
SFI5711 - Solid State Physics (2020)
List of exercises #6

1. Size of a Cooper pair

The typical energy spread of two electrons near the Fermi level forming a Cooper pair is given by the gap ∆.

(a) (3 points) Use Heisenberg's uncertainty principle, δp δx ≈ ~, to estimate the size of a Cooper pair as
function of Tc and of the electronic density n.

(b) (2 points) Find the values of Tc and n for Al (consult Ashcroft & Mermin) and use the expression you
found in the previous item to estimate the Cooper pair size.

2. Superconducting gap near Tc
(10 points) The gap equation at an arbitrary temperature is given by

1 = V0ρF

∫ ~ωD

0

dε√
ε2 + ∆2

tanh

(√
ε2 + ∆2

2kBT

)

Consider a temperature below but very close to Tc, i.e. T = Tc (1− t), with t� 1. For consistency, the gap ∆
also has to be small, i.e. ∆� kBTc. Expand the gap equation for both t and ∆ and show that the gap function
vanishes as T approaches Tc according to the power-law

∆ (T )

∆ (T = 0)
≈ 1.74

√
1− T

Tc
.

3. BCS ground state energy

From the BCS solution, we found that the ground state energy at zero temperature (per electron) is given by

E0 =
1

N

∑
k

(
ξk − Ek + ∆k

〈
c†k↑c

†
−k↓

〉)
.

(a) (3 points) Determine the di�erence between the superconducting and normal state energies δE0 ≡ E0 −
E0 (∆ = 0) as function of ∆. (Hint : the integration is restricted to |ξ| < ~ωD. Recall that ~ωD � ∆).

(b) (3 points) By minimizing the energy found in the previous item, show that one recovers the formula for ∆
at zero temperature found in class. (Hint : use the weak-coupling approximation ρFV0 � 1).

(c) (4 points) Show that the thermodynamic critical �eld Hc necessary to kill superconductivity is given by

Hc

∆ (T = 0)
= 2
√
πρF ,

where ρF is the density of states at the Fermi level. (Hint: the magnetic energy density is given by
H2
c / (8π)).

4. d-wave superconductivity in the cuprates

In the family of high-temperature superconductors known as the cuprates (such as La2CuO4 and YBa2Cu3O7),
the superconducting gap ∆k changes as function of the momentum k. In a very simpli�ed model, we can

consider a two-dimensional parabolic band ξk = ~2k2

2m − µ and a gap function of the form

∆k = ∆0 cos 2ϕ,

where ϕ is the azimuthal angle. This gap vanishes and changes sign in the so-called nodal points, located at
ϕ = π/4 and its multiples.

(a) (3 points) What is the orbital angular momentum of the d-wave Cooper pair? What is its spin state, singlet
or triplet? (Hint : compare the gap function with spherical harmonics).
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(b) (5 points) The density of states for the d-wave superconductor is de�ned as

ρ (E) =

∫
d2k

(2π)
2 δ

(
E −

√
ξ2k + ∆2

k

)
.

Obtain the low-energy (E � ∆) expression for the density of states, and show that it vanishes linearly
with E. Why is the spectrum not gapped, like in the s-wave case ∆k = ∆0?

(c) (3 points) The behavior of the density of states at low energies is manifested in the low-temperature
behavior of the speci�c heat. In fact, the speci�c heat inside the superconducting state is given by

C = 2kB

∫ ∞
0

dE ρ (E)

(
E

2kBT

)2

cosh−2
(

E

2kBT

)
.

First, use the expression for ρ (E) we found in class for the s-wave superconductor ∆k = ∆0 to obtain the
low-temperature (kBT � ∆0) behavior of the speci�c heat. (Hint : you only need to evaluate the integral
in the limit kBT � ∆0).

(d) (4 points) Now, use the expression you found in item (b) for the density of states at low energies to
determine the speci�c heat behavior at low temperatures (kBT � ∆0) inside of a d-wave superconductor.
How does it compare to your result for the s-wave superconductor?

5. s+− superconductivity in the iron pnictides

The other known family of high-temperature superconductors, the iron pnictides (such as LaFeAsO and
BaFe2As2), are multi-band compounds. In this case, the superconducting gap can have di�erent signs on
di�erent bands. Let us consider a very simpli�ed model, with two parabolic two-dimensional bands: a hole-like
band ξ1,k, with density of states ρ1, and an electron-like band ξ2,k, with density of states ρ2. The gap equations
form a 2× 2 system of equations

∆λ = − 1

N

2∑
λ′=1

Vλλ′∆λ′

∑
k

1

2Eλ′,k
tanh

(
Eλ′,k

2kBT

)
,

where λ, λ′ = 1, 2 are band indices. The momentum integration is limited to |ξλ′,k| < W , where W is some
energy scale associated with the pairing mechanism, which replaces the Debye energy ~ωD. The interaction
potential Vλλ′ and the gap functions ∆λ do not depend on the momentum, i.e. we are considering s-wave states.

(a) (5 points) Consider that the only non-vanishing interaction is the inter-band interaction V12, i.e. V11 =
V22 = 0. Show that Tc is given by

Tc = 1.13
W

kB
exp

(
− 1

|V12|
√
ρ1ρ2

)
.

(b) (5 points) Show that, if V12 is an attractive interaction, the signs of the two gap functions ∆1 and ∆2

are the same (the so-called s++ state), whereas if V12 is a repulsive interaction, their signs are di�erent
(known as the s+− state). Determine the absolute value of the ratio between the two gap functions ∆1/∆2

immediately below Tc in both cases. Does this ratio depend on whether the superconducting state is s+−

or s++?

6. Magnetic instability of the one-dimensional electron gas

(10 points) The criterion for a Stoner instability at the wave vector q is χ (q)U = 1. Here, χ (q) is the Lindhard
function:

χ (q) =
1

v

∑
k

f (εk+q)− f (εk)

εk − εk+q

v is the volume and f (x) is the Fermi-Dirac distribution function. For the one-dimensional electron gas, where
εk = ~2k2/ (2m), show that

χ (q) =
m

π~2q
ln

(
2kF + q

2kF − q

)
.

Plot this function and verify that it diverges at q = ±2kF . Therefore, the 1D electron gas in unstable towards
a magnetically ordered state whose magnetization has a 2kF modulation.
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7. Stoner continuum
The metallic (itinerant) ferromagnet has two types of excitations: spin waves and the particle-hole spin-�ip pair.
In the latter, an electron at the Fermi level εF is excited from the spin-up band εk↑ to the spin-down band εk↓.
Measuring all energies with respect to the bottom of the spin-up band, we have εk↑ = ~2k2/ (2m) and

εk↓ =
~2k2

2m
+ ∆,

where ∆ = 4UM > 0 is the gap. Consider that this process involves a change in energy of ~ω and a change in
momentum of q, i.e. εk2↓ − εk1↑ = ~ω and k2 − k1 = q.

(a) (7 points) The region in the (~ω, q) plane where this type of excitation is allowed is called the Stoner
continuum. Find the equations ~ω (q) describing the boundaries of the Stoner continuum. (Hint: in the
boundaries the vectors k1 and k2 are either parallel or anti-parallel).

(b) (3 points) Using the previous result, sketch the Stoner continuum in the (~ω, q) plane. What happens
(qualitatively) to the spin-wave excitations when they meet the Stoner continuum? (Recall that the spin
waves dispersion is ω ∝ q2 for small q)

8. Spin-waves for an anisotropic ferromagnet

Consider the anisotropic Heisenberg ferromagnet:

H = −
∑
〈ij〉

[
JzŜ

z
i Ŝ

z
j + J

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)]
where Jz > J > 0. This Hamiltonian interpolates between the Heisenberg model (J = Jz, studied in class) and
the Ising model (J = 0).

(a) (8 points) Repeat the Holstein-Primako� calculation we did for the isotropic case, which assumes that the
ordered state corresponds to all spins pointing to the ẑ direction. Show that the spin-wave dispersion in
the anisotropic case is given by

~ωk = 2Sz (Jz − Jγk) ,

where z and γk are the same as in the isotropic case.

(b) (2 points) Show that ωk→0 remain �nite in the anisotropic case. The spin-wave excitation spectrum is said
to be gapped, since there is a minimum energy necessary to excite spin waves. Why is it di�erent than the
isotropic case, where ωk→0 goes to zero?

9. Spin-wave dispersion for an antiferromagnet

Apply the Holstein-Primako� transformation to an antiferromagnet in a hyper-cubic lattice. This lattice can be
subdivided into two other hyper-cubic sub-lattices A and B. In the Néel state, all the spins in A point up and
all the spins in B point down. The Heisenberg Hamiltonian is thus

H = J
∑
〈i,j〉

[
ŜzA,iŜ

z
B,j +

1

2

(
Ŝ+
A,iŜ

−
B,j + Ŝ−A,iŜ

+
B,j

)]

where J > 0, i is a site of sublattice A, and j is a site of sublattice B. By de�nition, i and j are nearest-neighbors
of the original lattice, i.e. Rj = Ri + δ.

(a) (5 points) Use the Holstein-Primako� transformation

ŜzA,i = S − c†i ci , ŜzB,j = −S + d†jdj ,

Ŝ+
A,i =

√
2S

(
1− c†i ci

2S

)1/2

ci , Ŝ+
B,j =

√
2S d†j

(
1−

d†jdj
2S

)1/2

,

Ŝ−A,i
√

2S c†i

(
1− c†i ci

2S

)1/2

, Ŝ−B,j =
√

2S

(
1−

d†jdj
2S

)1/2

dj ,



4

in the large-S limit to show that the Hamiltonian can be recast in the form

H = JSz
∑
k

[
γk

(
ckd−k + d†−kc

†
k

)
+
(
c†kck + d†−kd−k

)]
, (1)

where c†k and d†k are the appropriate Fourier-transformed bosonic operators and γk is the same as in the
ferromagnetic case.

(b) (5 points) The bosonic Hamiltonian (1) can be solved via a Bogliubov transformation

ck = ukαk − vkβ†k,
d−k = ukβk − vkα†k.

Show that

H =
∑
k

~ωk

(
α†kαk + β†kβk

)
,

with the spin-wave dispersion

~ωk = JSz
√

1− γ2k.

Show that ωk ∝ k for small k.

(c) (5 points) The deviation of the staggered magnetization M̄ from the saturation value S is given by

∆M̄ =

〈∑
i

(
ŜzA,i − S

)
−
∑
j

(
ŜzB,j + S

)〉
= −

∑
k

(〈
c†kck

〉
+
〈
d†−kd−k

〉)
.

Express c†kck and d†kdk in terms of the Bogoliubov operators αk and βk. Using the fact that in the ground

state there are no spin waves, i.e.,
〈
α†kαk

〉
=
〈
β†kβk

〉
= 0, show that

∆M̄ = −
∑
k

(
1√

1− γ2k
− 1

)
.

Show that ∆M̄ diverges for the one-dimensional case. For simplicity, use the small k expansion. What
does the divergence of ∆M̄ imply?


