- 1. Cohen-Tannoudji, exercises 2 and 3 from chapter IX (complement B).
- 2. Cohen-Tannoudji, exercises 1 to 5 (except 2 which is optional) from chapter X (complement G).
- 3. (Optional) The Wigner-Eckart theorem. Cohen-Tannoudji, exercise 8 from chapter X (complement G).
- 4. Cohen-Tannoudji, complement A from chapter IX.
 - (a) Show that the operator $e^{-i\boldsymbol{\sigma}\cdot\hat{n}\phi/2} = \mathbb{1}\cos\left(\frac{\phi}{2}\right) i\boldsymbol{\sigma}\cdot\hat{n}\sin\left(\frac{\phi}{2}\right)$, where $\boldsymbol{\sigma}$ are the Pauli matrices, \hat{n} is a unit vector, and $\phi \in \mathbb{R}$.
 - (b) What is the physical interpretation of the operator in the previous item? What is the significance for $\phi = 2\pi$?
- 5. (Optional) Cohen-Tannoudji, complement D from chapter X.
- 6. Let **J** be the total angular momentum of a physical system.
 - (a) Compute $\mathbf{J}' = e^{-\frac{i}{\hbar}\phi J_z} \mathbf{J} e^{\frac{i}{\hbar}\phi J_z}$. (*Hint*: Use the Baker-Haussdorff identity: $e^X Y e^{-X} = Y + [X,Y] + \frac{1}{2!} [X, [X,Y]] + \frac{1}{3!} [X, [X, [X,Y]]] + \dots$)
 - (b) Interpret geometrically your result for $\mathbf{J}'.$
 - (c) Based on this interpretation, what would be the result for $\mathbf{J}'' = e^{-\frac{i}{\hbar}\phi\hat{n}\cdot\mathbf{J}}\mathbf{J}e^{\frac{i}{\hbar}\phi\hat{n}\cdot\mathbf{J}}$, where \hat{n} is a unitary vector?
 - (d) And for $\mathbf{J}^{\prime\prime\prime} = e^{-\frac{i}{\hbar}\theta J_x} e^{-\frac{i}{\hbar}\phi J_z} \mathbf{J} e^{\frac{i}{\hbar}\phi J_z} e^{\frac{i}{\hbar}\theta J_x}$?
- 7. Show the identity used in class: $e^{-\frac{i}{\hbar}\mathbf{d}\cdot\mathbf{P}}\mathbf{R}e^{\frac{i}{\hbar}\mathbf{d}\cdot\mathbf{P}} = \mathbf{R} \mathbf{d}\mathbb{1}$, where **d** is a vector, and **R** and **P** are the usual position and momentum operators, respectively.
- 8. Cohen-Tannoudji, complement F from chapter II.
 - (a) How does the momentum operator (**p**) transform under parity (π) ?
 - (b) A quantum mechanical state $|\psi\rangle$ is known to be Eigenstate of momentum and parity simultaneously. What can be said about the eigenvalues?
 - (c) Give a physical interpretation of your results in the previous item.
- 9. (Optional) Cohen-Tannoudji, complement B from chapter VII; and Shankar, Sec. 15.4.
 - (a) Show that the Runge-Lenz vector $\mathbf{N} = \mathbf{p} \times \mathbf{L} + \alpha \hat{r}$ is a conserved quantity for a central force $\mathbf{F} = F(r) \hat{r}$, with $F(r) \propto r^{-2}$, and α is a constant to be determined. What is the value of α for the gravitational force?
 - (b) Using that the orbital angular momentum **L** and **N** are conserved, show the first law of Kepler.
 - (c) In quantum mechanics, it is useful to use the symmetrization rule $O \rightarrow \frac{1}{2} (O + O^{\dagger})$. Using this rule, show that the Runge-Lenz vector operator is $\mathbf{N} = \frac{1}{2} (\mathbf{p} \times \mathbf{L} \mathbf{L} \times \mathbf{p}) + \alpha \hat{r}$.
 - (d) Show that N commutes with the Hydrogen atom Hamiltonian and compute α . This additional symmetry is responsible for the larger degeneracy in the Hydrogen atom when compared with the 3D Harmonic Oscillator.
 - (e) What is the implication for the wavefunction $\Psi_{1,0,0}$ in exercise 7(g) of List #1?
- 10. Consider a particle subjected to the action of a periodic external potential V(x) of period $a \neq 0$, i.e., V(x+a) = V(x) and $V(x+b) \neq V(x)$ for b different from a multiple of a. [For example, $V(x) = V_0 \sin(2\pi x/a)$.]
 - (a) Is the momentum of the particle conserved? Justify.
 - (b) Let $\tau(\ell)$ be the spatial translation operator defined by $\tau^{\dagger}(\ell) x \tau(\ell) = x + \ell \mathbb{1}$. Write down the operator $\tau(\ell)$ explicitly.

Hint: You do not need to derive $\tau(\ell)$, just write it down and show that $\tau^{\dagger}(\ell) x \tau(\ell) = x + \ell \mathbb{1}$.

(c) Show that $\tau(\ell) |x\rangle = |x + \ell\rangle$, besides of a phase.

- (d) For what values of ℓ does the system become invariant under spatial translations?
- (e) Let the ket $|n\rangle$ be the state of a particle confined in the *n*th valley of V(x). (For example, $\langle x|n\rangle$ is a Gaussian of width much smaller than *a* and centered at the *n*th valley.) Show that

$$\left|\theta\right\rangle = \sum_{n=-\infty}^{\infty} e^{in\theta} \left|n\right\rangle$$

is an eigenstate of $\tau(a)$, and compute the corresponding eigenvalue.

(f) Show that the eigenfunction $\theta(x) = \langle x | \theta \rangle$ can be written as the combination of a plane wave multiplied by a function that has the same period as the external potential V(x), that is, $\theta(x) = e^{i\theta x/a}u_{\theta}(x)$, with $u_{\theta}(x+a) = u_{\theta}(x)$.

Hint: Use the results from parts (c) and (e), and that $\theta(x) = \langle x | \theta \rangle = \langle x | \tau^{\dagger}(a) \tau(a) | \theta \rangle$.

[Note that, setting $k = \theta/a$, we have that $\theta(x) = \psi_k(x) = e^{ikx}u_k(x)$, i.e., the eigenfunction is a periodic function times a plane wave. This is Bloch's theorem for the one-dimensional case.]

(g) Is the state $|\theta\rangle$ an eigenstate of the Hamiltonian? Justify.