
SFI5711 - Solid State Physics (2020)
List of exercises #3

1. ac conductivity

Consider the Boltzmann equation

∂f

∂t
+ ṙ · ∇rf + k̇ · ∇kf = I[f ]

for an isotropic electron gas in the presence of a small electric �eld E = E0e
−iωt. Recall that, for elastic impurity

scattering, I[f ] = I[f0 + f1] = −f1/τ . Consider this to be the case and take τ as given. Obtain the real part of the
ac conductivity σ (ω) and sketch its behavior as a function of frequency. What is its characteristic frequency scale?

2. Thermoelectric e�ect

(a) Consider again the Boltzmann equation for an isotropic electron gas where the scattering process is due to
elastic impurity scattering. The application of a thermal gradient ∇rT (which it is to be considered small) across the
sample gives rise to an electric current J = γ∇rT . The thermopower S (or Seebeck coe�cient) is then given by the
ratio S = −γ/σ, and can be measured experimentally. Show that

S = −π
2k2BT

3e

(
ρ′(EF )

ρ(EF )

)
,

where ρ′(EF ) is the derivative of the density of states at the Fermi level. [Hint : Use the expansion−∂f0∂E = δ (E − EF )+
π2

6 (kBT )
2
δ′′ (E − EF ), where δ′′ (x) is the second derivative of the Dirac delta function de�ned as

´
g(x)δ′′ (x) dx =

g′′ (0).]
(b) What does happen for systems in which ρ (EF + E) = ρ (EF − E) (for small E, i.e., E � EF )? Give an example

of a system with such character.

3. Coulomb interaction in graphene

For the electron gas, the dimensionless parameter that controls the relative amplitude of the Coulomb interaction
is rs, where rs can be tuned by the density of electrons. In graphene, the situation is di�erent. Recall that, due to
the linear dispersion near the Dirac points, the Hamiltonian is given by

H = −i~vFσ ·
∑
j

∇rj +
e2

4πε

∑
i,j

1

|ri − rj |
,

where σ is the vector of Pauli matrices, ε is the e�ective dielectric constant of the system (i.e. graphene sheet plus
substract), and vF ≈ 106 m/s is the Fermi velocity. Show that, for graphene, the dimensionless parameter that
controls the relative amplitude of the Coulomb interaction is approximatelly 2.2ε0/ε. Therefore, it can be tuned by
the substract.

4. Interacting electron gas: perturbation theory

The Hartree-Fock approach can be used to calculate the energy of the interacting electron gas. The same results
can be obtained using �rst-order perturbation theory. In this case, the total energy is given by E = E0 + E1, where
E0 is the energy of the free electron gas and

E1 =
1

2V

∑
q6=0

∑
k,p

∑
σ,τ

Vq

〈
FS
∣∣∣c†k+q,σc

†
p−q,τ cp,τ ck,σ

∣∣∣FS〉 ,
is the �rst-order perturbation correction. Here, the average is taken with respect to the ground state of the free
electron gas, i.e. the Fermi sea |FS〉, the sum excludes the q = 0 contribution because it cancels the background of

positive charge, V is the volume of the system and Vq = e2

ε0q2
is the usual Coulomb repulsion.

(a) Using the commutation relations of the creation and annihilation operators and the restrictions on the sum in
E1, show that 〈

FS
∣∣∣c†k+q,σc

†
p−q,τ cp,τ ck,σ

∣∣∣FS〉 = −δk+q,pδσ,τθ (kF − |k+ q|) θ (kF − k) ,
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where θ (x) is the usual step function and kF is the Fermi momentum of the free electron gas.
(b) Compute E1 and express your results as a function of kF .
(c) Using the de�nition of the parameter rs (the ratio between the electronic mean radius and the Bohr radius),

show that the total energy is

E

N
=

[
2.210

r2s
− 0.916

rs

]
Ry.

Thus, it agrees with the Hartree-Fock calculation. Minimize this energy with respect to rs and �nd the optimal value.
Is this value small enough to validate perturbation theory?
(d) Consider now second-order corrections

E2 =
∑
α 6=FS

〈FS |V |α〉 〈α |V |FS〉
EFS − Eα

.

This is complicate, and thus, focus only on the direct term which corresponds to small momentum transfer. Since
|α〉 6= |FS〉, the direct process involves creating two electrons outside the Fermi surface (with momenta k + q and
p− q) and destroying two electrons inside the Fermi surface (with momenta k and p), such that

Eα = EFS +
~2

2m

(
|k+ q|2 + |p− q|2 − k2 − p2

)
.

Therefore,

E2 =
1

V 2

∑
q,k,p

V 2
q

EFS − Eα
θ (|k+ q| − kF ) θ (|p− q| − kF ) θ (kF − k) θ (kF − p) .

In the limit q � kF , show that∑
k

θ (kF − |k+ q|) θ (kF − k) ∝ q, and
∑
p

θ (kF − |p− q|) θ (kF − p) ∝ q.

By using these expressions, and by expanding EFS −Eα to leading order in q, show that E2 diverges logarithmically.
(You do not need to evaluate all the integrals, just analyze the behavior of the integration over dq as q → 0.) Therefore,
the perturbation series is not convergent. Show that, if we consider a screened Coulomb potential

Vq =
e2

ε0 (q2 + k2TF)
,

with kTF being a constant, the divergence in E2 is removed.


