
Problem set 3 - Many-body theory SFI7534

1. Peierls instability. Consider a model of one-dimensional array of coupled quantum Harmonic Oscillators given
by

H0 =
L∑
i=1

p2
i

2m + k

2 (Qi −Qi+1)2
.

(a) Compute the corresponding phonon spectrum.
(b) Now let us consider the model in which electrons hop around that lattice. Consider also that the hopping

constant depends on the distance between the ions. Therefore,

H = H0 − t
∑
i

[1 + α (Qi −Qi+1)]
(
c†i ci+1 + h.c.

)
,

where α is a small constant. For simplicity, disregard the spin degree of freedom [1], i.e., c†i (ci ) creates
(annihilates) spinless fermions at the ith site. This is the Su-Schrieffer-Heeger (SSH) model for the Poly-
acetylene. Obtain the electron-phonon coupling in terms of the creation and annihilation operators of
fermions and phonons in the momentum Eigenstates. Notice that the scattering amplitude gk,q depend on
the electron and on the phonon momenta.

(c) In the case of half-filling (number of electrons N = 1
2L), show that the ground state breaks the lattice

translational symmetry, i.e.,

〈Qj+1 −Qj〉 = q0 (−1)j ,

where q0 is a constant. This is the so-called Peierls instability.
(d) In the SSH model, replace the ions position by their ground-state average value and neglect their kinetic

energy. Then compute the electronic dispersion of the resulting model (for q0 6= 0) and show it is an
insulator for half-filling.

2. Interacting bosons. In the Bogoliubov theory for superfluidity, the order parameter is ψ =
〈
b0

〉
=
〈
b†0

〉
=

√
N0, where N0 is the number of boson in the k = 0 state. This parameter has to be computed self-consistently.

(a) Compute the parameter θk of the Bogoliubov transformation that diagonalizes the corresponding mean-field
Hamiltonian.

(b) Use this result to compute the number of bosons out of the condensate

∆N = N −N0 =
∑
k 6=0

〈
GS
∣∣∣a†kak

∣∣∣GS
〉
,

where |GS〉 is the ground state of the Bogoliubov bosons. Write your answer in the thermodynamic limit
(where the sum is replaced by an integral) as an implicit equation for the condensate density N0/V as a
function of the density N/V , the particle mass m, the dispersion εk = k2

2m , and the interaction ṽk.
(c) Assuming that ṽk→0 = v0 > 0, show that ∆N diverges in one dimension. It means that no long-range

superfluid order is possible even at T = 0 for finite repulsive interactions in d = 1.
(d) Compute the integral in 2b numerically in the case of d = 3 and ṽk = g = const (meaning contact

interactions). Make plots for N0/V and N/V as a function of g.

3. Fano model. Consider the noninteracting Anderson impurity model

H = Ef
∑
σ

f†σfσ +
∑
i,j,σ

t′i,j

(
c†i,σcj,σ + h.c.

)
+
∑
i,σ

ti

(
c†i,σfσ + h.c.

)
,

where ci,σ and fσ are usual spin-1/2 fermionic operators.
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(a) Give the physical meaning of each term in this Hamiltonian.
(b) In Fourier space, this Hamiltonian becomes

H = Ef
∑
σ

f†σfσ +
∑
k,σ

εkc
†
k,σck,σ +

∑
k,σ

(
tkc
†
k,σfσ + h.c.

)
, (1)

which can be diagonalized in terms of the fermions

d†n,σ =
∑

k

αn,kc
†
k,σ + βnf

†
σ, (2)

where
∑

k |αn,k|
2 + |βn|2 = 1. The resulting Hamiltonian is thus

H =
∑
n,σ

End
†
n,σdn,σ + const. (3)

Compute the commutators of ck,σ and fσ with the Hamiltonian in (1) and of dn,σ with the Hamiltonian
in (3). Then use Eq. (2) to relate these commutators and find a set of linear equations for αn,k and βn.

(c) Consider the operator

G (ω − iη) = 1
~ (ω − iη)−H , with η → 0+,

which is diagonal in the single-particle Eigenbasis of H: {|n, σ〉} =
{
d†n,σ |0〉

}
; i.e.,

Gn,σ;m,τ (ω − iη) = 〈n, σ| 1
~ (ω − iη)−H |m, τ〉 = δn,mδσ,τ

~ (ω − iη)− En
.

Moreover, in any basis ∑
l

(~ (ω − iη)−H)m,lGl,n = δm,n,

which is simply (~ (ω − iη)−H)G = I. Use the nondiagonal basis {|k, σ〉 , |f, σ〉} to show that

(Ω− Ef )Gf,σ;f,σ −
∑

k

t∗kGk,σ;f,σ = 1,

(Ω− εk)Gk,σ;f,σ − tkGf,σ;f,σ = 0,

(Ω− Ef )Gf,σ;k,σ −
∑

q
t∗qGq,σ;k,σ = 0,

(Ω− εq)Gq,σ;k,σ − tqGf,σ;q,σ = δk,q,

where Ω = ~ (ω − iη).
(d) Compute Gf,σ;f,σ.
(e) Show that the impurity spectral function (the hybridization of the f level with the system Eigenlevels with

energy ~ω) given by

Af (ω) ≡
∑
n

|〈n, σ|f, σ〉|2 δ (En − ~ω) ,

is related to G via

Af (ω) = 1
π

lim
η→0+

Im (Gf,σ;f,σ (ω − iη)) .

(f) Assuming that ti = tδi,0 (i.e., tk = t), that the density of states is a constant, i.e.,

ρ (ω) ≡
∑

k

δ (εk − ~ω) = ρ0θ (D − |~ω|) ,

with ρ0 = 1/ (2D) (with D being the half bandwidth), and that |t| � D, show that the spectral function
Af is approximately a Lorentzian of width Γ = πρ0t

2 peaked at Ef .
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4. 1D Kondo effect. Consider a spin-1/2 impurity interacting with a one-dimensional electron gas according to
the following Hamiltonian

H =
∑
k,σ

εkc
†
k,σck,σ + J

L
S ·
∑
k,q

∑
α,β

c†k,α

(σα,β
2

)
ck,β ,

where c†k,σ (ck,σ) creates (annihilates) a plane-wave-like electron in a ring of length L with spin projection σ in
the z-basis. The Kondo effect can be understood as the formation of a singlet between the magnetic impurity
and a conduction electron in the limit of low energies. The energy scale for this bound state (which also controls
the divergences of the perturbation theory) can be estimate via a variational method.

(a) Consider the variational state

|Φ〉 =
∑
k>kF

f(k)
[
c†k,↑ |FS〉 ⊗ |⇓〉 − c

†
k,↓ |FS〉 ⊗ |⇑〉

]
,

where f(k) is the variational function to be determined, |FS〉 =
∏
k≤kF c

†
k,↑c

†
k,↓ |0〉 is the Fermi sea state,

and |⇑〉 and |⇓〉 are the states of the impurity in the Sz basis. Provide a physical motivation of the
variational state |Φ〉.

(b) Minimizing E = 〈Φ |H|Φ〉 / 〈Φ|Φ〉 as a functional of f(k), show that

f(k) = 3J
4L ×

∑
q>kF

f(q)
EFS + εk − E

, (4)

where EFS = 2
∑
k<kF

εk.
(c) Sum over k > kF in both sides of Eq. (4) and take the thermodynamic limit L = ∞. The resulting

integral determines the variational energy E. In the limits of weak interaction and low energies, we can
approximate εk ≈ EF +vF (k − kF ) (where vF is the Fermi velocity) and integrate only over the states such
that |εk − EF | < D (where D is an energy scale of the order of the bandwidth). Perform the integration
and obtain the resulting expression for E.

(d) Using that J � vF (the weak interacting limit), show that E = EFS + EF − Eb with the binding energy

Eb ≈ Ee
− 4

3JρF ,

with ρF = (πvF )−1 being the density of states at the Fermi energy. Why Eb is called a binding energy?

[1] Actually, the Peierls instability depends on whether the fermions are spinful or spinless. See Fradkin and Hirsch, Phys. Rev.
B 27, 1680 (1983).
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