Mecânica Quântica II - FFI 0122

Lista 3

Data de Entrega: 26 de Outubro de 2015, segunda-feira (na monitoria)

1. Todos os exercícios do capítulo VIII (Complemento \mathbf{C}_{VIII}) do livro do Cohen-Tannoudji. Ver cópia anexa.

Exercises

8. SCATTERING OF THE P WAVE BY A HARD SPHERE

We wish to study the phase shift $\delta_1(k)$ produced by a hard sphere on the p wave (l=1). In particular, we want to verify that it becomes negligible compared to $\delta_0(k)$ at low energy.

 α . Write the radial equation for the function $u_{k,1}(r)$ for $r>r_0$. Show that its general solution is of the form:

$$u_{k,1}(r) = C \left[\frac{\sin kr}{kr} - \cos kr + a \left(\frac{\cos kr}{kr} + \sin kr \right) \right]$$

where C and a are constants.

 β . Show that the definition of $\delta_1(k)$ implies that:

$$a = \tan \delta_1(k)$$

 γ . Determine the constant a from the condition imposed on $u_{k,1}(r)$ at $r=r_0$.

 δ . Show that, as k approaches zero, $\delta_1(k)$ behaves like $\star (kr_0)^3$, which makes it negligible compared to $\delta_0(k)$.

b. "SQUARE SPHERICAL WELL" : BOUND STATES AND SCATTERING RESONANCES

Consider a central potential V(r) such that :

$$(r) = -V_0 \quad \text{for} \quad r < r_0$$

$$= 0 \quad \text{for} \quad r > r_0$$

where V_0 is a positive constant. Set:

$$k_0 = \sqrt{\frac{2\mu V_0}{\hbar^2}}$$

We shall confine ourselves to the study of the s wave (l = 0).

α . Bound states (E < 0)

(i) Write the radial equation in the two regions $r > r_0$ and $r < r_0$, as well as the condition at the origin. Show that, if one sets:

$$\rho = \sqrt{\frac{-2\mu E}{\hbar^2}}$$

$$K = \sqrt{k_0^2 - \rho^2}$$

the function $u_0(r)$ is necessarily of the form:

$$u_0(r) = A e^{-\rho r}$$
 for $r > r_0$
= $B \sin Kr$ for $r < r_0$

(ii) Write the matching conditions at $r=r_0$. Deduce from them that the only possible values for ρ are those which satisfy the equation:

$$\tan K r_0 = -\frac{K}{\rho}$$

(iii) Discuss this equation: indicate the number of s bound states as a function of the depth of the well (for fixed r_0) and show, in particular, that there are no bound states if this depth is too small.

Scattering resonances (E > 0)

(i) Again write the radial equation, this time setting:

$$k = \sqrt{\frac{2\mu E}{\hbar^2}}$$

$$\mathbf{K}' = \sqrt{k_0^2 + k^2}$$

Show that $u_{k,0}(r)$ is of the form:

$$u_{k,0}(r) = A \sin(kr + \delta_0)$$
 for $r > r_0$
= $B \sin K'r$ for $r < r_0$

(ii) Choose A=1. Show, using the continuity conditions at $r=r_0$, that the constant B and the phase shift δ_0 are given by:

$$B^{2} = \frac{k^{2}}{k^{2} + k_{0}^{2} \cos^{2} K' r_{0}}$$
$$\delta_{0} = -kr_{0} + \alpha(k)$$

with:

$$\tan \alpha(k) = \frac{k}{K'} \tan K' r_0$$

STORY.

(iii) Trace the curve representing B^2 as a function of k. This curve clearly shows resonances, for which B^2 is maximum. What are the values of k associated with these resonances? What is then the value of $\alpha(k)$? Show that, if there exists such a resonance for a small energy $(kr_0 \leqslant 1)$, the corresponding contribution of the s wave to the total cross section is practically maximal.

"直接连续计算"

^{*} This result is true in general: for any potential of finite range r_0 , the phase shift $\delta_i(k)$ behaves like $(kr_0)^{2i+1}$ at low energies.

Relation between bound states and scattering resonances

Assume that $k_0 r_0$ is very close to $(2n+1)\frac{\pi}{2}$, where n is an integer, and set:

$$k_0 r_0 = (2n+1)\frac{\pi}{2} + \varepsilon$$
 with $|\varepsilon| \leqslant 1$

(i) Show that, if ε is positive, there exists a bound state whose binding energy $E=-h^2\rho^2/2\mu$ is given by:

$$\rho \simeq \epsilon k$$

(ii) Show that if, on the other hand, ε is negative, there exists a scattering resonance at energy $E = \hbar^2 k^2/2\mu$ such that:

$$k^2 \simeq -\frac{2k_0\varepsilon}{r_0}$$

(iii) Deduce from this that if the depth of the well is gradually decreased (for fixed r_0), the bound state which disappears when k_0r_0 passes through an odd multiple of $\pi/2$ gives rise to a low energy scattering resonance.

References and suggestions for further reading:

Messiah (1.17), chap. IX, §10 and chap. X, §§III and IV; Valentin (16.1), Annexe II.