List of exercises #1 (Newton’s laws and 1D dynamics) - 7600018

For Test1, consider only the problems marked with .

—_

. Compute the gravitational force of attraction between an electron and a proton at a separation of 0.5 A. Compare
with the electrostatic force of attraction at the same distance.

2. A fluid flows through a cylindrical pipe of length L and radius R. A pressure difference AP (force per unit area)
causes a flux I (volume per second) to flow through the pipe. Assume that AP is proportional to L and depends
otherwise only on I, on the radius R of the pipe, and on the viscosity 7. Show from dimensional considerations
that AP must also be proportional to 1 and to I and inversely proportional to R*.

w

. An object A moving with velocity v collides with a stationary object B. After the collision, A is moving with
velocity %v and B with velocity %v. Find the ratio of their masses. If, instead of bouncing apart, the two bodies
stuck together after the collision, with what velocity would they then move?

4. The two components of a double star are observed to move in circles of radii R; and Ry. What is the ratio of
their masses? (Hint: Write down their accelerations in terms of the angular velocity of rotation.)

5. Consider a transformation to a relatively uniformly moving frame of reference, where each position vector r; is
replaced by r; = r; — vt. (Here v is a constant, the relative velocity of the two frames.) How does a relative
position vector r;; = r; — r; transform? How do momenta and forces transform?

6. The sun is about 25,000 light years from the center of the galaxy, and travels approximately in a circle at a
speed of 230 Km/s. Find the approximate mass of the galaxy by assuming that the gravitational force on the
sun can be calculated as if all the mass of the galaxy were at its center. Express the result as a ratio of the
galactic mass to the sun’s mass. You do not need to look up either G or the sun’s mass to do this problem if
you compare the revolution of the sun around the galactic center with the revolution of the earth about the sun.

7. % A high-speed proton of electric charge e moves with constant speed vy in a straight line past an electron of
mass m and charge —e, initially at rest. The electron is at a distance a from the path of the proton.

(a) Assume that the proton passes so quickly that the electron does not have time to move appreciably from its
initial position until the proton is far away. Show that the component of force in a direction perpendicular
to the line along which the proton moves is

eQa

F= :
dmeq (a2 + v§t2)3/2

where t = 0 when the proton passes closest to the electron.
(b) Calculate the impulse delivered by this force.

(¢) Write the component of the force in a direction parallel to the proton velocity and show that the net
impulse in that direction is zero.

(d) Using these results, calculate the (approximate) final momentum and final kinetic energy of the electron.

(e) Show that the condition for the original assumption in part (a) to be valid is % < tmad.

8. % A particle of mass m at rest at ¢ = 0 is subject to a force F(t) = Fysin® wt.

(a) Sketch the form you expect for v(¢) and z(t), for several periods of oscillation of the force.

(b) Find v(¢) and z(t) and compare with your sketch.

9. % A particle which had originally a velocity vg is subject to a force F' (t) = £2© (t —to) © (to + ot —t), where
O (x) is the Heaviside step function.
(a) Find v(¢) and z(t).

(b) Show that as 6t — 0, the motion approaches that of a constant velocity with an abrupt change in velocity
at t = to of amount py/m.



10. A weight of mass m is hung from the end of a spring which provides a restoring force equal to k times its
extension. The weight is released from rest with the spring unextended. Find its position as a function of time,
assuming negligible damping.

11. % A particle of mass m moves (in the region x > 0) under a force F' = —kx + ¢/x, where k and ¢ are positive
constants. Find the corresponding potential energy function. Determine the position of equilibrium, and the
frequency of small oscillations about it.

12. A particle of mass m has the potential energy function V(z) = mk|x|, where k is a positive constant. What is
the force when x > 0, and when x < 0?7 Describe the motion of this particle. If it starts from rest at x = —a,
find the time it takes to reach x = a.

13. A particle of mass m moves under a conservative force with potential energy function given by V(z) =
1k (2% — a®) © (a — |z]), where a and k are constants, and a > 0.
(a) What is the force on the particle?
(b) Sketch the function V', for both cases k > 0 and k < 0, and describe the possible types of motion.
)

(c) Let k = mw? > 0. The particle is initially in the region z < —a, moving to the right with velocity v.
When it emerges into the region x > a, will it do so earlier or later than if it were moving freely under no
force? Find an expression for the time difference. (To do the required integral, use a substitution of the
form x = const x sin#.)

14. The potential energy function of a particle of mass m is V = -V} ((l‘/a)Q — 1)2, where Vj and a are positive
constants.
(a) Sketch this function, and describe the possible types of motion in the three cases E > 0, E < =V} , and
-V < E<O.
(b) Calculate the associate force.
(¢) Find z(t) for the case E = 0, choosing xg and tg in any convenient way. Show that your result agrees with

the qualitative discussion in part (a) for this particular energy.

15. Find the solution for the motion of a body subject to a linear repelling force F' = kxz. Show that this is the type
of motion to be expected in the neighborhood of a point of unstable equilibrium.

16. The equation of motion of a particle falling under constant gravity in a straight line is m% = —mg. Solve
equation by the methods of

(a) directly integrating a time-dependent force ftto ftto F " dr",

(b) directly integrating a velocity-dependent force f;; Fd(z',),

(c) and by energy conservation [ S —

E-V(z')’
17. ® A particle falling under gravity in a straight line is subject to a retarding force proportional to its velocity.
Find its position as a function of time, if it starts from rest, and show that it will eventually reach a terminal
velocity.

18. A particle moves vertically under gravity with a retarding force proportional to the square of its velocity. The
resulting acceleration is ¥ = Fg — kv?, where k is a constant.

(a) If the particle is moving upwards (—g), show that its position at time ¢ is given by z = 2z +
(1/k)Incos [v/gk(to — t)], where zy and to are integration constants. If its initial velocity at ¢t = 0 is
v, find the time at which it comes instantaneously to rest, and its corresponding height. [You may find
the identity Incos z = —5 In(1 + tan® z) useful.]

(b) Show that if the particle falls (4g) from rest its speed after a time ¢ is given by v = \/g/k tanh (/gkt).
What is its limiting speed? How long does it take to hit the ground if dropped from height h?

19. Find the motion of a body projected upward from the Earth with a velocity equal to the escape velocity. Neglect
air resistance.



20.

21.

22.

23.
24.

25.

A mass m subject to a linear restoring force —kx and damping —bz is displaced a distance xg from equilibrium
and released with zero initial velocity. Find the motion in the underdamped, critically damped, and overdamped
cases.

A force Fye t/™ (Fo and 7 > 0 being constants) acts on a harmonic oscillator of mass m, spring constant k, and
damping constant b. Find a particular solution of the equation of motion by starting from the guess that there
should be a solution with the same time dependence as the applied force.

An undamped harmonic oscillator (b = 0), initially at rest, is subject beginning at ¢ = 0 to an applied force
Fysinwt. Find the motion x(¢).

& Find z (¢) for a critically damped harmonic oscillator subject to an impulse pg delivered at ¢ = 0.

Find, by the Fourier-series method, the steady-state solution for an undamped harmonic oscillator subject to
a force having the form of a rectified sine-wave F(t) = Fp [sinwyt|, where wg is the natural frequency of the
oscillator.

Using the result of Problem 23, find by Green’s method the motion of a critically damped oscillator initially at
rest and subject to a force F'(t).



