Problem set 4 - Many-body theory SFI7534

1. Gaussian integral of complex variables.

(a) Let \mathbb{H} be an Hermitean positive definite $n \times n$ matrix. Then show that

$$
\int \prod_{i=1}^{n} \frac{\mathrm{~d}\left(\Re z_{i}\right) \mathrm{d}\left(\Im z_{i}\right)}{\pi} e^{-\left(\mathbf{z}^{*}\right)^{T} \cdot \mathbb{H} \cdot \mathbf{z}+\left(\mathbf{z}^{*}\right)^{T} \cdot \mathbf{J}+\left(\mathbf{J}^{*}\right)^{T} \cdot \mathbf{z}}=(\operatorname{Det} \mathbb{H})^{-1} e^{\left(\mathbf{J}^{*}\right)^{T} \cdot \mathbb{H}^{-1} \cdot \mathbf{J}},
$$

where $\mathbf{J} \in \mathbb{C}^{n}$ is a complex vector.
(b) Use this result to show that

$$
\left\langle z_{i 1}^{*} \ldots z_{i m}^{*} z_{j 1} \ldots z_{j m}\right\rangle=\sum_{\text {all pairings }} \mathbb{H}_{j 1, i P_{1}}^{-1} \ldots \mathbb{H}_{j m, i P_{m}}^{-1},
$$

where $\left\{P_{1}, \ldots, P_{m}\right\}$ is a permutation of $\{1, \ldots, m\}$, and the average is defined as

$$
\langle A\rangle=\frac{\int \prod_{i=1}^{n} \frac{\mathrm{~d}\left(\Re z_{i}\right) \mathrm{d}\left(\Im z_{i}\right)}{\pi} e^{-\left(\mathbf{z}^{*}\right)^{T} \cdot \mathbb{H} \cdot \mathbf{z}} A}{\int \prod_{i=1}^{n} \frac{\mathrm{~d}\left(\Re z_{i}\right) \mathrm{d}\left(\Im z_{i}\right)}{\pi} e^{-\left(\mathbf{z}^{*}\right)^{T} \cdot \mathbb{H} \cdot \mathbf{z}}} .
$$

2. Gaussian integral of Grassmann variables.

(a) Let \mathbb{H} be an Hermitean positive definite $n \times n$ matrix (actually, this is not necessary). Then show that

$$
\int \prod_{i=1}^{n} \mathrm{~d} \bar{\eta}_{i} \mathrm{~d} \eta_{i} e^{-(\overline{\boldsymbol{\eta}})^{T} \cdot \mathbb{H} \cdot \boldsymbol{\eta}+(\overline{\boldsymbol{\eta}})^{T} \cdot \boldsymbol{\xi}+(\overline{\boldsymbol{\xi}})^{T} \cdot \boldsymbol{\eta}}=(\operatorname{Det} \mathbb{H}) e^{(\overline{\boldsymbol{\xi}})^{T} \cdot \mathbb{H}^{-1} \cdot \boldsymbol{\xi}},
$$

where $\boldsymbol{\eta}, \overline{\boldsymbol{\eta}}, \boldsymbol{\xi}$ and $\overline{\boldsymbol{\xi}}$ are independent Grassmann vectors.
(b) Use this result to show that

$$
\left\langle\eta_{i 1} \eta_{i 2} \ldots \eta_{i m} \bar{\eta}_{j m} \ldots \bar{\eta}_{j 2} \bar{\eta}_{j 1}\right\rangle=\sum_{\text {all pairings }}(-1)^{P} \mathbb{H}_{i 1, j P_{1}}^{-1} \ldots \mathbb{H}_{i m, j P_{m}}^{-1},
$$

where $\left\{P_{1}, \ldots, P_{m}\right\}$ is a permutation of $\{1, \ldots, m\}, P$ is the number of transpositions in this permutation, and the average is defined as in the previous problem.
3. Coherent states. Consider the coherent states $a_{i}|\boldsymbol{\psi}\rangle=\psi_{i}|\boldsymbol{\psi}\rangle,\langle\boldsymbol{\psi}| a_{i}^{\dagger}=\langle\boldsymbol{\psi}| \bar{\psi}_{i}$ with $\boldsymbol{\psi}$ and $\overline{\boldsymbol{\psi}}$ being independent (complex for bosons, and Grassmann for fermions) vectors. Show
(a) the completeness relation

$$
\mathbb{I}=\int \mathrm{d}(\overline{\boldsymbol{\psi}}, \boldsymbol{\psi}) e^{-\overline{\boldsymbol{\psi}} \cdot \boldsymbol{\psi}}|\boldsymbol{\psi}\rangle\langle\boldsymbol{\psi}|,
$$

(b) the trace

$$
\operatorname{tr}\{A\}=\int \mathrm{d}(\overline{\boldsymbol{\psi}}, \boldsymbol{\psi}) e^{-\overline{\boldsymbol{\psi}} \cdot \boldsymbol{\psi}}\langle\zeta \boldsymbol{\psi}| A|\boldsymbol{\psi}\rangle
$$

(c) and that, for a normal ordered operator $O \equiv O\left(a_{1}^{\dagger}, \ldots, a_{n}^{\dagger}, a_{1}, \ldots, a_{n}\right)$, the matrix element is

$$
\langle\boldsymbol{\psi}| O\left|\boldsymbol{\psi}^{\prime}\right\rangle=O\left(\bar{\psi}_{1}, \ldots, \bar{\psi}_{n}, \psi_{1}^{\prime}, \ldots, \psi_{n}^{\prime}\right) e^{\bar{\psi} \cdot \boldsymbol{\psi}^{\prime}}
$$

Here, $\zeta=1$ for bosons and $\zeta=-1$ for fermions, and $\mathrm{d}(\overline{\boldsymbol{\psi}}, \boldsymbol{\psi})=\prod_{i} \mathrm{~d}\left(\bar{\psi}_{i}, \psi_{i}\right)$, where $\mathrm{d}\left(\bar{\psi}_{i}, \psi_{i}\right)=$ $\pi^{-1} \mathrm{~d}\left(\Re \psi_{i}\right) \mathrm{d}\left(\Im \psi_{i}\right)$ for bosons, and $\mathrm{d}\left(\bar{\psi}_{i}, \psi_{i}\right)=\mathrm{d} \bar{\psi}_{i} \mathrm{~d} \psi_{i}$ for fermions.

