- 1. Cohen-Tannoudji, exercises 2 and 3 from chapter IX (complement B).
- 2. Cohen-Tannoudji, exercises 1 to 5 (except 2 which is optional) from chapter X (complement G).
- 3. Cohen-Tannoudji, complement A from chapter IX.
 - (a) Show that the operator $e^{-i\boldsymbol{\sigma}\cdot\hat{n}\phi/2} = \mathbb{I}\cos\left(\frac{\phi}{2}\right) i\boldsymbol{\sigma}\cdot\hat{n}\sin\left(\frac{\phi}{2}\right)$, where $\boldsymbol{\sigma}$ are the Pauli matrices, \hat{n} is a unit vector, and $\phi \in \Re$.
 - (b) What is the physical interpretation of the operator in the previous item? What is the significance for $\phi = 2\pi$?
- 4. (Optional) Cohen-Tannoudji, complement D from chapter X.
- 5. Let **J** be the total angular momentum of a physical system.
 - (a) Compute $\mathbf{J}' = e^{-\frac{i}{\hbar}\phi J_z} \mathbf{J} e^{\frac{i}{\hbar}\phi J_z}$. (*Hint*: Use the Baker-Haussdorff identity: $e^X Y e^{-X} = Y + [X,Y] + \frac{1}{2!} [X, [X,Y]] + \frac{1}{3!} [X, [X, [X,Y]]] + \dots$)
 - (b) Interpret geometrically your result for \mathbf{J}' .
 - (c) Based on this interpretation, what would be the result for $\mathbf{J}'' = e^{-\frac{i}{\hbar}\phi\hat{n}\cdot\mathbf{J}}\mathbf{J}e^{\frac{i}{\hbar}\phi\hat{n}\cdot\mathbf{J}}$, where \hat{n} is a unitary vector?
 - (d) And for $\mathbf{J}^{\prime\prime\prime} = e^{-\frac{i}{\hbar}\theta J_x} e^{-\frac{i}{\hbar}\phi J_z} \mathbf{J} e^{\frac{i}{\hbar}\phi J_z} e^{\frac{i}{\hbar}\theta J_x}$?
- 6. Show the identity used in class: $e^{-\frac{i}{\hbar}\mathbf{d}\cdot\mathbf{P}}\mathbf{R}e^{\frac{i}{\hbar}\mathbf{d}\cdot\mathbf{P}} = \mathbf{R} \mathbf{d}\mathbb{I}$, where **d** is a vector, and **R** and **P** are the usual position and momentum operators, respectively.
- 7. Cohen-Tannoudji, complement F from chapter II.
 - (a) How does the momentum operator (**p**) transform under parity (π) ?
 - (b) A quantum mechanical state $|\psi\rangle$ is known to be Eigenstate of momentum and parity simultaneously. What can be said about the eigenvalues?
 - (c) Give a physical interpretation of your results in the previous item.
- 8. Cohen-Tannoudji, complement B from chapter VII; and Shankar, Sec. 15.4.
 - (a) Show that the Runge-Lenz vector $\mathbf{N} = \mathbf{p} \times \mathbf{L} + \alpha \hat{r}$ is a conserved quantity for a central force $\mathbf{F} = F(r) \hat{r}$, with $F(r) \propto r^{-2}$.
 - (b) Compute α for the gravitational force.
 - (c) Using that the orbital angular momentum \mathbf{L} and \mathbf{N} are conserved, show the first law of Kepler.
 - (d) In quantum mechanics, it is useful to use the symmetrization rule $O \rightarrow \frac{1}{2} (O + O^{\dagger})$. Using this rule, show that the Runge-Lenz vector operator is $\mathbf{N} = \frac{1}{2} (\mathbf{p} \times \mathbf{L} \mathbf{L} \times \mathbf{p}) + \alpha \hat{r}$.
 - (e) Show that N commutes with the Hydrogen atom Hamiltonian and compute α . This additional symmetry is responsible for the larger degeneracy in the Hydrogen atom when compared with the 3D Harmonic Oscillator.
 - (f) What is the implication for the wavefunction $\Psi_{1,0,0}$ in exercise 7(g) of List #1?