
List of exercises #4 - 7600037

1. Consider a one-particle quantum mechanical system with a Hilbert space spanned by three orthonormal states
|n⟩, with n = 1, 2, 3. Three non-interacting particles occcupy these states. Determine how many distinct physical
states there are if these particles are (neglect their spin):

(a) three identical fermions,
(b) three identical bosons,
(c) two identical fermions and one boson,
(d) two identical bosons and one fermion,
(e) three distinct fermions, and
(f) three distinct bosons.

2. Same as the previous problem, but for 3 identical spin-1/2 particles. In each case, classify the corresponding
orbital states with respect to all possible permutations.

3. The purpose of this problem is to derive the algebra for the bosonic and fermionic creation and annihilation
operators. It is interesting to follow the different derivations in many books such as those of Feynman, Statistical
Mechanics, Landau & Lifshitz, Quantum Mechanics vol. III, Ballentine, Quantum Mechanics, and Merzbacher,
Quantum Mechanics. Here, we will follow the latter one.
Let {|ϕi⟩} and {|φi⟩} be two orthonormal one-particle basis of the Hilbert space. We define the corre-
sponding creation operators (a†

i and b†
i ) such that a†

j |0⟩ = |ϕj⟩ = |0, . . . , nj = 1, 0, . . . ⟩ and b†
j |0⟩ = |φj⟩ =

|0, . . . , ñj = 1, 0, . . . ⟩, where |0⟩ is the vacuum state. Likewise, the destruction operators are such that
aj |ϕk⟩ = δj,k |0⟩, and bj |φk⟩ = δj,k |0⟩.

(a) Prove that the probability of the particle having the quantum number ϕi, |⟨ϕi|ψ⟩|2 = |⟨0| ai |ψ⟩|2, where
|ψ⟩ is a generic one-particle state, is equal to the expectation value

〈
ψ
∣∣∣a†

iai

∣∣∣ψ〉.

(b) Show that

a†
i =

∑
k

⟨φk|ϕi⟩ b†
k, and ai =

∑
k

⟨φk|ϕi⟩∗
bk.

In the following we will assume that this transformation is valid for states with an arbitrary number of
particles (not only for the 0- and 1-particle subspaces as defined). This is the principle of unitary symmetry
(which is not obeyed by the anyonic particles).

(c) Assuming that a†
ia

†
j |ψ⟩ = ζa†

ja
†
i |ψ⟩, where |ψ⟩ is an N -particle generic state, show that ζ can only be

±1. And thus, that
[
a†

i , a
†
j

]
ζ

= [ai, aj ]ζ = 0, where [A,B]ζ = AB − ζBA. (Hint: Perform the unitary

transformation of the previous item and show that b†
i b

†
j = ζb†

jb
†
i for any i and j.)

(d) Argue that ζ = −1 corresponds to fermionic particles.
(e) Applying the same reasoning to aia

†
j |ψ⟩ = µa†

jai |ψ⟩, show that aia
†
j −µa†

jai = Aδi,j , where A is a constant.
Show that A = 1.

(f) In order to compute µ, we introduce the total number operator N̂ which counts the total number of particles
of a generic state of the Fock space

N̂ |n1, n2, . . . ⟩ =
( ∞∑

i=1
ni

)
|n1, n2, . . . ⟩ and N̂ |n1, n2, . . . ⟩ =

( ∞∑
i=1

ñi

)
|ñ1, ñ2, . . . ⟩ .

For this reason, this operator must be proportional to the identity operator. Show that∑
i

a†
iai =

∑
i

b†
i bi ,
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and, for that reason,

N̂ =
∑

i

n̂i, with n̂i = αa†
iai + βaia

†
i + γ = α′a†

iai + γ′.

Finally, show that α′ = 1 and γ′ = 0.
(g) Using the definition that n̂i |. . . , ni, . . . ⟩ ∝ |. . . , ni, . . . ⟩ and that ai |. . . , ni, . . . ⟩ ∝ |. . . , ni − 1, . . . ⟩, show

that [n̂i, aj ] =
[
n̂i, a

†
j

]
= 0 for i ̸= j.

(h) Likewise, show that [n̂i, ai] = −ai and
[
n̂i, a

†
i

]
= a†

i .

(i) Finally, show that µζ = 1, and therefore, µ = ζ.
(j) Write the identity operator I =

∑
k |ϕk⟩ ⟨ϕk| in the second quantization representation. Is your result

expected? Explain.

4. The purpose of this problem is to understand the exchange interaction: the mechanism that gives stability to
the Hydrogen molecule and the covalent bond, among other things such as magnetism. (Use first quantization.)

(a) Write the complete Hamiltonian H of the Hydrogen molecule.
(b) In the limit the two protons are faraway from each other, R ≫ a0, with a0 being the Bohr radius, write

H = H0 + H1 with H0 and H1 being the nonperturbed Hamiltonian and its pertubation, respectively.
Justify your choice of H0 and H1.

(c) Now, use the limit in which the protons are much heavier than the electrons. What is the physical meaning
of this limit? Moreover, consider the protons being classical particles (thus, R becomes a parameter in the
problem) and treat the electrons as indistinguishable spin-1/2 quantum particles. Write the simplified H0
and H1.

(d) Write down the ground-state wavefunctions of H0 (do not forget the spin and the normalization). What is
the degeneracy of the ground state? Discuss the permutation properties of the ground-state wavefunctions.
Make a sketch of these wavefunctions in the plane r1 × r2, where ri is the distance of the i-th electron to
the first proton (which you can conviniently set as the orign).

(e) In first order of perturbation theory, compute the correction to the ground-state energy ∆E due to H1,
and analyze how the degeneracy is lifted. (Do not compute the integrals. Just analyze how they can lift
the degeneracy.)

(f) Which is the new ground state? Discuss its symmetry properties and the role of the parameter R. (As
the integrals in (e) were not computed, you cannot decide for which one. Thus, discuss all the possible
outcomes. Alternatively, you can give a physical insight in order to guess if the integral is positive or
negative)

i. (Optional) Compute the integrals. (All of them, but one, can be computed analytically. Perform the
remaining one numerically.)

(g) What is the condition that ∆E must satisfy in order to guarantee the stability of the Hydrogen molecule?
(h) Notice that the degeneracy of the ground state is lifited in a way that the new spectrum can be represented

by the effective hamiltonian Heff = const + JS1 · S2, where Si is the spin operator of the i-th electron.
Give the expression for the exchange coupling J . (Do not compute any integral.)

(i) Notice that JS1 · S2 is a magnetic type interaction (two dipoles interacting). However, the Hamiltonian
H is purely electric. Discuss which physical principle (or principles) is (are) involved in order to give an
effective magnetic interaction from “purely” electric interactions.

5. Consider a system of two distinct bosonic particles (type A and B) in which only one mode of each is present:

H = ϵAa
†a+ ϵBb

†b+ V a†b+ V ∗b†a.

(a) Show that c ≡ ua− vb and d ≡ v∗a+ u∗b, with |u|2 + |v|2 = 1 are bosonic operators.
(b) Show that when ϵA = ϵB and V = V ∗, the choice u = v = 1/

√
2 decouples the system of bosonic particles

C and D.
(c) Determine u and v that diagonalizes the system in the general case. Find the Eigenenergies and Eigenvectors

of the system.
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6. Consider a system of two spin-1/2 identical fermionic particles that can occupy three different states of energies
Ei, i = 1, 2, 3. The matrix elements allowing the transitions between these states are Mij .

(a) Write down the system Hamiltonian in terms of the criation and annihilation operators.
(b) Determine the equation that gives the Eigenenergies of the sytem.
(c) Diagonalize the system for the particular case Ei = E and Mij = M , and the spins of the particles are the

same.

7. The Grand partition function is given by the trace

ZG = tr e−β(H−µN), where H =
∑

i

ϵia
†
iai and N =

∑
i

a†
iai,

and the constants β and µ are the inverse of temperature and the chemical potential, respectively. In the
following compute the required quantities for both cases of identical bosonic and fermionic particles.

(a) Compute ZG. (Hint: Use the trace in the Fock space: trO =
∑

ni...n∞
⟨n1 . . . n∞ |O|n1 . . . n∞⟩, and recall

that in the Grand-canonical ensamble the number of particles is not fixed.)
(b) Compute the average occupation number ⟨ni⟩, such that N =

∑
i ⟨ni⟩. (Hint: Recall the thermodynamic

Grand-potential Ω(T, V, µ) = β−1 lnZG, and that N = −
(

∂Ω
∂µ

)
T,V

.)

(c) Show that the fractional deviation from the mean occupation number〈
(ni − ⟨ni⟩)2

〉
⟨ni⟩2 = eβ(ϵi−µ) = 1

⟨ni⟩
+ ζ,

with the ζ = ±1 for bosons and fermions, respectively.

8. Consider the simplified Hubbard model which consists of a simple molecule made of 2 sites and 2 electrons
descibed by

H = −t
∑

σ

(
c†

1,σc2,σ + c†
2,σc1,σ

)
+ U (n1,↑n1,↓ + n2,↑n2,↓) ,

with σ =↑ or ↓, ci,σ (c†
i,σ) being the anihillation (creation) operator of electrons at site i with spin projection σ

at the z-axis, ni,σ = c†
i,σci,σ, and t > 0 and U > 0 being constants.

(a) Write the spin operators S1 and S2 in terms of the operators ci,σ and c†
i,σ.

(b) Give a physical interpretation (orign) of each term in the Hamiltonian H.
(c) Write the matrix H in the basis {i, σ; j, τ}, where i,j denotes the sites the electrons occupy and σ,τ denotes

their spin projection.
(d) Diagonalize the matrix H. What is the ground state?
(e) Interpret and discuss your results in the limits U ≫ t and U ≪ t.

9. Consider the mode expansion of the vector potential (in the Schrödinger representation)

A(r) =
√

ℏ
2ϵ0V

∑
k

∑
λ=±

√
1
ωk
ak,λe

ik·rêk,λ + h.c.,

Ȧ(r) = −i
√

ℏ
2ϵ0V

∑
k

∑
λ=±

√
ωkak,λe

ik·rêk,λ + h.c.,

where a†
k,λ (ak,λ) are creation (annihilation) operators of photons the wavevector and polarization of which

are respectively k = k (sin θ cosϕ, sin θ sinϕ, cos θ) and λ, ωk = ck is their angular frequency, and êk,± are the
polarization vectors

êk,1 = (cos θ cosϕ, cos θ sinϕ,− sin θ) ,
êk,2 = (− sinϕ, cosϕ, 0) ,

êk,± = 1√
2

(∓êk,1 − iêk,2) .



4

(a) Show that ∇ · A = 0. What is the physical interpretation of this result?
(b) Show that the angular momentum

L = 1
µ0c2

∫
d3rr × (E × B) = L(o) + L(s), with

L(o) = 1
µ0c2

∫
d3r

3∑
i=1

Ei

(
ℓ⃗Ai

)
, with ℓ⃗ψ = r × ∇ψ,

L(s) = 1
µ0c2

∫
d3rE × A.

Hint: It is convenient to use techniques of tensor calculus, in particular the Levi-Civita antisymmetrical
tensor εijk: εijk = 0 if i = j, or i = k, or , j = k; εijk = 1 if (ijk) equals (123) or any cyclic permutation
of these indices, and εijk = −1 otherwise. In addition, use the “contract epsilon identy”

∑3
k=1 εijkεklm =

δi,lδj,m − δi,mδj,l. Then show that

[r × (E × B)]i =
∑
j,k,l

El

(
εijkxj

∂

∂xk
Al

)
−
∑
j,k,l

∂

∂xl
(εijkxjElAk) +

∑
j,k

εijkEjAk.

Recall that ∇ · E = 0, (a × b)i =
∑

j,k εijkajbk and (∇ × b)i =
∑

j,k εijk
∂

∂xj
bk. Finally, use the boundary

conditions that the fields vanish when r → ∞.
(c) Show that

L(s) = ϵ0i

ℏ

∫
d3rE · S · A,

with S being 3 × 3 matrices satisfing angular momentum commutation relations and having eigenvalues 0,
±ℏ.

(d) Show and give the physical interpretation of the result

L(s) =
∑

k

ℏ
(
a†

k,+ak,+ − a†
k,−ak,−

)
k̂.

(e) Write A, E and B in the Heisenberg representation. (Consider the free-field Hamiltonian
H =

∑
k,λ ℏωk,λa

†
k,λak,λ, and ignore the zero-point energy.) Compute the commutation relations

[Ai(r, t), Aj(r′, t′)], [Ei(r, t), Ej(r′, t′)], [Ai(r, t), Ej(r′, t′)], and [Ei(r, t), Bj(r′, t′)]? Give a physical con-
sequence of latter one.

(f) Do E(r, t) and B(r, t) commute with the total photon number operator

N(t) =
∑
k,λ

a†
k,λak,λ?

Interpret or give a physical consequence of your result.
(g) Consider a coherent state of photons with momentum p = ℏk and helicity λ given by

|α⟩ = e− 1
2 |α|2

eαa†
k,λ |0⟩ ,

where |0⟩ is the vacuum state and α is a scalar. Compute the time evolution of ∆X =
√

⟨X2⟩ − ⟨X⟩2

and ∆P =
√

⟨P 2⟩ − ⟨P ⟩2 where X =
√

ℏ
2ωk

(
a†

k,λ + ak,λ

)
and P = i

√
ℏωk

2

(
a†

k,λ − ak,λ

)
are position and

momentum operators of the associated harmonic oscillator, respectively.
(h) Show that the Schrödinger equation iℏ ∂

∂t |α(t)⟩ = H |α(t)⟩ has a solution |α(t)⟩ = |β⟩ , where β = αe−iωkt.
(Ignore the zero-point energy.) Now compute ⟨α(t) |A|α(t)⟩. (Discuss your result relating it with classical
electromagnetic waves such as laser.)


