
SFI5711 - Solid State Physics (2020)
List of exercises #5

1. Van Hove singularities in phonon dispersion

A van Hove singularity takes place when the phonon density of states D (ω) (or its �rst derivative) diverges at a
frequency ω.
(a) For the monoatomic 1D lattice, the phonon dispersion relation is given by ω (k) = 2Ω0

∣∣sin ka
2

∣∣, with Ω0 =√
K/M being the natural frequency of a single oscillator. Show that the phonon density of states becomes

D (ω) =
2

πa
√

4Ω2
0 − ω2

.

(b) Consider a 3D lattice in which the phonon dispersion ωs (k) displays an isotropic maximum ωmax at a certain
momentum k = kmax for a certain polarization s = smax. Show that although D (ω) vanishes at ωmax, its �rst
derivative diverges at this point.

2. Lindemann theory of melting

A simple criterion for the melting of a solid is when the mean square displacement of an ion
〈
u2
〉
becomes comparable

to the lattice parameter square a2. Of course, as
〈
u2
〉
becomes larger, the harmonic approximation might not be the

most appropriate one. Nevertheless, this simple model o�ers a good starting point to tackle the problem.
(a) Using the Debye model and considering the high-temperature limit T � ΘD, �nd the Lindemann melting

temperature as function of ΘD, M , and a.
(Hint : use the fact that

〈
u2
〉

= 1
N

∑
k 〈ũ (k) · ũ (−k)〉 and express u in terms of the phonon creation and annihilation

operators.)

(b) Using the Debye model and approximating the average velocity by c = a
√
K/M , determine the minimum mass

M of the ion necessary for the crystal to remain solid at T = 0. Express your answer only in terms of a, the e�ective
spring constant K, and the ionic density n.
(c) Show that

〈
u2
〉
diverges in a 1D lattice at any non-zero temperature. What does it imply? (Hint : you do not

need to evaluate the integral, just show that it diverges).

3. Thermal expansion

The thermal expansion coe�cient of a cubic solid is de�ned as α = 1
V

(
∂V
∂T

)
P
. By introducing the bulk modulus

B = −V
(
∂P
∂V

)
T
the thermal expansion coe�cient can be rewritten as: α = 1

B

(
∂P
∂T

)
V
.

(a) Brie�y explain why α = 0 in the harmonic lattice approximation.
(b) The previous item implies that the thermal expansion of solids is a result of anharmonic terms in the ionic

potential energy expansion. Ultimately, they cause the phonon frequencies ωs (k) to depend on the volume V . We
can nevertheless approximate the total internal energy 〈E〉 of the system by the harmonic expression

〈E〉 = E0 +
∑
k,s

~ωs (k)

(
〈ns (k)〉+

1

2

)
,

where it is understood that ωs (k) is a function of V . Now, from thermodynamic relationships, we can express P in
terms of the internal energy 〈E〉

P = − ∂

∂V

[
〈E〉 − T

ˆ T

0

dT ′

T ′
∂ 〈E〉
∂T ′

]
.

Using these expressions, show that

P = − ∂

∂V

E0 +
1

2

∑
k,s

~ωs (k)

− ~
∑
k,s

∂ωs (k)

∂V

(
1

eβ~ωs(k) − 1

)
.

(c) Show that the thermal expansion is given by α = γC/B where C is the speci�c heat (per unit volume), γ is the
so-called Grüneisen parameter, de�ned by

γ =

∑
k,s γs (k)Cs (k)∑

k,s Cs (k)
,



2

with Cs (k) denoting the speci�c heat contribution of mode k, s and

γs (k) = −∂ lnωs (k)

∂ lnV
.

Figure 1: Graphene.

4. Phonons in graphene

Consider the graphene honeycomb lattice (see Fig. 1). There are
two identical carbon atoms per hexagonal unit cell belonging to
sublattices A and B. Therefore, we expect two phonon modes and
two optical modes. To obtain them, assume that ion A is connected
via springs of constant K to its three B-ions nearest neighbors.
Write down the total potential energy and derive the equations of
motion for small displacements uA =

(
uAx , u

A
y

)
and uB =

(
uBx , u

B
y

)
.

Express the 4 equations in terms of a 4Ö4 matrix and diagonalize
it to �nd the phonon frequencies. Identify the acoustic and optical
modes. Plot the dispersions in the directions ΓMKΓ.


