Problem set 4 - Many-body theory SFI7534

1. Gaussian integral of complex variables.
(a) Let H be an Hermitean positive definite n x n matrix. Then show that
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where J € C" is a complex vector.
(b) Use this result to show that
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where {P,..., Py} is a permutation of {1,...,m}, and the average is defined as
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2. Gaussian integral of Grassmann variables.

(a) Let H be an Hermitean positive definite n x n matrix (actually, this is not necessary). Then show that
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where 1, 7, € and € are independent Grassmann vectors.
(b) Use this result to show that
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where {P,..., Py} is a permutation of {1,...,m}, P is the number of transpositions in this permutation,
and the average is defined as in the previous problem.

3. Coherent states. Consider the coherent states a; |¥) = i, |[¢), (¢ aj = (1| ; with 1 and 1) being independent
(complex for bosons, and Grassmann for fermions) vectors. Show

(a) the completeness relation
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(b) the trace
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(¢) and that, for a normal ordered operator O = O(aJ{7 ...,al ay, ... a,), the matrix element is
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Here, ( = 1 for bosons and { = —1 for fermions, and d (¢,%) = [[,d (¥i, ), where d (¢;, ;) =
7 1d (Rey;) d (Se;) for bosons, and d (3, 1) = dey;de; for fermions.



