List of exercises #3 - 7600040

1. Consider a one-dimensional Harmonic Oscillator the natural frequency of which is perturbed. Precisely, the
Hamiltonian is H = 5—p® + fmw?2?, and w = w (t) = wo (1 + €t). (This linear perturbation can be thought as
the Taylor expansion of a more general perturbation.)

(a) Solve exactly for z(t) with the inicial conditions 2(0) = z¢ and p(0) = 0. (Hint: see the parabolic cylinder
functions.)

(b) Plot x(t)/xo from t = 0 to t = 10Ty, where Ty = 27wy * for the values € = 10~ wy and 10~ 2wy. Compare
with the nonperturbed case ¢ = 0. (Hint: The software Wolfram Mathematica has the parabolic cylinder
functions in its library.)

(c) Repeat the same task for H(t)/Hy.
(d) Repeat the same task for J(t)/Jo, where J(t) = H (t) /w (t).
(e) Interpret your results according to the adiabatic theory.
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(f) In this case, is the averaging principle useful even for times much greater than that of validity of the
adiabatic approximation?

(g) Repeat everything for w (t) = woy/1 + €et. (Hint: now, use the Airy functions.)

2. A massive particle with negative total energy moves in one dimension where the potential is V (z) =
—Vo/ cosh? (kx), where k > 0 is a constant. If Vj varies slowly in time, show that (Vy + E) //Vp is an adiabatic
invariant.

3. A massive particle moves in one dimension where the potential is V' = kx~2, with £ > 0 being a constant.
Determine z(t) by the Hamilton-Jacobi method if 2(0) = o and #(0) = 0.

4. A massive particle with positive total energy moves in one dimension under the conservative potential V (z) =
F'|x|, where F' > 0 is a constant.

(a) Use action/angle variables to determine the period of the movement.

(b) Apply the Bohr-Sommerfeld quantization rule ¢ pdg = (n+ %) h, where h is the Planck constant, and
n € N. (In some text books, the % additional factor is dropped out since the important quantity is the
energy difference between the different energy levels. In the old quantum theory, this is also known as the

Wilson-Sommerfeld quantization rule.) What is the resulting energy spectrum E = E (n)?

5. A string of length ¢ with a mass m at each end passes through a hole in a frictionless horizontal plane. One
mass moves horizontally on the plane and the other mass hangs vertically downwards.
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(a) Show that a suitable Hamiltonian for the system is H = £= + 5225 —mg (¢ — r) , where (r, ) are the polar

co-ordinates of the particle on the plane and (p,., pg) are the corresponding momenta.

(b) Identify two constants of the motion.

(c) Show that a steady motion with r = ry is possible (for any ro > 0) if py is chosen suitably, and that the

period of small oscillations about this motion is 27, /QSL;.
6. A particle of mass m constrained to move in one dimension is attached to the origin by a light elastic string of
natural length ¢, so that it is able to move freely along the z-axis if its distance from the origin is less than ¢,
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but otherwise moves in a potential V' (z) = 5k (|z| — 0)? for |z| > ¢.

(a) Sketch the potential and the phase-plane trajectories for different values of the energy F.
2
(b) Show that E = (\/QJ e ﬁ) where J is the action, 8 = 7~ 1v/2k(, and Q = /%

(¢) Explain briefly (without detailed calculation) how the angle variable ¢ conjugate to the action may be
found in the form ¢ (z) and how x may be found as a function of the time t.

(d) What happens in the limits of (i) small and (ii) large energies E?


https://en.wikipedia.org/wiki/Parabolic_cylinder_function
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https://en.wikipedia.org/wiki/Airy_function

7. The isotropic Harmonic Oscillator is a particular case of the 2-D Harmonic Oscillator where w; = wy = w.
In this case, the force is central and the angular momentum is conserved. Defining L, = (q1p2 — q2p1), it is
easy to show that {L., Hi} = pip2 + m*wiqiqe, {L., Ha} = —p1p2 — m*wiqiqe, {L., H} = m? (w} — w3) q1¢o.
Thus, {L.,H} = 0 for w1y = wy. Instead of using the three constants of the motion Hy, Hsy, and L., it is
interesting to use K; = (2@;)71 (Hy — Hy), Ky = (Qmw)fl (p1p2 +m2w2q1q2), and K3 = %Lz. Then, H =
2wy\/K? + K3 + K3, where {K;, H} = 0, and G; = JVK; are independent vectors, with J = _O]I g > being

the fundamental symplectic matrix. Notice that, although there are three constants of the motion, they are not

in involution.

(a) Calculate the vectors G;.

(b) Show that VH is orthogonal to to all G;. Thus, VH and G; form a basis to F*.

(c) Show that {K;, K;} = €;j5 K. (This is the angular momentum algebra, and shows that the symmetry of
the Hamiltonian is not SO(2), but SU(2) or SO(3).)

8. A particle of mass m and charge ¢ moves in the xy-plane where there is a constant magnetic field B = B2Z.

(a) Show that one possible Hamiltonian describing the system is H = ﬁp% + ﬁ (py — qu)Q.
(b) Using the Hamilton-Jacobi method, obtain r (t) and p (¢).

)
(¢) Show that another possible Hamiltonian describing the system is H = 5 (p, + %qu)%—ﬁ (py — %qu)%
)

(d) In this case, verify that the associated Hamilton-Jacobi equation is non-separable in the usual form. This
shows that separability in Hamilton-Jacobi equation depends not only on the choice of the co-ordinates,
but also on the chosen gauge. To separate the variables in this case, let W = Ky + a,y + X (), where
oy, is an arbitrary constant and K is another constant whose value is chosen conveniently. Finally, solve
the equations of motion and compare with your previous results.



