List of exercises \#6 (Non-linear systems and chaos) - 7600040

1. A circuit with a nonlinear inductor can be modeled by the equations $\dot{x}=y$ and $\dot{y}=-k y-x^{3}+B \cos t$.
(a) Compare this system of equations with the Duffing equation.
(b) Study numerically the dynamics for $k=0.1$ and $9.8 \leq B \leq 13.4$.
2. Assume that $x(t)=b \cos \left(\omega_{0} t\right)+u(t)$ is a solution of the van der Pol equation $\ddot{x}+\mu\left(x^{2}-a^{2}\right) \dot{x}+\omega_{0}^{2} x=0$. Assume that the damping term μ is small and keep terms in $u(t)$ up to first order in μ. Show that $b=2 a$ and $u(t)=-\frac{\mu a^{3}}{4 \omega_{0}} \sin \left(3 \omega_{0} t\right)$ is a solution. Produce a phase diagram of \dot{x} versus x and plots of $x(t)$ and $\dot{x}(t)$ for values of $a=\omega_{0}=1$, and $\mu=0.05$.
3. Consider the Standard map $J_{n+1}=J_{n}+K \sin \theta_{n}$ and $\theta_{n+1}=\theta_{n}+J_{n+1}$, with $0 \leq \theta_{n} \leq 2 \pi$.
(a) Study numerically the associated Poincaré section, i.e., for a fixed value of K, plot in the same graph J_{n} vs. θ_{n} for many different initial conditions $\left\{\theta_{0}, J_{0}\right\}$ and n ranging from 0 to 10^{3}. Consider the cases of $K=0,0.01, \ldots$. For what values of K the many tori start to be destructed, i.e., when does chaos appear?
(b) Notice that as K increases there appear resonance zones, periodic orbits and bands of chaos as tori of $J=$ const undergo progressive breakdown.
Study the Twist map and the Poincaré-Birkhoff theorem in Aguiar Sec. 10.2 and in Kibble \& Berkshire Appendix D.3.
4. Consider the Logistic map $x_{i+1}=r x_{i}\left(1-x_{i}\right) \equiv G\left(x_{i}\right)$, where $0<x_{0}<1$ and r is a constant.
(a) Show that there is a point attractor for $0 \leq r<3$.
(b) Show that there is a two-cycle attractor for $3<r<1+\sqrt{6}$.
(c) Show that α, β, s can be found such that y_{n} satisfies the logistic map with parameter $s(\neq r)$ and $x_{j}=\alpha+\beta y_{j}$.
[This is an example of the fact that all quadratic maps $y_{j+1}=A+B y_{j}+C y_{j}^{2}$ are essentially just the Logistic map, as it can be obtained by a suitably chosen linear relation between y_{j} and x_{j}.]
(d) Let $x_{j}=G^{(j)}\left(x_{0}\right) \equiv G\left(G\left(\ldots G\left(x_{0}\right) \ldots\right)\right)$. Show that $\left.G^{(j) \prime}(x)\right|_{x=x_{0}}=\left.\prod_{k=0}^{j-1} G^{\prime}(x)\right|_{x=x_{k}}$.
(e) Let $d_{j} \equiv\left|G^{(j)}\left(x_{0}+\epsilon\right)-G^{(j)}\left(x_{0}\right)\right|$, i.e., d_{j} is the distance between two initial conditions after they evolved j steps. Assuming that $d_{j}=\epsilon e^{\lambda j}$ for $j \rightarrow \infty$, show that the Lyapunov exponent is $\lambda=$ $\left.\lim _{j \rightarrow \infty} \frac{1}{j} \sum_{k=0}^{j-1} \ln \left|G^{\prime}(x)\right|_{x=x_{k}} \right\rvert\,$.
(f) Calculate the Lyapunov exponent for (i) $0<r<1$, (ii) $1<r<3$, (iii) $3<r<1+\sqrt{6}$, and (iv) $r=4$.
(g) What is the behavior of the logistic map when $r>4$?
(h) Now let r and x_{n} be complex numbers. Find regions of the complex r plane for which the map has (i) a point attractor, (ii) a 2-cycle attractor.
5. The tent map is given by $x_{n+1}=1-2\left|x_{n}-\frac{1}{2}\right|$ where $0 \leq x_{n} \leq 1$.
(a) Find the fixed points.
(b) Show that these fixed points are all unstable.
(c) Show that this map exhibits extreme sensitivity to initial conditions, i.e., an uncertainty ϵ in x_{0} is rapidly magnified. Estimate the number of iterations after which the range of uncertainty in the iterates is the complete interval $[0,1]$.
6. For the cubic map $x_{n+1}=a x_{n}-x_{n}^{3}$, where a is real, show that, when $|a|<1$, there is an asymptotically stable fixed point $x^{*}=0$ and that, when $1<a<2$ there are two such fixed points at $x^{*}= \pm \sqrt{a-1}$. What happens when $a>2$?
7. By calculating Lyapunov exponents examine sensitivity to initial conditions of the equal-area maps of the unit square $(0 \leq x, y \leq 1)$:
(a) Arnold's cat map $x_{n+1}=x_{n}+y_{n}, y_{n+1}=x_{n}+2 y_{n}$ (each modulo 1).
(b) The baker's transformation $\left(x_{n+1}, y_{n+1}\right)=\left(2 x_{n}, \frac{1}{2} y_{n}\right)$ if $x_{n}<\frac{1}{2}$, and $\left(x_{n+1}, y_{n+1}\right)=\left(2-2 x_{n}, \frac{1}{2}\left(2-y_{n}\right)\right)$, if $x_{n}>\frac{1}{2}$.
