List of exercises \#5 (Time-independent perturbation theory) - 7600040

1. Consider a system with one degree of freedom and Hamiltonian $H=\frac{1}{2} p^{2}+\frac{1}{2} \omega^{2} q^{2}+\epsilon\left(a q+\frac{b}{2} q^{2}\right)$, where a, b, ω, and ϵ are constants. Given that $q(0)=q_{0}$ and $p(0)=0$,
(a) Solve the problem exactly.
(b) Assuming $\epsilon \ll 1$, solve the problem using perturbation theory.
(c) Expand the exact result up to first order in ϵ and compare with your perturbative result.
2. Consider the perturbed one-dimensional Harmonic Oscillator $H=\frac{1}{2 m} p^{2}+\frac{1}{2} m \omega^{2} x^{2}+\frac{1}{2 n} \epsilon x^{2 n}$, where $n=$ $2,3,4, \ldots$.
(a) Write H in terms of the action/angle variables $\left(J_{0}, \phi_{0}\right)$ of the unperturbed system.
(b) Find the generating function $S\left(\phi_{0}, J_{1}\right)$ of the canonical transformation $\left(\phi_{0}, J_{0}\right) \rightarrow\left(\phi_{1}, J_{1}\right)$ that eliminates the angular dependence of the Hamiltonian up to 1st order in ϵ.
(c) Compute the perturbed frequency of oscillation as a function of the system energy.
3. Show that the period of a simple pendulum is $T=4 \sqrt{\frac{\ell}{g}} \int_{0}^{\frac{\pi}{2}} \frac{d u}{\sqrt{1-k^{2} \sin ^{2} u}}$, where $k=\sin \left(\frac{\theta_{0}}{2}\right)$, and $0<\theta_{0}<\pi$ is the amplitude of the oscillatory movement. Expand T up to 1 st order in θ_{0} and compare with the result obtained in class.
4. Consider a system with one degree of freedom and Hamiltonian $H=\frac{1}{2 m} p^{2}\left(1-\frac{1}{4} \epsilon p^{2}\right)+\frac{1}{2} m \omega^{2} x^{2}$. (For $\epsilon=\left(\frac{1}{m c}\right)^{2}$, H is the Hamiltonian of Harmonic Oscillator with the leading relativistic correction.) Compute the frequency of oscillation up to 1 st order of perturbation theory in ϵ.
5. The potential energy of a particle of mass m is $V(\mathbf{r})=V(r)=-k r^{-1}+\frac{1}{3} \epsilon r^{-3}$, where $k>0$ and ϵ is a small constant. Find the angular velocity ω in a circular orbit of radius a, and the angular frequency ω^{\prime} of small radial oscillations about this circular orbit. Hence show that a nearly circular orbit is approximately an ellipse whose axes precession at an angular velocity $\Omega \approx \frac{\epsilon}{k a^{2}} \omega$.
6. Consider a system with two degrees of freedom and Hamiltonian $H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} m\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}\right)+\epsilon x^{2} y^{2}$.
(a) Study the case of non-resonance and compute the natural frequencies up to 1st order of perturbation theory in ϵ.
(b) Study the case of resonance. What is the effective theory for the non-trivial degree of freedom?
7. Consider the perturbed one-dimensional Harmonic Oscillator $H=\frac{1}{2 m} p^{2}+\frac{1}{2} m \omega^{2} x^{2}+\frac{1}{3} \epsilon x^{3}$, where ϵ is the perturbative parameter.
(a) Show that the first order correction to the Hamiltonian is vanishing.
(b) Calculate the correction to the natural frequency in second order of perturbation theory. (Hint: see Sec. 12.4 of Goldstein, Poole, and Safko.)
