List of exercises \#2-7600040

1. Let $S=S\left(q_{1}, t_{1}, q_{2}, t_{2}\right)$ be the action of a classical path from $\left(q_{1}, t_{1}\right)$ to $\left(q_{2}, t_{2}\right)$. Show that $\frac{\partial S}{\partial q_{1}}=-p_{1}, \frac{\partial S}{\partial q_{2}}=p_{2}$, $\frac{\partial S}{\partial t_{1}}=H\left(t_{1}\right)$ and $\frac{\partial S}{\partial t_{2}}=-H\left(t_{2}\right)$, where $p_{i}(i=1,2)$ is the conjugate momentum of q_{i} and $H=p \dot{q}-L$ is the energy function (Hamiltonian). With that, we conclude that the action $S\left(\mathbf{q}_{i}, \mathbf{q}_{f}, t\right)$ is the generating function of type $F_{1} \equiv F_{1}\left(\mathbf{q}=\mathbf{q}_{f}, \mathbf{Q}=\mathbf{q}_{i}, t\right)$ for the time evolution from \mathbf{q}_{i} to \mathbf{q}_{f}. (Hint: see Aguiar Sec. 3.7.)
2. Prove
(a) the Jacobi identity $\{\{A, B\}, C\}+\{\{B, C\}, A\}+\{\{C, A\}, B\}=0$, where $\{A, B\} \equiv\{A, B\}_{\mathbf{q}, \mathbf{p}}$ are the Poisson brackets of A and B with respect to canonical coordinate system (\mathbf{q}, \mathbf{p}), and A, B, and C are functions of \mathbf{q}, \mathbf{p}, and t;
(b) that $\{A, B\}_{\mathbf{q}, \mathbf{p}}=\{A, B\}_{\mathbf{Q}, \mathbf{P}}$, where (\mathbf{Q}, \mathbf{P}) is also a canonical coordinate system;
(c) the Poisson's theorem which states that the Poisson brackets of two constants of movement is also a constant of movement.
(Hint: see Lemos Sec. 8.5 or Aguiar Sec. 5.5.)
3. A particle of mass m moves under the conservative central potential $V=-k r^{-1}$, where k is a constant. Show that the Laplace-Runge-Lenz vector $\mathbf{A}=\mathbf{p} \times \mathbf{L}-m k \hat{r}$ is a constant of the movement by computing the Poisson bracket $\{\mathbf{A}, H\}$.
4. Verify if the following transformations are canonical. If yes, find the corresponding generating function.
(a) $Q=q \cos \alpha-p \sin \alpha$, and $P=q \sin \alpha+p \cos \alpha$, where α is a constant.
(b) $Q=\ln (1+\sqrt{q} \cos p)$, and $P=2(1+\sqrt{q} \cos p) \sqrt{q} \sin p$.
(c) $Q_{1}=q_{1} q_{2}, Q_{2}=q_{1}+q_{2}, P_{1}=\frac{p_{1}-p_{2}}{q_{2}-q_{1}}-1$, and $P_{2}=\frac{q_{2} p_{2}-q_{1} p_{1}}{q_{2}-q_{1}}-\left(q_{2}+q_{1}\right)$.
5. A particle of mass m and charge q moves in a region in space where there is a constant magnetic field $\mathbf{B}=B \hat{z}$.
(a) Show that the following transformation is canonical: $x=\alpha^{-1}\left(\sqrt{2 P_{1}} \sin Q_{1}+P_{2}\right), \quad y=$ $\alpha^{-1}\left(\sqrt{2 P_{1}} \cos Q_{1}+Q_{2}\right), z=Q_{3}, p_{x}=\alpha\left(\sqrt{2 P_{1}} \cos Q_{1}-Q_{2}\right) / 2, p_{y}=-\alpha\left(\sqrt{2 P_{1}} \sin Q_{1}-P_{2}\right) / 2, p_{z}=P_{3}$.
(b) Compute the new Hamiltonian $K(\mathbf{Q}, \mathbf{P})$, identify the constant α conveniently, and obtain the particle movement as a function of time.
6. A particle of mass m and charge q moves in a magnetic field \mathbf{B}.
(a) Write the Hamiltonian of the problem and evaluate the following Poisson brackets $\left\{m \dot{r}_{i}, m \dot{r}_{j}\right\}$ and $\left\{m \dot{r}_{i}, r_{j}\right\}$, where $i, j=1,2,3$ with $r_{1}=x, r_{2}=y$, and $r_{3}=z$.
(b) The field of a magnetic monopole is $\mathbf{B}=b r^{-2} \hat{r}$, where b is the magnetic charge. Define a generalized angular momentum $\mathbf{D}=\mathbf{J}-q b \hat{r}$ and show that $\{H, D\}=0$. Discuss your results.
7. Let the infinitesimal canonical transformation $\delta \mathbf{q}=\mathbf{Q}-\mathbf{q}=\epsilon \frac{\partial G}{\partial \mathbf{p}}=\epsilon\{\mathbf{q}, G\}$ and $\delta \mathbf{p}=\mathbf{P}-\mathbf{p}=-\epsilon \frac{\partial G}{\partial \mathbf{q}}=\epsilon\{\mathbf{p}, G\}$.
(a) If $\delta \mathbf{q}=d t \dot{\mathbf{q}}$ and $\delta \mathbf{p}=d t \dot{\mathbf{p}}$, what is the generating function G ?
(b) If $\delta \mathbf{q}=\epsilon \hat{\mathbf{n}}$ and $\delta \mathbf{p}=0$, with $\hat{\mathbf{n}}$ being a constant unit vector, what is the generating function G ?
(c) If $\delta \mathbf{q}=\delta \phi \hat{\mathbf{n}} \times \mathbf{q}$ and $\delta \mathbf{p}=\delta \phi \hat{\mathbf{n}} \times \mathbf{p}$, with $\hat{\mathbf{n}}$ being a constant unit vector and $\delta \phi \ll 1$, what is the generating function G ?
(d) What is the physical interpretation of the above transformations?
8. By calculating the Poisson parentheses directly, verify that
(a) $\left\{x, J_{z}\right\}=-y,\left\{y, J_{z}\right\}=x$, and $\left\{z, J_{z}\right\}=0$, where $\mathbf{J}=\mathbf{r} \times \mathbf{p}$, and
(b) $\left\{J_{x}, J_{y}\right\},\left\{J_{y}, J_{z}\right\},\left\{J_{z}, J_{x}\right\},\left\{J^{2}, J_{x}\right\},\left\{J^{2}, J_{y}\right\}$, and $\left\{J^{2}, J_{z}\right\}$, where $J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$.
9. In class, we showed that the volume in the phase $V=\int d \boldsymbol{\eta}$ space is conserved under the Hamiltonian dynamics (Liouville's theorem).
(a) Show that V is conserved not only in the Hamiltonian dynamics but also for any canonical transformation, i.e., show that $V^{\prime} \equiv \int d \boldsymbol{\zeta}=V$, where $\boldsymbol{\zeta}$ is related to $\boldsymbol{\eta}$ via a canonical transformation.
(b) An ensemble of particles, all of the same mass m, has initial heights z_{i} and initial moments p_{i} contained in the intervals $-a \leq z_{i} \leq a$ and $-b \leq p_{i} \leq b$. These particles fall in free fall for a time t under the action of gravity $\mathbf{g}=-g \hat{z}$. Find the region in phase space they occupy at time t and show by a direct calculation that this volume is still $4 a b$ as expected by Liouville's theorem.
10. A particle of mass m moves along a straight line under the action of the potential $V(x)=m k x^{-2}$, where k is a constant. Given the initial conditions $x(0)=x_{0}$ and $\dot{x}(0)=0$, obtain $x(t)$ by means of the series solution involving successive Poisson parentheses (the Liouville's operator) for $u=x^{2}$.
11. Let the Hamiltonian of a point particle be $H=\frac{1}{2}\left(\frac{p}{f(p q)}\right)^{2}$, where $f(x) \neq 0$ is a well behaved function.
(a) Show that the transformation $Q=q f(q p)$ and $P=p / f(q p)$ is canonical and, with that,
(b) show that the equations of the trajectory are $q(t)=(A t+B) / f\left(A^{2} t+A B\right)$ and $p(t)=A f\left(A^{2} t+A B\right)$, where A and B are constants.
(c) Find $f(x)$ to solve problem 10 and compare the solutions. (Hint: take the limit $p / f(q p)$ when $p \rightarrow 0$ very carefully.)
12. The Poincaré-Cartan invariant is $\mathcal{S}=\oint_{\Gamma} \mathbf{p} \cdot d \mathbf{q}-H d t$, where the integral is performed in a closed curve Γ in the phase space. Compute \mathcal{S} for the case of a one-dimensional harmonic oscillator where Γ is a classical trajectory. How \mathcal{S} depends on Γ ?
13. State and prove the Poincaré's recurrence theorem. Read Lemos Sec. 8.7 and Aguiar Sec. 5.11.
