List of exercises #2 - 7600040

- 1. Let $S = S(q_1, t_1, q_2, t_2)$ be the action of a classical path from (q_1, t_1) to (q_2, t_2) . Show that $\frac{\partial S}{\partial q_1} = -p_1$, $\frac{\partial S}{\partial q_2} = p_2$, $\frac{\partial S}{\partial t_1} = H(t_1)$ and $\frac{\partial S}{\partial t_2} = -H(t_2)$, where p_i (i = 1, 2) is the conjugate momentum of q_i and $H = p\dot{q} - L$ is the energy function (Hamiltonian). With that, we conclude that the action $S(\mathbf{q}_i, \mathbf{q}_f, t)$ is the generating function of type $F_1 \equiv F_1(\mathbf{q} = \mathbf{q}_f, \mathbf{Q} = \mathbf{q}_i, t)$ for the time evolution from \mathbf{q}_i to \mathbf{q}_f . (Hint: see Aguiar Sec. 3.7.)
- 2. Prove
 - (a) the Jacobi identity $\{\{A, B\}, C\} + \{\{B, C\}, A\} + \{\{C, A\}, B\} = 0$, where $\{A, B\} \equiv \{A, B\}_{q, p}$ are the Poisson brackets of A and B with respect to canonical coordinate system (q, p), and A, B, and C are functions of q, p, and t;
 - (b) that $\{A, B\}_{\mathbf{q}, \mathbf{p}} = \{A, B\}_{\mathbf{Q}, \mathbf{P}}$, where (\mathbf{Q}, \mathbf{P}) is also a canonical coordinate system;
 - (c) the Poisson's theorem which states that the Poisson brackets of two constants of movement is also a constant of movement.
 (Hint: and Lamon Sec. 8.5 on Agrical Sec. 5.5.)

(Hint: see Lemos Sec. 8.5 or Aguiar Sec. 5.5.)

- 3. A particle of mass m moves under the conservative central potential $V = -kr^{-1}$, where k is a constant. Show that the Laplace-Runge-Lenz vector $\mathbf{A} = \mathbf{p} \times \mathbf{L} mk\hat{r}$ is a constant of the movement by computing the Poisson bracket $\{\mathbf{A}, H\}$.
- 4. Verify if the following transformations are canonical. If yes, find the corresponding generating function.
 - (a) $Q = q \cos \alpha p \sin \alpha$, and $P = q \sin \alpha + p \cos \alpha$, where α is a constant.
 - (b) $Q = \ln\left(1 + \sqrt{q}\cos p\right)$, and $P = 2(1 + \sqrt{q}\cos p)\sqrt{q}\sin p$.
 - (c) $Q_1 = q_1q_2$, $Q_2 = q_1 + q_2$, $P_1 = \frac{p_1 p_2}{q_2 q_1} 1$, and $P_2 = \frac{q_2p_2 q_1p_1}{q_2 q_1} (q_2 + q_1)$.
- 5. A particle of mass m and charge q moves in a region in space where there is a constant magnetic field $\mathbf{B} = B\hat{z}$.
 - (a) Show that the following transformation is canonical: $x = \alpha^{-1} \left(\sqrt{2P_1} \sin Q_1 + P_2 \right), \quad y = \alpha^{-1} \left(\sqrt{2P_1} \cos Q_1 + Q_2 \right), \quad z = Q_3, \quad p_x = \alpha \left(\sqrt{2P_1} \cos Q_1 Q_2 \right) / 2, \quad p_y = -\alpha \left(\sqrt{2P_1} \sin Q_1 P_2 \right) / 2, \quad p_z = P_3.$
 - (b) Compute the new Hamiltonian $K(\mathbf{Q}, \mathbf{P})$, identify the constant α conveniently, and obtain the particle movement as a function of time.
- 6. A particle of mass m and charge q moves in a magnetic field **B**.
 - (a) Write the Hamiltonian of the problem and evaluate the following Poisson brackets $\{m\dot{r}_i, m\dot{r}_j\}$ and $\{m\dot{r}_i, r_j\}$, where i, j = 1, 2, 3 with $r_1 = x, r_2 = y$, and $r_3 = z$.
 - (b) The field of a magnetic monopole is $\mathbf{B} = br^{-2}\hat{r}$, where b is the magnetic charge. Define a generalized angular momentum $\mathbf{D} = \mathbf{J} qb\hat{r}$ and show that $\{H, D\} = 0$. Discuss your results.
- 7. Let the infinitesimal canonical transformation $\delta \mathbf{q} = \mathbf{Q} \mathbf{q} = \epsilon \frac{\partial G}{\partial \mathbf{p}} = \epsilon \{\mathbf{q}, G\}$ and $\delta \mathbf{p} = \mathbf{P} \mathbf{p} = -\epsilon \frac{\partial G}{\partial \mathbf{q}} = \epsilon \{\mathbf{p}, G\}$.
 - (a) If $\delta \mathbf{q} = dt \dot{\mathbf{q}}$ and $\delta \mathbf{p} = dt \dot{\mathbf{p}}$, what is the generating function G?
 - (b) If $\delta \mathbf{q} = \epsilon \hat{\mathbf{n}}$ and $\delta \mathbf{p} = 0$, with $\hat{\mathbf{n}}$ being a constant unit vector, what is the generating function G?
 - (c) If $\delta \mathbf{q} = \delta \phi \hat{\mathbf{n}} \times \mathbf{q}$ and $\delta \mathbf{p} = \delta \phi \hat{\mathbf{n}} \times \mathbf{p}$, with $\hat{\mathbf{n}}$ being a constant unit vector and $\delta \phi \ll 1$, what is the generating function *G*?
 - (d) What is the physical interpretation of the above transformations?
- 8. By calculating the Poisson parentheses directly, verify that
 - (a) $\{x, J_z\} = -y, \{y, J_z\} = x$, and $\{z, J_z\} = 0$, where $\mathbf{J} = \mathbf{r} \times \mathbf{p}$, and
 - (b) $\{J_x, J_y\}, \{J_y, J_z\}, \{J_z, J_x\}, \{J^2, J_x\}, \{J^2, J_y\}, \text{ and } \{J^2, J_z\}, \text{ where } J^2 = J_x^2 + J_y^2 + J_z^2.$
- 9. In class, we showed that the volume in the phase $V = \int d\eta$ space is conserved under the Hamiltonian dynamics (Liouville's theorem).

- (a) Show that V is conserved not only in the Hamiltonian dynamics but also for any canonical transformation, i.e., show that $V' \equiv \int d\zeta = V$, where ζ is related to η via a canonical transformation.
- (b) An ensemble of particles, all of the same mass m, has initial heights z_i and initial moments p_i contained in the intervals $-a \le z_i \le a$ and $-b \le p_i \le b$. These particles fall in free fall for a time t under the action of gravity $\mathbf{g} = -g\hat{z}$. Find the region in phase space they occupy at time t and show by a direct calculation that this volume is still 4ab as expected by Liouville's theorem.
- 10. A particle of mass m moves along a straight line under the action of the potential $V(x) = mkx^{-2}$, where k is a constant. Given the initial conditions $x(0) = x_0$ and $\dot{x}(0) = 0$, obtain x(t) by means of the series solution involving successive Poisson parentheses (the Liouville's operator) for $u = x^2$.
- 11. Let the Hamiltonian of a point particle be $H = \frac{1}{2} \left(\frac{p}{f(pq)}\right)^2$, where $f(x) \neq 0$ is a well behaved function.
 - (a) Show that the transformation Q = qf(qp) and P = p/f(qp) is canonical and, with that,
 - (b) show that the equations of the trajectory are $q(t) = (At + B)/f(A^2t + AB)$ and $p(t) = Af(A^2t + AB)$, where A and B are constants.
 - (c) Find f(x) to solve problem 10 and compare the solutions. (Hint: take the limit p/f(qp) when $p \to 0$ very carefully.)
- 12. The Poincaré-Cartan invariant is $S = \oint_{\Gamma} \mathbf{p} \cdot d\mathbf{q} Hdt$, where the integral is performed in a closed curve Γ in the phase space. Compute S for the case of a one-dimensional harmonic oscillator where Γ is a classical trajectory. How S depends on Γ ?
- 13. State and prove the Poincaré's recurrence theorem. Read Lemos Sec. 8.7 and Aguiar Sec. 5.11.