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I. THE TIME EVOLUTION OPERATOR

Given a initial quantum state |ψ (ti)〉, we are interested in how the system state evolves as time goes on. This is
given by the time evolution operator defined from

|ψ (tf )〉 ≡ Û (tf , ti) |ψ (ti)〉 , where tf > ti, (1)

and with the constraint that Û (ti, ti) = I. Some properties are straightforward: the composition property

Û (t3, t2) Û (t2, t1) = Û (t3, t1) (with t3 ≥ t2 ≥ t1), and unitarity Û (t2, t1) Û † (t2, t1) = I, which comes from probability
conservation 〈ψ|ψ〉 = 1 for any t.

The time evolution operator can be determined from the Schrödinger equation: i~ ∂
∂t |ψ〉 = H |ψ〉 , ⇒

i~ ∂
∂t Û (t, t0) |ψ0〉 = ĤÛ (t, t0) |ψ0〉 , for any |ψ0〉. Thus,

i~
∂

∂t
Û = ĤÛ . (2)

It is interesting to recall that for time-independent Ĥ, then Û (t, t0) = e
1

i~ (t−t0)ĤΘ (t− t0), where Θ (x) is the Heaviside

function [1]. In this case, notice that Û (t, t0) ≡ Û (t− t0) as a consequence of energy conservation. In addition, for

an infinitesimal time evolution, then Û (t+ dt, t) = I+ 1
i~dtĤ = e

1
i~ dtĤ(t), regardless whether the Hamiltonian is time

independent or not.

II. THE PROPAGATOR

Mathematically, the propagatorG is simply defined as a matrix element of the time evolution operator:

i~G (xf , tf , xi, ti) ≡
〈

xf

∣
∣
∣Û (tf , ti)

∣
∣
∣xi

〉

. (3)

The first thing we have to notice is that the propagator depends on the representation, i.e., it depends on the basis
we are considering. For the case of a Ĥ describing a particle moving in some external potential and |x〉 denoting

the physical state in which a particle is located at position x, then |i~G|2 represents the probability density of this
particle going from (xi, ti)→ (xf , tf ). Notice nothing is said about the initial state of the particle.

Defined in this way, we can compute the particle wavefunction ψ (x, t) at time t given that it is known at a previous
time t0:

ψ (x, t) = 〈x|ψ (t)〉 =
〈

x
∣
∣
∣Û(t, t0)

∣
∣
∣ψ (t0)

〉

=

ˆ 〈

x
∣
∣
∣Û(t, t0)

∣
∣
∣ x0

〉

〈x0|ψ (t0)〉dx0

= i~

ˆ

G (x, t, x0, t0)ψ (x0, t0) dx0, (4)

where we have used that I =
´

dx0 |x0〉 〈x0|. In this way, the propagator G can also be viewed as the Green’s function
of the Schrödinger equation.

A. Detour1: The free-particle propagator via Schrödinger equation

For a free particle (Ĥ = 1
2m p̂

2), the Schrödinger equation simply gives us Û = e
1

i2m~
(t−t0)p̂2

. Thus, in the momentum

representation, we have
〈

p
∣
∣
∣Û
∣
∣
∣ p0

〉

= δ (p− p0) e
1

i2m~
(t−t0)p2

, where p̂ |p0〉 = p0 |p0〉.
If we are interested in the position representation, we use that 〈x|p〉 = 1√

2π~
ei px

~

i~G =
〈

x
∣
∣
∣Û
∣
∣
∣x0

〉

=

ˆ

dpdp0 〈x|p〉
〈

p
∣
∣
∣Û
∣
∣
∣ p0

〉

〈x0|p0〉 =
1

2π~

ˆ

dpe
1

i~ (( t−t0
2m )p2−(x−x0)p) =

√
m

2πi~ (t− t0)
e

i
~

Scl , (5)

where Scl (x, t, x0, t0) = m(x−x0)2

2(t−t0) is the classical action of a free particle (which comes from the path of constant

velocity). Here, we have used the result
´∞
−∞ e

−i(ax2+bx)dx =
√

π
iae

i b2

4a (see Sec. IX). Notice that from translational

and time invariance of Ĥ , then G (x, t, x0, t0) = G (x− x0, t− t0).
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B. Detour2: The propagator in the frequency space

Consider the propagator in the energy representation (with Ĥ being time-independent)

i~GE (φ2, t2, φ1, t1) ≡ i~GE (φ2, φ1, t2 − t1) =
〈

φ2

∣
∣
∣Û (t2, t1)

∣
∣
∣φ1

〉

= δφ2,φ1e
1

i~ E2(t2−t1), (6)

where Ĥ |φi〉 = Ei |φi〉. Defining the Fourier transform

G̃E (φ2, φ1, ω) =

ˆ

GE (φ2, φ1, t) e
iωtdt =

δφ2,φ1

i~

ˆ ∞

0

e
1

i~ E2t+iωtdt

=
δφ2,φ1

i~
(

1
i~E2 + iω

) e
1

i~ E2t+iωt
∣
∣
∣

∞

t=0
=

−δφ2,φ1

E2 − ~ (ω + iη)
=

δφ2,φ1

~ω − (E2 − i0+)
.

Here, we replaced ω with a complex number ω = ω + iη and take the limit η → 0+ in order to converge the integral:
limt→∞ e

1
i~ E2t+iωt = 0. For short, we write ~η = 0+.

We can now use this result in order to compute the propagator in the frequency space

G (x, x0, ω) =
1

i~

〈

x
∣
∣
∣Û
∣
∣
∣x0

〉

=
∑

φ,φ′

〈x|φ〉 G̃E (φ, φ′, ω) 〈φ′|x0〉 =
∑

φ

〈x|φ〉 〈φ|x0〉
~ω − (Eφ − i0+)

.

This is an interesting result. From the structure of the poles of G (x, x0, ω), we can obtain the spectrum of Ĥ.
Finally, if we want to recover the GE from G̃E , we have to inverse-Fourier transform

GE (φ2, φ1, t) =

ˆ

dω

2π

δφ2,φ1e
−iωt

~ω − (E2 − i0+)
= 2πi

∑

Residues

1

2π

(
δφ2,φ1e

−iωt

~ω − (E2 − i0+)

)

.

For t > 0, we choose the contour in the lower half of the complex plane because e−iωt ∝ etIm(ω) and Im (ω) < 0. In
this case, there is a pole inside the contour which is at ~ω = E2 − i0+ In addition, there is a global minus signal
because the contour is clockwise. For t < 0, we need to choose the upper half-plane. However, in this case, there is
no pole inside the contour. Thus, GE = 0 for t < 0. Finally,

GE (φ2, φ1, t) = − i
~
× δφ2,φ1e

−i

(
E2−i0+

~

)

t
Θ (t) =

1

i~
δφ2,φ1e

1
i~ E2tΘ (t) ,

which recovers the result (6).

III. PATH INTEGRAL REPRESENTATION OF A PARTICLE PROPAGATOR

For simplicity, let us consider the Hamiltonian Ĥ = 1
2m p̂

2 + V̂ (x, t) describing a single particle propagating in 1D
under the influence of an external potential. As will become clear in the following derivation of the path integral
representation, it is straightforward to generalize it for a general Hermitean Hamiltonian.

The propagator is obtained from

i~G(xf tf , xi, ti) =
〈

xf

∣
∣
∣Û (tf , ti)

∣
∣
∣ xi

〉

,

and Û can be obtained from solving the Schrödinger equation (2). An alternative approach for this usual quantum
mechanics prescription is the path integral formulation of the quantum mechanics. Instead of solving the Schrödinger
equation, we evolve the system through N intermediate time steps, each of which are of duration ∆t =

tf−ti

N , i.e.,

Û(tf , ti) = Û(tN , tN−1) . . . Û(t2, t1)Û(t1, t0), (7)

where tk = t0 + k∆t, t0 = ti, and tN = tf .
Let us consider the case of N = 2. Thus,

i~G (2, 0) =
〈

xf

∣
∣
∣Û (t2, t1) Û (t1, t0)

∣
∣
∣xi

〉

=

ˆ

dx1

〈

xf

∣
∣
∣Û (t2, t1)

∣
∣
∣ x1

〉〈

x1

∣
∣
∣Û (t1, t0)

∣
∣
∣xi

〉

=

ˆ

dx1i~G (2, 1)× i~G (1, 0) . (8)
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(a) N = 2 (b) N = 3 (c) N = ∞

(x0, t0)(x0, t0)(x0, t0)

(x1, t1)(x1, t1) (x2, t2)

(x2, t2) (x3, t3) (xN , tN )

x
t

Figure 1: Schematic visualization of the superposition principle in quantum mechanics.

This highlights the superposition principle in Quantum Mechanics. Recalling that G (f, i) is the amplitude probability
density of the system going from i→ f , then the right-hand side of (8) tells us that the system goes from the initial
configuration (xi, ti) to the final one (xf , tf ) via all possible intermediate configurations (x1, t1) in between (see panel
(a) of Fig. 1). This is just like the double-slit experiment (although here we are considering infinitely many slits)
and it is a simple consequence of the wavelike character of the quantum particle. In the schematic representation of
Fig. 1, the dashed lines are representative trajectories since no such concept exists in quantum (or wave) mechanics.
When increasing the number of intermediate steps [see panel (b)], it is like we were inquiring more often the particle
current position. In the extreme limit of N →∞ [see panel (c)], the particle position is inquired at all time instants
and the concept of a classical trajectory arises. The superposition principle in quantum mechanics simply states that
all these possible paths interfere with each other.

It is now our task to quantify how these paths interfere with each other. From (7), we have that

i~G(xN tN , x0, t0) = lim
N→∞

〈

xN

∣
∣
∣Û(tN , tN−1) . . . Û(t2, t1)Û(t1, t0)

∣
∣
∣x0

〉

= lim
N→∞

ˆ

. . .

ˆ

dx1 . . . dxN−1

〈

xN

∣
∣
∣Û(tN , tN−1)

∣
∣
∣ xN−1

〉

. . .
〈

x2

∣
∣
∣Û(t2, t1)

∣
∣
∣x1

〉〈

x1

∣
∣
∣Û(t1, t0)

∣
∣
∣ x0

〉

,

where we have inserted N − 1 resolutions I =
´

dxk |xk〉 〈xk|. Let us take a closer look in each of these terms
〈

xk+1

∣
∣
∣Û(tk+1, tk)

∣
∣
∣ xk

〉

=
〈

xk+1

∣
∣
∣Û(tk + ∆t, tk)

∣
∣
∣ xk

〉

=
〈

xk+1

∣
∣
∣e

1
i~ ∆tĤ(tk)

∣
∣
∣ xk

〉

.

(Although the last passage is valid only in the limit ∆t → 0, it is also valid for any finite interval ∆t as long as Ĥ

is time independent.) Now, we have to compute
〈

xk+1

∣
∣
∣e

1
i~ ∆t(T̂ +V̂ (x,tk))

∣
∣
∣ xk

〉

. In general, this is not a simple task

because T̂ = 1
2m p̂

2 and V̂ do not commute with each other. However, a curious formula exists:

eǫ(X̂+Ŷ ) = eǫX̂eǫŶ e−
1
2 ǫ2[X̂,Ŷ ]e−

1
3! ǫ3(2[Ŷ ,[X̂,Ŷ ]]+[X̂,[X̂,Ŷ ]]) . . . .

This is the Zassenhaus formula which is related to the more familiar Baker-Campbell-Hausdorff formula [2]. Therefore,

we have that lim∆t→0 e
1

i~ ∆t(T̂ +V̂ ) = e
1

i~ ∆tT̂ e
1

i~∆tV̂ . Basically, the non-commutativity becomes irrelevant in the short-
time limit [3]. Thus,

〈

xk+1

∣
∣
∣e

1
i~ ∆tĤ

∣
∣
∣xk

〉

=
〈

xk+1

∣
∣
∣e

1
i~ ∆tT̂ e

1
i~∆tV̂

∣
∣
∣xk

〉

=
〈

xk+1

∣
∣
∣e

1
i~ ∆tT̂

∣
∣
∣ xk

〉

e
1

i~ ∆tV (xk,tk)

=

ˆ

dpk

〈

xk+1

∣
∣
∣e

1
i~ ∆tT̂

∣
∣
∣ pk

〉

〈pk|xk〉 e
1

i~ ∆tV (xk,tk) =

ˆ

dpk 〈xk+1|pk〉 〈pk|xk〉 e
1

i~ ∆t(T (pk)+V (xk,tk))

=
1

2π~

ˆ

dpke
−pkxk+1

i~ e
pkxk

i~ e
1

i~ ∆tH(pk,xk,tk) =
1

2π~

ˆ

dpke
1

i~ ∆t
[
−
( xk+1−xk

∆t

)
pk+H(pk,xk,tk)

]

,

where H (pk, xk) = T (pk) + V (xk, tk). It is important to notice that this quantity is not an operator, but a scalar.

Collecting all the terms and defining ẋk =
(

xk+1−xk

∆t

)

, we find that

i~G = lim
N→∞

ˆ N−1∏

k=1

dxk

N−1∏

l=0

dpl

2π~
exp

[

i

~
∆t

N−1∑

ℓ=0

(ẋℓpℓ −H (pℓ, xℓ, tℓ))

]

=

ˆ

D [q (t)] exp

[
i

~

ˆ tf

ti

dt (ẋ (t) p (t)−H (p, x, t))

]

. (9)
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Here, we denote by D [q (t)] = limN→∞
∏N−1

k=1 dxk

∏N−1
l=0

dpl

2π~
the functional integral over the phase space. The

representation of the propagator in (9) is called the phase space representation of the propagator path integral.

Notice the functional
´ tf

ti
dt (ẋ (t) p (t)−H (p, x, t)) has the appealing look of an action. But recall that ẋ has no

relation with p since they are unrelated dummy variables.

Since T (pk) = 1
2mp

2
k, we can perform a Gaussian integration over the momentum variables:

´

dpke
i
~

∆t[ẋkpk− 1
2m p2

k] =
√

2m~π
i∆t e

i
~

∆t m
2 ẋ2

k . Therefore, we arrive at

i~G = lim
N→∞

( m

2πi~∆t

)N
2

ˆ N−1∏

k=1

dxk exp

[

i

~
∆t

N−1∑

ℓ=0

(

m

2

(
xℓ+1 − xℓ

∆t

)2

− V (xℓ, tℓ)

)]

=

ˆ

D [x (t)] exp

[
i

~
S ([x (t)] , xf , tf , xi, ti)

]

, (10)

where D [x (t)] = limN→∞
(

m
2πi~∆t

)N
2
∏N−1

k=1 dxk, and

S ([x (t)] , xf , tf , xi, ti) =

ˆ tf

ti

dt
(m

2
ẋ2 − V (x, t)

)

(11)

is the action of the path x (t) with the constraint that x (tf ) = xf and x (ti) = xi.
The formulation in (10) is known as the coordinate representation of the path integral. It answers our question of

how each path interfere with each other. Each path contributes with a phase eiS/~, where the action S is measured
in units of the Planck constant.

With the path integral formulation in (10), we can reinterpret Quantum Mechanics. Given the propagator (10),
the time evolution of any state is determined through (4). Notice that this is equivalent to usual formulation in which
one has to solve Schrödinger equation.

The path integral formulation is useful in many contexts, specially, for interacting systems where perturbation
theory can be easily formulated. Philosophically, it helps us to “visualize” the quantum fluctuations. Usually, the
classical path is the most contributing one for the propagator. In that case, we can interpret the real world as being
classical with quantum fluctuations on top of it. Evidently, this picture has its limitation since there are phenomena
in which the quantum character is dominant as in tunneling and in superconductivity.

A. Detour1: The free-particle propagator via path integral

In Sec. II A, we have computed the free-particle propagator by solving the Schrödinger equation for time evolution
operator Û . It is instructive to perform the same task in the path integral formulation.

First, we will perform this calculation in a pragmatic way without paying much attention on the physical interpre-
tation.

Consider the case N = 2 in (10). We have to compute

ˆ

dx1 exp

[
im

2~∆t

[

(xf − x1)
2

+ (x1 − xi)
2
]]

=

√

2πi~∆t

m
× 1

2
exp

[
im

2~∆t× 2
(xf − xi)

2

]

.

For the N = 3, then we have that

ˆ

dx1dx2 exp

[
im

2~∆t

[

(xf − x2)
2

+ (x2 − x1)
2

+ (x1 − xi)
2
]]

=

√

2πi~∆t

m
× 1

2

ˆ

dx1e
im

2~∆t [ 1
2 (xf−x1)2+(x1−xi)2]

=

√
(

2πi~∆t

m

)2

× 1

2
× 2

3
e

im
2~∆t× 1

3 (xf−xi)2

.

It seems there is a pattern arising. For the N = k case, we use the induction hypothesis that

ˆ k−1∏

ℓ=1

dxℓe
im

2~∆t

∑
k−1

ℓ=0
(xℓ+1−xℓ)2

=

√
(

2πi~∆t

m

)ℓ−1

× 1

k
e

im
2~∆t× 1

k (xf−xi)2

.
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x0

x1

xN−1

xN

Figure 2: Chain of coupled harmonic oscillators.

For the next iteration N = k + 1, we have to perform the integration

ˆ

dx1e
im

2~∆t [ 1
k (xf−x1)2+(x1−xi)2] =

√

2πi~∆t

m
× k

k + 1
e

im
2~∆t× 1

k+1 (xf−xi)2

,

which confirms the induction hypothesis. Therefore,

i~G = lim
N→∞

( m

2πi~∆t

)N
2 ×

√
√
√
√

(
2πi~∆t

m

)N−1
2

× 1

N
e

im
2~∆t× 1

N (xf−xi)2

= lim
N→∞

( m

2πi~∆tN

) 1
2

e
im
~2 × 1

∆tN (xf−xi)2

=

√
m

2πi~ (tf − ti)
e

i
~
×

m(xf −xi)
2

2(tf −ti) ,

which recovers (5).
Notice that no information about the Schrödinger equation was used. However, the mathematical steps were much

more “painful” in comparison to the usual formulation of quantum mechanics in Sec. II A.

B. Detour2: The free-particle propagator via path integral - reload

We now want redo the same calculation in a different manner. Notice we are dealing with the kinetic term ∝∑ ẋ2
k.

However, in the discrete limit, it can be viewed as a collection of N − 1 coupled harmonic oscillators in 1D (see Fig.
2), the corresponding dimensionless potential energy being U = 1

2kV , where the “spring constant” k = m
~∆t , and

V =

N−1∑

ℓ=0

(xℓ+1 − xℓ)
2
,

with x0 and xN fixed. The integration
´ ∏N−1

k=1 dxk means we are interested in all possible configurations of potential
energy. Clearly, the lowest energy configuration (which is thus related to the classical path which minimizes the action)

is that in which all particles are equally spaced, i.e., they are at their “equillibrium” position x
(eq)
ℓ = x0 + ℓ

(
xN−x0

N

)
.

Therefore, it is convenient to remove it out. For that, let us redefine the particle positions by uℓ = xℓ − x(eq)
ℓ . In this

new variable, the potential energy becomes

V = N

(
xN − x0

N

)2

+ u2
1 +

N−2∑

ℓ=1

(uℓ+1 − uℓ)
2

+ u2
N−1 = N

(
xN − x0

N

)2

+ uT
Mu,

where

M =











2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2 · · ·
...

...
...

...
. . . −1

0 0 · · · −1 2











is a tridiagonal matrix, and uT =
(
u1 . . . uN−1

)
.
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Notice the fluctuations around the “classical” configuration are weighted by the spring constant k ∝ m~
−1, i.e., we

can somewhat quantify the weight of the quantum fluctuations by making an analogy with our springs. Stronger the
spring constant, more suppressed are those configurations in which a particle deviates from its equilibrium (classical)
position.

Notice moreover that M is easily diagonalized because the problem of Harmonic Oscillators with fixed ends is well
known. The Eigenvectors are simply sines with wavelengths λα = 2N

α , with α = 1, . . . , N − 1, i.e., the wavevectors

are vα with vℓ,α ∝ sin (2πℓ/λα). The normalization is
∑N−1

ℓ=1 sin2
(

αℓπ
N

)
= 1

2N (obtained from the sum of geometric

series). Thus, vℓ,α =
√

2
N sin

(
π
N αℓ

)
. Applying these Eigenvectors on M, we find the corresponding Eigenvalues

ωα = 2− 2 cos
(

π
N α
)
.

The potential can thus be rewritten as

V = N

(
xN − x0

N

)2

+ uT
(
VDV

T
)

u = N

(
xN − x0

N

)2

+ zT
Dz = N

(
xN − x0

N

)2

+
N−1∑

ℓ=1

ωαz
2
ℓ ,

where the columns of V are the Eigenvectors vα, D is a diagonal matrix in which Dα,α = ωα, and z = V
T u. Since

the transformation from u → z is a canonical one, then
∏N−1

k=1 dxk =
∏N−1

k=1 duk =
∏N−1

k=1 dzk. The propagator can
now be computed

i~G = lim
N→∞

( m

2πi~∆t

)N
2

e
im(xf −xi)

2

2~∆tN ×
ˆ N−1∏

k=1

dzke
im

2~∆t

∑N−1

ℓ=1
ωℓz2

ℓ

= lim
N→∞

( m

2πi~∆t

)N
2

e
i
~

Scl ×
(

2πi~∆t

m

)N−1
2

× 1
√∏

α ωα

= lim
N→∞

(
m

2πi~∆tDet (M)

) 1
2

e
i
~

Scl ,

where Det (M) =
∏

α ωα. (Indeed, the diagonalization of M is not crucial here, just its determinant.) The determinant

can be obtained via induction. For a matrix of size ℓ = 1, then Det (M1) = 2. For size ℓ = 2, then M2 =

(
2 −1
−1 2

)

,

and the determinant is 3. For size ℓ = 3, then Det (M3) = 4. For a generic size ℓ, it is easy to show that Det (Mℓ) =
2Det (Mℓ−1)−Det (Mℓ−2). Therefore, Det (Mℓ) = ℓ+ 1. As our matrix has size ℓ = N − 1 and that ∆tN = (tf − ti) ,
then we (again) recover the expected result (5).

IV. SEMICLASSICAL APPROACH

Having reformulated the quantum mechanics via the path integral approach, we might ask what kind of trajectories
contribute the most for the propagator. For answering this question, let us consider for instance a system in which the
action S is typically much larger than ~. By typically, we mean that for most of the paths S ≫ ~. Also, deviations
from a typical path causes deviations in the action which are also much greater than ~, i.e., δS ≫ ~. If that is the case,

then most of these paths interfere with each other destructively because the phase varies so much that ei S
~ averages

to zero. Therefore, there must be a set of paths that do not interfere destructively and dominate the sum
´

D[x] over
all paths. It is then clear that S must not vary much around these paths. Thus, there must be a special path around
which δS vanishes (up to linear order in the deviation). In this case, it is said that the phase is stationary in this
path. This must be the path that contributes the most for the propagator.

Let us suppose we find such special stationary-phase path and call it xcl. Deviations from such path η = x − xcl

causes deviations on S that are specially small, i.e., S − Scl must be a functional that is a quadratic function of

δ[x], namely, S − Scl = 1
2!

´

dtdt′ δ2S
δxcl(t)δxcl(t′)η (t) η(t′), where δ2S

δxcl(t)δxcl(t′) represents the functional second derivative

computed at the stationary phase path xcl. If S were a function of a single variable x, then the second derivative

would be simply d2S
dx2

∣
∣
∣
x=xcl

. However, S is a functional, and thus, we have to deal with the calculus of variations.

In order to acquire more feeling, let us consider the case in which we simply divide the path in two steps (not
necessarily of the same length) as in panel (a) of Fig. 1. In that case and considering a free particle, the propagator
is given by (8)

1

i~

ˆ

dx1i~G (x, t, x1, t1)× i~G (x1, t1, 0, 0) =
1

i~

√
m

2πi~t1

√
m

2πi~ (t− t1)

ˆ

dx1e
i m

2~

(
x2

1
t1

+
(x−x1)2

t−t1

)

.
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Figure 3: (Left) Phase contribution of each path x1. (Middle) The integration over these phases which are Fresnel functions.
(Right) Schematic of the paths contributing for the propagator. Inside the blue shaded region, the paths which contribute the
most because the phase does not vary considerably. Outside this region, the phases vary considerably that they mostly interfere
destructively by averaging away.

Let us have a better look at the integral

ˆ

dx1e
i m

2~

(
x2

1
t1

+
(x−x1)2

t−t1

)

=

ˆ

dx1e
i mt

2~t1(t−t1) (x2
1−2

t1
t xx1+

t1
t x2) =

ˆ

dx1e
i mt

2~t1(t−t1)

(
(x1− t1

t x)
2
+

t1(t−t1)

t2 x2
)

= ei mx2

2t~

ˆ

dx1e
i mt

2~t1(t−t1) (x1− t1
t x)

2

= ei mx2

2t~

ˆ

dx1e
i

(x1−xcl)
2

2σ2 ,

with xcl = t1

t x and σ =
√

~t1(t−t1)
mt . The integration over x1 can now be done without much effort, yielding

√
2πi~(t−t1)t1

mt e
i
~
×mx2

2t , which is the well-known result (5). However, by simply performing the Gaussian integra-

tion we miss all the fun. Let us then have a closer look at the whole structure. Neglecting common factors, each path

(represented by different values of x1) contribute with the phase ei
(x1−xcl)

2

2σ2 = eiθ. Notice the phase θ increases for

|x1 − xcl| ≫ σ ∼
√

~

m . The real and imaginary part of the integrand are plotted in the left panel of Fig. 3.

In order to highlight the destructive interference of paths that are faraway from xcl, let us investigate the integral
ˆ ∞

−∞
dx1e

i
(x1−xcl)

2

2σ2 = 2 lim
L→∞

ˆ L

0

dxe
i
2 ( x

σ )2

= 2σ
√
π lim

L→∞

(

Fc

(

σLπ−1/2
)

+ iFs

(

σLπ−1/2
))

,

where Fc (x) =
´ x

0 cos
(

π
2 y

2
)

dy and Fs (x) =
´ x

0 sin
(

π
2 y

2
)

dy are the Fresnel functions which are plotted in the middle
panel of Fig. 3. It is now clear that only the paths near the stationary one contributes. Notice the convergence of

the Fresnel functions for large arguments. Indeed, for large arguments, we have that Fc (x) ≈ 1
2 + π

x sin
(

πx2

2

)

and

Fs (x) ≈ 1
2 − π

x cos
(

πx2

2

)

. The deviation from the convergent value falls as σ/L. [Notice it is not difficult to see why

this error is of order L−1. For instance, consider the integral I =
´∞

L
e−αx2

dx. By a simple variable changing, we
have that

I =
1√
α

ˆ ∞

√
αL

e−y2

dy = − 1√
α

ˆ ∞

√
αL

1

2y

(

e−y2
)′

dy = − e−y2

2
√
αy

∣
∣
∣
∣
∣

∞

√
αL

−
ˆ ∞

√
αL

1

2y2
e−y2

dy

=
1

2αL
e−αL2 −O

(
1

α2L3
e−αL2

)

.

Thus, for real positive α, the error is exponentially small. For pure imaginary α, the exponential is just a phase and
the error is of order L−1.]

A. Principle of least action for a single particle

Let us now be more serious find the special path xcl(t). Our mathematical problem is to find the path xcl that
extremizes the action

S[x] =

ˆ tf

ti

dt
(m

2
ẋ2 − V (x)

)

,
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with the constraints that x(ti) = xi and x(tf ) = xf . Let x = xcl + η, with the constraint that η(ti) = η(tf ) = 0.

Then, ẋ = ẋcl + η̇ and ẋ2 = ẋ2
cl +2ẋclη̇+O

(
η̇2
)
. For small deviations, V (x) = V (xcl)+ ∂V

∂x

∣
∣
x=xcl

η+O
(
η2
)
. Plugging

these results on S, we find that

S[x] =

ˆ

dt
(m

2
x2

cl − V (xcl)
)

+

ˆ

dt (mẋclη̇ − V ′(xcl)η) +O
(
η̇2, η2

)

= Scl + mẋclη|t=tf

t=ti
−
ˆ

dt (mẍcl + V ′(xcl)) η (t) +O
(
η̇2, η2

)
= Scl + δS,

where δS = −
´

dt (mẍcl + V ′(xcl)) η (t) + O
(
η̇2, η2

)
. As we want Scl =

´

dt
(

m
2 x

2
cl − V (xcl)

)
to be an extremum,

then δS must vanish in the linear order of η. This happens whenever

mẍcl = − ∂V

∂xcl
,

which is Newton’s 2nd law. Thus, xcl is the classical path, as could have been anticipated from the physical intuition
that classical mechanics must arise from quantum mechanics in the limit ~→ 0. Although classical mechanics is said
to minimize the action (therefore the principle of the least action), we only proved that the action is an extremum,
and that is the only necessary requirement.

B. Principle of least action for a generic system

We could have proceeded differently. Consider the general action

S =

ˆ tf

ti

L (t, x, ẋ) dt,

where x is a generalized coordinate. Again, our task is to find the optimal (stationary phase) path. Thus, let
x(t) = xcl(t) + ǫη (t). Then we apply the conventional wisdom of integral calculus to S with respect to ǫ. (Because
now S is a function of the variable ǫ.) Setting dS

dǫ

∣
∣
ǫ=0

= 0, we have that

0 =

ˆ

dt
dL
dǫ

∣
∣
∣
∣
ǫ=0

=

ˆ

dt

(
∂t

∂ǫ

∂L
∂t

+
∂x

∂ǫ

∂L
∂x

+
∂ẋ

∂ǫ

∂L
∂ẋ

)

=

ˆ

dt

(

η
∂L
∂x

+ η̇
∂L
∂ẋ

)

= η
∂L
∂ẋ

∣
∣
∣
∣

t=tf

t=ti

+

ˆ

dtη

(
∂L
∂x
− d

dt

(
∂L
∂ẋ

))∣
∣
∣
∣
ǫ=0

,

from which we recover the Euler-Lagrange equation ∂L
∂xcl
− d

dt

(
∂L

∂ẋcl

)

= 0. This can be easily generalized for any

number of particles.

C. The classical path in the phase space representation

Had we chosen the phase space representation of the path integral (9), then the stationary phase path would arise
in a different manner. Which manner is that? Let S =

´

dt (ẋp−H(x, p, t)) be the function we want to extremize.
Setting x = xcl(t) + ǫ1η1(t) and p = pcl(t) + ǫ2η2(t), then we are looking for

∇ǫS|ǫ=0 = (∂ǫ1S, ∂ǫ2S) = 0 =

ˆ

dt

(

−η1
∂H

∂x
+ η̇1p, η2

(

ẋ− ∂H

∂p

))

.

Using the same trick of integration by parts for the η̇1p term, we arrive at the equations

ṗcl = − ∂H
∂xcl

and ẋcl =
∂H

∂pcl
,

which are at the Hamilton-Jacobi equations. Again, we arrive at the same conclusion that the classical path extremizes
the action.
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D. Stationary phase approximation

We are now in position to determine the semiclassical approach. This approach applies for the case in which ~→ 0
(more precisely, when the system is such that the actions of all paths are S ≫ ~). Simply retaining the zeroth-order
(which is the classical contribution for the propagator) term in the propagator is not enough because we want to keep
some quantum fluctuations. We then keep the non-zero least (second) order in perturbation theory.

Mathematically, we are just interested in performing the integral
´

D [x] e
i
~

S[x]. For such, we choose the best
integration variable which is η (t) = x (t) − xcl (t). Since this is a simple shift, then D [x] = D [η]. In addition, we
Taylor expand the functional S up to second order in η,

S [x+ xcl] = S [xcl] +
1

2

ˆ

dtdt′η(t′)

(
δ2S

δx(t)δx(t′)

)∣
∣
∣
∣
x=xcl

η(t) +O
(
η3
)
,

since the first order term
´

dt
(

δS
δx(t)

)∣
∣
∣
x=xcl

η(t) = 0. We now have to define what exactly we mean by the second

functional derivative 1
2

´

dtdt′η(t′)
(

δ2S
δx(t)δx(t′)

)∣
∣
∣
x=xcl

η(t). We will follow the lines of thoughts of Secs. IV A and IV B.

Let us expand S =
´

m
2 ẋ

2 − V (x) dt up to second order in η. We have that ẋ2 = ẋ2
cl + 2ẋclη̇ + η̇2, and that

V (x) = V (xcl) + V ′(xcl)η + 1
2V
′′(xcl)η

2. Thus,

S [x] = S[xcl] + 0 +

ˆ

dt

(
m

2
η̇2 − 1

2
V ′′(xcl)η

2

)

= S[xcl] +
1

2

ˆ

dtη(t)

(

−m ∂2

∂t2
− V ′′(xcl)

)

η (t) ,

where we perform partial integration on the kinetic term:
´

dtη̇2 = ηη̇|t=tf

t=ti
−
´

dtηη̈. Therefore, we have found one
meaning for the 2nd functional derivative symbol

1

2

ˆ

dtdt′η(t′)

(
δ2S

δx(t)δx(t′)

)∣
∣
∣
∣
x=xcl

η(t) =
1

2

ˆ

dtη(t)

(

−m ∂2

∂t2
− V ′′(xcl)

)

η (t) . (12)

Thus, in the semiclassical approach, we have that

i~G =

ˆ

D [x(t)] e
i
~

S[x] ≈ e i
~

S[xcl]

ˆ

D [η(t)] e
i
~

1
2

´

dtη(t)
(
−m ∂2

∂t2−V ′′(xcl)
)

η(t)
.

As we have seen for the N = 2 case in the free-particle action, the values of η that contribute are of order η ∼
√
~.

Mathematically, the semiclassical approach is thus a clever reduction of the path integral into a Gaussian integral.
Now, our task is to compute the Gaussian integral over D [η], it simply yields

i~Gsemiclassical = F (xf , tf , xi, ti)e
i
~

S[xcl],

where the prefactor F is the result of the Gaussian integration [4]. Its interpretation is very important. Recalling

that |i~G|2 is the probability density for finding the particle at (xf , tf ) given that it was at (xi, ti), |F |2 is exactly
this quantity in the semiclassical approach. The result of in Gaussian integration is simply

ˆ

D [η(t)] e
i
~

1
2

´

dtη(t)
(
−m ∂2

∂t2−V ′′(xcl)
)

η(t)
= F =

[

Det

(

−m ∂2

∂t2 − V ′′(xcl)

2πi~

)]− 1
2

.

We now have to learn how to compute this determinant. But before doing so, let us see how it appears in a generic
Lagragean. Writing S =

´

dtL (t, x, ẋ) and x = xcl + ǫη, then

d2S

dǫ2
=

ˆ

dt
d

dǫ

(
∂t

∂ǫ

∂L
∂t

+
∂x

∂ǫ

∂L
∂x

+
∂ẋ

∂ǫ

∂L
∂ẋ

)

=

ˆ

dt
d

dǫ

(

η
∂L
∂x

+ η̇
∂L
∂ẋ

)

=

ˆ

dt

(
∂x

∂ǫ

(

η
∂2L
∂x2

+ η̇
∂2L
∂x∂ẋ

)

+
∂ẋ

∂ǫ

(

η
∂2L
∂ẋ∂x

+ η̇
∂2L
∂ẋ2

))

=

ˆ

dt

(

η2 ∂
2L
∂x2

+ 2ηη̇
∂2L
∂x∂ẋ

+ η̇2 ∂
2L
∂ẋ2

)∣
∣
∣
∣
x=xcl

.
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With that, we have found an alternative representation for Eq. (12) which is

1

2

ˆ

dtdt′η(t′)

(
δ2S

δx(t)δx(t′)

)∣
∣
∣
∣
x=xcl

η(t) =
1

2

ˆ

dt

(

η2 ∂
2L
∂x2

+ 2ηη̇
∂2L
∂x∂ẋ

+ η̇2 ∂
2L
∂ẋ2

)∣
∣
∣
∣
x=xcl

. (13)

Having found another representation for the second functional derivative of S, we can no longer delay the inevitable.
How do we precisely compute the Gaussian integral? For that, let us step back and work on the discrete representation
in Eq. (10). We then have to compute

ˆ N−1∏

k=1

dxk exp

[

i

~
∆t

N−1∑

ℓ=0

(

m

2

(
xℓ+1 − xℓ

∆t

)2

− V (xℓ)

)]
ˆ N−1∏

k=1

dxk exp

[
i

~
S (x0, . . . , xN )

]

,

where now S is a function of many variables. The first step, is to shift the many variables xk from their classical
(stationary phase) values xcl,k. Thus, let us define ηk = xk − xcl,k. The second step is to expand S in powers of the
deviations ηk. Up to second order, we have that

S ≈ Scl +

N−1∑

ℓ=1

∂S

∂xℓ

∣
∣
∣
∣
x=xcl

ηℓ +
1

2

N−1∑

ℓ,ℓ′=1

∂2S

∂xℓ∂xℓ′

∣
∣
∣
∣
x=xcl

ηℓηℓ′

= Scl + ∆t

N−1∑

ℓ=1



−m

(
xcl,ℓ+1−xcl,ℓ

∆t

)

−
(

xcl,ℓ−xcl,ℓ−1

∆t

)

∆t
− V ′ (xcl)



 ηℓ +
1

2
η

T
Mη

= Scl +
1

2
η

T
Mη,

where the linear order term vanishes identically, and

M =
m

∆t











2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2 · · ·
...

...
...

...
. . . −1

0 0 · · · −1 2











−∆t









V ′′ (xcl,1)
V ′′ (xcl,2)

V ′′ (xcl,3)
. . .

V ′′ (xcl,N−1)









.

Finally, we can find the propagator

i~G = e
i
~

Scl × lim
N→∞

( m

2πi~∆t

)N
2

ˆ N−1∏

k=1

dηke
i

2~ η
T
Mη = e

i
~

Scl × lim
N→∞

( m

2πi~∆t

)N
2

√

(2πi~)
N−1

Det (M)
.

We thus finally provided a way of computing

F =

[

Det

(

−m ∂2

∂t2 − V ′′(xcl)

2πi~

)]− 1
2

= lim
N→∞

( m

2πi~∆t

)N
2

√

(2πi~)N−1

Det (M)
. (14)

E. Application to the quadratic Lagrangeans

Notice the stationary phase (semiclassical) approach can be used to compute exactly any quadratic Lagrangean in

x and ẋ. This is because δ(n)S
δxn = 0 for n > 2.

The most general quadratic Lagragean has the form

L = a(t)ẋ2 + b(t)ẋx+ c(t)x2 + d(t)ẋ+ e(t)x,

where we neglect a possible constant term f(t). In this case, we have that (this is not an approximation)

S = Scl +

ˆ

dt
(
a(t)η̇2 + b(t)ηη̇ + c(t)η2

)

= Scl + ∆t

N−2∑

ℓ=0

(

aℓ

(
ηℓ+1 − ηℓ

∆t

)2

+ bℓηℓ

(
ηℓ+1 − ηℓ

∆t

)

+ cℓη
2
ℓ

)

= Scl +
1

2
η

T
Mη,



12

where the matrix M is such that their matrix elements areMi,i = 2ci+
2

∆t (2ai − bi), Mi,i+1 = Mi+1,i = 1
∆t (−2ai + bi),

and Mi,j = 0, otherwise. Here, the discretization of the function a(t) are such that aℓ = a(ti + ℓ
tf−ti

N ). [Analogously
for the other function b(t) and c(t).] The factor F is computed as stated in (14).

An important class of Lagrangeans are of the type

L = T − V =
1

2
mẋ2 +mω2x(eq)x− 1

2
mω2x2.

Therefore, we need only to compute

F = lim
N→∞

( m

2πi~∆t

)N
2

[Det (2πi~M)]
− 1

2 ,

with

M =
m

∆t











2 coshu −1 0 · · · 0
−1 2 coshu −1 · · · 0

0 −1 2 coshu · · ·
...

...
...

...
. . . −1

0 0 · · · −1 2 coshu











,

with 2 coshu = 2− (ω∆t)
2
.

Let us now compute this determinant in a recursive way. For N = 2, then the matrix is a scalar and the determinant

is simply DetM1 = 2 coshu = eu + e−u. For N = 3, we have M2 =

(
2 coshu −1
−1 2 coshu

)

, and the determinant

is 4 cosh2 u − 1 = e2u + 1 + e−2u. For a generic matrix of size ℓ = N − 1, it is easy to show that DetMℓ =
2 coshu (DetMℓ−1)−Det (Mℓ−2). With this, we arrive at

DetMℓ =
ℓ∑

i=0

e(ℓ−2i)u =
e(ℓ+2)u − e−ℓu

e2u − 1
=

sinh ((ℓ+ 1)u)

sinh u
.

In our case, it is simple to compute u because ∆t → 0. Thus 2 coshu = 2 cos (ω∆t), i.e., u = iω∆t. Finally, we find
that

F = lim
N→∞

( m

2πi~∆t

)N
2

√

(2πi~)
N−1

Det (M)
= lim

N→∞

( m

2πi~∆t

)N
2

√

(2πi~∆t)
N−1

sinω∆t

mN−1 sin (Nω∆t)

= lim
N→∞

( m

2πi~∆t

) 1
2

√

sinω∆t

sin (ωt)
=

√
mω

2πi~ sinωt
. (15)

For completeness, we compute the classical action

Scl = m

ˆ t

0

dt

(
1

2
ẋ2

cl + ω2x(eq)xcl −
1

2
ω2x2

cl

)

,

where ẍcl = −ω2
(
xcl − x(eq)

)
, and thus xcl = x(eq) + A cosωt + B sinωt, with x (0) = xi and x (t) = xf . We then

have that

Scl =
1

2
mω2

ˆ t

0

dt
(

x(eq)2 +
(
B2 −A2

)
cos 2ωt− 2AB sin 2ωt

)

=
1

2
mω2

(

x(eq)2t+

(
B2 −A2

2ω

)

sin 2ωt+
AB

ω
(cos 2ωt− 1)

)

=
1

2
mω

[

x(eq)2ωt+
(

x2
f + x2

i − 2x(eq)
(

xf + xi − x(eq)
))

cotωt− 2
(
xf − x(eq)

) (
xi − x(eq)

)

sinωt

]

. (16)
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F. Alternative approach to compute the prefactor F

In the semiclassical approximation we write the propagator as i~Gsemiclassical = Fe
i
~

S[xcl], where the prefactor F is
given by

F =

[

Det

(

−m ∂2

∂t2 − V ′′(xcl)

2πi~

)]− 1
2

,

and it contains all information about the quantum fluctuations about the classical action. We would like now to
discuss an alternative approach to compute F in order to improve our understanding of the semiclassical approach.
For simplicity, we write V ′′(xcl) = mω2 and discuss the solution of an (effective) harmonic oscillator. To evaluate the

determinant, we look for the eigenvalues λn of the second-order differential operator D (t) = −
(

∂2

∂t2 + ω2
)

, such that

Det (D (t)) =
∏∞

n=1 λn. To find these eigenvalues, we act with this operator on the fluctuations η (t) and we are left
with a differential equation subject to the (open) boundary conditions η (0) = η (T ) = 0, where T = tf − ti. We thus
look for solutions of the form

η (t) =

∞∑

n=1

ansen
(nπ

T
t
)

,

such that

−
(
∂2

∂t2
+ ω2

)

ansen
(nπ

T
t
)

=

[(nπ

T

)2

− ω2

]

︸ ︷︷ ︸

λn

ansen
(nπ

T
t
)

,

and

λn =
(nπ

T

)2

− ω2. (17)

The determinant follows immediately

Det

(

− ∂2

∂t2
− ω2

)

=

∞∏

n=1

[(nπ

T

)2

− ω2

]

=

∞∏

n=1

(nπ

T

)2 ∞∏

n=1

[

1−
(
ωT

nπ

)2
]

= C × sin (ωT )

ωT
.

We introduced a constant factor C, independent of ω, and employed the identity
∏∞

n=1

[

1− (x/nπ)
2
]

= sin (x) /x.

The prefactor F is then given by

F = C′

√

ωT

sin (ωT )
,

where the new factor C′ absorbs the various constant terms. To fix the value of C′ we recall that for ω = 0 we must
recover the free particle propagator, Eq. (5), and thus

F =

√
mω

2πi~ sin (ωT )
,

which naturally coincides with Eq. (15). For the Harmonic oscillator, the above expression is naturally exact because
the potential truncates at second order.

Let us now briefly explore some interesting features of this solution. First, we notice that (again with T = tf − ti)

T < nπ/ω, λn > 0 (min) ,
T > nπ/ω, λn < 0 (max) ,
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and thus we see that the classical action is a minimum only at short times. This illustrates the fact we only require
S[xcl] to show vanishing first order variations. Another interesting feature is that F is singular at times T = nπ/ω.
At these times, all trajectories pass through the points ±xi, η = 0 here, and these are known as focal points of the
trajectories. The propagator is actually regular and we have

i~Gsemiclassical =

{
δ (xf − xi) , T = 2πm/ω
δ (xf + xi) , T = 2π (m+ 1) /ω

,

where m is an integer, which is a directing consequence of the periodicity of the trajectories.

V. PATH INTEGRAL REPRESENTATION OF THE PARTITION FUNCTION

The partition function is a central quantity in statistical physics. Here, we show that it also has a path integral
representation much alike the one for the time evolution of closed quantum systems. For simplicity, let us consider
the canonical equilibrium partition function of a single particle system

Z =
∑

i

e−βEi =
∑

φ

〈

φ
∣
∣
∣e−βĤ

∣
∣
∣φ
〉

= tre−βĤ =

ˆ

dx
〈

x
∣
∣
∣e−βĤ

∣
∣
∣x
〉

,

where β−1 = kBT . Now, notice it can be rewritten as

Z =

ˆ

dxi

〈

xi

∣
∣
∣e−

i
~

tĤ
∣
∣
∣ xf

〉∣
∣
∣
xf =xi,t=−i~β

=

ˆ

dxi~G (xi, xi, β) ,

where

G(xf , xi, β) = ~
−1
〈

xf

∣
∣
∣e−βĤ

∣
∣
∣ xi

〉

= iG (xf , t, xi, 0) ,

is called the propagator in the imaginary time t = −i~β.
It is now clear that there is a relation between the real time evolution of a quantum system and its equilibrium

partition function.
We now investigate the corresponding imaginary time propagator. Starting from (9), we have that

~G(xf , xi, β) = lim
N→∞

ˆ N−1∏

k=1

dxk

N−1∏

l=0

dpl

2π~
exp

[

i

~
∆t

N−1∑

ℓ=0

((
xℓ+1 − xℓ

∆t

)

pℓ −H (pℓ, xℓ)

)]

=

ˆ

D [q (t)] exp

[
i

~

ˆ t

0

dt′
(
∂x

∂t′
p−H (p, x)

)]

=

ˆ

D [q (t)] e−
1
~

SE([x],[p]),

where x0 = xi, xN = xf , and ∆t = t
N = −i~β

N . Defining τ = it′, we find that

SE ([x], [p]) = −i
ˆ −i~β

0

dt′
(
∂x

∂t′
p−H (p, x)

)

=

ˆ

~β

0

dτ

(

−i∂x
∂τ
p+H (p, x)

)

=

ˆ

~β

0

dτ (−iẋp+H (p, x)) .

The action SE is called the Euclidean action in the phase space. Notice τ represents a real Euclidean “time.” We can
integrate over the momenta pℓ and obtain the Euclidean action in the coordinate space. Alternatively, we can use
Eq. (10) and arrive at

~G(xf , xi, β) = lim
N→∞

( m

2πi~∆t

)N
2

ˆ N−1∏

k=1

dxk exp

[

i

~
∆t

N−1∑

ℓ=0

(

m

2

(
xℓ+1 − xℓ

∆t

)2

− V (xℓ)

)]

= lim
N→∞

( m

2π~∆τ

)N
2

ˆ N−1∏

k=1

dxk exp

[

−1

~
∆τ

N−1∑

ℓ=0

(

m

2

(
xℓ+1 − xℓ

∆τ

)2

+ V (xℓ)

)]

=

ˆ

D [x] e−
1
~

´

dτ(m
2 ẋ2+V (x)) =

ˆ

D [x] e−
1
~

SE([x]), (18)

where the Euclidean action is SE =
´

dτ (T + V ). Notice the difference with respect to the conventional (Minkowski)
action in Eq. (11) SM ≡ S =

´

dtL =
´

dt (T − V ). So, the Euclidean action is obtained from the usual Minkowski
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action simply by changing the sign of the potential. Thus, the Euclidean action is directly related to the Hamiltonian
of the related classical theory.

It is interesting to note that in the great majority of the cases, we are interested in some mean value. In statistical

mechanics, this means we will be interested in some derivative of lnZ. In that case, the normalization term
(

m
2π~∆τ

)N
2

becomes irrelevant.
Finally, we rewrite the equilibrium partition function as

Z =
∑

all periodic paths

e−
1
~

SE =

ˆ

D [x (τ)] e−
1
~

´

~β
0

(T +V )dτ =

ˆ

D [x (β′)] e−
´

β
0

(T +V )dτ ′

, (19)

where the paths are such that xi = xf [or x (0) = x (~β)]. In the last passage, we have changed the integration
variable τ → τ ′~. In this way, the Euclidean action becomes dimensionless and ~ drops out from the calculation. The
difference is that the “time” τ ′ has units of inverse of energy.

Notice that the path integral formalism unveils a deep connection between classical statistical mechanics and
quantum mechanics (as well as between classical and quantum statistical mechanics). Without the path integral

formalism, a watchful one could have noticed that computing the equilibrium partition function Z = tre−βĤ of a
quantum system is equivalent (via an analytical continuation β → it/~) to compute the real time evolution of this
system along all possible closed loops. However, the path integral formulation tells us that this quantum partition
function is equal to the partition function of some different (but related) classical system. This fact builds a bridge
between the areas of field theory and statistical physics which have benefited from each other over the years.

Before we start computing the partition function in the path-integral formalism, let us finally compare Z in (19)
with the partition function of a linear string of length L in some external potential V (x). For small displacements

u(x) (with 0 < x < L), the system energy for some configuration u(x) is
´ L

0
dx
(
σu̇2 + v(u)

)
+ const. The first term

accounts for the elastic energy and σ is the string tension. Thus, summing over all possible configurations D [u(x)],
we have that

Zcl =

ˆ

D [u(x)] e−βcl

´

L
0

dx(t+v) =

ˆ

D [u(x)] e−
βcl

ξ

´

L
0

dx(T +V ) =

ˆ

D [u(t)] e−βcl
c
ξ

´L/c
0 dt(T +V ),

where we have inserted two new quantities: some velocity c (from which x = ct) and some correlation length ξ (from
which we defined the density of potential energy v(u) = V (u)/ξ, and the density of elastic energy t = T/ξ).

Comparing with (19), we have that the effective classical temperature is kBTcl
c
ξ = β−1

cl = ~ and the system length

in the new imaginary-time dimension is L = c~β.
Notice that (19) was derived for a system constituted by a single quantum particle. The path-integral formulation

tells us that this is equivalent to a classical system of interacting many particles. The size of this system is L which
is formally infinite in the zero-temperature limit β →∞. The effective classical temperature is solely due to quantum
fluctuations since Tcl ∝ ~. Evidently, the precise analogy is model dependent since the length ξ and speed c constants
may not be universal and depends on how one takes the continuum limit from the quantum to the classical formulation.
For now, we arrive at the interesting conclusion that a zero-temperature quantum system correspond to a classical
one in d+ 1 dimensions. We will discuss this quantum-to-classical mapping latter on.

A. The quantum Harmonic Oscillator

Let us illustrate the connection between the real time evolution of a quantum system and its partition function
taking the 1D quantum Harmonic Oscillator, the Hamiltonian of which is Ĥ = ~ω

(
â†â+ 1

2

)
, as an example.

Using the conventional methods of statistical physics, we simply have that

Z = tre−βĤ =

∞∑

n=0

e−β~ω(n+ 1
2 ) = e−

β~ω
2

(
1

1− e−β~ω

)

=
1

2 sinh 1
2β~ω

.

However, this result can be obtained via the more “painful” path-integral way. Gladly, we can already start with
the real time results (15) and (16). Using that xi = xf = x0, x(eq) = 0, and that t = −i~β, we have that

~G(x0, x0, β) =

√
mω

2πi~ sinωt
e

i
~

1
2 mω[2x2

0 cot ωt− 2x0x0
sin ωt ] =

√
mω

2π~ sinhβ~ω
e−

1
~

mωx2
0( cosh β~ω−1

sinh β~ω ). (20)
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The partition function is now obtained by a simple Gaussian integration over x0:

Z =

ˆ

dx0~G (x0, x0, β) =

√
mω

2π~ sinhβ~ω
×
√

π~ sinhβ~ω

mω (coshβ~ω − 1)
=

1

2 sinh 1
2β~ω

.

We can now perform an analytical continuation from the Euclidean time to the Minkowski time β → it/~. Then

Z =
1

2 sinh 1
2β~ω

=

∞∑

n=0

e−β~ω(n+ 1
2 ) =

∞∑

n=0

e−iωt(n+ 1
2 ) =

∞∑

n=0

e
1

i~ tEn = tre
1

i~ tĤ ,

where En = ~ω
(
n+ 1

2

)
is the spectrum of the Harmonic Oscillator.

VI. QUANTUM-CLASSICAL MAPPING

We now want to further explore the relation between quantum statistical mechanics (or, equivalently, quantum
mechanics in the imaginary time) and classical statistical mechanics. Although this subject could fit as a subsection
of the previous section, we thought that this relation is so important that it deserves its own section.

At zero-temperature, the fluctuations on a quantum system are only due to its zero-point fluctuations, i.e., the
fluctuation are exclusively of quantum character due to the uncertainty principle. What is the corresponding classical
system? First, notice the length of the imaginary-time dimension is ∝ β →∞. Therefore, the corresponding classical
system leaves in d+ 1 dimensions. Also, the classical system is an interacting one but we leave this part for later. In
addition, a classical system does not have quantum fluctuations. What is its source of fluctuations, then? It can only
be of thermal nature. Thus, the strength of the zero-point fluctuations must correspond to an effective temperature
in the classical counterpart.

What are the changes when we now consider the case of finite-temperature. In that case, the new imaginary time
dimension is no longer infinite. As it is well known from classical statical mechanics, thermal fluctuations are stronger
in lesser dimensions. Therefore, thermal fluctuations in the quantum systems correspond to a smaller classical system
in the imaginary-time dimension.

In order to make the above statements more precise and less abstract, let us illustrate them by considering the
simple model of a localized spin-1/2 particle in a longitudinal B and transversal h field

Ĥ = −hσ̂x −Bσ̂z , (21)

where the σ̂x =

(
0 1
1 0

)

and σ̂z =

(
1 0
0 −1

)

are Pauli matrices representing the spin-1/2 particle (or a generic two-

level system). We can view this problem in the following way. The longitudinal field splits the degeneracy between
the |↑〉 and |↓〉 states. The transverse field induces flips between these states and hence can be regard as the strength
of the quantum fluctuation.

A. Analyzing the problem in the quantum realm

Let us diagonalize this Hamiltonian in the Schrödinger formalism. Notice Ĥ = −htot · σ̂ = −htotσ̂
n, where

htot = (h, 0, B) = htotn̂ = htot (sin θx̂+ cos θẑ), with htot =
√
h2 +B2 and tan θ = h

B . Therefore, the spectrum is
Eր = −htot and Eւ = htot. The Eigenstates are the basis of σ̂n = sin θσ̂x + cos θσ̂z :

(
|ր〉
|ւ〉

)

=

(
sin 1

2θ − cos 1
2θ

cos 1
2θ sin 1

2θ

)(
|↑〉
|↓〉

)

,⇒
(
|↑〉
|↓〉

)

=

(
sin 1

2θ cos 1
2θ

− cos 1
2θ sin 1

2θ

)(
|ր〉
|ւ〉

)

.

The partition function is simply

Z = 2 coshβhtot. (22)

The imaginary time propagators are

~G(↑, ↑, β) =
〈

↑
∣
∣
∣e−βĤ

∣
∣
∣ ↑
〉

= eβhtot |〈↑ | ր〉|2 + e−βhtot |〈↑ | ւ〉|2

= eβhtot sin2 1

2
θ + e−βhtot cos2 1

2
θ,

~G(↓, ↓, β) = eβhtot cos2 1

2
θ + e−βhtot sin2 1

2
θ.
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Again, we can compute Z = ~G(↑, ↑, β) + ~G(↓, ↓, β) = 2 coshβhtot.
The free energy is

f = − 1

β
lnZ = − 1

β
[ln (coshβhtot) + ln 2] .

Therefore, the (longitudinal) magnetization is

m = − ∂

∂B
f =

1

β
tanhβhtot ×

βB√
h2 +B2

=
B

htot
tanhβhtot. (23)

Thus, at the zero temperature limit (β →∞),

mT =0 →
B

htot
. (24)

(Notice that the h is responsible for diminishing m, i.e., it parameterizes the strength of the quantum fluctuations.)
The magnetic susceptibility is also computed:

χ =
∂

∂B
m

∣
∣
∣
∣
B→0

=
1

h
tanhβh. (25)

Then, at zero temperature,

χT =0 =
1

h
. (26)

We now compute the connected correlation function G (t) = 〈σ̂z (0) σ̂z (t)〉 − 〈σ̂z (0)〉 〈σ̂z (t)〉. The temporal mean
value of σ is the magnetization itself

〈σ̂z (t)〉 =
1

Z
tr
{

e
i
~

Ĥtσ̂ze−
i
~

Ĥte−βĤ
}

=
1

Z
tr
{

σ̂ze−
i
~

Hte−βHe
i
~

Ht
}

=
1

Z
tr
{
σ̂ze−βH

}
= m.

The two-body correlation, however, is time-dependent:

〈σ̂z (0) σ̂z (t)〉 =
1

Z
tr
{

σ̂ze
i
~

Ĥtσ̂ze−
i
~

Ĥte−βĤ
}

.

The above trace we will be computed in the basis of σ̂n̂. Thus,

〈

ր
∣
∣
∣σ̂ze

i
~

Ĥtσ̂ze−
i
~

Ĥte−βĤ
∣
∣
∣ր

〉

= e(
i
~

t+β)htot

〈

ր
∣
∣
∣σ̂ze

i
~

Ĥtσ̂z
∣
∣
∣ր

〉

,

= − cos θe(
i
~

t+β)htot

〈

ր
∣
∣
∣σ̂ze

i
~

Ĥt
∣
∣
∣ր

〉

+ sin θe(
i
~

t+β)htot

〈

ր
∣
∣
∣σ̂ze

i
~

Ĥt
∣
∣
∣ւ

〉

,

= − cos θeβhtot 〈ր |σ̂z | ր〉+ sin θe(2 i
~

t+β)htot 〈ր |σ̂z| ւ〉 ,
= cos2 θeβhtot + sin2 θe(2 i

~
t+β)htot .

and
〈

ւ
∣
∣
∣σ̂ze

i
~

Ĥtσ̂ze−
i
~

Ĥte−βĤ
∣
∣
∣ւ

〉

= e−( i
~

t+β)htot

〈

ւ
∣
∣
∣σ̂ze

i
~

Ĥtσ̂z
∣
∣
∣ւ

〉

,

= cos θe−( i
~

t+β)htot

〈

ւ
∣
∣
∣σ̂ze

i
~

Ĥt
∣
∣
∣ւ

〉

+ sin θe−( i
~

t+β)htot

〈

ւ
∣
∣
∣σ̂ze

i
~

Ĥt
∣
∣
∣ր

〉

,

= cos2 θe−βhtot + sin2 θe−(2 i
~

t+β)htot .

Therefore,

〈σ̂z (0) σ̂z (t)〉 =
2

Z

[
cos2 θ coshβhtot + sin2 θ cosh

(
−2τ~−1 + β

)
htot

]
,

= cos2 θ + sin2 θ
cosh

(
−2τ~−1 + β

)
htot

coshβhtot
=

(
B

htot

)2

+

(
h

htot

)2 cosh
(
−2τ~−1 + β

)
htot

coshβhtot
,
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with τ = −it. Therefore,

G (t) =

(
B

htot

)2
1

cosh2 βhtot

+

(
h

htot

)2 cosh
(
−2τ~−1 + β

)
htot

coshβhtot
. (27)

In the limit of T → 0,

G (τ) →
(

h

htot

)2
e(−2τ~−1+β)htot

eβhtot

=

(
h

htot

)2

e−τ/ξτ , with ξτ =
~

2htot
=

~

2
√
h2 +B2

. (28)

For B = 0,

ξτ =
~

2h
, and G (τ, B = 0) = e−τ/ξτ = e−2 τh

~ . (29)

We now compute the same quantities in the classical path-integral formulation.

B. Analyzing the problem in the classical realm

Our first task is to derive the path integral for the Hamiltonian partition function. Choosing the partition function
to be represented in the σ̂z basis, i.e., σ̂z |↑〉 = |↑〉 and σ̂z |↓〉 = − |↓〉, we then have that

Z = tre−βĤ =
∑

σ=↑,↓

〈

σ
∣
∣
∣e−βĤ

∣
∣
∣σ
〉

,

=
∑

σ1,...,σN

〈

σ0

∣
∣
∣e−

β
N Ĥ
∣
∣
∣ σ1

〉〈

σ1

∣
∣
∣e−

β
N H
∣
∣
∣ σ2

〉

. . .
〈

σN−1

∣
∣
∣e−

β
N H
∣
∣
∣ σN

〉

,

where σ0 = σN , and we will take the N →∞ limit. In this limit, we have that e−
β
N Ĥ = e

β
N hσ̂x

eB β
N σ̂z

. We now have
to deal with

〈

σk−1

∣
∣
∣e

β
N hσ̂x

eB β
N σ̂z

∣
∣
∣σk

〉

=

[
∑

σx=→,←
e

β
N hσx 〈σk−1|σx〉 〈σx|σk〉

]

e
β
N Bσk ,

where we have inserted I =
∑

σx |σx〉 〈σx|. We now want to conveniently evaluate
∑

σx e
β
N hσx 〈σk−1|σx〉 〈σx|σk〉 . Since

〈↑ | →〉 = 〈↓ | →〉 = 〈↑ | ←〉 = −〈↓ | ←〉 = 1/
√

2, it is easy to see that

∑

σx

e
β
N hσx 〈σk−1|σx〉 〈σx|σk〉 =

1

2

(

e
β
N h + σk−1σke

− β
N h
)

.

However, for convenience, we wish to express it as exp {−f (σk−1, σk)}. Then, we try the Ansatz

f (σk−1, σk) = aσk−1σk + bσk−1 + cσk + d.

This yields to the following system of equations:

2 exp {− (a+ b+ c+ d)} = exp {βh/N}+ exp {−βh/N} ,
2 exp {− (−a− b+ c+ d)} = exp {βh/N} − exp {−βh/N} ,
2 exp {− (−a+ b− c+ d)} = exp {βh/N} − exp {−βh/N} ,

2 exp {− (a− b− c+ d)} = exp {βh/N}+ exp {−βh/N} ,

which solution is trivially obtained:

a = −1

2
ln

(

coth
βh

N

)

; b = c = 0, d = −1

2
ln

(
1

2
sinh

2βh

N

)

.
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0 1 N

β

Figure 4: Schematics of a single path in the imaginary-time direction of length β with periodic boundary conditions. Equiva-
lently, this path corresponds to a single configuration of the classical Ising chain.

Moreover, notice that σkσk−1 = 1− (σk − σk−1)2 /2, then we rewrite

f (σk−1, σk) = a+ d− a

2
(σk − σk−1)

2
= − ln

(

cosh
βh

N

)

+
1

4
ln

(

coth
βh

N

)

(σk − σk−1)
2
.

Finally, we now can path integral representation of the partition function as

Z = lim
N→∞

(

cosh
βh

N

)N ∑

σ1,...,σN

e−SE ,

with

SE =

N∑

k=1

{

− β
N
Bσk +

1

4
ln

(

coth
βh

N

)

(σk − σk−1)
2

}

=

N∑

k=1

{
−B̃σk − Jσkσk−1

}
+
N

2
ln

(

coth
βh

N

)

, (30)

with J = 1
2 ln

(

coth βh
N

)

and B̃ = β
NB. We have arrived at an important conclusion. The quantum Hamiltonian

(21) thus maps to a classical Hamiltonian (30). This is the classical Hamiltonian of a classical ferromagnetic Ising
chain with periodic boundary conditions σ0 = σN (see Fig. 4). In this classical system, we have that βclJcl = J and
βclBcl = B̃. We would like to call the attention to the fact that Jcl depends on h. For h→ 0, notice that βclJcl →∞.
This favors configurations that are mostly ferromagnetic, i.e., configurations in which the spins are mostly aligned.
This corresponds to paths in the imaginary-time direction without spin flips. This is in accordance with the fact that
quantum fluctuations are induced by hσ̂x.

The partition function is

Z = lim
N→∞

(

cosh
βh

N

)N ∑

σ1,...,σN

e−SE .

The one-dimensional Ising chain is well-known. Using the transfer matrix technique, we compute

Z = lim
N→∞

(
1

2
sinh

2βh

N

)N
2 ∑

σ1,...,σN

{[

eJσ1σ2+B̃(σ1+σ2)/2
] [

eJσ2σ3+B̃(σ2+σ3)/2
]

. . .
[

eJσN σ1+B̃(σN +σ1)/2
]}

,

= lim
N→∞

(
1

2
sinh

2βh

N

)N
2

tr {T1T2 . . .TN} ,

where

T = Ti =

(

eJ+B̃ e−J

e−J eJ−B̃

)

, ⇒ Z = lim
N→∞

(

cosh
βh

N

)N

tr
{
T

N
}
,

yielding

Z = lim
N→∞

(
1

2
sinh

2βh

N

)N
2 (
tN+ + tN−

)
, with t± = eJ

(

cosh B̃ ±
√

sinh2 B̃ + e−4J
)

,
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being the eigenvalues of T. Note that Z will be dominated by the largest t in the limit N → ∞. In this limit,

t± =
√

N
hβ

[

1± htotβ
N +O

(
β
N

)2
]

. Then

Z = lim
N→∞

(
1

2
sinh

2βh

N

)N
2

(√

N

hβ

)N ((

1 +
htotβ

N

)N

+

(

1− htotβ

N

)N
)

=
(
eβhtot + e−βhtot

)
= 2 coshβhtot,

which recovers (22). From this, the thermodynamical observables follows straightforwardly.

However, it is useful to consider the β → ∞ limit from the start. In this case, we take ǫ = β
N finite. Only in the

end of the calculation we take ǫ→ 0. In this case, the free-particle per particle becomes

f =
1

N
(− lnZ) = − ln t+ + const.

We now can compute the magnetization

m = − ∂

∂H
f =

sinh B̃
√

sinh2 B̃ + e−4J
=

sinh ǫB
√

sinh2 ǫB + tanh2 ǫh
. (31)

Now taking the limit ǫ→ 0,

m→ ǫB
√

(ǫB)
2

+ (ǫh)
2

=
h

htot
, (32)

recovering the quantum result (24) in the limit T → 0. In the same way,

χ =
∂

∂h
m

∣
∣
∣
∣
m→0

= lim
h→0

ǫ

coth2 ǫh
× 1
[

1 +
(

1
sinh ǫB coth ǫh

)2
]3/2

× 1

sinh3 ǫB
= ǫ coth ǫh. (33)

Taking the limit ǫ→ 0,

χ→ ǫ× 1

ǫh
=

1

h
, (34)

which recovers the quantum result (26) at T = 0.
The correlation function can be computed through

〈σiσi+r〉 =
1

Z
tr
{
T

i−1σ̂iT
rσ̂i+rT

N−i−r+1
}

=
1

Z
tr
{
σ̂iT

rσ̂i+rT
N−r

}
.

The matrix σ̂ is diagonal and equals the σ̂z Pauli matrix. We, however, wish to write it in the basis that diagonalizes
T: V

−1
TV = D, where V is the matrix of the eigenvectors of T:

〈σiσi+r〉 =
1

Z
tr
{
σ̂iVD

r
V

T σ̂i+rVD
N−r

V
T
}

=
1

Z
tr

{(
a b
b −a

)(
tr+ 0
0 tr−

)(
a b
b −a

)(
tN−r
+ 0

0 tN−r
−

)}

,

with
(
a b
b −a

)

= V
−1σ̂z

V. Since V =

(
a1 −a2

a2 a1

)

,⇒ a = a2
1 − a2

2 and b = −2a1a2.

[Note

(
a1

a2

)

is the eigenvector with the greatest eigenvalue (t+).] Then,

〈σiσi+r〉 =
1

Z
tr

(
atr+ btr−
btr+ −atr−

)(
atN−r

+ btN−r
−

btN−r
+ −atN−r

−

)

=
1

Z
tr

(
a2tN+ + b2tN−r

+ tr− ab
(
tr+t

N−r
− − tN−

)

ab
(
tN+ − tN−r

+ tr−
)
b2tr+t

N−r
− + a2tN−

)

,

=
1

tN+ + tN−

[
a2
(
tN+ + tN−

)
+ b2

(
tN−r
+ tr− + tr+t

N−r
−

)]
→ 1

tN1

[
a2
(
tN1 + tN2

)
+ b2

(
tN−r
1 tr2 + tr1t

N−r
2

)]
,

→ a2 + b2

(
t−
t+

)r

+O
(
t−
t+

)N−r

+O
(
t−
t+

)N

,
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in the limit N ≫ r and N →∞.
The connected correlation function is

G (r) = 〈σiσi+r〉 − 〈σi〉 〈σi+r〉 .

Therefore, we need to compute 〈σi〉 (which equals m):

〈σi〉 =
1

Z
tr
{
T

i−1σiT
N−i

}
=

1

Z
tr
{
σiT

N
}

=
1

Z
tr

{(
a b
b −a

)(
tN+ 0
0 tN−

)}

,

=
a

tN+ + tN−

(
tN+ − tN−

)
→ a.

Finally,

G (r)→ a2 + b2

(
t−
t+

)r

− a2 = b2e−r/ξ, with ξ =
1

ln (t+/t−)
.

For B = 0, the correlation length becomes

ξ (B = 0) =
1

ln ((eJ + e−J) / (eJ − e−J))
=

1

ln
(

(1 + e−2J) (1− e−2J)
−1
) ,

≈ 1

ln ((1 + e−2J) (1 + e−2J))
=

1

2 ln (1 + e−2J)
≈ 1

2
e2J , (35)

for J ≫ 1.
Since m = 〈σi〉, it implies that

a = m =
sinhH

√

sinh2 H + e−4J
.

Therefore, using the normalization of the eigenvectors (a2
1 + a2

2 = 1), we can find that a2
1 = (1 +m) /2. The constant

b2 = (−2a1a2)
2

= 4a2
1

(
1− a2

1

)
= 4

(
1 + m

2

)(
1−m

2

)

= 1−m2 =
e−4J

sinh2 H + e−4J
.

Note that b → 0 when J → ∞, which is equivalent to ǫh → 0 (remember that J = ln (coth ǫh) /2). However, when
B̃ → 0, then b→ 1. Taking the ǫ→ 0 limit first,

b→ eln(ǫh)2

(ǫB)
2

+ eln(ǫh)2
→ h2

h2
tot

,

which allow us to conclude that b does not depend on ǫ. Now we can compute b in the limit B → 0,

b =
h2

h2 +B2
→ 1. Also, ξ → 1

2
eln(ǫh)−1

=
1

2ǫh
. (36)

Then,

G (r)→
(
h2

h2
tot

)

e−2ǫhr = e−2ǫhr,

which is the same as in the quantum version (29) if we identify

β

N
r =

τ

~
. (37)

This confirm the proper order of taking the limits: first take N →∞ and then ǫ→ 0 as the last step. Finally, this is
an important result because it tells us how to relate the imaginary-time length τ (of the quantum formulation) with
the real space r (of the classical formulation).
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C. Generalization to higher dimensions

We now want to explicitly show that the transverse field Ising model maps to a classical Ising model in d + 1
dimensions at T = 0. The quantum Hamiltonian is

Ĥ = −
∑

α,β

Jα,β σ̂
z
ασ̂

z
β −

∑

α

(hασ̂
x
α +Bασ̂

z
α) .

The corresponding partition function is

Z =
∑

σ1,...,σN

〈

σ1, . . . , σN

∣
∣
∣e−βĤ

∣
∣
∣σ1, . . . , σN

〉

=
∑

{σα}

〈

{σα}
∣
∣
∣e−βĤ

∣
∣
∣ {σα}

〉

= lim
N→∞

∑

{σα,0}
· · ·

∑

{σα,N}

〈

{σα,0}
∣
∣
∣e−

β
N Ĥ
∣
∣
∣ {σα,1}

〉

. . .
〈

{σα,N−1}
∣
∣
∣e−

β
N Ĥ
∣
∣
∣ {σα,N}

〉

.

Then, we have to deal with the time slice

〈

{σα,k−1}
∣
∣
∣e−

β
N Ĥ
∣
∣
∣ {σα,k}

〉

=

〈

{σα,k−1}
∣
∣
∣
∣
e

β
N

∑

α
hασ̂x

αe
β
N

(∑

α,γ
Jα,γ σ̂z

ασ̂z
γ +
∑

α
Bασ̂z

α

)∣
∣
∣
∣
{σα,k}

〉

=
〈

{σα,k−1}
∣
∣
∣e

β
N

∑

α
hασ̂x

α

∣
∣
∣ {σα,k}

〉

e
β
N

(∑

α,γ
Jα,γ σα,kσγ,k+

∑

α
Bασα,k

)

.

As in the single-spin case, the non-commuting σ̂x term yields to

〈

{σα,k−1}
∣
∣
∣e

β
N

∑

α
hασ̂x

α

∣
∣
∣ {σα,k}

〉

= e
β
N (
∑

α

1
2 ln(coth βhα

N )σα,kσα,k−1+ 1
2 ln( 1

2 sinh 2βh
N )).

Thus, collecting all the terms, we arrive at the Euclidean action

SE = −
∑

α,γ,k

J̃α,γσα,kσβ,k −
∑

α,k

B̃ασα,k −
∑

α,k

J̃ ′ασα,kσα,k−1,

where J̃α,γ = β
N Jα,γ , B̃α = β

NBα, and J̃ ′α = β
2N ln

(

coth βhα

N

)

. This action corresponds to classical Ising model in

d + 1 dimensions where the coupling between the spins in the spatial dimension are J̃α,γ and the couplings between

the spins along the imaginary-time dimension is J̃ ′α, which are uniform along that direction (see Fig. 5).

VII. TUNNELING AND INSTANTONS

In this section, we would like to illustrate a well-known phenomenon in the path-integral representation: the
quantum tunneling. We will not be able to solve the problem in full glory because of some functionals that are
cumbersome to compute. However, it does not mean we cannot analyze the structure of the tunneling phenomena in
the path-integral formalism. As we will show, we will be able to understand an important structure called instanton.

Consider for instance the case of a single particle in a double-well potential at zero-temperature, i.e., in its ground
state (blue solid curve in Fig. 6). For simplicity, let us consider that this potential is symmetric, i.e., V (x) = −V (x).
We are interested in computing the (transition amplitudes) propagatorsG(±a,±a, t), meaning the particle is originally
at the left (or right) well x0 = ∓a at t0 = 0 and at the right (or left) well xf = ±a at time tf = t. The particle goes
from the left to the right well via quantum tunneling. Notice that a single tunneling is not the only possibility. There
are many possibles tunnelings back and forth between the wells.

The propagator is a good quantity to study here because, for long times, it will probe the tunneling phenomena via
the two lowest-energy Eigenstates of the problem (which are the symmetric and anti-symmetric combinations of the

orbitals localized in each minima). Thus, from the structure of the propagator, namely G ∝ e− i
~

E0t ± ee− i
~

(E0+∆E)t,
we will be able to extract the energy difference between these states, and therefore, the tunneling rate at long times.

As we have learned from the path integral formulation, the particle goes from one well to the other via all possible
paths. In the semiclassical approximation, we have also learned that the classical path (i.e., the one determined by
classical mechanics) is the one that contributes the most. But for the quantum tunneling phenomena, notice there
is no such classical path. Well, there is no such classical path in the real time. Recall that in the imaginary time
formalism, the particle is under the influence of the inverted potential −V (x) (red dashed curve in Fig. 6). In this
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x

τ
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γ

J̃α,γ

J̃α,γ

J̃α,γ

J̃α,γ

Jα,γ 1D quantum Ising system

2D classical Ising system

Figure 5: Schematics of a 1D quantum Ising chain mapped to a 2D classical Ising system. The vertical direction is the
imaginary-time direction. Edges with different colors and thickness represent Ising couplings of different magnitudes. Likewise,
arrows represent transverse fields.
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Figure 6: (Left) A symmetric double-well potential. The minima are at x = ±a, and the barrier height is V0. The red dashed
curve represents the inverted potential. (Right) The corresponding instanton solution.

case, a zero-energy particle initially located at x0 = −a could propagate “downhill” until x = 0 and then “climb” it
until xf = +a. Therefore, it is natural (i.e., more intuitive [5]) to tackle this problem in the imaginary-time formalism.
We then change gears and focus on the Euclidean propagators

~G (±a, ~β,±a, 0) =

ˆ

D [x(τ)] e−
1
~

SE , with SE =

ˆ

~β

0

dτ

(
1

2
mẋ2 + V (x)

)

,

where x is a function of the imaginary time τ . The classical stationary phase (or saddle point) path is given by
mẍcl = V ′(xcl). For the total energy E = 0 case, there are two type of solutions: (a) the trivial solutions xcl = ∓a
meaning the particle stays at rest, and the interesting solutions (b) in which the particle leaves its equilibrium position
x0 = ∓a, pass through the “potential” minimum at x = 0, and finally reaches its new equilibrium position xf = ±a.

The trivial solutions (a) gives us the physics zero-point fluctuation in a single well similar to that of Eq. (20). Setting

x0 = 0 in Eq. (20), taking the β~ω ≫ 1 limit, and Wick rotating β → it/~, we find that i~G(a, a, t)→ Fe−
1
~

SE [xcl] =
√

mω
2π~ sinh β~ωe

0 →
√

mω
π~
e−

1
2 β~ω →

√
mω
π~
e−

i
2 ωt. Notice this is a way of obtaining the Harmonic Oscillator ground-

state energy since i~G→ |φ0(0)|2 e− i
~

E0t =
√

mω
π~
e−

i
2 ωt in the long-time limit. Evidently, the frequency ω is obtained

by V ′′(±a) = 8V0

a2 = mω2.
The interesting solutions (b) is the new deal. They are called instanton solutions. In order to have a better feeling
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of what they are, let us try to compute these solutions. The corresponding action is

Sinst
E,cl =

ˆ

dτ

(
1

2
mẋ2

cl + V (xcl)

)

=

ˆ

dτmẋ2
cl =

ˆ a

−a

dxcl

√

2mV (xcl),

where we have used that the total energy EE ≡ m
2 ẋ

2 − V (x) = 0. (Recall the particle actually moves in the inverted

potential. Likewise, we could simply recall that the total energy is − 1
2mẋ

2 + V (x).) Notice therefore that, for a
generic V (x), we cannot perform this integration. For that reason, let us then restrict ourselves to the potential

V (x) = V0((x/a)
2 − 1)2. In this case, we can solve the classical path via the energy method:

´ xcl

−a
dx
√

m
2V (x) =

√
m

2V0

´ xcl/a

−1
dz

1−z2 = a
√

m
8V0

ln
(

1+z
1−z

)∣
∣
∣

z=xcl/a

z=−1+0+
= τ−τ0. Evidently, we need to set the initial condition that at τ = −∞

the particle is at x = −a + 0+, otherwise the classical particle does not leave the equilibrium position xeq = −a.
Solving the algebra, we find that

xinst
cl (τ) = −a tanh

(
1

2

(
τ − τ0

στ

))

, with στ =

√

ma2

8V0
,

and we have chosen τ0 such that xinst
cl (τ0) = 0. The interesting feature is that for only a brief time interval (of order

στ ) the “classical” particle is not in one of its equilibrium position ±a, i.e., the particle goes from one equilibrium
position to the other in a instant. Thus, the name instanton. [In the jargon, it is said that instantons are localized

solutions in the imaginary time; for |τ − τ0| ≫ στ , then a2 −
(
xinst

cl

)2 ≈ exp(−
∣
∣
∣

τ−τ0

στ

∣
∣
∣) with στ playing the role of

the instanton size, i.e., the instanton exists for a short instant of length στ .] The corresponding classical action is

Sinst
E,cl =

√
2mV0a

´ 1

−1
dz
(
1− z2

)
= 4

3

√
2ma2V0. Finally, although these expressions are particular for the potential

V0((x/a)
2 − 1)2, we will assume that other symmetric non pathological double-well potentials have similar instanton-

like solutions, i.e., xcl is at ±a except for a brief instant of order στ ∝
√

ma2

V0
and the corresponding action is

Sinst
E,cl ∝ V0στ .

Evidently, there is the anti-instanton solution xinst
cl (τ) = −xinst

cl (τ) which brings the particle from the right to the

left minimum. Notice that Sinst
E,cl = Sinst

E,cl.
We can now compute the single-instanton propagator in the semiclassical approach

~Ginst = e−~
−1Sinst

E,clF,

where F is [see (14)]

F = lim
N→∞

( m

2πi~∆t

)N
2

√

(2πi~)
N−1

Det (M)
→ lim

N→∞

( m

2π~∆τ

)N
2

√

(2π~)
N−1

Det (M)

where

M =
m

∆τ











2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2 · · ·
...

...
...

...
. . . −1

0 0 · · · −1 2











+ ∆τ










V ′′
(
xinst

cl,1

)

V ′′
(
xinst

cl,2

)

V ′′
(
xinst

cl,3

)

. . .

V ′′
(
xinst

cl,N−1

)










,

and V ′′(x) = 8V0

a2 [1− 1
2 (1− (x/a)2)]. We will not compute this determinant here. Simply, we will assume the value of

F is known. Notice that the anti-instanton propagator is equal to the instanton propagator.
Are we done for computing the tunneling propagator? Certainly not. First, recall that τ0 is a almost a free

parameter. By changing the position τ0 of the instanton, the total action will not change appreciably (because we
are considering the case στ ≪ ~β). Thus, all paths containing a single instanton shifted will interfere constructively.
How do we sum over all these possible paths? The propagator via a single instanton is thus computed by summing
over all possible instants τ1 in which the instanton exists as shown in the left panel of Fig. 7:

~G(1) = N
ˆ ~β−στ

0

dτ1~G(a, ~β, a, τ1 + στ )× ~G(a, τ1 + στ ,−a, τ1)× ~G(−a, τ1,−a, 0)

≈ N
ˆ

~β−στ

dτ1

√
mω

π~
e−

1
2 (~β−τ1−στ )ω × e−~−1Sinst

E,clF ×
√
mω

π~
e−

1
2 τ1ω ≈ ~β

√
mω

π~
FN × e−~−1Sinst

E,cl ×
√
mω

π~
e−

1
2 β~ω,
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Figure 7: (Left) One instanton configuration. (Right) One instanton-anti-instanton configuration.

where N is a normalization constant that normalizes the integral over dτ1 (and thus, absorbs the dimension of time).
We will not worry about it.

How about a path containing a instanton and an anti-instanton? According to the right panel of Fig. 7, we have
that

~G(2) ≈ N 2

ˆ

~β

0

dτ1

ˆ

~β

τ1

dτ2

√
mω

π~
e−

1
2 (~β−τ2)ω × e−~−1Sinst

E,clF ×
√
mω

π~
e−

1
2 (τ2−τ1)ω × e−~−1Sinst

E,clF ×
√
mω

π~
e−

1
2 τ1ω

=
(~β)2

2

(√
mω

π~
FN

)2

× e−2~−1Sinst
E,cl ×

√
mω

π~
e−

1
2 β~ω,

where we have to restrict τ2 > τ1 since the instanton must come before the anti-instanton. Moreover, we are assuming
that the two instantons do not interfere with each other in order to change the actual value of the action. We can
justify this assumption by recalling that ~β ≫ στ . Thus, there are very few configuration in which these instantons
are near each other. This is called the instanton gas approximation.

It is easy to see that

~G(n) =
(~β)n

n!

(√
mω

π~
FN

)n

× e−n
~

Sinst
E,cl ×

√
mω

π~
e−

1
2 β~ω =

1

n!

(
~βF̃

)n
e−

n
~

Sinst
E,cl ×

√
mω

π~
e−

1
2 β~ω,

where the factor (~β)n

n! =
´ ~β

0 dτ1

´ ~β

τ1
dτ2 . . .

´ ~β

τn−1
dτn and we have absorbed all these prefactor into F̃ =

√
mω
π~
FN .

We are now set to compute the propagators:

~G(a, ~β, a, 0) = ~G(0) + ~G(2) + · · · =
∑

n even
~G(n) =

√
mω

π~
e−

1
2 β~ω

∑

n even

1

n!

(
~βF̃

)n
e−

n
~

Sinst
E,cl ,

=

√
mω

π~
e−

1
2 β~ω cosh

(

~βF̃ e−
1
~

Sinst
E,cl

)

,

~G(a, ~β,−a, 0) =
∑

n even
~G(n) =

√
mω

π~
e−

1
2 β~ω sinh

(

~βF̃ e−
1
~

Sinst
E,cl

)

.

Notice the form

~G (a,±a, β) = const×
(

e−β( 1
2~ω− 1

2 ∆E) ± e−β( 1
2~ω+ 1

2 ∆E)
)

,

with

∆E = ~F̃ e−
1
~

Sinst
E,cl . (38)

Let us understand this result by recalling that, in the long-time regime, only the two quasi-degenerate lowest energy
levels contribute for the propagator, i.e.,

~G =
〈

a
∣
∣
∣e−βĤ

∣
∣
∣± a

〉

= 〈a|S〉 〈S| ± a〉 e−βES + 〈a|A〉 〈A| ± a〉 e−βEA

= ψS (a)ψ∗S (±a) e−βES + ψA (a)ψ∗A (±a) e−βEA = const×
(
e−βES ± e−βEA

)
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where the symmetric and anti-symmetric wavefunctions are

ψS,A (x) ≈ 1√
2

(ψ (x− a)± ψ (x+ a)) .

Thus, the energy difference found in (38) is indeed the energy splitting between the degenerate states in each well
when they are brought together.

The fact we would like to point out is that ∆E is non-perturbative in ~ (or more precisely, in ~/Sinst
E,cl). This

means that the instanton calculation can capture non-perturbative effects and can be compared to the WKB method.
However, the instanton gas approximation is a much better controlled method than WKB.

VIII. DISSIPATIVE SYSTEMS AND THE CALDEIRA-LEGGETT MODEL

In classical mechanics, dissipation is often described through a velocity dependent damping term in the equation
of motion. Such phenomenological approach is no longer possible in quantum mechanics and a minimal microscopic
understanding of the situation is necessary in order to arrive at an effective quantum mechanical model which includes
dissipation. Following the seminal work of Caldeira and Leggett [6], the idea is to include dissipation by coupling the
system of interest to its environment. In this section, we apply the path integral formalism to briefly investigate the
quantum mechanical tunneling when the system is coupled to an external bath.

The Caldeira-Leggett Hamiltonian possesses three terms

ĤCL = ĤS + ĤB + ĤSB, (39)

where

ĤS =
p̂2

2m
+ V (q̂) , (40)

is the system Hamiltonian. It models a particle of mass m moving in a potential V . Actually, the system degree
of freedom does not have to be associated with a real particle and may be quite abstract. In fact, a substantial
part of the calculations does not depend on the detailed form of ĤS . The key assumption of the model is that the
environment is represented by a bath of N quantum harmonic oscillators

ĤB =

N∑

α=1

(
p̂2

α

2mα
+
mα

2
ω2

αx̂
2
α

)

. (41)

For simplicity, we consider that the system-bath coupling is linear in the bath coordinates and thus

ĤSB = −q̂
N∑

α=1

cαx̂α + q̂2
N∑

α=1

cα

2mαω2
α

, (42)

where cα is the coupling between the system and the α-th oscillator. The second term in ĤSB is known as the counter-
term and it is added to ĤSB to guarantee that the minimum of the ĤCL with respect to the system coordinate q it
is still given by the minimum of the bare potential V .

A. Classical limit

To get a better understanding of the model, we begin by exploring its classical solution. The equations of motion
for the bath degrees of freedom are given by

mẍα = −ω2
αxα +

cα

mα
q,

for α = 1, . . . , N . These equations are precisely the equations of motion of a set of driven Harmonic oscillator, Eq.
(54), with each driven force given by f (t) = (cα/mα) q. Their solution is then given by, Eq. (55),

xα (t) = xα (0) cos (ωαt) +
pα (0)

mαωα
sin (ωαt) +

cα

mαωα

ˆ t

0

ds sin [ωα (t− s)] q (s) .
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Therefore, as we couple the system to its environment, it transfers energy to the bath in the form of a driven force.
Conversely, from the system point of view, such energy transfer will be translated as a dissipative term in its equation
of motion. To confirm this picture, we write down the equation of motion for the system

mq̈ = −∂V
∂q

+

N∑

α=1

cαxα − q
N∑

α=1

c2
α

mαω2
α

.

If we now substitute the solution xα (t) for the bath degrees of freedom, we arrive at an effective equation for the
system

mq̈ = −∂V
∂q

+

N∑

α=1

c2
α

mαωα

ˆ t

0

ds sin [ωα (t− s)] q (s)− q
N∑

α=1

c2
α

mαω2
α

+
N∑

α=1

cα

[

xα (0) cos (ωαt) +
pα (0)

mαωα
sin (ωαt)

]

.

After an integration by parts, we obtain

mq̈ +m

ˆ t

0

ds γ (t− s) q̇ (s) +
∂V

∂q
= f (t) , (43)

where the external force f (t) is given by

f (t) =

N∑

α=1

cα

[(

xα (0)− cα

mαω2
α

)

cos (ωαt) +
pα (0)

mαωα
sin (ωαt)

]

,

and the damping kernel

γ (t) =
1

m

N∑

α=1

c2
α

mαωα
cos (ωαt) .

Eq. (43) already tells us that the damping term is proportional to the velocity q̇ (t). In general, however, the damping
kernel has memory, i.e.γ (t) is non-local, or correlated, in time.

A remarkable feature of the effective description for the system alone is that all quantities characterizing the
environment may be expressed in terms of the spectral density of the bath

J (ω) =
π

2

N∑

α=1

c2
α

mαωα
δ (ω − ωα) . (44)

Therefore, for practical calculations, it is not necessary to specify all oscillator parameters mα, ωα and cα and it
suffices to specify only the spectral density J (ω). For instance, the damping kernel can be rewritten as

γ (t) =
2

m

ˆ ∞

0

dω

π

J (ω)

ω
cos (ωt) .

A commonly employed spectral function J (ω) is the so-called Ohmic damping

J (ω) =

{
ηω, ω < Ω
0, ω > Ω

, (45)

where Ω is a high-energy cutoff. For this particular choice, the damping kernel takes the form

γ (t) =
2

m
η

ˆ ∞

0

dω

π
cos (ωt) =

2

m
ηδ (t) ,

where we took the limit Ω→∞. Thus, the choice Ohmic damping renders γ (t) memory-free and we recover familiar
damping proportional to velocity in the effective equation of motion for the system

mq̈ + ηq̇ +
∂V

∂q
= f (t) , (46)

which is nothing but the usual Langevin equation for the Brownian motion. This also helps to clarify the usage of
the term Ohmic damping for a linear in frequency spectral function, Eq. (45). In a LRC circuit, an Ohmic resistor
also induces a memoryless damping in the equation of motion for the charge Q on the capacitor.
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B. Quantum tunneling and dissipation

We wish to investigate the survival probability of a particle confined to a local minima at q = a and coupled to an
external environment

i~G(at, a0) =

ˆ

D [q (t)] e
i
~

SS [q]

ˆ

D [xα (t)] e
i
~

(SB [xα]+SSB[q,xα]),

where q (0) = q (t) = a, SS [q] is the system action, SB is the bath action and SSB is the system-bath coupling action.
Although not crucial, it is convenient to study this problem in the imaginary-time formalism, as in the previous
section. We then change gears and focus on the Euclidean propagators

SS =

ˆ β~

0

dτ
(m

2
q̇2 + V (q)

)

,

SB =

ˆ β~

0

dτ
N∑

α=1

mα

2

(
ẋ2

α + ω2
αx

2
α

)
,

SSB =

ˆ β~

0

dτ

(

−q
N∑

α=1

cαxα + q2
N∑

α=1

c2
α

2mαω2
α

)

,

where τ ∈ [0, ~β] and β = 1/kBT . Taking the boundary condition of the fields xα (τ) also to be periodic on this
imaginary time interval, we may conveniently expand all coordinates in Fourier series

y (τ) =

∞∑

n=−∞
y (ωn) eiωnτ ,

y (ωn) =
1

β~

ˆ

~β

0

y (τ) e−iωnτdτ,

ˆ

~β

0

e−iωnτdτ = ~βδωn,0,

where y (τ) = xα (τ), q (τ). ωn = 2πn/β~ are a set of discrete Fourier frequencies (generally known as bosonic
Matsubara frequencies). Because the coordinates xαand q are real, we immediately get y (−ωn) = y⋆ (ωn). In Fourier
space, each of the three terms of the action reads

SS = m (β~)
∑

n

q⋆ (ωn)ω2
nq (ωn) +

ˆ β~

0

dτV (q) ,

SB = (β~)
∑

n,α

mαx
⋆
α (ωn)

(
ω2

n + ω2
α

)
xα (ωn) = x†Mx,

SSB = − (β~)
∑

n,α

q (ωn) cαx
⋆
α (ωn) +

∑

n,α

q⋆ (ωn) q (ωn)
(β~) c2

α

2mαω2
α

= x†J + SCT
SB ,

where we defined x(α,n) = xα (ωn), M(α,n),(α′,n′) = (β~)mα

(
ω2

n + ω2
α

)
δα,α′δn,n′ , J(α,n) = − (β~) cαq (ωn), and SCT

SB =
∑

n,α q
⋆ (ωn) q (ωn)

(β~)c2
α

2mαω2
α

Our next step is to integrate the bath degrees of freedom to generate an effective action Seff to the system

~G(a, ~β, a, 0) =

ˆ

D [q (ωn)] e−
1
~

SS [q]

ˆ

D [xα (ωn)] e−
1
~ (x

†
Mx+x

†
J+SCT

SB ).

The integrals over the bath variables are Gaussian, and we may easily perform them to get

~G(a, ~β, a, 0) =

ˆ

D [q (ωn)] e−
1
~

SS [q]

√

(2π~)
N

Det (M)
︸ ︷︷ ︸

F

e−
1
~ (− 1

2 JM
−1

J
†+SCT

SB ),

= F

ˆ

D [q (ωn)] e−
1
~

Seff [q], (47)
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Figure 8: Caldeira-Leggett model phases as a function of the coupling to the bath.

where the effective action Seff for the system is given by

Seff = SS −
1

2
JM−1J† + SCT

SB ,

= SS −
1

2
(β~)

∑

n,α

c2
α

q⋆ (ωn) q (ωn)

(ω2
n + ω2

α)
+ (β~)

∑

n,α

c2
α

q⋆ (ωn) q (ωn)

2mαω2
α

,

= SS +
1

2
(β~)

∑

n,α

c2
αω

2
n

mαω2
α (ω2

n + ω2
α)
q⋆ (ωn) q (ωn) ,

= SS +
1

2
(β~)

∑

n,α

q⋆ (ωn)K (ωn) q (ωn) , (48)

where the Kernel function K (ωn) is defined as

K (ωn) =
ω2

n

π

ˆ

dω
J (ω)

ω (ω2
n + ω2)

.

As in the classical solution, all information about the bath is contained in its spectral function J (ω), Eq. (44).
Therefore, by integrating out the bath degrees of freedom, the action for the system gains an induced contribution.

If we now write Seff in the imaginary time we have

Seff =

ˆ β~

0

dτ
(m

2
q̇2 + V (q)

)

+

ˆ β~

0

dτdτ ′K (τ − τ ′) q (τ) q (τ ′) ,

which means that by interacting with the bath the quantum mechanical particle gains a self-interaction retarded in
time. Moreover, the quantum Hamiltonian HS in d dimensions maps to a classical Hamiltonian d + 1 dimensions,
with the extra dimension being the imaginary time. This is another instance of the quantum-classical mapping.

For a spectral function which shows no gap as ω → 0 the particle self-interaction will be long-ranged, or non-local,
in time. To explore this long-ranged self-interaction we consider again ohmic dissipation, Eq. (45), and we get

K (ωn) =
ω2

n

π

ˆ

dω
η

(ω2
n + ω2)

=
η

2
|ωn| ,

which we now Fourier transform to obtain

K (τ) =
πη

2β~

1

sin2 (πτ/ (β~))

τ≪β~≃ ηβ~

2π

1

τ2
.

Such non-local self-interaction of the particle has a dramatic effect on the quantum character of the particle.
Consider for instance the situation where we have a double minima, as in Fig. 8. For η → 0 we recover the usual
tunneling picture discussed in the previous section and the particle tunnels back and forth among the two minima
(instantons do not interact). As the coupling to the bath η increases, the particle “remembers” more and more its
current position. Thus, above a critical value of coupling, dubbed the critical couplingηc, it no longer tunnels and
instead becomes localized in one of the minima. Physically we may rationalize this result as follows: tunneling is a
quantum mechanical effect and as the system transfers more and more energy to the bath, the phase coherence of the
particle is lost and the tunneling rate is suppressed. In the instanton language, we can say that the instantons now
interact. As a last remark we stress that the precise nature of the phase transition at ηc depends on the specific form
of the HS and can be investigated in great detail by means of the quantum-classical mapping.
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Figure 9: Integration contour in the complex plane.

IX. GAUSSIAN INTEGRALS

Gaussian integrals are usual mathematical objects in the path integral formulation of quantum mechanics. In
general, we will be interested in integrals of type

ˆ N∏

j=1

dxje
−
∑

m,n
Mm,nxmxn .

For the case of one single variable with real M , then we quote the well-known result

ˆ ∞

−∞
dxe−Mx2

=

√
π

M
,

for M > 0.
For an arbitrary number of variables with Mm,n = Mn,m ∈ ℜ, then we rewrite

∑

m,n Mm,nxmxn = xT
Mx =

xT
VDV

T x = −yT
Dy, where Dm,n = λmδm,m is a diagonal matrix where λm being the Eigenvalues of M, and V is

a matrix whose columns vm are the corresponding Eigenvectors, i.e., Mvm = λmvm. Since VV
T = V

T
V = I, then

∏
dxj =

∏
dyj . The integral then becomes

ˆ

∏

dxje
−x

T
Mx =

ˆ

∏

dyje
−
∑

j
λj y2

j =

√
√
√
√

∏

j

(
π

λj

)

=

√

πN

Det (M)
=

√

1

Det (π−1M)
,

as long as M is positive definite, i.e., λm > 0 for all m.
Let us now consider the imaginary case

ˆ N∏

j=1

dxje
−i
∑

m,n
Mm,nxmxn .

Starting with the single variable case with M ∈ ℜ−∗ , the integration is done via residues with the θ = π
4 tilted contour

sketched in Fig. 9. Thus,
ˆ

a→b→c→d→a

e−iMz2

dz = 0,

with
ˆ

d→c

e−iMz2

dz
z=xei π

4

= lim
R→∞

ei π
4

ˆ R

−R

eMx2

dx = ei π
4

√
π

−M ,

ˆ

a→b

e−iMz2

dz
z=xei0

= lim
R→∞

ˆ R

−R

e−iMx2

dx.

The quarter circular integrals are vanishing. The first one reads

∣
∣
∣
∣

ˆ

b→c

e−iMz2

dz

∣
∣
∣
∣

z=Reiθ

= lim
R→∞

∣
∣
∣
∣
∣

ˆ π
4

0

e−iMR2(cos 2θ+i sin 2θ)iReiθdθ

∣
∣
∣
∣
∣

= 0,
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for M < 0 because sin 2θ ≥ 0 in the integration range. Likewise, the integral in the path d → a is also vanishing.
Thus,

ˆ ∞

−∞
dxe−iMx2

= ei π
4

√
π

−M =

√
π

−M ei π
2 =

√
π

iM
.

If M > 0, then we would have chosen the θ = −π
4 tilted path instead. In this way,

ˆ ∞

−∞
dxe−iMx2

= e−i π
4

√
π

M
=

√
π

M
e−i π

2 =

√
π

iM
,

which is the same result as for M < 0.
For the case of a multiple variable imaginary Gaussian integrals, then we proceed analogously to the real case.

ˆ

∏

dxje
−ixT

Mx =

ˆ

∏

dyje
−i
∑

j
λjy2

j =

√
√
√
√

∏

j

(
π

iλj

)

=

√

1

Det (iπ−1M)
.

Notice it can be rewritten as ei(n−−n+) π
4

∣
∣Det

(
π−1

M
)∣
∣
−1/2

. In this way, the phase of the integration is determined
by the difference between the total number of negative n− and positive n+ Eigenvalues of M.

It is also very useful to consider the Gaussian integrals with source terms:
ˆ

∏

dxje
−x

T
Mx+J

T ·x,

where J is a real vector.
This integration is easily accomplished with the previous results. For the one-variable case, we simply complete

squares: Mx2 − Jx = M
(
x− J

2M

)2 − J2

4M . Therefore, for M > 0, we have that

ˆ ∞

−∞
dxe−Mx2+Jx =

√
π

M
e

J2

4M .

For the multiple-variables case, we proceed similarly. Notice that xT
Mx−JT ·x = yT

Dy−JT
Vy = yT

Dy−LT ·y,
with y = V

T x, and L = V
T J. With these results and for a positive definite M, we have that

ˆ

∏

dxje
−x

T
Mx+J

T ·x =

ˆ

∏

dyje
−
∑

λjy2
j−Ljyj =

∏

j

√
π

λj
e

1
4 Lj(λ−1

j )Lj ,

=

√

1

Det (π−1M)
e

1
4

∑

j
Lj(λ−1

j )Lj =

√

1

Det (π−1M)
e

1
4 L

T
D

−1
L

=
√

Det (πM−1)e
1
4 J

T
M

−1
J,

where I = MM
−1 = VDV

T
M
−1, ⇒ = M

−1 = VD
−1

V
T , since V

T = V
−1.

This result is straightforwardly generalized for the purely imaginary case:

ˆ

∏

dxje
−i(x

T
Mx−J

T ·x) =

√

1

Det (iπ−1M)
e

i
4 J

T
M

−1
J.

Finally, it is also interesting to compute

〈xn〉 =

´∞
−∞ x

ne−Mx2

dx
´∞
−∞ e

−Mx2dx
,

for n ≥ 0. Notice this can be rewritten as

〈xn〉 =

√

M

π
lim
J→0

∂n

∂Jn

ˆ ∞

−∞
e−Mx2+Jxdx = lim

J→0

∂n

∂Jn

(

e
J2

4M

)

=
1

(2M)
n
2
× lim

x→0

∂n

∂xn

(

e
1
2 x2
)

.
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Figure 10: eNf(x) for f (x) = ln (x) − x and two different values of N . The function f (x) has a maximum at x0 = 1.

Defining kn = limx→0
∂n

∂xn

(

e
1
2 x2
)

, we have that k1 = limx→0

(

xe
1
2 x2
)

= 0. Likewise, it vanishes for all odd n because

the integrand is an odd function. For n = 2, we have that k2 = limx→0

(
1 + x2

)
e

1
2 x2

= 1. For n = 4, we have that

k4 = limx→0

(
3 + 6x2 + x4

)
e

1
2 x2

= 3. For n = 6, we have that
〈
x6
〉

= 3 + 12 = 15. In general, kn = (n− 1)!!. Then

〈xn〉 = (n− 1)!! (2M)
−n

2 ,

for n even, and 〈xn〉 = 0, otherwise.
In the multiple-variable case, the n-point correlation is

〈xα1xα2 . . . xαn〉 =

´∞
−∞

∏

k dxk

(

xα1xα2 . . . xαne
−x

T
Mx

)

´∞
−∞

∏

k dxk

(
e−xT Mx

) ,

where n is even and all α’s indices are different from each other. This mean value is

〈xα1xα2 . . . xαn〉 =
1

√

Det (πM−1)
lim
J→0

∂n

∂Jα1 . . . ∂Jαn

ˆ ∞

−∞

∏

k

dxke
−x

T
Mx+J

T ·x = lim
J→0

∂n

∂Jα1 . . . ∂Jαn

(

e
1
4 J

T
M

−1
J

)

.

It is useful to analyze the small n cases. For n = 2, we have that 〈xα1xα2 〉 = limJ→0
∂2

∂Jα1 ∂Jα2

(

e
1
4 J

T
M

−1
J

)

=
(

1
4M

−1
α1,α2

)
. For n = 4, we have that 〈xα1 . . . xα4〉 = 〈xα1xα2〉 〈xα3xα4〉+ 〈xα1xα3〉 〈xα2xα4 〉+ 〈xα1xα4〉 〈xα2xα3 〉. For

an arbitrary value of even n, we simply have that

〈xα1xα2 . . . xαn〉 =
∑

P ({αi})

〈
xP (α1)xP (α2)

〉
. . .
〈
xP (αn−1)xP (αn)

〉
,

which is the sum of all possible pairings. This is known as the Wick theorem for real variables.

A. Large-N methods

Suppose we want to evaluate the following integral

W1 =

ˆ b

a

eNf(x),

in the limit where the number N ≫ 1 for a generic function f (x). If the function f (x) displays a maximum at x0,
the integrand is sharply peaked around x0 and the integral is dominated for values of x around x0, see Fig. 10.

We then proceed by expanding f (x) around its maximum x0 up to second order

f (x) ≈ f (x0)− 1

2
|f ′′ (x0)| (x− x0)2 ,
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and the integral W1 may then be rewritten as

W1 ≈ eNf(x0)

ˆ +∞

−∞
e−

1
2 N|f ′′(x0)|(x−x0)2

.

Because the chief contribution to eNf(x) comes for x in the neighborhood of x0, we can safely send the limits of
integration to infinity, such that we are left with a Gaussian integral which we readily evaluate to get

W1 ≈ eNf(x0)

√

2π

N |f ′′ (x0)| , N ≫ 1. (49)

We can easily extend this method to several variables, where we now consider

WD =

ˆ D∏

i=1

dxie
Nf(~x),

with ~x = (x1, x2, . . . , xD). If we apply the same steps as above, assuming again that the function f (~x) shows a
maximum at ~x = ~x0, we then obtain

WD ≈ eNf(~x0)

√
(

2π

N

)D
1

Det (−H)
, N ≫ 1, (50)

where

Hij =
∂2f

∂xi∂xj

∣
∣
∣
∣
~x=~x0

,

is the Hessian matrix evaluated at the maximum ~x0. Another interesting feature of this method is that in the case
where f (~x) shows several maxima, we may simply approximate the whole integral as the sum of the individual
contribution of each maximum as calculated above.

Consider now the situation where the exponent is complex (a phase), again for N ≫ 1

W̃D =

ˆ D∏

i=1

dxie
−iNf(~x).

If we now employ our generalization of Gaussian integrals for a purely imaginary exponent we then immediately
obtain, see also Fig. 3,

W̃D ≈ e−iNf(~x0)

√
(

2π

iN

)D
1

Det (H)
, N ≫ 1, (51)

with the Hessian matrix defined as above. Although this result resembles very much the one for a real exponent,
there is a crucial distinction: ~x0 no longer needs to be a maximum of f (~x0). Actually, all that is now required is
that ∇f (x)|~x=~x0

= 0, i.e. ~x0 is simply an extreme of f (~x). Therefore, it is no surprise that the large-N method for
complex exponents is sometimes referred to as saddle point or stationary phase approximation.

We close our discussion of this method by establishing the celebrated Stirling’s approximation:

n! = nlnn− n+O (lnn) . (52)

We begin by rewriting the factorial of n in terms of the Gamma function

n! =

ˆ ∞

0

xne−xdx,

=

ˆ ∞

0

en(lnx−x/n)dx,

= enlnnn

ˆ ∞

0

en(lny−y)dy,
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where in the last line we performed a change of variables y = x/n. We now consider n≫ 1 (the integrand is depicted
in Fig. 10) and from Eq. (49) we then obtain

n! ≈ nenlnn−n

√

2π

n
,

and thus

lnn! ≈ nlnn− n+
1

2
lnn+

1

2
ln2π. (53)

X. DRIVEN HARMONIC OSCILLATOR

We briefly the solution of the classical driven harmonic oscillator

mẍ = −mω2x+ f (t) , (54)

in the presence of a generic force f (t). We know that the general solution for this problem can be written as

x (t) = xp (t) +Acos (ωt) +Bsin (ωt) ,

where xp (t) is the particular solution which depends on the specific form of the force f (t). To construct a particular
solution for any given force, we write f (t) as

f (t) =

ˆ ∞

0

f (s) δ (t− s) ds,

where we assume that f (t) started to act at the time t = 0. The key point is that Eq. (54) is linear, and thus we may
solve it for a single delta function and then construct xp (t) by integrating over all possible delta functions weighted
by f (t). For a single delta function, Eq. (54) is given by

mẍs +mω2xs = δ (t) f (t) ,

with

xs (t) =

{
0, t < 0

Acos (ωt) +Bsin (ωt) , t > 0

because the force only acts at t = 0 and we assume that the oscillator was at rest for t < 0. Because xs (t) must be
continuous at t = 0, since it obeys a second order differential equation, (54), we then have that A = 0. To fix B, we
perform the usual trick when dealing with delta functions: we integrate around t = 0

m

ˆ +ε

−ε

dtẍs +mω2

ˆ +ε

−ε

dtxs =

ˆ +ε

−ε

dtδ (t) f (t) ,

mẋs (ε)−mẋs (ε) +mω2xs (0) 2ε = f (0) ,

mẋs

(
0+
)

= f (0) ,

where in the second line we considered that xs (0) is continuous at t = 0 and in the third line we took the limit ε→ 0,
considering that ẋs (0−) = 0 because the oscillator was at rest for t < 0. This equation immediately gives us that
B = f (0) /mω and we then have

xs (t) =

{
0, t < 0

(f (0) /mω) sin (ωt) , t > 0

and thus the particular solution, xp (t) =
´ t

0
xs (s) ds, is given by

xp (t) =

ˆ t

0

sin [ω (t− s)]
mω

f (s) ds. (55)

where G (t− s) = sin [ω (t− s)] /mω is the classical Green’s function, or propagator, for the harmonic oscillator.
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For completeness, we compute the classical action for this system

Scl = m

ˆ t

0

dt

(
1

2
ẋ2

cl −
1

2
ω2x2

cl + f (t)xcl

)

,

with the boundary conditions xi = xcl (0) and xf = xcl (t). As for the free harmonic oscillator we rewrite it as

Scl =
m

2
xclẋcl|t0 +

1

2

ˆ tf

ti

f (t)xcldt,

where we now have the extra term due to the driving force. All that is left for us to do is to fix the constants A and
B in terms of the boundary conditions. After a lengthly algebra we then get [7]

Scl =
mω

2sin (ωt)

[
(
x2

f + x2
i

)
cos (ωt)− 2xfxi +

2

mω
xf

ˆ t

0

ds sin [ωs] f (s)

+
2

mω
xi

ˆ t

0

ds sin [ω (t− s)] f (s)− 2

m2ω2

ˆ t

0

du

ˆ u

0

dsf (u) f (s) sin [ω (t− u)] sin [ωs]

]

.

[1] In many occasions, the Heaviside function will not appear because it is implicit that t > t0.
[2] See, for instance, the Wikipedia entry for the Baker-Campbell-Hausdorff formula.

[3] In fact, there is not need of using any of these fancy formulas. In the ∆t → 0 limit, we have from (2) that Û = I +
1
i~

∆tĤ + O (∆t)2. Using this expansion up to 1st order in ∆t and then re-exponentiating, we arrive at the same result that

Û → e
∆t
i~

T̂ e
∆t
i~

V̂ .
[4] Notice we are considering that there is only one stationary-phase path xcl. It there were more than one such path, then we

have to take them into account. Provided that they are not degenerate (meaning, typically, |xcl,i − xcl,j | ≫∼
√
~), then the

semiclassical result is simply the sum of many Gaussian integrals around each special path xcl,k, i.e.,
∑

k
Fke

i
~

S[xcl.k].
[5] Let us be honest here, if there are classical paths, we can conveniently use the semiclassical approximation.
[6] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
[7] See, for instance, this derivation.

https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
http://www.oberlin.edu/physics/dstyer/FeynmanHibbs/Prob3-11.pdf
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