1. **Peierls instability.** Consider a model of one-dimensional array of coupled quantum Harmonic Oscillators given by

$$H_0 = \sum_{i=1}^{L} \frac{p_i^2}{2m} + \frac{k}{2} \left(Q_i - Q_{i+1}\right)^2.$$

- (a) Compute the corresponding phonon spectrum.
- (b) Now let us consider the model in which electrons hop around that lattice. Consider also that the hopping constant depends on the distance between the ions. Therefore,

$$H = H_0 - t \sum_{i} \left[1 + \alpha \left(Q_i - Q_{i+1} \right) \right] \left(c_i^{\dagger} c_{i+1}^{\dagger} + \text{h.c.} \right),$$

where α is a small constant. For simplicity, disregard the spin degree of freedom [1], i.e., $c_i^{\dagger}(c_i)$ creates (annihilates) spinless fermions at the *i*th site. This is the Su-Schrieffer-Heeger (SSH) model for the Polyacetylene. Obtain the electron-phonon coupling in terms of the creation and annihilation operators of fermions and phonons in the momentum Eigenstates. Notice that the scattering amplitude $g_{k,q}$ depend on the electron and on the phonon momenta.

(c) In the case of half-filling (number of electrons $N = \frac{1}{2}L$), show that the ground state breaks the lattice translational symmetry, i.e.,

$$\left\langle Q_{j+1} - Q_j \right\rangle = q_0 \left(-1\right)^j,$$

where q_0 is a constant. This is the so-called Peierls instability.

- (d) In the SSH model, replace the ions position by their ground-state average value and neglect their kinetic energy. Then compute the electronic dispersion of the resulting model (for $q_0 \neq 0$) and show it is an insulator for half-filling.
- 2. Interacting bosons. In the Bogoliubov theory for superfluidity, the order parameter is $\psi = \langle b_0 \rangle = \langle b_0^{\dagger} \rangle = \sqrt{N_0}$, where N_0 is the number of boson in the k = 0 state. This parameter has to be computed self-consistently.
 - (a) Compute the parameter $\theta_{\mathbf{k}}$ of the Bogoliubov transformation that diagonalizes the corresponding mean-field Hamiltonian.
 - (b) Use this result to compute the number of bosons out of the condensate

$$\Delta N = N - N_0 = \sum_{\mathbf{k} \neq 0} \left\langle \operatorname{GS} \left| a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} \right| \operatorname{GS} \right\rangle$$

where $|\text{GS}\rangle$ is the ground state of the Bogoliubov bosons. Write your answer in the thermodynamic limit (where the sum is replaced by an integral) as an implicit equation for the condensate density N_0/V as a function of the density N/V, the particle mass m, the dispersion $\epsilon_k = \frac{k^2}{2m}$, and the interaction \tilde{v}_k .

- (c) Assuming that $\tilde{v}_{k\to 0} = v_0 > 0$, show that ΔN diverges in one dimension. It means that no long-range superfluid order is possible even at T = 0 for finite repulsive interactions in d = 1.
- (d) Compute the integral in 2b numerically in the case of d = 3 and $\tilde{v}_k = g = \text{const}$ (meaning contact interactions). Make plots for N_0/V and N/V as a function of g.
- 3. Fano model. Consider the noninteracting Anderson impurity model

$$H = E_f \sum_{\sigma} f_{\sigma}^{\dagger} f_{\sigma} + \sum_{i,j,\sigma} t'_{i,j} \left(c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{h.c.} \right) + \sum_{i,\sigma} t_i \left(c_{i,\sigma}^{\dagger} f_{\sigma} + \text{h.c.} \right),$$

where $c_{i,\sigma}$ and f_{σ} are usual spin-1/2 fermionic operators.

- (a) Give the physical meaning of each term in this Hamiltonian.
- (b) In Fourier space, this Hamiltonian becomes

$$H = E_f \sum_{\sigma} f_{\sigma}^{\dagger} f_{\sigma} + \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k},\sigma}^{\dagger} c_{\mathbf{k},\sigma} + \sum_{\mathbf{k},\sigma} \left(t_{\mathbf{k}} c_{\mathbf{k},\sigma}^{\dagger} f_{\sigma} + \text{h.c.} \right),$$
(1)

which can be diagonalized in terms of the fermions

$$d_{n,\sigma}^{\dagger} = \sum_{\mathbf{k}} \alpha_{n,\mathbf{k}} c_{\mathbf{k},\sigma}^{\dagger} + \beta_n f_{\sigma}^{\dagger}, \qquad (2)$$

where $\sum_{\mathbf{k}} |\alpha_{n,\mathbf{k}}|^2 + |\beta_n|^2 = 1$. The resulting Hamiltonian is thus

$$H = \sum_{n,\sigma} E_n d_{n,\sigma}^{\dagger} d_{n,\sigma} + \text{const.}$$
(3)

Compute the commutators of $c_{k,\sigma}$ and f_{σ} with the Hamiltonian in (1) and of $d_{n,\sigma}$ with the Hamiltonian in (3). Then use Eq. (2) to relate these commutators and find a set of linear equations for $\alpha_{n,\mathbf{k}}$ and β_n .

(c) Consider the operator

$$G(\omega - i\eta) = \frac{1}{\hbar(\omega - i\eta) - H}, \text{ with } \eta \to 0^+,$$

which is diagonal in the single-particle Eigenbasis of $H: \{|n, \sigma\rangle\} = \{d_{n,\sigma}^{\dagger}|0\rangle\};$ i.e.,

$$G_{n,\sigma;m,\tau}\left(\omega-i\eta\right) = \langle n,\sigma | \frac{1}{\hbar\left(\omega-i\eta\right) - H} | m,\tau \rangle = \frac{\delta_{n,m}\delta_{\sigma,\tau}}{\hbar\left(\omega-i\eta\right) - E_n}$$

Moreover, in any basis

$$\sum_{l} \left(\hbar \left(\omega - i\eta\right) - H\right)_{m,l} G_{l,n} = \delta_{m,n}$$

which is simply $(\hbar (\omega - i\eta) - H) G = \mathbb{I}$. Use the nondiagonal basis $\{|\mathbf{k}, \sigma\rangle, |f, \sigma\rangle\}$ to show that

$$(\Omega - E_f) G_{f,\sigma;f,\sigma} - \sum_{\mathbf{k}} t_{\mathbf{k}}^* G_{\mathbf{k},\sigma;f,\sigma} = 1,$$

$$(\Omega - \epsilon_{\mathbf{k}}) G_{\mathbf{k},\sigma;f,\sigma} - t_{\mathbf{k}} G_{f,\sigma;f,\sigma} = 0,$$

$$(\Omega - E_f) G_{f,\sigma;\mathbf{k},\sigma} - \sum_{\mathbf{q}} t_{\mathbf{q}}^* G_{\mathbf{q},\sigma;\mathbf{k},\sigma} = 0,$$

$$(\Omega - \epsilon_{\mathbf{q}}) G_{\mathbf{q},\sigma;\mathbf{k},\sigma} - t_{\mathbf{q}} G_{f,\sigma;\mathbf{q},\sigma} = \delta_{\mathbf{k},\mathbf{q}},$$

where $\Omega = \hbar (\omega - i\eta)$.

- (d) Compute $G_{f,\sigma;f,\sigma}$.
- (e) Show that the impurity spectral function (the hybridization of the f level with the system Eigenlevels with energy $\hbar\omega$) given by

$$A_{f}(\omega) \equiv \sum_{n} |\langle n, \sigma | f, \sigma \rangle|^{2} \,\delta\left(E_{n} - \hbar\omega\right),$$

is related to G via

$$A_{f}(\omega) = \frac{1}{\pi} \lim_{\eta \to 0^{+}} \operatorname{Im} \left(G_{f,\sigma;f,\sigma} \left(\omega - i\eta \right) \right)$$

(f) Assuming that $t_i = t\delta_{i,0}$ (i.e., $t_k = t$), that the density of states is a constant, i.e.,

$$\rho\left(\omega\right) \equiv \sum_{\mathbf{k}} \delta\left(\epsilon_{\mathbf{k}} - \hbar\omega\right) = \rho_{0}\theta\left(D - |\hbar\omega|\right),$$

with $\rho_0 = 1/(2D)$ (with *D* being the half bandwidth), and that $|t| \ll D$, show that the spectral function A_f is approximately a Lorentzian of width $\Gamma = \pi \rho_0 t^2$ peaked at E_f .

4. **1D Kondo effect.** Consider a spin-1/2 impurity interacting with a one-dimensional electron gas according to the following Hamiltonian

$$H = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k},\sigma}^{\dagger} c_{\mathbf{k},\sigma} + \frac{J}{L} \mathbf{S} \cdot \sum_{\mathbf{k},\mathbf{q}} \sum_{\alpha,\beta} c_{\mathbf{k},\alpha}^{\dagger} \left(\frac{\boldsymbol{\sigma}_{\alpha,\beta}}{2}\right) c_{\mathbf{k},\beta},$$

where $c_{\mathbf{k},\sigma}^{\dagger}$ ($c_{\mathbf{k},\sigma}$) creates (annihilates) a plane-wave-like electron in a ring of length L with spin projection σ in the z-basis. The Kondo effect can be understood as the formation of a singlet between the magnetic impurity and a conduction electron in the limit of low energies. The energy scale for this bound state (which also controls the divergences of the perturbation theory) can be estimate via a variational method.

(a) Consider the variational state

$$|\Phi
angle = \sum_{k>k_F} f(k) \left[c^{\dagger}_{\mathbf{k},\uparrow} |\mathrm{FS}
angle \otimes |\downarrow\rangle - c^{\dagger}_{\mathbf{k},\downarrow} |\mathrm{FS}
angle \otimes |\Uparrow
angle
ight],$$

where f(k) is the variational function to be determined, $|FS\rangle = \prod_{k \leq k_F} c^{\dagger}_{\mathbf{k},\uparrow} c^{\dagger}_{\mathbf{k},\downarrow} |0\rangle$ is the Fermi sea state, and $|\Uparrow\rangle$ and $|\Downarrow\rangle$ are the states of the impurity in the S^z basis. Provide a physical motivation of the variational state $|\Phi\rangle$.

(b) Minimizing $E = \langle \Phi | H | \Phi \rangle / \langle \Phi | \Phi \rangle$ as a functional of f(k), show that

$$f(k) = \frac{3J}{4L} \times \frac{\sum_{q > k_F} f(q)}{E_{\rm FS} + \epsilon_k - E},\tag{4}$$

where $E_{\rm FS} = 2 \sum_{k < k_F} \epsilon_k$.

- (c) Sum over $k > k_F$ in both sides of Eq. (4) and take the thermodynamic limit $L = \infty$. The resulting integral determines the variational energy E. In the limits of weak interaction and low energies, we can approximate $\epsilon_k \approx E_F + v_F (k k_F)$ (where v_F is the Fermi velocity) and integrate only over the states such that $|\epsilon_k E_F| < D$ (where D is an energy scale of the order of the bandwidth). Perform the integration and obtain the resulting expression for E.
- (d) Using that $J \ll v_F$ (the weak interacting limit), show that $E = E_{FS} + E_F E_b$ with the binding energy

$$E_b \approx E e^{-\frac{4}{3J_{\rho_F}}},$$

with $\rho_F = (\pi v_F)^{-1}$ being the density of states at the Fermi energy. Why E_b is called a binding energy?

 Actually, the Peierls instability depends on whether the fermions are spinful or spinless. See Fradkin and Hirsch, Phys. Rev. B 27, 1680 (1983).