
Problem set 2 - Many-body theory SFI7534

1. Weakly interacting Fermions. Consider a system of N interacting spin-1/2 fermions the Hamiltonian of
which is

H =
∑
i

p2
i

2m + g

2
∑
i 6=j

f (ri − rj) ,

where f(r) = f (r) parameterizes the interaction between the particles which are spin independent and depends
only on the distance between the particles. The constant g parameterizes the strength of the interactions.

(a) Write H in second quantization. (Hint: Recall that the field operator ψ (r) = (2π)−3/2 ´ dpeip·rap annihi-
lates a particle at position r and that |r〉 = ψ† (r) |0〉.)

(b) For f (r) = δ (r), compute the ground state energy up to first order in perturbation theory for g.
(c) Show that, unlike the Jellium model, the weak interacting regime corresponds to the low-density limit.

Why is that so?
(d) Show that the spin density operator

S (r) =
(
ψ†↑ ψ†↓

) σ

2

(
ψ↑
ψ↓

)
= 1

2
∑
α,β

ψ†α (r) σα,βψβ (r) ,

where σ = (σx, σy, σz) are the Pauli matrices, satisfies the SU(2) algebra
[
Sa (r) , Sb (r′)

]
=

iεabcS
c (r) δ (r− r′) , where εabc is the Levi-Civita tensor and the sum over the c index is implicit.

(e) Show that the total spin STot =
´

drS (r) commutes with H. Why is this expected?

2. Hubbard model I. Consider the Hubbard model given by

H = −t
∑
σ

∑
〈i,j〉

(
c†i,σcj,σ + h.c.

)
+ U

∑
i

ni,↑ni,↓,

where ni,σ = c†i,σci,σ.

(a) In the Heisenberg picture, obtain the equation of motion for ci,σ(t).
(b) Obtain the equation of motion for Aj,σ(t), where Aj,σ = ni,−σci,σ.
(c) Consider the following approximations

ni,−σ(t)cj,σ(t) ≈ 〈ni,−σ〉 cj,σ(t),

c†j,−σ(t)ci,−σ(t)ci,σ(t) ≈
〈
c†j,−σci,−σ

〉
ci,σ(t),

c†i,−σ(t)cj,−σ(t)ci,σ(t) ≈
〈
c†i,−σcj,−σ

〉
ci,σ(t),

where 〈· · · 〉 means the ground-state mean value. (Why are these mean values time independent?) Apply
these approximation on the equation of motion for Aj,σ(t) and show that it depends only on Aj,σ(t) and
ci,σ(t).

(d) Within these approximations, solve the equation of motion for ck,σ(ω). The corresponding frequencies are
associated to the system normal modes. The approximation used gives us two bands. Discuss on the nature
of these bands, investigate if and when there are gaps, etc. Make schematic diagrams and plots. Physically,
when this approximation is reasonable or not? Which aspects of your results do you expect to change in a
more sophisticate approximation?

3. Hubbard model II. Consider the attractive Hubbard model in the low-density limit, i.e., U < 0 and N � Ns,
where N is the total number of electrons and Ns is the number of sites. For simplicity, consider that N is even.
In the following, consider the strongly interacting limit −U � t.
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(a) The lowest energy sector is that in which a site is either completely empty or doubly occupied. How many
states are there in this sector?

(b) Let Bj = cj,↑cj,↓ be the electron pair annihilation operator. Show that [Bi, Bj ] = 0 and that
[
Bi, B

†
j

]
≈ δi,j .

Why the B operators are not exactly bosonic operators?
(c) Using perturbation theory in the lowest energy sector, obtain the effective Hamiltonian for the B operators

and interpret each term.
(d) Optional: Analyze the effective Hamiltonian obtained and conclude if the system is a metal, a insulator,

or something else. In which dimensions do you think your conclusion is valid?

4. Bose-Hubbard model. In cold atomic systems, it is possible to experimentally realize the Hubbard model for
bosons (often called Bose-Hubbard model) with two internal states (often called bosons with pseudospin-1/2).
In addition, the hopping amplitude depend on these internal states [see L.-M. Dual et al., Phys. Rev. Lett. 91,
090402 (2003)]. Consider the Hamiltonian

H = −
∑
〈i,j〉

∑
σ

tσ

(
b†i,σbj,σ + h.c.

)
+ 1

2U
∑
i

ni (ni − 1) ,

where bj,σ annihilates a boson at site j in the internal state σ (which is either ↑ or ↓ ), nj =
∑
σ b
†
j,σbj,σ, and

t↑ 6= t↓.

(a) Show that the effective spin Hamiltonian for the corresponding Mott insulator U � tσ (in the filling of one
boson per site) is (up to an irrelevant constant) the XXZ spin-1/2 model

Heff =
∑
〈i,j〉

[
Jx
(
Sxi S

x
j + Syi S

y
j

)
+ JzSzi S

z
j

]
,

where the exchange constants Jx,z are to be computed.
(b) Optional: What is the corresponding model for t↑ = t↓? Could this result be obtained based on the

symmetries of the Bose-Hubbard model? What is the physical interpretation of the sign of the coupling
constants? What is the symmetry of the model when t↑ 6= t↓?

5. Direct exchange. Consider the following term which was neglected in the Hubbard model:

HDE =
∑
i,j

∑
σ1,σ2

〈i, j |V (r1 − r2)| j, i〉 c†i,σ1
c†j,σ2

ci,σ2
cj,σ1

,

where

〈i, j |V | j, i〉 = e2
ˆ

dr1dr2
φ∗i (r1)φj(r1)φ∗j (r2)φi(r2)

|r1 − r2|
≡ JDE > 0

is the Coulombian exchange integral between orbital φi and φj .

(a) What is the physical process described by HDE?
(b) In the strong interaction limit U � |t| , JDE and at half-filling ni,↑ + ni,↓ = 1, show that HDE gives rise to

the ferromagnetic Heisenberg model.

6. Magnon interaction. Keeping up to quadratic terms in the bosonic operators of the Holstein-Primakoff
transformation in the Heisenberg ferromagnet, obtain the magnon interaction given by

Hint = 1
N

∑
p,k,q

V (p,k,q)a†p+qa
†
k−qakap.

Compute the scattering amplitude V (p,k,q) and discuss its behavior in the limit when the momentum of one
of the magnons vanishes.

7. Antiferromagnetic spin waves. Consider the spin-S antiferromagnetic Heisenberg model in a bipartite lattice
(a hypercubic one, if you wish). Consider also that its “vacuum” (ground state) is the Néel state in which all
spins of one sublattice is in the state |mz〉 = |+S〉 while all the spins in the other sublattice is in the “opposite”
state |mz〉 = |−S〉.
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(a) Let a†j be the Holstein-Primakoff operator creating an excitation on the vacuum of the “up” sublattice
at site j. Comparingt S± |mz〉 =

√
(S ∓mz) (S ±mz + 1) |mz ± 1〉 with a |n〉 =

√
n |n− 1〉 and a† |n〉 =√

n+ 1 |n+ 1〉, write the corresponding transformation between the spins and the aj bosons.

(b) Likewise, write the corresponding transformation between spins and the bj bosons, where b†j creates an
excitation at the jth site of the “down” sublattice.

(c) Using the above Holstein-Primakoff representations, write the antiferromagnetic Heisenberg model in terms
of these bosons up to quadratic order. What is the physical meaning of this approximation and when it is
expected to be better?

(d) Diagonalize the quadratic Hamiltonian and obtain the dispersion of the antiferromagnons. (Hint: use the
Bogoliubov transformation.) Expand for small k and compare with that of the ferromagnons.

(e) Obtain the energy correction to that of the classical Néel state. (It is not necessary to compute the integral.)
(f) Obtain the correction to the sublattices magnetization. (Again, it is not necessary to compute the integrals.)

Show that, for one spatial dimension d = 1, the correction is diverging, suggesting the lost of the validity
of the approximation. What else does this result suggest?

(g) Compute the low-temperature dependence of the heat capacity and of the staggered magnetization in d
spatial dimensions.

8. Show that the total spin ST =
∑N
i=1 Si commutes with the Heisenberg Hamiltonian. Thus, the ferromagnetic

order parameter (which is the total magnetization) is a conserved quantity. Show however that the operator asso-
ciated to the antiferromagnetic order parameter, the staggered magnetization operator MAF =

∑N
j=1 e

iQ·Rj Sj ,
with the ordering vector Q = (π, π, π) (for a cubic lattice), does not commute with the Heisenberg Hamiltonian
and thus, the AF order parameter is not a constant of motion. Nonetheless, in the AF phase, there is a sponta-
neous symmetry breaking and the staggered magnetization can be considered as a conserved quantity. This is
a subtle and important issue at the heart of the spontaneous-symmetry-breaking theory and requires a careful
analysis on how the thermodynamic limit is taken in the presence of a vanishing symmetry-breaking term. A
careful discussion (and one of the pioneering ones) can be found in P. W. Anderson, Phys. Rev. 86, 694 (1952).

9. Fermionization of a spin system. In one spatial dimension, there is an important transformation between
spinless fermions (cj) and spin-1/2 (Sj) operators known as the Jordan-Wigner transformation given by

Szj = nj −
1
2 ,

S+
j = eiπφjc†j ,

S−j = e−iπφjcj ,

where nj = c†jcj and φj =
∑
l<j nl.

(a) Given that the spin operators Sj obey the angular momentum algebra, show that the fermionic operators
obey the anti-commutation relations {ci, cj} = 0 and

{
ci, c

†
j

}
= δi,j . What is the importance of the string

operator (the exponential term)?
(b) What is the correspondence (physical interpretation) between the spins and the spinless fermions?
(c) Fermionize the spin-1/2 XXZ chain

H =
L−1∑
i=1

[
Jx
(
Sxi S

x
i+1 + Syi S

y
i+1
)

+ JzSzi S
z
i+1
]
,

and give an interpretation between each of the terms in the resulting Hamiltonian.
(d) Obtain the spectrum of the spin-1/2 XX chain (the Jz = 0 case) in the L→∞ limit.
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