Problem set 4 - Many-body theory SFI7534

1. Gaussian integral of complex variables.

(a) Let \mathbb{H} be an Hermitean positive definite $n \times n$ matrix. Then show that

$$\int \prod_{i=1}^{n} \frac{\mathrm{d}(\Re z_i) \,\mathrm{d}(\Im z_i)}{\pi} e^{-(\mathbf{z}^*)^T \cdot \mathbb{H} \cdot \mathbf{z} + (\mathbf{z}^*)^T \cdot \mathbf{J} + (\mathbf{J}^*)^T \cdot \mathbf{z}} = (\mathrm{Det}\,\mathbb{H})^{-1} e^{(\mathbf{J}^*)^T \cdot \mathbb{H}^{-1} \cdot \mathbf{J}}$$

where $\mathbf{J} \in \mathbb{C}^n$ is a complex vector.

(b) Use this result to show that

$$\langle z_{i1}^* \dots z_{im}^* z_{j1} \dots z_{jm} \rangle = \sum_{\text{all pairings}} \mathbb{H}_{j1,iP_1}^{-1} \dots \mathbb{H}_{jm,iP_m}^{-1},$$

where $\{P_1, \ldots, P_m\}$ is a permutation of $\{1, \ldots, m\}$, and the average is defined as

$$\langle A \rangle = \frac{\int \prod_{i=1}^{n} \frac{\mathbf{d}(\Re z_{i})\mathbf{d}(\Im z_{i})}{\pi} e^{-(\mathbf{z}^{*})^{T} \cdot \mathbb{H} \cdot \mathbf{z}} A}{\int \prod_{i=1}^{n} \frac{\mathbf{d}(\Re z_{i})\mathbf{d}(\Im z_{i})}{\pi} e^{-(\mathbf{z}^{*})^{T} \cdot \mathbb{H} \cdot \mathbf{z}}}$$

2. Gaussian integral of Grassmann variables.

(a) Let \mathbb{H} be an Hermitean positive definite $n \times n$ matrix (actually, this is not necessary). Then show that

$$\int \prod_{i=1}^{n} \mathrm{d}\bar{\eta}_{i} \mathrm{d}\eta_{i} e^{-(\bar{\boldsymbol{\eta}})^{T} \cdot \mathbb{H} \cdot \boldsymbol{\eta} + (\bar{\boldsymbol{\eta}})^{T} \cdot \boldsymbol{\xi} + \left(\bar{\boldsymbol{\xi}}\right)^{T} \cdot \boldsymbol{\eta}} = (\mathrm{Det}\,\mathbb{H}) e^{\left(\bar{\boldsymbol{\xi}}\right)^{T} \cdot \mathbb{H}^{-1} \cdot \boldsymbol{\xi}},$$

where η , $\bar{\eta}$, ξ and $\bar{\xi}$ are independent Grassmann vectors.

(b) Use this result to show that

$$\langle \eta_{i1}\eta_{i2}\dots\eta_{im}\bar{\eta}_{jm}\dots\bar{\eta}_{j2}\bar{\eta}_{j1}\rangle = \sum_{\text{all pairings}} (-1)^P \mathbb{H}_{i1,jP_1}^{-1}\dots\mathbb{H}_{im,jP_m}^{-1},$$

where $\{P_1, \ldots, P_m\}$ is a permutation of $\{1, \ldots, m\}$, P is the number of transpositions in this permutation, and the average is defined as in the previous problem.

- 3. Coherent states. Consider the coherent states $a_i |\psi\rangle = \psi_i |\psi\rangle$, $\langle \psi | a_i^{\dagger} = \langle \psi | \bar{\psi}_i$ with ψ and $\bar{\psi}$ being independent (complex for bosons, and Grassmann for fermions) vectors. Show
 - (a) the completeness relation

$$\mathbb{I} = \int \mathrm{d} \left(\bar{\boldsymbol{\psi}}, \boldsymbol{\psi} \right) e^{-\bar{\boldsymbol{\psi}} \cdot \boldsymbol{\psi}} \ket{\boldsymbol{\psi}} \bra{\boldsymbol{\psi}},$$

(b) the trace

$$\operatorname{tr} \{A\} = \int \mathrm{d} \left(\bar{\psi}, \psi \right) e^{-\bar{\psi} \cdot \psi} \left\langle \zeta \psi \right| A \left| \psi \right\rangle$$

(c) and that, for a normal ordered operator $O \equiv O(a_1^{\dagger}, \ldots, a_n^{\dagger}, a_1, \ldots, a_n)$, the matrix element is

$$\langle \boldsymbol{\psi} | O | \boldsymbol{\psi}' \rangle = O(\bar{\psi}_1, \dots, \bar{\psi}_n, \psi_1', \dots, \psi_n') e^{\boldsymbol{\psi} \cdot \boldsymbol{\psi}'}$$

Here, $\zeta = 1$ for bosons and $\zeta = -1$ for fermions, and $d(\bar{\psi}, \psi) = \prod_i d(\bar{\psi}_i, \psi_i)$, where $d(\bar{\psi}_i, \psi_i) = \pi^{-1} d(\Re \psi_i) d(\Im \psi_i)$ for bosons, and $d(\bar{\psi}_i, \psi_i) = d\bar{\psi}_i d\psi_i$ for fermions.