ,σ′ (r) Ψ†exc,σ (r) Ψexc,σ′ (r) (10)

provided the amplitudes of the potentials V cav and V exc

are much smaller that the rabi energy ~ΩR and for a suf-
�ciently smooth spatial variation, the resulting potential
acting on lower polaritons can be written as

V LPσ,σ′ (r) =
∣∣uLPc ∣∣2 V cavσ,σ′ (r) +

∣∣uLPx ∣∣2 V excσ,σ′ (r) (11)

In analogy with atomic gases, the potential can be at-
tractive or repulsive, even spin dependent, in order to
con�ne or spell the quasiparticles. We are going to see
in the next section that its possible to create a attrac-
tive potential for excitons applying a mechanical stress

in the nonlinear material sample [4]. Another way to
create and e�ective potential is, cavity layer with thick-
ness dependence, feature that allow obtain a full scan
of the exciton-photon detuning across the resonance on
a single microcavioty sample. Another way of con�ning
polaritons is to design a micropillar structure by etching
away all the layers forming the top mirror and the cav-
ity layer (and possibly also the lower mirror down to the
substrate): In this case, light is con�ned in the in-plane
directions by the large refractive index mismatch at the
air-semiconductor interface.

D. Polariton-Polariton Interaction

Once the polaritons feel the spatial potential they can
interact each other. As it is typically done in the many-
body physics, a common procedure is to describe the sys-
tem in terms of an e�ective model Hamiltonian that is
able to reproduce the interactions between excitons with-
out invoking their elementary constituents, this mean
that we are going to replace the coulomb interaction by
a simple two-body interaction potential for exciton, this
can be expressed in terms of the Hamiltonina

HXX =

∫
d2r
∑
σσ′

V XXσ,σ′

2
Ψ†X,σ (r) Ψ†X,σ′ (r) ΨX,σ′ (r) ΨX,σ (r)

(12)
where the spin indices σ, σ′ run over the circular po-
larization basis. Rotational invariance for a contact in-
teraction potential imposes that total exciton spin is
conserved[] and that V XXσ+,σ+ = V XXσ−,σ− = V XXT and

V XXσ+,σ− = V XXσ−,σ+ = V XXS . An estimation of the value

of V XX was made for in which V XXT = 6e2aB/ε where
ε is the dielectric constant of the material and aB is the
Bohr radius. This term is most important contribution
when the microcavity is excited by circularly polarized
light. In principle, exciton-exciton interaction can trans-
form a pair of σ± bright exciton into a pair of ±2 dark
excitons. While these processes are important in isolated
quantum wells, they no longer conserve energy in micro-
cavities: Because of the Rabi coupling between photons
and bright excitons, the dark spin ±2 excitons are at
much higher energy than the lower polariton branch and
can only play a role as nonresonant intermediate states of
high-order processes. An additional interaction channel
have to be considered when we consider the Pauli exclu-
sion principle for electrons and holes where is prohibited
that another exciton can be created at a distance shorter
than Bohr radius from an existing exciton with the same
spin. In this case and considering only the bright exci-
ton states, this can be modeled as an e�ective quartic
Hamiltonian term in the form
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Hsat =

∫
d2r
∑
σσ′

V satσ,σ′

2
Ψ†X,σ (r) Ψ†X,σ′ (r) ΨX,σ′ (r) ΨX,σ (r) ,

(13)
with a saturation potential V satσ,σ′ = δσ,σ′~ΩR/nsat. The

exact value of the saturation density is nsat = 1/a2B with
depends on the speci�c shape of the internal wave func-
tion of the exciton. Depending on the cavity the satura-
tion potential is smaller than the exciton-exciton contri-
bution.
In relevant experimental condition only its important

to consider the bottom of the lower branch, in which the
approximation is parabolic. The hamiltonian 13 and 12
can be rewritten in terms on the polaritons operators
considering only the lower branch as follows,

HLP−LP =

∫
d2r
∑
σσ′

V LP−LPσ,σ′

2
Ψ†LP,σ (r) Ψ†LP,σ′ (r) LP,σ′

×ΨLP,σ′ (r) ΨLP,σ (r)

with

V LP−LPσ,σ′ =
∣∣uLPx ∣∣4 V XXσ,σ′ + 2

∣∣uLPx ∣∣2 uLPx uLPc V satσ,σ′ .

In the next section we shall see the experimental re-
alization of exciton-polaritons and photons, and under-
stant how the external potential are created and how
the light interact we the quase-particles to reach Bose-
Einstein condensation.

III. EXPERIMENTS

In order to show the experimental results of the photon
�uids we are to show two di�erent experiments, the �rst
one is about Bose-Einstein Condensate of Microcavity
polaritons in a Trap, and Bose Einstein condensation of
photons in a microcavity both development by the group
or Martin Weitz.

A. Bose-Einstein Condensate of Microcavity

Polaritons in a Trap

In this experiment is reported the demonstration of
a spatial trap for polaritons in the plane of their mo-
tion. The geometry of the con�nement it approximately
parabolic at its minimum. polaritons are generated with
a focused laser far away from the center of the trap in
such way that polaritons can accumulated in the bottom
potential. Polaritons and embebed into a GaAs-based
microcavity which behavior is like a weakly intereacting
bose gas with extremely light mass, which implies very
high critical temperature for Bose coherent e�ects.

As we know, Cavity photons by themselves are essen-
tially noninteracting, but polaritons interact with each
other via short-range interaction due to their exciton
component. The laser beam has a incident angle of
θ = 17o and the sample was held in helium vapor at
temperature T = 4.2K. Polaritons decay into photons
that go out of the cavity which go out the cavity. The
in-plane component of the momentum must be conserved
in the conversion of polaritons to external photons, which
implies that the angle of emission of a detected photon
talk about the in-plane momentum of the polariton at the
moment of decay. By recording the spectrum of the emit-
ted light as a function of emission angle, it has a complete
measurement of the momentum and energy distribution
of the polaritons.
The potential of trap can be created in di�eten ways,

one of then as we mentioned before is appliying mechan-
ical estress in the sample with a pin, as we can see on the
top of the right side in �gure 3.

Figure 3. Color online Upper diagram: Geometry of the ex-
periment. Lower right: The structure of the microcavity.
Lower left: The e�ect of stress tuning.

A force is applied on the backside of the 150-µm-thick
substrate with a rounded-tip pin, with approximately 50
µm tip radius. with this, the stress shifts the exciton
states while the cavity photon energy is left essentially
unchanged. Directly under the stressor, the lower po-
lariton branch has an energy minimum, as is shown in
�gure 4. The shift of the exciton states with stress also
a�ects the coupling of the exciton states and cavity pho-
ton states. In the center of the trap, the cavity photon
states and the exciton states are strongly coupled; how-
ever, far from the center, the lowest polariton states are
almost purely photon-like. This means that the trap also
causes evaporative cooling, because the lifetime of the
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polaritons at high energy (far from the center) is shorter
than the lifetime of those at the energy minimum (in the
center). Of course, this e�ect will work only if the polari-
tons have di�usion lengths long enough to move through
the whole trap, where in this the experiment, in some
cases polaritons can move more than 50µm.

Figure 4. Di�erence of the external potential created by the
pin when it is acting on the quantum wells.

Figure 5. Momentum distribution of the polaritons as mea-
sured by angle-resolved photoluminescence intensity for four
di�erent powers. Angle-resolved spectra for (A) 0.05-mW
pump power (far below the threshold density), (B) 0.4-mW
pump power (just below the threshold), (C) 0.6-mW pump
power (at the threshold), and (D) 0.8-mW pump power (above
the threshold). The falsecolor scale is linear, with yellow and
black indicating high and low values, respectively.

One of the signature of Bose-Einstein condensates is
moment distribution of the particules, which can be mea-
sured for polaritons by resolvin the angular distribution

of photoemission as showed in �gure 5, for four di�er-
ent powers of the laser that creates excitons. The yellow
and black color represent high and low polariton density
respectively. Its possible to see the contraction of the
momentum distribution, increasing the density accumu-
lating polarons at the bottom of the lower branch. The
Bose-Einstein condensation appears when more polari-
ton are in the same phase in resonant with the cavity in
the minimum of the potential.

Figure 6. The black squares in A indicates total photolumi-
nescence intensity in the longitudinal direction of the in-plane
wave vector kz = 0. Red circles indicate full width at half
maximum (FWHM) of the emission spectrum at kz = 0. In
B part we have FWHM of the spatial pro�le of the photolu-
minescence collected for external angle of the excitation laser
of θ = 0 ± 5o from the center of the trap. and in C we have
that the energy of the upper and lower polariton branch do
not change for di�erent excitation power, meaning that the
system remains in the strong coupling regime.
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Signatures of the condensation of exciton-polaritons
are illustrated in �gure 6. The system is pumped with
an external laser in order to conserve the total number
of polaritons in the system. Polaritons in the vicinity of
trap emit �uorescence linearly with the total number of
the system, but the spectral emission of the emitted light
is wide due to the incoherent contribution of each polari-
ton. When the system reach a critical number of polari-
tons at certain critical power of excitation, the large of
the spectral emission drops sharply while the �uorescence
is rising, indicating that a consider number of polariton
make a phase transition in which all of them are in a
coherent phase.
Spatial contraction is also a telltale sign for condensa-

tion in a trap because the condensate seeks the ground
state of the system, which (in the case of a trapped gas)
is a compact state at the bottom of the trap. Below the
critical density, in the normal state, the size of the cloud
is determined by a steady-state balance of the pump-
ing by the exciting laser and thermal di�usion; above the
critical density, the size of the cloud is given by the size of
the ground state of the manyparticle system. If interac-
tions are neglected, the standard solution of a harmonic
oscillator gives a ground-state wave function with extent
a =

√
~/mω0. In the presence of particle-particle repul-

sion, the size of the ground state will expand (16), but its
size is still expected to be small as compared to the size
of the cloud of thermal particles. This is a major di�er-
ence between experiments with and without traps: In a
translationally invariant geometry, a super�uid will �ow
outward; whereas, in a trap, it will �ow inward. Over the
whole range of polariton density, the system remains in
the strong coupling regime, as evidenced by the relatively
small measured shifts of the lower and upper polariton
lines

B. Bose�Einstein condensation of photons in an

optical microcavity

In the previous section we saw the Bose-Einstein con-
densation of polaritons that is a quasi-particle conformed
for the coupling between and an exciton and a photon
cavity. The condensation is mainly formed when the �ma-
terial part� of the polariton go to the bottom of the lower
branch. Now in this article we are to show the formation
of the BEC of photons reached by the group of Martin
Weitz.
One of the amazing characteristics of photons is that

have a vanishing chemical potentia, meaning that their
number is not conserved when the temperature of the
photon gas is varied, at low temperatures, photons dis-
appear in the cavity walls instead of occupying the cavity
ground state.
The experiment con�nes photons in a curved mirror

optical micro-cavity resonator �lled with a dye solution,
in which photons are repeatedly absorbed and re-emitted
by the dye molecules, that are equivalent a �withe wall�

in comparison with a photon into a black-body system.
The small distance of 3.5 optical wavelengths between the
mirrors causes a large frequency spacing between adja-
cent longitudinal modes (the free spectral range is 7×1013

Hz), comparable with the spectral width of the dye, and
modi�es spontaneous emission. The photon dispersion
inside the cavity has a quadratic dependence with a cut-
o� frequency of 2π× 1014Hz, Thermal equilibrium of the
photon gas is achieved by absorption and re-emission pro-
cesses in the dye solution, which acts as heat bath and
equilibrates the transverse modal degrees of freedom of
the photon gas to the (rovibrational) temperature of the
dye molecules . The photon frequencies will accumulate
within a range kBT/~ (2π× 6.3× 1012) at room temper-
ature, above the low-frequency cut-o�.

Figure 7. BEC of photons setup.

The curvature of the mirrors induce a harmonic trap-
ping potential for photons with trap frequency of Ω =
c/
√
D0R/2 with D0 the mirror separation and R the ra-

dius of curvature. The system is formally equivalent to
an ideal gas of massive bosons having an e�ective mass
mph = ~ωcut−off/c2.
The system is formally equivalent an ideal gas o mas-

sive boson, in which the photons have an e�ective mass
of mph ≈ ~ωcut−off/c2 ≈ 6.7×10−36kg. that are moving
in the transverse mode of the cavity, harmonically con-
�ned with frequency ωcav = c/

√
D0R/2 ≈ 4.1× 1010Hz.

A harmonically trapped twodimensional ideal gas ex-
hibits BEC at �nite temperature, in contrast to the
two-dimensional homogeneous case.Wetherefore expect a
BEC when the photon wave packets spatially overlap at
low temperatures or high densities, that is, the phase
space density nλ2th exceeds a value near of unity. n is

the photon density and λth = h/
√

2πmphkBT ≈ 1.5µm
is the de Broglie wavelenght associated with the thermal
motion in the cavity plane. The system reach the super-
�uid state when the critical number of particles is given
by:

Nc =
π2

3

(
kBT

~Ω

)2

,

at room temperature the critical number is around Nc ≈
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77000 photons.
By pumping the dye with an external laser we add to a

reservoir of electronic excitations that exchanges particles
with the photon gas, in the sense of a grand-canonical
ensemble. The pumping is maintained throughout the
measurement to compensate for losses due to coupling
into uncon�ned optical modes, �nite quantum e�ciency
and mirror losses.
Spatial images of the photon gas below and slightly

above criticality are shown in �gure 8b. In either case
the lower energetic (yellow) photons are bound to the
trap centre while the higher energetic (green) photons
appear at the outer trap regions. Above the critical pho-
ton number a bright spot is visible in the trap centre
with a full width at halfmaximum (FWHM) diameter
of (14 ± 3)µm, indicating a macroscopically populated
TEM00-mode (expected diameter 12:2 µm).
Figure 8c shows normalized spatial intensity pro�les

along one axis for increasing pumping power near the
critical value. Interestingly, we observe that the mode
diameter enlarges with increasing condensate fraction, as
shown in �gure 8d. This e�ect is not expected for an
ideal gas of photons. In principle, this could be due to
a Kerr nonlinearity in the dye solution, but the most
straightforward explanation is a weak repulsive optical
self-interaction from thermal lensing in the dye.

Figure 8. Images of the spatial radiation distribution trans-
mitted through one cavity mirror both below (upper panel)
and above (lower panel) criticality, showing a macroscopically
occupied TEM00-mode for the latter case. c, d, Cut through
the centre of the intensity distribution for increasing optical
pump powers (c) and width of the condensate peak versus
condensate fraction, along with a theoretical model based on
the Gross�Pitaevskii equation with an interaction parameter
g̃ = 7× 10−4.

IV. CONCLUSIONS

As a conclusion of this work, we review the concepts
that lead in a general form to a quantum �uid of light,
starting from optical ressonator (cavity) system in which
photons are con�ned to be studied. Inside of this cavity
is put it on a nonlinear material, generally a semiconduc-
tor, composed by a �nite number of quantum wells that
trap the electron in two dimension. Electrons can be ex-
cited and release from the equilibrium state an create a
exciton, which is the pair particle-hole excited into the
quantum well. After a while, the exciton can decay en
generate a photon that can be set in resonance with the
cavity. We showed that this photon can be excite another
exciton, and the linear combination of the photon cav-
ity and the exciton form a polariton. Also we saw that
the photon-photon interaction is mediated by the exciton
and experimentally its posible to produce super�uid of
this systems. We had presented two type of experiments
in which are reached the Bose-Einstein condensation for
polaritons and photons.
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