List of exercises #6 (Non-linear systems and chaos) - 7600040

- 1. A circuit with a nonlinear inductor can be modeled by the equations $\dot{x} = y$ and $\dot{y} = -ky x^3 + B\cos t$.
 - (a) Compare this system of equations with the Duffing equation.
 - (b) Study numerically the dynamics for k = 0.1 and $9.8 \le B \le 13.4$.
- 2. Assume that $x(t) = b \cos(\omega_0 t) + u(t)$ is a solution of the van der Pol equation $\ddot{x} + \mu (x^2 a^2) \dot{x} + \omega_0^2 x = 0$. Assume that the damping term μ is small and keep terms in u(t) up to first order in μ . Show that b = 2a and $u(t) = -\frac{\mu a^3}{4\omega_0} \sin(3\omega_0 t)$ is a solution. Produce a phase diagram of \dot{x} versus x and plots of x(t) and $\dot{x}(t)$ for values of $a = \omega_0 = 1$, and $\mu = 0.05$.
- 3. Consider the Standard map $J_{n+1} = J_n + K \sin \theta_n$ and $\theta_{n+1} = \theta_n + J_{n+1}$, with $0 \le \theta_n \le 2\pi$.
 - (a) Study numerically the associated Poincaré section, i.e., for a fixed value of K, plot in the same graph J_n vs. θ_n for many different initial conditions $\{\theta_0, J_0\}$ and n ranging from 0 to 10^3 . Consider the cases of $K = 0, 0.01, \ldots$ For what values of K the many tori start to be destructed, i.e., when does chaos appear?
 - (b) Notice that as K increases there appear resonance zones, periodic orbits and bands of chaos as tori of J = const undergo progressive breakdown. Study the Twist map and the Poincaré–Birkhoff theorem in Aguiar Sec. 10.2 and in Kibble & Berkshire Appendix D.3.
- 4. Consider the Logistic map $x_{i+1} = rx_i (1 x_i) \equiv G(x_i)$, where $0 < x_0 < 1$ and r is a constant.
 - (a) Show that there is a point attractor for $0 \le r < 3$.
 - (b) Show that there is a two-cycle attractor for $3 < r < 1 + \sqrt{6}$.
 - (c) Show that α , β , s can be found such that y_n satisfies the logistic map with parameter $s \ (\neq r)$ and $x_j = \alpha + \beta y_j$. [This is an example of the fact that all quadratic maps $y_{j+1} = A + By_j + Cy_j^2$ are essentially just the Logistic map, as it can be obtained by a suitably chosen linear relation between y_j and x_j .]
 - (d) Let $x_j = G^{(j)}(x_0) \equiv G(G(\dots G(x_0)\dots))$. Show that $G^{(j)'}(x)|_{x=x_0} = \prod_{k=0}^{j-1} G'(x)|_{x=x_k}$.
 - (e) Let $d_j \equiv |G^{(j)}(x_0 + \epsilon) G^{(j)}(x_0)|$, i.e., d_j is the distance between two initial conditions after they evolved j steps. Assuming that $d_j = \epsilon e^{\lambda j}$ for $j \to \infty$, show that the Lyapunov exponent is $\lambda = \lim_{j\to\infty} \frac{1}{j} \sum_{k=0}^{j-1} \ln |G'(x)|_{x=x_k}|$.
 - (f) Calculate the Lyapunov exponent for (i) 0 < r < 1, (ii) 1 < r < 3, (iii) $3 < r < 1 + \sqrt{6}$, and (iv) r = 4.
 - (g) What is the behavior of the logistic map when r > 4?
 - (h) Now let r and x_n be complex numbers. Find regions of the complex r plane for which the map has (i) a point attractor, (ii) a 2-cycle attractor.
- 5. The tent map is given by $x_{n+1} = 1 2 \left| x_n \frac{1}{2} \right|$ where $0 \le x_n \le 1$.
 - (a) Find the fixed points.
 - (b) Show that these fixed points are all unstable.
 - (c) Show that this map exhibits extreme sensitivity to initial conditions, i.e., an uncertainty ϵ in x_0 is rapidly magnified. Estimate the number of iterations after which the range of uncertainty in the iterates is the complete interval [0, 1].
- 6. For the cubic map $x_{n+1} = ax_n x_n^3$, where a is real, show that, when |a| < 1, there is an asymptotically stable fixed point $x^* = 0$ and that, when 1 < a < 2 there are two such fixed points at $x^* = \pm \sqrt{a-1}$. What happens when a > 2?
- 7. By calculating Lyapunov exponents examine sensitivity to initial conditions of the equal-area maps of the unit square $(0 \le x, y \le 1)$:
 - (a) Arnold's cat map $x_{n+1} = x_n + y_n$, $y_{n+1} = x_n + 2y_n$ (each modulo 1).
 - (b) The baker's transformation $(x_{n+1}, y_{n+1}) = (2x_n, \frac{1}{2}y_n)$ if $x_n < \frac{1}{2}$, and $(x_{n+1}, y_{n+1}) = (2 2x_n, \frac{1}{2}(2 y_n))$, if $x_n > \frac{1}{2}$.