List of exercises \#2-7600037

1. Cohen-Tannoudji, exercises 2 and 3 from chapter IX (complement B).
2. Cohen-Tannoudji, exercises 1 to 5 (except 2 which is optional) from chapter X (complement G).
3. Cohen-Tannoudji, complement A from chapter IX.
(a) Show that the operator $e^{-i \boldsymbol{\sigma} \cdot \hat{n} \phi / 2}=\mathbb{I} \cos \left(\frac{\phi}{2}\right)-i \boldsymbol{\sigma} \cdot \hat{n} \sin \left(\frac{\phi}{2}\right)$, where $\boldsymbol{\sigma}$ are the Pauli matrices, \hat{n} is a unit vector, and $\phi \in \Re$.
(b) What is the physical interpretation of the operator in the previous item? What is the significance for $\phi=2 \pi$?
4. (Optional) Cohen-Tannoudji, complement D from chapter X.
5. Let \mathbf{J} be the total angular momentum of a physical system.
(a) Compute $\mathbf{J}^{\prime}=e^{-\frac{i}{\hbar} \phi J_{z}} \mathbf{J} e^{\frac{i}{\hbar} \phi J_{z}}$. (Hint: Use the Baker-Haussdorff identity: $e^{X} Y e^{-X}=Y+[X, Y]+$ $\left.\frac{1}{2!}[X,[X, Y]]+\frac{1}{3!}[X,[X,[X, Y]]]+\ldots.\right)$
(b) Interpret geometrically your result for \mathbf{J}^{\prime}.
(c) Based on this interpretation, what would be the result for $\mathbf{J}^{\prime \prime}=e^{-\frac{i}{\hbar} \phi \hat{n} \cdot \mathbf{J}} \mathbf{J} e^{\frac{i}{\hbar} \phi \hat{n} \cdot \mathbf{J}}$, where \hat{n} is a unitary vector?
(d) And for $\mathbf{J}^{\prime \prime \prime}=e^{-\frac{i}{\hbar} \theta J_{x}} e^{-\frac{i}{\hbar} \phi J_{z}} \mathbf{J} e^{\frac{i}{\hbar} \phi J_{z}} e^{\frac{i}{\hbar} \theta J_{x}}$?
6. Show the identity used in class: $e^{-\frac{i}{\hbar} \mathbf{d} \cdot \mathbf{P}} \mathbf{R} e^{\frac{i}{\hbar} \mathbf{d} \cdot \mathbf{P}}=\mathbf{R}-\mathbf{d} \mathbb{I}$, where \mathbf{d} is a vector, and \mathbf{R} and \mathbf{P} are the usual position and momentum operators, respectively.
7. Cohen-Tannoudji, complement F from chapter II.
(a) How does the momentum operator (\mathbf{p}) transform under parity $(\boldsymbol{\pi})$?
(b) A quantum mechanical state $|\psi\rangle$ is known to be Eigenstate of momentum and parity simultaneously. What can be said about the eigenvalues?
(c) Give a physical interpretation of your results in the previous item.
8. Cohen-Tannoudji, complement B from chapter VII; and Shankar, Sec. 15.4.
(a) Show that the Runge-Lenz vector $\mathbf{N}=\mathbf{p} \times \mathbf{L}+\alpha \hat{r}$ is a conserved quantity for a central force $\mathbf{F}=F(r) \hat{r}$, with $F(r) \propto r^{-2}$.
(b) Compute α for the gravitational force.
(c) Using that the orbital angular momentum \mathbf{L} and \mathbf{N} are conserved, show the first law of Kepler.
(d) In quantum mechanics, it is useful to use the symmetrization rule $O \rightarrow \frac{1}{2}\left(O+O^{\dagger}\right)$. Using this rule, show that the Runge-Lenz vector operator is $\mathbf{N}=\frac{1}{2}(\mathbf{p} \times \mathbf{L}-\mathbf{L} \times \mathbf{p})+\alpha \hat{r}$.
(e) Show that \mathbf{N} commutes with the Hydrogen atom Hamiltonian and compute α. This additional symmetry is responsible for the larger degeneracy in the Hydrogen atom when compared with the 3D Harmonic Oscillator.
(f) What is the implication for the wavefunction $\Psi_{1,0,0}$ in exercise $7(\mathrm{~g})$ of List \#1?
