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Prefixes for Powers of 10*

Multiple Prefix Abbreviation

1024 yotta Y
1021 zetta Z
1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deka da
10�1 deci d
10�2 centi c
10�3 milli m
10�6 micro m

10�9 nano n
10�12 pico p
10�15 femto f
10�18 atto a
10�21 zepto z
10�24 yocto y

* Commonly used prefixes are in bold. All prefixes are pronounced with the 
accent on the first syllable.

Alpha � a

Beta � b

Gamma � g

Delta � d

Epsilon � e, e

Zeta � z

Eta � h

Theta 	 u

Iota 
 i

Kappa � k

Lambda � l

Mu  m

Nu � n

Xi � j

Omicron � o

Pi � p

Rho � r

Sigma � s

Tau � t

Upsilon � y

Phi � f

Chi � x

Psi � c

Omega � v

The Greek Alphabet

Terrestrial and Astronomical Data*

Acceleration of gravity g 9.81 m/s2 � 32.2 ft/s2

at Earth’s surface

Radius of Earth RE RE 6371 km � 3959 mi

Mass of Earth ME 5.97 � 1024 kg

Mass of the Sun 1.99 � 1030 kg

Mass of the moon 7.35 � 1022 kg

Escape speed 11.2 km/s � 6.95 mi/s
at Earth’s surface

Standard temperature and 0°C � 273.15 K
pressure (STP) 1 atm � 101.3 kPa

Earth–moon distance† 3.84 � 108 m � 2.39 � 105 mi

Earth–Sun distance (mean)† 1.50 � 1011 m � 9.30 � 107 mi

Speed of sound in dry air (at STP) 331 m/s

Speed of sound in dry air 343 m/s
(20°C, 1 atm)

Density of dry air (STP) 1.29 kg/m3

Density of dry air (20°C, 1 atm) 1.20 kg/m3

Density of water (4°C, 1 atm) 1000 kg/m3

Heat of fusion of water (0°C, 1 atm) Lf 333.5 kJ/kg

Heat of vaporization of water Lv 2.257 MJ/kg
(100°C, 1 atm)

* Additional data on the solar system can be found in Appendix B and at 
http://nssdc.gsfc.nasa.gov/planetary/planetfact.html.

† Center to center.

Mathematical Symbols

� is equal to

� is defined by

� is not equal to

� is approximately equal to

� is of the order of

� is proportional to

� is greater than

� is greater than or equal to

�� is much greater than

! is less than

" is less than or equal to

!! is much less than

�x change in x

dx differential change in x

�x� absolute value of x

� � magnitude of 

n! n(n � 1)(n � 2)…1

� sum

lim limit

�t → 0 �t approaches zero

derivative of x with 
respect to t

partial derivative of x
with respect to t

f(x)dx definite integral

� F(x) � F(x2) � F(x1)`
x2

x1

�
x2

x1

#x
#t

dx
dt

vSvS

http://nssdc.gsfc.nasa.gov/planetary/planetfact.html


Abbreviations for Units

A ampere

Å angstrom (10�10 m)

atm atmosphere

Btu British thermal unit

Bq becquerel

C coulomb

°C degree Celsius

cal calorie

Ci curie

cm centimeter

dyn dyne

eV electron volt

°F degree Fahrenheit

fm femtometer, fermi (10�15 m)

ft foot

Gm gigameter (109 m)

G gauss

Gy gray

g gram

H henry

h hour

Hz hertz

in inch

J joule

K kelvin

kg kilogram

km kilometer

keV kilo-electron volt

lb pound

L liter

m meter

MeV mega-electron volt

Mm megameter (106 m)

mi mile

min minute

mm millimeter

ms millisecond

N newton

nm nanometer (10�9 m)

pt pint

qt quart

rev revolution

R roentgen

Sv seivert

s second

T tesla

u unified mass unit

V volt

W watt

Wb weber

y year

yd yard

mm micrometer (10�6 m)

ms microsecond

mC microcoulomb

� ohm

Some Conversion Factors

Length

1 m � 39.37 in � 3.281 ft � 1.094 yd

1 m � 1015 fm � 1010 Å � 109 nm

1 km � 0.6214 mi

1 mi � 5280 ft � 1.609 km

1 lightyear � 1 c y � 9.461 � 1015 m

1 in � 2.540 cm

Volume

1 L � 103 cm3 � 10�3 m3 � 1.057 qt

Time

1 h � 3600 s � 3.6 ks

1 y � 365.24 d � 3.156 � 107 s

Speed

1 km/h � 0.278 m/s � 0.6214 mi/h

1 ft/s � 0.3048 m/s � 0.6818 mi/h

Angle–angular speed

1 rev � 2p rad � 360°

1 rad � 57.30°

1 rev/min � 0.1047 rad/s

Force–pressure

1 N � 105 dyn � 0.2248 lb

1 lb � 4.448 N

1 atm � 101.3 kPa � 1.013 bar � 76.00 cmHg � 14.70 lb/in2

Mass

1 u � [(10�3 mol�1)/NA] kg � 1.661 � 10�27 kg

1 tonne � 103 kg � 1 Mg

1 slug � 14.59 kg

1 kg weighs about 2.205 lb

Energy–power

1 J � 107 erg � 0.7376 ft lb � 9.869 � 10�3 L atm

1 kW h � 3.6 MJ

1 cal � 4.184 J � 4.129 � 10�2 L atm

1 L atm � 101.325 J � 24.22 cal

1 eV � 1.602 � 10�19 J

1 Btu � 778 ft lb � 252 cal � 1054 J

1 horsepower � 550 ft lb/s � 746 W

Thermal conductivity

1 W/(m K) � 6.938 Btu in/(h ft2 °F)

Magnetic field

1 T � 104 G

Viscosity

1 Pa s � 10 poise#

####

#

#

#

#

#

##

#
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The sixth edition of Physics for Scientists and Engineers offers a completely integrated
text and media solution that will help students learn most effectively and will
enable professors to customize their classrooms so that they teach most efficiently. 

The text includes a new strategic problem-solving approach, an integrated
Math Tutorial, and new tools to improve conceptual understanding. New Physics
Spotlights feature cutting-edge topics that help students relate what they are learn-
ing to real-world technologies.

The new online learning management system enables professors to easily cus-
tomize their classes based on their students’ needs and interests by using the new
interactive Physics Portal, which includes a complete e-book, student and instruc-
tor resources, and a robust online homework system. Interactive Exercises in the
Physics Portal give students the opportunity to learn from instant feedback, and
give instructors the option to track and grade each step of the process. Because no
two physics students or two physics classes are alike, tools to help make each
physics experience successful are provided.

KEY FEATURES

PROBLEM-SOLVING STRATEGY

The sixth edition features a new problem-solving strategy in which Examples
follow a consistent Picture, Solve, and Check format. This format walks students
through the steps involved in analyzing the problem, solving the problem, and
then checking their answers. Examples often include helpful Taking It Further
sections which present alternative ways of solving problems, interesting facts, or
additional information regarding the concepts presented. Where appropriate,
Examples are followed by Practice Problems so students can assess their mastery
of the concepts.

Preface

NEW!



Example 3-4 Rounding a Curve

A car is traveling east at 60 km/h. It rounds a curve, and 5.0 s later it is traveling north at 
60 km/h. Find the average acceleration of the car.

PICTURE We can calculate the average acceleration from its definition, . To do
this, we first calculate , which is the vector that when added to , results in .vSfvS i¢vS

aSav � ¢vS/¢t

SOLVE

1. The average acceleration is the change in velocity divided by the
elapsed time. To find , we first find the change in velocity:aSav

aSav �
¢vS

¢t

2. To find , we first specify and . Draw and 
(Figure 3-7a), and draw the vector addition diagram (Figure 3-7b)
corresponding to :vSf � vSi $ ¢vS

vSfvSivSfvSi¢vS

3. The change in velocity is related to the initial and final
velocities:

N

EW

S

vi

vf

vf

vi

∆v

(a)

(b)

^
j

^
i

F I G U R E  3 - 7

vSf � vS i $ ¢vS

4. Substitute these results to find the average acceleration: aSav �
vf
S

� vi
S

¢t
�

60 km/h jn� 60 km/h in

5.0 s

5. Convert 60 km/h to meters per second: 60 km/h �
1 h

3600 s
�

1000 m
1 km

� 16.7 m/s

CHECK The eastward component of the velocity decreases from 60 km/h to zero, so we
expect a negative acceleration component in the x direction. The northward component of
the velocity increases from zero to 60 km/h, so we expect a positive acceleration component
in the y direction. Our step 6 result meets both of these expectations.

TAKING IT FURTHER Note that the car is accelerating even though its speed remains
constant.

PRACTICE PROBLEM 3-1 Find the magnitude and direction of the average acceleration
vector.

6. Express the acceleration in meters per second squared:

�3.4 m/s2in$ 3.4 m/s2jn �

 aSav �
vSf � vSi

¢t
�

16.7 m/s jn� 16.7 m/s in

5.0 s
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In this edition, the problem-solving steps are again juxtaposed with the neces-
sary equations so that it’s easier for students to see a problem unfold. 

A boxed Problem-Solving Strategy is included in
almost every chapter to reinforce the Picture, Solve, and
Check format for successfully solving problems.

INTEGRATED MATH TUTORIAL 

This edition has improved mathematical support for students who are taking cal-
culus concurrently with introductory physics or for students who need a math
review. 

The comprehensive Math Tutorial

• reviews basic results of algebra, geometry, trigonometry, and calculus, 

• links mathematical concepts to physics concepts in the text,

• provides Examples and Practice Problems so students may check their
understanding of mathematical concepts. 

After each problem statement, students are asked
to Picture the problem. Here, the problem is 
analyzed both conceptually and visually.

In the Solve sections, each step of the solution is
presented with a written statement in the left-hand
column and the corresponding mathematical
equations in the right-hand column.

Check reminds students to make sure their results
are accurate and reasonable.

Taking It Further suggests a different way to
approach an Example or gives additional 
information relevant to the Example.

A Practice Problem often follows the solution of an
Example, allowing students to check their
understanding. Answers are included at the end of
the chapter to provide immediate feedback.

NEW!

PROBLEM-SOLVING STRATEGY

Relative Velocity

PICTURE The first step in solving a relative-velocity problem is to identify
and label the relevant reference frames. Here, we will call them reference
frame A and reference frame B.

SOLVE

1. Using (Equation 3-9), relate the velocity of the moving
object (particle p) relative to frame A to the velocity of the particle relative
to frame B.

2. Sketch a vector addition diagram for the equation . Use
the head-to-tail method of vector addition. Include coordinate axes on the
sketch.

3. Solve for the desired quantity. Use trigonometry where appropriate.

CHECK Make sure that you solve for the velocity or position of the moving
object relative to the proper reference frame.

vSpB � vSpA $ vSAB

vSpB � vSpA $ vSAB
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Conceptual Example 8-12 Collisions with Putty

Mary has two small balls of equal mass, a ball of plumber’s putty and a one of Silly Putty.
She throws the ball of plumber’s putty at a block suspended by strings shown in Figure 8-20.
The ball strikes the block with a “thonk” and falls to the floor. The block subsequently
swings to a maximum height h. If she had thrown the ball of Silly Putty (instead of the
plumber’s putty), would the block subsequently have risen to a height greater than h? Silly
Putty, unlike plumber’s putty, is elastic and would bounce back from the block. 

PICTURE During impact the change in momentum of the ball–block system is zero. The
greater the magnitude of the change in momentum of the ball, the greater, the magnitude of
the change in momentum of the block. Does magnitude of the change in momentum of the
ball increase more if the ball bounces back than if it does not?

v
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SOLVE

The ball of plumber’s putty loses a large fraction of
its forward momentum. The ball of Silly Putty
would lose all of its forward momentum and then
gain momentum in the opposite direction. It would
undergo a larger change in momentum than did the
ball of plumber’s putty.

The block would swing to a greater 
height after being struck with the ball 
of Silly Putty than it did after being 
struck with the ball of plumbers putty.

CHECK The block exerts a backward impulse on the ball of plumber’s putty to slow the ball
to a stop. The same backward impulse on the ball of Silly Putty would also bring it to a stop,
and an additional backward impulse on the ball would give it momentum in the backward
direction. Thus, the block exerts the larger backward impulse on the Silly-Putty ball. In ac-
cord with Newton’s third law, the impulse of a ball on the block is equal and opposite to the
impulse of the block on the ball. Thus, the Silly-Putty ball exerts the larger forward impulse
on the block, giving the block a larger forward change in momentum.

PEDAGOGY TO ENSURE
CONCEPTUAL
UNDERSTANDING

Student-friendly tools have been added to allow
for better conceptual understanding of physics. 

• New Conceptual Examples are
introduced, where appropriate, to help
students fully understand essential
physics concepts. These Examples use the
Picture, Solve, and Check strategy so that
students not only gain fundamental
conceptual understanding but must
evaluate their answers.

In addition, margin notes allow students to easily see the links between physics
concepts in the text and math concepts. 

Example M-13 Radioactive Decay of Cobalt-60

The half-life of cobalt-60 is 5.27 y. At you have a sample of that has a mass
equal to 1.20 mg. At what time (in years) will 0.400 mg of the sample of have decayed?

PICTURE When we derived the half-life in exponential decay, we set In this
example, we are to find the time at which two-thirds of a sample remains, and so the ratio

will be 0.667.

SOLVE

N >N 0

N >N 0 � 1>2 .

60Cot

60Cot� 0(60Co)

1. Express the ratio as an exponential function:N >N 0

N

N 0

� 0.667 � e�lt

2. Take the reciprocal of both sides:
N 0

N
� 1.50 � elt

3. Solve for t: t�
ln 1.50
l

�
0.405
l

4. The decay constant is related to the half-life by 
(Equation M-70). Substitute for and evaluate the time:l(ln2)>t1>2

l � (ln2)>t1>2 t�
ln 1.5
ln 2

 t1>2 �
ln 1.5
ln 2

� 5.27 y � 3.08 y

CHECK It takes 5.27 y for the mass of a sample of to decrease to 50 percent of its initial
mass. Thus, we expect it to take less than 5.27 y for the sample to lose 33.3 percent of its mass.
Our step-4 result of 3.08 y is less than 5.27 y, as expected.

PRACTICE PROBLEMS

27. The discharge time constant of a capacitor in an circuit is the time in which the ca-
pacitor discharges to (or 0.368) times its charge at If for a capacitor, at
what time (in seconds) will it have discharged to 50.0% of its initial charge?

28. If the coyote population in your state is increasing at a rate of 8.0% a decade and con-
tinues increasing at the same rate indefinitely, in how many years will it reach 1.5 times
its current level?

t

t � 1 st� 0 .e�1

RCt

60Co

M-12 INTEGRAL CALCULUS

Integration can be considered the inverse of differentiation. If a
function is integrated, a function is found for which 
is the derivative of with respect to 

THE INTEGRAL AS AN AREA UNDER A CURVE;
DIMENSIONAL ANALYSIS

The process of finding the area under a curve on the graph il-
lustrates integration. Figure M-27 shows a function The
area of the shaded element is approximately where is
evaluated anywhere in the interval This approximation is
highly accurate if is very small. The total area under some
stretch of the curve is found by summing all the area elements
it covers and taking the limit as each approaches zero. This
limit is called the integral of over and is written

M-74

The physical dimensions of an integral of a function are
found by multiplying the dimensions of the integrand (the func-
tion being integrated) and the dimensions of the integration
variable For example, if the integrand is a velocity functiont.

f(t)

�f dt� areai� lim
¢tiS0a

i

fi ¢ti

tf
¢ti

¢ti

¢ti.
fifi ¢ti,

f(t) .

t.F(t)
f(t)F(t)f(t)

f(t)

fi

t1 t2

t�ti�t1 �t2 �t3

F I G U R E  M - 2 7 A general function The area of the shaded
element is approximately where is evaluated anywhere in
the interval.

fifi ¢ti,
f(t) .

NEW!

See

Math Tutorial for more

information on 

Differential Calculus



• New Concept Checks enable students to check their conceptual 
understanding of physics concepts while they read chapters. Answers 
are located at the end of chapters to provide immediate feedback. Concept
Checks are placed near relevant topics so students can immediately 
reread any material that they do not fully understand.

PHYSICS SPOTLIGHTS

Physics Spotlights at the end of appropriate
chapters discuss current applications of physics
and connect applications to concepts described
in chapters. These topics range from wind farms
to molecular thermometers to pulse detonation
engines.

• New Pitfall Statements, identified by exclamation points, help students
avoid common misconceptions. These statements are placed near 
the topics that commonly cause confusion, so that students can
immediately address any difficulties.

NEW!

xx Preface

Physics Spotlight

Blowing Warmed Air

Wind farms dot the Danish coast, the plains of the upper Midwest, and hills from
California to Vermont. Harnessing the kinetic energy of the wind is nothing new.
Windmills have been used to pump water, ventilate mines,* and grind grain for
centuries. 

Today, the most visible wind turbines run electrical generators. These turbines
transform kinetic energy into electromagnetic energy. Modern turbines range
widely in size, cost, and output. Some are very small, simple machines that cost
under $500/turbine, and put out less than 100 watts of power.† Others are complex
behemoths that cost over $2 million and put out as much as ‡ All
of these turbines take advantage of a widely available energy source—the wind.

The theory behind the windmill’s conversion of kinetic energy to electromag-
netic energy is straightforward. The moving air molecules push on the turbine
blades, driving their rotational motion. The rotating blades then turn a series of
gears. The gears, in turn, step up the rotation rate, and drive the rotation of a gen-
erator rotor. The generator sends the electromagnetic energy out along power lines.

But the conversion of the wind’s kinetic energy to electromagnetic energy is not
100 percent efficient. The most important thing to remember is that it cannot be
100 percent efficient. If turbines converted 100 percent of the kinetic energy of the
air into electrical energy, the air would leave the turbines with zero kinetic energy.
That is, the turbines would stop the air. If the air were completely stopped by the
turbine, it would flow around the turbine, rather than through the turbine.

So the theoretical efficiency of a wind turbine is a trade-off between capturing
the kinetic energy of the moving air, and preventing most of the wind from flow-
ing around the turbine. Propeller-style turbines are the most common, and their
theoretical efficiency at transforming the kinetic energy of the air into electromag-
netic energy varies from 30 percent to 59 percent.§ (The predicted efficiencies vary
because of assumptions made about the way the air behaves as it flows through
and around the propellers of the turbine.)

So even the most efficient turbine cannot convert 100 percent of the theoretically
available energy. What happens? Upstream from the turbine, the air moves along
straight streamlines. After the turbine, the air rotates and is turbulent. The rotational
component of the air’s movement beyond the turbine takes energy. Some dissipation
of energy occurs because of the viscosity of air.  When some of the air slows, there is
friction between it and the faster moving air flowing by it. The turbine blades heat up,
and the air itself heats up.° The gears within the turbine also convert kinetic energy
into thermal energy through friction. All this thermal energy needs to be accounted
for. The blades of the turbine vibrate individually—the energy associated with those
vibrations cannot be used. Finally, the turbine uses some of the electricity it generates
to run pumps for gear lubrication, and to run the yaw motor that moves the turbine
blades into the most favorable position to catch the wind.

In the end, most wind turbines operate at between 10 and 20 percent efficiency.#

They are still attractive power sources, because of the free fuel. One turbine owner
explains, “The bottom line is we did it for our business to help control our future.”**

* Agricola, Gorgeus, De Re Metallic. (Herbert and Lou Henry Hoover, Transl.)  Reprint  Mineola, NY: Dover, 1950, 200–203.
† Conally, Abe, and Conally, Josie, “Wind Powered Generator,” Make, Feb. 2006, Vol. 5, 90–101.
‡ ”Why Four Generators May Be Better than One,” Modern Power Systems, Dec. 2005, 30.
§ Gorban, A. N., Gorlov, A. M., and Silantyev, V. M., “Limits of the Turbine Efficiency for Free Fluid Flow.” Journal of

Energy Resources Technology, Dec. 2001, Vol. 123, 311–317.
° Roy, S. B., S. W. Pacala, and R. L. Walko. “Can Large Wind Farms Affect Local Meteorology?” Journal of Geophysical

Research (Atmospheres), Oct. 16, 2004, 109, D19101.
# Gorban, A. N., Gorlov, A. M., and Silantyev, V. M., “Limits of the Turbine Efficiency for Free Fluid Flow.” Journal of

Energy Resources Technology, December 2001, Vol. 123, 311–317.
** Wilde, Matthew, “Colwell Farmers Take Advantage of Grant to Produce Wind Energy.” Waterloo-Cedar Falls Courier,

May 1, 2006, .B1$

2.5 MW>turbine.

A wind farm converting the kinetic energy of
the air to electrical energy. (Image Slate.)

CONCEPT CHECK 3-1

Figure 3-9 is a motion diagram of
the bungee jumper before, during,
and after time t6, when she mo-
mentarily come to rest at the low-
est point in her descent. During
the part of her ascent shown, she
is moving upward with increas-
ing speed. Use this diagram to de-
termine the direction of the
jumper’s acceleration (a) at time t6
and (b) at time t9.

✓

We are free to choose U to be zero
at any convenient reference point.!

where the arbitrary constant of integration, is the value of the potential energy
at Because only a change in the potential energy is defined, the actual value
of U is not important. For example, if the gravitational potential energy of the
Earth–skier system is chosen to be zero when the skier is at the bottom of the hill,
its value when the skier is at a height h above that level is mgh. Or we could choose
the potential energy to be zero when the skier is at point P halfway down the ski
slope, in which case its value at any other point would be mgy, where y is the
height of the skier above point P. On the lower half of the slope, the potential
energy would then be negative.

y� 0.
U 0 ,
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PHYSICS PORTAL

www.whfreeman.com/physicsportal

Physics Portal is a complete learning management system that includes a com-
plete e-book, student and instructor resources, and an online homework system.
Physics Portal is designed to enrich any course and enhance students’ study. 

All Resources in One Place

Physics Portal creates a powerful learning environment. Its three central
components—the Interactive e-Book, the Physics Resources library, and the
Assignment Center —are conceptually tied to the text and to one another, and
are easily accessed by students with a single log-in.

Flexibility for Teachers and Students

From its home page to its text content, Physics Portal is fully customizable.
Instructors can customize the home page, set course announcements, annotate the
e-book, and edit or create new exercises and tutorials.  

NEW!

www.whfreeman.com/physicsportal
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Interactive e-Book

The complete text is integrated with the following:  

• Conceptual animations 

• Interactive exercises

• Video illustrations of key concepts

Study resources include

• Notetaking and highlighting Student notes can be collectively viewed
and printed for a personalized study guide.

• Bookmarking for easy navigation and quick return to important locations.  

• Key terms with links to definitions, Wikipedia, and automated
Google Search

• Full text search for easy location of every resource for each topic

Instructors can customize their students’ texts through annotations and supple-
mentary links, providing students with a guide to reading and using the text.
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Physics Resources

For the student, the wide range of resources focuses on interactivity and concep-
tual examples, engaging the student and addressing different learning styles.

• Flashcards Key terms from the text can be studied and used as 
self-quizzes.

• Concept Tester—Picture It Students input values for variables and
see resulting graphs based on values.

• Concept Tester—Solve It Provides additional questions within
interactive animations to help students visualize concepts.  

• Applied Physics Videos Show physics concepts in real-life scenarios.  

• On-line quizzing Provides immediate feedback to students and 
quiz results can be collected for the instructor in a gradebook.  
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Assignment Center

Homework and Branched-Tutorials for Student Practice and Success

The Assignment Center manages and automatically grades homework, quizzes,
and guided practice.  

• All aspects of Physics Portal can be assigned, including e-book 
sections, simulations, tutorials, and homework problems.

• Interactive Exercises break down complex problems into individual steps.   

• Tutorials offer guidance at each stage to ensure students fully understand
the problem-solving process.   

• Video Analysis Exercises enable students to investigate real-world
motion.

Student progress is tracked in a single, easy-to-use gradebook.

• Details tracked include completion, time spent, and type of assistance.

• Instructors can choose grade criteria.

• The gradebook is easily exported into alternative course management 
systems.

Homework services End-of-chapter problems are available in WebAssign and
on Physics Portal.
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Integrated Easy to Use Customizable

MEDIA AND PRINT SUPPLEMENTS

FOR THE STUDENT

Student Solutions Manual The new manual, prepared by David Mills, professor
emeritus at the College of the Redwoods in California, provides solutions for selected
odd-numbered end-of-chapter problems in the textbook and uses the same side-by-
side format and level of detail as the Examples in the text.

• Volume 1 (Chapters 1–20, R) 1-4292-0302-1
• Volume 2 (Chapters 21–33) 1-4292-0303-X
• Volume 3 (Chapters 34–41) 1-4292-0301-3

Study Guide The Study Guide provides students with key physical quantities
and equations, misconceptions to avoid, questions and practice problems to gain
further understanding of physics concepts, and quizzes to test student knowledge
of chapters.

• Volume 1 (Chapters 1–20, R) 0-7167-8467-X
• Volume 2 (Chapters 21–33) 1-4292-0410-9
• Volume 3 (Chapters 34–41) 1-4292-0411-7

Physics Portal

• On-line quizzing Multiple-choice quizzes are available for each 
chapter. Students will receive immediate feedback, and the quiz results
are collected for the instructor in a grade book. 

• Concept Tester Questions
• Flashcards
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FOR THE INSTRUCTOR

Instructor’s Resource CD-ROM This multifaceted resource provides instructors
with the tools to make their own Web sites and presentations. The CD contains
illustrations from the text in .jpg format, Powerpoint Lecture Slides for each chapter
of the book, i-clicker questions, a problem conversion guide, and a complete test
bank that includes more than 4000 multiple-choice questions.

• Volume 1 (Chapters 1–20, R) 0-7167-8470-X
• Volume 2 (Chapters 21–33) 1-4292-0268-8
• Volume 3 (Chapters 34–41) 1-4292-0267-X

Answer Booklet with Solution CD Resource This book contains answers to all
end-of-chapter problems and CD-ROMs of fully worked solutions for all end-of-
chapter problems. Solutions are available in editable Word files on the Instructor’s
CD-ROM and are also available in print.

• Volume 1 (Chapters 1–20, R) 0-7167-8479-3
• Volume 2 (Chapters 21–33) 1-4292-0457-5
• Volume 3 (Chapters 34–41) 1-4292-0461-3

Transparencies 0-7167-8469-6   More than 100 full color acetates of figures and
tables from the text are included, with type enlarged for projection.

FLEXIBILITY FOR PHYSICS COURSES

We recognize that not all physics courses are alike, so we provide instructors with
the opportunity to create the most effective resource for their students.

Custom-Ready Content and Design

Physics for Scientists and Engineers was written and designed to allow maximum
customization. Instructors are invited to create specific volumes (such as a five-
volume set), reduce the text’s depth by selecting only certain chapters, and add
additional material. To make using the textbook easier, W. H. Freeman encourages
instructors to inquire about our custom options.

Versions Accomodate Common Course Arrangements

To simplify the review and use of the text, Physics for Scientists and Engineers is
available in these versions:

Volume 1 Mechanics/Oscillations and Waves/Thermodynamics
(Chapters 1–20, R) 1-4292-0132-0

Volume 2 Electricity and Magnetism/Light (Chapters 21–33) 1-4292-0133-9

Volume 3 Elementary Modern Physics (Chapters 34–41) 1-4292-0134-7

Standard Version (Chapters 1-33, R) 1-4292-0124-X

Extended Version (Chapters 1-41, R) 0-7167-8964-7
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W
e have always been curious about the world around us. Since the begin-
nings of recorded thought, we have sought to understand the bewilder-
ing diversity of events that we observe—the color of the sky, the change
in sound of a passing car, the swaying of a tree in the wind, the rising and
setting of the Sun, the flight of a bird or plane. This search for under-
standing has taken a variety of forms: one is religion, one is art, and one

is science. Although the word science comes from the Latin verb meaning “to know,”
science has come to mean not merely knowledge but specifically knowledge of the
natural world. Physics attempts to describe the fundamental nature of the universe
and how it works. It is the science of matter and energy, space and time.

Like all science, physics is a body of knowledge organized in a specific and ra-
tional way. Physicists build, test, and connect models in an effort to describe, ex-
plain, and predict reality. This process involves hypotheses, repeatable experi-
ments and observations, and new hypotheses. The end result is a set of funda-
mental principles and laws that describe the phenomena of the world around us.

1
C H A P T E R

How many grains of sand are on

your favorite beach? 

(See Example 1-7.)
?

1

THE NUMBER OF GRAINS OF SAND ON A
BEACH MAY BE TOO GREAT TO COUNT,
BUT WE CAN ESTIMATE THE NUMBER BY
USING REASONABLE ASSUMPTIONS
AND SIMPLE CALCULATIONS. (Corbis.)
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These laws and principles apply both to the exotic—such as black holes, dark en-
ergy, and particles with names like leptoquarks and bosons—and to everyday life.
As you will see, countless questions about our world can be answered with a basic
knowledge of physics: Why is the sky blue? How do astronauts float in space?
How do CD players work? Why does an oboe sound different from a flute? Why
must a helicopter have two rotors? Why do metal objects feel colder than wood ob-
jects at the same temperature? How do moving clocks run slow?

In this book, you will learn how to apply the principles of physics to answer
these, and many other questions. You will encounter the standard topics of
physics, including mechanics, sound, light, heat, electricity, magnetism, atomic
physics, and nuclear physics. You will also learn some useful techniques for solv-
ing physics problems. In the process, we hope you gain a greater awareness, ap-
preciation, and understanding of the beauty of physics.

In this chapter, we’ll begin by addressing some preliminary concepts that
you will need throughout your study of physics. We’ll briefly examine the
nature of physics, establish some basic definitions, introduce systems of
units and how to use them, and present an introduction to vector mathe-
matics. We’ll also look at the accuracy of measurements, significant figures,
and estimations.

1-1 THE NATURE OF PHYSICS

The word physics comes from the Greek word meaning the knowledge of the nat-
ural world. It should come as no surprise, therefore, that the earliest recorded ef-
forts to systematically assemble knowledge concerning motion came from ancient
Greece. In Aristotle’s (384–322 B.C.) system of natural philosophy, explanations of
physical phenomena were deduced from assumptions about the world, rather than
derived from experimentation. For example, it was a fundamental assumption that
every substance had a “natural place” in the universe. Motion was thought to be
the result of a substance trying to reach its natural place. Because of the agreement
between the deductions of Aristotelian physics and the motions observed through-
out the physical universe and the lack of experimentation that could overturn the
ancient physical ideas, the Greek view was accepted for nearly two thousand
years. It was the Italian scientist Galileo Galilei (1564–1642) whose brilliant exper-
iments on motion established the absolute necessity of experimentation in physics.
Within a hundred years, Isaac Newton had generalized the results of Galileo’s ex-
periments into his three spectacularly successful laws of motion, and the reign of
the natural philosophy of Aristotle was over.

Experimentation during the next two hundred years brought a flood of
discoveries—and raised a flood of new questions. Some of these discoveries in-
volved electrical and thermal phenomena, and some involved the expansion and
compression of gases. These discoveries and questions inspired the development
of new models to explain them. By the end of the nineteenth century, Newton’s
laws for the motions of mechanical systems had been joined by equally impressive
laws from James Maxwell, James Joule, Sadi Carnot, and others to describe elec-
tromagnetism and thermodynamics. The subjects that occupied physical scientists
through the end of the nineteenth century—mechanics, light, heat, sound, electric-
ity and magnetism—are usually referred to as classical physics. Because classical
physics is what we need to understand the macroscopic world we live in, it dom-
inates Parts I through V of this text.

The remarkable success of classical physics led many scientists to believe that
the description of the physical universe was complete. However, the discovery of
X rays by Wilhelm Röntgen in 1895 and of radioactivity by Antoine Becquerel and



When you use a number to
describe a physical quantity, the

number must always be accompanied
by a unit.
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Marie and Pierre Curie a few years later seemed to be outside the framework of
classical physics. The theory of special relativity proposed by Albert Einstein in
1905 expanded the classical ideas of space and time promoted by Galileo and
Newton. In the same year, Einstein suggested that light energy is quantized; that
is, that light comes in discrete packets rather than being wavelike and continuous
as was thought in classical physics. The generalization of this insight to the quan-
tization of all types of energy is a central idea of quantum mechanics, one that has
many amazing and important consequences. The application of special relativity,
and particularly quantum theory, to extremely small systems such as atoms, mol-
ecules, and nuclei, has led to a detailed understanding of solids, liquids, and gases.
This application is often referred to as modern physics. Modern physics is the sub-
ject of Part VI of this text.

While classical physics is the main subject of this book, from time to time in the
earlier parts of the text we will note the relationship between classical and modern
physics. For example, when we discuss velocity in Chapter 2, we will take a moment
to consider velocities near the speed of light and briefly cross over to the relativistic
universe first imagined by Einstein. After discussing the conservation of energy in
Chapter 7, we will discuss the quantization of energy and Einstein’s famous relation
between mass and energy, Four chapters later, in Chapter R, we will study
the nature of space and time as revealed by Einstein in 1903.

1-2 UNITS

The laws of physics express relationships among physical quantities. Physical
quantities are numbers that are obtained by measuring physical phenomena. For
example, the length of this book is a physical quantity, as is the amount of time it
takes for you to read this sentence and the temperature of the air in your
classroom.

Measurement of any physical quantity involves comparing that quantity to
some precisely defined standard, or unit, of that quantity. For example, to measure
the distance between two points, we need a standard unit of distance, such as an
inch, a meter, or a kilometer. The statement that a certain distance is 25 meters
means that it is 25 times the length of the unit meter. It is important to include the
unit, in this case meters, along with the number, 25, when expressing this distance
because different units can be used to measure distance. To say that a distance is 25
is meaningless. 

Some of the most basic physical quantities—time, length, and mass—are de-
fined by the processes of measuring them. The length of a pole, for example, is de-
fined to be the number of some unit of length that is required to equal the length
of the pole. A physical quantity is often defined using an operational definition, a
statement that defines a physical quantity by the operation or procedure that
should be carried out to measure the physical quantity. Other physical quantities
are defined by describing how to calculate them from these fundamental quanti-
ties. The speed of an object, for example, is equal to a length divide by a time. Many
of the quantities that you will be studying, such as velocity, force, momentum,
work, energy, and power, can be expressed in terms of time, length, and mass.
Thus, a small number of basic units are sufficient to express all physical quantities.
These basic units are called base units, and the choice of base units determines a
system of units.

THE INTERNATIONAL SYSTEM OF UNITS

In physics, it is important to use a consistent set of units. In 1960, an international
committee established a set of standards for the scientific community called SI (for
Système International). There are seven base quantities in the SI system. They are

E � mc2.

Water clock used to measure time intervals in
the thirteenth century. (The Granger Collection.)
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Cesium fountain clock with developers Steve
Jefferts and Dawn Meekhof. (© 1999 Geoffrey
Wheeler.)

length, mass, time, electric current, thermodynamic temperature, amount of sub-
stance, and luminous intensity, and each base quantity has a base unit. The base
SI unit of time is the second, the base unit of length is the meter, and the base unit
of mass is the kilogram. Later, when you study thermodynamics and electricity,
you will need to use the base SI units for temperature (the kelvin, K), for the
amount of a substance (the mole, mol), and one for electrical current (the ampere,
A). The seventh base SI unit, the candela (cd) for luminous intensity, we shall have
no occasion to use in this book. Complete definitions of the SI units are given in
Appendix A, along with commonly used units derived from these units.

Time The unit of time, the second (s), was historically defined in terms of the rota-
tion of Earth and was equal to of the mean solar day. However,
scientists have observed that the rate of rotation of Earth is gradually slowing down.
The second is now defined in terms of a characteristic frequency associated with the
cesium atom. All atoms, after absorbing energy, emit light with frequencies and
wavelengths characteristic of the particular element. There is a set of frequencies and
wavelengths for each element, with a particular frequency and wavelength associ-
ated with each energy transition within the atom. As far as we know, these frequen-
cies remain constant. The second is now defined so that the frequency of the light
from a certain transition in cesium is exactly 9192631770 cycles per second.

Length The meter (m) is the SI unit of length.
Historically, this length was defined as one ten-mil-
lionth of the distance between the equator and
the North Pole along the meridian through
Paris (Figure 1-1). This distance proved to be
difficult to measure accurately. So in 1889, the
distance between two scratches on a bar
made of platinum-iridium alloy held at a
specified temperature was adopted as the
new standard. In time, the precision of this
standard also proved inadequate and other
standards were created for the meter.
Currently, the meter is determined using the
speed of light through empty space, which is de-
fined to be exactly The meter, then,
is the distance light travels through empty space in

second. By using these definitions, the units of
time and length are accessible to laboratories throughout the world.

Mass The SI unit of mass, the kilogram (kg) was once defined as the mass of
one liter of water at 4°C. (A volume of one liter is equal to the volume of a cube
10 cm on an edge.) Like the standards for time and length, the kilogram stan-
dard has changed over time. The kilogram is now defined to be the mass of a
specific platinum-iridium alloy cylinder. This
cylinder, called the standard body, is kept at the
International Bureau of Weights and Measures in
Sèvres, France. A duplicate of the standard body is
kept at the National Institute of Standards and
Technology (NIST) in Gaithersburg, Maryland. We
shall discuss the concept of mass in detail in
Chapter 4, where we will see that the weight of an
object at a given location is proportional to its
mass. Thus, by comparing the weights of different
objects of ordinary size with the weight of the
standard body, the masses of the objects can be
compared with each other. 

1>(299729458)

299792458 m>s.

11>60211>60211>242

F I G U R E  1 - 1 The meter was originally
chosen so that the distance from the equator to
the North Pole along the meridian through
Paris would be 10 million meters (10 thousand
kilometers).

The standard body is the mass of a specific
platinum-iridium alloy cylinder that is kept at
the International Bureau of Weights and
Measures in Sèvres, France. 
(© BIPM; www.bipm.org.)

www.bipm.org
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UNIT PREFIXES

Sometimes it is necessary to work with measurements that are much smaller or
much larger than the standard SI units. In these situations, we can use other units
that are related to the standard SI units by a multiple of ten. Prefixes are used to de-
note the different powers of ten. For example, the prefix “kilo” means 1000, or 
while the prefix “micro” means 0.000 001, or Table 1-1 lists prefixes for com-
mon multiples of SI units. These prefixes can be applied to any SI unit; for example,
0.001 second is 1 millisecond (ms) and 1000000 watts is 1 megawatt (MW). 

PRACTICE PROBLEM 1-1

Use prefixes to describe the following: (a) the delay caused by scrambling a cable televi-
sion broadcast, which is about 0.000 000 3 second and (b) the circumference of Earth,
which is about 40000000 meters.

OTHER SYSTEMS OF UNITS

In addition to SI, other systems of units are sometimes used. One such system is
the cgs system. The fundamental units of the cgs system are the centimeter for
length, the gram for mass, and the second for time. Other cgs units include the
dyne (force) and the erg (work or energy).

The system of units with which you are probably most familiar is the U.S. cus-
tomary system. In this system, the base unit of length is the foot and the base unit
of time is the second. Also, a unit of force (the pound-force) rather than mass is
considered a base unit. You will see in Chapter 4 that mass is a better choice for a

10�6.
103,

Table 1-1 Prefixes for Powers of 10*

Multiple Prefix Abbreviation

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deka da

10�1 deci d

10�2 centi c

10�3 milli m

10�6 micro m

10�9 nano n

10�12 pico p

10�15 femto f

10�18 atto a

* The prefixes hecto (h), deka (da) and deci (d) are not multiples of 103 or 10�3 and are rarely used. The other prefix

that is not a multiple of 103 or 10�3 is centi (c). The prefixes frequently used in this book are printed in red. Note that all

prefix abbreviations for multiples 106 and higher are uppercase letters, all others are lowercase letters.
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(a) (b)

(a) Laser beam from the Macdonald
Observatory used to measure the distance to
the moon. The distance can be measured
within a few centimeters by measuring the
time required for the beam to go to the moon
and back after reflecting off a mirror (b) placed
on the moon by the Apollo 14 astronauts.
(a, McDonald Observatory; b, Bruce Coleman).

fundamental unit than force, because mass is an intrinsic property of an object, in-
dependent of its location. The base U.S. customary units are now defined in terms
of the base SI units.

1-3 CONVERSION OF UNITS

Because different systems of units are in use, it is important to know how to covert
from one unit to another unit. When physical quantities are added, subtracted,
multiplied, or divided in an algebraic equation, the unit can be treated like any
other algebraic quantity. For example, suppose you want to find the distance trav-
eled in 3 hours (h) by a car moving at a constant rate of 80 kilometers per hour

The distance is the product of the speed and the time t:

We cancel the unit of time, the hours, just as we would any algebraic quantity to
obtain the distance in the proper unit of length, the kilometer. This method of treat-
ing units makes it easy to convert from one unit of distance to another. Now, sup-
pose we want to convert the units in our answer from kilometers (km) to miles
(mi). First, we need to find the relationship between kilometers and miles, which
is (see either the front pages or Appendix A). Then, we divide
each side of this equality by 1.609 km to obtain

Notice that the relationship is a ratio equal to 1. A ratio such as 
is called a conversion factor, which is a ratio equal to 1 and expresses a quantity
expressed in some unit or units divided by its equal expressed some different unit
or units. Because any quantity can be multiplied by 1 without changing its value,
we can multiply the original quantity by the conversion factor to convert the units:

By writing out the units explicitly and canceling them, you do not need to think about
whether you multiply by 1.609 or divide by 1.609 to change kilometers to miles, be-
cause the units tell you whether you have chosen the correct or incorrect factor.

240 km � 240 km �
1 mi

1.609 km
� 149 mi

11 mi2>11.609 km2
1 mi

1.609 km
� 1

1 mi � 1.609 km

x � vt �
80 km

h
� 3 h � 240 km

v(km>h).
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Example 1-1 Using Conversion Factors

Your employer sends you on a trip to a foreign country where the road signs give distances
in kilometers and the automobile speedometers are calibrated in kilometers per hour. If you
drive how fast are you going in meters per second and in miles per hour?

PICTURE First we have to find the appropriate conversion factors for hours to seconds and
kilometers to meters. We can use the facts that and 
The quantity is multiplied by the conversion factors, so the unwanted units cancel.
(Each conversion factor has the value 1, so the value of the speed is not changed.) To convert
to miles per hour, we use the conversion factor 

SOLVE

1. Multiply by the conversion factors and to convert km 
to m and h to s:

1000 m>1 km1 h>3600 s90 km>h
1 mi>1.609 km.

90 km>h 1 h � 60 min � 3600 s.1000 m � 1 km

90 km/h,

25 m>s90 km
h

�
1 h

3600 s
�

1000 m
1 km

�

2. Multiply by 56 mi>h90 km
h

�
1 mi

1.609 km
�1 mi>1.609 km:90 km>h

CHECK Notice that the final units in each step are correct. If you had not set up the conver-
sion factors correctly, for example if you multiplied by instead of 
the final units would not be correct.

TAKING IT FURTHER Step 1 can be shortened by writing as
and canceling the prefixes in ks and km. That is,

Canceling these prefixes is equivalent to dividing the numerator and the de-
nominator by 1000.

You may find it helpful to memorize the conversion results in Example 1-1.
These results are

Knowing these values can provide you with a quick way to convert speeds to
units you are more familiar with.

1-4 DIMENSIONS OF PHYSICAL QUANTITIES

Recall that a physical quantity includes both a number and a unit. The unit tells the
standard that is used for the measurement and the number gives the comparison of
the quantity to the standard. To tell what you are measuring, however, you need to
state the dimension of the physical quantity. Length, time, and mass are all dimensions.
The distance d between two objects has dimensions of length. We express this relation
as where represents the dimension of the distance d and L represents the
dimension of length. All dimensions are represented by upper-case roman (nonitalic)
letters. The letters T and M represent the dimensions of time and mass, respectively.
The dimensions of a number of quantities can be written in terms of these funda-
mental dimensions. For example, the area A of a surface is found by multiplying one
length by another. Because area is the product of two lengths, it is said to have the di-
mensions of length multiplied by length, or length squared, written In this
equation, represents the dimension of the quantity A and L represents the di-
mension of length. Speed has the dimensions of length divided by time, or The
dimensions of other quantities such as force or energy are written in terms of the fun-
damental quantities of length, time, and mass. Adding or subtracting two physical

 L>T.
3A4 3A4 � L2.

3d43d4 � L,

25 m>s � 90 km>h � 160 mi>h2

25 m>s90 km
h

�
1 h

3.6 ks
�

1 h>3.6 ks
1 h>3600 s

1000 m>1 km,1 km>1000 m

(Eunice Harris/Photo Researchers.)



Evaluating the dimensions of an
expression will tell you only if the

dimensions are correct, not whether
the entire expression is correct. While
expressing the area of a circle, for
instance, dimensional analysis will not
tell you the correct expression is or

. (The correct expression is .)pr 22pr 2
pr 2

!
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quantities makes sense only if the quantities have the same dimensions. For example,
we cannot add an area to a speed to obtain a meaningful sum. For the equation

the quantities A, B, and C must all have the same dimensions. The addition of B
and C also requires that these quantities be in the same units. For example, if B is
an area of and C is we must either convert B into square feet or C into
square inches in order to find the sum of the two areas.

You can often find mistakes in a calculation by checking the dimensions or units
of the quantities in your result. Suppose, for example, that you mistakenly use the
formula for the area of a circle. You can see immediately that this cannot
be correct because has dimensions of length whereas area must have dimen-
sions of length squared.

Example 1-2 Dimensions of Pressure

The pressure P in a fluid in motion depends on its density and its speed . Find a simple
combination of density and speed that gives the correct dimensions of pressure.

PICTURE Using Table 1-2, we can see that pressure has the dimensions density is
and speed is In addition, both the dimensions of pressure and density have mass

in the numerator, whereas the dimensions of speed do not contain mass. Therefore, the ex-
pression must involve multiplying or dividing dimensions of density and dimensions of
speed to obtain the unit of mass in the dimensions of pressure. To find out the exact rela-
tionship, we can start by dividing the dimensions of pressure by those of density, and then
evaluate the result with respect to the dimensions for speed.

SOLVE

1. Divide the dimensions of pressure 
by those of density to obtain an 
expression with no M in it:

L>T.M>L3,
M>1LT22,
vr

2pr
A � 2pr

4 ft2,500 in.2

A � B � C

3P43r4 �
M>LT2

M>L3 �
L2

T2

2. By inspection, we note that the
result has dimensions of The
dimensions of pressure are thus
the same as the dimensions of
density multiplied by speed
squared:

v2.

CHECK Divide the dimensions of pressure by the dimensions of speed squared and the re-
sult is the dimensions of density 

1-5 SIGNIFICANT FIGURES 
AND ORDER OF MAGNITUDE

Many of the numbers in science are the result of measurement and are therefore
known only to within a degree of experimental uncertainty. The magnitude of
the uncertainty, which depends on both the skill of the experimenter and the
apparatus used, often can only be estimated. A rough indication of the uncer-
tainty in a measurement is inferred by the number of digits used. For example,
if a tag on a table in a furniture store states that a table is 2.50 m long, it is say-
ing that its length is close to, but not exactly, 2.50 m. The rightmost digit, the 0,
is uncertain. If we use a tape measure with millimeter markings and measured
the table length carefully, we might estimate that we could measure the length
to mm of its true length. We would indicate this precision when giving the
length by using four digits, such as 2.503 m. A reliably known digit (other than
a zero used to locate the decimal point) is called a significant figure. The

�0.6

3P4>3v24 � 1M>LT22>1L2>T22 � M>L3 � 3r4.
Table 1-2 Dimensions of 

Physical Quantities

Quantity Symbol Dimension

Area A L2

Volume V L3

Speed L T

Acceleration a L T2

Force F ML T2

Pressure (F A) p M LT2

Density (M V) r M L3

Energy E ML2 T2

Power (E T) P ML2 T3>> >>> >> >>
>v

M
LT2�

M
L3 �

L2

T2 �3P4 � 3r43v24 �
M
L3 � aL

T
b 2



When you work with numbers that
have uncertainties, you should be

careful not to include more digits than
the certainty of measurement warrants.
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number 2.50 has three significant figures; 2.503 m has four. The number 0.00130 has
three significant figures. (The first three zeroes are not significant figures but are
merely markers to locate the decimal point.) The number 2300. has four significant
figures, but the number 2300 (the same as 2300. but without the decimal point)
could have as few as two or as many as four significant figures. The number of sig-
nificant figures in numbers with trailing zeros and no decimal point is ambiguous.

Suppose, for example, that you measure the area of a circular playing field by
pacing off the radius and using the formula for the area of a circle, If you
estimate the radius to be 8 m and use a 10-digit calculator to compute the area, you
obtain The digits after the decimal point give a false
indication of the accuracy with which you know the area. To determine the appro-
priate numbers of significant figures for calculations involving multiplication and
division, you can follow this general rule:

When multiplying or dividing quantities, the number of significant figures
in the final answer is no greater than that in the quantity with the fewest
significant figures.

In the previous example, the radius is known to only one significant figure, so the
area is also known only to one significant figure, or This number indicates
that the area is likely somewhere between and 

The accuracy of the sum or difference of measurements is only as good as the
accuracy of the least accurate of the measurements. A general rule is

When adding or subtracting quantities, the number of decimal places in the
answer should match that of the term with the smallest number of decimal
places.

Example 1-3 Significant Figures

Subtract 1.040 from 1.21342.

PICTURE The first number, 1.040, has only three significant figures beyond the decimal
point, whereas the second, 1.21342, has five. According to the rule stated for the addition and
subtraction of numbers, the difference can have only three figures beyond the decimal point.

250 m2.150 m2
200 m2.

p(8 m)2 � 201.0619298 m2.

A � pr2.
Exact values have an unlimited
number of significant figures. For

example, a value determined by
counting, such as 2 tables, has no
uncertainty and is an exact value. 
In addition, the conversion factor

is an exact value because 
1 m is exactly equal to 100 cm.
1 m>100 cm

!

How many significant figures does
the number 0.010457 have?

CONCEPT CHECK 1-1✓

SOLVE

Sum the numbers, keeping only three digits beyond the decimal point: 0.1731.21342 � 1.040 � 0.17342 �

CHECK The answer cannot be more accurate than the least accurate number or 1.040. The
answer has the same number of significant figures beyond the decimal point as 1.040.

TAKING IT FURTHER In this example, the given numbers have four and six significant fig-
ures, but the difference has only three significant figures. Most examples and exercises in this
book will be done with data to two, three, or occasionally four significant figures.

PRACTICE PROBLEM 1-2 Apply the appropriate rule for significant figures to calculate the
following: (a) (b) (c)

SCIENTIFIC NOTATION

When we work with very large or very small numbers we can show significant
figures more easily by using scientific notation. In this notation, the number is
written as a product of a number between 1 and 10 and a power of 10, such as

or For example, the number 12 000 000 is written
the distance from Earth to the Sun, which is about 150000000000 m, is

written We have assumed that none of the trailing zeros in this num-
ber are significant. If two of the trailing zeros were significant we could express

1.5 � 1011 m.
1.2 � 107;

103 1� 10002.102 1� 1002

2.456 � 2.4531.4 � 2.53,1.58 � 0.03,

!



See

Math Tutorial for more 

information on

Exponents
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this unambiguously by writing the number as The number 11 in
is called the exponent. For numbers smaller than 1, the exponent is negative.

For example, and The diameter of a virus, which is
about 0.00000001 m, is written Notice that by writing numbers in this
form, you can easily identify the number of significant figures. For example,

contains two significant figures (1 and 5).

PRACTICE PROBLEM 1-3

Apply the appropriate rule for significant figures to calculate 

Use the following Problem-Solving Strategy to do calculations with numbers in
scientific notation.

PROBLEM-SOLVING STRATEGY

Scientific Notation

PICTURE If the numbers involved in a calculation are very large or very
small, you may want to rewrite these numbers in scientific notation. This
notation often makes it easier for you to determine the number of significant
figures that a number has and makes it easier for you to perform calculations.

SOLVE Use these items to solve problems that involve scientific notation.
1. When numbers in scientific notation are multiplied, the exponents are

added; when numbers in scientific notation are divided, the exponents
are subtracted.

Example:

Example:

2. In scientific notation, is defined to be 1. To see why, suppose we
divide 1000 by 1000.

Example:

3. Be careful when adding or subtracting numbers written in scientific
notation when their exponents do not match.

Example:

4. To find the sum without converting both numbers into ordinary decimal
form, rewrite either of the numbers so that its power of 10 is the same as
that of the other.

Example:

5. When raising a power to another power, the exponents are multiplied.

Example:

CHECK Make sure that when you convert numbers smaller than one into
scientific notation, the exponent is negative. You should also remember when
exponents are added, subtracted, or multiplied, because performing the
wrong operation can cause your answer to be inaccurate by powers of 10.

TAKING IT FURTHER During a calculation, avoid entering intermediate
results via keyboard entry. Instead store these results in the calculator
memory. If you must enter intermediate results via the keyboard, key in one
or two additional (non significant) digits, called guard digits. This practice
serves to minimize round-off errors.

(102)4 � 102 � 102 � 102 � 102 � 108

11200 � 10�12 � 18 � 10�12 � 1208 � 10�1 � 120.8

11.200 � 1022 � 18 � 10�12 � 120.0 � 0.8 � 120.8

1000
1000

�
103

103 � 103�3 � 100 � 1

100

102

103 �
100

1000
�

1
10

� 10�1

102 � 103 � 100 � 1,000 � 100000 � 105

2.34 � 102 � 4.93.

1.5 � 1011 m

1 � 10�8 m.
0.0001 � 10�4.0.1 � 10�1,

1011
1.500 � 1011 m.

All exponents are dimensionless
and have no units.!
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Example 1-4 How Much Water?

A liter (L) is the volume of a cube that is 10 cm by 10 cm by 10 cm. If you drink 1 L (exact) of
water, how much volume in cubic centimeters and in cubic meters would it occupy in your
stomach?

PICTURE The volume V of a cube of edge length is The volume in cubic centimeters is
found directly from To find the volume in cubic meters, convert cm3 to m3 using
the conversion factor 1 cm � 10�2 m.

� � 10 cm. 
�3.�

CHECK The answer can be checked by estimation. If you need approximately seconds
to count the number of atoms in a gram of carbon and there are approximately seconds
in a year, then you would need 

TAKING IT FURTHER The time required is about 100000 times the current known value for
the age of the universe.

PRACTICE PROBLEM 1-4 How long would it take for 5 billion people to count
the atoms in 1 g of carbon?

15 � 1092
1022>107 � 1015 y.

107
1022

SOLVE

1. Calculate the volume in 

2. Convert to 

Notice that the conversion factor (which equals 1) can be raised to
the third power without changing its value, enabling us to cancel units.

m3:

103 cm3V � �3 � 110 cm23 � 1000 cm3 �cm3:

10�3 m3� 103 cm3 �
10�6 m3

1 cm3 �

 103 cm3 � 103 cm3 � a 10�2 m
1 cm

b 3

SOLVE

1. The time is related to the total number of atoms N, and the rate 
of counting 

2. Find the number of carbon atoms in 1.00 g:

3. Calculate the number of seconds it takes to count these at 1 per second:

4. Calculate the number n of seconds in a year:

5. Use the conversion factor (a handy quantity 
to remember) to convert the answer in step 3 to years:

3.15 � 107 s>y
n �

365 d
1.00 y

�
24 h
1 d

�
3600 s

1 h
� 3.15 � 107 s>y

t �
N
R

�
5.02 � 1022 atoms

1 atom>s � 5.02 � 1022 s

� 5.02 � 1022 atomsN �
6.02 � 1023 atoms

12.0 g

N � Rt
R � 1 atom>s:

1.59 � 1015 y�
5.02
3.15

� 1022�7 y �

t � 5.02 � 1022 s �
1.00 y

3.15 � 107 s

CHECK Notice that the answers are in cubic centimeters and cubic meters. These answers
are consistent with volume having dimensions of length cubed. Also note that the physical
quantity is greater than the physical quantity which is consistent with a meter being
larger than a centimeter.

Example 1-5 Counting Atoms

In 12.0 g of carbon, there are carbon atoms (Avogadro’s number). If you
could count 1 atom per second, how long would it take to count the atoms in 1.00 g of carbon?
Express your answer in years.

PICTURE We need to find the total number of atoms to be counted, N, and then use the fact
that the number counted equals the counting rate R multiplied by the time t.

NA � 6.02 : 1023

10�3,103
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ORDER OF MAGNITUDE

In doing rough calculations, we sometimes round off a number to the nearest
power of 10. Such a number is called an order of magnitude. For example, the
height of an ant might be or approximately We would say that
the order of magnitude of an ant’s height is . Similarly, though the typical
height h of most people is about 2 m, we might round that off further and say that

where the symbol means “is the order of magnitude of.” By saying
we do not mean that a typical height is really 1 m but that it is closer to

1 m than to 10 m or to We might say that a human being is three orders of
magnitude taller than an ant, meaning that the ratio of heights is about 1000 to 1.
An order of magnitude does not provide any digits that are reliably known, so it
has no significant figures. Table 1-3 gives some order-of-magnitude values for a va-
riety of sizes, masses, and time intervals encountered in physics.

In many cases, the order of magnitude of a quantity can be estimated using plau-
sible assumptions and simple calculations. The physicist Enrico Fermi was a master
at using order-of-magnitude estimations to generate answers for questions that
seemed impossible to calculate because of lack of information. Problems like these are
often called Fermi questions. The following examples are Fermi questions.

10�1 m.
h � 100 m

�h � 100 m,

10�3 m
10�3 m.8 � 10�4 m

The diameter of the Andromeda galaxy is of
the order of (Smithsonian Institution.)1021 m.

Distances familiar in our everyday world. The
height of the woman is of the order of and
that of the mountain is of the order of 
(Kent and Donnan Dannon/Photo Researchers.)

104 m.
100 m

Table 1-3 The Universe by Orders of Magnitude

Size or Distance (m) Mass (kg) Time Interval (s)

Proton 10�15 Electron 10�30 Time for light to cross nucleus 10�23

Atom 10�10 Proton 10�27 Period of visible light radiation 10�15

Virus 10�7 Amino acid 10�25 Period of microwaves 10�10

Giant amoeba 10�4 Hemoglobin 10�22 Half-life of muon 10�6

Walnut 10�2 Flu virus 10�19 Period of highest audible sound 10�4

Human being 100 Giant amoeba 10�8 Period of human heartbeat 100

Highest mountain 104 Raindrop 10�6 Half-life of free neutron 103

Earth 107 Ant 10�4 Period of Earth’s rotation 103

Sun 109 Human being 102 Period of Earth’s revolution

Distance from Earth Saturn V rocket 106 around the Sun 107

to the Sun 1011
Pyramid 1010 Lifetime of human being 109

Solar system 1013 Earth 1024 Half-life of plutonium-239 1012

Distance to nearest star 1016 Sun 1030 Lifetime of mountain range 1015

Milky Way galaxy 1021 Milky Way galaxy 1041 Age of Earth 1017

Visible universe 1026 Universe 1052 Age of universe 1018

Benzene molecules of the order of in
diameter as seen in a scanning electron
microscope. (IBM Research, Almaden Research
Center.)

10�10 m
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(Corbis.)

Example 1-6 Burning Rubber

What thickness of rubber tread is worn off the tire of your automobile as it travels 1 km (0.6 mi)?

PICTURE Let’s assume the tread thickness of a new tire is 1 cm. This estimation may be off
by a factor of two or so, but 1 mm is certainly too small and 10 cm is too large. Because tires
have to be replaced after about 60000 km (about 37000 mi), we will also assume that the
tread is completely worn off after 60000 km. In other words, the rate of wear is 1 cm of tire
per 60000 km of travel.

SOLVE

Use 1 cm wear per 60000 km 
travel to compute the thickness 
worn after 1 km of travel: 2 � 10�7 m wear per km of travel�

1 cm wear
60000 km travel

�
1.7 � 10�5 cm wear

1 km travel

CHECK To check the answer, divide the volume of the beach by the number of grains the
beach holds. The result is This result is
the estimated volume of one grain of sand or 

TAKING IT FURTHER The volume of the space between grains can be found by first filling
a one-liter container with dry sand, and then slowly pouring water into the container until
the sand is saturated with water. If we assume that one-tenth of a liter of water is needed to
fully saturate the sand in the container, the actual volume of the sand in the one-liter con-
tainer is only nine-tenths of a liter. Our estimate of the number of grains on the beach is too
high. Taking into account that the sand actually occupies only, say, 90 percent of the volume
of its container, the number of grains on the beach would be only 90 percent of the value ob-
tained in step 3 of our solution.

PRACTICE PROBLEM 1-5 How many grains of sand are on a 2-km stretch of beach that is
500 m wide? Hint: Assume that the sand is 3.00 m deep and the diameter of one grain of sand is 1.00 mm.

4>33p15 � 10�4 m234.grains � 5 � 10�10 m3>grain.1.5 � 105 m3>3 � 1014

Context-Rich

so

3 � 1014� 2.9 � 1014 �N �
3VB

4pR3 �
31500 m21100 m213 m2

4p10.5 � 10�3 m23
VB � NVG � N

4
3
pR3

CHECK If you multiply by 60000 km, you will get approximately 1 cm,
which is the thickness of tread on a new tire.

TAKING IT FURTHER Atoms have diameters equal to about Thus, the thick-
ness worn off for each kilometer of travel is about 1000 atomic diameters thick.

Example 1-7 How Many Grains

You have been placed on detention for falling asleep in class. Your teacher says you can get
off detention early by estimating the number of grains of sand on a beach. You decide to give
it your best shot.

PICTURE First, you make some assumptions about the size of the beach and the size of each
grain of sand. Let’s assume the beach is about 500 m long, 100 m wide, and 3 m deep.
Searching the Internet, you learn that the diameter of a grain varies from 0.04 mm to 2 mm.
You assume that each grain is a 1-mm-diameter sphere. Let’s also assume that the grains are
so tightly packed that the volume of the space between the grains is negligible compared to
the volume of the sand itself.

SOLVE

1. The volume of the beach is equal to the number N of grains 
times the volume of a single grain:

2. Using the formula for the volume of a sphere, find the volume 
of a single grain of sand:

3. Solve for the number of grains. The numbers in our assumptions 
are specified to only one significant figure, so the answer will be 
expressed with one significant figure: 

VG �
4
3
pR3

VG

VB � NVGVB

2 � 10�10 m.

1.7 � 10�5 cm>km

(Corbis.)
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1-6 VECTORS

If an object moves in a straight line, we can describe its motion by describing how
far or how fast it moves, and whether it moves to the left or right of the origin. But
when we look at the motion of an object that is moving in two or three dimensions,
we need more than just plus and minus signs to indicate direction. Quantities that
have magnitude and direction, such as velocity, acceleration, and force, are called
vectors. Quantities with magnitude but no associated direction, such as speed,
mass, volume, and time, are called scalars.

We represent a vector graphically using an arrow. The length of the arrow,
drawn to scale, indicates the magnitude of the vector quantity. The direction of the
arrow indicates the direction of the vector quantity. Figure 1-2, for example,
shows a graphical representation of two velocity vectors. One velocity vector 
has twice the magnitude of the other. We denote vectors by italic letters with an
overhead arrow, The magnitude of is written or simply A. For the
vectors in Figure 1-2, and 

1-7 GENERAL PROPERTIES OF VECTORS

Like scalar quantities, vector quantities can be added, subtracted, and multiplied.
However, manipulating vectors algebraically requires taking into account their di-
rection. In this section, we will examine some of the general properties of vectors
and how to work with them (multiplication of two vectors will be discussed in
Chapters 6 and 9). Throughout most of the discussion, we will consider displace-
ment vectors—vectors that represent change of position—because they are the
most basic of vectors. However, keep in mind that the properties apply to all vec-
tors, not just displacement vectors.

BASIC DEFINITIONS

If an object moves from location A to location B, we can represent its displacement
with an arrow pointing from A to B, as shown in Figure 1-3a. The length of the
arrow represents the distance, or magnitude, between the two locations. The di-
rection of the arrow represents the direction from A to B. A displacement vector is
a directed straight-line segment from the initial location to the final location that
represents the change in position of an object. It does not necessarily represent the

B � ƒ B
S

ƒ � 12 m>s.A � ƒA
S

ƒ � 6 m>s ƒA
S

ƒ , 7AS 7 ,A
S

A
S

.

While working with vectors, you
should always include an arrow

over the letter to indicate a vector
quantity. The letter without the arrow
represents only the magnitude of the
vector quantity. Note that the
magnitude of a vector is never negative.

!

Scale: 1 cm = 2 m/s
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B

F I G U R E  1 - 2 Velocity vectors and have magnitudes of and respectively.
The arrows representing them are drawn using the scale so the arrows are drawn 
3 and 6 cm long.

1 cm � 2 m>s,
12 m>s,6 m>sB

S
A
S



actual path the object takes. For example, in Figure 1-3b, the same displacement
vector corresponds to all three paths between points A and B.

If two displacement vectors have the same direction, as shown in Figure 1-3c,
they are parallel. If they have opposite directions, as shown in Figure 1-3d, they are
antiparallel. If two vectors have both the same magnitude and the same direction,
they are said to be equal. Graphically, this means that they have the same length
and are parallel to each other. A vector can be drawn at different locations as long
as it is drawn with the correct magnitude (length) and in the correct direction.
Thus, all the vectors in Figure 1-4 are equal. In addition, vectors do not depend on
the coordinate system used to represent them (except for position vectors, which are
introduced in Chapter 3). Two or three mutually perpendicular coordinate axes
form a coordinate system.

ADDITION AND SUBTRACTION OF VECTORS

Suppose you decide to take a hike along a trail through a forest. Figure 1-5
shows your path as you move from point to a second point and then to a
third point The vector represents your displacement from to while

represents your displacement from to Note that these displacement
vectors depend only on the endpoints and not on the actual path taken. Your
net displacement from to is a new vector, labeled in the figure, and is
called the sum of the two successive displacements and 

1-1

The sum of two vectors is called the sum, vector sum, or resultant.
The plus sign in Equation 1-1 refers to a process called vector addition. We find the

sum using a geometric process that takes into account both the magnitudes and the
directions of the quantities. To add two displacement vectors graphically, we draw
the second vector with its tail at the head of the first vector (Figure 1-6). 
The resultant vector is then drawn from the tail of the first to the head of the second.
This method of adding vectors is called the head-to-tail method.

A
S

B
S

B
S

C
S

� A
S

� B
S

B
S

:A
S

C
S

P3,P1

P3.P2B
S

P2,P1A
S

P3.
P2P1
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Displacement vector

B

A

(a)

Displacement vector

Path 1

Path 3

Path 2

B

A

(b)

Parallel vectors

(c)

Antiparallel vectors

(d)

y

x

F I G U R E  1 - 4 Vectors are equal if their
magnitudes and directions are the same. All
vectors in this figure are equal.

y

x

z

P1

P2

P3

A

B

C

F I G U R E  1 - 5

A

B

C

C = A + B

F I G U R E  1 - 6 Head-to-tail method of
vector addition.

F I G U R E  1 - 3 (a) shows a displacement vector from a point A to a point B; (b) shows the same
displacement vector with three different paths between the two points; (c) shows the same
displacement vector next to a second displacement vector that is parallel but a different length;
(d) shows the same displacement vector next to a vector that is antiparallel (the head and tail are
reversed) and a different length.



A − A = A + (−A) = 0

−A

A

F I G U R E  1 - 9
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An equivalent way of adding vectors, called the parallelogram method, in-
volves drawing so that it is tail-to-tail with (Figure 1-7). A diagonal of the
parallelogram formed by and then equals as shown (Figure 1-7). As you 
can see in the figure, it makes no difference in which order we add two vectors;
that is, Therefore, vector addition obeys the commutative law.

To add more than two vectors—for example, and —we first add two
vectors (Figure 1-8), and then add the third vector to the vector sum of the first two.
The order in which the vectors are grouped before adding does not matter; that is

This reveals that like the addition of ordinary
numbers, vector addition is associative.

If vectors and are equal in magnitude and opposite in direction, then the
vector is a vector with a magnitude of zero. This can be shown by
using the head-to-tail method of vector addition to graphically construct the sum

Any vector with a magnitude of zero is called the zero vector The di-
rection of a vector with zero magnitude has no meaning, so in this book we will
not use vector notation for the zero vector. That is, we will use 0 rather than to
denote the zero vector. If then is said to be the negative of and
vice versa. Note that is the negative of if has the same magnitude as but
is in the opposite direction. The negative of is written so if then

(Figure 1-9).
To subtract vector from vector add the negative of to The result is

(Figure 1-10a). An alternative method of subtracting 
from is to add to both sides of the equation to obtain

and then graphically add and to get using the head-to-tail
method. This is accomplished by first drawing and tail-to-tail (Figure 1-10b),
and then drawing from the head of to the head of A
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S
C
S
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S
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S
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S
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S
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S
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S
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S
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S
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A
S
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A
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� B
S

� 0,
0
S

0
S

.A
S

� B
S

.

C
S

� A
S

� B
S

B
S

A
S

1AS � B
S2 � C

S
� A

S
� 1BS � C

S2.
C
S

B
S

,A
S

,
A
S

� B
S

� B
S

� A
S

.

C
S

B
S

A
S

A
S

B
S

A

B
C

A

B

A + B = B + A = C

F I G U R E  1 - 7 Parallelogram method of
vector addition.

A A A

B B B
C C C

A + (B
+ C )

(A + B) + C

A + B + C

B + C

A
+ B

F I G U R E  1 - 8 Vector addition is associative. That is, 1AS � B
S2 � C

S
� A

S
� 1BS � C

S2.

F I G U R E  1 - 1 0 Alternative ways of subtracting vectors.
Let (a) To obtain we add to (b) To
obtain we first draw and with their tails together.
Then, is the vector we add to to get A
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.B

S
C
S

B
S

A
S

C
S

,
A
S

.�B
S

C
S

,C
S

� A
S

� B
S

.

C = A − B = A + (−B)

C = A − B ⇒  B + C = AA
C

C
A

A

−B

B

B

(a)

(b)

C does not equal unless 
and are in the same direction.
That is, does not imply

that C � A � B.
C
S

� A
S

� B
S

B
S

A
S

A � B!
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Example 1-8 Your Displacement

You walk 3.00 km due east and then 4.00 km due north. Determine your resultant displacement
by adding these two displacement vectors graphically.

PICTURE Your displacement is the vector from your initial position to your final position.
You can add the two individual displacement vectors graphically to find the resultant dis-
placement. To accurately draw the resultant, you must use a scale such as 1 cm on the

on the ground.

SOLVE

1. Let and represent displacements of 3.00 km due 
east and 4.00 km due north, respectively, and let 

Draw and with the tail of at the 
head of and with drawn from the tail of to 
the head of (Figure 1-11). Use the scale 
Include axes indicating the directions north and east.

2. Determine the magnitude and direction of using 
your diagram, the scale and a protractor.1 cm � 1 km,

C
S

1 cm � 1 km.B
S

A
S

C
S

A
S

,
B
S

B
S

A
S

C
S

� A
S

� B
S

.

B
S

A
S

drawing � 1 km

A

1θ

AS = A cos 1θ

S

AS

(a)

B

2θ

θ

BS = B cos 2 = −B cosθ θ

S

BS

(b)

F I G U R E  1 - 1 2 The component of a vector in a
specified direction is equal to the magnitude of the vector
times the cosine of the angle between the direction of the
vector and the specified direction. The component of the
vector in the direction is and is positive. The
component of the vector in the direction is and 
is negative.

BSBS ,�SB
S

ASAS ,�SA
S

The arrow representing has a length
of 5.00 cm, so the magnitude of is
5.00 km. The direction of is
approximately north of east.53°

C
S

C
S

C
S

CHECK The distance traveled is and the magnitude of the net
displacement is 5 km. This is consistent with the adage “the shortest distance between two
points is a straight line.” Also, if you go 3 km east and 4 km north, you should expect to be
somewhat more than north of east from your starting point.

TAKING IT FURTHER A vector is described by its magnitude and its direction. Your resul-
tant displacement is therefore a vector of length 5.00 km in a direction approximately 
north of east.

MULTIPLYING A VECTOR BY A SCALAR
The expression where is an arbitrary vector, represents the sum 
That is, (In like manner, )
More generally, the vector multiplied by a scalar s is the vector where 
has magnitude is in the same direction as if s is positive and is in the
opposite direction if s is negative. The dimensions of are those of s multiplied by
those of A. (In addition, to divide by a scalar s, you multiply by )

COMPONENTS OF VECTORS
We can add or subtract vectors algebraically by first breaking down the vectors
into their components. The component of a vector in a given direction is the pro-
jection of the vector onto an axis in that direction. We can find the components of
a vector by drawing perpendicular lines from the ends of the vector to the axis, 
as shown in Figure 1-12. The process of finding the x, y, and z components of a

1>s.A
S

A
S

sA
S

A
S

B
S

ƒs ƒA.
B
S

B
S

� sA
S

,A
S

�3A
S

.1�A
S2� 1�A

S2� 1�A
S2� 31�A

S2�A
S

� A
S

� A
S

� 3A
S

.
A
S

� A
S

� A
S

.A
S

3A
S

,

53°

45°

3.00 km � 4.00 km � 7.00 km
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vector is called resolving the vector into its components. The components of a vec-
tor along the x, y, and z directions, illustrated in Figure 1-13 for a vector in the xy
plane, are called the rectangular (or Cartesian) components. Note that the compo-
nents of a vector do depend on the coordinate system used, although the vector it-
self does not.

We can use right-triangle geometry to find the rectangular components of a vec-
tor. If is the angle measured counterclockwise* from the direction to the di-
rection of (see Figure 1-13), then

1-2

x COMPONENT OF A VECTOR

and

1-3

y COMPONENT OF A VECTOR

where A is the magnitude of 
If we know and we can find the angle from

1-4

and the magnitude A from the Pythagorean theorem:

1-5a

In three dimensions,

1-5b

Components can be positive or negative. The x component of a vector is posi-
tive if the x coordinate of an ant as it walks from the tail to the head of the vector
increases. Thus, if points in the positive x direction, then is positive, and if 
points in the negative x direction, then is negative.

It is important to note that in Equation 1-4, the inverse tangent function is mul-
tiple valued. This issue is clarified in Example 1-9.

PRACTICE PROBLEM 1-6

A car travels 20.0 km in a direction north of west. Let east be the direction and
north be the direction, as in Figure 1-14. Find the x and y components of the dis-
placement vector of the car.

Once we have resolved a vector into its components, we can manipulate the in-
dividual components. Consider two vectors and that lie in the plane. 
The rectangular components of each vector and those of the sum are
shown in Figure 1-15. We see that the rectangular components of each vector and
those of the sum are equivalent to the two component equations

1-6a
and

1-6b

In other words, the sum of the x components equals the x component of the re-
sultant, and the sum of the y components equals the y component of the resultant.
The angle and magnitude of the resultant vector can be found using Equations 1-4
and 1-5a, respectively.

Cy � Ay � By

Cx � Ax � Bx

C
S

� A
S

� B
S

C
S

� A
S

� B
S

xyB
S

A
S

�y
�x30.0°

Ax

A
S

AxA
S

A � 3Ax2 � Ay
2 � Az

2

A � 3Ax2 � Ay
2

tan u �
Ay

Ax
  u � tan�1

Ay

Ax

uAyAx

A
S

.

Ay � A sinu

Ax � A cosu

A
S

�xu

N

S

EW
30.0

2.0 km

°

A

F I G U R E  1 - 1 4

y

x

Ax

Ay

Bx

By

Cx

CyA

B

C

F I G U R E  1 - 1 5

* This assumes the direction is counterclockwise from the direction.�x90°�y

y

xAx

θ

Ay
Ay = A sin θ

Ax = A cos θ

A

F I G U R E  1 - 1 3 The rectangular
components of a vector. is the angle between
the direction of the vector and the 
direction. The angle is positive if it is
measured counterclockwise from the 
direction, as shown.

�x

�x
u
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N

C

B

x

y

A

60.0°

140°40.0°

θφ

F I G U R E  1 - 1 6

SOLVE

(a) 1. Draw a vector-addition diagram to scale (Figure 1-16). First draw coordinate axes, 
with the direction toward the east and the direction toward the north. 
Next, starting at the origin draw the first displacement vector 3.00 cm long at 

north of east. Beginning at the head of draw the second vector 4.00 cm 
long at north of west. (You will need a protractor to measure the angles.) 
Then draw the resultant vector from the tail of to the head of 

2. Measure the length of Using a protractor, measure the angle between 
the direction of and the direction:�xC

S
C
S

.

B
S

:A
S

C
S

40.0°
B
S

A
S

,60.0°
A
S

�y�x

is about 5.40 cm long. Thus, the magnitude of the

resultant displacement is . The angle made

between and due west is about Therefore, you

should walk 5.40 km headed .73.2° north of west

73.2°.C
S

f5.40 km

C
S

(b) 1. To solve using components, let denote the first displacement and 
choose the direction toward the east and the direction toward 
the north. Compute and from Equations 1-2 and 1-3:AyAx

�y�x
A
S

Ay � 13.00 km2 sin60° � 2.60 km

Ax � 13.00 km2 cos60° � 1.50 km

2. Similarly, compute the components of the second displacement 
The angle between the direction of and the direction is 
180.0° � 40.0° � 140°:

�xB
S

B
S

.

By � 14.00 km2 sin140° � �2.57 km

Bx � 14.00 km2 cos140° � �3.06 km

3. The components of the resultant displacement are found 
by addition:

C
S

� A
S

� B
S

Cy � Ay � By � 2.60 km � 2.57 km � 5.17 km

Cx � Ax � Bx � 1.50 km � 3.06 km � �1.56 km

4. The Pythagorean theorem gives the magnitude of C
S

:

5.40 kmC �429.2 km2 �

� 1�1.56 km22 � 15.17 km22 � 29.2 km2C2 � Cx
2 � Cy

2

5. The ratio of to equals the tangent of the angle between and 
the positive x direction. Be careful, the value you are seeking may be 
larger than the value returned by your calculator for the inverse tangent:

180°
C
S

uCxCy so

or

or �107°� either � 73.2°

1�73.2° � 180°2� either � 73.2°

u � tan�1 5.17 km
�1.56 km

� tan�11�3.312
tan u �

Cy

Cx

6. Because is positive and is negative we know to select the value 
for in the second quadrant:u

CxCy

73.2° north of westf �

107° counterclockwise from eastu �

CHECK Step 4 of Part (b) gives the magnitude as 5.40 km and step 6 gives the direction as
north of west. This agrees with the results in Part (a) within the accuracy of our

measurement.

TAKING IT FURTHER To specify a vector, you need to specify either the magnitude and di-
rection, or both components. In this example, the magnitude and direction was specifically
asked for.

73.2°

Example 1-9 A Treasure Map

You are working at a tropical resort, and are setting up a treasure hunt activity for the guests.
You’ve been given a map and told to follow its directions in order to bury a “treasure” at a
specific location. You don’t want to waste time walking around the island, because you want
to finish early and go surfing. The directions are to walk 3.00 km headed 60.0° north of due
east and then 4.00 km headed 40.0° north of due west. Where should you head and how far
must you walk to get the job done quickly? Find your answer (a) graphically and (b) using
components.

PICTURE In both cases you need to find your resultant displacement. In Part (a), use the
head-to-tail method of vector addition and solve for the resultant vector graphically. You can
do this by drawing each of the displacements to scale and then measuring the resultant dis-
placement directly from your sketch. For Part (b), you will need to resolve the vectors into
their individual components and then use the components to find the resultant displacement.
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UNIT VECTORS

A unit vector is a dimensionless vector with magnitude exactly equal to 1. The vec-
tor is an example of a unit vector that points in the direction of The
circumflex, or hat, denotes that it is a unit vector. Unit vectors that point in the pos-
itive x, y, and z directions are convenient for expressing vectors in terms of their
rectangular components. These unit vectors are usually written and re-
spectively. For example, the vector has magnitude and points in the 
direction if is positive (or the direction if is negative). A general vector 
can be written as the sum of three vectors, each of which is parallel to a coordinate
axis (Figure 1-17):

1-7

The addition of two vectors and can be written in terms of unit vectors as

1-8

The general properties of vectors are summarized in Table 1-4.

PRACTICE PROBLEM 1-7

Given vectors and find (a) A,
(b) B, (c) and (d) A

S
� B

S
.A

S
� B

S
,

B
S

� 12.00 m2 in � 13.00 m2 jnA
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� 14.00 m2 in � 13.00 m2 jn
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A
B

–BC

BA

A
B

Table 1-4 Properties of Vectors

Property Explanation Figure Component Representation

Equality � if � and their Ax � Bx
directions are the same Ay � By

Az � Bz

Addition � � Cx � Ax � Bx
Cy � Ay � By
Cz � Az � Bz

Negative � if � and their Ax � �Bx
of a vector directions are opposite Ay � �By

Az � �Bz

Subtraction � � Cx � Ax � Bx
Cy � Ay � By
Cz � Az � Bz

Multiplication � has magnitude � Bx � sAx
by a scalar and has the same direction as By � sAy

if s is positive or if s is negative Bz � sAz�A
S

A
Sƒs ƒ ƒA

S
ƒƒ B

S
ƒsA

S
B
S

B
S

A
S
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S
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ƒƒ B
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ƒ�B
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ƒƒA
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ƒB
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A
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F I G U R E  1 - 1 7 (a) The unit vectors 
and in a rectangular coordinate system.
(b) The vector in terms of the unit vectors:
A
S

� Ax i
n � Ay j

n � Azk
n.

A
S

kn
jn,in,
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Physics Spotlight

The 2005 Leap Second

The calendar year 2005 was longer—by exactly one second,
known officially as a “leap second.” This adjustment was neces-
sary to synchronize two systems of keeping time, one based 
on Earth’s rotation and the other based on a select group of
atomic clocks.

Throughout history, timekeeping has been related to the posi-
tion of the Sun in the sky, a factor determined by Earth’s rotation
on its axis and around the Sun. This astronomical time, now
called Universal Time (UT1), assumed that the rate of Earth’s ro-
tation was uniform. But as more accurate methods of measure-
ment were developed, it became evident that there were slight ir-
regularities in the rotation rate of Earth. This meant that there
would also be some variability in the scientific standard unit for
time, the second, as long as its definition— of
a mean solar day—depended on astronomical time.

In 1955 the National Physical Laboratory in Britain developed
the first cesium atomic clock, a device of far greater accuracy than
any clock formerly in existence. Timekeeping could now be inde-
pendent of astronomical observations, and a much more precise
definition of the second could be given based on the frequency of
radiation emitted in the transition between two energy levels of the cesium-133
atom. However, the more familiar UT1 continues to be of importance for systems
such as navigation and astronomy. Thus it is important that atomic time and UT1
be synchronized.

According to the National Physical Laboratory, UK, “The solution adopted [for
synchronization] was to construct an atomic time scale called Coordinated
Universal Time … (UTC) as the basis of international timekeeping. It combines all
the regularity of atomic time with most of the convenience of UT1, and many coun-
tries have adopted it as the legal basis for time.”* The International Bureau of
Weights and Measures in Sèvres, France, takes data from select time laboratories
around the world, including the U.S. Naval Observatory in Washington, DC, to
provide the international standard UTC.

When slight differences accrue between UTC and UT1 because Earth’s rotation
varies slightly (usually slowing) over time, a leap second is added to close the gap.
The concept is similar to the way that leap years are used to correct the calendar.
A year is not exactly 365 days, but rather 365.242 days. To account for this, an extra
day is added to the calendar every four years and designated February 29.

Since 1972 when the world shifted to atomic timekeeping, 23 leap seconds have
been added to UTC. By international agreement, a leap second is added whenever
the difference between UT1 and UTC approaches 0.9 seconds. The International
Earth Rotation and Reference Systems (IERS) Service, through its center at the
Paris Observatory, announces the need for a leap second months in advance.

In a year without any leap second, the last second of the year would be
23:59:59 UTC on December 31, while the first second of the new year would
be 00:00:00 UTC on January 1 of the new year. But for 2005 a leap second was
added at 23:59:59 UTC on December 31, so that atomic clocks read 23:59:60 UTC
before changing to all zeros.

* http://www.npl.co.uk/time/leap_second.html

11>60211>60211>242

The global positioning system (GPS) requires
that there be 24 satellites in primary service at
least 70 percent of the time. Each primary
satellite has an orbital period of 1/2 a sidereal
day (1 sidereal day � �23 h 56 min) and an
orbital radius about 4 times the radius of
Earth. There are 6 equally spaced orbital
planes, each of which is inclined 55° with
respect to the equatorial plane of Earth, and
each of these planes contains 4 primary
satellites. In addition, there are several other
GPS satellites that serve as in-orbit spares in
the event that one or more of the primary
satellites fails. At the time of this writing (May
2006) there are 29 operational satellites in
orbit. (Detlev Van Ravenswaay/Photo
Researchers.)

http://www.npl.co.uk/time/leap_second.html
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Units Physical quantities are numbers that are obtained by taking measurements of physical objects.
Operational definitions specify operations or procedures that, if followed, define physical
quantities. The magnitude of a physical quantity is expressed as a number times a unit.

2. Base Units The base units in the SI system are the meter (m), the second (s), the kilogram (kg), the 
kelvin (K), the ampere (A), the mole (mol), and the candela (cd). The unit(s) of every physi-
cal quantity can be expressed in terms of these base units.

3. Units in Equations Units in equations are treated just like any other algebraic quantity.

4. Conversion Conversion factors, which are always equal to 1, provide a convenient method for convert-
ing from one kind of unit to another.

5. Dimensions The terms of an equation must have the same dimensions.

6. Scientific Notation For convenience, very small and very large numbers are generally written as a number
between 1 and 10 times a power of 10.

7. Exponents

Multiplication When multiplying two numbers, the exponents are added.

Division When dividing two numbers, the exponents are subtracted.

Raising to a power When a number containing an exponent is itself raised to a power, the exponents are multiplied.

8. Significant Figures

Multiplication and division The number of significant figures in the result of multiplication or division is no greater than
the least number of significant figures in any of the numbers.

Addition and subtraction The result of addition or subtraction of two numbers has no significant figures beyond the last
decimal place where both of the numbers being added or subracted have significant figures.

9. Order of Magnitude A number rounded to the nearest power of 10 is called an order of magnitude. The order of mag-
nitude of a quantity can often be estimated using plausible assumptions and simple calculations.

10. Vectors

Definition Vectors are quantities that have both magnitude and direction. Vectors add like displacements.

Components The component of a vector in a direction in space is the projection of the vector on an axis in
that direction. If makes an angle with the positive x direction, its x and y components are

1-2

1-3

Magnitude 1-5a

Adding vectors graphically Two vectors may be added graphically by drawing them with the tail of the second arrow at
the head of the first arrow. The arrow representing the resultant vector is drawn from the tail
of the first vector to the head of the second.

Adding vectors using components If then
1-6a

and
1-6b

Unit vectors A vector can be written in terms of unit vectors and which are dimensionless, have
unit magnitude and lie along the x, y, and z axes, respectively

1-7A
S

� Ax i
n � Ay j

n � Azk
n

kn,jn,in,A
S

Cy � Ay � By

Cx � Ax � Bx

C
S

� A
S

� B
S

,

A � 3Ax2 � Ay
2

Ay � A sinu

Ax � A cosu
uA

S
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Answers to Concept Checks

1-1 5

Answers to Practice Problems

1-1 (a) 300 ns; (b) 40 Mm

1-2 (a) 0.05, (b) 3.9, (c) 0.003

1-3

1-4

1-5

1-6

1-7 (a) (b) (c)
(d) A

S
� B

S
� 12.00 m2 in � 16.00 m2 jnA

S
� B

S
� 16.00 m2in,B � 3.61 m,A � 5.00 m,

Ax � �17.3 km, Ay � 10.0 km

�6 � 1015

3.2 � 105 y

2.39 � 102

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeroes and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging, for advanced students

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Which of the following is not one of the base quantities in
the SI system? (a) mass, (b) length, (c) energy, (d) time, (e) All of the
above are base quantities.

2 • In doing a calculation, you end up with in the nu-
merator and in the denominator. What are your final units? 
(a) (b) (c) (d) s, (e)

3 • The prefix giga means (a) (b) (c) (d)
(e)

4 • The prefix mega means (a) (b) (c) (d)
(e)

5 • Show that there are 30.48 cm per foot. How many cen-
timeters are there in one mile?

6 • The number 0.000 513 0 has ______ significant figures.
(a) one, (b) three, (c) four, (d) seven, (e) eight

7 • The number 23.0040 has ______ significant figures.
(a) two, (b) three, (c) four, (d) five, (e) six

8 • Force has dimensions of mass times acceleration.
Acceleration has dimensions of speed divided by time. Pressure is
defined as force divided by area. What are the dimensions of pres-
sure? Express pressure in terms of the SI base units kilogram, meter,
and second.

9 • True or false: Two quantities must have the same dimen-
sions in order to be multiplied.

10 • A vector has a negative x component and a positive
y component. Its angle measured counterclockwise from the posi-
tive x axis is (a) between zero and 90 degrees, (b) between 90 and
180 degrees, (c) more than 180 degrees.

11 • A vector points in the direction. Show graphically
at least three choices for a vector such that points in the 

direction. SSM�y
B
S

� A
S

B
S
�xA

S

SSM

109.
106,10�3,10�6,10�9,

1015.
1012,109,106,103,

m>ss3>m2,1>s,m2>s3,
m>s2

m>sSSM

12 • A vector points in the direction. Show graphically
at least three choices for a vector such that points in the

direction. 

13 • Is it possible for three equal-magnitude vectors to add to
zero? If so, sketch a graphical answer. If not, explain why not.

ESTIMATION 
AND APPROXIMATION

14 • The angle subtended by the moon’s diameter at a point
on Earth is about (Figure 1-18). Use this information and the
fact that the moon is about 384 Mm away to find the diameter of the
moon. Hint: The angle can be determined from the diameter of the moon
and the distance to the moon.

0.524°

SSM

�x
B
S

� A
S

B
S
�yA

S

0.524°

F I G U R E  1 - 1 8 Problem 14

15 • BIOLOGICAL APPLICATION Some good estimates about
the human body can be made if it is assumed that we are made
mostly of water. The mass of a water molecule is If
the mass of a person is 60 kg, estimate the number of water mole-
cules in that person. SSM

29.9 � 10�27 kg.
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16 •• ENGINEERING APPLICATION In 1989, IBM scientists
moved atoms with a scanning tunneling microscope (STM). One of
the first STM images seen by the general public was of the letters
IBM spelled with xenon atoms on a nickel surface. The letters IBM
were 15 xenon atoms across. If the space between the centers of ad-
jacent xenon atoms is 5 nm estimate how many times
“IBM” could be written across this 8.5-inch page.

15 � 10�9 m2,
CONVERSION OF UNITS

25 • MULTISTEP From the original definition of the meter in
terms of the distance along a meridian from the equator to the
North Pole, find in meters (a) the circumference of Earth and (b) the
radius of Earth. (c) Convert your answers for (a) and (b) from me-
ters into miles.

26 • The speed of sound in air is What is the speed
of a supersonic plane that travels at twice the speed of sound? Give
your answer in kilometers per hour and miles per hour.

27 • A basketball player is 6 ft in tall. What is his height in
centimeters?

28 • Complete the following: (a) ______ 
(b) ______ in., (c) ______ m.

29 • The main span of the Golden Gate Bridge is 4200 ft.
Express this distance in kilometers.

30 • Find the conversion factor to convert from miles per hour
into kilometers per hour.

31 • Complete the following: (a) ______
(b) ______ (c)

______ (d) ______

32 • There are 640 acres in a square mile. How many square
meters are there in one acre?

33 •• CONTEXT-RICH You are a delivery person for the Fresh
Aqua Spring Water Company. Your truck carries 4 pallets. Each pal-
let carries 60 cases of water. Each case of water has 24 one-liter bot-
tles. The dolly you use to carry the water into the stores has a
weight limit of 250 lb. (a) If a milliliter of water has a mass of 1 g,
and a kilogram has a weight of 2.2 lb, what is the weight, in pounds,
of all the water in your truck? (b) How many full cases of water can
you carry on the cart?

34 •• A right circular cylinder has a diameter of 6.8 in. and a
height of 2 ft. What is the volume of the cylinder in (a) cubic feet,
(b) cubic meters, (c) liters?

35 •• In the following, x is in meters, t is in seconds, is in me-
ters per second, and the acceleration a is in meters per second
squared. Find the SI units of each combination: (a) (b)
(c)

DIMENSIONS
OF PHYSICAL QUANTITIES

36 • What are the dimensions of the constants in each part of
Problem 23?

37 • The law of radioactive decay is where 
is the number of radioactive nuclei at is the number re-
maining at time t, and is a quantity known as the decay constant.
What is the dimension of 

38 •• The SI unit of force, the kilogram-meter per second
squared is called the newton (N). Find the dimensions
and the SI units of the constant G in Newton’s law of gravitation

39 •• The magnitude of the force (F) that a spring exerts when
it is stretched a distance x from its unstressed length is governed by
Hooke’s law, (a) What are the dimensions of the force
constant, k? (b) What are the dimensions and SI units of the 
quantity

40 •• Show that the product of mass, acceleration, and speed
has the dimensions of power.

kx2?

F � kx.

F � Gm1m2 >r2.1kg # m>s22
l?

l

t � 0,N1t2 N0N1t2 � N0e
�lt,

SSM
1
2 at2.

1x>a ,v2>x,v
SSM

m>s.60 mi>h �ft>s,
�60 mi>hm>s2,1.296 � 105 km>h2 �km>(h # s),

1.296 � 105 km>h2 �

100 yd �60 cm �
mi>h,100 km>h �

10 1
2

343 m>s.

(By permission of IBM Reasearch, Almaden Research Center.)

17 •• There is an environmental debate over the use of cloth
versus disposable diapers. (a) If we assume that between birth and
2.5 y of age, a child uses 3 diapers per day, estimate the total num-
ber of disposable diapers used in the United States per year.
(b) Estimate the total landfill volume due to these diapers, assum-
ing that 1000 kg of waste fills about 1 m3 of landfill volume. (c) How
many square miles of landfill area at an average height of 10 m is
needed for the disposal of diapers each year?

18 •• (a) Estimate the number of gallons of gasoline used per
day by automobiles in the United States and the total amount of
money spent on it. (b) If 19.4 gal of gasoline can be made from one
barrel of crude oil, estimate the total number of barrels of oil im-
ported into the United States per year to make gasoline. How many
barrels per day is this?

19 •• ENGINEERING APPLICATION A megabyte (MB) is a unit of
computer memory storage. A CD has a storage capacity of 700 MB
and can store approximately 70 min of high-quality music. (a) If a typ-
ical song is 5 min long, how many megabytes are required for each
song? (b) If a page of printed text takes approximately 5 kilobytes, es-
timate the number of novels that could be saved on a CD.

UNITS

20 • Express the following quantities using the prefixes listed
in Table 1-1 and the unit abbreviations listed in the table
Abbreviations for Units. For example, 
(a) 1000000 watts, (b) 0.002 gram, (c) (d) 30000
seconds

21 • Write each of the following without using prefixes:
(a) (b) 4 ns, (c) 3 MW, (d) 25 km.

22 • Write the following (which are not SI units) using pre-
fixes (but not their abbreviations). For example, 

(a) (b) (c) (d)
(e) (f) (g)

23 •• In the following equations, the distance x is in meters,
the time t is in seconds, and the velocity is in meters per
second. What are the SI units of the constants and 
(a) (b) (c) (d)
(e)

24 •• If x is in feet, t is in milliseconds, and is in feet per
second, what are the units of the constants and in each part
of Problem 23?

C2C1

v

SSMv2 � 2C1v � 1C2x22 x � C1 cos C2t,v2 � 2C1x,x � 1
2C1t

2,x � C1 � C2t,
C2?C1

v

1012 bull.10�9 goat,106 phone,
10�18 boy,10�6 phone,109 low,10�12 boo,1 kilometer:

�103 meters

40 mW,

3 � 10�6 meter,
10000 meters � 10 km.

SSM



Problems | 25

41 •• The momentum of an object is the product of its ve-
locity and mass. Show that momentum has the dimensions of
force multiplied by time.

42 •• What combination of force and one other physical
quantity has the dimensions of power?

43 •• When an object falls through air, there is a drag force that
depends on the product of the cross sectional area of the object and
the square of its velocity, that is, where C is a constant.
Determine the dimensions of C.

44 •• Kepler’s third law relates the period of a planet to its
orbital radius r, the constant G in Newton’s law of gravitation

and the mass of the Sun What combination 
of these factors gives the correct dimensions for the period of a planet?

SCIENTIFIC NOTATION 
AND SIGNIFICANT FIGURES

45 • Express as a decimal number without using powers of 10
notation: (a) (b) (c) (d)

46 • Write the following in scientific notation: (a)
______ km, (b) ______ MW, (c) ______ s,

(d) ______ mm.

47 • Calculate the following, round off to the correct number
of significant figures, and express your result in scientific
notation: (a) (b)
(c) (d)
48 • Calculate the following, round off to the correct number
of significant figures, and express your result in scientific notation:
(a) (b) (c)

(d)

49 • BIOLOGICAL APPLICATION A cell membrane has a thick-
ness of 7.0 nm. How many cell membranes would it take to make a
stack 1.0 in. high?

50 •• ENGINEERING APPLICATION A circular hole of radius
must be cut into the front panel of a display unit. The

tolerance is , which means the actual hole cannot differ
by more than this quantity from the desired radius. If the actual hole
is larger than the desired radius by the allowed tolerance, what is the
difference between the actual area and the desired area of the hole?

51 •• ENGINEERING APPLICATION A square peg must be made
to fit through a square hole. If you have a square peg that has an
edge length of and the square hole has an edge length 
of (a) what is the area of the space available when 
the peg is in the hole? (b) If the peg is made rectangular by
removing of material from one side, what is the area
available now?

VECTORS AND THEIR PROPERTIES

52 • MULTISTEP A vector that is 7.0 units long and a vector
that is 5.5 units long are added. Their sum is a vector 10.0 units
long. (a) Show graphically at least one way that the vectors can be
added. (b) Using your sketch in Part (a), determine the angle be-
tween the original two vectors.

53 • Determine the x and y components of the following
three vectors in the plane. (a) A 10-m displacement vector that
makes an angle of clockwise from the direction. (b) A

velocity vector that makes an angle of counterclock-
wise from the direction. (c) A 40-lb force vector that makes an
angle of counterclockwise from the direction. SSM�y120°

�x
40°25-m>s �y30°

xy

SSM

0.10 mm

43.2 mm,
42.9 mm,

1.0 � 10�3 cm
8.470 � 10�1 cm

SSM

63.25>14.17 � 10�32.15.78 � 1042, 28401 �10.0000005132162.3 � 1072,1200.921569.32,
SSM27.6 � 15.99 � 1022.12p>14.56 � 10�32, 12.78 � 10�82� 15.31 � 10�92,11.14219.99 � 1042,

3.0 m �
54.32 ps �12340. kW ��

1345100 m

SSM2.17 � 105.4 � 10�6,6.2 � 10�3,3 � 104,

Ms .(F � Gm1m2 >r2),
SSM

Fair � CAv2,

SSM

54 • Rewrite the following vectors in terms of their magni-
tude and angle (counterclockwise from the direction). (a) A
displacement vector with an x component of and a
y component of (b) A velocity vector with an x compo-
nent of and a y component of (c) A force vec-
tor with a magnitude of 50 lb that is in the third quadrant with
an x component whose magnitude is 40 lb.

55 • CONCEPTUAL You walk 100 m in a straight line on a hor-
izontal plane. If this walk took you 50 m east, what are your possi-
ble north or south movements? What are the possible angles that
your walk made with respect to due east?

56 • ESTIMATION The final destination of your journey is
300 m due east of your starting point. The first leg of this journey is
the walk described in Problem 55, and the second leg in also a walk
along a single straight-line path. Estimate graphically the length
and heading for the second leg of your journey.

57 •• Given the following vectors: 
and (a) Find the vector

in unit vector notation, such that 
(b) Express your answer in Part (a) in terms of magnitude and angle
with the direction.

58 •• Given the following force vectors: is 25 lb at an angle
of clockwise from the axis, and is 42 lb at an angle of 
clockwise from the axis. (a) Make a sketch and visually estimate
the magnitude and angle of the vector such that 
results in a vector with a magnitude of 35 lb pointing in the 
direction. (b) Repeat the calculation in Part (a) using the method of
components and compare your result to the estimate in (a).

59 •• Calculate the unit vector (in terms of and ) in the
direction opposite to the direction of each of vectors ,
and in Problem 57.

60 •• Unit vectors and are directed east and north, re-
spectively. Calculate the unit vector (in terms of and ) in the
following directions. (a) northeast, (b) clockwise from the 
axis, (c) southwest.

GENERAL PROBLEMS

61 • The Apollo trips to the moon in the 1960s and 1970s
typically took 3 days to travel the Earth–moon distance once they
left Earth orbit. Estimate the spacecraft’s average speed in kilo-
meters per hour, miles per hour, and meters per second.

62 • On many of the roads in Canada the speed limit is
What is this speed limit in miles per hour?

63 • If you could count $1.00 per second, how many years
would it take to count 1.00 billion dollars?

64 • (a) The speed of light in vacuum is 
Use this fact to find the number of kilometers in a

mile. (b) The weight of of water is 62.4 lb, and 1.00 ft �
30.5 cm. Use this information and the fact that of water has
a mass of 1.00 g to find the weight in pounds of a 1.00-kg mass.

65 • The mass of one uranium atom is How
many uranium atoms are there in 8.0 g of pure uranium?

66 •• During a thunderstorm, a total of 1.4 in. of rain falls.
How much water falls on one acre of land? 
Express your answer in (a) cubic inches, (b) cubic feet, (c) cubic
meters, and (d) kilograms. Note that the density of water is
1000 kg>m3.

(1 mi2 � 640 acres.)

4.0 � 10�26 kg.

1.00 cm3
1.00 ft3

3.00 � 108 m>s.
�186000 mi>s

100 km>h.
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67 •• An iron nucleus has a radius of and a mass
of (a) What is its mass per unit volume in 
(b) If Earth had the same mass per unit volume, what would be its
radius? (The mass of Earth is )

68 •• ENGINEERING APPLICATION The Canadian Norman Wells
Oil Pipeline extends from Norman Wells, Northwest Territories, to
Zama, Alberta. The -m-long pipeline has an inside diam-
eter of 12 in. and can be supplied with oil at (a) What is the
volume of oil in the pipeline if it is full at some instant in time?
(b) How long would it take to fill the pipeline with oil if it is initially
empty?

69 •• The astronomical unit (AU) is defined as the mean center-
to-center distance from Earth to the Sun, namely 
The parsec is the radius of a circle for which a central angle of 1 s
intercepts an arc of length 1 AU. The light-year is the distance that
light travels in 1 y. (a) How many parsecs are there in one astro-
nomical unit? (b) How many meters are in a parsec? (c) How many
meters in a light-year? (d) How many astronomical units in a light-
year? (e) How many light-years in a parsec?

70 •• If the average density of the universe is at least
then the universe will eventually stop expanding

and begin contracting. (a) How many electrons are needed in 
each cubic meter to produce the critical density? (b) How many 
protons per cubic meter would produce the critical density?

71 ••• CONTEXT-RICH, ENGINEERING APPLICATION, SPREAD-

SHEET You are an astronaut doing physics experiments on the
moon. You are interested in the experimental relationship be-
tween distance fallen, y, and time elapsed, t, of falling objects
dropped from rest. You have taken some data for a falling
penny, which is represented in the table below. 

(a) y (m) 10 20 30 40 50
(b) t (s) 3.5 5.2 6.0 7.3 7.9

You expect that a general relationship between distance y and
time t is where B and C are constants to be determined
experimentally. To accomplish this, create a log-log plot of the
data: (a) graph vs. with the ordinate variable
and the abscissa variable. (b) Show that if you take the log
of each side of your expected relationship, you get 

(c) By comparing this linear relationship to
the graph of the data, estimate the values of B and C. (d) If you
drop a penny, how long should it take to fall 1.0 m? (e) In the next
chapter, we will show that the expected relationship between y
and t is where a is the acceleration of the object. What is
the acceleration of objects dropped on the moon?

72 ••• SPREADSHEET A particular company’s stock prices
vary with the market and with the company’s type of business,
and can be very unpredictable, but people often try to look for
mathematical patterns where they may not belong. Corning is a
materials-engineering company located in upstate New York.
Below is a table of the price of Corning stock on August 3, for
every 5 years from 1981 to 2001. Assume that the price follows a
power law: price where t is expressed in years.
(a) Evaluate the constants B and C (see methods suggested for
the previous problem). (b) According to the power law, what
should the price of Corning stock have been on August 3, 2000?
(It was actually $82.83!)

(a) Price (dollars) 2.10 4.19 9.14 10.82 16.85
(b) Years since 1980 1 6 11 16 21

73 ••• ENGINEERING APPLICATION The Super-Kamiokande neu-
trino detector in Japan is a large transparent cylinder filled with
ultra-pure water. The height of the cylinder is 41.4 m and the diameter

(in $) � BtC

SSM

y � 1
2 at2,

log1B2 � C log1t2. �log1y2log1t2 log1y2log1t2,log1y2y � BtC,

mp � 1.67 � 10�27 kg.21me � 9.11 � 10�31 kg;

6 � 10�27 kg>m3,

1.496 � 1011 m.

35 L>s.
8.68 � 105

5.98 � 1024 kg.

kg>m3?9.3 � 10�26 kg.
5.4 � 10�15 m is 39.3 m. Calculate the mass of the water in the cylinder. Does this

match the claim posted on the official Super-K Web site that the
detector uses 50,000 tons of water?

74 ••• CONTEXT-RICH You and a friend are out hiking across a
large flat plain and decide to determine the height of a distant
mountain peak, and also the horizontal distance from you to the
peak (Figure 1-19). In order to do this, you stand in one spot and de-
termine that the sightline to the top of the peak is inclined at 
above the horizontal. You also make note of the heading to the peak
at that point: east of north. You stand at the original position,
and your friend hikes due west for 1.5 km. He then sights the peak
and determines that its sightline has a heading of east of north.
How far is the mountain from your position, and how high is its
summit above your position?
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7.5°
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75 ••• SPREADSHEET The table below gives the periods T and
orbit radii r for the motions of four satellites orbiting a dense, heavy
asteroid. (a) These data can be fitted by the formula Find
the values of the constants C and n. (b) A fifth satellite is discovered
to have a period of 6.20 y. Find the radius for the orbit of this satel-
lite, which fits the same formula.

(a) Period T, y 0.44 1.61 3.88 7.89
(b) Radius r, Gm 0.088 0.208 0.374 0.600

76 ••• MULTISTEP The period T of a simple pendulum depends
on the length L of the pendulum and the acceleration of gravity g
(dimensions ). (a) Find a simple combination of L and g that has
the dimensions of time. (b) Check the dependence of the period T on
the length L by measuring the period (time for a complete swing
back and forth) of a pendulum for two different values of L. (c) The
correct formula relating T to L and g involves a constant that is a
multiple of , and cannot be obtained by the dimensional analysis
of Part (a). It can be found by experiment as in Part (b) if g is known.
Using the value and your experimental results from
Part (b), find the formula relating T to L and g.

77 ••• A sled at rest is suddenly pulled in three horizontal di-
rections at the same time but it goes nowhere. Paul pulls to the
northeast with a force of 50 lb. Johnny pulls at an angle of south
of due west with a force of 65 lb. Connie pulls with a force to be de-
termined. (a) Express the boys’ two forces in terms of the usual unit
vectors. (b) Determine the third force (from Connie), expressing it
first in component form and then as a magnitude and angle
(direction).

78 ••• You spot a plane that is 1.50 km north, 2.5 km east, and
at an altitude 5.0 km above your position. (a) How far from you is
the plane? (b) At what angle from due north (in the horizontal
plane) are you looking? (c) Determine the plane’s position vector
(from your location) in terms of the unit vectors, letting be to-
ward the east direction, be toward the north direction, and be
in vertically upward. (d) At what elevation angle (above the hori-
zontal plane of Earth) is the airplane?

knjn
in

35°

g � 9.81 m>s2

p

L>T2

T � Crn.



Motion
in One Dimension

2-1 Displacement, Velocity, and Speed

2-2 Acceleration

2-3 Motion with Constant Acceleration

2-4 Integration

I
magine a car speeding down a highway. There are a number of ways in which
you could describe the car’s motion to someone else. For example, you could
describe the change in the car’s position as it travels from one point to another,
how fast the car is moving and the direction in which it travels, and whether
the car is speeding up or slowing down as it moves. These basic descriptors of
motion—known as displacement, velocity, and acceleration—are an essential

part of physics. In fact, the attempt to describe the motion of objects gave birth to
physics more than 400 years ago.

The study of motion, and the related concepts of force and mass, is called
mechanics. We begin our investigation into motion by examining kinematics, the
branch of mechanics that deals with the characteristics of motion. You will need to
understand kinematics to understand the rest of this book. Motion permeates all of
physics, and an understanding of kinematics is needed to understand how force
and mass effect motion. Starting in Chapter 4, we look at dynamics, which relates
motion, force, and mass.

2
C H A P T E R

How can she estimate her arrival

time? (See Example 2-3.)?

27

P A R T  I MECHANICS

MOTION IN ONE DIMENSION IS MOTION
ALONG A STRAIGHT LINE LIKE THAT OF A
CAR ON A STRAIGHT ROAD. THIS DRIVER
ENCOUNTERS STOPLIGHTS AND
DIFFERENT SPEED LIMITS ON HER
COMMUTE ALONG A STRAIGHT
HIGHWAY TO SCHOOL. (Medio
Images/Getty Images.)
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We study the simplest case of kinematics in this chapter — motion along a
straight line. We will develop the models and tools you will need to de-
scribe motion in one dimension, and introduce the precise definitions of
words commonly used to describe motion, such as displacement, speed,
velocity, and acceleration. We will also look at the special case of straight-
line motion when acceleration is constant. Finally, we consider the ways
in which integration can be used to describe motion. In this chapter, mov-
ing objects are restricted to motion along a straight line. To describe such
motion, it is not necessary to use the full vector notation developed in
Chapter 1. A � or � sign are all that is needed to specify direction along
a straight line.

2-1 DISPLACEMENT, VELOCITY, AND SPEED

In a horse race, the winner is the horse whose nose first crosses the finish line. One
could argue that all that really matters during the race is the motion of that single
point on the horse, and that the size, shape, and motion of the rest of the horse is
unimportant. In physics, this type of simplification turns out to be useful for
examining the motion of other objects as well. We can often describe the motion of
an object by describing the motion of a single point of the object. For example, as
a car moves in a straight line along a road, you could describe the motion of the car
by examining the motion of a single point on the side of the car. An object that can
be represented in this idealized manner is called a particle. In kinematics, any ob-
ject can be considered a particle as long as we are not interested in its size, shape,
or internal motion. For example, we can consider cars, trains, and rockets particles.
Earth and other planets can also be thought of as particles as they move around the
Sun. Even people and galaxies can be treated as particles.

POSITION AND DISPLACEMENT

To describe the motion of a particle, we need to be able to
describe the position of the particle and how that posi-
tion changes as the particle moves. For one-dimensional
motion, we often choose the x axis as the line along which
the motion takes place. For example, Figure 2-1 shows a student on a bicycle at po-
sition xi at time ti. At a later time, tf, the student is at position xf. The change in the
student’s position, xf � xi, is called a displacement. We use the Greek letter �

(uppercase delta) to indicate the change in a quantity; thus, the change in x can be
written as

2-1

DEFINITION—DISPLACEMENT

It is important to recognize the difference between displacement and distance
traveled. The distance traveled by a particle is the length of the path a particle takes
from its initial position to its final position. Distance is a scalar quantity and is
always indicated by a positive number. Displacement is the change in position of
the particle. It is positive if the change in position is in the direction of increasing x
(the �x direction), and negative if it is in the �x direction. Displacement can be
represented by vectors, as shown in Chapter 1. We will use the full vector notation
developed in Chapter 1 when we study motion in two and three dimensions in
Chapter 3.

¢x � xf � xi

xxi xfO

Δx

Δx = xf – xi

The notation �x (read “delta x”)
stands for a single quantity that is

the change in x. �x is not a product of
� and x any more than cosu is a
product of cos and u. By convention,
the change in a quantity is always its
final value minus its initial value.

!

(Bettmann/Corbis.)

F I G U R E  2 - 1 A student on a bicycle is
moving in a straight line. A coordinate axis
consists of a line along the path of the bicycle.
A point on this line is chosen to be the origin O.
Other points on it are assigned a number x, the
value of x being proportional to its distance
from O. The numbers assigned to points to the
right of O are positive as shown, and those
assigned to points to the left of O are negative.
When the bicycle travels from point xi to point
xf, its displacement is .¢x � xf � xi
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Example 2-1 Distance and Displacement of a Dog

You are playing a game of catch with a dog. The dog is initially standing near your feet. Then
he jogs 20 feet in a straight line to retrieve a stick, and carries the stick 15 feet back toward
you before lying on the ground to chew on the stick. (a) What is the total distance the dog
travels? (b) What is the net displacement of the dog? (c) Show that the net displacement for
the trip is the sum of the sequential displacements that make up the trip.

PICTURE The total distance, s, is determined by summing the individual dis-
tances the dog travels. The displacement is the dog’s final position minus the dog’s
initial position. The dog leaves your side at time 0, gets the stick at time 1, and lies
down to chew it at time 2.

SOLVE

(a) 1. Make a diagram of the motion (Figure 2-2). Include a
coordinate axis:

2. Calculate the total distance traveled: ft

(The subscripts indicate the time intervals, where s01 is the distance
traveled during the interval from time 0 to time 1, and so forth.)

35s02 � s01 � s12 � (20 ft) � (15 ft) �

(b) The net displacement is found from its definition, 
where xi � x0 � 0 is the dog’s initial position. Five feet from the
initial position or xf � x2 � 5 ft is the dog’s final position:

¢x � xf � xi ,

where �x02 is the displacement during the interval from time 0 to
time 2.

5 ft¢x02 � x2 � x0 � 5 ft � 0 ft �

(c) The net displacement is also found by adding the displacement
for the first leg to the displacement for the second leg.

adding, we obtain

so

5 ft¢x02 � ¢x01 � ¢x12 � 20 ft � 15 ft �

¢x01 � ¢x12 � (x1 � x0) � (x2 � x1) � x2 � x0 � ¢x02

¢x12 � x2 � x1 � 5 ft � 20 ft � �15 ft

¢x01 � x1 � x0 � 20 ft � 0 ft � 20 ft

CHECK The magnitude of the displacement for any part of the trip is never greater than the
total distance traveled for that part. The magnitude of the Part (b) result (5 ft) is less than the
Part (a) result (35 ft), so the Part (b) result is plausible.

TAKING IT FURTHER The total distance traveled for a trip is always equal to the sum of
the distances traveled for the individual legs of the trip. The total or net displacement for a
trip is always equal to the sum of the displacements for the individual legs of the trip.

AVERAGE VELOCITY AND SPEED

We often are interested in the speed something is moving. The average speed of a
particle is the total distance traveled by the particle divided by the total time from
start to finish:

2-2

DEFINITION—AVERAGE SPEED

Because the total distance and total time are both always positive, the average
speed is always positive.

Although speed is a useful idea, it does not reveal anything about the direction
of motion because neither the total distance nor the total time has an associated

Average speed �
total distance

total time
�
s

¢t

Time 0

x0 = 0

Time 2

x2 = 5 ft

Time 1

x1 = 20 ft

x, ft20151050

F I G U R E 2 - 2 The red dots represent the dog’s
position at different times.
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t1 t2 t

Δt = t2 – t1

(x1, t1)
x1

x2

x

P1

P ’2

t’2

Δx = x2 – x1

P2 (x2, t2)

Δx
= slope = vav xΔt

See

Math Tutorial for more

information on

Linear Equations

direction. A more useful quantity is one that describes both how fast and in what
direction an object moves. The term used to describe this quantity is velocity. The
average velocity, of a particle is defined as the ratio of the displacement �x to
the time interval �t:

(so ) 2-3

DEFINITION—AVERAGE VELOCITY

Like displacement, average velocity is a quantity that may be positive or negative.
A positive value indicates the displacement is in the �x direction. A negative value
indicates the displacement is in the �x direction. The dimensions of velocity are L/T
and the SI unit of velocity is meters per second (m/s). Other common units include
kilometers per hour (km/h), feet per second (ft/s), and miles per hour (mi/h).

Figure 2-3 is a graph of a particle’s position as a function of time. Each point
represents the position x of a particle at a particular time t. A straight line connects
points P1 and P2 and forms the hypotenuse of the triangle having sides �x � x2 � x1
and �t � t2 � t1. Notice that the ratio �x/�t is the line’s slope, which gives us a geo-
metric interpretation of average velocity:

The average velocity for the interval between t � t1 and t � t2 is the slope
of the straight line connecting the points (t1, x1) and (t2, x2) on an x versus t
graph.

GEOMETRIC INTERPRETATION OF AVERAGE VELOCITY

Notice that the average velocity depends on the time interval on which it is
based. In Figure 2-3, for example, the smaller time interval indicated by and 
gives a larger average velocity, as shown by the greater steepness of the line con-
necting points and .P�2P1

P�2t�2

¢x � vav x ¢tvav x �
¢x
¢t

�
xf � xi

tf � ti

vav x ,

F I G U R E  2 - 3 Graph of x versus t for a particle moving in one
dimension. Each point on the curve represents the position x at a
particular time t. We have drawn a straight line through points
(x1, t1) and (x2, t2). The displacement and the time
interval between these points are indicated. The
straight line between P1 and P2 is the hypotenuse of the triangle
having sides and , and the ratio is its slope. In
geometric terms, the slope is a measure of the line’s steepness.

¢x>¢t¢t¢x

¢t � t2 � t1

¢x � x2 � x1

The definitions of average speed
and average velocity are the most

basic of the kinematic parameters. You
will need to know these definitions
and the definitions that appear later in
this chapter to effectively solve
kinematics problems.

!
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Average speed �
s

¢t

Example 2-2 Average Speed and Velocity of the Dog

The dog that you were playing catch with in Example 2-1 jogged 20.0 ft away from 
you in 1.0 s to retrieve the stick and ambled back 15.0 ft in 1.5 s (Figure 2-4). 
Calculate (a) the dog’s average speed, and (b) the dog’s average velocity for the 
total trip.

PICTURE We can solve this problem using the definitions of average speed and aver-
age velocity, noting that average speed is the total distance divided by the total time �t,
whereas the average velocity is the net displacement divided by �t:

SOLVE

(a) 1. The dog’s average speed equals the total distance 
divided by the total time:

x, m20151050

xi x11 s

1.5 sxf

F I G U R E 2 - 4

2. Calculate the total distance traveled and the total time:

3. Use s and �t to find the dog’s average speed:

(b) 1. The dog’s average velocity is the ratio of the net 
displacement �x to the time interval �t:

2. The dog’s net displacement is xf � xi, where xi � 0.0 ft 
is the initial position of the dog and xf � 5.0 ft is the 
dog’s final position:

3. Use �x and �t to find the dog’s average velocity: 2.0 ft/svav x �
¢x
¢t

�
5.0 ft
2 .5 s

�

¢x � xf � xi � 5.0 ft � 0.0 ft � 5.0 ft

vav x �
¢x
¢t

14 ft/sAverage speed �
35.0 ft
2 .5 s

�

� 1.0 s � 1.5 s � 2.5 s¢t � (t1 � ti) � (tf � t2)

s � s1 � s2 � 20.0 ft � 15.0 ft � 35.0 ft

CHECK An Internet search reveals a greyhound can have an average speed of approxi-
mately 66 ft/s (45 mi/h), so our dog should easily be able to jog 14 ft/s (9.5 mi/h). A Part (a)
result greater than 66 ft/s would not be plausible.

TAKING IT FURTHER Note that the dog’s speed is greater than the dog’s average velocity
because the total distance traveled is greater than the magnitude of the total displacement.
Also, note that the total displacement is the sum of the individual displacements. That is, 
�x � �x1 � �x2 � (20.0 ft) � (�15.0 ft) � 5.0 ft, which is the Part (b), step 2 result.

Example 2-3 Driving to School

It normally takes you 10 min to travel 5.0 mi to school along a straight road. You leave 
home 15 min before class begins. Delays caused by a broken traffic light slow down traffic
to 20 mi/h for the first 2.0 mi of the trip. Will you be late for class?

PICTURE You need to find the total time that it will take you to travel to class. To do so, you
must find the time �t2 mi that you will be driving at 20 mi/h, and the time �t3 mi for the re-
mainder of the trip, during which you are driving at your usual velocity.

SOLVE

1. The total time equals the time to travel the first 2.0 mi plus the 
time to travel the remaining 3.0 mi:

2. Using �x � vav x �t, solve for the time taken to travel 2.0 mi at 20 mi/h:

3. Using �x � vav x �t, relate the time taken to travel 3 mi at the usual velocity:

4. Using �x � vav x �t, solve for vusual x, the velocity needed for you to travel
the 5.0 mi in 10 min:

vusual x �
¢xtot

¢tusual

�
5.0 mi
10 min

� 0.50 mi/min

¢t3 mi �
¢x2

vav x

�
3.0 mi
vusual x

¢t2 mi �
¢x1

vav x

�
2.0 mi

20 mi/h
� 0.10 h � 6.0 min

¢ttot � ¢t2 mi � ¢t3 mi
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5. Using the results from steps 3 and 4, solve for :

6. Solve for the total time:

7. The trip takes 12 min with the delay, compared to the usual 10 min. Because you 

wisely allowed yourself 15 min for the trip, .you will not be late for class

¢ttot � ¢t2 mi � ¢t3 mi � 12 min

¢t3 mi �
¢x2

vusual x

�
3.0 mi

0.50 mi/min
� 6.0 min¢t3 mi

CHECK Note that 20 mi/h � 20 mi/60 min � 1.0 mi/3.0 min. Traveling the entire 5.0 miles
at one mile every three minutes, it would take 15 minutes for the trip to school. You allowed
yourself 15 minutes for the trip, so you would get there on time even if you traveled at the
slow speed of 20 mi/h for the entire 5.0 miles.

Example 2-4 A Train-Hopping Bird

Two trains 60 km apart approach each other on parallel tracks, each moving at 15 km/h. 
A bird flies back and forth between the trains at 20 km/h until the trains pass each other.
How far does the bird fly?

PICTURE In this problem, you are asked to find the total distance flown by the bird. You are
given the bird’s speed, the trains’ speeds, and the initial distance between the trains. At first
glance, it might seem like you should find and sum the distances flown by the bird each time
it moves from one train to the other. However, a much simpler approach is to use the facts
that the time t the bird is flying is the time taken for the trains to meet. The total distance
flown is the bird’s speed multiplied by the time the bird is flying. Therefore, we can ap-
proach this problem by first writing an equation for the quantity to be found, the total dis-
tance s flown by the bird.

SOLVE

1. The total distance sbird traveled by the bird equals its speed times the
time of flight:

so

t �
D

2(speed)av train

1
2D � (speed)av train � t2. The time t that the bird is in the air is the time taken for one of the

trains to travel half the initial distance D separating the trains.
(Because the trains are traveling at the same speed, each train travels
half of the 60 km, which is 30 km, before they meet.):

3. Substitute the step-2 result for the time into the step-1 result. The
initial separation of the two trains is D � 60 km. The total distance
traveled by the bird is therefore: 40 km� 20 km/h 

60 km
2 (15 km/h)

�

� (speed)av bird

D
2(speed)av train

sbird � (speed)av bird t

CHECK The speed of each train is three-fourths the speed of the bird, so the distance trav-
eled by one of the trains will be three-fourths the distance the bird travels. Each train travels
30 km. Because 30 km is three-fourths of 40 km, our result of 40 km for the distance the bird
travels is very plausible.

INSTANTANEOUS VELOCITY AND SPEED

Suppose your average velocity for a long trip was 60 km/h. Because this value is an
average, it does not convey any information about how your velocity changed dur-
ing the trip. For example, there may have been some parts of the journey where you
were stopped at a traffic light and other parts where you went faster to make up
time. To learn more about the details of your motion, we have to look at the veloc-
ity at any given instant during the trip. On first consideration, defining the velocity
of a particle at a single instant might seem impossible. At a given instant, a particle
is at a single point. If it is at a single point, how can it be moving? If it is not mov-
ing, how can it have a velocity? This age-old paradox is resolved when we realize
that observing and defining motion requires that we look at the position of the ob-

� (speed)av bird � tsbird � (average speed)bird � t
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ject at more than one instant of time. For example, consider
the graph of position versus time in Figure 2-5. As we con-
sider successively shorter time intervals beginning at tP,
the average velocity for the interval approaches the slope
of the tangent at tP. We define the slope of this tangent as
the instantaneous velocity, vx(t), at tP. This tangent is the
limit of the ratio �x/�t as �t, and therefore �x, approaches
zero. So we can say:

The instantaneous velocity vx is the limit of the ratio
�x/�t as �t approaches zero.

2-4

DEFINITION—INSTANTANEOUS VELOCITY

In calculus, this limit is called the derivative of x with respect to t and is writ-
ten dx/dt. Using this notation, Equation 2-4 becomes:

2-5

A line’s slope may be positive, negative, or zero; consequently, instantaneous
velocity (in one-dimensional motion) may be positive (x increasing), negative
(x decreasing), or zero (no motion). For an object moving with constant velocity,
the object’s instantaneous velocity is equal to its average velocity. The position ver-
sus time graph of this motion (Figure 2-6) will be a
straight line whose slope equals the velocity.

The instantaneous velocity is a vector, and the magni-
tude of the instantaneous velocity is the instantaneous
speed. Throughout the rest of the text, we shall use “ve-
locity” in place of “instantaneous velocity” and “speed”
in place of “instantaneous speed,” except when empha-
sis or clarity is better served by the use of the adjective
“instantaneous.”

Example 2-5 Position of a Particle as a Function of Time

The position of a particle as a function of time is given by the
curve shown in Figure 2-7. Find the instantaneous velocity at
time t � 1.8 s. When is the velocity greatest? When is it zero? Is
it ever negative?

PICTURE In Figure 2-7, we have sketched the line tangent to the
curve at t � 1.8 s. The tangent line’s slope is the instantaneous
velocity of the particle at the given time. You can measure the
slope of the tangent line directly off this figure.

vx(t) � lim
¢tS0

¢x
¢t

�
dx
dt

 the x-versus-t curve
� slope of the line tangent to

vx(t) � lim
¢tS0

¢x
¢t
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Differential Calculus

x

t

Δt1
Δt2

Δt3

x

tp t

Ta
ng

en
t a

t p
oi

nt
P

P

Δx1 Δx3Δx2

F I G U R E  2 - 5 Graph of x versus t. Note the sequence of successively
smaller time intervals, . The average velocity of each
interval is the slope of the straight line for that interval. As the time
intervals become smaller, these slopes approach the slope of the tangent to
the curve at point tP. The slope of this tangent line is defined as the
instantaneous velocity at time tP.
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F I G U R E  2 - 6

The position-versus-time
graph for a particle moving 
at constant velocity.



CHECK The position of the particle changes from about 1.8 m at 1.0 s to 4.0 m at 2.0 s, so the
average velocity for the interval from 1.0 s to 2.0 s is 2.2 m/s. This is the same order of mag-
nitude as the value for the instantaneous velocity at 1.8 s, so the step-2 result is plausible.

PRACTICE PROBLEM 2-1 Estimate the average velocity of this particle between t � 2.0 s
and t � 5.0 s.

Example 2-6 A Stone Dropped from a Cliff

The position of a stone dropped from a cliff is described approximately by 
x � 5t2, where x is in meters and t is in seconds. The �x direction is downwards
and the origin is at the top of the cliff. Find the velocity of the stone during its
fall as a function of time t.

PICTURE We can compute the velocity at some time t by computing the de-
rivative dx/dt directly from the definition in Equation 2-4. The corresponding
curve giving x versus t is shown in Figure 2-8. Tangent lines are drawn at times
t1, t2, and t3. The slopes of these tangent lines increase steadily with increasing
time, indicating that the instantaneous velocity increases steadily with time.
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SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

1. Find the values x1 and x2 for the points on the tangent line at times
t1 � 2.0 s and t2 � 5.0 s.

2. Compute the slope of the tangent line from these values. This slope
equals the instantaneous velocity at t � 2.0 s.

3. From the figure, the tangent line is steepest, and, therefore, the slope is greatest at 

about t � 4.0 s. The velocity is . The slope and the velocity both 

are and are .negative for t 	 0.0 and t 
 6.0 s zero at t � 0.0 and t � 6.0 s 

greatest at t � 4.0 s

1.5 m/svx � slope �
8.5 m � 4.0 m
5.0 s � 2.0 s

�

x1 � 4.0 m, x2 � 8.5 m

SOLVE

1. By definition the instantaneous velocity is

2. We compute the displacement �x from the position 
function x(t):

3. At a later time t � �t, the position is x(t � �t), given by:

4. The displacement for this time interval is thus:

5. Divide �x by �t to find the average velocity for this time 
interval:

6. As we consider shorter and shorter time intervals, �t
approaches zero and the second term 5�t approaches zero, 
though the first term, 10t, remains unchanged:

vav x �
¢x
¢t

�
10t¢t � 5(¢t)2

¢t
� 10t � 5 ¢t

� 10t¢t � 5(¢t)2� [5t2 � 10t¢t � 5(¢t)2] � 5t2¢x � x(t � ¢t) � x(t)

� 5t2 � 10t¢t � 5(¢t)2x(t � ¢t) � 5(t � ¢t)2 � 53t2 � 2t¢t � (¢t)24
x(t) � 5t2

vx(t) � lim
¢tS0

¢x
¢t

� lim
¢tS0

x(t � ¢t) � x(t)
¢t

where vx is in m/s and t is in s.

10tvx(t) � lim
¢tS0

¢x
¢t

� lim
¢tS0

(10t � 5 ¢t) �

CHECK The stone starts at rest and goes faster and faster as it moves in the positive direc-
tion. Our result for the velocity, vx � 10t, is zero at t � 0 and gets larger as t increases. Thus,
vx � 10t is a plausible result.

TAKING IT FURTHER If we had set �t � 0 in steps 4 and 5, the displacement would be 
�x � 0, in which case the ratio �x/�t would be undefined. Instead, we leave �t as a variable
until the final step, when the limit is well defined.¢tS 0
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To find derivatives quickly, we use rules based on the limiting process above
(see Appendix Table A-4). A particularly useful rule is

If , then 2-6

where C and n are any constants. Using this rule in Example 2-6, we have 
x � 5t2 and vx � dx/dt � 10t, in agreement with our previous results.

2-2 ACCELERATION

When you step on your car’s gas pedal or brake, you expect your velocity to
change. An object whose velocity changes is said to be accelerating. Acceleration is
the rate of change of velocity with respect to time. The average acceleration, aav x,
for a particular time interval �t is defined as the change in velocity, �v, divided by
that time interval:

(so ) 2-7

DEFINITION—AVERAGE ACCELERATION

Notice that acceleration has the dimensions of velocity (L/T) divided by time (T),
which is the same as length divided by time squared (L/T2). The SI unit is meters
per second squared, m/s2. Furthermore, like displacement and velocity, accelera-
tion is a vector quantity. For one-dimensional motion, we can use � and � to in-
dicate the direction of the acceleration. Equation 2-7 tells us that for aav x to be pos-
itive, �vx must be positive, and for aav x to be negative, �vx must be negative.

Instantaneous acceleration is the limit of the ratio �vx/�t as �t approaches
zero. On a plot of velocity versus time, the instantaneous acceleration at time t is
the slope of the line tangent to the curve at that time:

2-8

DEFINITION—INSTANTANEOUS ACCELERATION

Thus, acceleration is the derivative of velocity vx with respect to time, dvx/dt.
Because velocity is the derivative of the position x with respect to t, acceleration is
the second derivative of x with respect to t, d2x/dt2. We can see the reason for this
notation when we write the acceleration as dvx/dt and replace vx with dx/dt:

2-9

Notice that when the time interval becomes extremely small, the average accelera-
tion and the instantaneous acceleration become equal. Therefore, we will use the
word acceleration to mean “instantaneous acceleration.”

It is important to note that the sign of an object’s acceleration does not tell you
whether the object is speeding up or slowing down. To determine this, you need to
compare the signs of both the velocity and the acceleration of the object. If vx and ax
are both positive, vx is positive and becoming more positive so the speed is increas-
ing. If vx and ax are both negative, vx is negative and becoming more negative so the
speed is again increasing. When vx and ax have opposite signs, the object is slowing
down. If vx is positive and ax is negative, vx is positive but is becoming less positive

ax �
dvx
dt

�
d(dx/dt)
dt

�
d2x
dt2

� slope of the line tangent to the v-versus-t curve

ax � lim
¢tS0

¢vx
¢t

¢vx � aav x ¢taav x �
¢vx
¢t

�
vf x � vi x

tf � ti

dx
dt

� Cntn�1x � Ctn

Deceleration does not mean the
acceleration is negative. Deceleration

does mean that vx and ax have opposite
signs.

!

CONCEPT CHECK 2-1

You are following the car in front
of you at high speed when the dri-
ver of the car in front of you
brakes hard, bringing his car to a
stop to avoid running over a huge
pothole. Three tenths of a second
after you see the brake lights on
the lead car flash, you too brake
hard. Assume that the two cars
are initially traveling at the same
speed, and that once both cars are
braking hard, they lose speed at
the same rate. Does the distance
between the two cars remain con-
stant while the two cars are both
braking hard?

✓
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so the speed is decreasing. If vx is negative and ax is positive, vx is negative but is be-
coming less negative so the speed is again decreasing. In summary, if vx and ax have
the same sign, the speed is increasing; if vx and ax have opposite signs, the speed is
decreasing. When an object is slowing down, we sometimes say it is decelerating.

If acceleration remains zero, there is no change in velocity over time—velocity
is constant. In this case, the plot of x versus t is a straight line. If acceleration is
nonzero and constant, as in Example 2-13 , then velocity varies linearly with time
and x varies quadratically with time.

Example 2-7 A Fast Cat

A cheetah can accelerate from 0 to 96 km/h (60 mi/h) in 2.0 s, whereas a Corvette requires
4.5 s. Compute the average accelerations for the cheetah and Corvette and compare them
with the free-fall acceleration, g � 9.81 m/s2.

PICTURE Because we are given the initial and final velocities, as well as the change in time
for both the cat and the car, we can simply use Equation 2-7 to find the acceleration for each
object.

SOLVE

1. Convert 96 km/h into a velocity of m/s: 96
km
h
a 1 h

3600 s
b a1000 m

1 km
b � 26.7 m/s

2. Find the average acceleration from the information given:

3. To compare the result with the acceleration due to gravity, multiply 
each by the conversion factor 1g/9.81 m/s2:

5.9 m/s2�car aav x �
¢vx
¢t

�
26.7 m/s � 0

4.5 s
� 5.93 m/s2

13 m/s2� 13.3 m/s2 �cat aav x �
¢vx
¢t

�
26.7 m/s � 0

2.0 s

0.60gcar    5 .93 m>s2 �
1g

9.81 m>s2 � 0.604g �

1.4gcat    13.3 m>s2 �
1g

9.81 m>s2 � 1.36g �

(Gunther Ziesler/Peter Arnold.)

CHECK Because the car takes slightly more than twice as long as the cheetah to accelerate to the
same velocity, it makes sense that the car’s acceleration is slightly less than half that of the cat’s.

TAKING IT FURTHER To reduce round-off errors, calculations are carried out using values
with at least three digits even though the answers are reported using only two significant
digits. These extra digits used in the calculations are called guard digits.

PRACTICE PROBLEM 2-2 A car is traveling at 45 km/h at time t � 0. It accelerates at a
constant rate of 10 km/(h�s). (a) How fast is it traveling at t � 2.0 s? (b) At what time is the
car traveling at 70 km/h?

Example 2-8 Velocity and Acceleration as Functions of Time

The position of a particle is given by x � Ct3, where C is a constant. Find the dimensions 
of C. In addition, find both the velocity and the acceleration as functions of time.

PICTURE We can find the velocity by applying dx/dt � Cntn�1 (Equation 2-6) to the posi-
tion of the particle, where n in this case equals 3. Then, we repeat the process to find the time
derivative of velocity.

SOLVE

1. The dimensions of x and t are L and T, respectively:

2. We find the velocity by applying dx/dt � Cntn�1 (Equation 2-6):

3Ct2vx �
dx
dt

� Cntn�1 � C3t3�1 �

x � Ctn � Ct3

L
T3C �

x
t3
⇒  [C] �

[x]
[t]3 �
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* The velocity vector and the acceleration vector were introduced in Chapter 1 and are further developed in Chapter 3.

3. The time derivative of velocity gives the acceleration: 6Cta �
dvx
dt

� Cntn�1 � 3C(2)(t2�1) �

CHECK We can check the dimensions of our answers. For velocity, [vx] � [C][t2] � (L/T3)(T2) �

L/T. For acceleration, [ax] � [C][t] � (L/T3)(T) � L/T2.

PRACTICE PROBLEM 2-3 If a car starts from rest at x � 0 with constant acceleration ax, its
velocity vx depends on ax and the distance traveled x. Which of the following equations has the
correct dimensions and therefore could possibly be an equation relating x, ax , and vx?

(a) vx � 2axx (b) � 2ax/x (c) vx � 2axx 2 (d) � 2axx

MOTION DIAGRAMS

In studying physics, you will often wish to estimate the direction of the accelera-
tion vector from a description of the motion. Motion diagrams can help. In a mo-
tion diagram the moving object is drawn at a sequence of equally spaced time in-
tervals. For example, suppose you are on a trampoline and, following a high
bounce, you are falling back toward the trampoline. As you descend, you keep
going faster and faster. A motion diagram of this motion is shown in Figure 2-9a.
The dots represent your position at equally spaced time intervals, so the space be-
tween successive dots increases as your speed increases. The numbers placed next
to the dots are there to indicate the progression of time and an arrow representing
your velocity is drawn next to each dot. The direction of each arrow represents the
direction of your velocity at that instant, and the length of the arrow represents
how fast you are going. Your acceleration vector* is in the direction that your ve-
locity vector is changing—which is downward. In general, if the velocity arrows
get longer as time progresses, then the acceleration is in the same direction of the
velocity. On the other hand, if the velocity arrows get shorter as time progresses
(Figure 2-9b), the acceleration is in the direction opposite to that of the velocity.
Figure 2-9b is a motion diagram of your motion as you rise toward the ceiling fol-
lowing a bounce on the trampoline.

2-3 MOTION WITH CONSTANT ACCELERATION

The motion of a particle that has nearly constant acceleration is found in nature. For
example, near Earth’s surface all unsupported objects fall vertically with nearly con-
stant acceleration (provided air resistance is negligible). Other examples of near
constant acceleration might include a plane accelerating along a runway for takeoff,
and the motion of a car braking for a red light or speeding up at a green light. For a
moving particle, the final velocity vx equals the initial velocity plus the change in ve-
locity, and the change in velocity equals the average acceleration multiplied by the
time. That is,

2-10

If a particle has constant acceleration ax, it follows that the instantaneous accelera-
tion and the average acceleration are equal. That is,

(ax is constant) 2-11

Because situations involving nearly constant acceleration are common, we can
use the equations for acceleration and velocity to derive a special set of kinematic
equations for problems involving one-dimensional motion at constant acceleration.

ax � aav x

vx � v0x � ¢v � v0x � aav x ¢t

v2
xv2

x

0

1

2

3

4

a

a

a

a

v1

v2

v3

v4

v0

(a)

4

3

2

1

0

a

a

a

a

v3

v2

v1

v0

v4

(b)

F I G U R E  2 - 9 Motion diagrams. The time
intervals between successive dots are
identical. (a) The velocity vector is increasing,
so the acceleration is in the direction of the
velocity vector. (b) The velocity vector is
decreasing, so the acceleration is in the
direction opposite to that of the velocity vector.
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DERIVING THE CONSTANT-ACCELERATION 
KINEMATIC EQUATIONS

Suppose a particle moving with constant acceleration ax has a velocity v0x at time t0
� 0, and vx at some later time t. Combining Equations 2-10 and 2-11, we have

(ax is constant) 2-12

CONSTANT ACCELERATION: vx (t )

A vx-versus-t plot (Figure 2-10) of this equation is a straight line. The line’s slope is
the acceleration ax.

To obtain an equation for the position x as a function of time, we first look at the
special case of motion with a constant velocity vx � v0x (Figure 2-11). The change in
position �x during an interval of time �t is

(ax � 0)

The area of the shaded rectangle under the vx-versus-t curve (Figure 2-11a) is
its height v0x times its width �t, so the area under the curve is the displacement
�x. If v0x is negative (Figure 2-11b), both the displacement �x and the area under
the curve are negative. We normally think of area as a quantity that cannot be
negative. However, in this context that is not the case. If v0x is negative, the
“height” of the curve is negative and the “area under the curve” is the negative
quantity

The geometric interpretation of the displacement as the area under the 
vx-versus-t curve is true not only for constant velocity, but it is true in general, as
illustrated in Figure 2-12. To show that this statement is true, we first divide 
the time interval into numerous small intervals, �t1, �t2, and so on. Then, we
draw a set of rectangles as shown. The area of the rectangle corresponding to the
ith time interval �ti (shaded in the figure) is vi �ti, which is approximately equal

v0x ¢t.

¢x � v0x ¢t

vx � v0x � axt

t

vx

v0x

POSITIVE
AREA

(a)

t1 t2

t

t

v0x

0

vx

Δt

NEGATIVE
AREA

(b)

t1 t2

v0x

0

vx

Δt

F I G U R E  2 - 1 1 Motion with constant
velocity.

t1 t2

tΔt1 Δt2 Δt3 • • • • • • •Δti

vx(t)

vix

vix

F I G U R E  2 - 1 0 Graph of velocity versus
time for constant acceleration.

F I G U R E  2 - 1 2 Graph of a general -versus-t curve. The total displacement from t1
to t2 is the area under the curve for this interval, which can be approximated by summing
the areas of the rectangles.

vx(t)



Equation 2-16 is applicable only for
time intervals during which the

acceleration remains constant.
!

Motion with Constant Acceleration S E C T I O N  2 - 3 | 39

to the displacement �xi during the interval �ti . The sum of the rectangular 
areas is therefore approximately the sum of the displacements during the time
intervals and is approximately equal to the total displacement from time t1 to t2.
We can make the approximation as accurate as we wish by putting enough
rectangles under the curve, each rectangle having a sufficiently small value for
�t. For the limit of smaller and smaller time intervals (and more and more
rectangles), the resulting sum approaches the area under the curve, which in 
turn equals the displacement. The displacement �x is thus the area under the 
vx-versus-t curve.

For motion with constant acceleration (Figure 2-13a), �x is equal to the area of
the shaded region. This region is divided into a rectangle and a triangle of areas 
v1x �t and ax(�t)2, respectively, where �t � t2 � t1. It follows that

2-13

If we set t1 � 0 and t2 � t, then Equation 2-13 becomes

2-14

CONSTANT ACCELERATION: x (t )

where x0 and v0x are the position and velocity at time t � 0, and x � x(t) is the
position at time t. The first term on the right, v0xt, is the displacement that would
occur if ax were zero, and the second term, , is the additional displacement due
to the constant acceleration.

We next use Equations 2-12 and 2-14 to obtain two additional kinematic equa-
tions for constant acceleration. Solving Equation 2-12 for t, and substituting for t,
in Equation 2-14 gives

Multiplying both sides by 2ax we obtain

Simplifying and rearranging terms gives

2-15

CONSTANT ACCELERATION: vx (x )

The definition of average velocity (Equation 2-3) is:

�x � vav x �t

where vav x �t is the area under the horizontal line at height vav x in Figure 2-13b and
�x is the area under the vx versus t curve in Figure 2-13a. We can see that if

, the area under the line at height vav in Figure 2-13a and the area
under the vx versus t curve in Figure 2-13b will be equal. Thus,

2-16

CONSTANT ACCELERATION: vav x AND vx

For motion with constant acceleration, the average velocity is the mean of the ini-
tial and final velocities.

For an example of an instance where Equation 2-16 is not applicable, consider
the motion of a runner during a 10.0-km run that takes 40.0 min to complete. The

vav x � 1
2 (v1x � v2x)

vav x � 1
2(v1x � v2x)

v2
x � v2

0x � 2ax ¢x

2ax¢x � 2v0x(vx � v0x) � (vx � v0x)
2

¢x � v0x

vx � v0x

ax
�

1
2
axavx � v0x

ax
b 2

1
2axt

2

x � x0 � v0xt � 1
2 axt

2

¢x � v1x ¢t � 1
2 ax(¢t)2

1
2

(a)

t1 t2

v1x

v1x

v2x

vx

Δt

Δvx = axΔt

t

(b)

t1 t2

v1x

vav x

v2x

vx

Δt t

F I G U R E  2 - 1 3 Motion with constant
acceleration.

”It goes from zero to 60 in about 3 seconds.”
(© Sydney Harris.)
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average velocity for the run is 0.250 km/min, which we compute using the defin-
ition of average velocity (vav x � �x/�t). The runner starts from rest (v1x � 0), and
during the first one or two seconds his velocity increases rapidly, reaching a con-
stant value v2x that is sustained for the remainder of the run. The value of v2x is just
slightly greater than 0.250 km/min, so Equation 2-16 gives a value of about
0.125 km/min for the average velocity, a value almost 50% below the value given
by the definition of average velocity. Equation 2-16 is not applicable because the
acceleration does not remain constant for the entire run.

Equations 2-12, 2-14, 2-15, and 2-16 can be used to solve kinematics problems in-
volving one-dimensional motion with constant acceleration. The choice of which
equation or equations to use for a particular problem depends on what informa-
tion you are given in the problem and what you are asked to find. Equation 2-15 is
useful, for example, if we want to find the final velocity of a ball dropped from rest
at some height x and we are not interested in the time the fall takes.

USING THE CONSTANT-ACCELERATION 
KINEMATIC EQUATIONS

Review the Problem-Solving Strategy for solving problems using kinematic
equations. Then, examine the examples involving one-dimensional motion with
constant acceleration that follow.

PROBLEM-SOLVING STRATEGY

1-D Motion with Constant Acceleration

PICTURE Determine if a problem is asking you to find the time, distance,
velocity, or acceleration for an object.

SOLVE Use the following steps to solve problems that involve one-
dimensional motion and constant acceleration.
1. Draw a figure showing the particle in its initial and final positions.

Include a coordinate axis and label the initial and final coordinates of the
position. Indicate the � and � directions for the axis. Label the initial and
final velocities, and label the acceleration.

2. Select one of the constant-acceleration kinematic equations (Equations
2-12, 2-14, 2-15, and 2-16). Substitute the given values into the selected
equation and, if possible, solve for the desired value.

3. If necessary, select another of the constant-acceleration kinematic equations,
substitute the given values into it, and solve for the desired value.

CHECK You should make sure that your answers are dimensionally
consistent and the units of the answers are correct. In addition, check to make
sure the magnitudes and signs of your answers agree with your expectations.

Problems with one object We will begin by looking at several examples that
involve the motion of a single object.

Example 2-9 A Car’s Stopping Distance

On a highway at night you see a stalled vehicle and brake your car to a stop. As you brake,
the velocity of your car decreases at a constant rate of (5.0 m/s)/s. What is the car’s stopping
distance if your initial velocity is (a) 15 m/s (about 34 mi/h) or (b) 30 m/s?

PICTURE Use the Problem-Solving Strategy that precedes this example. The car is drawn as
a dot to indicate a particle. We choose the direction of motion as �x direction, and we choose

A falling apple captured by strobe
photography at 60 flashes per second. The
acceleration of the apple is indicated by the
widening of the spaces between the images.
(Estate of Harold E. Edgerton/Palm Press.)
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the initial position x0 � 0. The initial velocity is v0x � �15 m/s and the final veloc-
ity vx � 0. Because the velocity is decreasing, the acceleration is negative. It is 
ax � �5.0 m/s2. We seek the distance traveled, which is the magnitude of the dis-
placement �x. We are neither given nor asked for the time, so 
(Equation 2-15) will provide a one-step solution.

SOLVE

(a) 1. Draw the car (as a small dot) in its initial and final positions 
(Figure 2-14). Include a coordinate axis and label the drawing 
with the kinematic parameters.

v2
x � v2

0x � 2ax¢x

2. Using Equation 2-15, calculate the displacement �x:

(b) Substitute an initial speed of 30 m/s into the expression for 
�x obtained in Part (a) (see Figure 2-14):

23 m¢x � 22.5 m �

 0 � (15 m/s)2 � 2(�5.0 m/s2)¢x
v2
x � v2

0x � 2ax¢x

90 m¢x �

 0 � (30 m/s)2 � 2(�5.0 m/s2)¢x
v2
x � v2

0x � 2ax¢x

CHECK The car’s velocity decreases by 5.0 m/s each second. If its initial velocity is 15 m/s,
it would take 3.0 s for it to come to rest. During the 3.0 s, it has an average velocity of half
15 m/s, so it would travel (15 m/s)(3.0 s) � 23 m. This confirms our Part (a) result. Our
Part (b) result can be confirmed in the same manner.

Example 2-10 Stopping Distance

In the situation described in Example 2-9, (a) how much time does it take for the car to
stop if its initial velocity is 30 m/s, and (b) how far does the car travel in the last second?

PICTURE Use the Problem-Solving Strategy that precedes Example 2-9. (a) In this part of
the problem, you are asked to find the time it takes the car to stop. You are given the 
initial velocity v0x � 30 m/s. From Example 2-9, you know the car has an acceleration 
ax � �5.0 m/s2. A relationship between time, velocity, and acceleration is given by
Equation 2-12. (b) Because the car’s velocity decreases by 5.0 m/s each second, the veloc-
ity 1.0 s before the car stops must be 5.0 m/s. Find the average velocity during the last sec-
ond and use that to find the distance traveled.

1
2

x0 = 0

v0 = 15 m/s

ax = −5.0 m/s2

vf = 0

xxf0

F I G U R E 2 - 1 4

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

(a) 1. Draw the car (as a small dot) in its initial and final 
positions (Figure 2-15). Include a coordinate axis 
and label the drawing with the kinematic 
parameters.

2. Use Equation 2-12 to find the total stopping time �t. �t �

(b) 1. Draw the car (as a small dot) in its initial and final 
positions (Figure 2-16). Include a coordinate axis.

2. Find the average velocity during the last second 
from .

3. Compute the distance traveled from �x � vav x �t.

CHECK We would not expect the car to travel very far during the last second 
because it is moving relatively slowly. The Part (b) result of 2.5 m is a plausible result.

2 .5 m¢x � vav x ¢t �

vav x � 2.5 m/svav x � 1
2 (vi x � vf x)

6 .0 s

x0 = 0

v0x = 30 m/s v1

ax = −5.0 m/s2

vfx = 0

xxf

t0 = 0
tf

0 x1

t1

F I G U R E 2 - 1 6

0 = 0

v0x = 30 m/s

ax = −5.0 m/s2

vfx = 0

xxf

t0 = 0
tf

0

F I G U R E 2 - 1 5

Try It Yourself
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Example 2-11 A Traveling Electron

An electron in a cathode-ray tube accelerates from rest with
a constant acceleration of 5.33 � 1012 m/s2 for 0.150 ms (1 ms
� 10�6 s). The electron then drifts with constant velocity for
0.200 ms. Finally, it slows to a stop with an acceleration of
�2.67 � 1013 m/s2. How far does the electron travel?

PICTURE The equations for constant acceleration do not
apply to the full duration of the electron’s motion because
the acceleration changes twice during that time. However,
we can divide the electron’s motion into three intervals, each
with a different constant acceleration, and use the final posi-
tion and velocity for the first interval as the initial conditions
for the second interval, and the final position and velocity 
for the second interval as the initial conditions for the 
third. Apply the Problem-Solving Strategy that precedes
Example 2-9 to each of the three constant-acceleration inter-
vals. We will choose the origin to be at the electron’s starting
position, and the �x direction to be the direction of motion.

SOLVE

Cover the column to the right and try these on your own
before looking at the answers.

Steps

1. Draw the electron in its initial and final positions for 
each constant-acceleration interval (Figure 2-17). Include
a coordinate axis and label the drawing with the kinematic 
parameters.

x0 = 0

v0x = 0 v1x

a01x = 5.33 × 1012 m/s2 a23x = −2.67 × 1013 m/s2a12x = 0
v3x = 0

xx3

t0 = 0
t3

0 x1

t1 = 0.150 sμ t2 = t1 + 0.200 sμ

v2x

x2

F I G U R E 2 - 1 7

CHECK The average velocities are large, but the time intervals are small. Thus, the distances
traveled are modest as we might expect.

Sometimes valuable insight can be gained about the motion of an object by as-
serting that the constant-acceleration formulas still apply even when the accelera-
tion is not constant. The results are then estimates and not exact calculations. This
is the case in the following example.

The two-mile-long linear accelerator at Stanford University used to accelerate
electrons and positrons in a straight line to nearly the speed of light. Cross
section of the accelerator’s electron beam as shown on a video monitor.
(Stanford Limear Accelerator, U.S. Department of Energy.)

Answers

2. Set v0x � 0 (because the electron starts from rest), use 
Equations 2-12 and 2-14 to find position x1 and velocity
v1x at the end of the first 0.150-ms interval.

3. The acceleration is zero during the second interval, so the 
velocity remains constant.

4. The velocity remains constant during the second interval, 
so the displacement �x12 equals the velocity v1x multiplied
by 0.200 ms.

5. To find the displacement for the third interval, use 
Equation 2-15 with v3x � 0.

23.2 cm¢x23 � 1.20 cm, so x3 �

¢x12 � 16.0 cm, so x2 � 22.0 cm

v2x � v1x � 8.00 � 105 m/s

x1 � 6.00 cm, v1x � 8.00 � 105 m/s
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Example 2-12 The Crash Test

In a crash test that you are performing, a car traveling 100 km/h (about 62 mi/h) hits an
immovable concrete wall. What is the acceleration of the car during the crash?

PICTURE In this example, different parts of the vehicle will have different accelerations as
the car crumples to a halt. The front bumper stops virtually instantly while the rear bumper
stops some time later. We will solve for the acceleration of a part of the car that is in the pas-
senger compartment and out of the crumple zone. A bolt holding the driver’s seat belt to the
floor is such a part. We do not really expect the acceleration of this bolt to be constant. We
need additional information to solve this problem–either the stopping distance or the stop-
ping time. We can estimate the stopping distance using common sense. Upon impact, the
center of the car will certainly move forward less than half the length of the car. We will
choose 0.75 m as a reasonable estimate of the distance the center of the car will move during
the crash. Because the problem neither asks for nor provides the time, we will use the equa-
tion .v2

x � v2
0x � 2ax¢x

(© 1994 General Motors Corporation, all rights
reserved GM Archives.)

SOLVE

1. Draw the bolt (as a small circle) at the center of the car at its 
initial and final positions (Figure 2-18). Include a coordinate 
axis and label the drawing with the kinematic parameters.

2. Convert the velocity from km/h to m/s.

3. Using , solve for the acceleration:

so

4. Complete the calculation of the acceleration: �500 m/s2� �514 m/s2 �ax � �
(27.8 m/s)2

1.5 m

ax �
v2
x � v2

0x

2¢x
�

02 � (27.8 m/s)2

2(0.75 m)

v2
x � v2

0x � 2ax¢xv2
x � v2

0x � 2ax¢x

� 27.8 m/s1100 km/h2 � a 1 h
60 min

b � a1 min
60 s

b � a1000 m
1 km

b

x0 = 0

v0x = 100 km/h

ax < 0
vfx = 0

xxf = 0.75 m

t0 = 0
tf

0

F I G U R E 2 - 1 8

CHECK The magnitude of the acceleration is about 50 times greater than the acceleration
caused by the car breaking hard on a dry concrete road. The result is plausible because a
large acceleration is expected for a high-speed head-on crash into an immovable object.

PRACTICE PROBLEM 2-4 Estimate the stopping time of the car.

Free-Fall Many practical problems deal with ob-
jects in free-fall, that is, objects that fall freely under
the influence of gravity only. All objects in free-fall
with the same initial velocity move identically. As
shown in Figure 2-19, an apple and a feather, si-
multaneously released from rest in a large vacuum
chamber, fall with identical motions. Thus, we
know that the apple and the feather fall with the
same acceleration. The magnitude of this accelera-
tion, designated by g, has the approximate value

. If downward is des-
ignated as the �y direction, then ay � �g; if upward
is designated as the �y direction, then ay � �g.

a � g � 9.81 m/s2 � 32.2 ft/s2

Because g is the magnitude of the
acceleration, g is always positive.!

Context-Rich

F I G U R E  2 - 1 9 In a vacuum the apple and the feather, released
simultaneously from rest, fall with identical motion. (James Sugar/Black Star.)



PICTURE When the cap is at its highest point, its instantaneous velocity is zero. (When a
problem specifies that an object is “at its highest point,” translate this condition into the
mathematical condition )

SOLVE

(a) 1. Make a sketch of the cap in its initial position and again at its highest point (Figure 2-20). 
Include a coordinate axis and label the origin and the two specified positions of the cap.

2. The time is related to the velocity and 
acceleration:

3. Set vy � 0 and solve for t:

(b) We can find the displacement from the 
time t and the average velocity:

1.50 st �
0 � v0y

ay
�

�14.7 m/s
�9.81 m/s2 �

vy � v0y � ayt

vy � 0.
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y

yf

y0

v0y = 14.7 m/s

tf

vfy = 0

yf = ymax

ay = −9.81 m/s2

t = 0

0

F I G U R E 2 - 2 0

11.0 m� 1
2 (14.7 m/s � 0)(1.50 s) �

¢y � vav y t � 1
2 (v0y � vy)¢t

(c) 1. Set y � y0 in Equation 2-14 and solve for t:

0 � (v0y � 1
2ayt)t

¢y � v0y
t � 1

2ayt
2

2. There are two solutions for t when y � y0.
The first corresponds to the time at which 
the cap is released, the second to the time at 
which the cap is caught:

(first solution)

� 

(second solution)

3.00 st � �
2v0y

ay
� �

2(14.7 m/s)
�9.81 m/s2

t � 0

CHECK On the way up, the cap loses speed at the rate of 9.81 m/s each
second. Because its initial speed is 14.7 m/s, we expect it rise for more than
1.00 s, but less than 2.00 s. Thus, a rise time of 1.50 s is quite plausible.

TAKING IT FURTHER On the plot of velocity versus time (Figure 2-21b)
note that the slope is the same at all times, including the instant that vy � 0.
The slope is equal to the instantaneous acceleration, which is a constant
�9.81 m/s2. On the plot of height versus time (Figure 2-21a), note that the
rise time equals the fall time. In reality, the cap will not have a constant ac-
celeration because air resistance has a significant effect on a light object
like a cap. If air resistance is not negligible, the fall time will exceed the
rise time.

PRACTICE PROBLEM 2-5 Find ymax � y0 using Equation 2-15. Find the ve-
locity of the cap when it returns to its starting point.

PRACTICE PROBLEM 2-6 What is the velocity of the cap at the following
points in time? (a) 0.100 s before it reaches its highest point; (b) 0.100 s after it
reaches its highest point. (c) Compute �vy/�t for this 0.200-s-long time
interval.

0

5

0

10

15

5

0

10

15

−10

−15

−5

y(t), m

vx(t), m/s

Height

Velocity

1 2 3 t, s

0 1 2 3 t, s

(a)

(b)

F I G U R E  2 - 2 1 The height and velocity graphs are
drawn one above the other so that both the height and the
velocity can be observed at each instant of time.

Example 2-13 The Flying Cap

Upon graduation, a joyful physics student throws her cap straight upward with an initial
speed of 14.7 m/s. Given that its acceleration has a magnitude of 9.81 m s2 and is directed
downward (we neglect air resistance), (a) how long does it take for the cap to reach its
highest point? (b) What is the distance to the highest point? (c) Assuming the cap is caught
at the same height from which it was released, what is the total time the cap is in flight?

>
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F I G U R E  2 - 2 2 The speeder and the police car have the
same position at and again at t � tc .t � 0

2. Write the position functions for the speeder and the police car:

3. Set xS � xP and solve for the time tc, for tc 
 0:

(b) The velocity of the police car is given by vx � v0x � axt, with v0x � 0: 50 m/svPx � aPxtc � (5.0 m/s2)(10 s) �

10 stc �
2vSx

aPx

�
2(25 m/s)
5.0 m/s2 �

vSxtc � 1
2aPxt

2
c ⇒ vSx � 1

2aPxtc tc � 0

xS � vSxt  and xP � 1
2aPxt

2

Problems with two objects We now give some examples of problems involving
two objects moving with constant acceleration.

Example 2-14 Catching a Speeding Car

A car is speeding at a constant 25 m/s (� 90 km/h 56 mi/h) in a school zone. A police car
starts from rest just as the speeder passes by it and accelerates at a constant rate of 5.0 m/s2.
(a) When does the police car catch the speeding car? (b) How fast is the police car traveling
when it catches up with the speeder?

PICTURE To determine when the two cars will be at the same position, we
write the positions of the speeder xS and of the police car xP as functions of
time and solve for the time tc when xS � xP. Once we determine when the
police car will catch up to the speeder, we can determine the velocity of the
police car when it catches up to the speeder using the equation vx � axt.

SOLVE

(a) 1. Draw the two cars at their initial positions (at t � 0) and again at
their final positions (at t � tc) (Figure 2-22). Include a coordinate 
axis and label the drawing with the kinematic parameters.

�

Try It Yourself

PICTURE The speed is given by vP � axt1, where t1 is the time at which 
xS � xP � 25 m.

SOLVE

Cover the column to the right and try these on your own before looking at the 
answers.

Steps

CHECK Notice that the final velocity of the police car in (b) is exactly twice that of the
speeder. Because the two cars covered the same distance in the same time, they must have
had the same average velocity. The speeder’s average velocity, of course, is 25 m/s. For the
police car to start from rest, maintain a constant acceleration, and have an average velocity
of 25 m/s, it must reach a final velocity of 50 m/s.

PRACTICE PROBLEM 2-7 How far have the cars traveled when the police car catches the
speeder?

Example 2-15 The Police Car

How fast is the police car in Example 2-14 traveling when it is 25 m behind the speeding
car?

Speeder

x0 = 0
xxc = 0.75 m

t0 = 0
tc

0

vS0x = 90 km/h aSx = 0

vP0x = 0 aPx = 5.0 m/s2

vScx = vS0x

vPcx

Police

Speeder

x0 = 0 xP(t1)

vSx(t1)
vPx(t1)

xS(t1)
x0 D

vS0x = 90 km/h

aSx = 0

vP0x = 0

aPx = 5.0 m/s2

Police

F I G U R E 2 - 2 3

1. Sketch an x-versus-t graph showing the positions of the two cars (Figure 2-23). 
On this graph identify the distance D � xS � xP between the two cars at a 
given instant.
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xS = vS0xt

xP = 1 aPxt2
2

Speeder
Police

xs

xp

x

D = 25 m

t1 t

F I G U R E  2 - 2 4

2. Write equations specifying the position yF of the
elevator floor and the position yS of the screw as
functions of time. The screw and the elevator have
the same initial velocity v0y:

yS � h � v0yt � 1
2 (�g)t2

yS � yS0 � vS0yt � 1
2aSyt

2

yF � 0 � v0yt � 1
2aFyt

2

yF � yF0 � vF0yt � 1
2aFyt

2

3. Equate the expressions for yS and yF at t � tf and simplify:

4. Solve for the time and substitute the given values:

0.66 s�� A 2(3.0 m)
4.0 m/s2 � 9.81 m/s2 � 0.659 stf � A 2h

aF � g

h � 1
2 (aF � g)t2f  so

h � 1
2gt2f � 1

2aFyt
2
f

h � v0ytf � 1
2gt2f � v0ytf � 1

2aFyt
2
f

yS � yF

CHECK If the elevator was stationary, the distance the screw falls is given by . With
h � 3.0 m, the resulting fall time would be tf � 0.78 s. Because of the elevator’s upward
acceleration, we would expect it to take less than 0.78 s for the screw to hit the floor. Our 
0.66-s result meets this expectation.

h � 1
2gt2f

Answers

2. Using the equations for xP and xS from 
Example 2-14, solve for t1 when
xS � xP � 25 m. We expect two solutions, 
one shortly after the start time 
and one shortly before the speeder is caught.

3. Use vP1 � aPxt1 to compute the speed of the 
police car when xS � xP � 25 m.

and 44.4 m/s5.64 m/svP1 �

CHECK We see from Figure 2-24 that the distance between the cars starts at zero,
increases to a maximum value, and then decreases. We would expect two speeds
for a given separation distance.

TAKING IT FURTHER The separation at any time is .
At maximum separation, which occurs at t � 5.0 s, dD/dt � 0. At equal time
intervals before and after t � 5.0 s, the separations are equal.

D � xS � xP � vSxt � 1
2aPxt

2

Example 2-16 A Moving Elevator

While standing in an elevator, you see a screw fall from the ceiling. The ceiling is 3.0 m
above the floor. How long does it take the screw to hit the floor if the elevator is moving
upward and gaining speed at a constant rate of 4.0 m/s2 at the instant the screw leaves 
the ceiling?

PICTURE When the screw hits the floor, the positions of the screw and the floor are equal.
Equate the these positions and solve for the time.

SOLVE

1. Draw a diagram showing the initial and final positions of the screw and
the elevator floor (Figure 2-25). Include a coordinate axis and label the
drawing with the kinematic parameters. The screw and the floor have the same
initial velocity, but different accelerations. Choose the origin to be the initial
position of the floor, and designate “upward” as the positive y direction.
The screw hits the floor at time tf:

y

yS1 = yF1

yS0 = h

vF1y vS1y

t = t1

t = 0

t = 0

aSy = −g

vS0y = v0y

vF0y = v0y

ay = 4.0 m/s2

yF0 = 0

Screw Floor

F I G U R E 2 - 2 5 The y axis is
fixed to the building.

t1 � (5 � 215) s
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Try It Yourself

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

(a) 1. Using Equation 2-13, find the distance the floor rises between
t � 0 and t � tf , where tf is calculated in step-4 of Example 2-16.

2. Between t � 0 and t � tf , the displacement of the screw is
less then that of the floor by 3.0 m.

(b) Using (Equation 2-12), find the velocities of the screw and of
the floor at impact.

vy � v0y � ayt

�8.4 m¢yS �

11.4 m¢yF � vFitf � 1
2aFt

2
t �

19 m/svFy � vFiy � aFytf �

9.5 m/svSy � vSiy � gtf �

CHECK The Part (b) results (velocity of the screw and the velocity of the floor at impact) are
both positive indicating both velocities are directed upward. For impact to occur, the floor
must be moving upward faster then the screw so it can catch up with the screw. This result
is consistent with our Part (b) results.

TAKING IT FURTHER The screw strikes the floor 8.4 m above its position when it leaves
the ceiling. At impact, the velocity of the screw relative to the building is positive (upward).
Relative to the building, the screw is still rising when it and the floor come in contact.

2-4 INTEGRATION

In this section, we use integral calculus to derive the equations of motion. A con-
cise treatment of calculus can be found in the Math Tutorial.

To find the velocity from a given acceleration, we note that the velocity is the
function vx(t) whose time derivative is the acceleration ax(t):

If the acceleration is constant, the velocity is that function of time which, when dif-
ferentiated, equals this constant. One such function is

vx � axt ax is constant

More generally, we can add any constant to axt without changing the time deriva-
tive. Calling this constant c, we have

vx � axt � c

When t � 0, vx � c. Thus, c is the velocity v0x at time t � 0.
Similarly, the position function x(t) is that function whose derivative is the

velocity:

dx
dt

� vx � v0x � axt

dvx(t)

dt
� ax(t)

Example 2-17 The Moving Elevator

Consider the elevator and screw in Example 2-16. Assume the velocity of the elevator is 
16 upward when the screw separates from the ceiling. (a) How far does the elevator rise
while the screw is in freefall? What is the displacement of the screw during freefall? 
(b) What are the velocity of the screw and the velocity of the elevator at impact?

PICTURE The time of flight of the screw is obtained in the solution of Example 2-16. Use
this time to solve Parts (a) and (b).

m>s
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We can treat each term separately. The function whose derivative is the constant v0x
is v0xt plus any constant. The function whose derivative is axt is plus any con-
stant. Writing x0 for the combined arbitrary constants, we have

When t � 0, x � x0. Thus, x0 is the position at time t � 0.
Whenever we find a function from its derivative, we must include an arbitrary

constant in the general form of the function. Because we go through the integration
process twice to find x(t) from the acceleration, two constants arise. These
constants are usually determined from the velocity and position at some given
time, which is usually chosen to be t � 0. They are therefore called the initial
conditions. A common problem, called the initial-value problem, takes the form
“given ax(t) and the initial values of x and vx, find x(t).” This problem is particu-
larly important in physics because the acceleration of a particle is determined by
the forces acting on it. Thus, if we know the forces acting on a particle and the po-
sition and velocity of the particle at some particular time, we can find its position
and velocity at all other times.

A function F(t) whose derivative (with respect to t) equals the function f (t) is
called the antiderivative of f(t). (Because vx � dx/dt and ax � dvx/dt, x is the anti-
derivative of vx and vx is the antiderivative of ax.) Finding the antiderivative of a
function is related to the problem of finding the area under a curve.

In deriving Equation 2-14 it was shown that the change in position �x is equal
to the area under the velocity-versus-time curve. To show this (see Figure 2-12), we
first divided the time interval into numerous small intervals, �t1, �t2, and so on.
Then, we drew a set of rectangles as shown. The area of the rectangle correspond-
ing to the ith time interval �ti (shaded in the figure) is vix �ti, which is approxi-
mately equal to the displacement �xi during the interval �ti. The sum of the rec-
tangular areas is therefore approximately the sum of the displacements during the
time intervals and is approximately equal to the total displacement from time t1
to t2. Mathematically, we write this as

For the limit of smaller and smaller time intervals (and more and more
rectangles), the resulting sum approaches the area under the curve, which in 
turn equals the displacement. The limit of the sum as �t approaches zero 
(and the number of rectangles approaches infinity) is called an integral and
is written

2-17

It is helpful to think of the integral sign as an elongated S indicating a sum. The
limits t1 and t2 indicate the initial and final values of the integration variable t.

The process of computing an integral is called integration. In Equation 2-17, vx
is the derivative of x, and x is the antiderivative of vx. This is an example of the fun-
damental theorem of calculus, whose formulation in the seventeenth century
greatly accelerated the mathematical development of physics. If

then 2-18

FUNDAMENTAL THEOREM OF CALCULUS

F(t2) � F(t1) � �
t2

t1

f(t) dtf(t) �
dF(t)
dt

,

�

¢x � x(t2) � x(t1) � lim
¢tS0
aa
i

vix¢tib � �
t2

t1

vx dt

¢x � a
i

vix¢ti

x � x0 � v0xt � 1
2 at2x

1
2at2

See

Math Tutorial for more

information on 

Integrals



Integration S E C T I O N  2 - 4 | 49

The antiderivative of a function is also called the indefinite integral of the function
and is written without limits on the integral sign, as in

Finding the function x from its derivative vx (that is, finding the antiderivative) is
also called integration. For example, if vx � v0x , a constant, then

where x0 is the arbitrary constant of integration. We can find a general rule for the
integration of a power of t from Equation 2-6, which gives the general rule for the
derivative of a power. The result is

2-19

where C is an arbitrary constant. This equation can be checked by differen-
tiating the right side using the rule of Equation 2-6. (For the special case n � –1,

, where ln t is the natural logarithm of t.)
Because ax � dvx/dt, the change in velocity for some time interval can similarly

be interpreted as the area under the ax-versus-t curve for that interval. This change
is written

2-20

We can now derive the constant-acceleration equations by computing the indefi-
nite integrals of the acceleration and velocity. If ax is constant, we have

2-21

where we have expressed the product of ax and the constant of integration as v0x.
Integrating again, and writing x0 for the constant of integration, gives

2-22

It is instructive to derive Equations 2-21 and 2-22 using definite integrals instead
of indefinite ones. For constant acceleration, Equation 2-20, with t1 � 0, gives

where the time t2 is arbitrary. Because it is arbitrary, we can set t2 � t to obtain

where vx � vx(t) and v0x � vx(0). To derive Equation 2-22, we substitute v0x � axt
for vx in Equation 2-17 with t1 � 0. This gives

This integral is equal to the area under the vx-versus-t curve (Figure 2-26).
Evaluating the integral and solving for x gives

where t2 is arbitrary. Setting t2 � t, we obtain

where x � x(t) and x0 � x(0).

x � x0 � v0xt � 1
2axt

2

x(t2) � x(0) � �
t2

0
(v0x � axt)dt � v0xt � 1

2axt
2 ` t2

0
� v0xt2 � 1

2axt
2
2

x(t2) � x(0) � �
t2

0
(v0x � axt)dt

vx � v0x � axt

vx(t2) � vx(0) � ax�
t2

0
dt � ax(t2 � 0)

x � �(v0x � axt)dt � x0 � v0xt � 1
2axt

2

vx � �axdt � ax�dt � v0x � axt

¢vx � lim
¢tS0
aa
i

aix¢tib � �
t2

t1

ax dt

�t�1dt � ln t � C

�tn dt �
tn�1

n � 1
� C, n � �1

x � �v0x dt � v0xt � x0

x � �vx dt

vx = v0x + at

Area

0
0

vx(0)

vx(t2)

vx(t)

tt2

F I G U R E  2 - 2 6 The area under the 
vx-versus-t curve equals the displacement

.¢x � x(t2) � x(0)
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The definition of average velocity is (Equation 2-3). In addition,
(Equation 2-17). Equating the right sides of these equations and

solving for vav x gives

2-23

ALTERNATIVE DEFINITION OF AVERAGE VELOCITY

where Equation 2-23 is mathematically equivalent to the definition
of average velocity, so either equation can serve as a definition of average
velocity. 

Example 2-18 A Coasting Boat

A Shelter Island ferryboat moves
with constant velocity v0x � 8.0 m/s
for 60 s. It then shuts off its engines
and coasts. Its coasting velocity is
given by , where 
t1 � 60 s. What is the displacement 
of the boat for the interval 
0 	 t 	 ?

vx � v0xt
2
1/t

2

¢t � t2 � t1 .

vav x �
1

¢t �
t2

t1

vx dt

¢x � �t2t1 vx dt
¢x � vav x¢t

SOLVE

1. The velocity of the boat is constant during the first 60 s; thus the 
displacement is simply the velocity times the elapsed time:

2. The remaining displacement is given by the integral of the velocity 
from t � t1 to t � . We use Equation 2-17 to calculate the integral:

¢x1 � v0x¢t � v0xt1 � (8.0 m/s)(60 s) � 480 m

� �(0 � v0t1) � (8 m/s)(60 s) � 480 m

� v0xt
2
1

t�1

�1
` 
t1

� �v0xt
2
1 a 1


�

1
t1
b

¢x2 � �


t1

vx dt � �


t1

v0xt
2
1

t2
dt � v0xt

2
1�



t1

t�2 dt

3. The total displacement is the sum of the displacements found above: 960 m¢x � ¢x1 � ¢x2 � 480 m � 480 m �

CHECK The expressions obtained for the displacements in both steps 1 and 2 are velocity
multiplied by time, so they are both dimensionally correct.

TAKING IT FURTHER Note that the area under the vx-versus-t curve (Figure 2-27) is finite.
Thus, even though the boat never stops moving, it travels only a finite distance. A better rep-
resentation of the velocity of a coasting boat might be the exponentially decreasing function

, where b is a positive constant. In that case, the boat would also coast a finite
distance in the interval t1 � t � .
vx � v0xe

�b(t�t1)

vx , m/s

Δx1

Δx2

300120 180 24060 t, s0
0

1

2

3

4

5

6

7

8

F I G U R E  2 - 2 7  

(Gene Mosca.)

PICTURE The velocity function for the boat is shown in Figure 2-27. The total
displacement is calculated as the sum of the displacement �x1 during the
interval 0 	 t 	 t1 � 60 s and the displacement �x2 during the interval 
t1 	 t 	 .
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Physics Spotlight

Linear Accelerators

Linear accelerators are instruments that accelerate electrically charged particles to
high speeds along a long, straight track to collide with a target. Large accelerators
can impart very high kinetic energies (on the order of billions of electron volts) to
charged particles that serve as probes for studying the fundamental particles of
matter and the forces that hold them together. (The energy required to remove an
electron from an atom is on the order of one electron volt.) In the two-mile-long lin-
ear accelerator at Stanford University, electromagnetic
waves boost the speed of electrons or positrons as they
move through an evacuated copper pipe. When the high-
speed particles collide with a target, several different kinds
of subatomic particles are produced along with X rays and
gamma rays. These particles then pass into devices called
particle detectors.

Through experiments with such accelerators, physicists
have determined that protons and neutrons, once thought
to be the ultimate particles of the nucleus, are themselves
composed of more fundamental particles called quarks.
Another group of particles known as leptons, which in-
clude electrons, neutrinos, and a few other particles, have
also been identified. Most large accelerator research centers
such as the Fermi National Accelerator Laboratory in
Batavia, Illinois, use a series of linear and circular accelera-
tors to achieve higher particle speeds. As the speed of a particle approaches the
speed of light, the energy required to accelerate it to that speed approaches infinity.

Although the big accelerators may have a high profile, thousands of linear ac-
celerators are used worldwide for a host of practical applications. One of the most
common applications is the cathode ray tube (CRT) of a television set or computer
monitor. In a CRT, electrons from the cathode (a heated filament) are accelerated in
a vacuum toward a positively charged anode. Electromagnets control the direction
of the electron beam onto the inside of a screen coated with a phosphor, a material
that emits light when struck by electrons. The kinetic energy of electrons in a CRT
ranges to a maximum of about 30,000 electron volts. The speed of an electron that
has this kinetic energy is about one third of the speed of light.

In the field of medicine, linear accelerators about a thousand times more pow-
erful than a CRT are used for radiation treatment of cancer. “The linear accelerator
uses microwave technology (similar to that used for radar) to accelerate electrons
in a part of the accelerator called the ‘wave guide,’ then allows these electrons to
collide with a heavy metal target. As a result of the collisions, high-energy x-rays
are scattered from the target. A portion of these x-rays is collected and then shaped
to form a beam that matches the patient’s tumor.”*

Other applications of accelerators include the production of radioisotopes for
tracers in medicine and biology, sterilization of surgical tools, and analysis of ma-
terials to determine their composition. For example, in a technique called particle-
induced X-ray emission (PIXE), an ion beam, often consisting of protons, causes
target atoms to emit X rays that identify the type of atoms present. This technique
has been applied to the study of archeological materials and variety of other types
of samples.

* The American College of Radiology and the Radiological Society of North America, http//www.radiologyinfo.org/
content/therapy/linear_accelerator.htm.

The beige cylinder in the background is the
linear accelerator at the heart of the Naval
Academy Tandem Accelerator Laboratory.
A beam of high-speed protons travels from the
accelerator to the target area in the
foreground. (Gene Mosca.)

http//www.radiologyinfo.org/content/therapy/linear_accelerator.htm
http//www.radiologyinfo.org/content/therapy/linear_accelerator.htm
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SUMMARY

Displacement, velocity, and acceleration are important defined kinematic quantities.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Displacement 2-1

Graphical interpretation Displacement is the area under the vx-versus-t curve.

2. Velocity

Average velocity 2-3, 2-23

Instantaneous velocity 2-5

Graphical interpretation The instantaneous velocity is the slope of the x-versus-t curve.

3. Speed

Average speed 2-2

Instantaneous speed Instantaneous speed is the magnitude of the instantaneous velocity 

speed � |vx|

4. Acceleration

Average acceleration 2-7

Instantaneous acceleration 2-9

Graphical interpretation The instantaneous acceleration is the slope of the vx-versus-t curve.

Acceleration due to gravity The acceleration of an object near the surface of Earth in free-fall under the influence of
gravity alone is directed downward and has magnitude 

g � 9.81 m/s2 � 32.2 ft/s2

5. Kinematic equations for constant acceleration

Velocity 2-12

Average velocity 2-16

Displacement in terms of vav x

Displacement as a function of time 2-14

as a function of �x 2-15

6. Displacement and velocity as integrals Displacement is represented graphically as the area under the vx-versus-t curve. This 
area is the integral of vx over time from some initial time t1 to some final time t2 and is 
written

2-17

Similarly, change in velocity is represented graphically as the area under the ax-versus-t
curve:

2-20¢vx � lim
¢tS0 ai ai x¢ti � �

t2

t1

ax dt

¢x � lim
¢tS0 ai vi x¢tt � �

t2

t1

vx dt

v2
x � v2

0x � 2ax ¢xv2
x

¢x � x � x0 � v0xt � 1
2axt

2

¢x � x � x0 � vav xt � 1
2 (v0x � vx)t

vav x � 1
2 (v0x � vx)

vx � v0x � axt

ax �
dvx
dt

�
d2x

dt2

aav x �
¢vx
¢t

average speed �
total distance

total time
�
s
t

vx(t) � lim
¢tS0

¢x
¢t

�
dx
dt

vav x �
¢x
¢t

    or vav x �
1

¢t �
t2

t1

vx dt

¢x � x2 � x1
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Answers to Concept Checks

2-1 No. The distance between cars will not remain constant.
Instead, the distance will continuously decrease. When
you first begin breaking, the speed of your car is greater
than the speed of the car in front. That is because the
car in front began breaking 0.3 s earlier. Because the
cars lose speed at the same rate, the speed of your car
will remain greater than the speed of the car in front
throughout the braking period.

Answers to Practice Problems

2-1 1.2 m/s
2-2 (a) 65 km/h (b) 2.5 s
2-3 Only (d) has the same dimensions on both sides of the

equation. Although we cannot obtain the exact
equation from dimensional analysis, we can often
obtain the functional dependence.

2-4 54 ms
2-5 (a) and ; notice that

the final speed is the same as the initial speed
2-6 (a) �0.981 m/s (b) �0.981 m/s 

(c) [(�0.981 m/s) � (�0.981 m/s]/(0.200 s) � �9.81 m/s2

2-7 250 m

(b) ymax � y0 � 11.0 m (c) �14.7 m/s

PROBLEMS

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimates.

Interpret as significant all digits in numerical values that
have trailing zeroes and no decimal points.

For all problems, use g � 9.81 for the free-fall
acceleration due to gravity and neglect friction and air
resistance unless instructed to do otherwise.

m/s2

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • What is the average velocity over the “round trip” of an
object that is launched straight up from the ground and falls
straight back down to the ground?

2 • An object thrown straight up falls back and is caught at the
same place it is launched from. Its time of flight is T; its maximum
height is H. Neglect air resistance. The correct expression for its aver-
age speed for the entire flight is (a) H/T, (b) 0, (c) H/(2T), (d) 2H/T.

3 • Using the information in the previous question, what is its
average speed just for the first half of the trip? What is its average
velocity for the second half of the trip? (Answer in terms of H and T.)

4 • Give an everyday example of one-dimensional motion
where (a) the velocity is westward and the acceleration is eastward,
and (b) the velocity is northward and the acceleration is northward.

5 • Stand in the center of a large room. Call the direction to
your right “positive,” and the direction to your left “negative.” Walk
across the room along a straight line, using a constant acceleration to
quickly reach a steady speed along a straight line in the negative di-
rection. After reaching this steady speed, keep your velocity negative
but make your acceleration positive. (a) Describe how your speed
varied as you walked. (b) Sketch a graph of x versus t for your mo-
tion. Assume you started at x � 0. (c) Directly under the graph of
Part (b), sketch a graph of vx versus t.

6 • True/false: The displacement always equals the product of
the average velocity and the time interval. Explain your choice.

7 • Is the statement “for an object’s velocity to remain constant,
its acceleration must remain zero” true or false? Explain your choice.

8 •• MULTISTEP Draw careful graphs of the position and
velocity and acceleration over the time period for a
cart that, in succession, has the following motion. The cart is
moving at the constant speed of 5.0 in the �x direction. Itm>s 0 � t � 30 s

SSM

passes by the origin at t � 0.0 s. It continues on at 5.0 for 5.0 s,
after which it gains speed at the constant rate of 0.50 each
second for 10.0 s. After gaining speed for 10.0 s, the cart loses
speed at the constant rate of 0.50 for the next 15.0 s.

9 • True/false: Average velocity always equals one-half the
sum of the initial and final velocities. Explain your choice.

10 • Identical twin brothers standing on a horizontal bridge
each throw a rock straight down into the water below. They throw
rocks at exactly the same time, but one hits the water before the
other. How can this be? Explain what they did differently. Ignore
any effects due to air resistance.

11 •• Dr. Josiah S. Carberry stands at the top of the Sears Tower
in Chicago. Wanting to emulate Galileo, and ignoring the safety of the
pedestrians below, he drops a bowling ball from the top of the tower.
One second later, he drops a second bowling ball. While the balls are
in the air, does their separation (a) increase over time, (b) decrease, 
(c) stay the same? Ignore any effects due to air resistance. 

12 •• Which of the position-versus-time curves in Figure 2-28
best shows the motion of an object (a) with positive acceleration,
(b) with constant positive velocity, (c) that is always at rest, and

SSM
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(d) with negative acceleration? (There may be more than one correct
answer for each part of the problem.)
13 •• Which of the velocity-versus-time curves in Figure 2-29
best describes the motion of an object (a) with constant positive
acceleration, (b) with positive acceleration that is decreasing with
time, (c) with positive acceleration that is increasing with time, and
(d) with no acceleration? (There may be more than one correct an-
swer for each part of the problem.) SSM

24 •• A small heavy object is dropped from rest and falls a dis-
tance D in a time T. After it has fallen for a time 2T, what will be its
(a) fall distance from its initial location, (b) its speed, and (c) its ac-
celeration? (Neglect air resistance.)

25 •• In a race, at an instant when two horses are running right
next to each other and in the same direction (the �x direction),
Horse A’s instantaneous velocity and acceleration are �10 m/s and
�2.0 m/s2, respectively, and horse B’s instantaneous velocity and
acceleration are �12 m/s and �1.0 m/s2, respectively. Which horse
is passing the other at this instant? Explain.

14 •• The diagram in Figure 2-30 tracks the location of an ob-
ject moving in a straight line along the x axis. Assume that the
object is at the origin at t � 0. Of the five times shown, which time
(or times) represents when the object is (a) farthest from the origin,
(b) at rest for an instant, (c) in the midst of being at rest for a while,
and (d) moving away from the origin?
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15 •• An object moves along a straight line. Its position-
versus-time graph is shown in Figure 2-30. At which time or
times is its (a) speed at a minimum, (b) acceleration positive, and
(c) velocity negative? 
16 •• For each of the four graphs of x versus t in Figure 2-31
answer the following questions. (a) Is the velocity at time t2 greater
than, less than, or equal to the velocity at time t1? (b) Is the speed
at time t2 greater than, less than, or equal to the speed at time t1?

SSM
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17 •• True/false:
(a) If the acceleration of an object is always zero, then it cannot be

moving.
(b) If the acceleration of an object is always zero, then its x-versus-t

curve must be a straight line.
(c) If the acceleration of an object is nonzero at an instant, it may be

momentarily at rest at that instant.
Explain your reasoning for each answer. If an answer is true, give
an example.

18 •• A hard-thrown tennis ball is moving horizontally when it
bangs into a vertical concrete wall at perpendicular incidence. The
ball rebounds straight back off the wall. Neglect any effects due to
gravity for the small time interval described here. Assume that
toward the wall is the �x direction. What are the directions of its
velocity and acceleration (a) just before hitting the wall, (b) at
maximum impact, and (c) just after leaving the wall?

19 •• Aball is thrown straight up. Neglect any effects due to air
resistance. (a) What is the velocity of the ball at the top of its flight?
(b) What is its acceleration at that point? (c) What is different about
the velocity and acceleration at the top of the flight if instead the
ball impacts a horizontal ceiling very hard and then returns. 

20 •• An object that is launched straight up from the ground,
reaches a maximum height H, and falls straight back down to the
ground, hitting it T seconds after launch. Neglect any effects due
to air resistance. (a) Express the average speed for the entire trip
as a function of H and T. (b) Express the average speed for the
same interval of time as a function of the initial launch speed v0.

21 •• A small lead ball is thrown directly upward. True or
false: (Neglect any effects due to air resistance.) (a) The magnitude
of its acceleration decreases on the way up. (b) The direction of its
acceleration on its way down is opposite to the direction of its ac-
celeration on its way up. (c) The direction of its velocity on its way
down is opposite to the direction of its velocity on its way up.

22 •• At t � 0, object A is dropped from the roof of a building.
At the same instant, object B is dropped from a window 10 m below
the roof. Air resistance is negligible. During the descent of B to the
ground, the distance between the two objects (a) is proportional to t,
(b) is proportional to t2, (c) decreases, (d) remains 10 m throughout.

23 •• CONTEXT-RICH You are driving a Porsche that acceler-
ates uniformly from 80.5 km/h (50 mi/h) at t � 0.00 s to 113 km/h
(70 mi/h) at t � 9.00 s. (a) Which graph in Figure 2-32 best describes
the velocity of your car? (b) Sketch a position-versus-time graph
showing the location of your car during these nine seconds, assum-
ing we let its position x be zero at t � 0.
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26 •• True or false: (a) The equation is al-
ways valid for particle motion in one dimension. (b) If the velocity
at a given instant is zero, the acceleration at that instant must also
be zero. (c) The equation �x � vav �t holds for all particle motion in
one dimension.
27 •• If an object is moving in a straight line at constant accel-
eration, its instantaneous velocity halfway through any time inter-
val is (a) greater than its average velocity, (b) less than its average
velocity, (c) equal to its average velocity, (d) half its average veloc-
ity, (e) twice its average velocity.
28 •• A turtle, seeing his owner put some fresh lettuce on the
opposite side of his terrarium, begins to accelerate (at a constant
rate) from rest at time t � 0, heading directly toward the food. Let
t1 be the time at which the turtle has covered half the distance to his
lunch. Derive an expression for the ratio of t2 to t1, where t2 is the
time at which the turtle reaches the lettuce.

29 •• The positions of two cars in parallel lanes of a straight
stretch of highway are plotted as functions of time in the 
Figure 2-33. Take positive values of x as being to the right of the
origin. Qualitatively answer the following: (a) Are the two cars
ever side by side? If so, indicate that time (those times) on the
axis. (b) Are they always traveling in the same direction, or are
they moving in opposite directions for some of the time? If
so, when? (c) Are they ever traveling at the same velocity? If so,
when? (d) When are the two cars the farthest apart? (e) Sketch
(no numbers) the velocity versus time curve for each car. SSM
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30 •• A car driving at constant velocity passes the origin at
time t � 0. At that instant, a truck, at rest at the origin, begins to
accelerate uniformly from rest. Figure 2-34 shows a qualitative
plot of the velocities of truck and car as functions of time.
Compare their displacements (from the origin), velocities, and
accelerations at the instant that their curves intersect.

31 •• Reginald is out for a morning jog, and during the course
of his run on a straight track, he has a velocity that depends upon
time as shown in Figure 2-35. That is, he begins at rest, and ends at
rest, peaking at a maximum velocity vmax at an arbitrary time tmax.
A second runner, Josie, runs throughout the time interval t � 0 to 
t � tf at a constant speed vJ, so that each has the same displacement
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during the time interval. Note: tf is NOT twice tmax, but represents
an arbitrary time. What is the relation between vJ and vmax?
32 •• Which graph (or graphs), if any, of vx versus t in
Figure 2-36 best describes the motion of a particle with (a) positive
velocity and increasing speed, (b) positive velocity and zero accel-
eration, (c) constant nonzero acceleration, and (d) a speed decrease?

33 •• Which graph (or graphs), if any, of vx versus t in
Figure 2-36 best describes the motion of a particle with (a) negative
velocity and increasing speed, (b) negative velocity and zero accel-
eration, (c) variable acceleration, and (d) increasing speed?

34 •• Sketch a v-versus-t curve for each of the following condi-
tions: (a) Acceleration is zero and constant while velocity is not
zero. (b) Acceleration is constant but not zero. (c) Velocity and ac-
celeration are both positive. (d) Velocity and acceleration are both
negative. (e) Velocity is positive and acceleration is negative.
( f ) Velocity is negative and acceleration is positive. (g) Velocity is
momentarily zero but the acceleration is not zero.

35 •• Figure 2-37 shows nine graphs of position, velocity, and
acceleration for objects in motion along a straight line. Indicate the
graphs that meet the following conditions: (a) Velocity is constant,
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(b) velocity reverses its direction, (c) acceleration is constant, and
(d) acceleration is not constant. (e) Which graphs of position, veloc-
ity, and acceleration are mutually consistent?

ESTIMATION AND APPROXIMATION

36 • CONTEXT-RICH While engrossed in thought about the
scintillating lecture just delivered by your physics professor you
mistakenly walk directly into the wall (rather than through the
open lecture hall door). Estimate the magnitude of your average ac-
celeration as you rapidly come to a halt.

37 • BIOLOGICAL APPLICATION Occasionally, people can sur-
vive falling large distances if the surface they land on is soft
enough. During a traverse of the Eiger’s infamous Nordvand,
mountaineer Carlos Ragone’s rock anchor gave way and he plum-
meted 500 feet to land in snow. Amazingly, he suffered only a few
bruises and a wrenched shoulder. Assuming that his impact left a
hole in the snow 4.0 ft deep, estimate his average acceleration as he
slowed to a stop (that is, while he was impacting the snow). 

38 •• When we solve free-fall problems near Earth, it’s impor-
tant to remember that air resistance may play a significant role. If its
effects are significant, we may get answers that are wrong by orders
of magnitude if we ignore it. How can we tell when it is valid to ig-
nore the effects of air resistance? One way is to realize that air re-
sistance increases with increasing speed. Thus, as an object falls and
its speed increases, its downward acceleration decreases. Under these
circumstances, the object’s speed will approach, as a limit, a value
called its terminal speed. This terminal speed depends upon such
things as the mass and cross-sectional area of the body. Upon reach-
ing its terminal speed, its acceleration is zero. For a “typical” sky-
diver falling through the air, a typical terminal speed is about
50 m/s (roughly 120 mph). At half its terminal speed, the sky-
diver’s acceleration will be about . Let us take half the terminal
speed as a reasonable “upper bound” beyond which we should not
use our constant acceleration free-fall relationships. Assuming the
skydiver started from rest, (a) estimate how far, and for how long,
the skydiver falls before we can no longer neglect air resistance.
(b) Repeat the analysis for a Ping-Pong ball, which has a terminal
speed of about 5.0 m/s. (c) What can you conclude by comparing
your answers for Parts (a) and (b)?

39 •• BIOLOGICAL APPLICATION On June 14, 2005, Asafa
Powell of Jamaica set a world’s record for the 100-m dash with a
time t � 9.77 s. Assuming he reached his maximum speed in 3.00 s,
and then maintained that speed until the finish, estimate his accel-
eration during the first 3.00 s.

40 •• The photograph in Figure 2-38 is a short-time exposure
(1/30 s) of a juggler with two tennis balls in the air. (a) The tennis
ball near the top of its trajectory is less blurred than the lower one.

3
4g
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Why is that? (b) Estimate the speed of the ball that he is just
releasing from his right hand. (c) Determine how high the ball
should have gone above the launch point and compare it to an es-
timate from the picture. Hint: You have a built-in distance scale if you
assume some reasonable value for the height of the juggler.

41 •• A rough rule of thumb for determining the distance be-
tween you and a lightning strike is to start counting the seconds
that elapse (“one-Mississippi, two-Mississippi, . . .”) until you hear
the thunder (sound emitted by the lightning as it rapidly heats the
air around it). Assuming the speed of sound is about 750 mi/h,
(a) estimate how far away is a lightning strike if you counted about
5 s until you heard the thunder. (b) Estimate the uncertainty in the
distance to the strike in Part (a). Be sure to explain your assump-
tions and reasoning. Hint: The speed of sound depends on the air tem-
perature, and your counting is far from exact!

SPEED, DISPLACEMENT, 
AND VELOCITY

42 • ENGINEERING APPLICATION (a) An electron in a televi-
sion tube travels the 16-cm distance from the grid to the screen at
an average speed of 4.0 � 107 m/s. How long does the trip take?
(b) An electron in a current-carrying wire travels at an average
speed of 4.0 � 10�5 m/s. How long does it take to travel 16 cm?

43 • A runner runs 2.5 km, in a straight line, in 9.0 min and
then takes 30 min to walk back to the starting point. (a) What is
the runner’s average velocity for the first 9.0 min? (b) What is the
average velocity for the time spent walking? (c) What is the av-
erage velocity for the whole trip? (d) What is the average speed
for the whole trip? 

44 • A car travels in a straight line with an average veloc-
ity of 80 km/h for 2.5 h and then with an average velocity of
40 km/h for 1.5 h. (a) What is the total displacement for the 4.0-h
trip? (b) What is the average velocity for the total trip?

45 • One busy air route across the Atlantic Ocean is about
5500 km. The now-retired Concord, a supersonic jet capable of fly-
ing at twice the speed of sound, was used for traveling such routes.
(a) Roughly how long did it take for a one-way flight? (Use 343 m/s
for the speed of sound.) (b) Compare this time to the time taken by
a subsonic jet flying at 0.90 times the speed of sound.

46 • The speed of light, designated by the universally
recognized symbol c, has a value, to two significant figures, of 
3.0 � 108 m/s. (a) How long does it take for light to travel from the
Sun to Earth, a distance of 1.5 � 1011 m? (b) How long does it take
light to travel from the moon to Earth, a distance of 3.8 � 108 m?

47 • Proxima Centauri, the closest star to us besides our own
Sun, is 4.1 � 1013 km from Earth. From Zorg, a planet orbiting this
star, a Gregor places an order at Tony’s Pizza in Hoboken, New
Jersey, communicating by light signals. Tony’s fastest delivery craft
travels at 1.00 � 10�4c (see Problem 46). (a) How long does it take
Gregor’s order to reach Tony’s Pizza? (b) How long does Gregor
wait between sending the signal and receiving the pizza? If Tony’s
has a “1000-years-or-it’s-free” delivery policy, does Gregor have to
pay for the pizza? 

48 • A car making a 100-km journey travels 40 km/h for the
first 50 km. How fast must it go during the second 50 km to aver-
age 50 km/h?

49 •• CONTEXT-RICH Late in ice hockey games, the team that
is losing sometimes “pulls” their goalkeeper off the ice to add an
additional offensive player and increase their chances of scoring. In
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such cases, the goalie on the opposing team might have an oppor-
tunity to score into the unguarded net 55.0 m away. Suppose you
are the goaltender for your university team and are in just such a
situation. You launch a shot (in hopes of getting your first career
goal) on the frictionless ice. You eventually hear a disappointing
“clang” as the puck strikes a goalpost (instead of going in!) exactly
2.50 s later. In this case, how fast did the puck travel? You should
assume 343 m/s for the speed of sound.

50 •• Cosmonaut Andrei, your co-worker at the International
Space Station, tosses a banana at you at a speed of 15 m/s. At ex-
actly the same instant, you fling a scoop of ice cream at Andrei
along exactly the same path. The collision between banana and ice
cream produces a banana split 7.2 m from your location 1.2 s after
the banana and ice cream were launched. (a) How fast did you
toss the ice cream? (b) How far were you from Andrei when
you tossed the ice cream? (Neglect any effects due to gravity.)

51 •• Figure 2-39 shows the position of a particle as a function
of time. Find the average velocities for the time intervals a, b, c, and
d indicated in the figure.

55 •• MULTISTEP A car traveling at a constant speed of
20 m/s passes an intersection at time t � 0. A second car travel-
ing at a constant speed of 30 m/s in the same direction passes the
same intersection 5.0 s later. (a) Sketch the position functions x1(t)
and x2(t) for the two cars for the interval .
(b) Determine when the second car will overtake the first. 
(c) How far from the intersection will the two cars be when they
pull even? (d) Where is the first car when the second car passes
the intersection? 

56 •• BIOLOGICAL APPLICATION Bats use echolocation to de-
termine their distance from objects they cannot easily see in the
dark. The time between the emission of a high-frequency sound
pulse (a click) and the detection of its echo is used to determine
such distances. A bat, flying at a constant speed of 19.5 m/s in a
straight line toward a vertical cave wall, makes a single clicking
noise and hears the echo 0.15 s later. Assuming that she contin-
ued flying at her original speed, how close was she to the wall
when she received the echo? Assume a speed of 343 m/s for the
speed of sound.

57 ••• ENGINEERING APPLICATION A submarine can use sonar
(sound traveling through water) to determine its distance from
other objects. The time between the emission of a sound pulse (a
“ping”) and the detection of its echo can be used to determine such
distances. Alternatively, by measuring the time between successive
echo receptions of a regularly timed set of pings, the submarine’s
speed may be determined by comparing the time between echoes to
the time between pings. Assume you are the sonar operator in a
submarine traveling at a constant velocity underwater. Your boat is
in the eastern Mediterranean Sea, where the speed of sound is
known to be 1522 m/s. If you send out pings every 2.00 s, and your
apparatus receives echoes reflected from an undersea cliff every
1.98 s, how fast is your submarine traveling? 

ACCELERATION

58 • A sports car accelerates in third gear from 48.3 km/h
(about 30 mi/h) to 80.5 km/h (about 50 mi/h) in 3.70 s. (a) What is
the average acceleration of this car in m/s2? (b) If the car maintained
this acceleration, how fast would it be moving one second later?

59 • An object is moving along the x axis. At t � 5.0 s, the ob-
ject is at x � �3.0 m and has a velocity of �5.0 m/s. At t � 8.0 s, it
is at x � �9.0 m and its velocity is �1.0 m/s. Find its average ac-
celeration during the time interval 5.0 s 	 t 	 8.0 s. 

60 •• A particle moves along the x axis with velocity vx �
(8.0 m/s2)t 2 7.0 m/s. (a) Find the average acceleration for two dif-
ferent one-second intervals, one beginning at t � 3.0 s and the other
beginning at t � 4.0 s. (b) Sketch vx versus t over the interval 
0 	 t 	 10 s. (c) How do the instantaneous accelerations at the mid-
dle of each of the two time intervals specified in Part (a) compare to
the average accelerations found in Part (a)? Explain.

61 •• MULTISTEP The position of a certain particle depends
on time according to the equation , where
x is in meters if t is in seconds. (a) Find the displacement and
average velocity for the interval . (b) Find the
general formula for the displacement for the time interval from
t to t � �t. (c) Use the limiting process to obtain the instanta-
neous velocity for any time t.

62 •• The position of an object as a function of time is given
by , where A � 8.0 m/s2, B � 6.0 m/s, and 
C � 4.0 m. Find the instantaneous velocity and acceleration as
functions of time.

x � At2 � Bt � C

SSM
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0 � t � 20s

52 •• ENGINEERING APPLICATION It has been found that, on aver-
age, galaxies are moving away from Earth at a speed that is propor-
tional to their distance from Earth. This discovery is known as
Hubble’s law, named for its discoverer, astrophysicist Sir Edwin
Hubble. He found that the recessional speed v of a galaxy a dis-
tance r from Earth is given by v � Hr, where H � 1.58 � 10�18 s�1 is
called the Hubble constant. What are the expected recessional
speeds of galaxies (a) 5.00 � 1022 m from Earth, and (b) 2.00 � 1025 m
from Earth? (c) If the galaxies at each of these distances had traveled
at their expected recessional speeds, how long ago would they have
been at our location?

53 •• The cheetah can run as fast as 113 km/h, the falcon can
fly as fast as 161 km/h, and the sailfish can swim as fast as
105 km/h. The three of them run a relay with each covering a dis-
tance L at maximum speed. What is the average speed of this relay
team for the entire relay? Compare this average speed with the nu-
merical average of the three individual speeds. Explain carefully
why the average speed of the relay team is not equal to the numer-
ical average of the three individual speeds. 

54 •• Two cars are traveling along a straight road. Car A
maintains a constant speed of 80 km/h and car B maintains a con-
stant speed of 110 km/h. At t � 0, car B is 45 km behind car A. (a)
How much farther will car A travel before car B overtakes it?
(b) How much ahead of A will B be 30 s after it overtakes A?
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63 ••• The one-dimensional motion of a particle is plotted in
Figure 2-40. (a) What is the average acceleration in each of the in-
tervals AB, BC, and CE? (b) How far is the particle from its starting
point after 10 s? (c) Sketch the displacement of the particle as a func-
tion of time; label the instants A, B, C, D, and E on your graph. (d) At
what time is the particle traveling most slowly?

CONSTANT ACCELERATION 
AND FREE-FALL

64 • An object projected vertically upward with initial speed
v0 attains a maximum height h above its launch point. Another
object projected up with initial speed 2v0 from the same height will
attain a maximum height of (a) 4h, (b) 3h, (c) 2h, (d) h. (Air resistance
is negligible.)
65 • A car traveling along the x axis starts from rest at 
x � 50 m and accelerates at a constant rate of 8.0 m/s2. (a) How fast
is it going after 10 s? (b) How far has it gone after 10 s? (c) What is
its average velocity for the interval ?
66 • An object traveling along the x axis with an initial veloc-
ity of �5.0 m/s has a constant acceleration of �2.0 m/s2. When its
speed is 15 m/s, how far has it traveled?

67 • An object traveling along the x axis at constant accel-
eration has a velocity of �10 m/s when it is at x � 6.0 m and of
�15 m/s when it is at x � 10.0 m. What is its acceleration? 

68 • The speed of an object traveling along the x axis in-
creases at the constant rate of �4.0 m/s each second. At t � 0.0 s,
its velocity is �1.0 m/s and its position is �7.0 m. How fast is it
moving when its position is �8.0 m, and how much time has
elapsed from the start at t � 0.0 s?

69 •• A ball is launched directly upward from ground level
with an initial speed of 20 m/s. (Air resistance is negligible.)
(a) How long is the ball in the air? (b) What is the greatest height
reached by the ball? (c) How many seconds after launch is the ball
15 m above the release point?
70 •• In the Blackhawk landslide in California, a mass of rock
and mud fell 460 m down a mountain and then traveled 8.00 km
across a level plain. It has been theorized that the rock and mud
moved on a cushion of water vapor. Assume that the mass
dropped with the free-fall acceleration and then slid horizontally,
losing speed at a constant rate. (a) How long did the mud take to
drop the 460 m? (b) How fast was it traveling when it reached the
bottom? (c) How long did the mud take to slide the 8.00 km
horizontally?

SSM

0 � t � 10s

71 •• A load of bricks is lifted by a crane at a steady velocity
of 5.0 m/s when one brick falls off 6.0 m above the ground. 
(a) Sketch the position of the brick y(t) versus time, from the
moment it leaves the pallet until it hits the ground. (b) What is
the greatest height the brick reaches above the ground? (c) How
long does it take to reach the ground? (d) What is its speed just
before it hits the ground? 

72 •• A bolt comes loose from underneath an elevator that
is moving upward at a constant speed of 6.0 m/s. The bolt
reaches the bottom of the elevator shaft in 3.0 s. (a) How high
above the bottom of the shaft was the elevator when the bolt
came loose? (b) What is the speed of the bolt when it hits the bot-
tom of the shaft?

73 •• An object is dropped from rest at a height of 120 m. Find
the distance it falls during its final second in the air.
74 •• An object is released from rest at a height h. During the
final second of its fall, it traverses a distance of 38 m. Determine h.
75 •• A stone is thrown vertically downward from the top of a
200-m cliff. During the last half second of its flight, the stone trav-
els a distance of 45 m. Find the initial speed of the stone. 
76 •• An object is released from rest at a height h. It travels 0.4h
during the first second of its descent. Determine the average veloc-
ity of the object during its entire descent.
77 •• A bus accelerates from rest at 1.5 m/s2 for 12 s. It then
travels at constant velocity for 25 s, after which it slows to a stop
with an acceleration of magnitude 1.5 m/s2. (a) What is the total
distance that the bus travels? (b) What is its average velocity?
78 •• Al and Bert are jogging side-by-side on a trail in the
woods at a speed of 0.75 m/s. Suddenly Al sees the end of the trail
35 m ahead and decides to speed up to reach it. He accelerates at a
constant rate of 0.50 m/s2 while Bert continues on at a constant
speed. (a) How long does it take Al to reach the end of the trail?
(b) Once he reaches the end of the trail, he immediately turns
around and heads back along the trail with a constant speed of
0.85 m/s. How long does it take him to meet up with Bert? (c) How
far are they from the end of the trail when they meet?
79 •• You have designed a rocket to be used to sample the local
atmosphere for pollution. It is fired vertically with a constant up-
ward acceleration of 20 m/s2. After 25 s, the engine shuts off and
the rocket continues rising (in freefall) for a while. (Air resistance is
negligible.) The rocket eventually stops rising and then falls back to
the ground. You want to get a sample of air that is 20 km above the
ground. (a) Did you reach your height goal? If not, what would you
change so that the rocket raches 20 km? (b) Determine the total time
the rocket is in the air. (c) Find the speed of the rocket just before it
hits the ground.
80 •• A flowerpot falls from a windowsill of an apartment that
is on the tenth floor of an apartment building. A person in an apart-
ment below, coincidentally in possession of a high-speed high-
precision timing system, notices that it takes 0.20 s for the pot to fall
past his window, which is 4.0-m from top to bottom. How far above
the top of the window is the windowsill from which the pot fell?
(Neglect any effects due to air resistance.)
81 •• In a classroom demonstration, a glider moves along an
inclined track with constant acceleration. It is projected from the
low end of the track with an initial velocity. After 8.00 s have
elapsed, it is 100 cm from the low end and is moving along the track
at a velocity of �15 cm/s. Find the initial velocity and the
acceleration.
82 •• A rock dropped from a cliff covers one-third of its total
distance to the ground in the last second of its fall. Air resistance is
negligible. How high is the cliff?
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83 •• A typical automobile under hard braking loses speed at
a rate of about 7.0 m/s2; the typical reaction time to engage the
brakes is 0.50 s. A local school board sets the speed limit in a school
zone such that all cars should be able to stop in 4.0 m. (a) What max-
imum speed does this imply for an automobile in this zone?
(b) What fraction of the 4.0 m is due to the reaction time? 

84 •• Two trains face each other on adjacent tracks. They are
initially at rest, and their front ends are 40 m apart. The train on the
left accelerates rightward at 1.0 m/s2. The train on the right accel-
erates leftward at 1.3 m/s2. (a) How far does the train on the left
travel before the front ends of the trains pass? (b) If the trains are
each 150 m in length, how long after the start are they completely
past one another, assuming their accelerations are constant?

85 •• Two stones are dropped from the edge of a 60-m cliff, the
second stone 1.6 s after the first. How far below the top of the cliff
is the second stone when the separation between the two stones
is 36 m?

86 •• A motorcycle officer hidden at an intersection observes a
car driven by an oblivious driver who ignores a stop sign and con-
tinues through the intersection at constant speed. The police officer
takes off in pursuit 2.0 s after the car has passed the stop sign. She
accelerates at 4.2 m/s2 until her speed is 110 km/h, and then con-
tinues at this speed until she catches the car. At that instant, the car
is 1.4 km from the intersection. (a) How long did it take for the of-
ficer to catch up to the car? (b) How fast was the car traveling?

87 •• At t � 0, a stone is dropped from the top of a cliff above
a lake. Another stone is thrown downward 1.6 s later from the same
point with an initial speed of 32 m/s. Both stones hit the water at
the same instant. Find the height of the cliff.

88 •• A passenger train is traveling at 29 m/s when the engi-
neer sees a freight train 360 m ahead of his train traveling in the
same direction on the same track. The freight train is moving at a
speed of 6.0 m/s. (a) If the reaction time of the engineer is 0.40 s,
what is the minimum (constant) rate at which the passenger train
must lose speed if a collision is to be avoided? (b) If the engineer’s
reaction time is 0.80 s and the train loses speed at the minimum rate
described in Part (a), at what rate is the passenger train approach-
ing the freight train when the two collide? (c) For both reaction
times, how far will the passenger train have traveled in the time be-
tween the sighting of the freight train and the collision?

89 •• BIOLOGICAL APPLICATION The click beetle can project it-
self vertically with an acceleration of about 400g (an order of mag-
nitude more than a human could survive!). The beetle jumps by
“unfolding” its 0.60-cm long legs. (a) How high can the click beetle
jump? (b) How long is the beetle in the air? (Assume constant ac-
celeration while in contact with the ground and neglect air
resistance.)

90 •• An automobile accelerates from rest at 2.0 m/s2 for 20 s.
The speed is then held constant for 20 s, after which there is an ac-
celeration of �3.0 m/s2 until the automobile stops. What is the total
distance traveled?

91 •• Consider measuring the free-fall motion of a particle (ne-
glect air resistance). Before the advent of computer-driven data-log-
ging software, these experiments typically employed a wax-coated
tape placed vertically next to the path of a dropped electrically con-
ductive object. A spark generator would cause an arc to jump be-
tween two vertical wires through the falling object and through the
tape, thereby marking the tape at fixed time intervals �t. Show that
the change in height during successive time intervals for an object
falling from rest follows Galileo’s Rule of Odd Numbers: �y21 � 3�y10,
�y32 � 5�y10, . . . , where �y10 is the change in y during the first in-
terval of duration �t, �y21 is the change in y during the second
interval of duration �t, etc. SSM

SSM

92 •• Starting from rest, a particle travels along the x axis with
a constant acceleration of � . At a time 4.0 s following its
start, it is at x � �100 m. At a time 6.0 s later it has a velocity of

. Find its position at this later time.

93 •• If it were possible for a spacecraft to maintain a constant
acceleration indefinitely, trips to the planets of the Solar System
could be undertaken in days or weeks, while voyages to the nearer
stars would only take a few years. (a) Using data from the tables at
the back of the book, find the time it would take for a one-way trip
from Earth to Mars (at Mars’ closest approach to Earth). Assume
that the spacecraft starts from rest, travels along a straight line, ac-
celerates halfway at 1 g, flips around, and decelerates at 1 g for the
rest of the trip. (b) Repeat the calculation for a 4.1 � 1013-km trip to
Proxima Centauri, our nearest stellar neighbor outside of the Sun.
(See Problem 47.) 

94 •• The Stratosphere Tower in Las Vegas is 1137 ft high. It
takes 1 min, 20 s to ascend from the ground floor to the top of the
tower using the high-speed elevator. The elevator starts and ends at
rest. Assume that it maintains a constant upward acceleration until
it reaches its maximum speed, and then maintains a constant accel-
eration of equal magnitude until it comes to a stop. Find the mag-
nitude of the acceleration of the elevator. Express this acceleration
magnitude as a multiple of g (the acceleration due to gravity).

95 •• A train pulls away from a station with a constant accel-
eration of 0.40 m/s2. A passenger arrives at a point next to the track
6.0 s after the end of the train has passed the very same point. What
is the slowest constant speed at which she can run and still catch the
train? On a single graph, plot the position versus time curves for
both the train and the passenger.

96 ••• Ball A is dropped from the top of a building of height h
at the same instant that ball B is thrown vertically upward from the
ground. When the balls collide, they are moving in opposite direc-
tions, and the speed of A is twice the speed of B. At what height
does the collision occur?

97 ••• Solve Problem 96 if the collision occurs when the balls
are moving in the same direction and the speed of A is 4 times
that of B.

98 ••• Starting at one station, a subway train accelerates from
rest at a constant rate of 1.00 m/s2 for half the distance to the next
station, then slows down at the same rate for the second half of the
journey. The total distance between stations is 900 m. (a) Sketch a
graph of the velocity vx as a function of time over the full journey.
(b) Sketch a graph of the position as a function of time over the full
journey. Place appropriate numerical values on both axes.

99 ••• A speeder traveling at a constant speed of 125 km/h
races past a billboard. A patrol car pursues from rest with con-
stant acceleration of (8.0 km/h)/s until it reaches its maximum
speed of 190 km/h, which it maintains until it catches up with
the speeder. (a) How long does it take the patrol car to catch the
speeder if it starts moving just as the speeder passes? (b) How
far does each car travel? (c) Sketch x(t) for each car. 

100 ••• When the patrol car in Problem 99 (traveling at
190 km/h) is 100 m behind the speeder (traveling at 125 km/h),
the speeder sees the police car and slams on his brakes, locking
the wheels. (a) Assuming that each car can brake at 6.0 m/s2 and
that the driver of the police car brakes instantly as she sees the
brake lights of the speeder (reaction time � 0.0 s), show that the
cars collide. (b) At what time after the speeder applies his brakes
do the two cars collide? (c) Discuss how reaction time would af-
fect this problem.

SSM

SSM
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101 ••• Leadfoot Lou enters the “Rest-to-Rest” auto competition,
in which each contestant’s car begins and ends at rest, covering a
fixed distance L in as short a time as possible. The intention is to
demonstrate driving skills, and to find which car is the best at the
total combination of speeding up and slowing down. The course is de-
signed so that maximum speeds of the cars are never reached. (a) If
Lou’s car maintains an acceleration (magnitude) of a during
speedup, and maintains a deceleration (magnitude) of 2a during
braking, at what fraction of L should Lou move his foot from the gas
pedal to the brake? (b) What fraction of the total time for the trip has
elapsed at that point? (c) What is the fastest speed Lou’s car ever
reaches? Neglect Lou’s reaction time, and answer in terms of a and L.

102 ••• A physics professor, equipped with a rocket backpack,
steps out of a helicopter at an altitude of 575 m with zero initial ve-
locity. (Neglect air resistance.) For 8.0 s, she falls freely. At that time,
she fires her rockets and slows her rate of descent at 15 m/s2 until
her rate of descent reaches 5.0 m/s. At this point, she adjusts her
rocket engine controls to maintain that rate of descent until she
reaches the ground. (a) On a single graph, sketch her acceleration
and velocity as functions of time. (Take upward to be positive.)
(b) What is her speed at the end of the first 8.0 s? (c) What is the du-
ration of her slowing-down period? (d) How far does she travel
while slowing down? (e) How much time is required for the entire
trip from the helicopter to the ground? ( f ) What is her average ve-
locity for the entire trip?

INTEGRATION 
OF THE EQUATIONS OF MOTION

103 • The velocity of a particle is given by vx(t) � (6.0 m/s2)t
� (3.0 m/s). (a) Sketch v versus t and find the area under the
curve for the interval t � 0 to t � 5.0 s. (b) Find the position func-
tion x(t). Use it to calculate the displacement during the interval
t � 0 to t � 5.0 s.

104 • Figure 2-41 shows the velocity of a particle versus
time. (a) What is the magnitude, in meters, represented by the
area of the shaded box? (b) Estimate the displacement of the
particle for the two 1-s intervals, one beginning at t � 1.0 s and
the other at t � 2.0 s. (c) Estimate the average velocity for the
interval . (d) The equation of the curve is vx �
(0.50 m/s3)t2. Find the displacement of the particle for the inter-
val by integration and compare this answer with
your answer for Part (b). Is the average velocity equal to the
mean of the initial and final velocities for this case?

1.0 s � t � 3.0s

1.0s � t � 3.0s

SSM

106 •• Consider the velocity graph in Figure 2-42. Assuming
x � 0 at t � 0, write correct algebraic expressions for x(t), vx(t), and
ax(t) with appropriate numerical values inserted for all constants.
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107 ••• Figure 2-43 shows the acceleration of a particle versus
time. (a) What is the magnitude, in m/s, of the area of the shaded
box? (b) The particle starts from rest at t � 0. Estimate the velocity
at t � 1.0 s, 2.0 s, and 3.0 s by counting the boxes under the curve.
(c) Sketch the curve vx versus t from your results for Part (b); then
estimate how far the particle travels in the interval t � 0 to t � 3.0 s.

F I G U R E  2 - 4 3 Problem 107 

108 ••• Figure 2-44 is a graph of vx versus t for a particle moving
along a straight line. The position of the particle at time t � 0 is 
x0 � 5.0 m. (a) Find x for various times t by counting boxes, and
sketch x as a function of t. (b) Sketch a graph of the acceleration ax
as a function of the time t. (c) Determine the displacement of the
particle between t � 3.0 s and 7.0 s.
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105 •• The velocity of a particle is given by vx � (7.0 m/s3)t2 �
5.0 m/s. If the particle is at the origin at t0 � 0, find the position
function x(t).
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109 ••• CONCEPTUAL Figure 2-45 shows a plot of x versus t for
an object moving along a straight line. For this motion, sketch
graphs (using the same t axis) of (a) vx as a function of t, and (b) ax
as a function of t. (c) Use your sketches to qualitatively compare the
time(s) when the object is at its largest distance from the origin to
the time(s) when its speed is greatest. Explain why the times are not
the same. (d) Use your sketches to qualitatively compare the time(s)
when the object is moving fastest to the time(s) when its accelera-
tion is the largest. Explain why the times are not the same. SSM

what value of �t would you expect to measure, assuming gexp is the
standard value (9.81 m/s2)? (c) During the experiment, a slight
error is made. Instead of locating the first photogate even with the
top of the table, your not-so-careful lab partner locates it 0.50 cm
lower than the top of the table. However, she does manage to prop-
erly locate the second photogate at a height of 0.50 m above the
floor. However, she releases the marble from the same height that it
was released from when the photogate was 1.00 m above the floor.
What value of gexp will you and your partner determine? What per-
centage difference does this represent from the standard value of g?

114 ••• MULTISTEP The position of a body oscillating on a
spring is given by x � A sin vt, where A and v (lower case Greek
omega) are constants, A � 5.0 cm, and v � 0.175 s�1. (a) Plot x as a
function of t for . (b) Measure the slope of your graph at
t � 0 to find the velocity at this time. (c) Calculate the average
velocity for a series of intervals, beginning at t � 0 and ending at
t � 6.0, 3.0, 2.0, 1.0, 0.50, and 0.25 s. (d) Compute dx/dt to find the
velocity at time t � 0. (e) Compare your results in Parts (c) and (d)
and explain why your Part (c) results approach your Part (d) result.

115 ••• CONCEPTUAL Consider an object that is attached to a
horizontally oscillating piston. The object moves with a velocity
given by v � B sin(vt), where B and v (lower case Greek omega)
are constants and v is in s�1. (a) Explain why B is equal to the max-
imum speed vmax. (b) Determine the acceleration of the object as a
function of time. Is the acceleration constant? (c) What is the maxi-
mum acceleration (magnitude) in terms of v and vmax. (d) At t � 0,
the object’s position is known to be x0. Determine the position as a
function of time in terms of t, v, x0 and vmax.

116 ••• Suppose the acceleration of a particle is a function of x,
where ax(x) � (2.0 s�2)x. (a) If the velocity is zero when x � 1.0 m,
what is the speed when x � 3.0 m? (b) How long does it take the
particle to travel from x � 1.0 m to x � 3.0 m.

117 ••• A rock falls through water with a continuously de-
creasing acceleration. Assume that the rock’s acceleration as a
function of velocity has the form ay � g � bvy where b is a posi-
tive constant. (The �y direction is directly downward.) (a) What
are the SI units of b? (b) Prove mathematically that if the rock is
released from rest at time t � 0, the acceleration will depend
exponentially on time according to ay(t) � ge2bt. (c) What is the
terminal speed for the rock in terms of g and b? (See Problem 38
for an explanation of the phenomenon of terminal speed.)

118 ••• A small rock sinking through water (see Problem 117)
experiences an exponentially decreasing acceleration given by 
ay(t) � ge2bt, where b is a positive constant that depends on the
shape and size of the rock and the physical properties of the
water. Based upon this, find expressions for the velocity and po-
sition of the rock as functions of time. Assume that its initial po-
sition and velocity are both zero and that the �y direction is di-
rectly downward.

119 ••• SPREADSHEET The acceleration of a skydiver jumping
from an airplane is given by where b is a positive
constant that depends on the skydiver’s cross-sectional area and
the density of the surrounding atmosphere she is diving through.
The �y directions is directly downward. (a) If her initial speed is
zero when stepping from a hovering helicopter, show that her
speed as a function of time is given by , where
vt is the terminal speed (see Problem 38) given by , 
and is a time-scale parameter. (b) What fraction of the ter-
minal speed is the speed at t � T. (c) Use a spreadsheet program
to graph vy(t) as a function of time, using a terminal speed of 
56 m/s (use this value to calculate b and T). Does the resulting
curve make sense?

T � vt>g vt � 1g/bvy(t) � vt tanh (t/T)

ay � g � bv2
y ,
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110 ••• MULTISTEP The acceleration of a certain rocket is given
by ax � bt, where b is a positive constant. (a) Find the position func-
tion x(t) if x � x0 and vx � v0x at t � 0. (b) Find the position and ve-
locity at t � 5.0 s if x0 � 0, v0x � 0 and b � 3.0 m/s3. (c) Compute
the average velocity of the rocket between t � 4.5 s and 5.5 s at
t � 5.0 s if x0 � 0, v0x � 0 and b � 3.0 m/s3. Compare this average
velocity with the instantaneous velocity at t � 5.0 s.

111 ••• In the time interval from 0.0 s to 10.0 s, the accelera-
tion of a particle traveling in a straight line is given by ax �
(0.20 m/s3)t. Let to the right be the �x direction. The particle ini-
tially has a velocity to the right of 9.5 m/s and is located 5.0 m
to the left of the origin. (a) Determine the velocity as a function
of time during the interval; (b) determine the position as a func-
tion of time during the interval; (c) determine the average veloc-
ity between t � 0.0 s and 10.0 s, and compare it to the average of
the instantaneous velocities at the start and ending times. Are
these two averages equal? Explain. 

112 ••• Consider the motion of a particle that experiences a
variable acceleration given by ax � a0x � bt, where a0x and b are
constants and x � x0 and vx � v0x at t � 0. (a) Find the instanta-
neous velocity as a function of time. (b) Find the position as a
function of time. (c) Find the average velocity for the time
interval with an initial time of zero and arbitrary final time t.
(d) Compare the average of the initial and final velocities to your
answer to Part (c). Are these two averages equal? Explain.

GENERAL PROBLEMS

113 ••• CONTEXT-RICH You are a student in a science class that
is using the following apparatus to determine the value of g. Two
photogates are used. (Note: You may be familiar with photogates in
everyday living. You see them in the doorways of some stores. They
are designed to ring a bell when someone interrupts the beam while
walking through the door.) One photogate is located at the edge of
a table that is 1.00 m above the floor, and the second photogate is
located directly below the first, at a height 0.500 m above the floor.
You are told to drop a marble through these gates, releasing it from
rest a negligible distance above the upper gate. The upper gate
starts a timer as the ball passes through its beam. The second pho-
togate stops the timer when the ball passes through its beam. (a)
Prove that the experimental magnitude of free-fall acceleration is
given by gexp � (2�y)/(�t)2, where �y is the vertical distance be-
tween the photogates and �t is the fall time. (b) For your setup,

SSM
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120 ••• APPROXIMATION Imagine that you are standing at a
wishing well, wishing that you knew how deep the surface of the
water was. Cleverly, you make your wish. Then you take a penny
from your pocket and drop it into the well. Exactly three seconds
after you dropped the penny, you hear the sound it made when it
struck the water. If the speed of sound is 343 m/s, how deep is the
well? Neglect any effects due to air resistance.

121 ••• CONTEXT-RICH You are driving a car at the 25-mi/h
speed limit when you observe the light at the intersection 65 m in
front of you turn yellow. You know that at that particular intersec-
tion the light remains yellow for exactly 5.0 s before turning red.
After you think for 1.0 s, you then accelerate the car at a constant
rate. You somehow manage to pass your 4.5-m-long car completely
through the 15.0-m-wide intersection just as the light turns red,
thus narrowly avoiding a ticket for being in an intersection when

the light is red. Immediately after passing through the intersection,
you take your foot off the accelerator, relieved. However, down the
road you are pulled over for speeding. You assume that you were
ticketed for the speed of your car as it exited the intersection.
Determine this speed and decide whether you should fight this
ticket in court. Explain.

122 ••• For a spherical celestial object of radius R, the acceleration
due to gravity g at a distance x from the center of the object is

where g0 is the acceleration due to gravity at the ob-
ject’s surface and . For the moon, take g0 � 1.63 m/s2 and
R � 3200 km. If a rock is released from rest at a height of 4R above
the lunar surface, with what speed does the rock impact the moon?
Hint: Its acceleration is a function of position and increases as the object
falls. So do not use constant acceleration free-fall equations, but go back
to basics.

x 
 R
g � g0R

2>x2,



Motion in Two 
and Three Dimensions

3-1 Displacement, Velocity, and Acceleration

3-2 Special Case 1: Projectile Motion

3-3 Special Case 2: Circular Motion

T
he motion of a sailboat tacking into the wind or the path of a home-run ball
as it flies out of a ballpark cannot be fully described using the equations we
presented in Chapter 2. Instead, to describe these motions, we must extend
the idea of motion in one dimension discussed in Chapter 2 to two and three
dimensions. To do this, we must revisit the concept of vectors and look
at how they can be used to analyze and describe motion in more than

one dimension.

In this chapter, we will discuss the displacement, velocity, and acceleration
vectors in further detail. In addition, we will discuss two specific types of
motion: projectile motion and circular motion. The material in this chapter
presumes you are familiar with the material that introduces vectors in
Sections 6 and 7 of Chapter 1. You are encouraged to review these sections
before proceeding in this chapter.

3
C H A P T E R

How can we calculate the boat’s

displacement and its average

velocity? (See Example 3-1.)
?
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SAILBOATS DO NOT TRAVEL IN
STRAIGHT LINES TO THEIR
DESTINATIONS, BUT INSTEAD MUST
“TACK” BACK AND FORTH ACROSS THE
WIND. THIS BOAT MUST SAIL EAST, THEN
SOUTH, AND THEN EAST AGAIN, IN ITS
JOURNEY TO A SOUTHEASTERN PORT.
(PhotoDisc/Getty Images.)
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3-1 DISPLACEMENT, VELOCITY,
AND ACCELERATION

In Chapter 2, the concepts of displacement, velocity, and acceleration were used to
describe the motion of an object moving in a straight line. Now we use the concept
of vectors to extend these characteristics of motion in two and three dimensions.

POSITION AND DISPLACEMENT VECTORS

The position vector of a particle is a vector drawn from the origin of a coordinate
system to the location of the particle. For a particle in the x, y plane at the point
with coordinates (x, y), the position vector is

3-1

DEFINITION — POSITION VECTOR

Note that x and y components of the position vector are the Cartesian coordinates
(Figure 3-1) of the particle.

Figure 3-2 shows the actual path or trajectory of the particle. At time t1, the par-
ticle is at P1, with position vector ; by time t2, the particle has moved to P2,
with position vector . The particle’s change in position is the displacement vec-
tor

3-2

DEFINITION — DISPLACEMENT VECTOR

Using unit vectors, we can rewrite this displacement as

3-3

VELOCITY VECTORS

Recall that average velocity is defined as displacement divided by the elapsed
time. The result of the displacement vector divided by the elapsed time interval
�t � t2 � t1 is the average-velocity vector:

3-4

DEFINITION — AVERAGE-VELOCITY VECTOR

The average velocity vector and the displacement vector are in the same direction.
The magnitude of the displacement vector is less than the distance traveled

along the curve unless the particle moves along a straight line and never reverses
its direction. However, if we consider smaller and smaller time intervals 
(Figure 3-3), the magnitude of the displacement approaches the distance along the
curve, and the angle between and the tangent to the curve at the beginning of
the interval approaches zero. We define the instantaneous-velocity vector as the
limit of the average-velocity vector as �t approaches zero:

3-5

DEFINITION — INSTANTANEOUS-VELOCITY VECTOR

vS � lim
¢tS0

¢rS

¢t
�
drS

dt

¢rS

vSav �
¢rS

¢t

¢rS � rS2 � rS1 � (x2 � x1)in � (y2 � y1)jn � ¢xin � ¢yjn

¢rS � rS2 � rS1

¢rS:
rS2

rS1

rS

rS � xin � yjn

rS

F I G U R E  3 - 1 The x and y components of
the position vector for a particle are the x
and y (Cartesian) coordinates of the particle.

rS

Particle

x

(x, y)
y

x î

r = x î + y ĵ

y ĵ

y

xO

r2

r1

Δr

P1 at t1

P2 at t2

y

xO

r1

P”2

P2

P’2

Δr”

The tangent to the
curve at P1 is by definition
the direction of v at P1

Δr ’ Δr

P1

F I G U R E  3 - 3 As the time interval
decreases, the angle between direction of 
and the tangent to the curve approaches zero.

¢rS

Do not confuse the trajectory in
graphs of x-versus-y with the curve

in the x-versus-t plots of Chapter 2.
!

F I G U R E  3 - 2 The displacement vector 
is the difference in the position vectors,

Equivalently, is the vector
that, when added to the initial position vector

yields the final position vector That is,
rS1 � ¢rS � rS2 .

rS2 .rS1 ,

¢rS¢rS � rS2�rS1 .

¢rS
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The instantaneous-velocity vector is the derivative of the position vector with re-
spect to time. Its magnitude is the speed and its direction is along the line tangent
to the curve in the direction of motion of the particle.

To calculate the derivative in Equation 3-5, we write the position vectors in
terms of their components (Equation 3-1):

Then

or

3-6

where vx � dx/dt and vy � dy/dt are the x and y components of the velocity.
The magnitude of the velocity vector is given by:

3-7

and the direction of the velocity is given by

3-8u � tan�1
vy

vx

v � 2v2
x � v2

y

vS �
dx
dt

in �
dy

dt
jn � vxi

n � vyj
n

vS � lim
¢tS0

¢rS

¢t
� lim

¢tS0

¢xin � ¢yjn

¢t
� lim

¢tS0
a¢x

¢t
b in � lim

¢tS0
a¢y

¢t
b jn

¢rS � rS2 � rS1 � (x2 � x1)in � (y2 � y1)jn � ¢xin � ¢yjn

Do not trust your calculator to
always give the correct value for �

when using Equation 3-8. Most
calculators will return the correct value
for � if vx is positive. If vx is negative,
however, you will need to add 180°
(� rad) to the value returned by the
calculator.

!

See

Math Tutorial for more

information on 

Trigonometry

Example 3-1 The Velocity of a Sailboat

A sailboat has coordinates (x1, y1) � (130 m, 205 m) at t1 � 60.0 s. Two minutes later, at time t2,
it has coordinates (x2, y2) � (110 m, 218 m). (a) Find the average velocity for this 
two-minute interval. Express in terms of its rectangular components. (b) Find
the magnitude and direction of this average velocity. (c) For t � 20.0 s, the posi-
tion of a second sailboat as a function of time is x(t) � b1 � b2t and y(t) � c1 � c2 t,
where b1 � 100 m, b2 � 0.500 m s, c1 � 200 m, and c2 � 360 m s. Find the instan-
taneous velocity as a function of time t, for t � 20.0 s.

PICTURE The initial and final positions of the first sailboat are given. Because
the motion of the boat is in two dimensions, we need to express the displace-
ment, average velocity, and instantaneous velocity as vectors. Then we can use
Equations 3-5 through 3-8 to obtain the requested values.

#> >vSav

vSav

210

220

200
110100 120

(110, 218)

(130, 205)

θ
130

Δx

Δy

y, m

x, m

Δr

SOLVE

(a) 1. Draw a coordinate system (Figure 3-4) and draw the displacement
of the sailboat. Draw the average-velocity vector (it and the
displacement vector are in the same direction):

2. The x and y components of the average velocity are calculated
directly from their definitions:

vSav

where

so

�(0.167 m/s)in � (0.108 m/s)jn�vSav

vy av �
¢y
¢t

�
218 m � 205 m

120 s 
� 0.108 m/s

vx av �
¢x
¢t

�
110 m � 130 m

120 s
� �0.167 m/s

vSav � vx avin � vy avjn

(b) 1. The magnitude of is found from the Pythagorean theorem:vSav 0.199 m/svav �4(vx av)2 � (vy av)2 �

2. The ratio of to gives the tangent of the angle � between
and the �x direction (we add 180° to the value of �33.0°

returned by the calculator because vx is negative):
vSav

vx avvy av

so

147°� �33.0° � 180° �u � tan�1
vy av

vx av

� tan�1 0.108 m/s
�0.167 m/s

tanu �
vy av

vx av

F I G U R E  3 - 4
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CHECK The magnitude of is greater than the absolute value of either its x or its y com-
ponent. With t in seconds, the units for the y component of in Part (c) are m �s/s2 � m/s,
which are appropriate units for velocity.

vS
vSav

(c) We find the instantaneous velocity by calculating dx/dt and dy/dt:vS (0.500 m/s)in �
360 m # s
t2

jn�vS �
dx
dt

in �
dy

dt
jn � b2in � c2 t

�2jn

RELATIVE VELOCITY

If you are sitting in an airplane that is moving with a ve-
locity of 500 mi/h toward the east, your velocity is the same
as that of the airplane. This velocity might be your velocity
relative to the surface of Earth, or it might be your velocity
relative to the air outside the airplane. (These two relative
velocities would be very different if the plane were flying in
a jet stream.) In addition, your velocity relative to the air-
plane itself is zero.

The surface of Earth, the air outside the plane, and the
plane itself are frames of reference. A frame of reference (or
reference frame) is an extended object or collection of ob-
jects whose parts are at rest relative to each other. To spec-
ify the velocity of an object requires that you specify the
frame of reference that the velocity is relative to.

We use coordinate axes that are attached to reference frames to
make position measurements. (A coordinate axis is said be attached to
a reference frame if the coordinate axis is at rest relative to the refer-
ence frame.) For a horizontal coordinate axis attached to the plane,
your position remains constant. (At least it does if you remain in your
seat.) However, for a horizontal coordinate axis attached to the surface
of Earth, and for a horizontal coordinate axis attached to the air out-
side the plane, your position keeps changing. (If you have trouble
imagining a coordinate axis attached to the air outside the plane, in-
stead imagine a coordinate axis attached to a balloon that is sus-
pended in, and drifting with, the air. The air and the balloon are at rest
relative to each other, and together they form a single reference
frame.)

If a particle p moves with velocity relative to reference
frame A, which is in turn moving with velocity relative to
reference frame B, the velocity of the particle relative to refer-
ence frame B is related to and by

3-9

For example, if a person p is on a railroad car C that is moving with
velocity relative to the ground G (Figure 3-5a), and the person is
walking with velocity (Figure 3-5b) relative to the car, then the ve-
locity of the person relative to the ground is the vector sum of these
two velocities: (Figure 3-5c).

The velocity of object A relative to object B is equal in magnitude
and opposite in direction to the velocity of object B relative to
object A. For example, is equal to , where is the velocity
of the person relative to the car, and is the velocity of the car rel-
ative to the person.

vSCp

vSpC�vSCpvSpC

vSpG � vSpC � vSCG

vSpC

vSCG

vSpB � vSpA � vSAB

vSABvSpA

vSpB

vSAB

vSpA

(a)

(b)

(c)

vpC vCG

vCG

vpC

vpG
vpC

vCG

=
+

F I G U R E  3 - 5 The velocity of the person relative to the
ground is equal to the velocity of the person relative to
the car plus the velocity of the car relative the ground.

Midair refueling. Each plane is nearly at rest relative to the other, though
both are moving with very large velocities relative to Earth.
(Novastock/Dembinsky Photo Associates.)
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PROBLEM-SOLVING STRATEGY

Relative Velocity

PICTURE The first step in solving a relative-velocity problem is to identify
and label the relevant reference frames. Here, we will call them reference
frame A and reference frame B.

SOLVE

1. Using (Equation 3-9), relate the velocity of the moving
object (particle p) relative to frame A to the velocity of the particle relative
to frame B.

2. Sketch a vector addition diagram for the equation . Use
the head-to-tail method of vector addition. Include coordinate axes on the
sketch.

3. Solve for the desired quantity. Use trigonometry where appropriate.

CHECK Make sure that you solve for the velocity or position of the moving
object relative to the proper reference frame.

vSpB � vSpA � vSAB

vSpB � vSpA � vSAB

The order of the subscripts used
when denoting relative velocity

vectors is very important. When using
relative velocity vectors, be very
careful to write the subscripts in a
consistent order.

!

Example 3-2 A Flying Plane

A pilot wishes to fly a plane due north relative to the ground. The airspeed of the plane is
200 and the wind is blowing from west to east at 90 . (a) In which direction
should the plane head? (b) What is the ground speed of the plane?

PICTURE Because the wind is blowing toward the east, a plane headed due north will drift
off course toward the east. To compensate for this crosswind, the plane must head west of
due north. The velocity of the plane relative to the ground is equal to the velocity of the
plane relative to the air plus the velocity of the air relative to the ground .vSAGvSpA

vSpG

km>hkm>h

SOLVE

(a) 1. The velocity of the plane relative to the ground is given by
Equation 3-9:

vSpG � vSpA � vSAG

N

E

θ

W

S

vpA
vpG

vAG

F I G U R E  3 - 6

2. Make a velocity addition diagram (Figure 3-6) showing the
addition of the vectors in step 1. Include direction axes:

CHECK Heading directly into the 90 km/h wind would result in a ground speed of 
200 km/h �90 km/h � 110 km/h. The Part (b) result of 180 km/h is greater than 
110 km/h and less than 200 km/h, as expected.

3. The sine of the angle � between the velocity of the plane relative to
the air and due north equals the ratio of vAG and vpA:

so

27° west of northu � sin�1 9
20

�

sinu �
vAG

vpA

�
90 km/h

200 km/h
�

9
20

(b) Because and are mutually perpendicular, we can use the
Pythagorean theorem to find the magnitude of :vSpG

vSpGvSAG

so

180 km/h� 3(200 km/h)2 � (90 km/h)2 �

vpG �4v 2
pA � v 2

AG

v2
pA � v2

pG � v2
AG
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ACCELERATION VECTORS

The average-acceleration vector is the ratio of the change in the instantaneous-
velocity vector, , to the elapsed time interval �t:

3-10

DEFINITION — AVERAGE-ACCELERATION VECTOR

The instantaneous-acceleration vector is the limit of this ratio as �t approaches
zero; in other words, it is the derivative of the velocity vector with respect to time:

3-11

DEFINITION — INSTANTANEOUS-ACCELERATION VECTOR

To calculate the instantaneous acceleration, we express in rectangular
coordinates:

Then

3-12

where the components of are

.ax �
dvx
dt

, ay �
dvy

dt
, az �

dvz
dt

aS
� axi

n � ay jn � azk
n

aS �
dvx
dt

in �
dvy

dt
jn �
dvz
dt

kn �
d2x
dt2

in �
d2y

dt2
jn �
d2z
dt2

kn

vS � vxi
n � vy j

n � vzk
n �
dx
dt

in �
dy

dt
jn �
dz
dt

kn

vS

aS � lim
¢tS0

¢vS

¢t
�
dvS

dt

aSav �
¢vS

¢t

¢vS

Example 3-3 A Thrown Baseball

The position of a thrown baseball is given by 
. Find its velocity and acceleration as functions of time.

PICTURE Recall that (Equation 3-1). We can find the x and y components of the
velocity and acceleration by taking the time derivatives of x and y.

rS � xin � yjn

� (4.9 m>s2)t2] jn
rS � [1.5 m � (12 m>s)t]in � [(16 m>s)t

SOLVE

1. Find the x and y components of :rS

y � (16 m>s)t � (4.9 m>s2)t2
x � 1.5 m � (12 m/s)t

2. The x and y components of the velocity are found by differentiating 
x and y:

3. We differentiate vx and vy to obtain the components of the
acceleration:

vy �
dy

dt
� (16 m/s) � 2(4.9 m/s2)t

vx �
dx
dt

� 12 m/s

ay �
dvy

dt
� �9.8 m/s2

ax �
dvx
dt

� 0

4. In vector notation, the velocity and acceleration are

(�9.8 m/s2) jnaS �

(12 m/s)in � [16 m/s � (9.8 m/s2)t] jnvS �

CHECK The units that accompany the quantities for velocity and acceleration are m/s and
m/s2, respectively. Our step 4 results for velocity and acceleration have the correct units of m/s
and m/s2.
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Example 3-4 Rounding a Curve

A car is traveling east at 60 km/h. It rounds a curve, and 5.0 s later it is traveling north at 
60 km/h. Find the average acceleration of the car.

PICTURE We can calculate the average acceleration from its definition, . To do
this, we first calculate , which is the vector that when added to , results in .vSfvS i¢vS

aSav � ¢vS/¢t

SOLVE

1. The average acceleration is the change in velocity divided by the
elapsed time. To find , we first find the change in velocity:aSav

aSav �
¢vS

¢t

2. To find , we first specify and . Draw and 
(Figure 3-7a), and draw the vector addition diagram (Figure 3-7b)
corresponding to :vSf � vSi � ¢vS

vSfvSivSfvSi¢vS

3. The change in velocity is related to the initial and final
velocities:

N

EW

S

vi

vf

vf

vi

Δv

(a)

(b)

^
j

^
i

F I G U R E  3 - 7

vSf � vS i � ¢vS

4. Substitute these results to find the average acceleration: aSav �
vf
S

� vi
S

¢t
�

60 km/h jn � 60 km/h in

5.0 s

5. Convert 60 km/h to meters per second: 60 km/h �
1 h

3600 s
�

1000 m
1 km

� 16.7 m/s

For a vector to be constant, both its magnitude and direction must remain con-
stant. If either magnitude or direction changes, the vector changes. Thus, if a car
rounds a curve in the road at constant speed, it is accelerating because the velocity
is changing due to the change in direction of the velocity vector.

CHECK The eastward component of the velocity decreases from 60 km/h to zero, so we
expect a negative acceleration component in the x direction. The northward component of
the velocity increases from zero to 60 km/h, so we expect a positive acceleration component
in the y direction. Our step 6 result meets both of these expectations.

TAKING IT FURTHER Note that the car is accelerating even though its speed remains
constant.

PRACTICE PROBLEM 3-1 Find the magnitude and direction of the average acceleration
vector.

6. Express the acceleration in meters per second squared:

�3.4 m/s2in � 3.4 m/s2jn�

aSav �
vSf � vSi

¢t
�

16.7 m/s jn � 16.7 m/s in

5.0 s

Do not assume that the acceleration
of an object is zero just because the

object is traveling at constant speed.
For the acceleration to be zero, neither
the magnitude nor the direction of the
velocity vector can be changing.

!The motion of an object traveling in a circle at constant speed is an example of
motion in which the direction of the velocity changes even though its magnitude,
the speed, remains constant.

THE DIRECTION OF THE ACCELERATION VECTOR

In the next few chapters, you will need to determine the direction of the accelera-
tion vector from a description of the motion. To see how this is done, consider a
bungee jumper as she slows down prior to reversing direction at the lowest point
of her jump. To find the direction of her acceleration as she loses speed during the
last stages of her descent, we draw a series of dots representing her position at
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successive ticks of a clock, as shown in Figure 3-8a. The faster she moves, the greater
the distance she travels between ticks, and the greater the space between the dots in
the diagram. Next we number the dots, starting with zero and increasing in the di-
rection of her motion. At time t0 she is at dot 0, at time t1 she is at dot 1, and so forth.
To determine the direction of the acceleration at time t3, we draw vectors repre-
senting the jumper’s velocities at times t2 and t4. The average acceleration during
the interval t2 to t4 equals , where and . We use this
result as an estimate of her acceleration at time t3. That is, . Because 
and are in the same direction, by finding the direction of we also find the
direction of . The direction of is obtained by using the relation 
and drawing the corresponding vector addition diagram (Figure 3-8b). Because the
jumper is moving faster (the dots are farther apart) at t2 than at t4, we draw 
longer than From this figure, we can see that , and thus , is directed
upward.

aS3¢vSvS4 .
vS2

vS2 � ¢vS � vS4¢vSaS3

¢vS¢vS
aS3aS3 � ¢vS/¢t

¢t � t4 � t2¢vS � vS4 � vS2¢vS/¢t

CONCEPT CHECK 3-1

Figure 3-9 is a motion diagram of
the bungee jumper before, during,
and after time t6, when she mo-
mentarily come to rest at the low-
est point in her descent. During
the part of her ascent shown, she
is moving upward with increas-
ing speed. Use this diagram to de-
termine the direction of the
jumper’s acceleration (a) at time t6
and (b) at time t9.

✓

F I G U R E 3 - 9  

The dots for the bungee
jumper’s ascent are drawn to
the right of those for her
descent so that they do not
overlap each other. Her
motion, however, is straight
down and then straight up.

t0

t1

t2

t3

t4

t5

t12

t11

t10

t9

t8

t7

t6

Example 3-5 The Human Cannonball

You are asked to substitute for an ill performer in a circus that is sponsored by your school.
The job, should you choose to accept it, is to get shot out of a cannon. Never afraid to accept
a challenge, you accept. The barrel of the cannon is inclined an angle of 60° above the
horizontal. Your physics teacher offers you extra credit on the next exam if you successfully
use a motion diagram to estimate the direction of your acceleration
during the ascending portion of the flight.

PICTURE During the ascending portion of the flight, you travel in a
curved path with decreasing speed. To estimate the direction of your
acceleration you use and estimate the direction of . To
estimate the direction of , we draw a motion diagram and then
make a sketch of the relation .

SOLVE

1. Make a motion diagram (Figure 3-10a) of your motion during the
ascending portion of the flight. Because your speed decreases as
you ascend, the spacing between adjacent dots on your diagram
decreases as you rise:

2. Pick a dot on the motion diagram and draw a velocity vector on
the diagram for both the preceding and the following dot. These
vectors should be drawn tangent to your trajectory.

vS i � ¢vS � vSf

¢vS
¢vSaSav � ¢vS/¢t

0

1

2

3

v3

v2

v1

(a)

4

F I G U R E  3 - 1 0

t0

t1

t2
v2

v4

t3

t4

t5

(a)

v4

a3Δv

v2

(b)

F I G U R E  3 - 8 (a) A motion diagram of a
bungee jumper losing speed as she descends.
The dots are drawn at successive ticks of a
clock. (b) We draw vectors and starting
from the same point. Then, we draw from
the head of to the head of to obtain the
graphical expression of the relation

. The acceleration is in the
same direction as .¢vS

aS3vS2 � ¢vS � vS4

vS4vS2

¢vS
vS4vS2
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CONCEPT CHECK 3-2

Use a motion diagram to estimate
the direction of the acceleration in
Example 3-5 during the descend-
ing portion of your flight.

✓

3. Draw the vector addition diagram (Figure 3-10b) of the relation . Begin by
drawing the two velocity vectors from the same point. These vectors have the same
magnitude and direction as the vectors drawn for step 2. Then, draw the vector from
the head of to the head of .

4. Draw the estimated acceleration vector in the same direction as , but not the same
length (because ).

CHECK During the ascent, the upward component of the velocity is decreasing, so we
expect to have a downward vertical component. Our step 3 result satisfies this
expectation.

TAKING IT FURTHER The process of finding the direction of the acceleration using a mo-
tion diagram is not precise. Therefore, the result is an estimate of the direction of the accel-
eration, as opposed to a precise determination.

3-2 SPECIAL CASE 1: PROJECTILE MOTION

In a home run hit or a field goal kick, the ball follows a particular curved path
through the air. This type of motion, known as projectile motion, occurs when an
object (the projectile) is launched into the air and is allowed to move freely. The
projectile might be a ball, a dart, water shooting out of a fountain, or even a human
body during a long jump. If air resistance is negligible, then the projectile is said to
be in free-fall. For objects in free-fall near the surface of Earth, the acceleration is
the downward acceleration due to gravity.

Figure 3-11 shows a particle launched with initial speed v0 at angle �0 above the
horizontal. Let the launch point be at (x0, y0); y is positive upward and x is positive
to the right. The initial velocity then has components

3-13a

3-13b

In the absence of air resistance, the acceleration is constant. The projectile has
no horizontal acceleration, so the only acceleration is the free-fall acceleration ,
directed downward:

3-14a

and

3-14b

Because the acceleration is constant, we can use the kinematic equations for con-
stant acceleration presented in Chapter 2. The x component of the velocity is
constant because no horizontal acceleration exists:

3-15a

The y component of the velocity varies with time according to 
(Equation 2-12), with :

3-15b

Notice that vx does not depend on vy and vy does not depend on vx: The horizontal
and vertical components of projectile motion are independent. Dropping a ball from a
desktop and projecting a second ball horizontally at the same time can demonstrate

vy � v0y � gt

ay � �g
vy � v0y � ayt

vx � v0x

vS

ay � �g

ax � 0

gS
aS

v0y � v0 sinu0

v0x � v0 cosu0

¢vS0

¢vS

aS � ¢vS>¢t ¢vS
vSfvS i

¢vS

vS i � ¢vS � vSf

v3

Δv
av1

(b)

v0y

v0x
(x0, y0)

θ

y

x

v0

0

F I G U R E  3 - 1 1 The components of are
and , where �0 is

the angle above the horizontal of .vS0

v0y � v0 sinu0v0x � v0 cosu0

vS0

F I G U R E  3 . 1 0  (continued)
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the independence of vx and vy, as shown in Figure 3-12. Notice that the two balls
strike the floor simultaneously.

According to Equation 2-14, the displacements x and y are given by

3-16a

3-16b

The notation x(t) and y(t) simply emphasizes that x and y are functions of time. If
the y component of the initial velocity is known, the time t for which the particle is
at height y can be found from Equation 3-16b. The horizontal position at that time
can then be found using Equation 3-16a. (Equations 3-14 to 3-16 are expressed in
vector form immediately preceding Example 3-10.)

The general equation for the path y(x) of a projectile can be obtained from
Equations 3-16 by eliminating the variable t. Choosing x0 � 0 and y0 � 0, we ob-
tain t � x/v0x from Equation 3-16a. Substituting this into Equation 3-16b gives

Substituting for the velocity components using v0x � v0 cos �0 and v0y � v0 sin �0
yields

3-17

PATH OF PROJECTILE

for the projectile’s path. This equation is of the form y � ax � bx2, which is the
equation for a parabola passing through the origin. Figure 3-13 shows the path of
a projectile with its velocity vector and components at several points. The path is
for a projectile that impacts the ground at P. The horizontal distance between
launch and impact at the same elevation is the horizontal range R.

ƒ¢x ƒ

y(x) � (tan u0)x � a g

2v2
0 cos2u0

bx2

y(x) � v0ya xv0x

b �
1
2
ga x
v0x

b 2

� av0y

v0x

bx � a g
2v2

0x

bx2

y(t) � y0 � v0yt � 1
2 gt2

x(t) � x0 � v0xt

F I G U R E  3 - 1 2 The red ball is released
from rest at the instant the yellow ball rolls off
the tabletop. The positions of the two balls are
shown at successive equal time intervals. The
vertical motion of the yellow ball is identical
with the vertical motion of the red ball, thus
demonstrating that the vertical motion of the
yellow ball is independent of its horizontal
motion. (Richard Megna/Fundamental
Photographs.)

F I G U R E  3 - 1 3 The path of a projectile,
showing velocity components at different
times.

y

x

R

θ0

O
P

R Range
P Impact point

v0x î

v0x î

v0x î

v = v0x î

î
v0y ĵ

vy ĵ

vy ĵ

ĵ
v0

v

v

Do not think that the velocity of a
projectile is zero when the

projectile is at the highest point in its
trajectory. At the highest point in the
trajectory vy is zero, but the projectile
may still be moving horizontally.

!

Example 3-6 A Cap in the Air

A delighted physics graduate throws her cap into the air with an initial velocity of 24.5 at
36.9° above the horizontal. The cap is later caught by another student. Find (a) the total time the
cap is in the air, and (b) the total horizontal distance traveled. (Ignore effects of air resistance.)

PICTURE We choose the origin to be the initial position of the cap so that x0 � y0 � 0. We
assume it is caught at the same height. The total time the cap is in the air is found by 
setting y(t) � 0 in (Equation 3-16b). We can then use this result in

(Equation 3-16a) to find the total horizontal distance traveled.x(t) � x0 � v0xt
y(t) � y0 � v0yt � 1

2 gt2

m>s
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CHECK If the cap traveled at a constant speed of 24.5 m/s for 3.00 s it would have
traveled a distance of 73.5 m. Because it was launched at an angle, its horizontal
speed was less than 24.5 m/s, so we expect its distance traveled to be less than 73.5 m.
Our Part (b) result of 58.8 m meets this expectation.

TAKING IT FURTHER The vertical component of the initial velocity of the cap is
14.7 m/s, the same as that of the cap in Example 2-13 (Chapter 2), where the cap was
thrown straight up with v0 � 14.7 m/s. The time the cap is in the air is also the same
as in Example 2-13. Figure 3-14 shows the height y versus t for the cap. This curve is
identical to Figure 2-20a (Example 2-13) because the caps each have the same vertical
acceleration and vertical velocity. Figure 3-14 can be reinterpreted as a graph of y ver-
sus x if its time scale is converted to a distance scale, as shown in the figure. This is
accomplished by multiplying the time values by 19.6 m/s. This works because the
cap moves at (24.5 m/s) cos 36.9° � 19.6 m/s horizontally. The curve y versus x is a
parabola (as is the curve y versus t).

SOLVE

(a) 1. Setting y � 0 in Equation 3-16b:

0 � t(v0y � 1
2 gt)

y � v0y t � 1
2 gt2

t1 � 0 (initial time)

t2 �
2v0y

g

v0y � v0 sinu0

3.00 s�
2(24.5 m/s) sin36.9°

9.81 m/s2 �t2 �
2v0y

g
�

2v0 sinu0

g

58.8 m� (24.5 m/s) cos36.9°(3.00 s) �x � v0xt2 � (v0 cosu0)t2

2. There are two solutions for t:

3. Use trigonometry to relate v0y to v0 and �0 (see Figure 3-11):

4. Substitute for v0y in the step 2 result to find the total time t2:

(b) Use the value for the time in step 4 to calculate the total horizontal
distance traveled:

1

5

10

y, m

19.6 39.2 58.8

2 3 t, s

x, m

F I G U R E  3 - 1 4 A plot of y versus t and of y
versus x.

SOLVE

(a) 1. Sketch the trajectory of the package during the time it is in the air. Include coordinate
axes as shown in Figure 3-15:

y � 0 � v0yt � 1
2 gt2 � v0yt � 1

2 gt2

y � y0 � v0yt � 1
2 ayt

2

0θ

y, m

0

−100

x, m

v0

F I G U R E  3 - 1 5 The parabola intersects the
y � �100 m line twice, but only one of those
times is greater than zero.

Example 3-7 A Supply Drop

A helicopter drops a supply package to flood victims on a raft on a swollen lake. When the
package is released, the helicopter is 100 m directly above the raft and flying at a velocity of
25.0 at an angle �0 � 36.9° above the horizontal. (a) How long is the package in the air?
(b) How far from the raft does the package land? (c) If the helicopter continues at constant
velocity, where is the helicopter when the package lands? (Ignore effects of air resistance.)

PICTURE The time in the air depends only on the vertical motion. Using
(Equation 3-16b), you can solve for the time. Choose the origin to be

at the location of the package when it is released. The initial velocity of the package is the ve-
locity of the helicopter. The horizontal distance traveled by the package is given by

(Equation 3-16a), where t is the time the package is in the air.x(t) � v0xt

y(t) � y0 � v0yt � 1
2gt2

m>s

2. To find the time of flight, write y(t) for motion
with constant acceleration, then set y0 � 0 and
ay � �g in the equation:
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CHECK The helicopter is directly above the package when the package hits
the water (and at all other times before then). This is because the horizontal
velocities of the package and the helicopter were equal at release, and the
horizontal velocities of both remain constant during flight.

TAKING IT FURTHER The positive time is appropriate because it corre-
sponds to a time after the package is dropped (which occurs at t � 0). The
negative time is when the package would have been at y � �100 m if its
motion had started earlier as shown in Figure 3-16.

3. The solution to the quadratic equation is given
by the quadratic formula:

Using this, solve the quadratic equation from step 2 for t:

x �
�b � 2b2�4ac

2a

ax2 � bx � c � 0

4. Solve for the time when y � �100 m. First, solve for v0y, then use
the value for v0y to find t.

Because the package is released at t � 0, the time of impact cannot
be negative. Hence:

(b) 1. At impact the package has traveled a horizontal distance x, where
x is the horizontal velocity times the time of flight. First solve for
the horizontal velocity:

2. Next substitute for v0x in (Equation 3-16a) to find x.x � x0 � v0xt

(c) The coordinates of the helicopter at the time of impact are

so

and

t �
v0y �4v2

0y � 2gy

g

0 � 1
2 gt2 � v0yt � y

y � v0yt � 1
2 gt2

so

so

t � �3.24 s or t � 6.30 s

t �
15.0 m/s � 3(15.0 m/s)2 � 2(9.81 m/s2)(�100m)

9.81 m/s2

v0y � v0 sinu0 � (25.0 m/s) sin36.9° � 15.0 m/s

6.30 st �

� (25.0 m/s) cos36.9° � 20.0 m/sv0x � v0 cosu0

126 mx � v0xt � (20.0 m/s)(6.30 s) �

At impact, the helicopter is

.194 m directly above the package

� 0 � (15.0 m/s)(6.30 s) � 94.4 myh � yh0 � vh0t

xh � v0xt � (20.0 m/s)(6.30 s) � 126 m

y

−100 m

1 3 520 4 6

6.30 s

7−1−4 −2−3

−3.24 s

t, s

F I G U R E  3 - 1 6

Example 3-8 Dropping Supplies

Using Example 3-7, find (a) the time t1 for the package to reach its greatest height h above the
water, (b) its greatest height h, and (c) the time t2 for the package to fall to the water from its
greatest height.

PICTURE The time t1 is the time at which the vertical component of the velocity is zero.
Using (Equation 3-15b) solve for t1.vy(t) � v0y � gt
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SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Answers

4.77 st2 �

111 m¢y � 11.48 m,    so h �

vy av � 7.505 m/s

1.53 st1 �

vy(t) � v0y � gt

CHECK Note that t1 � t2 � 6.30 s, in agreement with Example 3-7. Also, note that t1 is less than
t2. This is as expected because the package rises a distance of 12 m but falls a distance of 112 m.

PRACTICE PROBLEM 3-2 Solve Part (b) of Example 3-8 using y(t) (Equation 3-16b) instead
of finding vy av.

HORIZONTAL RANGE OF A PROJECTILE

The horizontal range R of a projectile can be written in terms of its initial speed and
initial angle above the horizontal. As in the preceding examples, we find the hori-
zontal range by multiplying the x component of the velocity by the total time that
the projectile is in the air. The total flight time T is obtained by setting y � 0 and 
t � T in (Equation 3-16b).

Dividing through by T gives

The flight time of the projectile is thus

To find the horizontal range R, we substitute T for t in x(t) � v0xt (Equation 3-16a)
to obtain

This can be further simplified by using the trigonometric identity:

Thus,

3-18

HORIZONTAL RANGE OF A PROJECTILE

PRACTICE PROBLEM 3-3

Use Equation 3-18 to verify the answer Part (b) of Example 3-6.

R �
v2

0

g
sin2u0

sin2u � 2sinu cosu

R � v0xT � (v0 cosu0)a2v0

g
sinu0b �

2v2
0

g
sinu0 cosu0

T �
2v0y

g
�

2v0

g
sinu0

v0y � 1
2gT � 0

0 � v0yT � 1
2 gT2  T 
 0

y � v0t � 1
2gt2

Steps

(a) 1. Write vy(t) for the package.

2. Set vy(t1) � 0 and solve for t1.

(b) 1. Find vy av during the time the package is moving up.

2. Use vy av to find the distance traveled up. Then find h.

(c) Find the time for the package to fall a distance h.
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2. Substitute this into the equation for x(t) and find the
horizontal distance traveled during this time.

Because 3.91 m is less than 4.00 m, it appears the police officer fails to
make it across the gap between buildings.

3.91 mx �

x � 0 � (5.00 m/s)(0.782 s)

x � x0 � vx0t

Equation 3-18 is useful if you want to find the range
for several projectiles that have equal initial speeds. For
this case, this equation shows how the range depends
on �. Because the maximum value of sin 2� is 1, and be-
cause sin 2� � 1 when � � 45°, the range is greatest
when � � 45°. Figure 3-17 shows graphs of the vertical
heights versus the horizontal distances for projectiles
with an initial speed of 24.5 m/s and several different
initial angles. The angles drawn are 45°, which has the
maximum range, and pairs of angles at equal amounts
above and below 45°. Notice that the paired angles have
the same range. The green curve has an initial angle of
36.9°, as in Example 3-6.

In many practical applications, the initial and final ele-
vations may not be equal, or other considerations are im-
portant. For example, in the shot put, the ball ends its
flight when it hits the ground, but it is projected from an
initial height of about 2 m above the ground. This condi-
tion causes the horizontal displacement to be at a maxi-
mum at an angle somewhat lower than 45°, as shown in
Figure 3-18. Studies of the best shot-putters show that
maximum horizontal displacement occurs at an initial
angle of about 42°.

Example 3-9 To Catch a Thief

A police officer chases a master jewel thief across city rooftops. They
are both running when they come to a gap between buildings that is
4.00 m wide and has a drop of 3.00 m (Figure 3-19). The thief, having
studied a little physics, leaps at 5.00 , at an angle of 45.0° above
the horizontal, and clears the gap easily. The police officer did not
study physics and thinks he should maximize his horizontal velocity,
so he leaps horizontally at 5.00 . (a) Does he clear the gap? (b) By
how much does the thief clear the gap?

PICTURE Assuming they both clear the gap, the total time in the air
depends only on the vertical aspects of the motion. Choose the origin
at the launch point, with upward positive so that Equations 3-16
apply. Use Equation 3-16b for y(t) and solve for the time when y � �3.00 m for �0 � 0
and again for �0 � 45.0°. The horizontal distances traveled are the values of x at these 
times.

m>s
m>s

SOLVE

(a) 1. Write y(t) for the police officer and solve for t when
y � �3.00 m. t � 0.782 s

� 3.00 m � 0 � 0 � 1
2 (9.81 m/s2)t2y � y0 � vy0t � 1

2gt2

3 m

 4 m

F I G U R E  3 - 1 9

0 40
0

y, m

x, m10 20 30

= 70°

50 60 70

10

20

30

5

15

25

= 53.1°

= 45°

= 36.9°

= 20°θ

θ

θ

θ

θ

F I G U R E  3 - 1 7 The initial speed is the same for each trajectory.

Initial
elevation

Final
elevation

45° trajectory

Flatter
trajectory
parabola

If the initial and final
elevations were the same,
the 45° trajectory would
have the greater range

F I G U R E  3 - 1 8 If a projectile lands at an elevation lower than the initial
elevation, the maximum horizontal displacement is achieved when the
projection angle is somewhat lower than 45°.
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CHECK The policeman’s horizontal speed remains 5.00 m/s during his flight. So, the
policeman travels the 4.00 m to the next building in 4.00 m/(5.00 m/s) � 0.800 s. Because our
Part (a) step 1 result is less than 0.800 s, we know he falls below the second roof before reach-
ing the second building—in agreement with our Part (a) step 2 result.

TAKING IT FURTHER By modeling the policeman as a particle, we found that he was
slightly below the second roof at impact. However, we cannot conclude that he did not com-
plete the jump because he is not a particle. It is likely that he would raise his feet enough for
them to clear the edge of the second roof.

(b) 1. Write y(t) for the thief and solve for t when y � �3.00 m.
y(t) is a quadratic equation with two solutions, but only
one of its solutions is acceptable.

t � �0.500 s or t � 1.22 s
She must land at a time after she leaps, so
t � 1.22 s

� 3.00 m � 0 � (5.00 m/s) sin45.0° � 1
2 (9.81 m/s2)t2y � y0 � vy0t � 1

2gt2

2. Find the horizontal distance covered for the positive
value of t.

� 0 � (5.00 m/s) cos45° (1.22 s) � 4.31 mx � x0 � v0xt

3. Subtract 4.0 m from this distance. 0.31 m4.31 m � 4.00 m �

PROJECTILE MOTION IN VECTOR FORM

For projectile motion, we have ax � 0 and ay � �g (Equations 3-14a and 3-14b),
where the direction is directly upward. To express these equations in vector form,
we multiply both sides of each equation by the appropriate unit vector and then
add the two resulting equations. That is, plus gives

or 3-14c

where is the free-fall acceleration vector. The magnitude of is g � 9.81 m/s2 (at
sea level and at 45° latitude).

Combining equations vx � v0x and vy � v0y � gt in like manner gives

3-15c

where , , and . Repeating the process, this
time for Equations and , gives

3-16c

where and . The vector forms of the kinematic
equations (Equations 3-15c and 3-16c) are useful for solving a number of problems,
including the following example.

Example 3-10 The Ranger and the Monkey

A park ranger with a tranquilizer dart gun intends to shoot a monkey hanging from a
branch. The ranger points the barrel directly at the monkey, not realizing that the dart will
follow a parabolic path that will pass below the present position of the creature. The mon-
key, seeing the gun discharge, immediately lets go of the branch and drops out of the tree,
expecting to avoid the dart. (a) Show that the monkey will be hit regardless of the initial
speed of the dart as long as this speed is great enough for the dart to travel the horizontal
distance to the tree. Assume the reaction time of the monkey is negligible. (b) Let be the
initial velocity of the dart relative to the monkey. Find the velocity of the dart relative to the
monkey at an arbitrary time t during the dart’s flight.

PICTURE In this example, both the monkey and the dart exhibit projectile motion. To show
that the dart hits the monkey, we have to show that at some time t, the dart and the monkey
have the same coordinates, regardless of the initial speed of the dart. To do this, we apply

vSd0

rS0 � x0in � y0 jnrS � xin � yjn

(or ¢rS � vS0t � 1
2 gSt2)rS � rS0 � vS0t � 1

2 gSt2

y(t) � y0 � v0yt � 1
2 gt2x(t) � x0 � v0xt

gS � �gjnvS0 � v0xi
n � v0yj

nvS � vxi
n � vy jn

(or ¢vS � gS t)vS � vS0 � gSt

gSgS
aS � gSaxi

n � ay jn � �gjn

ay jn � �g jnaxi
n � 0in

�y
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Equation 3-16c to both the monkey and the dart. For Part (b), we can use Equation 3-15c,
keeping in mind the relative reference frames.

SOLVE

(a) 1. Apply Equation 3-16c to the monkey at
arbitrary time t: (The initial velocity of the monkey is zero.)

¢rSm � 1
2 gSt2

2. Apply Equation 3-16c to the dart at
arbitrary time t: where is the velocity of the dart as it

leaves the gun.
vSd0

¢rSd � vSd0t � 1
2 gSt2

3. Make a sketch of the monkey, the dart, and the gun, as shown in
Figure 3-20. Show the dart and the monkey at their initial
locations and at their locations a time t later. On the figure draw a
vector representing each term in the step 1 and 2 results:

Dart

Δrd = vdg0t + 12 gt2

vdg0t
1
2 gt2 Δrm = 12 gt2

F I G U R E  3 - 2 0

4. Note that at time t the dart and the monkey both are a distance
below the line of sight of the gun:1

2 gt2
when the dart reaches the

monkey’s line of fall.
The dart will strike the monkey

(b) 1. The velocity of the dart relative to the monkey equals the velocity
of the dart relative to the gun plus the velocity of the gun relative
to the monkey:

vSdm � vSdg � vSgm

2. The velocity of the gun relative to the monkey is the negative of
the velocity of the monkey relative to the gun:

vSdm � vSdg � vSmg

3. Using (Equation 3-15c), express both the velocity of
the dart relative to the gun and the velocity of the monkey relative
to the gun:

vS � vS0 � gSt

vSmg � gSt

vSdg � vSdg0 � gSt

4. Substitute these expressions into the Part (b) step 2 result: vSdg0vSdm � (vSdg0 � gSt) � (gSt) �

CHECK The Part (a) step 4 and the Part (b) step 4 results are in agreement with each other.
They agree that the dart will strike the monkey if the dart reaches the monkey’s line of fall
before the monkey lands on the ground.

TAKING IT FURTHER Relative to the falling monkey, the dart moves with constant speed
vdg0 in a straight line. The dart strikes the monkey at time t � L/vd0, where L is the distance
from the muzzle of the gun to the initial position of the monkey.

In a familiar lecture demonstration, a target is suspended by an electromagnet. When the
dart leaves the gun, the circuit to the magnet is broken and the target falls. The demonstra-
tion is then repeated using a different initial velocity of the dart. For a large value of vdg0, the
target is hit very near its original height, and for some lesser value of vdg0 it is hit just before
it reaches the floor.

PRACTICE PROBLEM 3-4 A hockey puck at ice level is struck such that it misses the net
and just clears the top of the Plexiglas wall of height h � 2.80 m. The flight time at the
moment the puck clears the wall is t1 � 0.650 s, and the horizontal position is x1 � 12.0 m.
(a) Find the initial speed and direction of the puck. (b) When does the puck reach its
maximum height? (c) What is the maximum height of the puck?

3-3 SPECIAL CASE 2: CIRCULAR MOTION

Figure 3-21 shows a pendulum bob swinging back and forth in a vertical plane.
The path of the bob is a segment of a circular path. Motion along a circular path,
or a segment of a circular path, is called circular motion.

F I G U R E  3 - 2 1 A pendulum bob swings
along a circular arc centered at the point of
support of the string.
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v1

v3

a2Δv

(b)

t3

t2

t1

t0

t4

t8
t7

t6
t5v1

v3 v5

v7

(a)

v3

a4Δv

v5

(c)

a6

Δv

v5

v7

(d)
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Example 3-11 A Swinging Pendulum 

Consider the motion of the pendulum bob shown in Figure 3-21. Using a motion diagram
(see Example 3-5), find the direction of the acceleration vector when the bob is swinging
from left to right and (a) on the descending portion of the path, (b) passing through the low-
est point on the path, and (c) on the ascending portion of the path.

PICTURE As the bob descends, it both gains speed and changes direction. The acceleration
is related to the change in velocity by . The direction of the acceleration at a point
can be estimated by constructing a vector addition diagram for the relation to
find the direction of , and thus the direction of the acceleration vector.

SOLVE

(a) 1. Make a motion diagram for a full left-to-right swing of the bob (Figure 3-22a). The
spacing between dots is greatest at the lowest point where the speed is greatest.

2. Pick the dot at t2 on the descending portion of the motion and draw a velocity vector
on the diagram for both the preceding and the following dot (the dots at t1 and t3).
The velocity vectors should be drawn tangent to the path and with lengths
proportional to the speed (Figure 3-22a).

3. Draw the vector addition diagram (Figure 3-22b) for the relation . On
this diagram draw the acceleration vector. Because , is in the same
direction as .

(b) Repeat steps 2 and 3 (Figure 3-22c) for the point at t4, the lowest point on the path.

(c) Repeat steps 2 and 3 (Figure 3-22d) for the point at t6, a point on the ascending portion of
the path.

CHECK At the lowest point (at t4) the horizontal component of is a maximum, so we expect
the horizontal component of to be zero. Near the lowest point, the upward component of 
is negative just prior to t � t4 and is positive just after t � t4, so the upward component of is
increasing at t � t4. This means we expect the upward component of to be positive at t � t4.
The acceleration vector in Figure 3-22c is in agreement with both of these expectations.

In Example 3-11, we saw that the acceleration vector is directed straight upward
at the lowest point of the pendulum’s swing (Figure 3-23)—toward point P at the
center of the circle. Where the speed is increasing (on the descending portion), the
acceleration vector has a component in the direction of the velocity vector as well
as a component in the direction toward P. Where the speed is decreasing, the ac-
celeration vector has a component in the direction opposite to the direction of the
velocity vector, as well as a component in the direction toward P.

As a particle moves along a circular arc, the direction from the particle toward
P (toward the center of the circle) is called the centripetal direction and the direc-
tion of the velocity vector is called the tangential direction. In Figure 3-23, the
acceleration vector at the lowest point of the pendulum bob’s path is in the cen-
tripetal direction. At virtually all other points along the path, the acceleration
vector has both a tangential component and a centripetal component.

UNIFORM CIRCULAR MOTION

Motion in a circle at constant speed is called uniform circular motion. Even
though the speed of a particle moving in uniform circular motion is con-
stant, the moving particle is accelerating. To find an expression for the ac-
celeration of a particle during uniform circular motion, we will extend the
method used in Example 3-11 to relate the acceleration to the speed and the
radius of the circle. The position and velocity vectors for a particle moving
in a circle at constant speed are shown in Figure 3-24. The angle �� between

and is equal to the angle between and because rSrS(t � ¢t)rS(t)vS(t � ¢t)vS(t)

aS
vS

vSaS
vS

¢vS
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and both rotate through the same angle �� during time �t. An isosceles triangle
is formed by the two velocity vectors and the vector, and a second isosceles
triangle is formed by the two position vectors and the vector.

To find the direction of the acceleration vector we examine the triangle formed
by the two velocity vectors and the vector. The sum of the angles of any triangle
is 180° and the base angles of any isosceles triangle are equal. In the limit that �t
approaches zero, �� also approaches zero, so in this limit the two base angles each
approach 90°. This means that in the limit that �t : 0, is perpendicular to . If

is drawn from the position of the particle, then it points in the centripetal
direction.

The two triangles are similar, and corresponding lengths of similar geometric
figures are proportional. Thus,

Multiplying both sides by /�t gives

3-19

In the limit that �t : 0, approaches a, the magnitude of the instantaneous
acceleration, and approaches v (the speed). Thus, in the limit that �t : 0,
Equation 3-19 becomes . The acceleration vector is in the centripetal direc-
tion, so ac � a, where ac is the component of the acceleration vector in the cen-
tripetal direction. Substituting ac for a, we have

3-20

CENTRIPETAL ACCELERATION

Centripetal acceleration is the component of the acceleration vector in the cen-
tripetal direction. The motion of a particle moving in a circle with constant speed
is often described in terms of the time T required for one complete revolution,
called the period. During one period, the particle travels a distance of 2�r (where
r is the radius of the circle), so its speed v is related to r and T by

3-21v �
2pr
T

ac �
v2

r

a � v2>rƒ¢rS ƒ>¢tƒ¢vS ƒ>¢t
ƒ¢vS ƒ
¢t

�
v
r

ƒ¢rS ƒ
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ƒ¢rS ƒ

ƒ¢vS ƒ
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�
v
r

¢vS
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¢vS
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Example 3-12 A Satellite’s Motion

A satellite moves at constant speed in a circular orbit about the center of Earth and near the
surface of Earth. If the magnitude of its acceleration is g � 9.81 m s2, find (a) its speed, and
(b) the time for one complete revolution.

PICTURE Because the satellite orbits near the surface of Earth, we take the radius of the
orbit to be 6370 km, the radius of Earth. Then, we can use Equations 3-20 and 3-21 to find
the satellite’s speed and the time for the satellite to make one complete revolution
around Earth.

>

SOLVE

(a) Make a sketch of the satellite orbiting Earth in a low-Earth orbit
(Figure 3-25). Include the velocity and acceleration vectors:

F I G U R E  3 - 2 5 A satellite
in a circular, low-Earth orbit.

v
Earth

a
r
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Set the centripetal acceleration v2/r equal to g and solve for the 
speed v:

7.91 km/s � 17,700 mi/h � 4.91 mi/s�

v � 2rg � 216370 km219.81 m/s22ac �
v2

r
� g, so

(b) Use Equation 3-21 to get the period T: 5060 s � 84.3 minT �
2pr
v

�
2p16370 km2

7.91 km/s
�

CHECK It is well known that the orbital period for satellites orbiting just above the atmo-
sphere of Earth is about 90 min, so the Part (b) result of 84.3 min is close to what we would
expect.

TAKING IT FURTHER For actual satellites in orbit a few hundred kilometers above Earth’s
surface, the orbital radius r is a few hundred kilometers greater than 6370 km. As a result,
the acceleration is slightly less than 9.81 m/s2 because of the decrease in the gravitational
force with distance from the center of Earth. Orbits just above Earth’s atmosphere are re-
ferred to as “low Earth orbits.” Many satellites, including the Hubble telescope and the
International Space Station, are in low Earth orbits. Information about these and other satel-
lites can be found at www.nasa.gov.

PRACTICE PROBLEM 3-5 A car rounds a curve of radius 40 m at 48 km/h. What is its cen-
tripetal acceleration?

TANGENTIAL ACCELERATION

A particle moving in a circle with varying speed has a component of acceleration
tangent to the circle, at, as well as the radially inward centripetal acceleration,
v2/r. For general motion along a curve, we can treat a portion of the curve as an
arc of a circle (Figure 3-26). The particle then has centripetal acceleration ac �

v2/r toward the center of curvature, and if the speed v is changing, it has a tan-
gential acceleration given by

3-22

TANGENTIAL ACCELERATION

at �
dv
dt

at

ac
a

r

r

v

F I G U R E  3 - 2 6 The tangential and
centripetal acceleration components of a
particle moving along a curved path.

PRACTICE PROBLEM 3-6

You are in a cart on a rollercoaster track that is entering a loop-the-loop. At the instant
you are one fourth the way through the loop-the-loop your cart is going straight up at
20 m/s, and is losing speed at 5.0 m/s2. The radius of curvature of the track is 25 m. What
are your centripetal and tangential acceleration components at that instant?

www.nasa.gov
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Physics Spotlight

GPS: Vectors Calculated While You Move

If you fly to another city and rent a car to reach your destination, you
might rent a Global Positioning System (GPS) navigation computer
with the car. Many people use GPS navigators, but not everyone
knows that these computers constantly calculate vectors for you.

Twenty-four GPS satellites orbit Earth at an altitude of 11,000 mi.*
At most times and places, at least three satellites are visible (above the
horizon). In many cases, four or more satellites are visible. Each satel-
lite broadcasts a continual stream that includes its identification, in-
formation about its orbit, and a time marker that is precise to one bil-
lionth of a second.† The satellite’s internal clocks and orbits are
checked by a ground station that can send correction information.

A GPS receiver listens for the signals from the satellites. When it can
get a lock on three or more satellite signals, it calculates how far away
each satellite is by the difference between the satellite’s time marker
and the time on the receiver’s clock when the marker is detected. From
the known orbits of each satellite and the distance to each satellite, the
receiver can triangulate its position. A calculation from three satellites
will give the longitude and latitude of the receiver. A calculation from
four satellites will also give altitude.

But where do vectors come in? The receiver does not just triangulate its position
once—that would give a point position. The receiver constantly listens for the
satellites and calculates changes in the receiver position from changes in the
triangulation results. It calculates any changes in distance and direction from 
the last known position. Within a very short time it has taken several readings,
enough to calculate the velocity of your travel. The result? A speed in a particular
direction—a velocity vector—is always part of the receiver’s calculations. 

But this vector is not there just to draw a pretty line on the screen for you. There
are times when it is not possible to get a good reading on a receiver. Perhaps you
have driven under a bridge or through a tunnel. If the GPS receiver is unable to
lock onto a meaningful signal, it will start from your last known position. It will
then use your last known velocity and direction to calculate a dead reckoning. It will
assume that you are continuing in the same direction and at the same speed until
it is able to get a reliable signal from enough satellites. Once it is able to receive
good signals again, it will make corrections to your position and your course.

When GPS was pioneered, the time signal broadcast by the satellites was en-
coded with distortion, or selective availability, which could be removed only with
decoding receivers enabled for defense purposes. The military could track location
to within six meters, while civilians could track location to within only around 45
meters.** That coding was turned off in the year 2000. Theoretically, a GPS receiver
would be able to tell your position down to the width of your finger,‡ given the
right signals, and give equally precise and accurate measurements of your speed
and direction—all from at least 11,000 miles away.

* The actual number of operational satellites varies. It is more than twenty-four, in case of satellite failure. “Block II
Satellite Information.” ftp://tycho.usno.navy.mil/pub/gps/gpsb2.txt United States Naval Observatory. March 2006.

† “GPS: The Role of Atomic Clocks—It Started with Basic Research.” http://www.beyonddiscovery.org/content/
view.page.asp?I=464 Beyond Discovery. The National Academy of Sciences. March 2006.

** “Comparison of Positions With and Without Selective Availability: Full 24 Hour Data Sets.” http://
www.ngs.noaa.gov/FGCS/info/sans_SA/compare/ERLA.htm National Geodetic Survey. March, 2006.

‡ “Differential GPS: Advanced Concepts.” http://www.trimble.com/gps/advanced1.html Trimble. March, 2006. 

The navigation systems used in automobiles
obtain information from GPS satellites and
use the information to calculate the position
and velocity of the car. At times, they calculate
the car’s displacement vector using a
procedure called dead reckoning.
(Andrew Fox/Corbis.)

http://www.beyonddiscovery.org/content/view.page.asp?I=464
http://www.beyonddiscovery.org/content/view.page.asp?I=464
http://www.ngs.noaa.gov/FGCS/info/sans_SA/compare/ERLA.htm
http://www.ngs.noaa.gov/FGCS/info/sans_SA/compare/ERLA.htm
http://www.trimble.com/gps/advanced1.html
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Kinematic Vectors

Position vector The position vector points from the origin of the coordinate system to the particle.

Instantaneous-velocity vector The velocity vector is the rate of change of the position vector. Its magnitude is the speed,
and it points in the direction of motion.

3-5

Instantaneous-acceleration vector 3-11

2. Relative Velocity If a particle p moves with velocity relative to reference frame A, which is in turn moving
with velocity relative to reference frame B, the velocity of p relative to B is

3-9

3. Projectile Motion with No Air The �x direction is horizontal and the �y direction is upward for the equations in 
Resistance this section.

Independence of motion In projectile motion, the horizontal and vertical motions are independent.

Acceleration

Dependence on time 2-12

2-14

where and .
Alternatively,

3-15c, 3-16c

Horizontal displacement The horizontal displacement is found by multiplying v0x by the total time the projectile is in
the air.

3. Circular Motion

Centripetal acceleration 3-20

Tangential acceleration 3-22

where v is the speed.

Period 3-21v �
2pr
T

at �
dv
dt

ac �
v2

r

¢vS � gSt and ¢rS � vS0t � 1
2 gSt2

vy0 � v0 sinu0vx0 � v0 cosu0

¢x � v0xt � 1
2 axt

2 and ¢y � v0yt � 1
2 ayt

2

vx(t) � v0x � axt and vy(t) � v0y � ayt

ax � 0 and ay � �g

vSpB � vSpA � vSAB

vSAB

vSpA

aS � lim
≤tS0

¢vS

¢t
�
dvS

dt

vS � lim
≤tS0

¢rS

¢t
�
d rS

dt

vS

rS

Answers to Concept Checks

3-1 (a) upward, (b) upward

3-2 vertically downward

Answers to Practice Problems

3-1 aav � 4.7 m/s2 at 45° west of north

3-2

3-3

3-4 (a) m/s at �0 � 22.0°, (b) t � 0.764 s, 
(c) vy avt � 2.86 m

3-5 4.44 m/s2

3-6 ac � 16 m/s2 and at � �5.0 m/s2

vS0 � 20.0

R �
v2

0

g
 sin 2u0 �

(24.5 m/s)2

9.81 m/s2  sin (2�36.9°) � 58.8°

‹ h � 111 m

� 11.48 m

� 1
2 (9.81 m/s2)(1.43 s)2

� 0 � (25.0 m/s) sin36.9° (1.43 s)

y(t) � y0 � v0yt � 1
2 gt2
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In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Can the magnitude of the displacement of a particle be
less than the distance traveled by the particle along its path? Can its
magnitude be more than the distance traveled? Explain.

2 • Give an example in which the distance traveled is a sig-
nificant amount, yet the corresponding displacement is zero. Can
the reverse be true? If so, give an example.

3 • What is the average velocity of a batter who hits a home
run (from when he hits the ball to when he touches home plate after
rounding the bases)?

4 • A baseball is hit so its initial velocity upon leaving the bat
makes an angle of 30° above the horizontal. It leaves that bat at a
height of 1.0 m above the ground and lands untouched for a single.
During its flight, from just after it leaves the bat to just before it hits
the ground, describe how the angle between its velocity and accel-
eration vectors changes. Neglect any effects due to air resistance.

5 • If an object is moving toward the west at some instant, 
in what direction is its acceleration? (a) north, (b) east, (c) west, 
(d) south, (e) may be any direction.

6 • Two astronauts are working on the lunar surface to install a
new telescope. The acceleration due to gravity on the moon is only 1.64
m/s2. One astronaut tosses a wrench to the other astronaut, but the
speed of throw is excessive and the wrench goes over her colleague’s
head. When the wrench is at the highest point of its trajectory, (a) its
velocity and acceleration are both zero, (b) its velocity is zero but its ac-
celeration is nonzero, (c) its velocity is nonzero but its acceleration is
zero, (d) its velocity and acceleration are both nonzero, (e) insufficient
information is given to choose between any of the previous choices.

7 • The velocity of a particle is directed toward the east
while the acceleration is directed toward the northwest, as shown
in Figure 3-27. The particle is (a) speeding up and turning toward
the north, (b) speeding up and turning toward the south, (c) slow-
ing down and turning toward the north, (d) slowing down and
turning toward the south, (e) maintaining constant speed and turn-
ing toward the south.

SSM

9 • Consider the path of a moving particle. (a) How is the
velocity vector related geometrically to the path of the particle? 
(b) Sketch a curved path and draw the velocity vector for the parti-
cle for several positions along the path.
10 • The acceleration of a car is zero when it is (a) turning
right at a constant speed, (b) driving up a long straight incline at
constant speed, (c) traveling over the crest of a hill at constant
speed, (d) bottoming out at the lowest point of a valley at constant
speed, (e) speeding up as it descends a long straight decline.
11 • Give examples of motion in which the directions of the
velocity and acceleration vectors are (a) opposite, (b) the same, and
(c) mutually perpendicular.
12 • How is it possible for a particle moving at constant speed
to be accelerating? Can a particle with constant velocity be acceler-
ating at the same time?

13 •• Imagine throwing a dart straight upward so that it
sticks into the ceiling. After it leaves your hand, it steadily slows
down as it rises before it sticks. (a) Draw the dart’s velocity vec-
tor at times t1 and t2, where t1 and t2 occur after it leaves your
hand but before it hits the ceiling and t2 � t1 is small. From your
drawing, find the direction of the change in velocity

, and thus the direction of the acceleration vector.
(b) After it has stuck in the ceiling for a few seconds, the dart
falls down to the floor. As it falls it speeds up, of course, until it
hits the floor. Repeat Part (a) to find the direction of its acceler-
ation vector as it falls. (c) Now imagine tossing the dart hori-
zontally. What is the direction of its acceleration vector after it
leaves your hand, but before it strikes the floor?
14 • As a bungee jumper approaches the lowest point in
her descent, the rubber cord holding her stretches and she loses
speed as she continues to move downward. Assuming that she is
dropping straight down, make a motion diagram to find the di-
rection of her acceleration vector as she slows down by drawing
her velocity vectors at times t1 and t2, where t1 and t2 are two in-
stants during the portion of her descent in which she is losing
speed and t2 � t1 is small. From your drawing find the direction
of the change in velocity , and thus the direction of
the acceleration vector.

15 • After reaching the lowest point in her jump at time tlow, a
bungee jumper moves upward, gaining speed for a short time until
gravity again dominates her motion. Draw her velocity vectors at times
t1 and t2, where t2 � t1 is small and t1 	 tlow 	 t2. From your drawing
find the direction of the change in velocity , and thus 
the direction of the acceleration vector at time tlow.
16 • A river is 0.76 km
wide. The banks are straight
and parallel (Figure 3-28). The
current is 4.0 km/h and is par-
allel to the banks. A boat has a
maximum speed of 4.0 km/h in
still water. The pilot of the boat

¢vS � vS2 � vS1

¢vS � vS2 � vS1

SSM

¢vS � vS2 � vS1

SSM

a

v E

S

N

W
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Problem 7

A

B

4.0 km/h
current

0.76 km

F I G U R E  3 - 2 8

Problem 16

8 • Assume you know the position vectors of a particle at
two points on its path, one earlier and one later. You also know the
time it took the particle to move from one point to the other. 
Then, you can compute the particle’s (a) average velocity, (b) aver-
age acceleration, (c) instantaneous velocity, and (d) instantaneous
acceleration.
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wishes to go on a straight line from A to B, where the line AB is per-
pendicular to the banks. The pilot should (a) head directly across
the river, (b) head 53° upstream from the line AB, (c) head 37° up-
stream from the line AB, (d) give up—the trip from A to B is not
possible with a boat of this limited speed, (e) do none of the above.

17 • During a heavy rain, the drops are falling at a constant
velocity and at an angle of 10° west of the vertical. You are walk-
ing in the rain and notice that only the top surfaces of your clothes
are getting wet. In what direction are you walking? Explain.

18 • In Problem 17, what is your walking speed if the
speed of the drops relative to the ground is 5.2 m/s?

19 • True or false (ignore any effects due to air resistance): 

(a) When a projectile is fired horizontally, it takes the same amount
of time to reach the ground as an identical projectile dropped
from rest from the same height. 

(b) When a projectile is fired from a certain height at an upward
angle, it takes longer to reach the ground than does an identical
projectile dropped from rest from the same height. 

(c) When a projectile is fired horizontally from a certain height, it
has a higher speed upon reaching the ground than does an
identical projectile dropped from rest from the same height.

20 • A projectile is fired at 35° above the horizontal. Any ef-
fects due to air resistance are negligible. At the highest point in
its trajectory, its speed is 20 m/s. The initial velocity had a hori-
zontal component of (a) 0, (b) (20 m/s) cos 35°, (c) (20 m/s) sin 35°, 
(d ) (20 m/s)/cos 35°, (e) 20 m/s.

21 • A projectile is fired at 35° above the horizontal. Any
effects due to air resistance are negligible. The initial velocity of
the projectile in Problem 20 has a vertical component that is
(a) less than 20 m/s, (b) greater than 20 m/s, (c) equal to 20 m/s,
(d) cannot be determined from the data given.

22 • A projectile is fired at 35° above the horizontal. Any
effects due to air resistance are negligible. The projectile lands at
the same elevation of launch, so the vertical component of the
impact velocity of the projectile is (a) the same as the vertical
component of its initial velocity in both magnitude and sign,
(b) the same as the vertical component of its initial velocity in
magnitude but opposite in sign, (c) less than the vertical com-
ponent of its initial velocity in magnitude but with the same
sign, (d) less than the vertical component of its initial velocity in
magnitude but with the opposite sign.

23 • Figure 3-29 represents the parabolic trajectory of a pro-
jectile going from A to E. Air resistance is negligible. What is the di-
rection of the acceleration at point B? (a) up and to the right,
(b) down and to the left, (c) straight up, (d) straight down, (e) the
acceleration of the ball is zero.

SSM

SSM

25 • True or false: 

(a) If an object’s speed is constant, then its acceleration must be
zero. 

(b) If an object’s acceleration is zero, then its speed must be
constant.

(c) If an object’s acceleration is zero, its velocity must be constant.
(d) If an object’s speed is constant, then its velocity must be

constant.
(e) If an object’s velocity is constant, then its speed must be

constant.

26 • The initial and final velocities of a particle are as shown
in Figure 3-30. Find the direction of the average acceleration.

SSM

F I G U R E  3 - 2 9 Problems 23 and 24

B

C

D

EA

vi

vf

F I G U R E  3 - 3 0 Problem 26

27 •• The automobile path shown in Figure 3-31 is made up of
straight lines and arcs of circles. The automobile starts from rest at
point A. After it reaches point B, it travels at constant speed until it
reaches point E. It comes to rest at point F. (a) At the middle of each
segment (AB, BC, CD, DE, and EF), what is the direction of the
velocity vector? (b) At which of these points does the automobile
have a nonzero acceleration? In those cases, what is the direction of
the acceleration? (c) How do the magnitudes of the acceleration
compare for segments BC and DE?

y

x

A

B

C D

F

E

F I G U R E  3 - 3 1 Problem 27

28 •• Two cannons are pointed directly toward each other, as
shown in Figure 3-32. When fired, the cannonballs will follow the
trajectories shown—P is the point where the trajectories cross each
other. If we want the cannonballs to hit each other, should the gun
crews fire cannon A first, cannon B first, or should they fire simul-
taneously? Ignore any effects due to air resistance.

24 • Figure 3-29 represents the trajectory of a projectile going
from A to E. Air resistance is negligible. (a) At which point(s) is the
speed the greatest? (b) At which point(s) is the speed the least?
(c) At which two points is the speed the same? Is the velocity also
the same at these points?

A

B

P

F I G U R E  3 - 3 2 Problem 28
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F I G U R E  3 - 3 3 Problem 30

A
B

C

DE

29 •• Galileo wrote the following in his Dialogue concerning the
two world systems: “Shut yourself up . . . in the main cabin below
decks on some large ship, and . . . hang up a bottle that empties
drop by drop into a wide vessel beneath it. When you have ob-
served [this] carefully . . . have the ship proceed with any speed you
like, so long as the motion is uniform and not fluctuating this way
and that . . . . The droplets will fall as before into the vessel beneath
without dropping towards the stern, although while the drops are
in the air the ship runs many spans.” Explain this quotation.

30 •• A man swings a stone attached to a rope in a horizontal
circle at constant speed. Figure 3-33 represents the path of the rock
looking down from above. (a) Which of the vectors could represent
the velocity of the stone? (b) Which could represent the acceleration?

31 •• True or false: 

(a) An object cannot move in a circle unless it has centripetal
acceleration.

(b) An object cannot move in a circle unless it has tangential
acceleration.

(c) An object moving in a circle cannot have a variable speed. 
(d) An object moving in a circle cannot have a constant velocity.

32 •• Using a motion diagram, find the direction of the accel-
eration of the bob of a pendulum when the bob is at a point where
it is just reversing its direction.

33 •• CONTEXT-RICH During your rookie bungee jump, your
friend records your fall using a camcorder. By analyzing it frame by
frame, he finds that the y component of your velocity is (recorded
every 1/20 of a second) as follows:

t
(s) 12.05 12.10 12.15 12.20 12.25 12.30 12.35 12.40 12.45

vy �0.78 �0.69 �0.55 �0.35 �0.10 0.15 0.35 0.49 0.53( )

(a) Draw a motion diagram. Use it to find the direction and relative
magnitude of your average acceleration for each of the eight suc-
cessive 0.050-s time intervals in the table. (b) Comment on how the
y component of your acceleration does or does not vary in sign and
magnitude as you reverse your direction of motion. SSM

m/s

ESTIMATION AND APPROXIMATION

34 •• CONTEXT-RICH Estimate the speed in mph with which
water comes out of a garden hose using your past observations of
water coming out of garden hoses and your knowledge of projectile
motion.

35 •• CONTEXT-RICH You won a contest to spend a day with a
baseball team during spring training. You are allowed to try to hit
some balls thrown by a pitcher. Estimate the acceleration during the
hit of a fastball thrown by a major league pitcher when you hit the
ball squarely—straight back at the pitcher. You will need to make
reasonable choices for ball speeds, both just before and just after the
ball is hit, and of the contact time of the ball with the bat.

36 •• Estimate how far you can throw a ball if you throw it 
(a) horizontally while standing on level ground, (b) at � � 45° above
horizontal while standing on level ground, (c) horizontally from the
top of a building 12 m high, (d) at � � 45° above horizontal from the
top of a building 12 m high. Ignore any effects due to air resistance.

37 •• In 1978, Geoff Capes of Great Britain threw a heavy brick a
horizontal distance of 44.5 m. Find the approximate speed of the brick
at the highest point of its flight, neglecting any effects due to air resis-
tance. Assume the brick landed at the same height it was launched.

POSITION, DISPLACEMENT,
VELOCITY, AND 
ACCELERATION VECTORS

38 • A wall clock has a minute hand with a length of 0.50 m
and an hour hand with a length of 0.25 m. Take the center of the
clock as the origin, and use a Cartesian coordinate system with the
positive x axis pointing to 3 o’clock and the positive y axis pointing
to 12 o’clock. Using unit vectors and , express the position vec-
tors of the tip of the hour hand ( ) and the tip of the minute hand
( ) when the clock reads (a) 12:00, (b) 3:00, (c) 6:00, (d) 9:00.

39 • In Problem 38, find the displacements of the tip of
each hand (that is, and ) when the time advances from
3:00 P.M. to 6:00 P.M.

40 • In Problem 38, write the vector that describes the dis-
placement of a fly if it quickly goes from the tip of the minute
hand to the tip of the hour hand at 3:00 P.M.

41 • CONCEPTUAL, APPROXIMATION A bear, awakening from
winter hibernation, staggers directly northeast for 12 m and then
due east for 12 m. Show each displacement graphically and graph-
ically determine the single displacement that will take the bear back
to her cave to continue her hibernation.

42 • A scout walks 2.4 km due east from camp, then turns left
and walks 2.4 km along the arc of a circle centered at the campsite,
and finally walks 1.5 km directly toward the camp. (a) How far is
the scout from camp at the end of his walk? (b) In what direction is
the scout’s position relative to the campsite? (c) What is the ratio of
the final magnitude of the displacement to the total distance
walked.

43 • The faces of a cubical storage cabinet in your garage have
3.0-m-long edges that are parallel to the xyz coordinate planes. The
cube has one corner at the origin. A cockroach, on the hunt for
crumbs of food, begins at that corner and walks along three edges
until it is at the far corner. (a) Write the roach’s displacement using
the set of , , and unit vectors, and (b) find the magnitude of its
displacement. SSM
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44 • CONTEXT-RICH You are the navigator of a ship at sea.
You receive radio signals from two transmitters A and B, which are
100 km apart, one due south of the other. The direction finder
shows you that transmitter A is at a heading of 30° south of east
from the ship, while transmitter B is due east. Calculate the distance
between your ship and transmitter B.

45 • A stationary radar operator determines that a ship is
10 km due south of him. An hour later the same ship is 20 km due
southeast. If the ship moved at constant speed and always in the
same direction, what was its velocity during this time?

46 • A particle’s position coordinates (x, y) are (2.0 m, 3.0 m)
at t � 0; (6.0 m, 7.0 m) at t � 2.0 s; and (13 m, 14 m) at t � 5.0 s. 
(a) Find the magnitude of the average velocity from t � 0 to t � 2.0 s.
(b) Find the magnitude of the average velocity from t � 0 to t � 5.0 s.

47 • A particle moving at a velocity of 4.0 m/s in the �x di-
rection is given an acceleration of 3.0 m/s2 in the �y direction for
2.0 s. Find the final speed of the particle. 

48 • Initially, a swift-moving hawk is moving due west with a
speed of 30 m/s; 5.0 s later it is moving due north with a speed of
20 m/s. (a) What are the magnitude and direction of during
this 5.0-s interval? (b) What are the magnitude and direction of 
during this 5.0-s interval?

49 • At t � 0, a particle located at the origin has a velocity of
40 m/s at � � 45°. At t � 3.0 s, the particle is at x � 100 m and 
y � 80 m and has a velocity of 30 m/s at � � 50°. Calculate (a) the
average velocity, and (b) the average acceleration of the particle
during this 3.0-s interval.

50 •• At time zero, a particle is at x � 4.0 m and y � 3.0 m and
has velocity . The acceleration of the
particle is constant and is given by (4.0 m/s2) � (3.0 m/s2) .
(a) Find the velocity at t � 2.0 s. (b) Express the position vector at 
t � 4.0 s in terms of . In addition, give the magnitude and di-
rection of the position vector at this time.

51 •• A particle has a position vector given by � (30t) �
(40t � 5t2) , where r is in meters and t is in seconds. Find the
instantaneous-velocity and instantaneous-acceleration vectors
as functions of time t.

52 •• A particle has a constant acceleration of 
(6.0 m/s2) � (4.0 m/s2) . At time t � 0, the velocity is zero and
the position vector is 0 � (10 m) . (a) Find the velocity and po-
sition vectors as functions of time t. (b) Find the equation of the
particle’s path in the xy plane and sketch the path.

53 •• Starting from rest at a dock, a motor boat on a lake
heads north while gaining speed at a constant 3.0 m/s2 for 20 s.
The boat then heads west and continues for 10 s at the speed that
it had at 20 s. (a) What is the average velocity of the boat during
the 30-s trip? (b) What is the average acceleration of the boat
during the 30-s trip? (c) What is the displacement of the boat
during the 30-s trip? 

54 •• Starting from rest at point A, you ride your motorcy-
cle north to point B 75.0 m away, increasing speed at a steady
rate of 2.00 m/s2. You then gradually turn toward the east along
a circular path of radius 50.0 m at constant speed from B to 
point C, until your direction of motion is due east at C. You then
continue eastward, slowing at a steady rate of 1.00 m/s2 until
you come to rest at point D. (a) What is your average velocity
and acceleration for the trip from A to D? (b) What is your
displacement during your trip from A to C? (c) What distance
did you travel for the entire trip from A to D?
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RELATIVE VELOCITY

55 •• A plane flies at an airspeed of 250 km/h. A wind is blow-
ing at 80 km/h toward the direction 60° east of north. (a) In what
direction should the plane head in order to fly due north relative to
the ground? (b) What is the speed of the plane relative to the
ground?

56 •• A swimmer heads directly across a river, swimming at 
1.6 m/s relative to the water. She arrives at a point 40 m down-
stream from the point directly across the river, which is 80 m wide.
(a) What is the speed of the river current? (b) What is the swim-
mer’s speed relative to the shore? (c) In what direction should the
swimmer head in order to arrive at the point directly opposite her
starting point?

57 •• A small plane departs from point A heading for an air-
port 520 km due north at point B. The airspeed of the plane is 
240 km/h and there is a steady wind of 50 km/h blowing directly
toward the southeast. Determine the proper heading for the plane
and the time of flight. 

58 •• Two boat landings are 2.0 km apart on the same bank of
a stream that flows at 1.4 km/h. A motorboat makes the round trip
between the two landings in 50 min. What is the speed of the boat
relative to the water?

59 •• ENGINEERING APPLICATION, CONTEXT-RICH During a
radio-controlled model-airplane competition, each plane must fly
from the center of a 1.0-km-radius circle to any point on the circle
and back to the center. The winner is the plane that has the short-
est round-trip time. The contestants are free to fly their planes
along any route as long as the plane begins at the center, travels to
the circle, and then returns to the center. On the day of the race, a
steady wind blows out of the north at 5.0 m/s. Your plane can
maintain an air speed of 15 m/s. Should you fly your plane up-
wind on the first leg and downwind on the trip back, or across the
wind, flying east and then west? Optimize your chances by calcu-
lating the round-trip time for both routes using your knowledge
of vectors and relative velocities. With this prerace calculation,
you can determine the best route and have a major advantage
over the competition!

60 •• CONTEXT-RICH You are piloting a small plane that can
maintain an air speed of 150 kt (knots, or nautical miles per hour) and
you want to fly due north (azimuth � 000°) relative to the ground. 
(a) If a wind of 30 kt is blowing from the east (azimuth � 090°),
calculate the heading (azimuth) you must ask your copilot to
maintain. (b) At that heading, what will be your ground speed?

61 •• Car A is traveling east at 20 m/s toward an intersection.
As car A crosses the intersection, car B starts from rest 40 m north
of the intersection and moves south steadily gaining speed at 
2.0 m/s2. Six seconds after A crosses the intersection find (a) the
position of B relative to A, (b) the velocity of B relative to A, (c) the
acceleration of B relative to A. Hint: Let the unit vectors and 
be toward the east and north, respectively, and express your answers 
using and .

62 •• While walking between gates at an airport, you notice a
child running along a moving walkway. Estimating that the child
runs at a constant speed of 2.5 m/s relative to the surface of the
walkway, you decide to try to determine the speed of the walkway
itself. You watch the child run on the entire 21-m walkway in one
direction, immediately turn around, and run back to his starting
point. The entire trip takes a total elapsed time of 22 s. Given this
information, what is the speed of the moving walkway relative to
the airport terminal?
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63 •• Ben and Jack are shopping in a department store. Ben
leaves Jack at the bottom of the escalator and walks east at a speed
of 2.4 . Jack gets on the escalator, which is inclined at an angle
of 37° above the horizontal, and travels eastward and upward at a
speed of 2.0 . (a) What is the velocity of Ben relative to Jack?
(b) At what speed should Jack walk up the escalator so that he is al-
ways directly above Ben (until he reaches the top)? 
64 ••• A juggler traveling in a train on level track throws a ball
straight up, relative to the train, with a speed of 4.90 m/s. The train
has a velocity of 20.0 m/s due east. As observed by the juggler, 
(a) what is the ball’s total time of flight, and (b) what is the dis-
placement of the ball during its rise? According to a friend standing
on the ground next to the tracks, (c) what is the ball’s initial speed,
(d) what is the angle of the launch, and (e) what is the displacement
of the ball during its rise?

CIRCULAR MOTION 
AND CENTRIPETAL ACCELERATION

65 • What is the magnitude of the acceleration of the tip of the
minute hand of the clock in Problem 38? Express it as a fraction of
the magnitude of free-fall acceleration g.
66 • CONTEXT-RICH You are designing a centrifuge to spin at
a rate of 15,000 rev/min. (a) Calculate the maximum centripetal ac-
celeration that a test-tube sample held in the centrifuge arm 15 cm
from the rotation axis must withstand. (b) It takes 1 min, 15 s for the
centrifuge to spin up to its maximum rate of revolution from rest.
Calculate the magnitude of the tangential acceleration of the cen-
trifuge while it is spinning up, assuming that the tangential accel-
eration is constant.

67 ••• Earth rotates on its axis once every 24 hours, so that
objects on its surface execute uniform circular motion about the
axis with a period of 24 hours. Consider only the effect of this ro-
tation on the person on the surface. (Ignore Earth’s orbital mo-
tion about the Sun.) (a) What is the speed and what is the mag-
nitude of the acceleration of a person standing on the equator?
(Express the magnitude of this acceleration as a percentage of g.)
(b) What is the direction of the acceleration vector? (c) What is
the speed and what is the magnitude of the acceleration of a per-
son standing on the surface at 35°N latitude? (d) What is the
angle between the direction of the acceleration of the person at
35°N and the direction of the acceleration of the person at the
equator if both persons are at the same longitude? 
68 •• Determine the acceleration of the moon toward Earth,
using values for its mean distance and orbital period from the
Terrestrial and Astronomical Data table in this book. Assume a
circular orbit. Express the acceleration as a fraction of g.

69 •• (a) What are the period and speed of a person on a
carousel if the person has an acceleration with a magnitude of 
0.80 m/s2 when she is standing 4.0 m from the axis? (b) What are
her acceleration magnitude and speed if she then moves to a
distance of 2.0 m from the carousel center and the carousel keeps
rotating with the same period?
70 ••• Pulsars are neutron stars that emit X rays and other radi-
ation in such a way that we on Earth receive pulses of radiation
from the pulsars at regular intervals equal to the period that they
rotate. Some of these pulsars rotate with periods as short as 1 ms!
The Crab Pulsar, located inside the Crab Nebula in the constellation
Orion, has a period currently of length 33.085 ms. It is estimated to
have an equatorial radius of 15 km, an average radius for a neutron
star. (a) What is the value of the centripetal acceleration of an object
on the surface at the equator of the pulsar? (b) Many pulsars are ob-
served to have periods that lengthen slightly with time, a phenom-
enon called “spin down.” The rate of slowing of the Crab Pulsar is 

SSM

SSM

m>sm>s 3.5 � 10�13 s per second, which implies that if this rate remains con-
stant, the Crab Pulsar will stop spinning in 9.5 � 1010 s (about 3000
years from today). What is the tangential acceleration of an object
on the equator of this neutron star?
71 ••• BIOLOGICAL APPLICATION Human blood contains
plasma, platelets, and blood cells. To separate the plasma from
other components, centrifugation is used. Effective centrifugation
requires subjecting blood to an acceleration of 2000g or more. 
In this situation, assume that blood is contained in test tubes that
are 15 cm long and are full of blood. These tubes ride in the cen-
trifuge tilted at an angle of 45.0o above the horizontal (Figure 3-34).
(a) What is the distance of a sample of blood from the rotation axis
of a centrifuge rotating at 3500 rpm, if it has an acceleration of
2000g? (b) If the blood at the center of the tubes revolves around the
rotation axis at the radius calculated in Part (a), calculate the
accelerations experienced by the blood at each end of the test tube.
Express all accelerations as multiples of g.

PROJECTILE MOTION 
AND PROJECTILE RANGE

72 • While trying out for the position of pitcher on your high
school baseball team, you throw a fastball at 87 mi/h toward home
plate, which is 18.4 m away. How far does the ball drop due 
to effects of gravity by the time it reaches home plate? (Ignore any
effects due to air resistance.)
73 • A projectile is launched with speed v0 at an angle of �0
above the horizontal. Find an expression for the maximum height it
reaches above its starting point in terms of v0, �0, and g. (Ignore any
effects due to air resistance.)
74 •• A cannonball is fired with initial speed v0 at an angle 30°
above the horizontal from a height of 40 m above the ground. The
projectile strikes the ground with a speed of 1.2v0. Find v0. (Ignore
any effects due to air resistance.)
75 •• In Figure 3-35, what is the minimum initial speed of the
dart if it is to hit the monkey before the monkey hits the ground,
which is 11.2 m below the initial position of the monkey, if 

and ? (Ignore any effects due to air resistance.)h � 10 mx � 50 m

3500 rpm
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45°
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76 •• A projectile is launched from ground level with an initial
speed of 53 m/s. Find the launch angle (the angle the initial veloc-
ity vector is above the horizontal) such that the maximum height of
the projectile is equal to its horizontal range. (Ignore any effects due
to air resistance.)

77 •• A ball launched from ground level lands 2.44 s later on a
level field 40.0 m away from the launch point. Find the magnitude
of the initial velocity vector and the angle it is above the horizontal.
(Ignore any effects due to air resistance.)

78 •• Consider a ball that is launched from ground level with
initial speed v0 at an angle �0 above the horizontal. If we consider
its speed to be v at some height h above the ground, show that for
a given value of h, v is independent of �0. (Ignore any effects due to
air resistance.)

79 ••• At of its maximum height, the speed of a projectile is 
of its initial speed. What was its launch angle? (Ignore any effects

due to air resistance.)

80 •• A cargo plane is flying horizontally at an altitude of 
12 km with a speed of 900 km/h when a large crate falls out of
the rear loading ramp. (Ignore any effects due to air resistance.)
(a) How long does it take the crate to hit the ground? (b) How far
horizontally is the crate from the point where it fell off when it hits
the ground? (c) How far is the crate from the aircraft when the crate
hits the ground, assuming that the plane continues to fly with the
same velocity?

81 •• Wile E. Coyote (Carnivorus hungribilus) is chasing the
Roadrunner (Speedibus cantcatchmi) yet again. While running down
the road, they come to a deep gorge, 15.0 m straight across and 
100 m deep. The Roadrunner launches himself across the gorge at a
launch angle of 15° above the horizontal, and lands with 1.5 m to
spare. (a) What was the Roadrunner’s launch speed? (b) Wile E.
Coyote launches himself across the gorge with the same initial
speed, but at a different launch angle. To his horror, he is short of
the other lip by 0.50 m. What was his launch angle? (Assume that it
was less than 15°.) 

82 •• A cannon barrel is elevated 45° above the horizontal. It
fires a ball with a speed of 300 m/s. (a) What height does the ball
reach? (b) How long is the ball in the air? (c) What is the horizon-
tal range of the cannon ball? (Ignore any effects due to air
resistance.)

83 •• A stone thrown horizontally from the top of a 24-m
tower hits the ground at a point 18 m from the base of the tower.
(Ignore any effects due to air resistance.) (a) Find the speed with
which the stone was thrown. (b) Find the speed of the stone just
before it hits the ground. 

84 •• A projectile is fired into the air from the top of a 
200-m cliff above a valley (Figure 3-36). Its initial velocity is 
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60 m/s at 60° above the horizontal. Where does the projectile
land? (Ignore any effects due to air resistance.)

85 •• The range of a cannonball fired horizontally from a cliff
is equal to the height of the cliff. What is the direction of the velocity
vector of the projectile as it strikes the ground? (Ignore any effects
due to air resistance.)

86 •• An archer fish launches a droplet of water from the sur-
face of a small lake at an angle of 60° above the horizontal. He is
aiming at a juicy spider sitting on a leaf 50 cm to the east and on a
branch 25 cm above the water surface. The fish is trying to knock
the spider into the water so that the fish can eat the spider. (a) What
must the speed of the water droplet be for the fish to be successful?
(b) When it hits the spider, is the droplet rising or falling?

87 •• CONTEXT-RICH You are trying out for the position of
place-kicker on a professional football team. With the ball teed 
50.0 m from the goalposts with a crossbar 3.05 m off the ground,
you kick the ball at 25.0 m/s and 30° above the horizontal. (a) Is 
the field goal attempt good? (b) If so, by how much does it clear the
bar? If not, by how much does it go under the bar? (c) How far
behind the plane of the goalposts does the ball land? 

88 •• The speed of an arrow fired from a compound bow is
about 45.0 m/s. (a) A Tartar archer sits astride his horse and
launches an arrow into the air, elevating the bow at an angle of 10°
above the horizontal. If the arrow is 2.25 m above the ground 
at launch, what is the arrow’s horizontal range? Assume that 
the ground is level, and ignore any effects due to air resistance. 
(b) Now assume that his horse is at full gallop, moving in the 
same direction that the archer will fire the arrow. Also assume that
the archer elevates the bow at the same elevation angle as in 
Part (a) and fires. If the horse’s speed is 12.0 m/s, what is the
arrow’s horizontal range now?

89 The roof of a two-story house makes an angle of 30° with
the horizontal. A ball rolling down the roof rolls off the edge at a
speed of 5.0 m/s. The distance to the ground from that point is 
7.0 m. (a) How long is the ball in the air? (b) How far from the base
of the house does it land? (c) What is its speed and direction just be-
fore landing?

90 •• Compute dR/d�0 from and show that
setting dR/d�0 � 0 gives �0 � 45° for the maximum range.

91 •• In a science fiction short story written in the 1970s, Ben
Bova described a conflict between two hypothetical colonies on
the moon — one founded by the United States and the other by
the USSR. In the story, colonists from each side started firing bul-
lets at each other, only to find to their horror that their rifles had
large enough muzzle velocities so that the bullets went into orbit.
(a) If the magnitude of free-fall acceleration on the moon is
1.67 m/s2, what is the maximum range of a rifle bullet with a
muzzle velocity of 900 m/s? (Assume the curvature of the surface
of the moon is negligible.) (b) What would the muzzle velocity
have to be to send the bullet into a circular orbit just above the
surface of the moon?

92 ••• On a level surface, a ball is launched from ground level
at an angle of 55° above the horizontal, with an initial speed of 
22 m/s. It lands on a hard surface, and bounces, reaching a peak
height of 75% of the height it reached on its first arc. (Ignore any
effects due to air resistance.) (a) What is the maximum height
reached in its first parabolic arc? (b) How far horizontally from the
launch point did it strike the ground the first time? (c) How far
horizontally from the launch point did the ball strike the ground
the second time? Assume the horizontal component of the velocity
remains constant during the collision of the ball with the ground.
Hint: You cannot assume that the angle with which the ball leaves the
ground after the first collision is the same as the initial launch angle.

R � (v2
0/g) sin (2u0)
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93 ••• In the text, we calculated the range for a projectile that lands
at the same elevation from which it is fired as . 
A golf ball hit from an elevated tee at 45.0 m/s and an angle of 
35.0° lands on a green 20.0 m below the tee (Figure 3-37). (Ignore
any effects due to air resistance.) (a) Calculate the range using 
the equation even though the ball is hit from 
an elevated tee. (b) Show that the range for the more general 

problem (Figure 3-37) is given by 

where y is the height of the green above the tee. That is, y � �h.
(c) Compute the range using this formula. What is the percentage
error in neglecting the elevation of the green?

R� a1�A1�
2gy

v2
0 sin2u0

b v2
0

2g
 sin2u0 ,

R � (v2
0/g) sin2u0

R � (v2
0/g) sin2u0

99 ••• A rock is thrown from the top of a 20-m-high building at
an angle of 53° above the horizontal. (a) If the horizontal range of the
throw is equal to the height of the building, with what speed was the
rock thrown? (b) How long is it in the air? (c) What is the velocity of
the rock just before it strikes the ground? (Ignore any effects due to
air resistance.)
100 ••• A woman throws a ball at a vertical wall 4.0 m away 
(Figure 3-40). The ball is 2.0 m above ground when it leaves the
woman’s hand with an initial velocity of 14 m/s at 45°, as shown.
When the ball hits the wall, the horizontal component of its velocity
is reversed; the vertical component remains unchanged. (a) Where
does the ball hit the ground? (b) How long was the ball in the air
before it hit the wall? (c) Where did the ball hit the wall? (d) How
long was the ball in the air after it left the wall? Ignore any effects
due to air resistance.
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94 ••• MULTISTEP In the text, we calculated the range for a pro-
jectile that lands at the same elevation from which it is fired as

if the effects of the air resistance are negligible.
(a) Show that for the same conditions the change in the range for a
small change in free-fall acceleration g, and the same initial speed
and angle, is given by �R/R � ��g/g. (b) What would be the
length of a homerun at a high altitude where g is 0.50% less than at
sea level if the homerun at sea level traveled 400 ft?

95 ••• MULTISTEP, APPROXIMATION In the text, we calculated
the range for a projectile that lands at the same elevation from
which it is fired as if the effects of the air
resistance are negligible. (a) Show that for the same conditions 
the change in the range for a small change in launch speed, 
and the same initial angle and free-fall acceleration, is given by
�R/R � 2�v0/v0. (b) Suppose a projectile’s range was 200 m. Use
the formula in Part (a) to estimate its increase in range if the launch
speed were increased by 20.0%. (c) Compare your answer in (b) to
the increase in range by calculating the increase in range directly
from . If the results for Parts (b) and (c) are
different, is the estimate too small or large, and why? 

96 ••• A projectile, fired with unknown initial velocity, lands 20.0 s
later on the side of a hill, 3000 m away horizontally and 450 m verti-
cally above its starting point. (Ignore any effects due to air resistance.)
(a) What is the vertical component of its initial velocity? (b) What is
the horizontal component of its initial velocity? (c) What was its max-
imum height above its launch point? (d) As it hit the hill, what speed
did it have and what angle did its velocity make with the vertical?

97 ••• A projectile is launched over level ground at an initial
elevation angle of �. An observer standing at the launch 
site sees the projectile at the point of its highest elevation 
and measures the angle � shown in Figure 3-38. Show that 
tan� � . (Ignore any effects due to air resistance.) SSM

1
2 tanu

SSM

R � (v2
0/g) sin2u0

R � (v2
0/g) sin2u0

R � (v2
0/g) sin2u0

98 ••• A toy cannon is placed on a ramp that has a slope of
angle �. (a) If the cannonball is projected up the hill at an angle
of �0 above the horizontal (Figure 3-39) and has a muzzle speed
of v0, show that the range R of the cannonball (as measured
along the ramp) is given by 

Ignore any effects due to air resistance.

R �
2v2

0 cos2u0(tanu0 � tanf)

g cosf

v0

2.0 m

10 m/s

10 m/s

4.0 m
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101 ••• ENGINEERING APPLICATION Catapults date from thou-
sands of years ago, and were used historically to launch everything
from stones to horses. During a battle in what is now Bavaria, in-
ventive artillerymen from the united German clans launched giant
spaetzle from their catapults toward a Roman fortification whose
walls were 8.50 m high. The catapults launched the spaetzle projec-
tiles from a height of 4.00 m above the ground and a distance of 
38.0 m from the walls of the fortification at an angle of 60.0 degrees
above the horizontal (Figure 3-41). If the projectiles were to hit the
top of the wall, splattering the Roman soldiers atop the wall with
pulverized pasta, (a) what launch speed was necessary? (b) How
long were the spaetzle in the air? (c) At what speed did the projec-
tiles hit the wall? Ignore any effects due to air resistance.

102 ••• The distance from the pitcher’s mound to home plate is
18.4 m. The mound is 0.20 m above the level of the field. A pitcher
throws a fastball with an initial speed of 37.5 m/s. At the moment
the ball leaves the pitcher’s hand, it is 2.30 m above the mound. 
(a) What should the angle between and the horizontal be so that
the ball crosses the plate 0.70 m above ground? (Ignore any effects
due to air resistance.) (b) With what speed does the ball cross the
plate?

103 ••• You are watching your friend play hockey. During the
course of the game, he strikes the puck in such a way that, when it
is at its highest point, it just clears the surrounding 2.80-m-high
Plexiglas wall that is 12.0 m away. Find (a) the vertical component
of its initial velocity, (b) the time it takes to reach the wall, and
(c) the horizontal component of its initial velocity, and its initial
speed and angle. (Ignore any effects due to air resistance.)

104 ••• Carlos is on his trail bike, approaching a creek bed that
is 7.0 m wide. A ramp with an incline of 10° has been built for dar-
ing people who try to jump the creek. Carlos is traveling at his
bike’s maximum speed, 40 km/h. (a) Should Carlos attempt the
jump or brake hard? (b) What is the minimum speed a bike must
have to make this jump? Assume equal elevations on either side of
the creek. (Ignore any effects due to air resistance.)

105 ••• If a bullet that leaves the muzzle of a gun at 250 m/s is to
hit a target 100 m away at the level of the muzzle (1.7 m above the
level ground), the gun must be aimed at a point above the target.
(a) How far above the target is that point? (b) How far behind the
target will the bullet strike the ground? (Ignore any effects due to air
resistance.)

GENERAL PROBLEMS

106 •• During a do-it-yourself roof repair project, you are on
the roof of your house and accidentally drop your hammer. The
hammer then slides down the roof at constant speed of 4.0 m/s.
The roof makes an angle of 30° with the horizontal, and its lowest
point is 10 m from the ground. (a) How long after leaving the roof
does the hammer hit the ground? (b) What is the horizontal dis-
tance traveled by the hammer between the instant it leaves the roof
and the instant it hits the ground? (Ignore any effects due to air
resistance.)

107 •• A squash ball typically rebounds from a surface with
25% of the speed with which it initially struck the surface. Suppose
a squash ball is served in a shallow trajectory, from a height above

SSM

SSM

vS0
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the ground of 45 cm, at a launch angle of 6.0° degrees above the hor-
izontal, and at a distance of 12 m from the front wall. (a) If it strikes
the front wall exactly at the top of its parabolic trajectory, determine
how high above the floor the ball strikes the wall. (b) How far hor-
izontally from the wall does it strike the floor, after rebounding?
(Ignore any effects due to air resistance.)

108 •• A football quarterback throws a pass at an angle of 36.5°.
He releases the pass 3.50 m behind the line of scrimmage. His re-
ceiver left the line of scrimmage 2.50 s earlier, goes straight down-
field at a constant speed of 7.50 m/s. In order that the pass land
gently in the receiver’s hands without the receiver breaking stride,
with what speed must the quarterback throw the pass? Assume
that the ball is released at the same height it is caught and that the
receiver is straight downfield from the quarterback at the time of
release. (Ignore any effects due to air resistance.)

109 •• Suppose a test pilot is able to safely withstand an accel-
eration of up to 5.0 times the acceleration due to gravity (that is,
remain conscious and alert enough to fly). During the course of
maneuvers, he is required to fly the plane in a horizontal circle at its
top speed of 1900 mi/h. (a) What is the radius of the smallest circle
he will be able to safely fly the plane in? (b) How long does it take
him to go halfway around this minimum-radius circle?

110 •• A particle moves in the xy plane with constant acceleration.
At t � 0 the particle is at � (4.0 m) � (3.0 m) , with velocity .
At t � 2.0 s, the particle has moved to � (10 m) � (2.0 m) and
its velocity has changed to � (5.0 m/s) � (6.0 m/s) . (a) Find .
(b) What is the acceleration of the particle? (c) What is the velocity
of the particle as a function of time? (d) What is the position 
vector of the particle as a function of time?

111 •• Plane A is flying due east at an air speed of 400 mph.
Directly below, at a distance of 4000 ft, plane B is headed due north,
flying at an air speed of 700 mph. Find the velocity vector of plane
B relative to A. 

112 •• A diver steps off the cliffs at Acapulco, Mexico, 30.0 m
above the surface of the water. At that moment, he activates his
rocket-powered backpack horizontally, which gives him a constant
horizontal acceleration of 5.00 m/s2 but does not affect his vertical
motion. (a) How long does he take to reach the surface of the
water? (b) How far out from the base of the cliff does he enter the
water, assuming the cliff is vertical? (c) Show that his flight path is
a straight line. (Ignore any effects of air resistance.)

113 •• A small steel ball is projected horizontally off the top of a
long flight of stairs. The initial speed of the ball is 3.0 m/s. Each step
is 0.18 m high and 0.30 m wide. Which step does the ball strike 
first?

114 •• Suppose you can throw a ball a maximum horizontal
distance L when standing on level ground. How far can you throw
it from the top of a building of height h if you throw it at (a) 0°,
(b) 30°, (c) 45°? (Ignore any effects due to air resistance.)

115 ••• Darlene is a stunt motorcyclist in a traveling circus. For
the climax of her show, she takes off from the ramp at angle �0, clears
a ditch of width L, and lands on an elevated ramp (height h) on the
other side (Figure 3-42). (a) For a given height h, find the minimum
necessary takeoff speed vmin needed to make the jump suc-
cessfully. (b) What is vmin for L � 8.0 m, � � 30°, and h � 4.0 m?
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(c) Show that regardless of her takeoff speed, the maximum height
of the platform is h 	 L tan�0. Interpret this result physically.
(Neglect any effects due to air resistance and treat the rider and the
bike as if they were a single particle.)

116 ••• A small boat is headed for a harbor 32 km directly north-
west of its current position when it is suddenly engulfed in heavy
fog. The captain maintains a compass bearing of northwest and a
speed of 10 km/h relative to the water. The fog lifts 3.0 h later and
the captain notes that he is now exactly 4.0 km south of the harbor.
(a) What was the average velocity of the current during those 3.0 h?
(b) In what direction should the boat have been heading to reach its
destination along a straight course? (c) What would its travel time
have been if it had followed a straight course?

117 •• Galileo showed that, if any effects due to air resistance
are ignored, the ranges for projectiles (on a level field) whose angles
of projection exceed or fall short of 45° by the same amount are
equal. Prove Galileo’s result. 

118 •• Two balls are thrown with equal speeds from the top of a
cliff of height h. One ball is thrown at an angle of � above the hori-
zontal. The other ball is thrown at an angle of � below the horizon-
tal. Show that each ball strikes the ground with the same speed, and
find that speed in terms of h and the initial speed v0. (Ignore any ef-
fects due to air resistance.)

119 •• In his car, a driver tosses an egg vertically from chest
height so that the peak of its path is just below the ceiling of the pas-
senger compartment, which is 65 cm above his release point. He
catches the egg at the same height that he releases it. If you are a
roadside observer and measure the horizontal distance between
catch and release points to be 19 m, (a) how fast is the car moving?
(b) In your reference frame, at what angle above the horizontal was
the egg thrown?

SSM

120 ••• A straight line is drawn on the surface of a 16-cm-radius
turntable from the center to the perimeter. A bug crawls along this
line from the center outward as the turntable spins counterclock-
wise at a constant 45 rpm. Its walking speed relative to the
turntable is a steady 3.5 cm/s. Let its initial heading be in the posi-
tive x direction. As the bug reaches the edge of the turntable (still
traveling at 3.5 cm/s radially, relative to the turntable), what are the
x and y components of the velocity of the bug?

121 ••• On a windless day, a stunt pilot is flying his vintage World
War I Sopwith Camel from Dubuque, Iowa, to Chicago, Illinois, for
an air show. Unfortunately, he is unaware that his plane’s ancient
magnetic compass has a serious problem in that what it records as
“north” is in fact 16.5° east of true north. At one moment during his
flight, the airport in Chicago notifies him that he is, in reality,
150 km due west of the airport. He then turns due east, according
to his plane’s compass, and flies for 45 minutes at 150 km/h. At that
point, he expects to see the airport and begin final descent. What is
the plane’s actual distance from Chicago and what should be the
pilot’s heading if he is to fly directly toward Chicago?

122 ••• ENGINEERING APPLICATION, CONTEXT-RICH A cargo
plane in flight lost a package because somebody forgot to close the
rear cargo doors. You are on the team of safety experts trying to an-
alyze what happened. From the point of takeoff, while climbing to
altitude, the airplane traveled in a straight line and at a constant
speed of 275 mi/h at an angle of 37° above the horizontal. During
the ascent, the package slid off the back ramp. You found the package
in a field a distance of 7.5 km from the takeoff point. To complete the
investigation you need to know exactly how long after takeoff the
package slid off the back ramp of the plane. (Consider the sliding
speed to be negligible.) Calculate the time at which the package fell
off the back ramp. (Ignore any effects due to air resistance.)
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If you were a passenger on this

plane, how might you use Newton’s

laws to determine the plane’s

acceleration? (See Example 4-9.)

?
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THIS AIRPLANE IS ACCELERATING AS IT
HEADS DOWN THE RUNWAY BEFORE
TAKEOFF. NEWTON’S LAWS RELATE AN
OBJECT’S ACCELERATION TO ITS MASS
AND THE FORCES ACTING ON IT. (John
Neubauer/FPG/Getty.)

Newton’s Laws

4-1 Newton’s First Law: The Law of Inertia
4-2 Force and Mass
4-3 Newton’s Second Law
4-4 The Force Due to Gravity: Weight
4-5 Contact Forces: Solids, Springs, and Strings
4-6 Problem Solving: Free-Body Diagrams
4-7 Newton’s Third Law
4-8 Problem Solving: Problems with Two or More Objects

N
ow that we have studied how objects move in one, two, and three dimen-
sions, we can ask the questions “Why do objects start to move?” and
“What causes a moving object to change speed or change direction?”

These questions occupied the mind of Sir Isaac Newton, who was born in
1642, the year Galileo died. As a student at Cambridge, where he was later a
mathematics professor, Newton studied the work of Galileo and Kepler. He

wanted to figure out why planets move in ellipses at speeds dependent on their dis-
tance to the Sun, and even why the solar system stays together at all. During his life-
time, he developed both his law of gravitation, which we will examine in Chapter 12,
and his three basic laws of motion that form the basis of classical mechanics.

Newton’s laws relate the forces objects exert on each other, and relate any
change in the motion of an object to the forces that act on it. Newton’s laws of mo-
tion are the tools that enable us to analyze a wide range of mechanical phenomena.
Although we may already have an intuitive idea of a force as a push or a pull, like
that exerted by our muscles or by stretched rubber bands and springs, Newton’s
laws allow us to refine our understanding of forces.

In this chapter, we describe Newton’s three laws of motion and begin using
them to solve problems involving objects in motion and at rest.



Friction is greatly reduced by a cushion of air
that supports the hovercraft. (Jose Dupont/
Explorer/Photo Researchers.)
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4-1 NEWTON’S FIRST LAW:
THE LAW OF INERTIA

Give a shove to a piece of ice on a counter top: It slides, and then slows to a stop.
If the counter is wet, the ice will travel farther before stopping. A piece of dry ice
(frozen carbon dioxide) riding on a cushion of carbon dioxide vapor slides quite far
with little change in velocity. Before Galileo, it was thought that a steady force,
such as a push or pull, was always needed to keep an object moving with constant
velocity. But Galileo, and later Newton, recognized that the slowing of objects in
everyday experience is due to the force of friction. If friction is reduced, the rate of
slowing is reduced. A water slick or a cushion of gas is especially effective at re-
ducing friction, allowing the object to slide a great distance with little change in ve-
locity. Galileo reasoned that, if we could remove all external forces including fric-
tion from an object, then the velocity of the object would never change—a
property of matter he described as inertia. This conclusion, restated by Newton as
his first law, is also called the law of inertia.

A modern wording of Newton’s first law is

First law. An object at rest stays at rest unless acted on by an external force.
An object in motion continues to travel with constant speed in a straight
line unless acted on by an external force.

NEWTON’S FIRST LAW

INERTIAL REFERENCE FRAMES

Newton’s first law makes no distinction between an object at rest and an object
moving with constant (nonzero) velocity. Whether an object remains at rest or re-
mains moving with constant velocity depends on the reference frame in which the
object is observed. Suppose you are a passenger on an airplane that is flying along
a straight path at constant altitude and you carefully place a tennis ball on your
seat tray (which is horizontal). Relative to the plane, the ball will remain at rest as
long as the plane continues to fly at constant velocity relative to the ground.
Relative to the ground, the ball remains moving with the same velocity as the
plane (Figure 4-1a).

Now, suppose that the pilot opens the throttle and the plane suddenly acceler-
ates forward (relative to the ground). You will then observe that the ball on your
tray suddenly starts to roll toward the rear of the plane, accelerating (relative to
the plane) even though there is no horizontal force acting on it (Figure 4-1b). In
this accelerating reference frame of the plane, Newton’s first-law statement does
not apply. Newton’s first-law statement applies only in reference frames known as
inertial reference frames. In fact, Newton’s first law gives us the criterion for de-
termining if a reference frame is an inertial frame:

If no forces act on an object, any reference frame for which the acceleration
of the object remains zero is an inertial reference frame.

INERTIAL REFERENCE FRAME

Both the plane, when cruising at constant velocity, and the ground are, to a
good approximation, inertial reference frames. Any reference frame moving with
constant velocity relative to an inertial reference frame is also an inertial reference
frame.

A reference frame attached to the ground is not quite an inertial reference frame
because of the small acceleration of the ground due to the rotation of Earth and 

(a)

(b)

Newton’s first-law statement applies
only to inertial reference frames.!

F I G U R E  4 - 1 The plane is flying
horizontally in a straight path at constant
speed when you place a tennis ball on the tray.
(a) The plane continues to fly at constant
velocity (relative to the ground) and the ball
remains at rest on the tray. (b) The pilot
suddenly opens the throttle and plane rapidly
gains speed (relative to the ground). The ball
does not gain speed as quickly as the plane, so
it accelerates (relative to the plane) toward the
back of the plane.
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the small acceleration of Earth itself due to its revolution around the Sun.
However, these accelerations are of the order of or less, so to a good ap-
proximation, a reference frame attached to the surface of Earth is an inertial refer-
ence frame.

4-2 FORCE AND MASS

Using Newton’s first law and the concept of inertial reference frames, we can de-
fine a force as an external influence or action on an object that causes the object to
change velocity, that is, to accelerate relative to an inertial reference frame. (We as-
sume that no other forces are acting on the object.) Force is a vector quantity. It has
both magnitude (the size or strength of the force) and direction.

Forces are exerted on objects by other objects, and forces that are due to one ob-
ject being physically touched by a second object are known as contact forces.
Common examples of contact forces include hitting a ball with a bat, your hand
pulling on a fishing line, your hands pushing on a shopping cart, and the force of
friction between your sneakers and the floor. Note that in each case there is direct
physical contact between the object applying the force and the object to which the
force is applied. Other forces act on an object without direct physical contact with
a second object. These forces, referred to as action-at-a-distance forces, include the
gravitational force, the magnetic force, and the electric force.

THE FUNDAMENTAL INTERACTIONS OF NATURE

Forces are interactions between particles. Traditionally, physicists explain all inter-
actions observed in nature in terms of four basic interactions that occur between el-
ementary particles (see Figure 4-2):

1. The gravitational interaction—the long-range interaction between particles due
to their mass. It is believed by some that the gravitational interaction involves
the exchange of hypothetical particles called gravitons.

2. The electromagnetic interaction—the long-range interaction between electri-
cally charged particles involving the exchange of photons.

3. The weak interaction—the extremely short-range interaction between sub-
nuclear particles involving the exchange or production of W and Z bosons. The
electromagnetic and weak interactions are now viewed as a single unified in-
teraction called the electroweak interaction.

4. The strong interaction—the long-range interaction between hadrons, which
themselves consist of quarks, that binds protons and neutrons together to form
the atomic nuclei. It involves the exchange of mesons between hadrons, or
gluons between quarks.

0.01 m>s2

F I G U R E  4 - 2 (a) The magnitude of the gravitational force between
Earth and an object near Earth’s surface is the weight of the object. The
gravitational interaction between the Sun and the other planets is
responsible for keeping the planets in their orbits around the Sun.
Similarly, the gravitational interaction between Earth and the moon keeps
the moon in its nearly circular orbit around Earth. The gravitational forces
exerted by the moon and the Sun on the oceans of Earth are responsible
for the diurnal and semidiurnal tides. Mont-Saint-Michel, France, shown
in the photo, is an island when the tide is in. (b) The electromagnetic
interaction includes both the electric and the magnetic forces. A familiar
example of the electric interaction is the attraction between small bits of
paper and a comb that is electrified after being run through hair. The
lightning bolts above the Kitt Peak National Observatory, shown in the
photo, are the result of the electromagnetic interaction. (c) The strong
nuclear interaction between elementary particles called hadrons, which

include protons and
neutrons, the
constituents of atomic
nuclei. This interaction
results from the
interaction of quarks,
which are the building blocks of hadrons, and is responsible for holding
nuclei together. The hydrogen bomb explosion shown here illustrates the
strong nuclear interaction. (d) The weak nuclear interaction between
leptons (which include electrons and muons) and between hadrons
(which include protons and neutrons). This false-color cloud chamber
photograph illustrates the weak interaction between a cosmic ray muon
(green) and an electron (red) knocked out of an atom. ((a) Cotton Coulson/
Woodfin Camp and Assoc.; (b) Gary Ladd; (c) Los Alamos National Lab; 
(d) Science Photo Library/Photo Researchers.)

(a)

(b)

(c)

(d)
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The everyday forces that we observe between macroscopic objects are due to ei-
ther the gravitational or the electromagnetic interactions. Contact forces, for ex-
ample, are actually electromagnetic in origin. They are exerted between the sur-
face molecules of the objects in contact. Action-at-a-distance forces are due to the
fundamental interactions of gravity and electromagnetism. These two forces act
between particles that are separated in space. Although Newton could not ex-
plain how forces act through empty space, later scientists introduced the concept
of a field, which acts as an intermediary agent. For example, we consider the at-
traction of Earth by the Sun in two steps. The Sun creates a condition in space
that we call the gravitational field. This field then exerts a force on Earth.
Similarly, Earth produces a gravitational field that exerts a force on the Sun. Your
weight is the force exerted by the gravitational field of Earth on you. When we
study electricity and magnetism (Chapters 22 – 31) we will study electric fields,
which are produced by electrical charges, and magnetic fields, which are pro-
duced by electrical charges in motion. The strong and weak interactions are dis-
cussed in Chapter 42.

COMBINING FORCES

If two or more individual forces simultaneously act on an object, the result is as if
a single force, equal to the vector sum of the individual forces, acts in place of the
individual forces. (That forces combine this way is called the principle of super-
position.) The vector sum of the individual forces on an object is called the net
force on the object. That is,

where are the individual forces. Figure 4-3 shows an object being pulled
in two directions by ropes. The effect is as if a single force equal to the net force acts
on the object.

The SI unit of force is the newton (N). The newton is defined in the next section.
One newton is equal to the weight of a modest-sized apple.

MASS

Objects intrinsically resist being accelerated. Imagine kicking both a soccer ball and
a bowling ball. The bowling ball resists being accelerated much more than does the
soccer ball, as would be evidenced by your sore toes. This intrinsic property is
called the object’s mass. It is a measure of the object’s inertia. The greater an ob-
ject’s mass, the more the object resists being accelerated.

As noted in Chapter 1, the object chosen as the international standard for mass
is a platinum-iridium alloy cylinder carefully preserved at the International
Bureau of Weights and Measures at Sèvres, France. The mass of this standard ob-
ject is 1 kilogram (kg), the SI unit of mass.

A convenient standard unit for mass in atomic and nuclear physics is the
unified atomic mass unit (u), which is defined as one-twelfth of the mass of the
carbon-12 atom. The unified atomic mass unit is related to the kilogram by

The concept of mass is defined as a constant of proportionality in Newton’s sec-
ond law. To measure the mass of an object, we compare its mass with a standard
mass, such as the 1-kg standard kept at Sèvres. The comparison is accomplished
using Newton’s second law, and a procedure for doing this is described in
Section 4-3 immediately following Example 4-1.

1 u � 1.660 540 � 10�27 kg

(12C)
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CONCEPT CHECK 4-1

Is the net force an actual force?

✓

F I G U R E  4 - 3 (a) The forces and 
pull on the sphere. (b) The effect of the two
forces is as if a single force 
acts on the sphere instead of the two distinct
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4-3 NEWTON’S SECOND LAW

Newton’s first law tells us what happens when there is no force acting on an object. But
what happens when there are forces exerted on the object? Consider again a block of
ice sliding with constant velocity on a smooth, frictionless surface. If you push on the
ice, you exert a force that causes the ice’s velocity to change. The harder you push,
the greater the resulting acceleration The acceleration, of any object is directly pro-
portional to the net force exerted on it, and the reciprocal of the mass of the object
is the proportionality constant. In addition, the acceleration vector and the net force
vector are in the same direction. Newton summarized these observations in his second
law of motion:

Second law. The acceleration of an object is directly proportional to the net
force acting on it, and the reciprocal of the mass of the object is the constant
of proportionality. Thus,

where 4-1

NEWTON’S SECOND LAW

A net force on an object causes it to accelerate. It is a matter of cause and effect. The
net force is the cause and the effect is the acceleration.*

A net force of 1 newton gives a 1-kg mass an acceleration of so

4-2

Thus, a force of 2 N gives a 2-kg mass an acceleration of and so on.
In the U.S. customary system, the unit of force is the pound (lb), where

† and the unit of mass is the slug. The pound is defined to be the force
required to produce an acceleration of on a mass of 1 slug:

It follows that 
The Equation 4-1 is frequently expressed:

and we will express it this way most of the time.

F
S

net � maS

1 slug � 14.6 kg.

1 lb � 1 slug # ft/s2

1 ft>s2
1 lb � 4.45 N,

1 m>s2,

1 N � (1 kg)(1 m>s2) � 1 kg # m>s2

1 m>s2,
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Newton’s second-law statement,
like Newton’s first–law statement,

can be applied only in inertial reference
frames.

!

CONCEPT CHECK 4-2

Is a force?maS

✓

F I G U R E  4 - 4  

(a) 1. Apply to each object. There is only one force on
each object, and we only need to consider magnitudes of the
vector quantities:

©F
S

� maS and F2 � m2a2F1 � m1a1

Example 4-1 A Sliding Ice-Cream Carton

A force exerted by a stretched rubber band (see Figure 4-4) produces an acceleration of
on an ice-cream carton of mass When a force exerted by an identical

rubber band stretched by the same amount is applied to a carton of ice cream of mass it
produces an acceleration of (a) What is the mass of the second carton of ice cream?
(b) What is the magnitude of the force exerted by the rubber band on the carton?

PICTURE We can apply Newton’s second law, to each object and solve for the
mass of the ice-cream carton and the magnitude of the force. The magnitudes of the forces
exerted by the rubber bands are equal.

SOLVE

©F
S

� maS,

11m>s2.
m2 ,

m1 � 1.0kg.5.0m/s2

* Newton’s second law relates the net force and the acceleration. Not everyone agrees that the net force is the cause and
the acceleration is the effect.

† The pound we are talking about is the pound force (i.e., 1 pound force is exactly equal to 4.448 221 615 260 5 N). There
is also a pound mass, which is exactly equal to 0.453 592 37 kg.
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3. Solve for in terms of which is 1.0 kg:m1 ,m2 0.45 kgm2 �
a1

a2

m1 �
5.0 m>s2

11 m>s2
(1.0 kg) �

(b) The magnitude is found by using the mass and acceleration
of either object:

F1 5.0 NF1 � m1a1 � (1.0 kg)(5.0 m>s2) �

Example 4-2 A Walk in Space

You’re stranded in space away from your spaceship. Fortunately, you have a propulsion 
unit that provides a constant net force for 3.0 s. After 3.0 s, you have moved 2.25 m. 
If your mass is 68 kg, find .

PICTURE The force acting on you is constant, so your acceleration is also constant. We can
use the kinematic equations of Chapters 2 and 3 to find , and then obtain the force from

. We choose the direction to be in the direction of (Figure 4-5), so and

SOLVE

Fx � max .
F
S

� Fxi
nF

S
�x©F

S
� maS

aS

F
S

F
S

CHECK A mass of 0.45 kg is a plausible mass for a carton of ice cream. One kilogram weighs
about 2.2 pounds. So, the carton weighs about one pound and is the size of a one-pint carton.

PRACTICE PROBLEM 4-1 A net force of 3.0 N produces an acceleration of on an
object of unknown mass. What is the mass of the object?

To describe mass quantitatively, we can apply identical forces to two masses
and compare their accelerations. If a force of magnitude F produces acceleration of
magnitude when applied to an object of mass and an identical force pro-
duces acceleration of magnitude when applied to an object of mass then

(or ). That is

If then

4-3

COMPARING MASSES

This definition agrees with our intuitive idea of mass. If a force is applied to an ob-
ject and a force of equal magnitude is applied to a second object, then the object
with more mass will accelerate less. The ratio produced by forces of equal
magnitude acting on two objects is independent of the magnitude, direction, or
type of force used. In addition, mass is an intrinsic property of an object that does
not depend on the object’s location—it remains the same whether the object is on
Earth, on the moon, or in deep space.

a1>a2

m2

m1

�
a1

a2

F1 � F2

m2>m1 � a1>a2m1a1 � m2a2

m2 ,a2

m1 ,a1

2.0m>s2

1. To find the acceleration, we use Equation 2-14
with v0 � 0:

aS � axi
n � 0.50 m>s2in

ax �
2¢x
t2

�
2(2.25 m)

(3.0 s)2
� 0.50 m>s2

¢x � v0t � 1
2axt

2 � 0 � 1
2axt

2

The propulsion unit (not shown) is
pushing the astronaut to the right.
(NASA/Science Source/Photo Researchers.)

2. Because the applied forces are equal in magnitude, the ratio
of the masses is equal to the reciprocal of the ratio of the
accelerations:

and
m2

m1

�
a1

a2

F1 � F2 ⇒ m1a1 � m2a2
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F

y

x
F I G U R E  4 - 5  

2. Because is the net force, . 
Therefore, we substitute and

into this equation to find the force:m � 68kg
aS � 0.50 m>s2in

©F
S

i � F
S

F
S

34 Nin�

F
S

� maxi
n � (68 kg)(0.50 m>s2)in

CHECK The acceleration is which is about 5% of This value seems
plausible. If the magnitude of the acceleration were equal to g you would move a lot farther
than 2.25 m in 3 s.

Example 4-3 A Particle Subjected to Two Forces

A particle of mass 0.400 kg is subjected simultaneously to two forces
and (Figure 4-6). If the particle is at

the origin and starts from rest at find (a) its position and (b) its velocity at
t � 1.60 s.

vSrSt � 0,
F
S

2 � �2.60 N in � 5.00 N jnF
S

1 � �2.00N in � 4.00 N jn

g � 9.81m>s2.0.50m>s2,

Particle

F1

Fnet

F2

y

x

r

F I G U R E  4 - 6 The acceleration is in the
direction of the net force. The particle is
released from rest at the origin. Following
release, it moves in the direction of the net
force, which is also the direction of the
acceleration vector.

(a) 1. Write the general equation for the
position vector as a function of time
t for constant acceleration in terms
of and , and substitute

.rS0 � vS0 � 0
aSvS0 ,rS0 ,

aS
rS � 1

2 aSt2
rS � rS0 � vS0t � 1

2 aSt2 � 0 � 0 � 1
2 aSt2

2. Use to write the
acceleration in terms of the
resultant force and the mass m.©F

S
aS

©F
S

� maS aS �
©F

S

m

3. Compute from the given forces.©F
S

� �4.60 N in � 1.00 N jn
� (�2.00N in � 4.00 N jn) � (�2.60 N in � 5.00 N jn)

©F
S

� F
S

1 � F
S

2

4. Find the acceleration .aS aS �
©F

S

m
� �11.5 m>s2 in � 2.50 m>s2 jn

5. Find the position for a general time t.rS � (�5.75 m>s2 in � 1.25 m>s2 jn) t2rS � 1
2 aSt2 � 1

2axt
2in � 1

2ayt
2jn

6. Find at t � 1.60s.rS �14.7 m in � 3.20 m jnrS �

(b) Write the velocity by taking the time
derivative of the step-5 result. Evaluate
the velocity at t � 1.6s.

vS

�18.4 m>s in � 4.00 m>s jnvS(1.6 s) �

vS(t) �
drS

dt
� 2(�5.75 m>s2 in � 1.25 m>s2 jn)t

CHECK The position, velocity, acceleration, and net force vectors all have negative x com-
ponents and positive y components. This is as expected for motion starting from rest at the
origin and moving with constant acceleration.

4-4 THE FORCE DUE TO GRAVITY: WEIGHT

If you drop an object near Earth’s surface, it accelerates toward Earth. If air resis-
tance is negligible, all objects fall with the same acceleration, called the free-fall ac-
celeration . The force causing this acceleration is the gravitational force
exerted by Earth on the object. The weight of the object is the magnitude of the
gravitational force on it. If the gravitational force is the only force acting on an

(F
S

g)gS

PICTURE Apply to find the acceleration. Once the acceleration is known, we can
use the kinematic equations of Chapters 2 and 3 to determine the particle’s position and ve-
locity as functions of time.

SOLVE

©F
S

� maS
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object, the object is said to be in freefall. We can apply Newton’s second law
( ) to an object of mass m that is in freefall with acceleration to obtain
an expression for the gravitation force 

4-4

WEIGHT

Because is the same for all objects, it follows that the gravitational force on an ob-
ject is proportional to its mass. Near Earth, the vector is the gravitational force
per unit mass exerted by the planet Earth on any object and is called the gravita-
tional field of Earth. Near the surface of Earth, the magnitude of has the value

4-5

When working problems in the U.S. customary system, we substitute for mass
m, where is the magnitude of the gravitational force, in pounds, and g is the
magnitude of the acceleration due to gravity in feet per second squared. Because

4-6

Careful measurements show that near Earth varies with location. points to-
ward the center of Earth and, at points above the surface of Earth, the magnitude
of varies inversely with the square of the distance to the center of Earth. Thus, an
object weighs slightly less at very high altitudes than it does at sea level. The grav-
itational field also varies slightly with latitude because Earth is not exactly spheri-
cal but is slightly flattened at the poles. Thus weight, unlike mass, is not an intrin-
sic property of an object. Although the weight of an object varies from place to
place because of variations in g, these variations are too small to be noticed in most
practical applications on or near the surface of Earth.

An example should help clarify the difference between mass and weight.
Consider a bowling ball near the moon. Its weight is the magnitude of the gravita-
tional force exerted on it by the moon, but that force is a mere sixth of the magni-
tude of the gravitational force exerted on the bowling ball when it is similarly po-
sitioned on Earth. The ball weighs about one-sixth as much on the moon, and
lifting the ball on the moon requires one-sixth the force. However, because the
mass of the ball is the same on the moon as on Earth, throwing the ball horizon-
tally at a specified speed requires the same force on the moon as on Earth.

Although the weight of an object may vary from one place to another, at any
particular location the weight of the object is proportional to its mass. Thus, we can
conveniently compare the masses of two objects at a given location by comparing
their weights.

Our sensation of the gravitational force on us comes from other forces that bal-
ance it. When you sit on a chair, you feel a force exerted by the chair that balances
the gravitational force on you and prevents you from accelerating toward the floor.
When you stand on a spring scale, your feet feel the force exerted by the scale. The
scale is calibrated to read the magnitude of the force it exerts (by the compression
of its springs) to balance the gravitational force on you. The magnitude of this force
is called your apparent weight. If there is no force to balance your weight, as in
free-fall, your apparent weight is zero. This condition, called weightlessness, is ex-
perienced by astronauts in orbiting satellites. A satellite in a circular orbit near the
surface of Earth is accelerating toward Earth. The only force acting on the satellite
is that of gravity, so it is in free-fall. Astronauts in the satellite are also in free-fall.
The only force on them is the gravitational force on them, which produces the ac-
celeration . Because there is no force balancing the force of gravity, the astronauts
have zero apparent weight.

gS

gS

gSgS

g � 32.2 ft>s2

9.81 m � 32.2 ft,

Fg

Fg>gg � 9.81N>kg � 9.81m>s2

gS

gS
gS

F
S

g � mgS

F
S

g:
gS© F

S
� maS

Weight is not an intrinsic property
of an object.!
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Example 4-4 An Accelerating Student

The net force acting on a 130-lb student has a magnitude of 25.0 lb. What is the magnitude
of her acceleration?

PICTURE Apply Newton’s second law and solve for the acceleration. The mass can be
found from the student’s weight.

SOLVE

According to Newton’s second law, the student’s acceleration is the force
divided by her mass, and her mass is equal to her weight divided by g:

6.19 ft>s2�a �
Fnet

m
�
Fnet

Fg>g �
25.0 lb

(130 lb)>(32.2 ft>s2)

CHECK The force is slightly less than one-fifth of her weight, so we expect the acceleration
to be slightly less than one-fifth of g. and is slightly less
than so the result is plausible.

TAKING IT FURTHER Rearranging the equation in the solution gives

This arrangement reveals that you can solve for her acceleration without first solving for the
mass. For any object, the ratio of to a equals the ratio of to g.

PRACTICE PROBLEM 4-2 What force is needed to give an acceleration of to a
5.0-lb block?

3.0 ft>s2

FgFnet

m �
Fnet

a
�
Fg

g

6.44 ft>s2,
6.19 ft>s2(32.2 ft>s2)>5 � 6.44 ft>s2,

4-5 CONTACT FORCES:
SOLIDS, SPRINGS, AND STRINGS

Many forces are exerted by one body in contact with another. In this section, we
will examine some of the more common contact forces.

SOLIDS

If a surface is pushed against, it pushes back. Consider the ladder leaning against a
wall shown in Figure 4-7. At the region of contact, the ladder pushes against the wall
with a horizontal force, compressing the distance between the molecules in the surface
of the wall. Like mattress springs, the compressed molecules in the wall push back on
the ladder with a horizontal force. Such a force, perpendicular to the contacting sur-
faces, is called a normal force (the word normal means perpendicular). The wall bends
slightly in response to a load, though this is rarely noticeable to the unaided eye.

Normal forces can vary over a wide range of magnitudes. A horizontal tabletop,
for instance, will exert an upward normal force on any object resting on it. As long
as the table doesn’t break, this normal force will balance the downward gravita-
tional force on the object. Furthermore, if you press down on the object, the mag-
nitude of the upward normal force exerted by the table will increase, countering
the extra force, thus preventing the object from accelerating downward.

In addition, surfaces in contact can exert forces on each other that are parallel to
the contacting surfaces. Consider the large block on the floor shown in Figure 4-8. If
the block is pushed sideways with a gentle enough force, it will not slide. The sur-
face of the floor exerts a force back on the block, opposing its tendency to slide in the
direction of the push. However, if the block is pushed sideways with a sufficiently
large force, it will start to slide. To keep the block sliding, it is necessary to continue
to push it. If the sideways push is not sustained, the contact force will slow the mo-
tion of the box until it stops. A component of a contact force that opposes sliding, or

Normal
force

F I G U R E  4 - 7 The wall supports the
ladder by pushing on the ladder with a force
normal to the wall.

F I G U R E  4 - 8 The man is pushing on a
block. The frictional force exerted by the floor
on the block opposes its sliding motion or its
tendency to slide.

Frictional
force
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(a) (b)

F I G U R E  4 - 1 1 (a) Model of a solid consisting of atoms connected to each other by
springs. The springs are very stiff (large force constant) so that when a weight is placed
on the solid, its deformation is not visible. However, compression such as that produced
by the clamp on the plastic block in (b) leads to stress patterns that are visible when
viewed with polarized light. ((b) Fundamental Photographs.)

the tendency to slide, is called a frictional force; it acts parallel to the contacting sur-
faces. (Frictional forces are treated more extensively in Chapter 5.)

A construction dumpster (Figure 4-9a) is situated on a road with a steep incline.
Gravity pulls the dumpster downward, so to prevent the
dumpster from moving, the road must exert an upward
force of equal magnitude on the dumpster (Figure 4-9b).
The force is a contact force by the road on the dumpster.
A contact force such as this one is often thought of as two
distinct forces, one, called the normal force directed
perpendicular to the road surface, and a second, called the
frictional force , that is directed parallel to the road sur-
face. The frictional force opposes any tendency of the
dumpster to slide down the hill.

SPRINGS

When a spring is stretched from its unstressed length by a distance x, the
force it exerts is found experimentally to be

4-7

HOOKE’S LAW

where the positive constant k, called the force constant (or spring con-
stant), is a measure of the stiffness of the spring (Figure 4-10). A negative
value of x means the spring has been compressed a distance from its un-
stressed length. The negative sign in Equation 4-7 signifies that when the
spring is stretched (or compressed) in one direction, the force it exerts is in
the opposite direction. This relation, known as Hooke’s law, turns out to
be quite important. An object at rest under the influence of forces that bal-
ance is said to be in static equilibrium. If a small displacement results in a
net restoring force toward the equilibrium position, the equilibrium is
called stable equilibrium. For small displacements, nearly all restoring
forces obey Hooke’s law.

The molecular force of attraction between atoms in a molecule or solid
varies much like that of a spring. We can therefore use two masses on a
spring to model a diatomic molecule, or a set of masses connected by
springs to model a solid as shown in Figure 4-11.

|x|

Fx � �kx

f
S

F
S

n ,

F
S

F
S

F

f

Fn

(b)(a)

Fx

x0

x

+x

+x

+x

x = x0

Fx = –kx is negative (because Δx is positive).

x0

x

Fx

Fx = –kx is positive (because Δx is negative).

(a)

(b)

(c)

F I G U R E  4 - 9 (a) A dumpster is parked on a steep incline. (b) The contact
force by the road on the dumpster is represented either as the single force ,
or as a superposition of a normal force and a frictional force .f

S
F
S

n

F
S

F I G U R E  4 - 1 0 A horizontal spring. (a) When the
spring is unstressed, it exerts no force on the block. 
(b) When the spring is stretched so that x is positive, it
exerts a force of magnitude kx in the direction.
(c) When the spring is compressed so that x is negative,
the spring exerts a force of magnitude in the 
direction.

�xk ƒx ƒ

�x
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Example 4-5 The Slam Dunk

A 110-kg basketball player hangs on the rim following a slam dunk (Figure 4-12). Prior to
dropping to the floor, he hangs motionless with the front of the rim deflected down a
distance of 15 cm. Assume the rim can be approximated by a spring and calculate the force
constant k.

PICTURE Because the acceleration of the player is zero, the net force exerted on him must
also be zero. The upward force exerted by the rim balances his weight. Let be the orig-
inal position of the rim and choose down to be the direction. Then the displacement of
the rim is positive, the weight is positive, and the force exerted by the
rim is negative.

SOLVE

Fy � �kyeFgy � mgye

�y
y � 0

y

F = −kye ĵ

Fg = mg

F I G U R E  4 - 1 2 (AFP-Getty Images.)

1. Apply to the player. The
acceleration of the player is zero:

©Fy � maSy
Fgy � Fy � 0

©Fy � may

2. Use Hooke’s law (Equation 4-7) to find Fy : Fy � �kye

3. Substitute expressions or values for the force
components in step 1 and solve for k:

7.2 � 103 N>m�

k �
mg

ye
�

(110 kg)(9.8 N>kg)

0.15 m

mg � (�kye) � 0

Fgy � Fy � 0

CHECK The weight of any object, in newtons, is almost ten times larger than the object’s
mass in kilograms. Thus, the weight is more than 1000 N. A deflection of only 0.10 m would
mean k would be 10,000 N/m, so getting for a deflection of 0.15 m seems
about right.

TAKING IT FURTHER Although a basketball rim doesn’t look much like a spring, the rim
is sometimes suspended by a hinge with a spring that is distorted when the front of the rim
is pulled down. As a result, the upward force the rim exerts on the player’s hands is pro-
portional to the rim front’s displacement and oppositely directed. Note that we used N/kg
for the units of g so that kg cancels, giving N/m for the units of k. We can use either
9.81 N/kg or for g, whichever is more convenient, because 

PRACTICE PROBLEM 4-3 A 4.0-kg bunch of bananas is suspended motionless from a
spring balance whose force constant is 300 N/m. By how much is the spring stretched?

PRACTICE PROBLEM 4-4 A spring of force constant 400 N/m is attached to a 3.0-kg block
that rests on a horizontal air track that renders friction negligible. What extension of the
spring is needed to give the block an acceleration of upon release?

PRACTICE PROBLEM 4-5 An object of mass m oscillates at the end of an ideal spring of
force constant k. The time for one complete oscillation is the period T. Assuming that T de-
pends on m and k, use dimensional analysis to find the form of the relationship (m, k),
ignoring numerical constants. This is most easily found by looking at the units. Note that the
units of k are and the units of m are kg.

STRINGS

Strings (ropes) are used to pull things. We can think of a string as a spring with
such a large force constant that the extension of the string is negligible. Strings are
flexible, however, so unlike springs, they cannot push things. Instead, they flex or
bend sharply. The magnitude of the force that one segment of a string exerts on an

N>m � (kg # m>s2)>m � kg>s2,

T � f

4.0 m>s2

1 N>kg � 1 m>s2.9.81m>s2

k � 7200N>m
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F

Fn

ma

Fg

F I G U R E  4 - 1 4 The vector sum of the
forces in the free-body diagram is equal the
mass times the acceleration vector.

adjacent segment is called tension, T. It follows that if a string pulls on an object,
the magnitude of the force on the object equals the tension. The concept of tension
in a string or rope is further developed in Section 4-8.

4-6 PROBLEM SOLVING:
FREE-BODY DIAGRAMS

Imagine a sled being pulled across icy ground by a sled dog. The dog pulls on a
rope attached to the sled (Figure 4-13a) with a horizontal force causing the sled to
gain speed. We can think of the sled and rope together as a single particle. What
forces act on the sled-rope particle? Both the dog and the ice touch the sled-rope,
so we know that the dog and the ice exert contact forces on it. We also know that
Earth exerts a gravitational force on the sled-rope (the sled-rope’s weight). Thus, a
total of three forces act on the sled-rope (assuming that friction is negligible):

1. The gravitational force on the sled-rope 
2. The contact force exerted by the ice on the runners. (Without friction, the

contact force is directed normal to the ice.)
3. The contact force exerted by the dog on the rope.

A diagram that shows schematically all the forces acting on a system, such as
Figure 4-13b, is called a free-body diagram. It is called a free-body diagram be-
cause the body (object) is drawn free from its surroundings.

Drawing the force vectors on a free-body diagram to scale requires that we first
determine the direction of the acceleration vector using kinematic methods. We
know the object is moving to the right with increasing speed. It follows from kine-
matics that its acceleration vector is in the direction that the velocity vector is
changing—the forward direction. Note that and in the diagram have equal
magnitudes. We know the magnitudes are equal because the vertical component of
the acceleration is zero. As a qualitative check on the plausibility of our free-body
diagram, we draw a vector-addition diagram (Figure 4-14) verifying that the vec-
tor sum of the forces is in the same direction as the acceleration vector.

We can now apply Newton’s second law to determine the x and y components
of the net force on the sled-rope particle. The x component of Newton’s second
law gives

or

The y component of Newton’s second law gives

or

Thus, the sled-rope particle has an acceleration in the direction of F/m and
the magnitude of the vertical force exerted by the ice is Fn � Fg � mg.F

S

n

�x

Fn � Fg

Fn � Fg � 0 � 0

©Fy � Fny � Fgy � Fy � may

ax �
F
m

 0 � 0 � F � max

©Fx � Fnx � Fgx � Fx � max

F
S

gF
S

n

F
S

F
S

n

F
S

g .

(a)

(b)

F

Fn

Fg

y

x

F I G U R E  4 - 1 3 (a) A dog pulling a sled.
The first step in problem solving is to isolate
the system to be analyzed. In this case, the
closed dashed curve represents the boundary
between the sled-rope object and its
surroundings. (b) The forces acting on the sled
in Figure 4.13a.
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PROBLEM-SOLVING STRATEGY

Applying Newton’s Second Law

PICTURE Make sure you identify all of the forces acting on a particle. Then,
determine the direction of the acceleration vector of the particle, if possible.
Knowing the direction of the acceleration vector will help you choose the best
coordinate axes for solving the problem.

SOLVE

1. Draw a neat diagram that includes the important features of the problem.
2. Isolate the object (particle) of interest, and identify each force that acts

on it.
3. Draw a free-body diagram showing each of these forces.
4. Choose a suitable coordinate system. If the direction of the acceleration

vector is known, choose a coordinate axis parallel to that direction. For
objects sliding along a surface, choose one coordinate axis parallel to the
surface and the other perpendicular to it.

5. Apply Newton’s second law, , usually in component form.
6. Solve the resulting equations for the unknowns.

CHECK Make sure your results have the correct units and seem plausible.
Substituting extreme values into your symbolic solution is a good way to
check your work for errors.

©F
S

� maS

Example 4-6 A Dogsled Race

During your winter break, you enter a dogsled race in which students replace the dogs.
Wearing cleats for traction, you begin the race by pulling on a rope attached to the sled with a
force of 150 N at 25° above the horizontal. The mass of the sled–passenger–rope particle is 80 kg
and there is negligible friction between the sled runners and the ice. Find (a) the acceleration
of the sled and (b) the magnitude of the normal force exerted by the surface on the sled.

PICTURE Three forces act on the particle: its weight which acts downward; the normal
force which acts upward; and the force with which you pull the rope , directed 25°
above the horizontal. Because the forces are not all parallel to a single line, we study the sys-
tem by applying Newton’s second law to the x and y directions separately.

SOLVE

(a) 1. Sketch a free-body diagram (Figure 4-15b) of the sled-passenger-rope particle.
Include a coordinate system with one of the coordinate axes in the direction of the
acceleration. The particle moves to the right with increasing speed, so we know the
acceleration is also to the right:

2. Note: Use the head-to-tail method of vector addition to verify that the sum of the
forces on the free-body diagram can be in the direction of the acceleration 
(Figure 4-16):

F
S

F
S

n ,
F
S

g ,

F

Fn

ma

Fg
3. Apply Newton’s second law to the particle.

Write out the equation in both vector and
component form:

or

Fny � Fgy � Fy � may

Fnx � Fgx � Fx � max

F
S

n � F
S

g � F
S

� maS

F I G U R E  4 - 1 6 The vector sum of the
forces in the free-body diagram is equal
the mass times the acceleration vector.

F

Fn

θ

FFn

y

x

θ

(a)

(b)

Fg

Fg

F I G U R E  4 - 1 5

4. Express the x components of 
and :F

S
F
S

g ,F
S

n , Fnx � 0, Fgx � 0, and Fx � F cosu
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Example 4-7 Unloading a Truck

You are working for a big delivery company, and must unload a large, fragile
package from your truck, using a delivery ramp (Figure 4-17). If the downward
component of the velocity of the package when it reaches the bottom of the ramp
is greater than 2.50 m/s (2.50 m/s is the speed an object would have if it were
dropped from a height of about 1 ft), the package will break. What is the largest
angle at which you can safely unload? The ramp is 1.00 m high, has rollers 
(i.e., the ramp is approximately frictionless), and is inclined at an angle � to
the horizontal.

PICTURE Two forces act on the box, the gravitational force and the normal
force of the ramp on the box. Because these forces are not antiparallel, they
cannot sum to zero. So, there is a net force on the box causing it to accelerate. The
ramp constrains the box to move parallel to its surface. We choose down the in-
cline as the direction. To determine the acceleration, we apply Newton’s sec-
ond law to the box. Once the acceleration is known, we can use kinematics to de-
termine the largest safe angle.

�x

F
S

n

F
S

g

Fn

y

x

θ

θ
θ

Fgy

Fgx
Fg

F I G U R E  4 - 1 8

SOLVE

1. First we draw a free-body diagram (Figure 4-18). Two forces act on the package, the
gravitational force and the normal force. We choose the direction of the acceleration,
down the ramp, as the direction. Note: The angle between and the direction is
the same as the angle between the horizontal and the incline as we see from the free-
body diagram. We can also see that Fgx � Fg sinu.

�yF
S

g�x

where

Fnx � 0 and Fgx � Fg sinu � mg sinu

Fnx � Fgx � max

3. Substituting and solving for the acceleration gives: so ax � g sinu0 � mg sinu � max

4. Relate the downward component of the velocity of the
box to its velocity component in the x direction:vx

vd � vx sinu

2. To find ax we apply Newton’s second law ( )
to the package. (Note: is perpendicular to the x axis
and )Fg � mg.

F
S

n

©Fx � max

5. Substitute the step-4 results into the x component
equation in step 3. Then solve for the acceleration ax :

so

1.7 m>s2ax �
F cosu
m

�
(150 N) cos25°

80 kg
�

gF
S

x � 0 � 0 � F cosu � max

(b) 1. Express the y component of :aS ay � 0

2. Express the y components of and :F
S

F
S

g ,F
S

n , Fny � Fn , Fgy � �mg, and Fy � F sinu

3. Substitute the Part (b) steps 1 and 2 results into
the y component equation in Part (a) step 3. Then
solve for Fn : 7.2 � 102 N�� (80 kg)(9.81 N>kg) � (150 N) sin25°

Fn � mg � F sinu

©Fy � Fn � mg � F sinu � 0

CHECK Note that only the x component of , which is F , causes the object to acceler-
ate. We expect the acceleration to be less if the rope is not horizontal. Also, we expect the
normal force exerted by the ice to counter less than the full weight of the object because part
of the weight is countered by the force exerted by the rope.

PRACTICE PROBLEM 4-6 If what is the maximum of the magnitude of the force
that can be applied to the rope without lifting the sled off the surface?F

S
u � 25°,

cosuF
S

5. The velocity component is related to the displacement
�x along the ramp by the kinematic equation:

vx v2
x � v2

0,x � 2ax ¢x

6. Substituting for in the kinematic equation (step 5) and
setting to zero gives:v0,x

ax v2
x � 2g sinu¢x

θ

h

F I G U R E  4 - 1 7
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7. From Figure 4-17, we can see that when equals the length of the
ramp, where h is the height of the ramp:¢x sinu � h,

¢x v2
x � 2gh

8. Solve for using the step-4 result and the expression for from
step 7:

vxvd vd � 22gh sinu

9. Solve for the maximum angle:

34.4°‹ umax �

2.50 m>s � 22(9.81 m>s2)(1.00 m) sinumax

CHECK At an angle of 34.4°, the downward component of the velocity will be slightly
greater then half the speed that the box would have if it were dropped from a height
of 1.00 m.

TAKING IT FURTHER The acceleration down the incline is constant and equal to g . In
addition, the speed v at the bottom depends upon h but not upon the .

PRACTICE PROBLEM 4-7 Apply to the package and show that Fn � mg cosu.©Fy � may

angleu
sinu

T1y
T2y

T2x T1x

y

x

T1

T2

30°
60°

Fg

F I G U R E  4 - 2 0  

Example 4-8 Picture Hanging

A picture weighing 8.0 N is supported by two wires with tensions and as shown in
Figure 4-19. Find each tension.

PICTURE Because the picture does not accelerate, the net force acting on it must be zero.
The three forces acting on the picture (the gravitational force and the tension forces 
and ) must therefore sum to zero.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

T
S

2

T
S

1F
S

g ,

T2 ,T1

Steps: Answers

1. Draw a free-body diagram for the picture
(Figure 4-20). On your diagram show the x
and y components of each tension force.

2. Apply in vector form to the
picture.

©F
S

� maS T
S

1 � T
S

2 � F
S

g � maS

3. Resolve each force into its x and y
components. This gives you two equations
for the two unknowns T1 and The
acceleration is zero.

T2 .

T1 sin30° � T2 sin60° � Fg � 0

T1y � T2y � Fgy � 0

andT1 cos30° � T2 cos60° � 0 � 0

T1x � T2x � Fgx � 0

4. Solve the x component equation for T2 . T2 � T1

cos30°
cos60°

5. Substitute your result for (from step 4)
into the y component equation and solve
for T1 .

T2

4.0 NT1 � 0.50Fg �

T1 sin30° � aT1

cos30°
cos60°

b sin60° � Fg � 0

6. Use your result for to find T2 .T1 6.9 NT2 � T1

cos30°
cos60°

�

CHECK The more vertical of the two wires supports the greater share of the load, as you
might expect. Also, we see that N. The “extra” force is due to the wires pulling
to the right and left.

T1 � T2 
 8

T1

60° 30°

T2

Fg

F I G U R E  4 - 1 9
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4. Divide the step-2 result by the step 3
result and solve for the acceleration.
Because the acceleration vector is in the

direction, a � ax :�x

so and

3.96 m>s2ax � g tanu � (9.81 m>s2) tan 22.0° �

tanu �
ax
g

T sinu
T cosu

�
max
mg

(b) Using the step-3 result, solve for the tension: 0.423 NT �
mg

cosu
�

(0.0400 kg)(9.81 m>s2)

cos22.0°
�

CHECK At and Substituting these values into the expressions in
the last two steps of the solution gives and and as expected.

TAKING IT FURTHER Notice that for the Part (b) result T is greater than the gravitational
force on the yo-yo because the cord not only keeps the yo-yo from falling but
also accelerates it in the horizontal direction. Here we use the units for g (instead of
N/kg) because we are calculating acceleration.

PRACTICE PROBLEM 4-8 For what acceleration magnitude a would the tension in the
string be equal to 3.00 mg? What is � in this case?

Our next example is the application of Newton’s second law to objects that are at rest rel-
ative to a reference frame that is itself accelerating.

m>s2
(mg � 0.392N)

T � mg,ax � 0
tanu � 0.cosu � 1u � 0,

Example 4-9 An Accelerating Jet Plane

As your jet plane speeds down the runway on takeoff, you decide to determine
its acceleration, so you take out your yo-yo and note that when you suspend it,
the string makes an angle of 22.0° with the vertical (Figure 4-21a). (a) What is the
acceleration of the plane? (b) If the mass of the yo-yo is 40.0 g, what is the tension
in the string?

PICTURE Both the yo-yo and plane have the same acceleration. The net force
on the yo-yo is in the direction of its acceleration—to the right. This force is sup-
plied by the horizontal component of the tension force . The vertical compo-
nent of balances the gravitational force on the yo-yo. We choose a coordi-
nate system in which the direction is in the direction of the acceleration
vector and the direction is vertically upward. Writing Newton’s second
law for both the x and y directions gives two equations to determine the two un-
knowns, a and T.

SOLVE

(a) 1. Draw a free-body diagram for the yo-yo (Figure 4-21b). Choose the 
direction to be the direction of the yo-yo’s acceleration vector.

�x

�yaS
�x

F
S

gT
S

T
S

2. Apply to the yo-yo. Then
simplify using trigonometry:

©Fx � max

or

T sinu � max

T sinu � 0 � max

Tx � Fgx � max

3. Apply to the yo-yo. Then,
simplify using trigonometry (Figure 4-21)
and Since the acceleration is in
the direction, ay � 0 :�x
Fg � mg.

©Fy � may

or

T cosu � mg

T cosu � mg � 0

Ty � Fgy � may

a

θ

(a)
y

x

T

θ

Fg

(b)

F I G U R E  4 - 2 1

T

ma

θ
mg

(c)
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CHECK Independent of whether the elevator is ascending or descending, if its acceleration
is upward you would expect to “feel heavier” and expect your apparent weight to be greater
than mg. This is in keeping with the Part-(a) result. If its acceleration is downward you would
expect to “feel lighter” and expect your apparent weight to be less than mg. The results for
Parts (b) and (c) are in agreement with these expectations.

PRACTICE PROBLEM 4-9 A descending elevator comes to a stop with an acceleration of
magnitude If your mass is 70.0 kg and you are standing on a force scale in the el-
evator, what does the scale read as the elevator is stopping?

4-7 NEWTON’S THIRD LAW

Newton’s third law describes an important property of forces: forces always occur
in pairs. For example, if a force is exerted on some object A, there must be another
object B exerting the force. Newton’s third law states that these forces are equal in
magnitude and opposite in direction. That is, if object A exerts a force on object B,
then B exerts an equally strong but oppositely directed force on A.

Third law. When two bodies interact, the force exerted by object B on
object A is equal in magnitude and opposite in direction to the force 
exerted by object A on object B. Thus,

4-8
NEWTON’S THIRD LAW

F
S

BA � � F
S

AB

F
S

AB

F
S

BA

4.00m>s2.

Example 4-10 “Weighing”Yourself in an Elevator

Suppose that your mass is 80 kg, and you are standing on a scale fastened
to the floor of an elevator. The scale measures force and is calibrated in
newtons. What does the scale read when (a) the elevator is rising with
upward acceleration of magnitude a; (b) the elevator is descending 
with downward acceleration of magnitude (c) the elevator is rising at
20 m/s and its speed is decreasing at a rate of 

PICTURE The scale reading is the magnitude of the normal force exerted
by the scale on you (Figure 4-22). Because you are at rest relative to the
elevator, you and the elevator have the same acceleration. Two forces act
on you: the downward force of gravity, and the upward normal
force from the scale, The sum of these forces gives you the observed
acceleration. We choose upward to be the direction.

SOLVE

(a) 1. Draw a free-body diagram of yourself (Figure 4-23):

�y
Fn .

F
S

g � mgS,

8.0m>s2?
a�;

y

Fn

Fg

F I G U R E  4 - 2 3
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(a) (b)

a  (up)

Fn

Fg Fg

Fn

a’ (down)

2. Apply ©Fy � may :

Fn � mg � may

Fny � Fgy � may

3. Solve for This is the reading on
the scale (your apparent weight):

Fn . Fn � mg � may � m(g � ay)

4. ay � �a: m(g � a)Fn �

(b) . Substitute for in the
Part-(a), step-3 result:

ayay � �a� m(g � a�)Fn � m(g � ay) �

(c) The velocity is positive but decreasing,
so the acceleration is negative. Thus,

Substitute into the
Part-(a), step-3 result:
ay � �8.0m>s2.

1.40 � 102 N� 144.8 N �

� (80 kg)(9.81 m>s2 � 8.0 m>s2)Fn � m(g � ay)



Conceptual ExampleExample 4-11 The Horse Before the Cart

A horse refuses to pull a cart (Figure 4-25a). The horse reasons,
“according to Newton’s third law, whatever force I exert 
on the cart, the cart will exert an equal and opposite force 
on me, so the net force will be zero and I will have no 
chance of accelerating the cart.” What is wrong with this
reasoning?

PICTURE Because we are interested in the motion of the cart,
we draw a simple diagram for it (Figure 4-25b). The force ex-
erted by the horse on the cart is labeled (This force is ac-
tually exerted on the harness. Because the harness is attached
to the cart, we consider it a part of the cart.) Other forces act-
ing on the cart are the gravitational force of Earth on the cart

the normal force of the pavement on the cart and
the frictional force exerted by the pavement on the cart, la-
beled

SOLVE

1. Draw a free-body diagram for the cart (see Figure 4-25c).
Because the cart does not accelerate vertically, the vertical
forces must sum to zero. The horizontal forces are to
the right and to the left. The cart will accelerate to the
right if is greater than ƒ f

S

PC ƒ .ƒ F
S

HC ƒ
f
S

PC

F
S

HC

f
S

PC.

F
S

n PCF
S

gEC,

F
S

HC.
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No two external forces acting on
the same object can ever constitute a

Newton’s third-law pair.
!

(a)

(b)

FHC

fPC

Fn PC

Fg EC

FHCfPC

Fn PC

Fg EC

(c)
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CONCEPT CHECK 4-3

Do the forces and in
Figure 4-24 form a Newton’s third-
law pair?

F
S

nBTF
S

gBE

✓

Each pair of forces is called a Newton’s
third-law (N3L) pair. It is common to refer
to one force in the pair as an action and the
other as a reaction. This terminology is un-
fortunate because it sounds like one force
“reacts” to the other, which is not the case.
The two forces occur simultaneously.
Either can be called the action and the
other the reaction. If we refer to a force act-
ing on a particular object as an action force,
then the corresponding reaction force must
act on a different object.

In Figure 4-24, a block rests on a table.
The force acting downward on the
block is the gravitational force by Earth on
the block. An equal and opposite force

is the gravitational force exerted on
Earth by the block. These forces form an
action–reaction pair. If they were the only
forces present, the block would accelerate downward because it would have only
a single force acting on it (and Earth would accelerate upward for the same
reason). However, the upward force by the table on the block balances the
gravitational force on the block. In addition, there is a downward force by the
block on the table. The forces and form a Newton’s third law pair and,
thus, are equal and opposite.

F
S

nTBF
S

nBT

F
S

nBT

F
S

nTB

F
S

gBE

F
S

gEB

Newton’s third-law force pairs are
always equal and opposite.!

Earth

F

FnTB

nBT

FgEB

FgBE
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Paul

θ

Steve

T2

T1
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FCH

FPH

FHP

(d)

Because the reaction force to 
is exerted on the horse, it has no
effect on the motion of the cart.
This is the flaw in the horse’s
reasoning.

F
S

HC

CHECK All forces on the cart have C for a rightmost subscript, and all forces on the horse
have H for a rightmost subscript. Thus, we have not drawn both forces of a Newton’s third-
law force pair on either the horse or the cart.

TAKING IT FURTHER This example illustrates the importance of drawing a simple dia-
gram when solving mechanics problems. Had the horse done so, he would have seen that he
need only push back hard against the pavement so that the pavement will push him
forward.

4-8 PROBLEM SOLVING:
PROBLEMS WITH TWO OR MORE OBJECTS

In some problems, the motions of two (or more) objects are influenced by the
interactions between the objects. For example, such objects might touch each 
other, or they might be connected to each other by a string or
spring.

The tension in a string or rope is the magnitude of the 
force that one segment of the rope exerts on a neighboring
segment. The tension can vary throughout the length of the
rope. For a rope dangling from a girder at the ceiling of a gym-
nasium, the tension is greatest at points near the ceiling because
a short segment of rope next to the ceiling has to support the
weight of all the rope below it. For the problems in this book,
however, you can almost always assume that the masses of
strings and ropes are negligible, so variations in tension due to
the weight of a string or rope can be neglected. Conveniently,
this also means that you may assume that variations in the
tension due to the acceleration of a string or rope can also be
neglected.

Consider, for example, the motion of Steve and Paul in Figure 4-26. The rate at
which Paul descends equals the rate at which Steve slides along the glacier. Thus,
their speeds remain equal. If Paul gains speed, Steve gains speed at the same rate.
That is, their tangential accelerations remain equal. (The tangential acceleration
of a particle is the component of the acceleration that is tangent to the path of the
motion of the particle.)

The free-body diagram of a segment of the rope attached to Steve, where 
is the segment’s mass, is shown in Figure 4-27. Applying Newton’s second law 
to the segment gives . If the mass of the segment is negligible, 
then . To give a segment of negligible mass any finite acceleration, a 
net force of only a negligible magnitude is needed. (That is, only a negligible dif-
ference in tension is needed to give a rope segment of negligible mass any finite
acceleration.)

T � T�

T � T� � ¢msax

¢ms

CONCEPT CHECK 4-4

As you stand facing a friend,
place your palms against your
friend’s palms and push. Can
your friend exert a force on you if
you do not exert a force back?
Try it.

✓

2. Note that the reaction force to 
which we call is exerted on the
horse, not on the cart (Figure 4-25d). It
has no effect on the motion of the cart,
but it does affect the motion of the
horse. If the horse is to accelerate to the
right, there must be a force (to the
right) exerted on the horse’s hooves by
the pavement that is greater in
magnitude than F

S

CH.

F
S

PH

F
S

CH,
F
S

HC,

T'

T

Δms
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(continued)



112 | C H A P T E R  4 Newton’s Laws

Next, we consider the entire rope connecting Steve and
Paul. Neglecting gravity, there are three forces acting on the
rope. Steve and Paul each exert a force on it, as does the ice at
the edge of the glacier. Neglecting any friction between the
ice and the rope means that the force exerted by the ice is al-
ways a normal force (Figure 4-28). A normal force has no
component tangent to the rope, so it cannot produce a change
in the tension. Thus, the tension is the same throughout the
entire length of the rope. To summarize, if a taut rope of neg-
ligible mass changes direction by passing over a frictionless
surface, the tension is the same throughout the rope. The fol-
lowing box summarizes the steps for solving such problems.

CONCEPT CHECK 4-5

Suppose that instead of passing
over the edge of a glacier, the rope
passed around a pulley with fric-
tionless bearings as shown in
Figure 4-29. Would the tension
then be the same throughout the
length of the rope?

✓

y

Fn

mS g

T1

x

θ

θ
θ mPg

T2

x'
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Fnx � T1x � mSgx � mSaSx

3. Apply in the direction to Paul:x�©Fx� � max� T2x� � mPgx� � mPaPx�

4. Because they are connected by a taut rope that does not stretch,
the accelerations of Paul and Steve are related. Express this
relation:

at stands for the acceleration component in the tangential
direction. (The direction of the motion.)

aPx� � aSx � at

Fn

T'2

T'1

F I G U R E  4 - 2 8

m
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2. Apply in the x direction to Steve:©Fx � max

PROBLEM-SOLVING STRATEGY

Applying Newton’s Laws to Problems with Two or More Objects

PICTURE Remember to draw a separate free-body diagram for each object.
The unknowns can be obtained by solving simultaneous equations.

SOLVE

1. Draw a separate free-body diagram for each object. Use a separate
coordinate system for each object. Remember, if two objects touch, the forces
they exert on each other are equal and opposite (Newton’s third law).

2. Apply Newton’s second law to each object.
3. Solve the resultant equations, together with any equations describing

interactions and constraints, for the unknown quantities.

CHECK Make sure your answer is consistent with the free-body diagrams
that you have created.

Example 4-12 The Ice Climbers

Paul (mass ) accidentally falls off the edge of a glacier as shown in Figure 4-26.
Fortunately, he is connected by a long rope to Steve (mass ), who has a climbing ax. Before
Steve sets his ax to stop them, Steve slides without friction along the ice, attached by the rope
to Paul. Assume there is no friction between the rope and the glacier. Find the acceleration
of each person and the tension in the rope.

PICTURE The tension forces and have equal magnitudes because the rope is as-
sumed massless and the glacial ice is assumed frictionless. The rope does not stretch or be-
come slack, so Paul and Steve have equal speeds at all times. Their accelerations S and P
must therefore be equal in magnitude (but not in direction). Steve accelerates down the face
of the glacier whereas Paul accelerates straight downward. We can solve this problem by ap-
plying to each person, and then solving for the accelerations and the tension.

SOLVE

1. Draw separate free-body diagrams for Steve and Paul (Figure 4-30). Put axes x and y on
Steve’s diagram, choosing the direction of Steve’s acceleration as the direction.
Choose the direction of Paul’s acceleration as the direction.�x�

�x

©F
S

� maS

aSaS

T
S

2T
S

1

mS

mP
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FA1

m2m1

F I G U R E  4 - 3 1

5. Because the rope is of negligible mass and slides over the ice
with negligible friction, the forces and are simply related.
Express this relation:

T
S

2T
S

1

T2 � T1 � T

6. Substitute the steps-4 and -5 results into the step-2 and step-3
equations: �T � mPg � mPat

T � mSg sinu � mSat

CHECK If is very much greater than we expect the acceleration to be approximately g
and the tension to be approximately zero. Taking the limit as approaches 0 does indeed give

and for this case. If is much less than we expect the acceleration to be
approximately g (see step 3 of Example 4-7) and the tension to be zero. Taking the limit as

approaches 0 in steps 7 and 8, we indeed obtain at and At an extreme value
of the inclination we again check our answers. Substituting in steps 7 and 8, we
obtain and This seems right since Steve and Paul would be in free-fall for 

TAKING IT FURTHER In Step 1 we chose down the incline and straight down to be positive
to keep the solution as simple as possible. With this choice, when Steve moves in the di-
rection (down the surface of the glacier), Paul moves in the direction (straight downward).

PRACTICE PROBLEM 4-10 (a) Find the acceleration if and if the masses are
and (b) Find the acceleration if these two masses are interchanged.mP � 92kg.mS � 78kg

u � 15°

�x�
�x

u� 90°.T� 0.at� g
u� 90°(u� 90°)
T� 0.at� g sinumP

sinu
mS ,mPT � 0at � g
mS

mS ,mP

7. Solve the step-6 equations for the acceleration by eliminating T
and solving for at :

mS sinu � mP

mS � mP

gat �

8. Substitute the step-7 result into either step-6 equation and solve
for T:

mSmP

mS � mP

(1 � sinu)gT �

FA1

y

F21

m1

F12

m2

x
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2. Apply to box 1.©F
S

� maS FA1 � F21 � m1a1x

3. Apply to box 2.©F
S

� maS F12 � m2a2x

4. Express both the relation between the two accelerations and
the relation between the magnitudes of the forces the blocks
exert on each other. The accelerations are equal because the
speeds are equal at all times, so the rate of change of the
speeds are equal. The forces are equal in magnitude because
the forces constitute a N3L force pair:

F21 � F12 � F

a2x � a1x � ax

CHECK Note that the result in step 5 is the same as if the force had acted on a single
mass equal to the sum of the masses of the two boxes. In fact, because the two boxes have
the same acceleration, we can consider them to be a single particle with mass m1 � m2 .

F
S

A1

5. Substitute these back into the step-2 and step-3 results and
solve for ax .

FA1

m1 � m2
ax �

(b) Substitute your expression for into either the step-2 or the
step-3 result and solve for F.

ax
m2

m1 � m2

FA1F �

Example 4-13 Building a Space Station

You are an astronaut constructing a space station, and you push on a box of mass with force
The box is in direct contact with a second box of mass (Figure 4-31). (a) What is the

acceleration of the boxes? (b) What is the magnitude of the force each box exerts on the other?

PICTURE Force is a contact force and only acts on box 1. Let be the force exerted by box
2 on box 1, and be the force exerted by box 1 on box 2. In accord with Newton’s third law,
these forces are equal and opposite , so Apply Newton’s second law to each
box separately. The motions of the two boxes are identical, so the accelerations and are equal.

SOLVE

(a) 1. Draw free-body diagrams for the two boxes (Figure 4-32).

aS2aS1

F21 �F12 .(F
S

21 � �F
S

12)
F
S

12

F
S

21F
S

A1

m2F
S

A1.

m1
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Physics Spotlight

Roller Coasters and the Need for Speed

Roller coasters have fascinated people since the spectacular Promenades
Aeriennes (Aerial Walks) opened in Paris in 1817.* Until recently, though,
ride designers were stuck with one major limitation—the ride needed to
start at the top of a large hill.

In the 1970s, Anton Schwartzkopf, a German amusement park de-
signer, was inspired by planes taking off from an aircraft carrier. In 1976,
the Shuttle Loop roller coaster opened. A multiton weight was cranked to
the top of a tower near the roller coaster. One end of a cable was attached
to the weight, while the other was hooked to the coaster, in order to pull
it. The weight dropped and quickly pulled the cable with the attached
train of cars. In less than 3 seconds, the coaster train accelerated to 60
miles per hour.

At the same time, Schwartzkopf came up with a second catapult-style
method of launching a coaster. A 5-ton flywheel was spun at high speed.
A cable was connected to the coaster and the fly wheel. In less than 3 sec-
onds, the coaster train, with up to 28 passengers, accelerated to speeds of
60 miles per hour. Both of these methods pioneered the use of catapult-
style launches in roller coasters.†

Two new methods of launching roller coasters have allowed roller
coasters to travel at even faster speeds. Intamin AG has created a hydraulic,
or liquid-driven, system to pull the cable. The car alone for the Top Thrill
Dragster weighs 12,000 pounds. Eighteen passengers are usually along for
the ride, as well. The car is weighed as it passes over sensors, and a com-
puter calculates just how fast the cable needs to go in order to catapult the
car and passengers so they reach the top of the 420-foot first hill. Then, the
liquid-filled motors quickly provide of up to 10,000 horsepower to wind
the cable at up to 500 rpm, and to accelerate the coaster car to 120 miles per
hour in 4 seconds.‡

Stan Checketts invented the first pneumatic, or compressed-air, roller
coaster. The Thrust Air 2000™ is powered by a single, very large blast of
air. The eight-passenger car is weighed as it passes over sensors. Then,
four compressors swing into action. They pump air into a storage tank
sitting at the base of a tower. The compressed air is measured into a shot
tank, depending on the weight of the car. Finally, the air rapidly releases
through a valve in the top of the tower, pushing against a piston that dri-
ves the catapult pulley system. The fully loaded car accelerates to 80
miles per hour in 1.8 seconds. A minimum of 40,000 pounds of thrust is
needed to produce this acceleration. For comparison, a single F-15 jet en-
gine is rated at a maximum 29,000 pounds of thrust.§ Roller coasters now
are powered by a thrust more powerful than a jet engine. Something to
think about the next time you pass by an amusement park.

* Cartmell, Robert, The Incredible Scream Machine: A History of the Roller Coaster. Bowling Green State University Popular
Press, Bowling Green Ohio. 1987.

† “The Tidal Wave” http://www.greatamericaparks.com/tidalwave.html Marriott Great America Parks, 2006; Cartmell,
op. cit.

‡ Hitchcox, Alan L. “Want Thrills? Go with Hydraulics.” Hydraulics and Pneumatics, July 2005.
§ Goldman, Lea. “Newtonian Nightmare.” Forbes, 7/23/2001. Vol. 168, Issue 2; “The F-100 Engine.”

http://www.pratt-whitney.com/prod_mil_f100.asp Pratt & Whitney, March 2006.

The Hypersonic XLC at Paramount’s King’s
Dominion Amusement Park, Virginia, the world’s
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(Courtesy of King’s Dominion Amusement Park.)
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SUMMARY

1. Newton’s laws of motion are fundamental laws of nature that serve as the basis for our
understanding of mechanics.

2. Mass is an intrinsic property of an object.

3. Force is an important derived dynamic quantity.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Newton’s Laws

First law An object at rest stays at rest unless acted on by an external force. An object in motion con-
tinues to travel with constant velocity unless acted on by an external force. (Reference frames
in which these statement hold are called inertial reference frames.)

Second law The acceleration of an object is directly proportional to the net force acting on it. The reciprocal
of the mass of the object is the proportionality constant. Thus

, where 4-1

Third law When two bodies interact, the force exerted by object B on object A is equal in magni-
tude and opposite in direction to the force exerted by object A on object B:

4-8

2. Inertial Reference Frames Our statements of Newton’s first and second laws are valid only in inertial reference frames.
Any reference frame that is moving with constant velocity relative to an inertial reference
frame is itself an inertial reference frame, and any reference frame that is accelerating
relative to an inertial frame is not an inertial reference frame. Earth’s surface is, to a good
approximation, an inertial reference frame.

3. Force, Mass, and Weight

Force Force is defined in terms of the acceleration it produces on a given object. A force of 1 new-
ton (N) is that force which produces an acceleration of on a mass of 1 kilogram (kg).

Mass Mass is an intrinsic property of an object. It is the measure of the inertial resistance of the ob-
ject to acceleration. Mass does not depend on the location of the object. Applying identical
forces to each of two objects and measuring their respective accelerations allows the masses
of two objects to be compared. The ratio of the masses of the objects is equal to the inverse
ratio of the accelerations produced:

Gravitational Force The gravitational force on an object near the surface of Earth is the force of gravitational at-
traction exerted by Earth on the object. It is proportional to the gravitational field (which is
equal to the free-fall acceleration), and the mass m of the object is the proportionality constant:

4-4

The weight of an object is the magnitude of the gravitational force on the object.

4. Fundamental Forces All the forces observed in nature can be explained in terms of four basic interactions:

1. The gravitational interaction

2. The electromagnetic interaction

3. The weak interaction*

4. The strong nuclear interaction (also called the hadronic force)

5. Contact Forces Contact forces of support and friction and those exerted by springs and strings are due to
molecular forces that arise from the basic electromagnetic force.

Hooke’s law When an unstressed spring is compressed or extended by a small amount the restoring
force it exerts is proportional to 

4-7

* The electromagnetic and weak interactions are now viewed as the electroweak interaction.
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Answers to Concept Checks

4-1 No, the net force is not an actual force. It is the vector
sum of the actual forces.

4-2 No, it is the net force that causes the acceleration of the
mass.

4-3 No, they do not.

4-4 No. Doing so would be contrary to Newton’s third 
law.

4-5 No. Doing away with friction in the bearing is one
thing, but the pulley still has mass. A difference in
tension is needed in order to change the rate of rotation
of the pulley wheel. Pulleys with non-negligible mass
are studied in Chapter 8.

Answers to Practice Problems

4-1 1.5 kg

4-2 0.47 lb

4-3 13 cm

4-4 3.0 cm

4-5 where C is some dimensionless constant.
The correct expression for the period, as we will see in
Chapter 14, is .

4-6 1.9 kN

4-7 Applying Newton’s second law (for y components), we
see from the free-body diagram (Figure 4-18) that

where we have used
that ay equals zero. Thus, .

4-8

4-9 967 N

4-10 (a) (b) at � 0.60gat � 0.66g,

a � 27.8 m>s2, u � 70.5°

Fn � Fg cosu
©Fy � may ⇒ Fn � Fg cosu � 0,

T � 2p2m>kT � C2m>k

Problems

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • While on a very smooth level transcontinental plane
flight, your coffee cup sits motionless on your tray. Are there forces
acting on the cup? If so, how do they differ from the forces that
would be acting on the cup if it sat on your kitchen table at home?

2 • You are passing another car on a highway and determine
that, relative to you, the car you pass has an acceleration toward
the west. However, the driver of the other car is maintaining a con-
stant speed and direction relative to the road. Is the reference frame
of your car an inertial one? If not, in which direction (east or west)
is your car accelerating relative to the other car?

3 • CONTEXT-RICH You are riding in a limousine that has
opaque windows that do not allow you to see outside. The car is on
a flat horizontal plain, so the car can accelerate by speeding up,
slowing down, or turning. Equipped with just a small heavy object
on the end of a string, how can you use it to determine if the lim-
ousine is changing either speed or direction? Can you determine
the limousine’s velocity?

4 •• If only a single nonzero force acts on an object, does the
object accelerate relative to all inertial reference frames? Is it possi-
ble for such an object to have zero velocity in some inertial reference
frame and not in another? If so, give a specific example.

SSM

aS

5 •• A baseball is acted upon by a single known force. From
this information alone, can you tell in which direction the baseball
is moving relative to some reference frame? Explain.

6 •• A truck moves directly away from you at constant veloc-
ity (as observed by you while standing in the middle of the road).
It follows that (a) no forces act on the truck, (b) a constant net force
acts on the truck in the direction of its velocity, (c) the net force act-
ing on the truck is zero, (d) the net force acting on the truck is its
weight.

7 • ENGINEERING APPLICATION Several space probes have
been launched that are now far out in space. Pioneer 10, for exam-
ple, was launched in the 1970s and is still moving away from the
Sun and its planets. Is the mass of Pioneer 10 changing? Which of
the known fundamental forces continue to act on it? Does it have a
net force on it?

8 •• ENGINEERING APPLICATION Astronauts in apparent
weightlessness during their stay on the International Space Station
must carefully monitor their masses because significant loss of
body mass is known to cause serious medical problems. Give an
example of how you might design equipment to measure the mass
of an astronaut on the orbiting space station.

9 •• CONTEXT-RICH You are riding in an elevator. Describe
two situations in which your apparent weight is greater than your
true weight. SSM

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

For all problems, use for the free-fall
acceleration due to gravity and neglect friction and air
resistance unless instructed to do otherwise.

g � 9.81 m>s2
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F I G U R E  4 - 3 3 Problem 13

10 •• Suppose you are in a train moving at constant velocity
relative to the ground. You toss a ball to your friend several seats in
front of you. Use Newton’s second law to explain why you cannot
use your observations of the tossed ball to determine the train’s ve-
locity relative to the ground.

11 •• Explain why, of the fundamental interactions, gravita-
tional interaction is the main concern in our everyday lives. One
other on this list also plays an increasingly significant role in our
rapidly advancing technology. Which one is that? Why are the oth-
ers not obviously important?

12 •• Give an example of an object that has three forces acting
on it, and (a) accelerates, (b) moves at constant (nonzero) velocity,
and (c) remains at rest.

13 •• Suppose a block of mass rests on a block of mass
and the combination rests on a table as shown in Figure 4-33.

Tell the name of the force and its category (contact versus action-
at-a-distance) for each of the following forces: (a) force exerted
by on (b) force exerted by on (c) force exerted by

on the table, (d) force exerted by the table on (e) force
exerted by Earth on Which, if any, of these forces constitute
a Newton’s third-law pair of forces? SSM

m2 .
m2 ,m2

m1 ,m2m2 ,m1

m2

m1

17 •• For each case, identify the force (including its direction)
that causes the acceleration. (a) A sprinter at the very start of the
race. (b) A hockey puck skidding freely but slowly coming to rest on
the ice. (c) A long fly ball at the top of its arc. (d) A bungee jumper
at the very bottom of her descent.

18 • True or false:
(a) If two external forces that are both equal in magnitude and op-

posite in direction act on the same object, the two forces can
never be a Newton’s third-law pair.

(b) The two forces of a Newton’s third-law pair are equal only if the
objects involved are not accelerating.

19 •• An 80-kg man on ice skates is pushing his 40-kg son, also
on skates, with a force of 100 N. Together, they move across the ice
steadily gaining speed. (a) The force exerted by the boy on his fa-
ther is (1) 200 N, (2) 100 N, (3) 50 N, or (4) 40 N. (b) How do the mag-
nitudes of the two accelerations compare? (c) How do the directions
of the two accelerations compare?

20 •• A girl holds a stone in her hand and can move it up or
down or keep it still. True or false: (a) The force exerted by her hand
on the rock is always the same magnitude as the force of gravity on
the stone. (b) The force exerted by her hand on the rock is the reac-
tion force to the force of gravity on the stone. (c) The force exerted
by her hand on the stone is always the same magnitude as the force
on her hand by the stone, but in the opposite direction. (d) If the girl
moves her hand down at a constant speed, then her upward force
on the stone is less than the force of gravity on the stone. (e) If the
girl moves her hand downward but slows the stone to rest, then the
force of the stone on the girl’s hand is the same magnitude as the
force of gravity on the stone.

21 •• A 2.5-kg object hangs at rest from a string attached to
the ceiling. (a) Draw a free-body diagram of the object, indicate the
reaction force to each force drawn and tell what object the reaction
force acts on. (b) Draw a free-body diagram of the string, indicate
the reaction force to each force drawn, and tell what object each re-
action force acts on. Do not neglect the mass of the string.

22 •• (a) Which of the free-body diagrams in Figure 4-34
represents a block sliding down a frictionless inclined surface?
(b) For the correct diagram, label the forces and tell which are
contact forces and which are action-at-a-distance forces. (c) For
each force in the correct diagram, identify the reaction force, the
object it acts on and its direction.

SSM

14 •• CONTEXT-RICH You yank a fish you have just caught
on your line upward from rest into your boat. Draw a free-body
diagram of the fish after it has left the water and as it gains
speed as it rises. In addition, tell the type (tension, spring, grav-
ity, normal, friction, etc.) and category (contact versus action-at-
a-distance) of each force on your diagram. Which, if any, pairs of
the forces on your diagram constitute a Newton’s third-law
pair? Can you tell the relative magnitudes of the forces on your
diagram from the information given? Explain.

15 •• If you gently set a fancy plate on the table, it will not
break. However if you drop it from a height, it might very well
break. Discuss the forces that act on the plate (as it contacts the
table) in both these situations. Use kinematics and Newton’s
second law to describe what is different about the second situation
that causes the plate to break?

16 •• For each of the following forces, give what produces it,
what object it acts on, its direction, and the reaction force. (a) The
force you exert on your briefcase as you hold it while standing at
the bus stop. (b) The normal force on the soles of your feet as you
stand barefooted on a horizontal wood floor. (c) The gravitational
force on you as you stand on a horizontal floor. (d) The horizontal
force exerted on a baseball by a bat as the ball is hit straight up the
middle toward center field for a single.

(a) (b) (c) (d)

F I G U R E  4 - 3 4 Problem 22

m2

m1

23 •• A wooden box on the floor is pressed against a com-
pressed, horizontal spring that is attached to a wall. The horizontal
floor beneath the box is frictionless. Draw the free-body diagram of
the box in the following cases. (a) The box is held at rest against the
compressed spring. (b) The force holding the box against the spring
no longer exists, but the box is still in contact with the spring. (c)
When the box no longer has contact with the spring.

24 •• Imagine yourself seated on a wheeled desk chair at your
desk. Consider friction forces between the chair and the floor to be
negligible. However, the friction forces between the desk and the
floor are not negligible. When sitting at rest, you decide you need
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another cup of coffee. You push horizontally against the desk, and
the chair rolls backward away from the desk. (a) Draw a free-body
diagram of yourself during the push and clearly indicate which
force was responsible for your acceleration. (b) What is the reaction
force to the force that caused your acceleration? (c) Draw the free-
body diagram of the desk and explain why it did not accelerate.
Does this violate Newton’s third law? Explain.

25 ••• The same (net) horizontal force F is applied for a fixed
time interval to each of two objects, having masses and 
that sit on a flat, frictionless surface. (Let ) (a) Assuming
the two objects are initially at rest, what is the ratio of their acceler-
ations during the time interval, in terms of F, and ? (b) What
is the ratio of their speeds and at the end of the time interval?
(c) How far apart are the two objects (and which is ahead) at the end
of the time interval?

ESTIMATION AND APPROXIMATION

26 •• CONCEPTUAL Most cars have four springs attaching the
body to the frame, one at each wheel position. Devise an experimen-
tal method of estimating the force constant of one of the springs
using your known weight and the weights of several of your friends.
Assume the 4 springs are identical. Use the method to estimate the
force constant of your car’s springs.

27 •• Estimate the force exerted on the goalie’s glove by the
puck when he catches a hard slap shot for a save.

28 •• A baseball player slides into second base during a
steal attempt. Assuming reasonable values for the length of the
slide, the speed of the player at the beginning of the slide, and
the speed of the player at the end of the slide, estimate the
average force of friction acting on the player.

29 •• ENGINEERING APPLICATION A race car skidding out of
control manages to slow down to 90 km/h before crashing head-on
into a brick wall. Fortunately, the driver is wearing a safety harness.
Using reasonable values for the mass of the driver and the stopping
distance, estimate the average force exerted on the driver by the
safety harness, including its direction. Neglect any effects of fric-
tional forces on the driver by the seat.

NEWTON’S FIRST AND SECOND
LAWS: MASS, INERTIA, AND FORCE

30 • A particle is traveling in a straight line at a constant
speed of 25.0 m/s. Suddenly, a constant force of 15.0 N acts on it,
bringing it to a stop in a distance of 62.5 m. (a) What is the direction
of the force? (b) Determine the time it takes for the particle to come
to a stop. (c) What is its mass?

31 • An object has an acceleration of when a single
force of magnitude acts on it. (a) What is the magnitude of its accel-
eration when the magnitude of this force is doubled? (b) A second ob-
ject has an acceleration magnitude of under the influence of a
single force of magnitude What is the ratio of the mass of the sec-
ond object to that of the first object? (c) If the two objects are glued to-
gether to form a composite object, what acceleration magnitude will a
single force of magnitude acting on the composite object produce?

32 • Atugboat tows a ship with a constant force of magnitude 
The increase in the ship’s speed during a 10-s interval is 4.0 km/h.
When a second tugboat applies an additional constant force of
magnitude in the same direction, the speed increases by 16 km/h
during a 10-s interval. How do the magnitudes of and compare?
(Neglect the effects of water resistance and air resistance.)

F2F1

F2

F1 .

F0

F0 .
9.0m>s2

F0

3.0m>s2
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v2v1

m2m1

m1 
 m2 .
m2 ,m1¢t

33 • A single constant force of magnitude 12 N acts on a par-
ticle of mass m. The particle starts from rest and travels in a straight
line a distance of 18 m in 6.0 s. Find m.

34 • A net force of (6.0 N) acts on a 1.5 kg object.
Find the acceleration .

35 •• A bullet of mass moving at 500 m/s
impacts a tree stump and penetrates 6.00 cm into the wood
before coming to rest. (a) Assuming that the acceleration of the
bullet is constant, find the force (including direction) exerted by
the wood on the bullet. (b) If the same force acted on the bullet
and it had the same impact speed but half the mass, how far
would it penetrate into the wood?

36 •• A cart on a horizontal, linear track has a fan attached
to it. The cart is positioned at one end of the track, and the fan is
turned on. Starting from rest, the cart takes 4.55 s to travel a dis-
tance of 1.50 m. The mass of the cart plus fan is 355 g. Assume
that the cart travels with constant acceleration. (a) What is the
net force exerted on the cart– fan combination? (b) Mass is
added to the cart until the total mass of the cart– fan combina-
tion is 722 g, and the experiment is repeated. How long does it
take for the cart, starting from rest, to travel 1.50 m now? Ignore
the effects due to friction.

37 •• A horizontal force of magnitude causes an acceleration
of magnitude when it acts on an object of mass m sliding
on a frictionless surface. Find the magnitude of the acceleration of
the same object in the circumstances shown in Figure 4-35a and
4-35b.

3.0 m>s2
F0

SSM
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38 •• Al and Bert stand in the middle of a large frozen lake
(frictionless surface). Al pushes on Bert with a force of 20 N for 1.5 s.
Bert’s mass is 100 kg. Assume that both are at rest before Al pushes
Bert. (a) What is the speed that Bert reaches as he is pushed away
from Al? (b) What speed does Al reach if his mass is 80 kg?

39 •• If you push a block whose mass is across a frictionless
floor with a horizontal force of a magnitude the block has an ac-
celeration of If you push on a different block whose mass
is with a horizontal force of magnitude its acceleration is

(a) What acceleration will a horizontal force of magnitude
F0 give to a single block with mass (b) What acceleration
will a horizontal force of magnitude F0 give to a single block with
mass

40 •• MULTISTEP To drag a 75.0-kg log along the ground at
constant velocity, your tractor has to pull it with a horizontal force
of 250 N. (a) Draw the free-body diagram of the log. (b) Use
Newton’s laws to determine the force of friction on the log. (c) What
is the normal force of the ground on the log? (d) What horizontal
force must you exert if you want to give the log an acceleration of

assuming the force of friction does not change. Redraw
the log’s free-body diagram for this situation.

41 •• A 4.0-kg object is subjected to two constant forces,
and The objectF

S

2 � (4.0 N)in � (11 N)jn.F
S

1 � (2.0 N)in � (�3.0 N)jn

2.00 m>s2

m2 � m1?

m2 � m1?
3.0 m>s2.

F0 ,m2

12 m>s2.
F0 ,
m1
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is at rest at the origin at time (a) What is the object’s acceler-
ation? (b) What is its velocity at time (c) Where is the ob-
ject at time 

MASS AND WEIGHT

42 • On the moon, the acceleration due to the effect of gravity
is only about 1/6 of that on Earth. An astronaut whose weight on
Earth is 600 N travels to the lunar surface. His mass, as measured
on the moon, will be (a) 600 kg, (b) 100 kg, (c) 61.2 kg, (d) 9.81 kg,
(e) 360 kg.

43 • Find the weight of a 54-kg student in (a) newtons, and
(b) pounds.

44 • Find the mass of a 165-lb engineer in kilograms.

45 •• ENGINEERING APPLICATION To train astronauts to
work on the moon, where the free-fall acceleration is only about
1/6 of that on Earth, NASA submerges them in a tank of water.
If an astronaut who is carrying a backpack, air conditioning
unit, oxygen supply, and other equipment, has a total mass of
250 kg, determine the following quantities. (a) her weight in-
cluding backpack, etc. on Earth, (b) her weight on the moon, 
(c) the required upward buoyancy force of the water during her
training for the moon’s environment on Earth

46 •• It is the year 2075 and space travel is common. A
physics professor brings his favorite teaching demonstration
with him to the moon. The apparatus consists of a very smooth
(frictionless) horizontal table and an object to slide on it. On
Earth, when the professor attaches a spring (force constant
50 N/m) to the object and pulls horizontally so the spring
stretches 2.0 cm, the object accelerates at (a) Draw the
free-body diagram of the object and use it and Newton’s laws to
determine the object’s mass. (b) What would the object’s accel-
eration be under identical conditions on the moon?

FREE-BODY DIAGRAMS: 
STATIC EQUILIBRIUM

47 • ENGINEERING APPLICATION, MULTISTEP A 35.0-kg traffic
light is supported by two wires as in Figure 4-36. (a) Draw the
light’s free-body diagram and use it to answer the following ques-
tion qualitatively: Is the tension in wire 2 greater than or less than
the tension in wire 1? (b) Verify your answer by applying Newton’s
laws and solving for the two tensions.

1.5 m>s2.

SSM

t � 3.0 s?
t � 3.0 s?

t � 0. 48 • A 42.6-kg lamp is hanging from wires as shown in 
Figure 4-37. The ring has negligible mass. The tension in the ver-
tical wire is (a) 209 N, (b) 418 N, (c) 570 N, (d) 360 N, (e) 730 N.

T1

49 •• In Figure 4-38a, a 0.500-kg block is suspended at the mid-
point of a 1.25-m-long string. The ends of the string are attached to
the ceiling at points separated by 1.00 m. (a) What angle does the
string make with the ceiling? (b) What is the tension in the string?
(c) The 0.500-kg block is removed and two 0.250-kg blocks are at-
tached to the string such that the lengths of the three string seg-
ments are equal (Figure 4-38b). What is the tension in each segment
of the string? SSM

50 •• A ball weighing 100-N is shown suspended from a
system of cords (Figure 4-39). What are the tensions in the horizon-
tal and angled cords?

T1
T2

60°

60°
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53 •• ENGINEERING APPLICATION Your car is stuck in a mud
hole. You are alone, but you have a long, strong rope. Having stud-
ied physics, you tie the rope tautly to a telephone pole and pull on
it sideways, as shown in Figure 4-42. (a) Find the force exerted by

the rope on the car when the angle � is 3.00° and you are pulling
with a force of 400 N, but the car does not move. (b) How strong
must the rope be if it takes a force of 600 N to move the car when �
is 4.00°?

54 ••• ENGINEERING APPLICATION, MULTISTEP Balloon arches
are often seen at festivals or celebrations; they are made by attaching
helium-filled balloons to a rope that is fixed to the ground at each
end. The lift from the balloons raises the structure into the arch
shape. Figure 4-43a shows the geometry of such a structure: N bal-
loons are attached at equally spaced intervals along a massless rope
of length L, which is attached to two supports at its ends. Each bal-
loon provides a lift force of magnitude F. The horizontal and vertical
coordinates of the point on the rope where the ith balloon is attached
are and and is the tension in the ith segment. (Note segment
0 is the segment between the point of attachment and the first bal-
loon, and segment N is the segment between the last balloon and the
other point of attachment). (a) Figure 4-43b shows a free-body dia-
gram for the ith balloon. From this diagram, show that the horizon-
tal component of the force (call it ) is the same for all the string
segments. (b) By considering the vertical component of the forces, use
Newton’s laws to derive the following relationship between the ten-
sion in the ith and segments: 
(c) Show that (d) From the diagram
and the two expressions above, show that 
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51 •• A 10-kg object on a frictionless table is subjected to
two horizontal forces, and with magnitudes 
and as shown in Figure 4-40. Find the third horizon-
tal force that must be applied so that the object is in static
equilibrium. SSM

F
S

3

F2 � 30 N,
F1 � 20 NF

S

2 ,F
S

1

52 •• For the systems to be in equilibrium in Figure 4-41a,
Figure 4-41b, and Figure 4-41c, find the unknown tensions and
masses.

F I G U R E  4 - 4 0

Problem 51
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55 ••• ENGINEERING APPLICATION, SPREADSHEET (a) Consider
a numerical solution to Problem 54. Write a spreadsheet program to
make a graph of the shape of a balloon arch. Use the following para-
meters: (balloons), each providing a lift force and
each attached to a rope of length with a horizontal compo-
nent of tension How far apart are the two points of attach-
ment? How high is the arch at its highest point? (b) Note that we have
not specified the spacing between the supports—it is determined by
the other parameters. Vary while keeping the other parameters the
same until you create an arch that has a spacing of 8.0 m between the
supports. What is then? As you increase the arch should get flat-
ter and more spread out. Does your spreadsheet model show this?

FREE-BODY DIAGRAMS: INCLINED
PLANES AND THE NORMAL FORCE

56 • A large box whose mass is 20.0 kg rests on a frictionless
floor. A mover pushes on the box with a force of 250 N at an angle
35.0° below the horizontal. Draw the box’s free-body diagram and
use it to determine the acceleration of the box.

57 • A 20.0 kg box rests on a frictionless ramp with a 15.0°
slope. The mover pulls on a rope attached to the box to pull it up
the incline (Figure 4-44). If the rope makes an angle of 40.0° with the
horizontal, what is the smallest force F the mover will have to exert
to move the box up the ramp?

TH,TH

TH

TH � 10 N.
L � 11 m,

F � 1.0 NN � 10

59 •• A box is held in position on a frictionless incline by a
cable (Figure 4-46). (a) If and find the tension in
the cable and the normal force exerted by the incline. (b) Find the
tension as a function of � and m, and check your result for plausi-
bility in the special cases of and u � 90°.u � 0°

m � 50 kg,u � 60°

60 •• A horizontal force of 100 N pushes a 12-kg block up a
frictionless incline that makes an angle of 25° with the horizontal.
(a) What is the normal force that the incline exerts on the block?
(b) What is the magnitude of acceleration of the block?

61 •• A 65-kg student weighs himself by standing on a force
scale mounted on a skateboard that is rolling down an incline, as
shown in Figure 4-47. Assume there is no friction so that the force
exerted by the incline on the skateboard is normal to the incline.
What is the reading on the scale if � � 30°? SSM

F

15.0°

40.0°

F I G U R E  4 - 4 4

Problem 57

(a) (b)

(c) (d)
F I G U R E  4 - 4 5

Problem 58

T

θ

Fn

m

F I G U R E  4 - 4 6 Problem 59

30°

F I G U R E  4 - 4 7 Problem 61

v0
m

θ

F I G U R E  4 - 4 8 Problem 62

58 • In Figure 4-45, the objects are attached to spring scales
calibrated in newtons. Give the reading(s) of the balance(s) in each
case, assuming that both the scales and the strings are massless.

62 •• A block of mass m slides across a frictionless floor and
then up a frictionless ramp (Figure 4-48). The angle of the ramp is �
and the speed of the block before it starts up the ramp is The
block will slide up to some maximum height h above the floor be-
fore stopping. Show that h is independent of m and � by deriving an
expression for h in terms of and g.v0

v0 .
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FREE-BODY DIAGRAMS: ELEVATORS

63 • CONCEPTUAL (a) Draw the free-body diagram (with
accurate relative force magnitudes) for an object that is hung by
a rope from the ceiling of an elevator that is ascending but slow-
ing. (b) Repeat Part (a) but for the situation in which the elevator
is descending and speeding up. (c) Can you tell the difference
between the two diagrams? Explain why the diagrams do not
tell anything about the object’s velocity.

64 • A 10.0-kg block is suspended from the ceiling of an el-
evator by a cord rated to withstand a tension of 150 N. Shortly
after the elevator starts to ascend, the cord breaks. What was the
minimum acceleration of the elevator when the cord broke?

65 •• A 2.0-kg block hangs from a spring scale calibrated in
newtons that is attached to the ceiling of an elevator (Figure 4-49).
What does the scale read when (a) the elevator is ascending with a
constant speed of 30 m/s; (b) the elevator is descending with a con-
stant speed of 30 m/s; (c) the elevator is ascending at 20 m/s and
gaining speed at a rate of (d) Suppose that from to

the elevator ascends at a constant speed of 10 m/s. Its
speed is then steadily reduced to zero during the next 4.0 s, so that
it is at rest at Describe the reading of the scale during the
interval .0 	 t 	 9.0 s

t � 9.0s.

t � 5.0 s,
t � 03.0 m>s2?

SSM

FREE-BODY DIAGRAMS: 
SEVERAL OBJECTS 
AND NEWTON’S THIRD LAW

66 •• CONCEPTUAL Two boxes of mass and connected
by a massless string are being pulled along a horizontal friction-
less surface by the tension force in a second string, as shown in
Figure 4-50. (a) Draw the free-body diagram of both boxes sepa-
rately and show that . (b) Is this result plausi-
ble? Explain. Does your answer make sense both in the limit that

and in the limit that ? Explain.m2>m1 V 1m2>m1 W 1

T1>T2 � m1>(m1 � m2)

m2m1

67 •• A box of mass rests on a frictionless horizon-
tal shelf and is attached by strings to boxes of masses 
and as shown in Figure 4-51. Both pulleys are friction-
less and massless. The system is released from rest. After it is
released, find (a) the acceleration of each of the boxes, and (b) the
tension in each string.

m3 � 2.5 kg
m1 � 1.5 kg

m2 � 3.5 kg

68 •• Two blocks are in contact on a frictionless horizontal
surface. The blocks are accelerated by a single horizontal force 
applied to one of them (Figure 4-52). Find the acceleration and 
the contact force of block 1 on block 2 (a) in terms of F, and 
and (b) for the specific values and
m2 � 6.0 kg.

m1 � 2.0 kgF � 3.2 N,
m2 ,m1

F
S

69 •• Repeat Problem 68, but with the two blocks inter-
changed. Are your answers for this problem the same as in
Problem 68? Explain.

70 •• Two 100-kg boxes are dragged along a horizontal fric-
tionless surface at a constant acceleration of as shown in
Figure 4-53. Each rope has a mass of 1.00 kg. Find the magnitude of
the force and the tension in the ropes at points A, B, and C.F

S

1.00 m>s2,

F I G U R E  4 - 4 9 Problem 65

T1 T2
m1 m2

F I G U R E  4 - 5 0 Problem 66

m1

m2

m3

F I G U R E  4 - 5 1 Problem 67

m1

m2F

F I G U R E  4 - 5 2 Problem 68

F

1.00 kg 1.00 kg

A B C

a = 1.00 m/s2

F I G U R E  4 - 5 3 Problem 70

71 •• A block of mass m is being lifted vertically by a uni-
form rope of mass M and length L. The rope is being pulled up-
ward by a force applied to its top end, and the rope and block
are accelerating upward with an acceleration of magnitude a.
Show that the tension in the rope at a distance x (where )
above the block is given by 

72 •• A chain consists of 5 links, each having a mass of
0.10 kg. The chain is being pulled upward by a force applied by
your hand to its top link, giving the chain an upward accelera-
tion of Find (a) the force magnitude F exerted on 
the top link by your hand; (b) the net force on each link; and 
(c) the magnitude of the force that each link exerts on the link
below it.

2.5 m/s2.

SSM(a � g)3m � (x>L)M4. x 	 L
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73 •• MULTISTEP A 40.0-kg object supported by a vertical
rope. The rope, and thus the object, is then accelerated from rest
upward so that it attains a speed of 3.50 m/s in 0.700 s. (a) Draw
the object’s free-body diagram with the relative lengths of the
vectors showing the relative magnitudes of the forces. 
(b) Use the free-body diagram and Newton’s laws to determine
the tension in the rope.

74 •• ENGINEERING APPLICATION, MULTISTEP A 15000-kg
helicopter is lowering a 4000-kg truck to the ground by a cable
of fixed length. The truck, helicopter, and cable are descending
at 15.0 m/s and must be slowed to 5.00 m/s in the next 50.0 m
of descent to prevent damaging the truck. Assume a constant
rate of slowing. (a) Draw the free-body diagram of the truck.
(b) Determine the tension in the cable. (c) Determine the lift force
on the helicopter blades.

75 •• Two objects are connected by a massless string, as shown
in Figure 4-54. The incline and the massless pulley are frictionless.
Find the acceleration of the objects and the tension in the string (a)
in terms of �, and and for (b) and m1 � m2 � 5.0kg.u � 30°m2 ,m1 ,

SSM

76 •• ENGINEERING APPLICATION During a stage production
of Peter Pan, the 50-kg actress playing Peter has to fly in vertically
(descend). To be in time with the music, she must, starting 
from rest, be lowered a distance of 3.2 m in 2.2 s at a constant
acceleration. Backstage, a smooth surface sloped at 50° supports a
counterweight of mass m, as shown in Figure 4-55. Show the
calculations that the stage manager must perform to find (a) the
mass of the counterweight that must be used and (b) the tension in
the wire.

77 •• An 8.0-kg block and a 10-kg block, connected by a 
rope that passes over a frictionless peg, slide on frictionless in-
cline, (Figure 4-56). (a) Find the acceleration of the blocks and the
tension in the rope. (b) The two blocks are replaced by two others

θ

m1
m2

F I G U R E  4 - 5 4 Problem 75

50°

m

F I G U R E  4 - 5 5 Problem 76

40° 50°

F I G U R E  4 - 5 6 Problem 77

F

F I G U R E  4 - 5 7 Problem 79

78 •• A heavy rope of length 5.0 m and mass 4.0 kg lies on a
frictionless horizontal table. One end is attached to a 6.0-kg block.
The other end of the rope is pulled by a constant horizontal 100-N
force. (a) What is the acceleration of the system? (b) Give the tension
in the rope as a function of position along the rope.

79 •• A 60-kg housepainter stands on a 15-kg aluminum plat-
form. The platform is attached to a rope that passes through an over-
head pulley, which allows the painter to raise herself and the plat-
form (Figure 4-57). (a) With what force F must she pull down on the
rope to accelerate herself and the platform upward at a rate of

(b) When her speed reaches 1.0 m/s, she pulls in such a
way that she and the platform go up at a constant speed. What force
is she exerting on the rope now? (Ignore the mass of the rope.) SSM

0.80m>s2?

80 ••• Figure 4-58 shows a 20-kg block sliding on a 10-kg block.
All surfaces are frictionless and the pulley is massless and friction-
less. Find the acceleration of each block and the tension in the string
that connects the blocks.

20°

F I G U R E  4 - 5 8 Problem 80

of masses and such that there is no acceleration. Find
whatever information you can about the masses of these two 
new blocks.

m2m1
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81 ••• A 20-kg block with a pulley attached slides along a fric-
tionless ledge. It is connected by a massless string to a 5.0-kg block
via the arrangement shown in Figure 4-59. Find (a) the acceleration
of each block, and (b) the tension in the connecting string.

82 •• MULTISTEP The apparatus in Figure 4-60 is called an
Atwood’s machine and is used to measure the free-fall acceleration g
by measuring the acceleration of the two blocks connected by a
string over a pulley. Assume a massless, frictionless pulley and a
massless string. (a) Draw the free-body diagram of each block.
(b) Use the free-body diagrams and Newton’s laws to show that the
magnitude of the acceleration of either block and the tension in the
string are and .
(c) Do these expressions give plausible results if in the
limit that and in the limit that ? Explain.m1 V m2m1 W m2

m1 � m2 ,
T � 2m1m2g>(m1 � m2)a � (m1 � m2)g>(m1 � m2)

83 •• If one of the masses of the Atwood’s machine in Figure
4-60 is 1.2 kg, what should be the other mass so that the displace-
ment of either mass during the first second following release is
0.30 m? Assume a massless, frictionless pulley and a massless
string.

84 ••• The acceleration of gravity g can be determined by mea-
suring the time t it takes for a mass in an Atwood’s machine
described in Problem 82 to fall a distance L, starting from rest.
(a) Using the results of Problem 82 (note the acceleration is con-
stant), find an expression for g in terms of L, t, and (b) Show
that a small error in the time measurement dt, will lead to an error
in g by an amount dg given by (c) Assume that the
only significant uncertainty in the experimental measurements is
the time of fall. If and is 1.00 kg, find the value of 
such that g can be measured with an accuracy of percent with a
time measurement that is accurate to �0.1 s.

�5
m2m1L � 3.00 m

dg>g � �2dt>t. m2 .m1 ,

m2

GENERAL PROBLEMS

85 •• A pebble of mass m rests on the block of mass of the
ideal Atwood’s machine in Figure 4-60. Find the force exerted by
the pebble on the block of mass 

86 •• A simple accelerometer can be made by suspending a
small massive object from a string attached to a fixed point on an
accelerating object. Suppose such an accelerometer is attached to
point P on the ceiling of an automobile traveling in a straight line
on a flat surface at constant acceleration. Due to the acceleration,
the string will make an angle � with the vertical. (a) Show that the
magnitude of the acceleration a is related to the angle � by

(b) Suppose the automobile brakes steadily to rest 
from 50 km/h over a distance of 60 m. What angle will the string
make with the vertical? Will the suspended object be positioned
below and ahead or below and behind point P during the
braking?

87 •• ENGINEERING APPLICATION The mast of a sailboat is
supported at the bow and stern by stainless steel wires, the
forestay and backstay, anchored 10 m apart (Figure 4-61). The
12.0-m-long mast weighs 800 N and stands vertically on the
deck of the boat. The mast is positioned 3.60 m behind where the
forestay is attached. The tension in the forestay is 500 N. Find
the tension in the backstay and the force that the mast exerts on
the deck. SSM

a � g tanu.

m2 .

m2

F I G U R E  4 - 5 9 Problem 81

m1

m2

F I G U R E  4 - 6 0 Problems 82 and 83

88 •• A 50-kg block is suspended from a uniform 1.5-m-long
chain that is hanging from the ceiling. The mass of the chain itself
is 20 kg. Determine the tension in the chain (a) at the point where
the chain is attached to the block, (b) midway up the chain, and
(c) at the point where the chain is attached to the ceiling.

89 •• The speed of the head of a red headed woodpecker
reaches before impact with the tree. If the mass of the head
is 0.060 kg and the average force on the head is 6.0 N, find (a) the
acceleration of the head (assuming constant acceleration), (b) the
depth of penetration into the tree, and (c) the time it takes for the
head to come to a stop.

90 •• MULTISTEP A frictionless surface is inclined at an angle
of 30.0° to the horizontal. A 270-g block on the ramp is attached to
a 75.0-g block using a pulley, as shown in Figure 4-62. (a) Draw two
free-body diagrams, one for the 270-g block and the other for 
the 75.0-g block. (b) Find the tension in the string and the accelera-
tion of the 270-g block. (c) The 270-g block is released from rest.

5.5 m>s

10 m

12 m

F I G U R E  4 - 6 1 Problem 87
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How long does it take for it to slide a distance of 1.00 m along the
surface? Will it slide up the incline, or down the incline?

91 •• A box of mass is pulled along a frictionless horizontal
surface by a horizontal force that is applied to the end of a rope
of mass (see Figure 4-63). Neglect any sag of the rope. (a) Find
the acceleration of the rope and block, assuming them to be one ob-
ject. (b) What is the net force acting on the rope? (c) Find the tension
in the rope at the point where it is attached to the block.

m2

F
S

m1

92 •• A 2.0-kg block rests on a frictionless wedge that has a
60° incline and an acceleration to the right such that the mass re-
mains stationary relative to the wedge (Figure 4-64). (a) Draw the
free-body diagram of the block and use it to determine the mag-
nitude of the acceleration. (b) What would happen if the wedge
were given an acceleration larger than this value? Smaller than
this value?

aS

93 ••• The masses attached to each side of an ideal
Atwood’s machine consist of a stack of five washers, each of
mass m, as shown in Figure 4-65. The tension in the string is 
When one of the washers is removed from the left side, the re-
maining washers accelerate and the tension decreases by 0.300
N. (a) Find m. (b) Find the new tension and the acceleration of
each mass when a second washer is removed from the left 
side. SSM

T0 .

94 •• Consider the ideal Atwood’s machine in Figure 4-65.
When N washers are transferred from the left side to the right
side, the right side descends 47.1 cm in 0.40 s. Find N.

95 •• Blocks of mass m and 2m are on a horizontal frictionless
surface (Figure 4-66). The blocks are connected by a horizontal
string. In addition, forces and are applied as shown. (a) If the
forces shown are constant, find the tension in the connecting string.
(b) If the magnitudes of the forces vary with time as and

where C equals to 5.00 N/s and t is time, find the time 
at which the tension in the string equals to 10.0 N.

t0F2 � 2Ct,
F1 � Ct

F
S

2F
S

1

30.0°

F I G U R E  4 - 6 2 Problem 90

F
m1

m2

F I G U R E  4 - 6 3 Problem 91

a

60°

F I G U R E  4 - 6 4 Problem 92

5m

5m

F I G U R E  4 - 6 5 Problems 93 and 94

m
F1 F2

2m

F I G U R E  4 - 6 6 Problem 95

96 •• Elvis Presley has supposedly been sighted numerous
times since his death on August 16, 1977. The following is a chart of
what Elvis’s weight would be if he were sighted on the surfaces 
of other objects in our solar system. Use the chart to determine: 
(a) Elvis’s mass on Earth, (b) Elvis’s mass on Pluto, and (c) the free-
fall acceleration on Mars. (d) Compare the free-fall acceleration on
Pluto to the free-fall acceleration on the moon.

Planet Elvis’s Weight (N)

Mercury 431

Venus 1031

Earth 1133

Mars 431

Jupiter 2880

Saturn 1222

Pluto 58

Moon 191

97 ••• CONTEXT-RICH As a prank, your friends have kid-
napped you in your sleep, and transported you out onto the ice
covering a local pond. When you wake up you are 30.0 m from the
nearest shore. The ice is so slippery (i.e. frictionless) that you can-
not seem to get yourself moving. You realize that you can use
Newton’s third law to your advantage, and choose to throw the
heaviest thing you have, one boot, in order to get yourself moving.
Take your weight to be 595 N. (a) What direction should you throw
your boot so that you will most quickly reach the shore? (b) If you
throw your 1.20-kg boot with an average force of 420 N, and the
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throw takes 0.600 s (the time interval over which you apply the
force), what is the magnitude of the force that the boot exerts on
you? (Assume constant acceleration.) (c) How long does it take you
to reach shore, including the short time in which you were throw-
ing the boot?

98 ••• The pulley of an ideal Atwood’s machine is given an up-
ward acceleration a, as shown in Figure 4-67. Find the acceleration
of each mass and the tension in the string that connects them. The
speeds of the two blocks are not equal in this situation

m1

a

m2

F I G U R E  4 - 6 7 Problem 98

99 •• ENGINEERING APPLICATION, CONTEXT-RICH, SPREAD-

SHEET You are working for an automotive magazine and putting a
certain new automobile (mass 650 kg) through its paces. While ac-
celerating from rest, its onboard computer records its velocity as a
function of time as follows:

(m/s): 0 10 20 30 40 50
t (s): 0 1.8 2.8 3.6 4.9 6.5

(a) Using a spreadsheet, find the average acceleration of the five
time intervals and graph the velocity versus time and acceleration
versus time for this car. (b) Where on the graph of velocity versus
time is the net force on the car highest and lowest? Explain your
reasoning. (c) What is the average net force on the car over the
whole trip? (d) From the graph of velocity versus time, estimate the
total distance covered by the car.

vx



Additional
Applications 
of Newton’s Laws

5-1 Friction

5-2 Drag Forces

5-3 Motion Along a Curved Path

5-4 Numerical Integration: Euler’s Method

5-5 The Center of Mass

I
n Chapter 4, we introduced Newton’s laws and applied them to situations
where action was restricted to straight-line motion and frictional forces were
introduced. We now will consider some more general applications and how
Newton’s laws can be used to explain innumerable properties of the world in
which we live.

In this chapter, we will extend the application of Newton’s laws to motion
along curved paths, and we will analyze the effects of resistive forces such
as friction and air drag. We will also introduce the concept of the center of
mass of a system of particles and show how modeling the system as a
single particle located at the center of mass can result in being able to
predict the bulk motion of such a system.

5
C H A P T E R

What factors determine how fast a

car can go through a curve without

skidding? (See Example 5-12.)
?

127

DAYTONA INTERNATIONAL SPEEDWAY,
THE “WORLD CENTER OF RACING,”
FEATURES A 2.5-MILE TRI-OVAL TRACK,
WHICH HAS FOUR-STORY, 31-DEGREE-
HIGH BANKED CURVES. IN THE
DAYTONA 500 RACE THE STOCK CARS
TRAVEL THROUGH THE CURVES AT
SPEEDS CLOSE TO 200 MPH.
SURPRISINGLY, THE FIERY CRASHES
THAT THE DAYTONA 500 IS FAMOUS
FOR, WITH THEIR ACCOMPANYING
INJURIES AND FATALITIES, ARE
USUALLY NOT CAUSED BY SKIDDING
ON THE CURVES. (PhotoDisc/Getty
Images.)

*
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5-1 FRICTION

If you shove a book that is resting on a desktop, the book will probably skid across
the desktop. If the desktop is long enough, the book will eventually skid to a stop.
This happens because a frictional force is exerted by the desktop on the book in a
direction opposite to the book’s velocity. This force, which acts on the surface of the
book in contact with the desktop, is known as a frictional force. Frictional forces are a
necessary part of our lives. Without friction our ground-based transportation
system, from walking to automobiles, could not function. Friction allows you to start
walking, and once you are already moving, friction allows you to change either your
speed or direction. Friction allows you to start, steer, and stop a car. Friction holds a
nut on a screw, a nail in wood, and a knot in a piece of rope. However, as important
as friction is, it is often not desirable. Friction causes
wear whenever moving pieces of machinery are in
contact, and large amounts of time and money are
spent trying to reduce such effects.

Friction is a complex, incompletely understood
phenomenon that arises from the attraction between
the molecules of one surface and the molecules on a
second surface in close contact. The nature of this
attraction is electromagnetic—the same as the
molecular bonding that holds an object together.
This short-ranged attractive force becomes negligi-
ble at distances of only a few atomic diameters.

As shown in Figure 5-1, ordinary objects that look smooth and feel smooth are
rough and bumpy at the microscopic (atomic) scale. This is the case even if the sur-
faces are highly polished. When surfaces come into contact, they touch only at
prominences, called asperities, shown in Figure 5-1. The normal force exerted by a
surface is exerted at the tips of these asperities where the normal force per unit area
is very large, large enough to flatten the tips of the asperities. If the two surfaces
are pressed together more strongly, the normal force increases and so does this flat-
tening, resulting in a larger microscopic contact area. Under a wide range of con-
ditions the microscopic area of contact is proportional to the normal force. The fric-
tional force is proportional to the microscopic contact area; so, like the microscopic
contact area, it is proportional to the normal force.

1    m

10    m

Magnified section of a polished steel surface showing surface irregularities.
The irregularities are high, a height that corresponds to
several thousand atomic diameters. (From F. P. Bowden and D. Tabor,
Lubrication of Solids, Oxford University Press, 2000.)

about � 5 � 10�7 m

F

F

f

f

F I G U R E  5 - 1 The microscopic area of
contact between box and floor is only a small
fraction of the macroscopic area of the box’s
bottom surface. The microscopic area of
contact is proportional to the normal force
exerted between the surfaces. If the box rests
on its side, the macroscopic area is increased,
but the force per unit area is decreased, so the
microscopic area of contact is unchanged.
Whether the box is upright or on its side, the
same horizontal applied force F is required to
keep it sliding at constant speed.

The computer graphic shows gold atoms (bottom) adhering to the
fine point of a nickel probe (top) that has been in contact with the
gold surface. (Uzi Landman and David W. Leudtke/Georgia Institute of
Technology.)
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F

f s

F I G U R E  5 - 2

STATIC FRICTION

Suppose you apply a small horizontal force (Figure 5-2) to a large box resting on
the floor. The box may not move noticeably because the force of static friction 
exerted by the floor on the box, balances the force you apply. Static friction is the
frictional force that acts when there is no sliding between the two surfaces in
contact—it is the force that keeps the box from sliding. The force of static friction,
which opposes the applied force on the box, can vary in magnitude from zero to
some maximum value depending on how hard you push. That is, as you
push on the box, the opposing force of static friction increases to remain equal in
magnitude to the applied force until the magnitude of the applied force exceeds

Data show that is proportional to the strength of the forces pressing the
two surfaces together. That is, is proportional to the magnitude of the normal
force exerted by one surface on the other:

5-1

STATIC FRICTION RELATION

where the proportionality constant is the coefficient of static friction. This co-
efficient depends on what materials the surfaces in contact are made of as well as
the temperatures of the surfaces. If you exert a horizontal force with a magnitude
that is less than or equal to on the box, the static frictional force will just bal-
ance this horizontal force and the box will remain at rest. If you exert a horizontal
force even slightly greater than on the box, then the box will begin to slide.
Thus, we can write Equation 5-1 as:

5-2

The direction of the static frictional force is such that it opposes the tendency of the
box to slide.

KINETIC FRICTION

If you push the box in Figure 5-2 hard enough, it will slide across the floor. As it
slides, the floor exerts a force of kinetic friction (also called sliding friction) that
opposes the motion. To keep the box sliding with constant velocity, you must exert
a force on the box that is equal in magnitude and opposite in direction to the force
of kinetic friction exerted by the floor.

Like the magnitude of a maximum static frictional force, the magnitude of a
kinetic frictional force is proportional to the microscopic contact area and the
strength of the forces pressing the two surfaces together. That is, is proportional
to the normal force one surface exerts on the other:

5-3

KINETIC FRICTION RELATION

where the proportionality constant is the coefficient of kinetic friction. The
coefficient of kinetic friction depends on what materials the surfaces in contact are
made of as well as the temperature of the contacting surfaces. Unlike static friction,
the force of kinetic friction is independent of the magnitude of the applied hori-
zontal force. Experiments show that is approximately constant for a wide range
of speeds.

mk

mk ,

fk � mkFn

Fn

fk

fk

f
S

k

fs � msFn

fs max

fs max

ms ,

fs max � msFn

fs max

fs maxfs max .

fs max ,

f
S

s ,
F
S

Equation 5-2 is an inequality because
the magnitude of the force of static

friction ranges from zero up to fsmax .

!

If the horizontal force you exert on
the box is toward the left, then the

static frictional force is toward the
right. The static frictional force always
opposes any tendency to slide.

!
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f

Fapp

fs max

fs max = sFnμ

fk = kFnμ

fs = Fapp

F I G U R E  5 - 3

Figure 5-3 shows a plot of the frictional force exerted on the box by the floor as
a function of the applied force. The force of friction balances the applied force until
the box starts to slide, which occurs when the applied force exceeds by an in-
finitesimal amount. As the box slides, the frictional force remains equal to For
any given contacting surfaces, is less than This means you have to push
harder to get the box to begin sliding than to keep it sliding at constant speed.
Table 5-1 lists some approximate values of and for various pairs of surfaces.mkms

ms .mk

mkFn .
msFn

Table 5-1 Approximate Values of Frictional Coefficients

Materials

Steel on steel 0.7 0.6

Brass on steel 0.5 0.4

Copper on cast iron 1.1 0.3

Glass on glass 0.9 0.4

Teflon on Teflon 0.04 0.04

Teflon on steel 0.04 0.04

Rubber on concrete (dry) 1.0 0.80

Rubber on concrete (wet) 0.30 0.25

Waxed ski on snow (0°C) 0.10 0.05

mkms

F I G U R E  5 - 4 As the car moves down the
highway, the rubber flexes radially inward
where the tread initiates contact with the
pavement, and flexes radially outward where
the tread loses contact with the road. The tire
is not perfectly elastic, so the forces exerted on
the tread by the pavement that flex the tread
inward are greater than those exerted on the
tread by the pavement as the tread flexes back
as it leaves the pavement. This imbalance of
forces results in a force opposing the rolling of
the tire. This force is called a rolling frictional
force. The more the tire flexes, the greater the
rolling frictional force.

ROLLING FRICTION

When a perfectly rigid wheel rolls at constant speed along a perfectly rigid hori-
zontal road without slipping, no frictional force slows its motion. However, be-
cause real tires and roads continually deform (Figure 5-4) and because the tread
and the road are continually peeled apart, in the real world the road exerts a force
of rolling friction that opposes the motion. To keep the wheel rolling with con-
stant velocity, you must exert a force on the wheel that is equal in magnitude and
opposite in direction to the force of rolling friction exerted on the wheel by
the road.

The coefficient of rolling friction is the ratio of the magnitudes of the rolling
frictional force and the normal force :

5-4

ROLLING FRICTION RELATION

where depends on the nature of the surfaces in contact and the composition of
the wheel and road. Typical values of are 0.01 to 0.02 for rubber tires on concrete
and 0.001 to 0.002 for steel wheels on steel rails. Coefficients of rolling friction are
typically less than coefficients of kinetic friction by one to two orders of magnitude.
Rolling friction is considered to be negligible in this book, except where it is specif-
ically stated that it is significant.

SOLVING PROBLEMS INVOLVING STATIC, 
KINETIC, AND ROLLING FRICTION

The following examples illustrate how to solve problems involving static and
kinetic friction. The guidelines for approaching these types of problems are as
follows:

mr

mr

fr � mrFn

Fnfr

mr

f
S

r
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PROBLEM-SOLVING STRATEGY

Solving Problems Involving Friction

PICTURE Determine which types of friction are involved in solving a
problem. Objects experience static friction when no sliding exists between the
surfaces of the objects that are in contact. The force of static friction opposes
the tendency of the surfaces to slide on each other. The maximum static
frictional force is equal to the product of the normal force and the
coefficient of static friction. If two surfaces are sliding against each other, they
experience kinetic frictional forces (unless the problem states that one of the
surfaces is frictionless). Rolling friction occurs because a rolling object and 
the surface that the object is rolling on continually deform and the object 
and the surface are continually peeling apart.

SOLVE

1. Construct a free-body diagram with the y axis normal to (and the x axis
parallel to) the contacting surfaces. The direction of the frictional force is
such that it opposes slipping, or the tendency to slip.

2. Apply and solve for the normal force 
If the friction is kinetic or rolling, relate the frictional and normal forces
using or respectively.
If the friction is static, relate the frictional and normal forces using

3. Apply to the object and solve for the desired quantity.

CHECK In making sure that your answer makes sense, remember that
coefficients of friction are dimensionless and that you must account for all
forces (for example, tensions in ropes).

gFx � max

fs � msFn (or fs max � msFn).

fr � mrFn ,fk � mkFn

Fn .gFy � may

fs max

Example 5-1 A Game of Shuffleboard

A cruise-ship passenger uses a shuffleboard cue to push a shuffleboard disk of mass 0.40 kg
horizontally along the deck so that the disk leaves the cue with a speed of The disk
then slides a distance of 8.0 m before coming to rest. Find the coefficient of kinetic friction
between the disk and the deck.

PICTURE The force of kinetic friction is the only horizontal force acting on the disk after it
separates from the cue. The acceleration is constant, because the frictional force is constant.
We can find the acceleration using the constant-acceleration equations of Chapter 2 and
relate the acceleration to using gFx � max .mk

8.5 m>s.

+y

+x

Fn

mg

f
k

F I G U R E  5 - 5

SOLVE

1. Draw a free-body diagram for the disk after it leaves the cue (Figure 5-5).
Choose as the direction the direction of the disk’s velocity:�x

2. The coefficient of kinetic friction relates the magnitudes of the
frictional and normal forces:

fk � mkFn

3. Apply to the disk. Solve for the normal force. Then, using
the relationship from step 2, solve for the frictional force:

gFy � may

so fk � mkmg

Fn � mg � 0 ⇒  Fn � mg

©Fy � may

4. Apply to the disk. Using the step-3 result, solve for the
acceleration:

gFx � max

so �mkmg � max so ax � �mk g

�fk � max

©Fx � max
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Example 5-2 A Sliding Coin

A hardcover book (Figure 5-6) is resting on a tabletop with its front cover facing upward. 
You place a coin on this cover and very slowly open the book until the coin starts to slide.
The angle (known as the angle of repose) is the angle the front cover makes with the
horizontal just as the coin starts to slide. Find the coefficient of static friction between 
the book cover and the coin in terms of 

PICTURE The forces acting on the coin are the gravitational force the normal force
and the frictional force f. Because the coin is on the verge of sliding (but not yet sliding),

the frictional force is a static frictional force directed up the incline. Because the coin remains
stationary, its acceleration is zero. We use Newton’s second law to relate this acceleration to
the forces on the coin, and then solve for the fictional force.

Fn ,
FS � mg,

umax .
ms

umax

F I G U R E  5 - 6 (Ramón Rivera-Moret.)

5. The acceleration is constant. Relate it to the total distance traveled
and the initial velocity using (Equation 2-15). 
Using the step-4 result, solve for :mk

v2
x � v2

0x � 2ax¢x
so 0.46mk �

v2
0x

2g¢x
�

(8.5 m>s)2

2(9.81 m>s2)(8.0 m)
�

v2
x � v2

0x � 2ax¢x ⇒  0 � v2
0x � 2mkg¢x

CHECK The value obtained for is dimensionless and within the range of values for other
materials listed in Table 5-1, so it is plausible.

TAKING IT FURTHER Note that the acceleration and the coefficient of friction are inde-
pendent of the mass m. The greater the mass, the harder it is to stop the disk, but a greater
mass is accompanied by a greater normal force, and thus a greater frictional force. The net
result is that the mass has no effect on the acceleration (or the stopping distance).

mk

SOLVE

1. Draw a free-body diagram for the coin when the
book cover inclined at angle where 
(Figure 5-7). Draw the y axis normal to the book
cover:

u � umaxu,

2. The coefficient of static friction relates the
frictional and normal forces:

fs � msFn

3. We apply to the coin and solve for
the normal force:

gFy � may
Fn � mg cosu � 0 ⇒ Fn � mg cosu

gFy � may

4. Substitute for in (Equation 5-1):fs � msFnFn fs � msFn ⇒ fs � msmg cosu

5. Apply to the coin. Then solve for
the friction force:

gFx � max
�fs � mg sinu � 0 ⇒ fs � mg sinu

gFx � max

6. Substituting for in the step-4 result
gives:

fsmg sinu mg sinu � msmg cosu ⇒ tanu � ms

7. the largest angle satisfying the condition
is the largest angle such that the

coin does not slide:
tanu � ms ,
umax, ms � tanumax

CHECK The coefficient of friction is dimensionless, and so is the tangent function. Also, for
is between zero and one. One would expect the coin to slide before

the angle reached and one would expect the coefficient of static friction to be between
zero and one. Thus, the step-7 result is plausible.

PRACTICE PROBLEM 5-1 The coefficient of static friction between a car’s tires and the
road on a particular day is 0.70. What is the steepest angle of inclination of the road for which
the car can be parked with all four wheels locked and not slide down the hill?

45°
0 	 umax 	 45°, tanumax

+y

+x

Fnfs

mg

� �

F I G U R E  5 - 7

Erosion due to a stream cutting across a beach.
Even though the edge weaves in and out, the
angle of the slope remains constant. The angle
of the slope is the angle of repose for the
granular material. (David R. Bailey.)
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CONCEPT CHECK 5-1

The car in Practice Problem 5-1 is parked at the steepest angle of inclination
with all four wheels locked. Would the car slide down the incline if only two
of the wheels are locked?

✓

+y

f
+x

Fn

T

mg

�

F I G U R E  5 - 9

Example 5-3 Pulling a Sled

Two children sitting on a sled at rest in the snow ask you to pull them. You oblige by
pulling on the sled’s rope, which makes an angle of 40° with the horizontal (Figure 5-8).
The children have a combined mass of 45 kg and the sled has a mass of 5.0 kg. The
coefficients of static and kinetic friction are and the sled is initially
at rest. Find both the magnitude of the frictional force exerted by the snow on the sled 
and the acceleration of the children and sled if the tension in the rope is (a) 100 N and 
(b) 140 N.

ms � 0.20 and mk � 0.15

F I G U R E  5 - 8 (Jean-Claude LeJeune/Stock Boston.)

SOLVE

(a) 1. Draw a free-body diagram for the sled 
(Figure 5-9):

2. Write down the static friction relation. If this
relation is satisfied, the sled does not begin
sliding:

fs � msFn

3. Apply to the sled and solve for
the normal force:

gFy � may
Fn � T sinu � mg � 0 ⇒ Fn � mg � T sinu

gFy � may

4. Apply (with ) to the sled
and solve for the static frictional force:

ax � 0gFx � max
�fs � T cosu � 0 ⇒ fs � T cosu

gfx � max

PICTURE First, we need to find out whether the frictional force is static or kinetic. To do
this, we see if the given tension forces satisfy the relation Once we have done that,
we can select the correct expression for the frictional force, and solve the corresponding ex-
pression for f.

fs � msFn .
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Example 5-4 A Sliding Block

The block of mass in Figure 5-10 has been adjusted so that the block of mass is on the
verge of sliding. (a) If and what is the coefficient of static friction
between the table and the block? (b) With a slight nudge, the blocks move with acceleration
of magnitude a. Find a if the coefficient of kinetic friction between the table and the block is

PICTURE Apply Newton’s second law to each block. By neglecting the masses of both the
rope and the pulley, and by neglecting friction in the pulley bearing, the tension has the same
magnitude throughout the rope, so Because the rope remains taut but does not
stretch, the accelerations have the same magnitude, so 

To find the coefficient of static friction as requested in Part (a), set the force of static
friction on equal to its maximum value and set the acceleration equal to zero.fsmax � msFnm1

ms ,
a1 � a2 � a.

T1 � T2 � T.

mk � 0.54.

m2 � 5.0 kg,m1 � 7.0 kg
m1m2

6. Check to see if the given tension of 100 N
satisfies the nonslip condition (the step-3
inequality): The inequality is satisfied, thus the sled is not sliding.

 77 N � 85 N

 (100 N) cos40° � 0.20[(50 kg)(9.81 N>kg) � (100 N) sin40°]

7. Because the sled is not sliding, the frictional
force is that of static friction. To find the
frictional force, use the step-3 expression 
for :fs

77 Nfs � T cosu � (100 N) cos40° �

ax � 0

(b) 1. Check the step-4 result from Part (a) with
If the relation is satisfied, the sled

does not slide:
T � 140 N.

The inequality is not satisfied, thus the sled is sliding.

 107 N � 80 N

 (140 N) cos40° � 0.20[(50 kg)(9.81 N>kg) � (140 N) sin40°]

2. Because the sled is sliding, the friction is
kinetic friction, where In Part (a)
step-3 we applied to the sled and
found Using these results,
solve for the kinetic frictional force:

Fn � mg � Tsinu.
gFy � may

fk � mkFn .

60 N�

� 0.15 [(50 kg)(9.81 N>kg) � (140 N) sin40°]
fk � mk(mg � T sinu)

fk � mkFn

3. Apply to the sled and solve for
the frictional force. Then substitute the
Part (b) step-2 result for and solve for the
acceleration:

fk

gFx � max

0.94 m>s2ax �
(�60 N) � (140 N) cos40°

50 kg
�so

�fk � T cosu � max ⇒ ax �
�fk � T cosu

m

gFx � max

CHECK We expect to be greater than or equal to zero, so we expect the magnitude of the
frictional force to be less than or equal to the x component of the tension force. In Part (a) the
magnitude of the frictional force and x component of the tension force both equal 77 N, and
in Part (b) the magnitude of the frictional force equals 60 N and the x component of the ten-
sion force is 

TAKING IT FURTHER Note two important points about this example: (1) the normal force
is less than the weight of the children and the sled. This is so because the vertical component
of the tension helps the ground counter the gravitational force; and (2) in Part (a), the force
of static friction is less than 

PRACTICE PROBLEM 5-2 What is the maximum force you can pull the rope at the speci-
fied angle without the sled beginning to slide?

msFn .

140 N cos40° � 107 N.

ax

m1

m2

F I G U R E  5 - 1 0

5. Substitute the step-4 and step-5 results into
the step-2 result:

T cosu � ms(mg � T sinu)
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+y

+x
f

Fn

T

m1g

Block 1

T

m2g

+x'

Block 2
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SOLVE

(a) 1. Draw a free-body diagram for each block (Figure 5-11).
Choose the and directions to be the same as
the directions of the accelerations of blocks 1 and 2,
respectively. That is, the direction is to the right
and the direction is vertically downward:�x�

�x

�x��x

2. Apply to block 1 and solve for the
normal force. Then solve for the static frictional
force.

gFy � may

fsmax � msFn so fsmax � msm1g

so

Fn � m1g � 0 ⇒ Fn � m1g

gFy � m1a1y

3. Apply to block 1 and solve for the
frictional force. Then substitute into the step-2
result.

gFx � max

T � msm1g

so

T � fsmax � 0 ⇒ T � fsmax

gFx � m1a1x

4. Apply to block 2 and solve for the
tension. Then substitute into the step-3 result.

gFx � max

T � m2g and m2g � msm1g

so

gFx� � m2a2x� ⇒ m2g � T � 0

5. Solve the step-4 result for ms . 0.71ms �
m2

m1

�
5.0 kg

7.0 kg
�

(b) 1. During sliding, the frictional force is kinetic and the
accelerations have the same magnitude a. Relate the
kinetic frictional force to the normal force. The
normal force was found in step 2 of Part (a).

fk

ƒ aS1 ƒ � a1x � a and ƒ aS2 ƒ � a2x� � a

fk � mkm1g

so

fk � mkFn

2. Apply to block 1. Then substitute for 
the frictional force using the result from step 1 of 
Part (b).

gFx � max

T � mkm1g � m1a

so

gFx � m1a1x ⇒ T � fk � m1a

3. Apply to block 2.gFx� � max� gFx� � m2a2x� ⇒ m2g � T � m2a

4. Add the equations in steps 2 and 3 of Part (b) and
solve for a.

1.0 m>s2a �
m2 � mkm1

m1 � m2

g �

CHECK Note that if the expression for the acceleration reduces to as one
would expect.

PRACTICE PROBLEM 5-3 What is the tension in the rope when the blocks are sliding?

a � gm1 � 0

Context-RichExample 5-5 The Runaway Buggy

A runaway baby buggy is sliding without friction across a
frozen pond toward a hole in the ice (Figure 5-12). You race
after the buggy on skates. As you grab it, you and the buggy
are moving toward the hole at speed The kinetic coefficient
of friction between your skates and the ice as you turn out the
blades to brake is D is the distance between the buggy and
the hole at the instant you reach the buggy, is the mass of
the buggy (including its precious cargo), and is your mass.
(a) What is the lowest value of D such that you stop the buggy
before it reaches the hole in the ice? (b) What force do you exert
on the buggy as you slow it?

mY

mB

mk.

v0. v0

D

F I G U R E  5 - 1 2
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Example 5-6 Pulling a Child on a Toboggan

A child of mass sits on a toboggan of mass which in turn sits on a frictionless
frozen pond (Figure 5-15). The toboggan is pulled with a horizontal applied force as
shown. The coefficients of static and sliding friction between the child and toboggan are

and . (a) Find the maximum value of for which the child will not slide relative to
the toboggan. (b) Find the acceleration of the toboggan and the acceleration of the child
when is greater than this value.Fap

Fapmkms

F
S

ap

mT ,mC

+y

+x

FnY

+y

+x
mYg

Yourself Buggy

f

FYB

FnS

F BY
mS g

F I G U R E  5 - 1 3

SOLVE

(a) 1. Draw separate free-body diagrams for yourself
and the buggy (Figure 5-13).

2. To find the frictional force of the ice on you,
you need to first find the normal force of the
ice on you:

fIYk � mkFIYn

3. Apply to yourself and solve first
for the normal force and then for the frictional
force:

gFy � may

fIYk � mkFIYn   so fIYk � mkmYgand

gFy � may ⇒ FIYn � mYg � 0 (ay � 0)

4. Apply to yourself. Then substitute
in the step-3 result:

gFx � max

FBY � mkmYg � mYaxso

gFx � max ⇒  FBY � fIYk � mYax

5. Apply to the buggy: gFx � max gFx � mBax ⇒  FYB � mBax

6. and form an N3L force pair, so they
are equal in magnitude:

F
S

YBF
S

BY FBY � FYB

7. Add the step-4 and step-5 results and use
to simplify:FBY � FYB � 0 0 � msmYg � mBax � mYax

�FYB � (FBY � msmYg) � mBax � mYax

8. Solve the step-7 result for :ax (ax is negative, as expected.)ax � �
mkmY

mY � mB

g

9. Substitute the step-8 result into a kinematic
equation and solve for the magnitude of the
displacement D: a1 �

mB

mY

b v2
0

2mkg
D �

�v2
0

2ax
�

so

v2
x � v2

0x � 2ax¢x ⇒  0 � v2
0 � 2axD

(b) can be found by combining the results for
steps 5 and 8:
FYB

mkmBg

1 � (mY>mB)
FYB � mB ƒ ax ƒ �

CHECK For large values of D is large, as expected.

TAKING IT FURTHER The minimum value of D is proportional to and inversely pro-
portional to Figure 5-14 shows the stopping distance D versus initial velocity squared for
values of equal to 0.1, 0.3, and 1.0, with Note that the larger the mass ratio

the greater the distance D needed to stop for a given initial velocity. This is akin to
braking to a stop in a car that is pulling a trailer that does not have its own brakes. The mass
of the trailer increases the stopping distance for a given speed.

mB>mY,
mk � 0.5.mB>mY

mk .
v2

0

mB>mY,

0

30

0

D ,  m

v2
0, m2/s2

20 40

mB/mY = 1.0

mB/mY = 0.3

mB/mY = 0.1

60

20

10

40

80
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PICTURE Initially, you and the buggy are moving toward the hole with speed which
we take to be in the direction. If you exert a force on the buggy, the buggy, in accord
with Newton’s third law, exerts a force on you. Apply Newton’s second law to deter-
mine the acceleration. After finding the acceleration, find the distance D the buggy travels
while slowing to a stop. The lowest value of D is that for which your speed reaches zero just
as the buggy reaches the hole.

F
S

BY

F
S

YB�x
v0 ,

Fap
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+y

+x
fTC

FTCn

Child

+y

+x
f

FITn

FCTn

Fap

Toboggan

mCg mTg

CT

F I G U R E  5 - 1 6 The force is the
normal force exerted by the ice on the
toboggan.

F
S

ITn

Steps Answers

(a) 1. Draw one free-body diagram for the child and
another for the toboggan (Figure 5-16).

2. Apply to the toboggan:gFx � max gFTx � mTaTx ⇒  Fap � fCTsmax � mTaTx

3. Apply to the child and solve for
the normal force. Then apply and
solve for the frictional force.

fxmax � msFn

gFy � may
so fTCsmax � msmCgfsmax � mFn ⇒  fTCsmax � msFTCn

so FTCn � mCggFCy � mCay ⇒  FTCn � mCg � 0

4. Apply to the child and solve for
the acceleration.

gFx � max
msmCg � mCaCx ⇒ aCx � msgso

gFCx � mCaCx⇒ fTCsmax � mCaCx

5. Equate the magnitudes of the forces in each
N3L force pair appearing in the two free-body
diagrams. In addition, express the relation
between the accelerations due to the
nonslipping constraint.

aCx � aTx � axand

FTCn � FCTn and fTCsmax � fCTsmax

6. Substitute the step-4 and step-5 results into
the step-2 result and solve for Fap .

(mC � mT)msgso Fap �Fap � msmCg � mTmsg

(b) 1. Equate the magnitudes of each N3L force pair
and express the relation between the
accelerations if the child is slipping on the
toboggan.

aCx 	 aTxand

FTCn � FCTn � Fn and fTCk � fCTk � fk

2. Solve for the magnitude of the kinetic
frictional force using the result from step 3 of
Part (a) for the normal force.

fk � mkFn so fk � mkmCg

3. Apply to the child and solve for
her acceleration.

gFx � max

mkgmkmCg � mCaCx ⇒ aCx �so

gFCx � mCaCx ⇒ fk � mCaCx

PICTURE The only force accelerating the child forward is the frictional force exerted by the
toboggan on the child. In Part (a) the challenge is to find when this frictional force is static
and maximum. To do this, apply to the child and solve for the acceleration when
the static frictional force is maximum. Then apply to the toboggan and solve for

In Part (b), we follow a parallel procedure. However, in Part (b) the minimum value of
is given and we solve for the acceleration of the toboggan.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Fap

Fap .
g F

S
� maS

g F
S

� maS
Fap

4. Apply to the toboggan. Using the
result from step 2 of Part (b), solve for its
acceleration.

gFx � max

Fap � mkmCg

mT

Fap � mkmCg � mTaTx ⇒  aTx �so

gFTx � mTaTx ⇒ Fap � fk � mTaTx

CHECK The Part (a) result is what we expect if the child does not slip on the toboggan. If we
model the child and the toboggan as a single particle and apply Newton’s second law 
to it, we obtain If we substitute (our Part-(a) step-6 result)
for we get Dividing both sides by the sum of the masses
gives our Part-(a) step-3 result. Thus, our Part (a) effort is consistent with modeling
the sled and child as a single particle.

TAKING IT FURTHER In this example, the frictional force does not oppose the motion of
the child, it causes it. Without friction, the girl would slip back relative to the toboggan.
However, even though the child moves, or tends to move, backward (leftward) relative to the
toboggan, she moves forward relative to the ice. Friction forces oppose relative motion, or ten-
dency toward relative motion, between two surfaces in contact. In addition, relative to the
child, the toboggan slips, or tends to slip, forward. The friction force on the toboggan is di-
rected rearward, opposing this slipping forward, or tendency toward slipping forward.

ax � msg,
ms(mC � mT)g � (mC � mT)ax .Fap ,

ms(mC � mT)gFap � (mC � mT)ax .

Note that frictional forces do not
always oppose motion. However,

frictional forces between contacting
surfaces do always oppose relative motion,
or the tendency toward relative motion,
between the two contacting surfaces.

!
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FRICTION, CARS, AND ANTILOCK BRAKES

Figure 5-17 shows the forces acting on a front-wheel-drive car that is just start-
ing to move from rest on a horizontal road. The gravitational force on the car
is balanced by the normal forces and exerted on the tires. To start the car
moving, the engine delivers power to the axle that makes the front wheels start
to rotate. If the road were perfectly frictionless, the front wheels would merely
spin. When friction is present, the frictional force exerted by the road on the tires
is in the forward direction, opposing the tendency of the tire surface to slip
backward. This frictional force enables the acceleration needed for the car to
start moving forward. If the power delivered by the engine is not so great that
the surface of the tire slips on the surface of the road, the wheels will roll
without slipping and that part of the tire tread touching the road remains at rest
relative to the road. (The part in contact with the road continuously changes as
the tire rolls.) The friction between the road and the tire tread is then that of
static friction. The largest frictional force that the tire can exert on the road (and
that the road can exert on the tire) is 

For a car moving in a straight line with speed v relative to the road, the center
of each of its wheels also moves with speed v, as shown in Figure 5-18. If a wheel
is rolling without slipping, its top is moving faster than v, whereas its bottom is
moving slower than v. However, relative to the car, each point on the perimeter of
the wheel moves in a circle with the same speed v. Moreover, the speed of the point
on the tire momentarily in contact with the ground is zero relative to the ground.
(Otherwise, the tire would be skidding along the road.)

If the engine supplies excessive power, the tire will slip and the wheels will spin.
Then the force that accelerates the car is the force of kinetic friction, which is less
than the maximum force of static friction. If we are stuck on ice or snow, our
chances of getting free are better if we avoid spinning the wheels by using a light
touch on the accelerator pedal. Similarly, when braking a car to a stop, the force
exerted by the road on the tires may be either static friction or kinetic friction,
depending on how hard the brakes are applied. If the brakes are applied so hard
that the wheels lock, the tires will skid along the road and the stopping force will
be that of kinetic friction. If the brakes are applied less forcefully, so that no slip-
ping occurs between the tires and the road, the stopping force will be that of static
friction.

When wheels do lock and tires skid, two undesirable things happen. The mini-
mum stopping distance is increased and the ability to control the direction of the
motion of the car is greatly diminished. Obviously, this loss of directional control
can have dire consequences. Antilock braking systems (ABS) in cars are designed
to prevent the wheels from locking even if the brakes are applied hard. These sys-
tems have wheel-speed sensors. If the control unit senses that a wheel is about to
lock, the module signals the brake pressure modulator to drop, hold, and then re-
store the pressure to that wheel up to 15 times per second. This varying of pressure
is much like “pumping” the brake, but with the ABS system, the wheel that is lock-
ing is the only one being pumped. This is called threshold braking. With threshold
braking, maximum friction for stopping is maintained.

Example 5-7 The Effect of Antilock Brakes

A car is traveling at along a horizontal road. The coefficients of friction between the
road and the tires are How far does the car travel before stopping
if (a) the car is braked with an antilock braking system so that threshold braking is sustained,
and (b) the car is braked hard with no antilock braking system so that the wheels lock? 
(Note: Skidding heats up the tires and the coefficients of friction vary with changes in
temperature. These temperature effects are neglected in this example.)

ms � 0.50 and mk � 0.40.
30 m>s

msFn.

Fn�Fn

Fg

Fn
F'n

f smg

F I G U R E  5 - 1 7 Forces acting on a car with
front-wheel drive that is accelerating from
rest. The normal force on the front tires is
usually larger than the normal force on the
rear tires because typically the engine of the
car is mounted near the front of the car. There
is no drag force from the air shown because
the car is just starting to move. There would
be a rearward-directed rolling frictional force
on all wheels, but that force has been ignored.

F
S

�n

F
S

n

v

2v

F I G U R E  5 - 1 8 In this figure, dashed lines
represent velocities relative to the body of the
car; solid lines represent velocities relative to
the ground.
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PICTURE The force that stops a car when it brakes without skidding is the force of static
friction exerted by the road on the tires (Figure 5-19). We use Newton’s second law to solve
for the frictional force and the car’s acceleration. Kinematics is then used to find the stopping
distance.

SOLVE f 1 f 2

v

F I G U R E  5 - 1 9

(a) 1. Draw a free-body diagram for the car (Figure 5-20).
Treat all four wheels as if they were a single point of
contact with the ground. Assume further that the
brakes are applied to all four wheels. The in the
free-body diagram is the total of the frictional forces
on individual wheels:

f
S

2. Assuming that the acceleration is constant, we use
Equation 2-15 to relate the stopping distance to
the initial velocity :v0x

¢x
¢x � �

v2
0x

2ax
When vx � 0,

v2
x � v2

0x � 2ax¢x

f

+y

+x

Fn

mg

3. Apply to the car and solve for the
normal force. Then apply and solve for
the frictional force:

fxmax � msFn

gFy � may
fsmax � msFn so fsmax � msmg

so Fn � mggFy � may ⇒  Fn � mg � 0

4. Apply to the car and solve for the
acceleration:

gFx � max
�msmg � max ⇒  ax � �msgSubstituting msmg for fsmax gives

gFx � max ⇒  � fsmax � max

5. Substituting for in the equation for in step 2
gives the stopping distance:

¢xax 0.92 � 102 m�
(30 m>s)2

2(0.50)(9.81 m>s2)
�¢x � �

v2
0x

2ax
�
v2

0x

2msg

(b) 1. When the wheels lock, the force exerted by the road on
the car is that of kinetic friction. Using reasoning
similar to that in Part (a), we obtain for the acceleration:

ax � �mkg

2. The stopping distance is then: 1.1 � 102 m�
(30 m>s)2

2(0.40)(9.81 m>s2)
�¢x � �

v2
0x

2ax
�
v2

0x

2mkg

F I G U R E  5 - 2 0

CHECK The calculated displacements are both positive as expected. In addition, the an-
tilock brake system significantly shortens the stopping distance of the car as expected.

TAKING IT FURTHER Notice that the stopping distance is more than greater when the
wheels are locked. Also note that the stopping distance is independent of the car’s mass—
the stopping distance is the same for a subcompact car as for a large truck—provided the
coefficients of friction are the same. The tires heat up dramatically when skidding occurs.
This produces a change in that was not taken into account in this solution.

5-2 DRAG FORCES

When an object moves through a fluid such as air or water, the fluid exerts a drag
force or retarding force that opposes the motion of the object. The drag force de-
pends on the shape of the object, the properties of the fluid, and the speed of the
object relative to the fluid. Unlike ordinary friction, the drag force increases as the
speed of the object increases. At very low speeds, the drag force is approximately
proportional to the speed of the object; at higher speeds, it is more nearly propor-
tional to the square of the speed.

Consider an object dropped from rest and falling under the influence of the force
of gravity, which we assume to be constant. The magnitude of the drag force is

5-5
DRAG FORCE RELATION

where b is a constant.

Fd � bvn

mk

20%

The drag force on the parachute slows this
dragster. (IHRA/Live Nation.)
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As shown in Figure 5-21, the forces acting on the object are a constant down-
ward force mg and an upward force If we take downward as the direction,
we obtain from Newton’s second law 

5-6

Solving this equation for the acceleration gives:

5-7

The speed is zero at (the instant the object is released), so at the drag
force is zero and the acceleration is g downward. As the speed of the object in-
creases, the drag force increases so the acceleration decreases. Eventually, the
speed is great enough for the magnitude of the drag force to approach the force
of gravity mg. In this limit, the acceleration approaches zero and the speed ap-
proaches the terminal speed At terminal speed, the drag force balances the
weight force and the acceleration is zero. Setting v equal to and equal to zero
in Equation 5-6, we obtain

Solving for the terminal speed, we get

5-8

The larger the constant b, the smaller the terminal
speed. Cars are designed to minimize b to reduce
the effect of wind resistance. A parachute, on the
other hand, is designed to maximize b so that the
terminal speed will be small. For example, the ter-
minal speed of a skydiver before release of the
parachute is about which is about

When the parachute opens, the drag force
rapidly increases, becoming greater than the force
of gravity. As a result, the skydiver experiences an
upward acceleration while falling; that is, the
speed of the descending skydiver decreases. As
the speed of the skydiver decreases, the drag force
decreases and the speed approaches a new termi-
nal speed of about 

Example 5-8 Terminal Speed

A 64.0-kg skydiver falls with a terminal speed of with her arms and legs out-
spread. (a) What is the magnitude of the upward drag force on the skydiver? (b) If the drag
force is equal to what is the value of b?

PICTURE We use Newton’s second law to solve for the drag force in Part (a), and then sub-
stitute in the appropriate values to find b in Part (b).

SOLVE

(a) 1. Draw a free-body diagram (Figure 5-22).

bv2,
Fd

180 km>h

20 km>h.

60 m>s.
200 km>h,

vT � amg
b
b 1>n

bvnT � mg

ayvT

vT .

bvn

t � 0t � 0

ay � g �
b
m
vn

mg � bvn � may

�ybvn.
bvn

+y

mg
+x

F I G U R E  5 - 2 1 Free-body diagram
showing forces on an object falling through
the air.

(Joe McBride/Stone.)(Stuart Williams/Dembinsky Photo
Associates.)

2. Apply Because the skydiver is
moving with constant velocity, the
acceleration is zero:

gFy � may .

628 NFd � mg � (64.0 kg)(9.81 N>kg) �so

gFy � may ⇒  Fd � mg � 0

+y

Fd

mg
+x

F I G U R E  5 - 2 2
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(b) 1. To find b we set :Fd � bv2

b �
mg

v2so

Fd � mg � bv2

2. Convert the speed to m/s, then calculate b:

0.251 kg/mb �
(64.0 kg)(9.81 m>s2)

(50.0 m>s)2 �

180 km>h �
180 km

1 h
�

1 h
3.6 ks

� 50.0 m>s

CHECK The units obtained for b are To check that these units are correct, we multi-
ply by to get These units are units of force (because one newton is
defined as a We expected these units to be units of force because the drag force 
is given by 

TAKING IT FURTHER The conversion factor 1 h/3.6 ks appears in the last step of the solu-
tion. This conversion factor is exact because 1 h is exactly equal to 3600 s. Consequently, in
converting her speed from km/h to m/s, three-figure accuracy is maintained. This is so even
though we did not write the conversion factor as 

5-3 MOTION ALONG A CURVED PATH

Objects often do not move in a straight line: a car rounding a curve is an example,
as is a satellite orbiting Earth.

Consider a satellite moving in a circular orbit around Earth as shown in
Figure 5-23. At an altitude of 200 km, the gravitational force on the satellite is just
slightly less than at Earth’s surface. Why does the satellite not fall toward Earth?
Actually, the satellite does “fall.” But because the surface of Earth is curved, the
satellite does not get closer to the surface of Earth. If the satellite were not acceler-
ating, it would move from point to in some time t. Instead, it arrives at point

on its circular orbit. In a sense, the satellite “falls” the distance h shown in Figure
5-23. If t is small, and are nearly on a radial line. In that case, we can calculate
h from the right triangle of sides vt, r, and : Because is the hypotenuse
of the right triangle, the Pythagorean theorem gives:

or

For very short times, h will be much less than r, so we can neglect h compared with
2r. Then

or

Comparing this with the constant-acceleration expression we see that the
magnitude of the acceleration of the satellite is

which is the expression for centripetal acceleration established in Chapter 3. From
Figure 3-24, we see this acceleration is directed toward the center of the circular
orbit. By applying Newton’s second law along the direction of the acceleration

a �
v2

r

h � 1
2 at2,

h �
1
2
av2

r
b t2

2rh � v2t2

h(2r � h) � v2t2

r2 � 2hr � h2 � v2t2 � r2
 (r � h)2 � (vt)2 � r2

r � hr � h
Pœ

2P2

Pœ
2

P2P1

1.00 h>3.60 ks.

bv2.
kg m>s)2.

kg m>s2.(m>s)2kg/m
kg/m.

P1 P2

P'2

vt

hr r

F I G U R E  5 - 2 3 The satellite is moving
with speed v in a circular orbit of radius r
about Earth. If the satellite did not accelerate
toward Earth, it would move from point to

along a straight line. Because of its
acceleration, it instead falls a distance h. For a
sufficiently short time t, the acceleration is
essentially constant, so h � 1

2 at2 � 1
2(v2>r)t2.

P2

P1

See

Math Tutorial for more

information on 

Trigonometry
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vector, we find that the magnitude of the net force causing the acceleration
is related to the magnitude of the acceleration by:

Figure 5-24a shows a ball on the end of a string, the other end of which
is attached to a fixed support. The ball is traveling in a horizontal circle of
radius r at constant speed v. Consequently, the acceleration of the ball has
magnitude

As we saw in Chapter 3, a particle moving with constant speed v in a
circle of radius r (Figure 5-24a) has an acceleration of magnitude 
directed toward the center of the circle (the centripetal direction). The net
force acting on an object is always in the same direction as the acceleration
vector, so the net force (Figure 5-24b) on an object moving in a circle at con-
stant speed is also in the centripetal direction. A net force in the centripetal direction
is sometimes referred to as the centripetal force. It may be due to a string, spring, or
other contact force such as a normal or frictional force; it may be an action-at-a-dis-
tance type of force such as a gravitational force; or it may be any combination of
these. It is always directed inward—toward the center of curvature of the path.

PROBLEM-SOLVING STRATEGY

Solving Motion Along A Curved Path Problems

PICTURE Remember that you should never label a force as a centripetal force
on a free-body diagram. Instead you should label a force as a tension force, or
a normal force, or a gravitational force, and so forth.

SOLVE

1. Draw a free-body diagram of the object. Include coordinate axes with the
origin at a point of interest on the path. Draw one coordinate axis in the
tangential direction (the direction of motion) and a second in the
centripetal direction.

2. Apply and (Newton’s second law in component
form).

3. Substitute and where v is the speed.
4. If the object moves in a circle of radius r with constant speed v, use

where T is the time for one revolution.

CHECK Make sure that your answers are in accordance with the fact that the
direction of the centripetal acceleration is always toward the center of
curvature and perpendicular to the direction of the velocity vector.

v � 2pr>T,

at � dv>dt,ac � v2>r
gFt � matgFc � mac

a � v2>rv2>r.
Fnet � m

v2

r

T

mg

r

v

mr

v

m

(a) (b)

a Fnet

F I G U R E  5 - 2 4 A ball suspended from a
string moves in a horizontal circle at constant
speed. (a) The acceleration vector is in the
centripetal direction (toward the center of the
circular path). Acceleration in the centripetal
direction is called centripetal acceleration.
(b) Two forces act on the ball, the tension force
exerted by the string and the gravitational
force. These two forces sum so that the net
force is in the centripetal direction. A net force
in the centripetal direction is sometimes
referred to as the centripetal force.

The centripetal force is not actually
a force. It is merely a name for the

component of net force toward the
center of curvature of the path. Like
the net force, the centripetal force does
not belong on a free-body diagram.
Only actual forces belong on free-body
diagrams.

!

Example 5-9 Swinging a Pail

You swing a pail containing mass m of water in a vertical circle of radius r (Figure 5-25). If
the speed is at the top of the circle, find (a) the force exerted by the pail on the water
at the top of the circle, and (b) the minimum value of for the water to remain in the pail.
(c) What is the force exerted by the pail on the water at the bottom of the circle, where the
speed of the pail is ?

PICTURE When the bucket is at the top of its circle, both the force of gravity on the water
and the contact force of the pail on the water are in the centripetal direction (downward). At
the bottom of the circle, the contact force of the pail on the water must be greater than the
force of gravity on the water to provide a net force in the centripetal direction (upward). We
can apply Newton’s second law to find the force exerted by the pail on the water at these
points. Because the water moves in a circular path, it always has an acceleration component
equal to toward the center of the circle.v2>r

vbot

vtop

FPWvtop

FPW

mg

vt

F I G U R E  5 - 2 5
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+r

FPW

mg

FPW

mg

+r’

F I G U R E  5 - 2 6

(a) 1. Draw free-body diagrams for the water at the
top and bottom of the circle (Figure 5-26).
Choose the direction to be toward the
center of the circle in each case.

�r

2. Apply to the water as it passes
through the top of the circle with speed 
Solve for the force exerted by the pail on
the water:

FPW

vtop .
gFr � mar

m av2
top

r
� gbFPW � mg � m

v2
top

r
⇒ FPW �

gFr � mar

SOLVE

CHECK In the Part (c) result, when This is as expected.

TAKING IT FURTHER Note that there is no arrow labeled “centripetal force” in the free-
body diagram. Centripetal force is not a kind of force exerted by some agent; it is just the
name for the component of the resultant force in the centripetal direction.

PRACTICE PROBLEM 5-4 Estimate (a) the minimum speed at the top of the circle and
(b) the maximum period of revolution that will keep you from getting wet if you swing a pail
of water in a vertical circle at constant speed.

Example 5-10 Playing Ape

You step off the limb of a tree clinging to a 30-m-long vine that is attached to another limb
at the same height and 30-m distant. Assuming air resistance is negligible, how fast are 
you gaining speed at the instant the vine makes an angle of 25° with the vertical during 
your descent?

PICTURE Model this situation as a rope of negligible mass with one end attached to a limb
and the other to a particle of mass m. Apply Newton’s second law to the mass. The tangen-
tial acceleration is the rate of change of speed, so solve for the tangential acceleration.

vbot � 0, FPW � mg.

(b) The pail can push on the water, but not pull on it.
The minimum force it can exert on the water is
zero. Set and solve for the minimum
speed:

FPW � 0

1rg0 � m av2
top,min

r
� gb  ⇒  vtop,min �

(c) Apply to the water as it passes
through the bottom of its path with speed 
Solve for :FPW

vbot .
gFr � mar

m av2
bot

r
� gbFPW � mg �

mv2
bot

r
⇒ FPW �

gFr � mar

SOLVE

1. Sketch a free-body diagram of the object (Figure 5-27). Let
the direction be toward the center of the path and the

direction be in the direction of the velocity:�t
�r

2. Apply and use the free-body diagram to find
expressions for the force components:

gFt � mat

0 � mg sinu � mat

Tt � Fgt � mat

gFt � mat

3. Solve for :at 4.1 m>sat � g sinu � (9.81 m>s2) sin25° �

θ

θ

Fg = mg

T

Fg
+ t

+r

F I G U R E  5 - 2 7 The direction is
in the direction of the velocity vector.

�t

CHECK You expect your rate of change of speed to be positive because your speed would
be increasing as long as you are descending. In addition, you expect that you will not be
gaining speed at a rate equal to or greater than The step-3 result meets these
expectations.

PRACTICE PROBLEM 5-5 What will your rate of change of speed be at the instant the vine
is vertical and you are passing through the lowest point in your arc?

g � 9.81 m>s2.
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Try It YourselfExample 5-11 Tetherball

A tetherball of mass m is suspended from a length of rope and travels at constant speed v
in a horizontal circle of radius r as shown. The rope makes an angle with the vertical. 
Find (a) the direction of the acceleration, (b) the tension in the rope, and (c) the speed of 
the ball.

u

PICTURE Two forces act on the ball; the gravitational force and the tension in the rope
(Figure 5-28). The vector sum of these forces is in the direction of the acceleration vector.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

T

mg

r

L
θ

v

m
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T

mg

+y

+x

θ
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Steps Answers

(a) 1. The ball is moving in a horizontal circle at constant
speed. The acceleration is in the centripetal
direction.

The acceleration is horizontal and 
directed from the ball toward the 
center of the circle it is moving in.

(b) 1. Draw a free-body diagram for the ball (Figure 5-29).
Choose as the direction the direction of the ball’s
acceleration (toward the center of the circular path).

�x

2. Apply to the ball and solve for the
tension T.

gFy � may

T �
mg

cosuso

gFy � may ⇒  T cosu � mg � 0

(c) 1. Apply to the ball.gFx � max gFx � max ⇒ T sinu � m
v2

r

2. Substitute for T and solve for v.mg>cosu

1rg tanuv �so

mg

cosu
sinu � m

v2

r
 ⇒  g tanu �

v2

r

CHECK As and In the results for Parts (b) and (c), the expres-
sions T and v both approach infinity as This is what anyone who has played tether-
ball would expect. For to even approach the ball would have to move very fast.

TAKING IT FURTHER An object attached to a string and moving in a horizontal circle so
that the string makes an angle with the vertical is called a conical pendulum.

UNBANKED AND BANKED CURVES

When a car rounds a curve on a horizontal road,
the force components in both the centripetal and
the tangential (forward) directions are provided
by the force of static friction exerted by the road
on the tires of the car. If the car travels at constant
speed, then the forward component of the fric-
tional force is balanced by the rearward-directed
forces of air drag and rolling friction. The forward
component of the static frictional force remains
zero if air drag and rolling friction are both negli-
gible and if the speed of the car remains constant.

If a curved road is not horizontal but banked,
the normal force of the road will have a compo-
nent in the centripetal direction. The banking
angle is usually chosen so that no friction is
needed for a car to complete the curve at the
specified speed.

u

90°,u

uS 90°.
tanuS .cos uS 0uS 90°,

In 1993 a descent probe containing
instruments went deep into the Jovian
atmosphere—to the surface of Jupiter. The
fully assembled probe was tested at
accelerations up to 200gs in this large
centrifuge at Sandia National Laboratories.
(Sandia National Laboratory.)

As a car rounds the curve, the tire is
distorted by the frictional force exerted
by the road. (David Allio/Icon SMI/Corbis.)



Example 5-12 Rounding a Banked Curve

A curve of radius is banked at an angle That is, the normal to the road
surface makes an angle of 30.0° with the vertical. Find such that a car can round the
curve at even if the road is coated with ice, making the road essentially
frictionless.

PICTURE In this case, only two forces act on the car: the force of gravity and the nor-
mal force (Figure 5-30). Because the road is banked, the normal force has a hori-
zontal component that causes the car’s centripetal acceleration. The vector sum of the
two force vectors is in the direction of the acceleration. We can apply Newton’s second
law and then solve for u.

F
S

n

40.0 km>h u

u.30.0 m
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+y

+x

Fn

mg

θθ
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SOLVE

1. Draw a free-body diagram for the car 
(Figure 5-31)

2. Apply to the car:gFy � may
Fn cosu � mg � 0 ⇒  Fn cosu � mg

gFy � may

3. Apply to the car.gFx � max

4. Divide the step-3 result by the step-2
result, then solve for :u

22.8°�

u � tan�1
[(40.0 km>h)(1 h/3.6 ks)]2

(30.0 m)(9.81 m>s2)

sinu
cosu

�
mv2

rmg
 ⇒  tanu �

v2

rg

Fn

mg

+y

+xθ

θ
θ
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CHECK The banking angle is It is plausible because 30.0 m is a very small radius for
a highway turn. For comparison, the turns at the Daytona International Speedway have a
radius of 300 m and a banking angle of 

TAKING IT FURTHER The banking angle depends on v and r, but not the mass m; in-
creases with increasing v, and decreases with increasing r. When the banking angle, speed,
and radius satisfy the car rounds the curve smoothly, with no tendency to slide
either inward or outward. If the car speed is greater than the road must exert a sta-
tic frictional force down the incline if the car is stay on the road. This force has a horizontal
component, which provides the additional centripetal force needed to keep r from increas-
ing. If the car speed is less than the road must exert a frictional force up the incline
for the car is to stay on the road.

ALTERNATIVE SOLUTION In the preceding solution, we followed the guidelines to
choose one of the coordinate axis directions to be the direction of the acceleration vector, the
centripetal direction. However, the solution is no more difficult if we choose one of the axis
directions to be down the incline. This choice is taken in the following solution.

1rg tanu,

1rg tanu,
tanu � v2>rg, uu

31°.

22.8°.
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gFx � max ⇒  Fn sinu � m
v2

r

1. Draw a free-body diagram for the car (Figure 5-32).
The direction is down the incline and the 
direction is the normal direction.

�y�x

2. Apply to the car:gFx � max gFx � max ⇒ mg sinu � max

3. Draw a sketch and use trigonometry to obtain 
an expression for in terms of a and
(Figure 5-33):

uax

ax � a cosu

4. Substitute the step-3 result into the step-2 result.
Then substitute for a and solve for :uv2>r

 tan�1 v
2

rg
tanu �

v2

rg
 ⇒  u �

g sinu �
v2

r
cosu

mg sinu � ma cosu

+y

a

ax

+x

θ

F I G U R E  5 - 3 3

PRACTICE PROBLEM 5-6 Find the component of the acceleration normal to the road surface.

θ

mg

Fn

v = 40 km/h

θ

v = 40 km/h

Fn2

mg
Fn1

(a)

(b)
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Example 5-13 A Road Test

You have a summer job with NASCAR as part of an automobile tire testing team. You are
testing a new model of racing tires to see whether or not the coefficient of static friction
between the tires and dry concrete pavement is 0.90 as claimed by the manufacturer. In a
skidpad test, a racecar is able to travel at constant speed in a circle of radius 45.7 m in 15.2 s
without skidding. Assume air drag and rolling friction are negligible and assume that the
road surface is horizontal. In a skidpad test a car travels in a circle on a flat, horizontal
surface (a skidpad) at the maximum possible speed v without skidding. (a) What was its
speed v? (b) What was the acceleration? (c) What was the minimum value for the coefficient
of static friction between the tires and the road?

PICTURE Figure 5-34 shows the forces acting on the car. The normal force balances the
downward force due to gravity The horizontal force is the force of static friction,
which provides the centripetal acceleration. The faster the car travels, the greater the
centripetal acceleration. The speed can be found from the circumference of the circle and the
period T. This speed puts a lower limit on the maximum value of the coefficient of static
friction.

F
S

g � mgS.
F
S

n

r = 45.7 m
v

fs

Fn

mg
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f s max

+y

mg
+r

Fn
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SOLVE

(a) 1. Draw a free-body diagram for the car 
(Figure 5-35). The direction is away from
the center of curvature.

�r

2. The speed v is the circumference of the circle
divided by the time required for one revolution: 18.9 m>sv �

2pr
T

�
2p(45.7 m)

15.2 s
�

(b) Use v to calculate the centripetal and tangential
accelerations:

The acceleration is in the centripetal direction.7.81 m>s2

0at �
dv
dt

�

7.81 m>s2ac �
v2

r
�

(18.9 m>s)2

(45.7 m)
�

(c) 1. Apply to the car. Solve for the
normal and maximum frictional force:

gFy � may

fsmax � msFn � msmgand

Fn � mg � 0   so  Fn � mg

gFy � may

2. Apply to the car:gFr � mar

�fsmax � m a�
v2

r
b ⇒ fsmax � m

v2

r

gFr � mar

3. Substitute from step 1 of Part (c) and solve 
for :ms

0.796ms �
v2

rg
�

(18.9 m>s)2

(45.7 m)(9.81 m>s2)
�

msmg � m
v2

r
 ⇒  msg �

v2

r

CHECK If were equal to 1.00, the inward force would be equal to mg and the centripetal
acceleration would be g. Here is about 0.80 and the centripetal acceleration is about 0.80g.

TAKING IT FURTHER Does the result of the skidpad test support the manufacturer’s claim
that the coefficient of static friction is 0.90? It does support the manufacturer’s claim. In cal-
culating the magnitude of the frictional force, we accounted for the frictional force needed to
accelerate the car toward the center of curvature, but we neglected to account for the fric-
tional force required to counter the effects of air drag and rolling friction. A speed of 
equals a speed at which air drag is definitely significant.42.3 mi>h,

18.9 m>s

ms

ms
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5-4 NUMERICAL INTEGRATION:
EULER’S METHOD

If a particle moves under the influence of a constant force, its acceleration is con-
stant and we can find its velocity and position from the constant-acceleration kine-
matic formulas in Chapter 2. But consider a particle moving through space where
the force on it, and therefore its acceleration, depends on its position and its veloc-
ity. The position, velocity, and acceleration of the particle at one instant determine
the position and velocity the next instant, which then determines its acceleration at
that instant. The actual position, velocity, and acceleration of an object all change
continuously with time. We can approximate this by replacing the continuous time
variations with small time steps of duration The simplest approximation is to
assume constant acceleration during each step. This approximation is called
Euler’s method. If the time interval is sufficiently short, the change in acceleration
during the interval will be small and can be neglected.

Let and be the known position, velocity, and acceleration of a parti-
cle at some initial time If we neglect any change in velocity during the time in-
terval, the new position is given by

Similarly, if we assume constant acceleration during the velocity at time
is given by

We can use the values and to compute the new acceleration using
Newton’s second law, and then use and to compute and 

The connection between the position and velocity at time and time 
is given by

5-9
and

5-10

To find the velocity and position at some time t, we therefore divide the time
interval into a large number of smaller intervals and apply Equations 5-9
and 5-10, beginning at the initial time This involves a large number of simple,
repetitive calculations that are most easily done on a computer. The technique of
breaking the time interval into small steps and computing the acceleration, veloc-
ity, and position at each step using the values from the previous step is called
numerical integration.

To illustrate the use of numerical integration, let us consider a problem in which
a skydiver is dropped from rest at some height under the influences of both grav-
ity and a drag force that is proportional to the square of the speed. We will find the
velocity and the distance traveled x as functions of time.

The equation describing the motion of an object of mass m dropped from rest is
Equation 5-6 with 

where down is the positive direction. The acceleration is thus

5-11ax � g �
b
m
v2

mg � bv2 � max

n � 2:

vx

t0 .
¢tt � t0

vn�1 � vnx � anx¢t

xn�1 � xn � vnx¢t

tn�1 � tn � ¢ttn

v2 � v1 � a1x ¢t
x2 � x1 � v1x ¢t

v2x .x2a1xx1 , v1x ,
a1xv1xx1

v1 � v0x � a0x¢t

t1 � t0 � ¢t
¢t,

x1 � x0 � v0x¢t

t0 .
a0xv0x ,x0 ,

¢t.

*
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It is convenient to write the constant b/m in terms of the terminal speed Setting
in Equation 5-11, we obtain

Substituting for b/m in Equation 5-11 gives

5-12

The acceleration at time is calculated using the values and 
To solve Equation 5-12 numerically, we need to use numerical values for g and
A reasonable terminal speed for a skydiver is If we choose for

the initial position, the initial values are and To
find the velocity and position x after some time, say, we divide the
time interval into many small intervals and apply Equations 5-9,
5-10, and 5-12. We do this by using a computer spreadsheet (or by writing a com-
puter program) as shown in Figure 5-36. This spreadsheet has and the
computed values at are and Figure 5-37 shows
graphs of versus t and x versus t plotted from these data.

But how accurate are our computations? We can estimate the accuracy by run-
ning the program again using a smaller time interval. If we use one-
half of the value we originally used, we obtain and at

The difference in v is about 0.05 percent and that in x is about 0.3 percent.
These are our estimates of the accuracy of the original computations.
t � 20 s.

x � 943.1 mv � 59.86 m>s ¢t � 0.25 s,

vx

x � 939.9 m.v � 59.89 m>st � 20 s
¢t � 0.5 s,

¢t0 	 t 	 20.0 s
t � 20.0 s,vx

a0x � g � 9.81 m>s2.x0 � 0, v0 � 0,
x0 � 060.0 m>s.vt .

vnx .xntn

ax � g a1 �
v2

v2
T

bg>v2
T

b
m

�
g

v2
T

 0 � g �
b
m
v2

T

ax � 0
vT .

(b)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

41
42
43
44
45
46
47
48
49
50

t
(s)

x
(m)

v
(m/s)

a
(m/s^2)

A B C
Δt =
x0 =
v0 =
a0 =
vt =

0.5
0
0
9.81
60

s
m
m/s
m/s^2
m/s

D

0
=A9+$B$1
=A10+$B$1
=A11+$B$1
=A12+$B$1
=A13+$B$1
=A14+$B$1

=A40+$B$1
=A41+$B$1
=A42+$B$1
=A43+$B$1
=A44+$B$1
=A45+$B$1
=A46+$B$1
=A47+$B$1
=A48+$B$1

=B2
=B9+C9*$B$1
=B10+C10*$B$1
=B11+C11*$B$1
=B12+C12*$B$1
=B13+C13*$B$1
=B14+C14*$B$1

=B40+C40*$B$1
=B41+C41*$B$1
=B42+C42*$B$1
=B43+C43*$B$1
=B44+C44*$B$1
=B45+C45*$B$1
=B46+C46*$B$1
=B47+C47*$B$1
=B48+C48*$B$1

=B3
=C9+D9*$B$1
=C10+D10*$B$1
=C11+D11*$B$1
=C12+D12*$B$1
=C13+D13*$B$1
=C14+D14*$B$1

=C40+D40*$B$1
=C41+D41*$B$1
=C42+D42*$B$1
=C43+D43*$B$1
=C44+D44*$B$1
=C45+D45*$B$1
=C46+D46*$B$1
=C47+D47*$B$1
=C48+D48*$B$1

=$B$4*(1–C9^2/$B$5^2)
=$B$4*(1–C10^2/$B$5^2)
=$B$4*(1–C11^2/$B$5^2)
=$B$4*(1–C12^2/$B$5^2)
=$B$4*(1–C13^2/$B$5^2)
=$B$4*(1–C14^2/$B$5^2)
=$B$4*(1–C15^2/$B$5^2)

=$B$4*(1–C41^2/$B$5^2)
=$B$4*(1–C42^2/$B$5^2)
=$B$4*(1–C43^2/$B$5^2)
=$B$4*(1–C44^2/$B$5^2)
=$B$4*(1–C45^2/$B$5^2)
=$B$4*(1–C46^2/$B$5^2)
=$B$4*(1–C47^2/$B$5^2)
=$B$4*(1–C48^2/$B$5^2)
=$B$4*(1+C49^2/$B$5^2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

41
42
43
44
45
46
47
48
49
50

t
(s)

x
(m)

v
(m/s)

a
(m/s^2)

A B C
Δt =
x0 =
v0 =
a0 =
vt =

0.5
0
0

9.81
60

s
m
m/s
m/s^2
m/s

D

(a)

0.00
0.50
1.00
1.50
2.00
2.50
3.00

16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00

0.0
0.0
2.5
7.3

14.6
24.2
36.0

701.0
730.7
760.6
790.4
820.3
850.2
880.1
910.0
939.9

0.00
4.91
9.78

14.55
19.17
23.57
27.72

59.55
59.62
59.68
59.74
59.78
59.82
59.85
59.87
59.89

9.81
9.74
9.55
9.23
8.81
8.30
7.72

0.15
0.16
0.10
0.09
0.07
0.06
0.05
0.04
0.04

F I G U R E  5 - 3 6 (a) Spreadsheet to compute the position and speed of a skydiver with air drag
proportional to (b) The same Excel spreadsheet displaying the formulas rather than the values.v2.
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F I G U R E  5 - 3 7 (a) Graph of v versus t for
a skydiver, found by numerical integration
using The horizontal dashed line is
the terminal speed (b) Graph of x
versus t using ¢t � 0.5s.

vt � 60m>s.
¢t � 0.5s.
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Because the difference between the value of for some time interval and
the value of at the beginning of the interval becomes smaller as the time interval
becomes shorter, we might expect that it would be better to use very short time
intervals, say, But there are two reasons for not using
extremely short intervals. First, the shorter the time interval, the larger the number
of calculations that are required and the longer the program takes to run. Second,
the computer keeps only a fixed number of digits at each step of the calculation, so
that at each step there is a round-off error. These round-off errors add up. The
larger the number of calculations, the more significant the total round-off errors
become. When we first decrease the time interval, the accuracy improves because

more nearly approximates for the interval. However, as the time interval is
decreased further, the round-off errors build up and the accuracy of the computa-
tion decreases. A good rule of thumb to follow is to use no more than about 
time intervals for the typical numerical integration.

5-5 THE CENTER OF MASS

If you throw a ball into the air, the ball follows a smooth
parabolic path. But if you toss a baton in the air (Figure 5-38), the
motion of the baton is more complicated. Each end of the baton
moves in a different direction, and both ends move in a different
way than the middle. However, if you look at the motion of 
the baton more closely, you will see that there is one point on the
baton that moves in a parabolic path, even though the rest of 
the baton does not. This point, called the center of mass, moves
as if all the baton’s mass were concentrated at that point and all
external forces were applied there.

To determine the center of mass of an object, it is helpful to
think of the object as a system of particles. Consider, for example,
a simple system that consists of two point particles located on the
x axis at positions and (Figure 5-39). If the particles have
masses and then the center-of-mass is located on the x axis
at position defined by 

5-13

where is the total mass of the system. If we choose
the position of the origin and the direction such that the position of is at the
origin and that of is on the positive x axis, then and where d is
the distance between the particles. The center of mass is then given by

5-14

In the case of just two particles, the center of mass lies at some point on the line be-
tween the particles; if the particles have equal masses, then the center of mass is
midway between them (Figure 5-40a). If the two particles are of unequal mass, then
the center of mass is closer to the more massive particle (Figure 5-40b).

xcm �
m2

M
d �

m2

m1 � m2

d

Mxcm � m1x1 � m2x2 � m1(0) � m2d

x2 � d,x1 � 0m2

m1�x
M � m1 � m2

Mxcm � m1x1 � m2x2

xcm,
m2 ,m1

x2x1

105

aavai

¢t � 0.000000001 s.

ax

¢taavx

F I G U R E  5 - 3 8 A multiflash photo of a baton thrown into the
air. (Estate of Harold E. Edgerton/Palm Press.)
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m
1

m
2cm

x
1

x
2

x
cm

d

+x

m
1

m
2cm

x
1 = 0 x

2
x

cm

+x

d

(a) (b) F I G U R E  5 - 4 0
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PRACTICE PROBLEM 5-7

A 4.0-kg mass is at the origin and a 2.0-kg mass is on the x axis at Find 

We can generalize from two particles in one dimension to a system of many par-
ticles in three dimensions. For N particles in three dimensions,

Using more concise notation, this is written

5-15

where again is the total mass of the system. Similarly, in the y and z
directions,

5-16

and

5-17

In vector notation, is the position vector of the ith particle.
The position of the center of mass, is defined by

5-18

DEFINITION: CENTER OF MASS

where 
Now let us consider extended objects, such as balls, baseball bats, and even cars.

We can think of objects such as these as a system containing a very large number
of particles, with a continuous distribution of mass. For highly symmetric objects,
the center of mass is at the center of symmetry. For example, the center of mass of a
uniform sphere or a uniform cylinder is located at its geometric center. For an object
with a line or plane of symmetry, the center of mass lies somewhere along that line
or plane. To find the position center of mass of an object, we replace the sum in
Equation 5-18 with an integral:

5-19

CENTER OF MASS,  CONTINUOUS OBJECT

where dm is a small element of mass located at position , as shown in Figure 5-41.
(We will examine in detail how this integral is set up after Example 5-15.)

PROBLEM-SOLVING STRATEGY

Solving Center-of-Mass Problems

PICTURE Determining centers of mass often simplifies determinations of the
motions of an object or system of objects. Drawing a sketch of the object or
system of objects is useful when trying to determine a center of mass.

SOLVE

1. Check the mass distribution for symmetry axes. If there are symmetry
axes, the center of mass will be located on them. Use existing symmetry
axes as coordinate axes where feasible.

rS

MrScm � � rS dm

rScm � xcmin � ycmjn � zcmkn.

MrScm � m1rS1 � m2rS2 � Á � a
i

mir
S
i

rScm,
rSi � xi i

n � yi j
n � zik

n

Mzcm � a
i

mizi

Mycm � a
i

miyi

M � a
i

mi

Mxcm � a
i

mixi

Mxcm � m1x1 � m2x2 � m3x3 � Á � mNxN

xcm.x � 6.0 cm.

r

y

z

x

dm

F I G U R E  5 - 4 1 A mass element dm
located at position is used for finding the
center of mass by integration.

rS
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2. Check to see if the mass distribution is composed of highly symmetric
subsystems. If so, then calculate the centers of mass of the individual
subsystems, and then calculate the center of mass of the system by
treating each subsystem as a point particle at its center of mass.

3. If the system contains one or more point particles, place the origin at the
location of a point particle. (If the particle is at the origin, then )

CHECK Make sure your center-of-mass determinations make sense. In many
cases, the center of mass of an object is located near the more massive and
larger part of the object. The center of mass of a multi-object system or an
object such as a hoop may not be located within or on any object.

rSi � 0.i th

Example 5-14 The Center of Mass of a Water Molecule

A water molecule consists of an oxygen atom and two hydrogen atoms. An oxygen atom has
a mass of 16.0 unified mass units (u), and each hydrogen atom has a mass of 1.00 u. The
hydrogen atoms are each at an average distance of 96.0 pm from the oxygen
atom, and are separated from one another by an angle of 104.5°. Find the center of mass of a
water molecule.

PICTURE We can simplify the calculation by selecting a coordinate system such that the ori-
gin is located at the oxygen atom, with the x axis bisecting the angle between the hydrogen
atoms (Figure 5-42). Then, given the symmetries of the molecule, the center of mass will be
on the x axis, and the line from the oxygen atom to each hydrogen atom will make an angle
of

SOLVE

52.25°.

(96.0 : 10�12 m)

1. The location of the center of mass is given by its
coordinates, and (Equations 5-15 and 5-16):ycmxcm

xcm �
gmixi
M

, ycm �
gmiyi
M

+y

+x
mO = 16.0 u

96.0 pm

104.5°

52.25°

mH = 1.00 u

mH = 1.00 u1

2

F I G U R E  5 - 4 22. Writing these out explicitly gives:

ycm �
mH1yH1 � mH2yH2 � mOyO

mH1 � mH2 � mO

xcm �
mH1xH1 � mH2xH2 � mOxO

mH1 � mH2 � mO

3. We have chosen the origin to be the location of the
oxygen atom, so both the x and y coordinates of the
oxygen atom are zero. The x and y coordinates of
the hydrogen atoms are calculated from the 
angle each hydrogen makes with the x axis:

52.25°

yH2 � 96.0 pm sin (�52.25°) � �75.9 pm

yH1 � 96.0 pm sin52.25° � 75.9 pm

xH2 � 96.0 pm cos (�52.25°) � 58.8 pm

xH1 � 96.0 pm cos52.25° � 58.8 pm

xO � yO � 0

4. Substituting the coordinate and mass values into
step 2 gives :xcm

� 0.00 pmxcm �
(1.00 u)(75.9 pm) � (1.00 u)(�75.9 pm) � (16.0 u)(0)

1.00 u � 1.00 u � 16.0 u

� 6.53 pmxcm �
(1.00 u)(58.8 pm) � (1.00 u)(58.8 pm) � (16.0 u)(0)

1.00 u � 1.00 u � 16.0 u

5. The center of mass is on the x axis: 6.53 pm in � 0.00jnrScm � xcmin � ycm jn �

CHECK That can be seen from the symmetry of the mass distribution. Also, the cen-
ter of mass is very close to the relatively massive oxygen atom, as expected.

TAKING IT FURTHER The distance 96 pm is read “ninety six picometers,” where pico is the
prefix for 10�12.

ycm � 0



152 | C H A P T E R  5 Additional Applications of Newton’s Laws

cm
1

m
1

Rod 1

Rod 2

cm
2

m
2

cm
total

0.60 m
0.20 m

0.80 m

0.40 m

0.60 m

0.80 m

0.40 m

+x

1

2

0.20 m

0.20 m

+y

(b)

(a)
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1. Write the x and y coordinates of the center
of mass in terms of and m2 .m1

ycm �
1
M

(m1ycm1 � m2ycm2)

xcm �
1
M

(m1xcm1 � m2xcm2)

F I G U R E  5 - 4 4

PICTURE The sheet can be divided into two symmetrical parts (Figure 5-45b). The
center of mass of each part is at that part’s geometric center. Let be the mass of
part 1 and be the mass of part 2. The total mass is The masses are
proportional to the areas, where and are the areas of the pieces of mass

and respectively.

SOLVE

Steps

M,m1 , m2 ,
AA1 , A2 ,

M � m1 � m2 .m2

m1

2. Substitute area ratios for the mass ratios.

ycm �
A1

A
ycm1 �

A2

A
ycm2

xcm �
A1

A
xcm1 �

A2

A
xcm2

3. Calculate the areas and the ratios of the
areas, using the values from Figure 5-45b. A1

A
�

8.0
9.0

A2

A
�

1.0
9.0

A1 � 0.32 m2; A2 � 0.040 m2

4. Write the x and y coordinates of the center-
of-mass coordinates for each part by
inspection of the figure.

xcm2 � 0.70 m, ycm2 � 0.50 m

xcm1 � 0.40 m, ycm1 � 0.20 m

5. Substitute these results into the step-2
result to calculate and ycm.xcm

0.23 m, ycm �0.43 mxcm �

Note that we could also have solved Example
5-14 by first finding the center of mass of just the
two hydrogen atoms. For a system of three parti-
cles Equation 5-18 is

The first two terms on the right side of this equa-
tion are related to the center of mass of the first
two particles :

The center of mass of the three-particle system
can then be written

So we can first find the center of mass for two of the particles, the hydrogen atoms,
for example, and then replace them with a single particle of total mass at
that center of mass (Figure 5-43).

The same technique enables us to calculate centers of mass for more complex sys-
tems, for instance, two uniform rods (Figure 5-44). The center of mass of each rod
separately is at the center of the rod. The center of mass of the two-rod system can
be found by modeling each rod as a point particle at its individual center of mass.

m1 � m2

MrScm � (m1 � m2)rS�cm � m3rS3

m1rS1 � m2rS2 � (m1 � m2)rS�cm

rS�cm

MrScm � m1rS1 � m2rS2 � m3rS3

Example 5-15 The Center of Mass of a Plywood Sheet

Find the center of mass of the uniform sheet of plywood shown in Figure 5-45a.

+x

H

H

m1 + m2 = 2.00 u

+y
F I G U R E  5 - 4 3 Example 5-14 with the two hydrogen
atoms replaced by a single particle of mass

on the x axis at the center of mass of
the original atoms. The center of mass then falls between
the oxygen atom at the origin and the calculated center of
mass of the two hydrogen atoms.

m1 � m2 � 2.00u

CHECK As expected, the center of mass of the system is very near the center of mass of
part 1 (because )

TAKING IT FURTHER Drawing an axis through the geometric centers of parts 1 and 2 and
placing the origin at the geometric center of part 1, would have made locating the center of
mass considerably easier.

m1 � 8m2 .
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FINDING THE CENTER OF MASS BY INTEGRATION

In this section, we find the center of mass by integration (Equation 5-19):

We will start by finding the center of mass of a uniform thin rod to illustrate the
technique for setting up the integration.

Uniform rod We first choose a coordinate system. A good choice for
a coordinate system is one with an x axis through the length of the
rod, with the origin at one end of the rod (Figure 5-46). Shown on the
figure is a mass element dm of length dx a distance x from the origin.
Equation 5-19 thus gives 

The mass is distributed on the x axis along the interval To
integrate dm along the mass distribution means the limits of the inte-
gral are 0 and L. (We integrate in the direction of increasing x.) The ratio dm/dx is
the mass per unit length so 

5-20

where

5-21

Because the rod is uniform, is constant and can be factored from each of the
integrals in Equations 5-20 and 5-21, giving

5-22

and

5-23

Solving Equation 5-23 for gives Thus, for a uniform rod the mass per
unit length is equal to the total mass divided by the total length. Substituting 
for M in Equation 5-22, we complete the calculation and obtain the expected result

Semicircular hoop In calculating the center of mass of a uniform semicircular
hoop of radius R, a good choice of coordinate axes is one with the origin at the cen-
ter and with the y axis bisecting the semicircle (Figure 5-47). To find the center of
mass, we use (Equation 5-19,) where The semicircular
mass distribution suggests using polar coordinates,* for which and

The distance of the points on the semicircle from the origin is 
With these substitutions, we have 

rScm �
1
M �(xin � yjn)dm �

1
M �R(cosuin � sinujn)dm

r � R.y � r sinu.
x � r cosu

rS � xin � yjn.MrScm � � rS dm

rScm �
1
lL
lin
L2

2
�

1
2
Lin

lL
l �M/L.l

M � l�
L

0
dx � lL

rScm �
1
M
lin �

L

0
xdx �

1
M
lin
L2

2

l

M � �dm � �
L

0
l dx

rScm �
1
M

in �xdm �
1
M

in �
L

0
xldx

dm � l dx:l,

0 � x � L.

rScm �
1
M � rS dm �

1
M �xin dm

rScm �
1
M � rS dm

r

x
dx

dm = λ dx

+x

+y

x = L
+z

F I G U R E  5 - 4 6

*

y

x

R θd
θ

(a)

cm

(b)

ds = R d θ

y

x

θ

x = R cos θ

y = R sin θ

dm = ds = R dθλλ

R

rcm

F I G U R E  5 - 4 7 Geometry for calculating
the center of mass of a semicircular hoop by
integration.

* In polar coordinates the coordinates of a point are r and were r is the magnitude of the position vector and is the
angle that the position vector makes with the direction.�x

urSu,
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Throwing the hammer. If the ball moves in a
horizontal circle at constant speed, its
acceleration vector points in the centripetal
direction (toward the center of the circle). The
net force on the ball is in the direction of the
acceleration vector. The centripetal component of
the net force is supplied by the person pulling
the handle inward. (Pete Saloutos/Corbis.)

Next we express dm in terms of First, the mass element dm has length 
so

where is the mass per unit length. Thus, we have

Evaluating this integral involves integrating dm along the semicircular mass dis-
tribution. This means that Integrating in the direction of increasing 
the integration limits go from 0 to That is,

where we have used that an integral of a sum is the sum of the integrals. Because
the hoop is uniform, we know that where is the length of the semi-
circular arc. Substituting for and integrating gives

The center of mass is on the y axis a distance of from the origin.
Curiously, it is outside of the material of the semicircular hoop.

MOTION OF THE CENTER OF MASS

The motion of any object or system of particles can be described in terms
of the motion of the center of mass plus the motion of individual particles
in the system relative to the center of mass. The multiple image photo-
graph in Figure 5-48 shows a hammer thrown into the air. While the
hammer is in the air, the center of mass follows a parabolic path, the same
path that would be followed by a point particle. The other parts of the
hammer rotate about this point as the hammer moves through the air.

The motion of the center of mass for a system of particles is related to
the net force on the system as a whole. We can show this by examining the
motion of a system of n particles of total mass M. First, we find the velocity of the
center-of-mass system by differentiating both sides of Equation 5-18 ( )
with respect to time:

Because the time derivative of position is velocity, this gives

5-24

Differentiating both sides again, we obtain the accelerations:

5-25

where is the acceleration of the ith particle and is the acceleration of the cen-
ter of mass. From Newton’s second law, equals the sum of the forces acting on
the ith particle, so

where the sum on the right is the sum of all the forces acting on each and every
particle in the system. Some of these forces are internal forces (exerted on a particle

a
i

mia
S
i � a

i

F
S

i

mia
S
i

aScmaSi

MaScm � m1a
S

1 � m2a
S

2 � Á � a
i

mia
S
i

MvScm � m1v
S

1 � m2v
S

2 � Á � a
i

miv
S
i

M
drScm

dt
� m1

drS1

dt
� m2

drS2

dt
� Á � a

i

mi
drSi
dt

MrScm � gmirSi

2R>prScm �
R
p
a in �

p

0
cosu du � jn �

p

0
sinu dub �

R
p
a in sinu ` p

0
� jn cosu ` p

0
b �

2
p
Rjn

lM>(pR)
pRM � lpR,

rScm �
1
M �

p

0
R(cosuin � sinujn)lRdu �

lR2

M
a in �

p

0
cosu du � jn �

p

0
sinu dubp.

u,0 � u � p.

rScm �
1
M �R(cosu in � sinu jn)lRdu

l � dm>ds dm � l ds � lR du

ds � R du,
du.

F I G U R E  5 - 4 8 The center of mass (the black
dot) of the hammer moves in a smooth parabolic
path. (LorenWinters/Visual Unlimited.)

See

Math Tutorial for more

information on 

Integrals
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in the system by some other particle in the system) and others are external forces
(exerted on a particle in the system by something external to the system). Thus,

5-26

According to Newton’s third law, forces come in equal and opposite pairs.
Therefore, for each internal force acting on a particle in the system there is an equal
and opposite internal force acting on some other particle in the system. When we
sum all the internal forces, each third-law force pair sums to zero, so 
Equation 5-22 then becomes

5-27

NEWTON’S SECOND LAW FOR A SYSTEM

That is, the net external force acting on the system equals the total mass M times
the acceleration of the center of mass Thus,

The center of mass of a system moves like a particle of mass 
under the influence of the net external force acting on the system.

This theorem is important because it describes the motion of the center of mass
for any system of particles: The center of mass moves exactly like a single point par-
ticle of mass M acted on by only the external forces. The individual motion of a par-
ticle in the system is typically much more complex and is not described by Equation
5-27. The hammer thrown into the air in Figure 5-48 is an example. The only exter-
nal force acting is gravity, so the center of mass of the hammer moves in a simple
parabolic path, as would a point particle. However, Equation 5-27 does not describe
the rotational motion of the head of the hammer about the center of mass.

If a system has a zero net external force acting on it, then . In this case
the center of mass either remains at rest or moves with constant velocity. The in-
ternal forces and motion may be complex, but the motion of the center of mass is
simple. Further, if the component of the net next force in a given direction, say the
x direction, remains zero, then remains zero and remains constant. An ex-
ample of this is a projectile in the absence of air drag. The net external force on the
projectile is the gravitational force. This force acts straight downward, so its com-
ponent in any horizontal direction remains zero. It follows that the horizontal
component of the velocity of the center of mass remains constant.

vcmxacmx

aScm � 0

M � gmi

aScm.

F
S

net ext � a
i

F
S

iext �MaScm

g F
S

i int � 0.

MaScm � a
i

F
S

i int � a
i

F
S

iext

CONCEPT CHECK 5-2

A cylinder rests on a sheet of
paper on a table (Figure 5-49). You
pull on the paper causing the
paper to slide to the right. This
results in the cylinder rolling left-
ward relative to the paper. How
does the center of mass of the
cylinder move relative to the table?

✓

Papercm
M

F I G U R E  5 - 4 9

Example 5-16 An Exploding Projectile

A projectile is fired into the air over level ground on a trajectory that
would result in it landing 55 m away. However, at its highest point it
explodes into two fragments of equal mass. Immediately following the
explosion one fragment has a momentary speed of zero and then falls
straight down to the ground. Where does the other fragment land?
Neglect air resistance.

PICTURE Let the projectile be the system. Then, the forces of the ex-
plosion are all internal forces. Because the only external force acting on
the system is that due to gravity, the center of mass, which is midway
between the two fragments, continues on its parabolic path as if there
had been no explosion (Figure 5-50).

2m

m m

m

cm

cm
m

F I G U R E  5 - 5 0
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Example 5-17 Changing Places in a Rowboat

Pete (mass 80 kg) and Dave (mass 120 kg) are in a rowboat (mass 
60 kg) on a calm lake. Dave is near the bow of the boat, rowing, and
Pete is at the stern, 2.0 m from the center. Dave gets tired and stops
rowing. Pete offers to row, so after the boat comes to rest they
change places. How far does the boat move as Pete and Dave change
places? (Neglect any horizontal force exerted by the water.)

PICTURE Let the system be Dave, Pete, and the boat. There are 
no external forces in the horizontal direction, so the center of mass
does not move horizontally relative to the water. Flesh out 
Equation 5-15 both before and after Pete and Dave
change places.

SOLVE

(Mxcm � gmixi)

1. Make a sketch of the system in its initial
and final configurations (Figure 5-52). Let

and let the distance
the boat moves forward when Pete and
Dave switch places:

d � ¢xboat ,L � 2.0 m

L = 2.0 m

80 kg

80 kg

120 kg

120 kg

xPete i xDave i +xxcm i xboat i

xPete fxDave f +xxcm f xboat f

Δxboat

F I G U R E  5 - 5 2 Pete and Dave changing places viewed from the
reference frame of the water. The blue dot is the center of mass of the
boat and the black dot is the center of mass of the Pete–Dave–boat
system.

SOLVE

1. Let be the initial position of the projectile. The landing
positions and of the fragments are related to the final position of
the center of mass by:

x2x1

x � 0

or 2xcm � x1 � x2

(2m)xcm � mx1 � mx2

2. At impact, and where is the horizontal
range for the unexploded projectile. Solve for :x2

R � 55 mx1 � 0.5R,xcm � R

83 m� 1.5(55 m) �

x2 � 2xcm � x1 � 2R � 0.5R � 1.5R

CHECK Fragment #1 was pushed backwards by the explosive forces, so fragment #2 was
pushed forward by an equal but opposite force. As expected, fragment #2 impacts the
ground at a distance farther from the launch point than the projectile would have impacted
had it not exploded into two pieces.

TAKING IT FURTHER In Figure 5-51, height versus distance is plot-
ted for exploding projectiles when fragment #1 has a horizontal veloc-
ity of half of the initial horizontal velocity. The center of mass follows
a normal parabolic trajectory, as it did in the original example in which
fragment #1 falls straight down. If both fragments have the same ver-
tical component of velocity after the explosion, they land at the same
time. If just after the explosion the vertical component of the velocity
of one fragment is less than that of the other, the fragment with the
smaller vertical-velocity component will hit the ground first. As soon
as it does, the ground exerts a force on it and the net external force on
the system is no longer just the gravitational force. From that instant
on, our analysis is invalid.

PRACTICE PROBLEM 5-8 If the fragment that falls straight down
has twice the mass of the other fragment, how far from the launch po-
sition does the lighter fragment land?

0 80

12

6

2

0

H
ei

gh
t, 

m

Distance x, m
20 40 6010 30 50 70

4

8

10

Fragment 1

Fragment 2

xcm
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2. Flesh out both before and
after Pete and Dave change places. The
coordinate axis measures positions in the
reference frame of the water:

Mxcm � gmixi
Mxcm f � mPetexPete f � mDavexDave f � mboatxboat f

and

Mxcm i � mPetexPete i � mDavexDave i � mboatxboat i

3. Subtract the third step-2 equation from the
second step-2 equation. Then substitute 0
for for for 
and d for :¢xboat

¢xDave¢xPete , d � L¢xcm, d � L
0 � mPete(d � L) � mDave(d � L) � mboatd

M¢xcm � mPete ¢xPete � mDave ¢xDave � mboat ¢xboat

4. Solve for d: 0.31 m�
(120 kg � 80 kg)

120 kg � 80 kg � 60 kg
(2.0 m) �d �

(mDave � mPete)

mDave � mPete � mboat

L

CHECK Dave’s mass is greater than Pete’s mass, so when they changed places their center
of mass moved toward the stern of the boat. The boat’s center of mass had to move in the
opposite direction for the center of mass of the Dave–Pete–boat system to remain station-
ary. The step-4 result is the displacement of the boat. It is positive as expected.

+y

+x

Fn

m1g

fs

m2g

F I G U R E  5 - 5 4

1. Draw a free-body diagram for the wedge–block
system (Figure 5-54):

2. Write the vertical component of Newton’s
second law for the system and solve for :Fn

3. Using Equation 5-21, express in terms of
the acceleration of the block a1y :

acmy

acmy �
m1

m1 � m2

a1y

(m1 � m2)acmy � m1a1y � 0

Macmy � m1a1y � m2a2y

4. From Example 4-7, a block sliding down a
stationary frictionless incline has acceleration
g sin down the incline. Use trigonometry to
find the y component of this acceleration and
use it to find :acmy

u

so

a1y � �(g sinu) sinu � �g sin2u

a1y � �a1 sinu, where a1 � g sinu

θ

a1

a1y

F I G U R E  5 - 5 5

5. Substitute for in the step-3 result:a1y acmy �
m1

m1 � m2

a1y � �
m1

m1 � m2

g sin2u

Example 5-18 A Sliding Block

A wedge of mass sits at rest on a scale, as shown in Figure 5-53. A small block of mass 
slides down the frictionless incline of the wedge. Find the scale reading while the block
slides. The wedge does not slide on the scale.

PICTURE We choose the wedge plus block to be the system. Because the block accelerates
down the wedge, the center of mass of the system has acceleration components to the right
and downward. The external forces on the system are the gravitational forces on the block
and wedge, the static frictional force of the scale on the wedge, and the normal force 
exerted by the scale on the wedge. The scale reading is equal to the magnitude of 

SOLVE

Fn .
Fnfs

m1m2

CHECK For the step-5 result is, as expected, equal to the sum of the two
weights. For and the step-5 result is, as expected, equal to the weight of
the wedge alone.

PRACTICE PROBLEM 5-9 Find the force component exerted on the wedge by the scale.Fx

u � 90°, cosu � 0,
u � 0, cosu � 1,

6. Substitute for in the step-2 result and
solve for :Fn

acmy

(m1 cos2u � m2)g�

� (m1 � m2)g � m1g sin2u � [m1(1 � sin2u) � m2]g

Fn � (m1 � m2)g � (m1 � m2)acm y

m1

m2

θ

F I G U R E  5 - 5 3

Fn � (m1 � m2)g � (m1 � m2)acmy

Fn � m1g � m2g �Macmy � (m1 � m2)acmy
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Physics Spotlight

Accident Reconstruction—Measurements 
and Forces

Four teenagers drove to a Halloween haunted house that was
located out in the countryside. As their car started into a curve,
the driver saw a deer in the middle of the road. Frantic swerving
and braking put the car into a slide. It skidded off the edge of the
gently banked curve, flew over the narrow ditch, and landed in
a newly harvested field below the road, where it skidded to a
stop in the loose dirt.

Thanks to airbags and safety belts, no one was killed. All were
taken to the hospital. The car was towed. But the accident inves-
tigation was not finished until a question was answered—was
the car speeding?

Accident reconstruction specialists investigated the scene,
and used information about the physics of an accident to deter-
mine what happened before, during, and immediately after that
accident.* After this accident, a police officer, a specialist hired by the driver’s in-
surance company, and a specialist hired by the county road department all looked
at the scene.

The first thing the specialists did was measure and photograph everything that
might be pertinent to the accident. They measured the road, so that the curve’s ra-
dius and bank angle could be calculated and compared to the information at the
county roads office. They measured the tire marks on the road, and in the field.
They used a drag sled to determine the coefficient of kinetic friction for the field.†

They measured the vertical and horizontal distance from the edge of the road to
the first marks in the field. They measured the angle of the road to horizontal along
the path of the tire tracks.

Using the measurement information, they calculated a simplified trajectory of
the car from the moment it left the road until it landed in the field. This trajectory
gave the speed of the car as it left the roadway. Their calculations using the skid
marks in the field confirmed that speed. Finally, they calculated the starting speed
of the skid on the road. They used the coefficient of kinetic friction of the road, as
it was clear that the wheels had been locked, and not spinning.

They concluded that the car had been under the speed limit for the road, but,
like most cars, had been going faster than the marked advisory speed for the
curve.‡ The county put up deer warning signs, and installed a guard rail along the
outer edge of the curve. The driver was ticketed for failure to maintain control of
the vehicle.

Not all accident reconstruction is so simple or straightforward. Many accidents
involve obstacles, other cars, or tires of the wrong size for the vehicle. Others may
involve looking at the physics inside the car to determine whether or not seat belts
were worn, or who was driving. But all accident reconstructions start with mea-
surements to determine the forces at work during the accident.

* The International Association of Accident Reconstruction Specialists. http://www.iaars.org/ March 2006.
† Marks, Christopher C. O’N., Pavement Skid Resistance Measurement and Analysis in the Forensic Context. International

Conference on Surface Friction. 2005, Christchurch. http://www.surfacefriction.org.nz.
‡ Chowdhury, Mashrur A., Warren, Davey L., “Analysis of Advisory Speed Setting Criteria.” Public Roads, 00333735,

Dec. 91. Vol. 55, Issue 3.

A car being towed after an accident. 
(Mikael Karlsson.)

http://www.iaars.org/
http://www.surfacefriction.org.nz


Summary | 159

SUMMARY

Friction and drag forces are complex phenomena empirically approximated by simple
equations. For a particle to move in a curved path at constant speed the net force is directed
toward the center of curvature. The center of mass of a system moves as if the system were
a single point particle with the net force on the system acting on it.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Friction Two objects in contact exert frictional forces on each other. These forces are parallel to the
contacting surfaces and directed so as to oppose sliding or tendency to slide.

Static friction 5-2

where is the normal force of contact and is the coefficient of static friction.

Kinetic friction 5-3

where is the coefficient of kinetic friction. The coefficient of kinetic friction is slightly less
than the coefficient of static friction.

Rolling friction 5-4

where is the coefficient of rolling friction. 

2. Drag Forces When an object moves through a fluid, it experiences a drag force that opposes its motion.
The drag force increases with increasing speed. If the body is dropped from rest, its speed
increases. As it does, the magnitude of the drag force comes closer and closer to the magni-
tude of the force of gravity, so the net force, and thus the acceleration, approaches zero. As
the acceleration approaches zero, the speed approaches a constant value called its terminal
speed. The terminal speed depends on both the shape of the body and on the medium
through which it falls.

3. Motion Along a Curved Path A particle moving along an arbitrary curve can be considered to be moving along a circular
arc for a short time interval. Its instantaneous acceleration vector has a component 
toward the center of curvature of the arc and a component that is tangential to the
arc. If the particle is moving along a circular path of radius r at constant speed v, and
the speed, radius, and period T are related by 

4. *Numerical Integation: Euler’s Method To estimate the position x and velocity v at some time t, we first divide the interval from zero
to t into a large number of small intervals, each of length The initial acceleration is then
calculated from the initial position and velocity The position and velocity a time

later are estimated using the relations 

5-9

and

5-10

with The acceleration is calculated using the values for and and the
process is repeated. This continues until estimations for the position and velocity at time t
are calculated.

5. Center of Mass

Center of mass for a system of particles The center of mass of a system of particles is defined to be the point whose coordinates are
given by:

5-15

5-16

5-17Mzcm � a
i

mizi

Mycm � a
i

miyi

Mxcm � a
i

mixi

vn�1xn�1an�1n � 0.

vn�1 � vn � an¢t

xn�1 � xn � vn¢t

¢t
v1x1v0 .x0

a0¢t.

2pr � vT.
at � 0

at � dv>dt ac � v2>r

mr

fr � mrFn

mk

fk � mkFn

msFn

fs � msFn
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TOPIC RELEVANT EQUATIONS AND REMARKS

Center of mass for continuous objects If the mass is continuously distributed, the center of mass is given by:

5-19

Position, velocity, and acceleration 5-18
for the center of mass of a system 

5-20
of particles

5-21

Newton’s second law for a system 5-23F
S

netext � a
i

F
S

i ext �MaScm

MaScm � m1a
S

1 � m2a
S

2 � Á
MvScm � m1v

S
1 � m2v

S
2 � Á

MrScm � m1rS1 � m2rS2 � Á

MrScm � � rS dm

Answers to Concept Checks

5-1 Yes, the car would slide down the incline.

5-2 It accelerates to the right, because the net external force
acting on the cylinder is the frictional force to the right
exerted on it by the paper. Try it. The cylinder may
appear to move to the left, because relative to the paper
it rolls leftward. However, relative to the table, which
serves as an inertial reference frame, it moves to the
right. If you mark the table with the original position of
the cylinder, you will observe the center of mass move
to the right during the time the cylinder remains in contact
with the moving paper.

Answers to Practice Problems

5-1

5-2

5-3

5-4 (a) Assuming we find 
(b)

5-5 Zero. At that instant you are no longer gaining speed
and not yet losing speed. Your rate of change of speed
is momentarily zero.

5-6

5-7

5-8

5-9 Fx � m1g sinu cosu.

2R � 1.1 � 102 m

xcm � 2.0 cm

1.60 m>s2

T � 2pr>v � 2 s
vt, min � 3 m>s,r � 1 m,

T � m2(g � a) � 44 N

1.1 � 102 N

35°

PROBLEMS

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual
Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Various objects lie on the bed of a truck that is mov-
ing along a straight horizontal road. If the truck gradually
speeds up, what force acts on the objects to cause them to speed
up too? Explain why some of the objects might stay stationary
on the floor while others might slip backward on the floor.

2 • Blocks made of the same material but differing in size
lie on the bed of a truck that is moving along a straight horizon-
tal road. All of the blocks will slide if the truck’s acceleration is
sufficiently great. How does the minimum acceleration at which
a small block slips compare with the minimum acceleration at
which a much heavier block slips?

3 • A block of mass m rests on a plane that is inclined at an
angle with the horizontal. It follows that the coefficient of static
friction between the block and plane is (a) (b)
(c) (d) ms � tanu.ms � tanu,

ms � tanu,ms � g,
u

SSM

4 • A block of mass m is at rest on a plane that is inclined at
an angle of with the horizontal, as shown in Figure 5-56. Which
of the following statements about the magnitude of the static fric-
tional force is necessarily true? (a) (b)
(c) (d) (e) None of these statements
is true.

fs � mg sin30°,fs � mg cos30°,
fs 
 mg cos30°,fs 
 mg,fs

30°

m

30° F I G U R E  5 - 5 6

Problem 4

5 •• On an icy winter day, the coefficient of friction between
the tires of a car and a roadway is reduced to one-quarter of its
value on a dry day. As a result, the maximum speed at which
the car can safely negotiate a curve of radius R is reduced. The new
value for this speed is (a) (b) (c)
(d) (e) reduced by an unknown amount depending on
the car’s mass.

0.25vmax dry ,
0.50vmax dry ,0.71vmax dry ,vmax dry ,

vmax dry
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Problem 11

6 •• If it is started properly on the frictionless inside surface
of a cone (Figure 5-57), a block is capable of maintaining uniform
circular motion. Draw the free-body diagram of the block and iden-
tify clearly which force (or forces, or force components) is responsi-
ble for the centripetal acceleration of the block.

7 •• Here is an interesting experiment that you can perform at
home: take a wooden block and rest it on the floor or some other flat
surface. Attach a rubber band to the block and pull gently on the rub-
ber band in the horizontal direction. Keep your hand moving at con-
stant speed. At some point, the block will start moving, but it will not
move smoothly. Instead, it will start moving, stop again, start moving
again, stop again, and so on. Explain why the block moves this way.
(The start-stop motion is sometimes called “stick-slip” motion.)
8 • Viewed from an inertial reference frame, an object is seen
to be moving in a circle. Which, if any, of the following statements
must be true. (a) A nonzero net force acts on the object. (b) The object
cannot have a radially outward force acting on it. (c) At least one of
the forces acting on the object must point directly toward the center
of the circle.
9 •• A particle is traveling in a vertical circle at constant speed.
One can conclude that the magnitude of its _____ is (are) constant. 
(a) velocity, (b) acceleration, (c) net force, (d) apparent weight.
10 •• You place a lightweight piece of iron on a table and hold
a small kitchen magnet above the iron at a distance of 1.00 cm. You
find that the magnet cannot lift the iron, even though there is obvi-
ously a force between the iron and the magnet. Next, holding the
magnet in one hand and the piece of iron in the other, with the mag-
net 1.00 cm above the iron, you simultaneously drop them from
rest. As they fall, the magnet and the piece of iron bang into each
other before hitting the floor. (a) Draw free-body diagrams illus-
trating all of the forces on the magnet and the iron for each demon-
stration. (b) Explain why the magnet and iron move closer together
while they are falling, even though the magnet cannot lift the piece
of iron when it is sitting on the table.
11 ••• The following question is an excellent “braintwister,”
invented by Boris Korsunsky:* Two identical blocks are attached by
a massless string running over a pulley, as shown in Figure 5-58.

The rope initially runs over the pulley at the rope’s midpoint, and
the surface that block 1 rests on is frictionless. Blocks 1 and 2 are ini-
tially at rest when block 2 is released with the string taut and hori-
zontal. Will block 1 hit the pulley before or after block 2 hits the
wall? (Assume that the initial distance from block 1 to the pulley is
the same as the initial distance from block 2 to the wall.) There is a
very simple solution.

12 •• In class, most professors do the following experiment
while discussing the conditions under which air drag can be
neglected while analyzing free-fall. First, a flat piece of paper and a
small lead weight are dropped next to each other, and clearly the
paper’s acceleration is less than that of the lead weight. Then, the
paper is crumpled into a small wad and the experiment repeated.
Over the distance of a meter or two, it is clear the acceleration of the
paper is now very close to that of the lead weight. To your dismay,
the professor calls on you to explain why the paper’s acceleration
changed so dramatically. Repeat your explanation here!

13 •• CONTEXT-RICH Jim decides to attempt to set a record for
terminal speed in skydiving. Using the knowledge he has gained
from a physics course, he makes the following plans. He will be
dropped from as high an altitude as possible (equipping himself
with oxygen), on a warm day and go into a “knife” position, in
which his body is pointed vertically down and his hands are
pointed ahead. He will outfit himself with a special sleek helmet
and rounded protective clothing. Explain how each of these factors
helps Jim attain the record.

14 •• CONTEXT-RICH You are sitting in the passenger seat in a
car driving around a circular, horizontal, flat racetrack at a high
speed. As you sit there, you “feel” a “force” pushing you toward
the outside of the track. What is the true direction of the force act-
ing on you, and where does it come from? (Assume that you do not
slide across the seat.) Explain the sensation of an “outward force” on
you in terms of the Newtonian perspective.

15 • The mass of the moon is only about 1% of that of Earth.
Therefore, the force that keeps the moon in its orbit around Earth
(a) is much smaller than the gravitational force exerted on the moon
by Earth, (b) is much greater than the gravitational force exerted on
the moon by Earth, (c) actually is the gravita-
tional force exerted on the moon by Earth, 
(d) cannot be answered yet, because we have not
yet studied Newton’s law of gravity.

16 •• A block is sliding on a frictionless sur-
face along a loop-the-loop, as in Figure 5-59a.
The block is moving fast enough so that it never
loses contact with the track. Match the points
along the track to the appropriate free-body dia-
grams in Figure 5.59b.

SSM

SSM

SSM

* Boris Korsunsky, “Braintwisters for Physics Students,” The Physics Teacher, 33, 550
(1995).
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ESTIMATION AND APPROXIMATION

26 •• ENGINEERING APPLICATION To determine the aerody-
namic drag on a car, automotive engineers often use the “coast-
down” method. The car is driven on a long, flat road at some con-
venient speed (60 mi/h is typical), shifted into neutral, and allowed
to coast to a stop. The time that it takes for the speed to drop by suc-
cessive 5-mi/h intervals is measured and used to compute the net
force slowing the car down. (a) One day, a group measured that a
Toyota Tercel with a mass of 1020 kg coasted down from 60.0 mi/h
to 55.0 mi/h in 3.92 s. Estimate the average net force slowing the car
down in this speed range. (b) If the coefficient of rolling friction for
this car is known to be 0.020, what is the force of rolling friction that
is acting to slow it down? Assuming that the only two forces acting
on the car are rolling friction and aerodynamic drag, what is the
average drag force acting on the car? (c) The drag force has the form

, where A is the cross-sectional area of the car facing into the
air, v is the car’s speed, is the density of air, and C is a dimen-
sionless constant of order-of-magnitude 1. If the cross-sectional area
of the car is determine C from the data given. (The density
of air is ; use 57.5 mi/h for the speed of the car in this
computation.)

27 •• Using dimensional analysis, determine the units and
dimensions of the constant b in the retarding force if
(a) and (b) (c) Newton showed that the air
resistance of a falling object with a circular cross section should 
be approximately where the density of
air. Show that this is consistent with your dimensional analysis
for part (b). (d) Find the terminal speed for a 56.0-kg skydiver;
approximate his cross-sectional area as a disk of radius 0.30 m.
The density of air near the surface of Earth is (e) The
density of the atmosphere decreases with height above the sur-
face of Earth; at a height of 8.0 km, the density is only

What is the terminal velocity at this height?

28 •• Estimate the terminal velocity of an average sized
raindrop and a golf-ball-sized hailstone. Hint: See Problems 26
and 27.

29 •• Estimate the minimum coefficient of static friction
needed between a car’s tires and the pavement in order to complete
a left turn at a city street intersection at the posted straight-ahead
speed limit of 25 mph and on narrow inner-city streets. Comment
on the wisdom of attempting such a turn at that speed.

30 •• Estimate the widest stance you can take when standing
on a dry, icy surface. That is, how wide can you safely place your
feet and not slip into an undesired “split”? Let the coefficient of sta-
tic friction of rubber on ice be roughly 0.25.

FRICTION

31 • A block of mass m slides at constant speed down 
a plane inclined at an angle of with the horizontal. It fol-
lows that (a) (b) (c)
(d)

32 • A block of wood is pulled at constant velocity by a hori-
zontal string across a horizontal surface with a force of 20 N. The
coefficient of kinetic friction between the surfaces is 0.3. The force
of friction is (a) impossible to determine without knowing the mass
of the block, (b) impossible to determine without knowing the
speed of the block, (c) 0.30 N, (d) 6.0 N, (e) 20 N.

33 • A block weighing 20-N rests on a horizontal surface. The
coefficients of static and kinetic friction between the surface and the

SSMmk � cosu � sinu.
mk � 1 � cosu,mk � tanu,mk � mg sinu,

u

SSM0.514 kg/m3.

1.20 kg/m3.

r � 1.20 kg/m3,1
2rpr2v2,

n � 2.n � 1
bvn

1.21 kg/m3
1.91 m2,

r

1
2CrAv2

17 •• (a) A rock and a feather held at the same height above the
ground are simultaneously dropped. During the first few millisec-
onds following release, the drag force on the rock is smaller than
the drag force on the feather, but later on during the fall the opposite
is true. Explain. (b) In light of this result, explain how the rock’s ac-
celeration can be so obviously larger than that of the feather. Hint:
Draw a free-body diagram of each object.

18 •• Two pucks of masses and are lying on a frictionless
table and are connected by a massless spring of force constant k. A
horizontal force directed away from is then exerted on 
What is the magnitude of the resulting acceleration of the center of
mass of the two-puck system? (a) (b)
(c) where x is the amount the spring is
stretched, (d)

19 •• The two pucks in Problem 18 lie unconnected on 
a frictionless table. A horizontal force directed away from 

is then exerted on How does the magnitude of the 
resulting acceleration of the center of mass of the two-puck 
system compare to the magnitude acceleration of ? Explain
your reasoning.

20 •• If only external forces can cause the center of mass of a
system of particles to accelerate, how can a car on level ground ever
accelerate? We normally think of the car’s engine as supplying the
force needed to accelerate the car, but is this true? Where does the
external force that accelerates the car come from?

21 •• When you push on the brake pedal to slow down a 
car, a brake pad is pressed against the rotor so that the friction 
of the pad slows the wheel’s rotation. However, the friction 
of the pad against the rotor cannot be the force that slows the 
car down, because it is an internal force (both the rotor and 
the wheel are parts of the car, so any forces between them are
purely internal to the system). What is the external force that
slows down the car? Give a detailed explanation of how this 
force operates.

22 •• Give an example of each of the following: (a) a three-
dimensional object that has no matter at its center of mass, (b) a
solid object whose center of mass is outside of it, (c) a solid 
sphere whose center of mass does not lie at its geometrical center,
(d) a long wooden stick whose center of mass does not lie at 
its middle.

23 •• BIOLOGICAL APPLICATION When you are standing
upright, your center of mass is located within the volume of your
body. However, as you bend over (say to pick up a package), its
location changes. Approximately where is it when you are bent
over at right angles and what change in your body caused the
center of mass location to change? Explain.

24 •• ENGINEERING APPLICATION Early on their three-day
(one-way) trip to the moon, the Apollo team (late 1960s to early
1970s) would explosively separate the lunar ship from the third-
stage booster (that provided the final “boost”) while still fairly close
to Earth. During the explosion, how did the velocity of each of the
two pieces of the system change? How did the velocity of the cen-
ter of mass of the system change? 

25 •• You throw a boomerang and for a while it “flies” hori-
zontally in a straight line at a constant speed, while spinning
rapidly. Draw a series of pictures, as viewed vertically down 
from overhead, of the boomerang in different rotational positions
as it moves parallel to the surface of Earth. On each picture, 
indicate the location of the boomerang’s center of mass and 
connect the dots to trace the trajectory of its center of mass. 
What is the center of mass’s acceleration during this part of 
the flight?

SSM

m1

m1 .m2

F1

(m1 � m2)F1>m1m2

(F1 � kx)>(m1 � m2),
F1>(m1 � m2),F1>m1 ,

m1 .m2F1

m2m1

SSM
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θ

T

block are and A horizontal string is then
attached to the block and a constant tension T is maintained in the
string. What is the magnitude of the force of friction acting on the
block if (a) (b)

34 • A block of mass m is pulled at a constant velocity across
a horizontal surface by a string as shown in Figure 5-60. The mag-
nitude of the frictional force is (a) (b) (c)
(d) or (e) .mk(mg � T sinu)mk T sinu,

mk(T � mg),T cosu,mkmg,

SSMT � 20 N?T � 15 N,

mk � 0.60.ms � 0.80 The textbook has a mass of 3.2 kg, while the coefficient of static fric-
tion of the textbook against the student’s underarm is 0.320 and the
coefficient of static friction of the book against the student’s shirt is
0.160. (a) What is the minimum horizontal force that the student
must apply to the textbook to prevent it from falling? (b) If the stu-
dent can only exert a force of 61 N, what is the acceleration of the
textbook as it slides from under his arm? The coefficient of kinetic
friction of arm against textbook is 0.200, while that of shirt against
textbook is 0.090.

41 •• ENGINEERING APPLICATION You are racing in a rally on a
snowy day when the temperature is near the freezing point. The
coefficient of static friction between a car’s tires and an icy road is
0.080. Your crew boss is concerned about some of the hills on the
course and wants you to think about switching to studded tires. To
address the issue, he wants to compare the actual hill angles on the
course to see which of them your car can negotiate. (a) What is the
angle of the steepest incline that a vehicle with four-wheel drive can
climb at constant speed? (b) Given that the hills are icy, what is the
steepest possible hill angle for the same four-wheel drive car to
descend at constant speed?

42 •• A 50-kg box that is resting on a level floor must be
moved. The coefficient of static friction between the box and the
floor is 0.60. One way to move the box is to push down on the box
at an angle below the horizontal. Another method is to pull up on
the box at an angle above the horizontal. (a) Explain why one
method requires less force than the other. (b) Calculate the mini-
mum force needed to move the box by each method if and
compare the answer with the results when 

43 •• A block of mass is at rest on a plane that
makes an angle of with the horizontal. The coefficient of
kinetic friction between the block and the plane is 0.100. The
block is attached to a second block of mass that
hangs freely by a string that passes over a frictionless, massless
pulley (Figure 5-62). When the second block has fallen 30.0 cm,
what will be its speed? SSM

m2 � 200 g

u � 30°
m1 � 250 g

u � 0°.
u � 30°

u

u

F
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Problem 40

35 • A 100-kg crate rests on a thick-pile carpet. A weary
worker then pushes on the crate with a horizontal force of 500 N.
The coefficients of static and kinetic friction between the crate and
the carpet are 0.600 and 0.400, respectively. Find the magnitude of
the frictional force exerted by the carpet on the crate.

36 • A box weighing 600 N is pushed along a horizontal
floor at constant velocity with a force of 250 N parallel to the
floor. What is the coefficient of kinetic friction between the box
and the floor?

37 • The coefficient of static friction between the tires of a
car and a horizontal road is 0.60. Neglecting air resistance and
rolling friction, (a) what is the magnitude of the maximum
acceleration of the car when it is braked? (b) What is the shortest
distance in which the car can stop if it is initially traveling at

?

38 • The force that accelerates a car along a flat road is the
frictional force exerted by the road on the car’s tires. (a) Explain
why the acceleration can be greater when the wheels do not slip.
(b) If a car is to accelerate from 0 to in what is the
minimum coefficient of friction needed between the road and
tires? Assume that the drive wheels support exactly half the
weight of the car.

39 •• A 5.00-kg block is held at rest against a vertical wall by a
horizontal force of 100 N. (a) What is the frictional force exerted by
the wall on the block? (b) What is the minimum horizontal force
needed to prevent the block from falling if the static coefficient of
friction between the wall and the block is 0.400?

40 •• Atired and overloaded student is attempting to hold a large
physics textbook wedged under his arm, as shown in Figure 5-61.

12 s,90 km>h
SSM30 m>s

SSM

44 •• In Figure 5-62, and the coefficient of static
friction between the block and the incline is 0.40. (a) Find the
range of possible values for for which the system will be in
static equilibrium. (b) Find the frictional force on the 4.0-kg
block if 

45 •• In Figure 5-62, and the coeffi-
cient of kinetic friction between the inclined plane and the 4.0-kg
block is Find the magnitude of the acceleration of the
masses and the tension in the cord.

46 •• A 12-kg turtle rests on the bed of a zookeeper’s truck,
which is traveling down a country road at 55 mi/h. The zookeeper
spots a deer in the road, and slows to a stop in 12 s. Assuming

mk � 0.24.

m2 � 5.0 kg,m1 � 4.0 kg,

m2 � 1.0 kg.

m2

m1 � 4.0 kg

F I G U R E  5 - 6 0

Problem 34

m1
m2

30°

F I G U R E  5 - 6 2 Problems 43, 44, 45
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constant acceleration, what is the minimum coefficient of static fric-
tion between the turtle and the truck bed surface that is needed to
prevent the turtle from sliding?

47 •• A 150-g block is projected up a ramp with an initial
speed of The coefficient of kinetic friction between the
ramp and the block is 0.23. (a) If the ramp is inclined with the
horizontal, how far along the surface of the ramp does the block
slide before coming to a stop? (b) The block then slides back
down the ramp. What is the minimum coefficient of static fric-
tion between the block and the ramp if the block is not to slide
back down the ramp?

48 •• An automobile is going up a grade at a speed of
The coefficient of static friction between the tires and the

road is 0.70. (a) What minimum distance does it take to stop the
car? (b) What minimum distance would it take to stop if the car
were going down the grade?

49 •• ENGINEERING APPLICATION A rear-wheel-drive car
supports 40 percent of its weight on its two drive wheels and has a
coefficient of static friction of 0.70 with a horizontal straight road.
(a) Find the vehicle’s maximum acceleration. (b) What is the short-
est possible time in which this car can achieve a speed of 
(Assume the engine can provide unlimited power.)

50 •• You and your best pal make a friendly bet that you can
place a 2.0-kg box against the side of a cart, as in Figure 5-63, and
that the box will not fall to the ground, even though you guarantee
to use no hooks, ropes, fasteners, magnets, glue, or adhesives of any
kind. When your friend accepts the bet, you begin pushing the cart
in the direction shown in the figure. The coefficient of static friction
between the box and the cart is 0.60. (a) Find the minimum acceler-
ation for which you will win the bet. (b) What is the magnitude of
the frictional force in this case? (c) Find the force of friction on the
box if the acceleration is twice the minimum needed for the box not
to fall. (d) Show that, for a box of any mass, the box will not fall if
the magnitude of the forward acceleration is where is
the coefficient of static friction.

msa � g>ms ,

100 km>h?

30 m>s.
15°

SSM

25°
7.0 m>s.

acceleration of the two blocks. (b) Determine the force that the rod
exerts on each of the two blocks. Show that these forces are both 0
when and give a simple, nonmathematical argument why
this is true.

53 •• A block of mass m rests on a horizontal table 
(Figure 5-65). The block is pulled by a massless rope with a 
force at an angle The coefficient of static friction is 0.60. 
The minimum value of the force needed to move the block de-
pends on the angle (a) Discuss qualitatively how you would
expect the magnitude of this force to depend on (b) Compute the
force for the angles and and make
a plot of F versus for From your plot, at what
angle is it most efficient to apply the force to move the block? SSM

mg � 400 N.u

60°,u � 0°, 10°,20°,30°,40°,50°,
u.

u.

u.F
S

m1 � m2

m
a

F I G U R E  5 - 6 3 Problem 50

θ

m
1

m
2

F I G U R E  5 - 6 4 Problems 51 and 52

54 •• Consider the block in Figure 5-65. Show that, in gen-
eral, the following results hold for a block of mass m resting on
a horizontal surface whose coefficient of static friction is (a) If
you want to apply the minimum possible force to move the
block, you should apply it with the force pulling upward at an
angle (b) The minimum force necessary to start the
block moving is (c) Once the block
starts moving, if you want to apply the least possible force to
keep it moving, should you keep the angle at which you are
pulling the same, increase it, or decrease it?

55 •• Answer the questions in Problem 54, but for a force 
that pushes down on the block at an angle below the horizontal.

56 •• A 100-kg mass is pulled along a frictionless surface by 
a horizontal force such that its acceleration is 
(Figure 5-66). A 20.0-kg mass slides along the top of the 100-kg mass
and has an acceleration of (It thus slides backward
relative to the 100-kg mass.) (a) What is the frictional force exerted
by the 100-kg mass on the 20.0-kg mass? (b) What is the net force
acting on the 100-kg mass? What is the force F? (c) After the 20.0-kg
mass falls off the 100-kg mass, what is the acceleration of the 100-kg
mass? (Assume that the force F does not change.)

a2 � 4.00 m>s2.

a1 � 6.00 m>s2F
S

u

F
S

Fmin � (ms >11 � m2
s)mg.

u � tan�1ms.

ms .

52 •• Two blocks of masses and are sliding down an
incline as shown in Figure 5-64. They are connected by a massless
rod. The coefficients of kinetic friction between the block and the
surface are for block 1 and for block 2. (a) Determine them2m1

m2m1

θ

F

m

F I G U R E  5 - 6 5 Problems 53 and 54

a2 = 4.00 m/s2

a1 = 6.00 m/s2

F
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57 •• A 60-kg block slides along the top of a 100-kg block. The
60-kg block has an acceleration of while a horizontal force
of 320 N is applied to it, as shown in Figure 5-67. There is no fric-
tion between the 100-kg block and a horizontal frictionless surface,
but there is friction between the two blocks. (a) Find the coefficient

3.0 m>s2

51 •• Two blocks attached by a string (Figure 5-64) slide down
a incline. Block 1 has mass and block 2 has mass

In addition, the kinetic coefficients of friction between
the blocks and the incline are 0.30 for block 1 and 0.20 for block 2.
Find (a) the magnitude of the acceleration of the blocks, and (b) the
tension in the string.

m2 � 0.25 kg.
m1 � 0.80 kg10°
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of kinetic friction between the blocks. (b) Find the acceleration of
the 100-kg block during the time that the 60-kg block remains in
contact.

58 •• The coefficient of static friction between a rubber tire and
the road surface is 0.85. What is the maximum acceleration of a
1000-kg four-wheel-drive truck if the road makes an angle of with
the horizontal and the truck is (a) climbing, and (b) descending?

59 •• A 2.0-kg block sits on a 4.0-kg block that is on a fric-
tionless table (Figure 5-68). The coefficients of friction between the
blocks are and (a) What is the maximum hor-
izontal force F that can be applied to the 4.0-kg block if the 2.0-kg
block is not to slip? (b) If F has half this value, find the accelera-
tion of each block and the force of friction acting on each block.
(c) If F is twice the value found in (a), find the acceleration of
each block.

mk � 0.20.ms � 0.30

12°

F

F I G U R E  5 - 6 8 Problem 59

60 ••• A 10.0-kg block rests on a 5.0-kg bracket, as shown in
Figure 5-69. The 5.0-kg bracket sits on a frictionless surface. The
coefficients of friction between the 10.0-kg block and the bracket on
which it rests are and (a) What is the maximum
force F that can be applied if the 10.0-kg block is not to slide on
the bracket? (b) What is the corresponding acceleration of the 5.0-kg
bracket?

mk � 0.30.ms � 0.40

5.0 kg

F
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61 ••• You and your friends push a 75.0-kg greased pig up an
aluminum slide at the county fair, starting from the low end of the
slide. The coefficient of kinetic friction between the pig and the
slide is 0.070. (a) All of you pushing together (parallel to the incline)
manage to accelerate the pig from rest at the constant rate of

over a distance of 1.5 m, at which point you release the pig.
The pig continues up the slide, reaching a maximum vertical height
above its release point of 45 cm. What is the angle of inclination of
the slide? (b) At the maximum height the pig turns around and
begins to slip down the slide, how fast is it moving when it arrives
at the low end of the slide?

62 ••• A 100-kg block on an inclined plane is attached to
another block of mass m via a string, as in Figure 5-70. The coeffi-
cients of static and kinetic friction for the block and the incline are

and and the plane is inclined with horizon-
tal. (a) Determine the range of values for m, the mass of the hang-
ing block, for which the 100-kg block will not move unless dis-
turbed, but if nudged, will slide down the incline. (b) Determine a
range of values for m for which the 100-kg block will not move
unless nudged, but if nudged will slide up the incline.

18°mk � 0.20ms � 0.40

5.0 m>s2

m
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63 ••• A block of mass 0.50 kg rests on the inclined surface of a
wedge of mass 2.0 kg, as in Figure 5-71. The wedge is acted on by a
horizontal applied force and slides on a frictionless surface. (a) If
the coefficient of static friction between the wedge and the block is

and the wedge is inclined with the horizontal, find
the maximum and minimum values of the applied force for which
the block does not slip. (b) Repeat part (a) with ms � 0.40.

35°ms � 0.80

F
S

2.0 kg
F

35°
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64 ••• SPREADSHEET In your physics lab, you and your lab
partners push a block of wood with a mass of 10.0 kg (starting from
rest), with a constant horizontal force of 70 N across a wooden floor.
In the previous week’s laboratory meeting, your group determined
that the coefficient of kinetic friction was not exactly constant, but
instead was found to vary with the object’s speed according to

Write a spreadsheet program using
Euler’s method to calculate and graph both the speed and the posi-
tion of the block as a function of time from 0 to 10 s. Compare this
result to the result you would get if you assumed the coefficient of
kinetic friction had a constant value of 0.11.

mk � 0.11>(1 � 2.3 � 10�4 v2)2.
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Assume a drag force that varies as the square of the speed and
assume the filters are released oriented right-side up.

70 •• A skydiver of mass 60.0 kg can slow herself to a constant
speed of by orienting her body horizontally, looking straight
down with arms and legs extended. In this position, she presents the
maximum cross-sectional area and thus maximizes the air-drag force
on her. (a) What is the magnitude of the drag force on the skydiver?
(b) If the drag force is given by what is the value of b? (c) At some
instant she quickly flips into a “knife” position, orienting her body
vertically with her arms straight down. Suppose this reduces the
value of b to 55 percent of the value in Parts (a) and (b). What is her
acceleration at the instant she achieves the “knife” position?

71 •• ENGINEERING APPLICATION, CONTEXT-RICH Your team
of test engineers is to release the parking brake so an 800-kg car will
roll down a very long 6.0 percent grade in preparation for a crash
test at the bottom of the incline. (On a 6.0 percent grade the change
in altitude is 6.0 percent of the horizontal distance traveled.) The
total resistive force (air drag plus rolling friction) for this car has
been previously established to be 
where v is the speed of the car. What is the terminal speed for the
car rolling down this grade?

72 ••• APPROXIMATION Small, slowly moving spherical parti-
cles experience a drag force given by Stokes’ law: 
where r is the radius of the particle, v is its speed, and is the coef-
ficient of viscosity of the fluid medium. (a) Estimate the terminal
speed of a spherical pollution particle of radius and
density of (b) Assuming that the air is still and that 
is estimate the time it takes for such a particle
to fall from a height of 100 m.

73 ••• ENGINEERING APPLICATION, CONTEXT-RICH You have an
environmental chemistry internship, and are in charge of a sample
of air that contains pollution particles of the size and density given
in Problem 72. You capture the sample in an 8.0-cm-long test tube.
You then place the test tube in a centrifuge with the midpoint of the
test tube 12 cm from the rotation axis of the centrifuge. You set the
centrifuge to spin at 800 revolutions per minute. (a) Estimate the
time you have to wait so that nearly all of the pollution particles set-
tle to the end of the test tube. (b) Compare this to the time required
for a pollution particle to fall 8.0 cm under the action of gravity and
subject to the drag force given in Problem 72.

MOTION ALONG A CURVED PATH

74 • A rigid rod with a 0.050-kg ball at one end rotates about
the other end so the ball travels at constant speed in a vertical circle
with a radius of 0.20 m. What is the maximum speed of the ball so
that the force of the rod on the ball does not exceed 10 N?

75 • A 95-g stone is whirled in a horizontal circle on the
end of an 85-cm-long string. The stone takes 1.2 s to make each
complete revolution. Determine the angle that the string makes
with the horizontal.

76 •• A 0.20-kg stone is whirled in a horizontal circle on the
end of an 0.80-m-long string. The string makes an angle of 
with the horizontal. Determine the speed of the stone.

77 •• A 0.75-kg stone attached to a string is whirled in a hori-
zontal circle of radius 35 cm as in the tetherball in Example 5-11.
The string makes an angle of with the vertical. (a) Find the
speed of the stone. (b) Find the tension in the string.

78 •• BIOLOGICAL APPLICATION A pilot with a mass of 50 kg
comes out of a vertical dive in a circular arc such that at the bottom of
the arc her upward acceleration is 3.5g. (a) How does the magnitude

30°

20°

SSM

SSM

1.80 � 10�5 N # s/m2,
h2000 kg/m3.

1.00 � 10�5 m

h

Fd � 6phrv,

Fd � 100 N � (1.2 N # s2>m2)v2,

bv2,

90 km>h
SSM

65 ••• MULTISTEP In order to determine the coefficient of
kinetic friction of a block of wood on a horizontal table surface, you
are given the following assignment: Take the block of wood and
give it an initial velocity across the surface of the table. Using a
stopwatch, measure the time it takes for the block to come to a
stop and the total displacement the block slides following the
push. (a) Using Newton’s laws and a free-body diagram of the
block, show that the expression for the coefficient of kinetic friction
is given by (b) If the block slides a distance of
1.37 m in 0.97 s, calculate (c) What was the initial speed of the
block?

66 •• SPREADSHEET (a) A block is sliding down an inclined
plane. The coefficient of kinetic friction between the block 
and the plane is . Show that a graph of versus 
tan (where is the acceleration down the incline and is the
angle the plane is inclined with the horizontal) would be a
straight line with slope g and intercept (b) The following
data show the acceleration of a block sliding down an inclined
plane as a function of the angle that the plane is inclined with
the horizontal:*

U (degrees) Acceleration ( )

25.0 1.69

27.0 2.10

29.0 2.41

31.0 2.89

33.0 3.18

35.0 3.49

37.0 3.78

39.0 4.15

41.0 4.33

43.0 4.72

45.0 5.11

Using a spreadsheet program, graph these data and fit a straight
line to them to determine and g. What is the percentage differ-
ence between the obtained value of g and the commonly specified
value of ?

DRAG FORCES

67 • A Ping-Pong ball has a mass of 2.3 g and a terminal
speed of The drag force is of the form What is the
value of b?

68 • A small pollution particle settles toward Earth in still
air. The terminal speed of the particle is the mass of
the particle is and the drag force of the particle is of
the form bv. What is the value of b?

69 •• A common classroom demonstration involves dropping
basket-shaped coffee filters and measuring the time required for
them to fall a given distance. A professor drops a single basket-
shaped coffee filter from a height h above the floor, and records the
time for the fall as How far will a stacked set of n identical fil-
ters fall during the same time interval ? Consider the filters to be
so light that they instantaneously reach their terminal velocities.

¢t
¢t.

1.0 � 10�10 g
0.30 mm>s,

SSM

bv2.9.0 m>s.

9.81 m>s2

mk

m/s2

u

�mkg.

uaxu

ax>cosumk

mk.
mk � 2¢x>[(¢t)2g].

¢x
¢t

* Data taken from Dennis W. Phillips, “Science Friction Adventure–Part II,” The Physics
Teacher, 553 (1990).
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of the force exerted by the airplane seat on the pilot at the bottom
of the arc compare to her weight? (b) Use Newton’s laws of motion
to explain why the pilot might be subject to a blackout. This means
that an above normal volume of blood “pools” in her lower limbs.
How would an inertial reference frame observer describe the cause
of the blood pooling?

79 •• A 80.0-kg airplane pilot pulls out of a dive by following,
at a constant speed of the arc of a circle whose radius is
300 m. (a) At the bottom of the circle, what are the direction and
magnitude of his acceleration? (b) What is the net force acting on
him at the bottom of the circle? (c) What is the force exerted on the
pilot by the airplane seat?

80 •• An small object of mass moves in a circular path of
radius r on a frictionless horizontal tabletop (Figure 5-72). It is
attached to a string that passes through a small frictionless hole in
the center of the table. A second object with a mass of is attached
to the other end of the string. Derive an expression for r in terms of

and the time T for one revolution.m2 ,m1 ,

m2

m1

180 km>h,

84 •• The string of a conical pendulum is 50.0 cm long and the
mass of the bob is 0.25 kg. (a) Find the angle between the string and
the horizontal when the tension in the string is six times the weight
of the bob. (b) Under those conditions, what is the period of the
pendulum?

85 •• A 100-g coin sits on a horizontally rotating turntable. The
turntable makes exactly 1.00 revolution each second. The coin is lo-
cated 10 cm from the axis of rotation of the turntable. (a) What is the
frictional force acting on the coin? (b) If the coin slides off the
turntable when it is located more than 16.0 cm from the axis of ro-
tation, what is the coefficient of static friction between the coin and
the turntable?

86 •• A 0.25-kg tether ball is attached to a vertical pole by a
1.2-m cord. Assume the radius of the ball is negligible. If the ball
moves in a horizontal circle with the cord making an angle of 
with the vertical, (a) what is the tension in the cord? (b) What is the
speed of the ball?

87 ••• A small bead with a mass of 100 g (Figure 5-75) slides
without friction along a semicircular wire with a radius of 10 cm
that rotates about a vertical axis at a rate of 2.0 revolutions per sec-
ond. Find the value of for which the bead will remain stationary
relative to the rotating wire.

u

20°
81 •• A block of mass is attached to a cord of length 
which is fixed at one end. The block moves in a horizontal circle on
a frictionless tabletop. A second block of mass is attached to the
first by a cord of length and also moves in a circle on the same
frictionless tabletop, as shown in Figure 5-73. If the period of the
motion is T, find the tension in each cord in terms of the given sym-
bols. SSM

L2

m2

L1 ,m1

82 •• MULTISTEP A particle moves with constant speed in a
circle of radius 4.0 cm. It takes 8.0 s to complete each revolution.
(a) Draw the path of the particle to scale, and indicate the particle’s
position at 1.0-s intervals. (b) Sketch the displacement vectors for
each interval. These vectors also indicate the directions for the av-
erage-velocity vectors for each interval. (c) Graphically find the
magnitude of the change in the average velocity for two con-
secutive 1-s intervals. Compare measured in this way, with
the magnitude of the instantaneous acceleration computed from

83 •• You are swinging your younger sister in a circle of radius
0.75 m, as shown in Figure 5-74. If her mass is 25 kg and you
arrange it so she makes one revolution every 1.5 s, (a) what is the
magnitude and direction of the force that must be exerted by you
on her? (Model her as a point particle.) (b) What is the magnitude
and direction of the force she exerts on you?

ac � v2>r. ƒ ¢vS ƒ >¢t, ƒ ¢vS ƒ

m2

r
m1

v
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m1
m2

L2

L1

F I G U R E  5 - 7 3 Problem 81

F I G U R E  5 - 7 4 Problem 83 (David de Lossy/The Image Bank.)

10
 cm

100 g

θ
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Problem 87
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CENTRIPETAL FORCE

88 • A car speeds along the curved exit ramp of a freeway.
The radius of the curve is 80.0 m. A 70.0-kg passenger holds the
armrest of the car door with a 220-N force in order to keep from
sliding across the front seat of the car. (Assume the exit ramp is not
banked and ignore friction with the car seat.) What is the car’s
speed?

89 • The radius of curvature of the track at the top of a
loop-the-loop on a roller-coaster ride is 12.0 m. At the top of the
loop, the force that the seat exerts on a passenger of mass m is
0.40mg. How fast is the roller-coaster car moving as it moves
through the highest point of the loop.

90 •• ENGINEERING APPLICATION On a runway of a decom-
missioned airport, a 2000-kg car travels at a constant speed of

At 100-km/h the air drag on the car is 500 N. Assume
that rolling friction is negligible. (a) What is the force of static
friction exerted on the car by the runway surface, and what is
the minimum coefficient of static friction necessary for the car to
sustain this speed? (b) The car continues to travel at 
but now along a path with radius of curvature r. For what value
of r will the angle between the static friction force vector and the
velocity vector equal and for what value of r will it equal

? What is the minimum coefficient of static friction neces-
sary for the car to hold this last radius of curvature without
skidding?

91 •• Suppose you ride a bicycle in a 20-m-radius circle on a
horizontal surface. The resultant force exerted by the surface on the
bicycle (normal force plus frictional force) makes an angle of 
with the vertical. (a) What is your speed? (b) If the frictional force
on the bicycle is half its maximum possible value, what is the coef-
ficient of static friction?

92 •• An airplane is flying in a horizontal circle at a speed of
The plane is banked for this turn, its wings tilted at an

angle of from the horizontal (Figure 5-76). Assume that a lift
force acting perpendicular to the wings acts on the aircraft as it
moves through the air. What is the radius of the circle in which the
plane is flying?

40°
480 km>h.

15°

88.0°
45.0°,

100 km>h,

100 km>h.

SSM

95 •• On another occasion, the car in Problem 94 negotiates the
curve at Neglect the effects of air drag and rolling friction.
Find (a) the normal force exerted on the tires by the pavement, and
(b) the frictional force exerted on the tires by the pavement.

96 ••• ENGINEERING APPLICATION As a civil engineering intern
during one of your summers in college, you are asked to design a
curved section of roadway that meets the following conditions:
When ice is on the road, and the coefficient of static friction
between the road and rubber is 0.080, a car at rest must not slide
into the ditch and a car traveling less than must not skid to
the outside of the curve. Neglect the effects of air drag and rolling
friction. What is the minimum radius of curvature of the curve and
at what angle should the road be banked?

97 ••• ENGINEERING APPLICATION A curve of radius 30 m is
banked so that a 950-kg car traveling at can round it even
if the road is so icy that the coefficient of static friction is approxi-
mately zero. You are commissioned to tell the local police the range
of speeds at which a car can travel around this curve without skid-
ding. Neglect the effects of air drag and rolling friction. If the coef-
ficient of static friction between the road and the tires is 0.300, what
is the range of speeds you tell them?

NUMERICAL INTEGRATION: 
EULER’S METHOD

98 •• SPREADSHEET, APPROXIMATION You are riding in a
hovering hot air balloon when you throw a baseball straight down
with an initial speed of The baseball falls with a termi-
nal speed of Assuming air drag is proportional to the
speed squared, use Euler’s method (spreadsheet) to estimate the
speed of the ball after 10.0 s. What is the uncertainty in this esti-
mate? You drop a second baseball, this one is released from rest.
How long does it take for it to reach 99 percent of its terminal
speed? How far does it fall during this time?

99 •• SPREADSHEET, APPROXIMATION You throw a baseball
straight up with an initial speed of The ball’s terminal
speed when falling is also (a) Use Euler’s method
(spreadsheet) to estimate its height 3.50 s after release. (b) What is
the maximum height it reaches? (c) How long after release does it
reach its maximum height? (d) How much later does it return to the
ground? (e) Is the time the ball spends on the way up less than, the
same as, or greater than the time it spends on the way down?

100 ••• SPREADSHEET, APPROXIMATION A 0.80-kg block on a
horizontal frictionless surface is held against a massless spring,
compressing it 30 cm. The force constant of the spring is 
The block is released and the spring pushes it 30 cm. Use Euler’s
method (spreadsheet) with s to estimate the time it
takes for the spring to push the block the 30 cm. How fast is the
block moving at this time? What is the uncertainty in this speed?

FINDING THE CENTER OF MASS

101 • Three point masses of 2.0 kg each are located on the x
axis. One is at the origin, another at and another at

Find the center of mass of the system.

102 • On a weekend archeological dig, you discover an old
club-ax that consists of a symmetrical 8.0-kg stone attached to the
end of a uniform 2.5-kg stick. You measure the dimensions of
the club-ax as shown in Figure 5-77. How far is the center of mass
of the club-ax from the handle end of the club-ax?

x � 0.50 m.
x � 0.20 m,

¢t � 0.0050

50 N>m.

SSM

150 km>h.
150 km>h.

150 km>h.
35.0 km>h.

40.0 km>h
60 km>h

38 km>h.

40
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93 •• An automobile club plans to race a 750-kg car at the local
racetrack. The car needs to be able to travel around several 160-m-
radius curves at What should the banking angle of the
curves be so that the force of the pavement on the tires of the car is
in the normal direction? Hint: What does this requirement tell you
about the frictional force?

94 •• A curve of radius 150 m is banked at an angle of An
800-kg car negotiates the curve at without skidding.
Neglect the effects of air drag and rolling friction. Find (a) the nor-
mal force exerted by the pavement on the tires, (b) the frictional
force exerted by the pavement on the tires, (c) the minimum coeffi-
cient of static friction between the pavement and the tires.

85 km>h 10°.

90 km>h.
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103 • Three balls A, B, and C, with masses of 3.0 kg, 1.0 kg, and
1.0 kg, respectively, are connected by massless rods, as shown in
Figure 5-78. What are the coordinates of the center of mass of this
system?

the can is x, what is the height of the center of mass of the can plus
the water remaining in the can? (b) What is the minimum height of
the center of mass as the water drains out?

107 •• Two identical thin uniform rods each of length L are
glued together at the ends so that the angle at the joint is 
Determine the location of the center of mass (in terms of L) of this
configuration relative to the origin taken to be at the joint. Hint: You
do not need the mass of the rods, but you should start by assuming a mass
m and see that it cancels out.

108 ••• Repeat the analysis of Problem 107 with a general 
angle at the joint instead of Does your answer agree with the
specific -angle answer in Problem 107 if you set equal to ?
Does your answer give plausible results for angles of zero and 

?

109 •• FINDING THE CENTER OF MASS BY INTEGRATION Show
that the center of mass of a uniform semicircular disk of radius R is
at a point from the center of the circle.

110 •• Find the location of the center of mass of a nonuniform
rod 0.40 m in length if its density varies linearly from 1.00 g/cm at
one end to 5.00 g/cm at the other end. Specify the center-of-mass lo-
cation relative to the less-massive end of the rod.

111 ••• You have a thin uniform wire bent into part of a circle
that is described by a radius R and angle (see Figure 5-80).
Show that the location of its center of mass is on the x axis
and located a distance where is expressed
in radians. Check your answer by showing that this answer gives 
the physically expected limit for Verify that your 
answer gives you the result in the text (in the subsection Finding
the Center of Mass by Integration) for the special case of 
um � 90°.

um � 180°.

umxcm �  (Rsinum)>um,

um

4R>(3p)

180°

90°u90°
90°.u

SSM

90°.

104 • By symmetry, locate the center of mass of a uniform sheet
in the shape of an equilateral triangle with edges of length a. The
triangle has one vertex on the y axis and the others at and

105 •• Find the center of mass of the uniform sheet of plywood
in Figure 5-79. Consider this as a system of effectively two sheets,
letting one have a “negative mass” to account for the cutout. Thus,
one is a square sheet of 3.0-m edge length and mass and the sec-
ond is a rectangular sheet measuring with a mass of

Let the coordinate origin be at the lower left corner of the
sheet. SSM

�m2 .
1.0 m � 2.0 m

m1

(�a>2,0).
(�a>2,0)

80 cm
18 cm
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3 m
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106 •• A can in the shape of a symmetrical cylinder with mass
M and height H is filled with water. The initial mass of the water is
M, the same mass as the can. A small hole is punched in the bottom
of the can, and the water drains out. (a) If the height of the water in

θ

y

x

R

m
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112 ••• A long, thin wire of length L has a linear mass density
given by where A and B are positive constants and x is the
distance from the more massive end. (a) A condition for this prob-
lem to be realistic is that Explain why. (b) Determine in
terms of L, A, and B. Does your answer makes sense if ?
Explain.

MOTION OF THE CENTER OF MASS

113 • Two 3.0-kg particles have velocities 
and Find the velocity of

the center of mass of the system.

114 • A 1500-kg car is moving westward with a speed of
and a 3000-kg truck is traveling east with a speed

of Find the velocity of the center of mass of the
car– truck system.

16.0 m>s.
20.0 m>s,

SSM

vS2 � (4.0 m>s)in � (6.0 m>s)jn.(3.0 m>s)jn
�vS1 � (2.0 m>s)in

B � 0
xcmA 
 BL.

A � Bx,
*

*

*

*
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115 • A force is applied to the 3.0-kg ball in
Figure 5-78 in Problem 103. (No forces act on the other two balls.)
What is the acceleration of the center of mass of the three-ball system?

116 •• A block of mass m is attached to a string and suspended
inside an otherwise empty box of mass M. The box rests on a scale
that measures the system’s weight. (a) If the string breaks, does the
reading on the scale change? Explain your reasoning. (b) Assume
that the string breaks and the mass m falls with constant accelera-
tion g. Find the magnitude and direction of the acceleration of the
center of mass of the box–block system. (c) Using the result from
(b), determine the reading on the scale while m is in free-fall.

117 •• The bottom end of a massless, vertical spring of force
constant k rests on a scale and the top end is attached to a massless
cup, as in Figure 5-81. Place a ball of mass gently into the cup
and ease it down into an equilibrium position where it sits at rest in
the cup. (a) Draw the separate free-body diagrams for the ball and
the spring. (b) Show that in this situation, the spring compression d
is given by (c) What is the scale reading under these
conditions? SSM

d � mbg>k.
mb

inF
S

� 12 N

118 ••• In the Atwood’s machine in Figure 5-82 the string passes
over a fixed cylinder of mass The cylinder does not rotate.
Instead, the string slides on its frictionless surface. (a) Find the
acceleration of the center of mass of the two-block–cylinder-string
system. (b) Use Newton’s second law for systems to find the force F
exerted by the support. (c) Find the tension T in the string connect-
ing the blocks and show that F � mcg � 2T.

mc .

119 ••• Starting with the equilibrium situation in Problem 117,
the whole system (scale, spring, cup, and ball) is now subjected 
to an upward acceleration of magnitude a (for example, in an
elevator). Repeat the free-body diagrams and calculations in
Problem 117?

GENERAL PROBLEMS

120 • In designing your new house in California, you are pre-
pared for it to withstand a maximum horizontal acceleration of
0.50g. What is the minimum coefficient of static friction between the
floor and your prized Tuscan vase so that the vase does not slip on
the floor under these conditions?

121 • A 4.5-kg block slides down an inclined plane that makes
an angle of with the horizontal. Starting from rest, the block
slides a distance of 2.4 m in 5.2 s. Find the coefficient of kinetic fric-
tion between the block and plane.

122 •• You plan to fly a model airplane of mass 0.400 kg that is
attached to a horizontal string. The plane will travel in a horizontal
circle of radius 5.70 m. (Assume the weight of the plane is balanced
by the upward “lift” force of the air on the wings of the plane.) The
plane will make 1.20 revolutions every 4.00 s. (a) Find the speed at
which you must fly the plane. (b) Find the force exerted on your
hand as you hold the string (assume the string is massless).

123 •• CONTEXT-RICH Your moving company is to load a crate
of books on a truck with the help of some planks that slope upward
at The mass of the crate is 100 kg, and the coefficient of sliding
friction between it and the planks is 0.500. You and your employees
push horizontally with a combined net force Once the crate has
started to move, how large must F be in order to keep the crate
moving at constant speed?

124 •• Three forces act on an object in static equilibrium (Figure
5-83). (a) If and represent the magnitudes of the forces
acting on the object, show that 
(b) Show that F2

1 � F2
2 � F2

3 � 2F2F3 cosu23 .
F1> sinu23 � F2> sinu31 � F3> sinu12 .

F3F2 ,F1 ,

F
S

.

30°.

28°

125 •• In a carnival ride, you sit on a seat in a compartment that
rotates with constant speed in a vertical circle of radius 5.0 m. The
ride is designed so your head always points toward the center of the
circle. (a) If the ride completes one full circle in 2.0 s, find the direction
and magnitude of your acceleration. (b) Find the slowest rate of
rotation (in other words, the longest time to complete one full
circle) if the seat belt is to exert no force on you at the top of the ride.

126 •• A flat-topped toy cart moves on frictionless wheels,
pulled by a rope under tension T. The mass of the cart is A load
of mass rests on top of the cart with the coefficient of static fric-
tion between the cart and the load. The cart is pulled up a ramp
that is inclined at angle above the horizontal. The rope is parallel
to the ramp. What is the maximum tension T that can be applied
without causing the load to slip?

u

ms

m2

m1 .

Tm
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m1

m2

mc

F
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F3

F1

F2

23θ

31θ
12θ
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127 ••• A sled weighing 200 N that is held in place by static fric-
tion, rests on a incline. The coefficient of static friction between
the sled and the incline is 0.50. (a) What is the magnitude of the nor-
mal force on the sled? (b) What is the magnitude of the static fric-
tional force on the sled? (c) The sled is now pulled up the incline
(Figure 5-84) at constant speed by a child walking up the incline
ahead of the sled. The child weighs 500 N and pulls on the rope
with a constant force of 100 N. The rope makes an angle of with
the incline and has negligible mass. What is the magnitude of the
kinetic frictional force on the sled? (d) What is the coefficient of ki-
netic friction between the sled and the incline? (e) What is the mag-
nitude of the force exerted on the child by the incline?

30°

15°
pulley at the edge of the table. The block of mass dangles 1.5 m
above the ground (Figure 5-85). The string that connects them
passes over a frictionless, massless pulley. This system is released
from rest at and the 2.5-kg block strikes the ground at

The system is now placed in its initial configuration and
a 1.2-kg block is placed on top of the block of mass Released
from rest, the 2.5-kg block now strikes the ground 1.3 s later.
Determine the mass and the coefficient of kinetic friction be-
tween the block whose mass is and the table.m1

m1

m1 .
t � 0.82 s.

t � 0

m2

128 •• ENGINEERING APPLICATION In 1976, Gerard O’Neill pro-
posed that large space stations be built for human habitation in
orbit around Earth and the moon. Because prolonged free-fall has
adverse medical effects, he proposed making the stations in the
form of long cylinders and spinning them around the cylinder axis
to provide the inhabitants with the sensation of gravity. One such
O’Neill colony is to be built 5.0 miles long, with a diameter of
0.60 mi. A worker on the inside of the colony would experience a
sense of “gravity,” because he would be in an accelerated frame of
reference due to the rotation. (a) Show that the “acceleration of
gravity” experienced by the worker in the O’Neill colony is equal
to his centripetal acceleration. Hint: Consider someone “looking in”
from outside the colony. (b) If we assume that the space station is com-
posed of several decks that are at varying distances (radii) from the
axis of rotation, show that the “acceleration of gravity” becomes
weaker the closer the worker gets to the axis. (c) How many revo-
lutions per minute would this space station have to make to give an
“acceleration of gravity” of at the outermost edge of the
station?

129 •• A child of mass m slides down a slide inclined at in
time The coefficient of kinetic friction between her and the slide
is She finds that if she sits on a small sled (also of mass m) with
frictionless runners, she slides down the same slide in time 
Find

130 ••• The position of a particle of mass as a func-
tion of time is given by 
where and (a) Show that the path of this par-
ticle is a circle of radius R, with its center at the origin of the xy
plane. (b) Compute the velocity vector. Show that 
(c) Compute the acceleration vector and show that it is directed
toward the origin and has the magnitude (d) Find the magni-
tude and direction of the net force acting on the particle.

131 ••• MULTISTEP You are on an amusement park ride with
your back against the wall of a spinning vertical cylinder. The floor
falls away and you are held up by static friction. Assume your mass
is 75 kg. (a) Draw a free-body diagram of yourself. (b) Use this dia-
gram with Newton’s laws to determine the force of friction on you.
(c) If the radius of the cylinder is 4.0 m and the coefficient of static
friction between you and the wall is 0.55. What is the minimum
number of revolutions per minute necessary to prevent you from
sliding down the wall? Does this answer hold only for you? Will
other, more massive, patrons fall downward? Explain.

132 ••• An block of mass is on a horizontal table. The block is
attached to a 2.5-kg block by a light string that passes over a(m2)

m1

v2>R.

vx>vy � �y>x.v � 2p s�1.R � 4.0 m
rS � xin � yjn � (R sin vt) in � (R cos vt) jn,

m � 0.80 kg

mk .

1
2 t1 .

mk .
t1 .

30°

9.8 m>s2

133 ••• Sally claims flying squirrels do not really fly; they jump
and use the folds of skin that connect their forelegs and their back
legs like a parachute to allow them to glide from tree to tree. Liz de-
cides to test Sally’s hypothesis by calculating the terminal speed of
a falling outstretched flying squirrel. If the constant b in the drag
force is proportional to the area of the object facing the air flow, use
the results of Example 5-12 and some assumptions about the size of
the squirrel to estimate its terminal (downward) speed. Is Sally’s
claim supported by Liz’s calculation?

134 •• BIOLOGICAL APPLICATION After a parachutist jumps
from an airplane (but before he pulls the rip cord to open his para-
chute), a downward speed of up to can be reached. When
the parachute is finally opened, the drag force is increased by about
a factor of 10, and this can create a large jolt on the jumper. Suppose
this jumper falls at before opening his chute.
(a) Determine the parachutist’s acceleration when the chute is just
opened, assuming his mass is 60 kg. (b) If rapid accelerations
greater than 5.0g can harm the structure of the human body, is this
a safe practice?

135 • Find the location of the center of mass of the
Earth–moon system relative to the center of Earth. Is it inside or
outside the surface of Earth?

136 •• A circular plate of radius R has a circular hole of radius
R/2 cut out of it (Figure 5-86). Find the center of mass of the plate
after the hole has been cut. Hint: The plate can be modeled as two disks
superimposed, with the hole modeled as a disk negative mass.

180 km>h
180 km>h

30°

15°
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m1

m2
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137 •• An unbalanced baton consists of a 50-cm-long uniform
rod of mass 200 g. At one end there is a 10-cm-diameter uniform
solid sphere of mass 500 g, and at the other end there is a 8.0-cm-
diameter uniform solid sphere of mass 750 g. (The center-to-center
distance between the spheres is 59 cm.) (a) Where, relative to the
center of the light sphere, is the center of mass of this baton? (b) If
this baton is tossed straight up (but spinning) so that its initial cen-
ter of mass speed is what is the velocity of the center of
mass 1.5 s later? (c) What is the net external force on the baton while
in the air? (d) What is the acceleration of the baton’s center of 
mass 1.5 s following its release?

138 •• You are standing at the very rear of a 6.0-m-long, 120-kg
raft that is at rest in a lake with its prow only 0.50 m from the end
of the pier (Figure 5-87). Your mass is 60 kg. Neglect frictional forces
between the raft and the water. (a) How far from the end of the pier
is the center of mass of the you–raft system? (b) You walk to the
front of the raft and then stop. How far from the end of the pier is
the center of mass now? (c) When you are at the front of the raft,
how far are you from the end of the pier?

10.0 m>s,

139 •• An Atwood’s machine that has a frictionless massless
pulley and massless strings has a 2.00-kg object hanging from one
side and 4.00-kg object hanging from the other side. (a) What is the
speed of each object 1.50 s after they are simultaneously released
from rest? (b) At that time, what is the velocity of the center of mass
of the two objects? (c) At that moment, what is the acceleration of
the center of mass of the two objects?

6 m

120 kg

60 kg
0.5 m
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Work and 
Kinetic Energy

6-1 Work Done by a Constant Force

6-2 Work Done by a Variable Force–Straight-Line Motion

6-3 The Scalar Product

6-4 Work–Kinetic-Energy Theorem—Curved Paths

6-5 Center-of-Mass Work

T
hus far, we have analyzed motion by using concepts such as position, ve-
locity, acceleration, and force. However, some types of motion are difficult
to describe using Newton’s laws directly. (A speed skier sliding down a
curved slope is an example of this type of motion.) In this chapter and
Chapter 7, we look at alternative methods for analyzing motion that involve
two central concepts in science: energy and work. Unlike force, which is a

vector physical quantity, energy and work are scalar physical quantities associated
with particles and with systems of particles. As you will see, these new concepts
provide powerful methods for solving a wide class of problems. 

In this chapter, we explore the concept of work and how work is related to
kinetic energy—the energy associated with the motion of objects. We also
discuss the related concepts of power and center-of-mass work.

6
How does the shape of the hill or

the length of the path affect a skier’s

final speed at the finish line? (See

Example 6-12.)

?
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*

C H A P T E R

THE SNOW MELTS UNDER THE SKIES
DUE TO THE KINETIC FRICTION BETWEEN
THE SKIS AND THE SNOW. THE SKIER IS
GLIDING DOWN THE MOUNTAIN ON A
THIN LAYER OF LIQUID WATER. 
(Courtesy of Rossignol Ski Company.)



F I G U R E  6 - 1 Energy is transferred from
the person to the spring as the spring
lengthens. The energy transferred is equal to
the work done by the person on the spring.
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6-1 WORK DONE BY A CONSTANT FORCE

You may be used to thinking of work as anything that requires physical or mental
exertion, such as studying for an exam, carrying a backpack, or riding a bike. But
in physics, work is the transfer of energy by a force. If you stretch a spring by
pulling on it with your hand (Figure 6-1), energy is transferred from you to the
spring, and the energy transferred from you to the spring is equal to the work done
by the force of your hand on the spring. The energy transferred to the spring can
be evidenced if you let go of the spring and watch it rapidly contract and vibrate. 

Work is a scalar quantity that can be positive, negative, or zero. The work done
by object A on object B is positive if energy is transferred from A to B, and is neg-
ative if energy is transferred from B to A. If no energy is transferred, the work done
is zero. In the case of you stretching a spring, the work done by you on the spring
is positive because energy is transferred from you to the spring. However, suppose
you move your hand so the spring slowly contracts to its unstressed state. During
the contraction the spring loses energy—energy is transferred from the spring to
you—and the work you do on the spring is negative.

It is commonly said that work is force times distance. Unfortunately, the state-
ment “work is force times distance” is misleadingly simple. Work is done on an ob-
ject by a force when the point of application of the force moves through a dis-
placement. For a constant force, the work done equals the force component in the
direction of the displacement times the magnitude of the displacement. For exam-
ple, suppose you push a box along the ground with a constant horizontal force 
in the direction of displacement (Figure 6-2a). Because the force acts on the box
in the same direction as the displacement, the work W done by the force on the
box is

Now suppose you pull on a string attached to the box, such that force acts at an
angle to the displacement, as shown in Figure 6-2b. In this case, the work done on
the box by the force is given by the force component in the direction of the dis-
placement times the magnitude of the displacement:

6-1
WORK BY A CONSTANT FORCE

where F is the magnitude of the constant force, is the magnitude of the dis-
placement of the point of application of the force, and is the angle between the
directions of the force and displacement vectors. The displacement of the point of
application of the force is identical to the displacement of any other point on the
box because the box is rigid and moves without rotating. If you raise or lower a box
by exerting a force on it, you are doing work on the box. Let up be the positive
y direction and let be the displacement of the box. The work done by you on
the box is positive if and have the same signs and negative if they have op-
posite signs. But if you are simply holding the box in a fixed position then, ac-
cording to the definition of work, you are not doing work on the box because the 
is zero (Figure 6-3). In this case, the work you do on the box is zero, even though
you are applying a force. 

The SI unit of work is the joule (J), which equals the product of a newton and
a meter:

6-2

In the U.S. customary system, the unit of work is the foot-pound:
Another convenient unit of work in atomic and nuclear physics

is the electron volt (eV):

6-31 eV � 1.602 � 10�19 J

1 ft # lb � 1.356 J.

1 J � 1 N # m

¢y

Fy¢y
¢y jn
F
S

u

ƒ ¢x ƒ

W � Fx¢x � F cos u ƒ ¢x ƒ

W � F ƒ ¢x ƒ

¢x in
F
S

(b)

Δx î

θ

F

+x

FF

+x

(a)

Δx î
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CONCEPT CHECK 6-1

For the contraction of the spring
described immediately before this
concept check, is the work done
by the spring on the person posi-
tive or negative?

✓
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Commonly used multiples of eV are and The work re-
quired to remove an electron from an atom is of the order of a few eV, whereas the
work needed to remove a proton or a neutron from an atomic nucleus is of the
order of several MeV.

PRACTICE PROBLEM 6-1

A force of is exerted on a box at an angle of as in Figure 6-2b. How much
work is done by the force on the box as the box moves along the table a distance of 

If there are several forces that do work on a system, the total work is found by
computing the work done by each force and adding each individual work together.

6-4

We model the system as a particle if the system moves so all the parts of the system
undergo identical displacements. When several forces do work on such a particle, the
displacements of the points of application of these forces are identical. Let the
displacement of the point of application of any one of the forces be Then

6-5

For a particle constrained to move along the x axis, the net force has only an x com-
ponent. That is, Thus, for a particle, the x component of the net force
times the displacement of any part of the object is equal to the total work done on
the object.

Example 6-1 Loading with a Crane

A truck is to be loaded onto a ship by a crane that exerts an upward force of on
the truck. This force, which is strong enough to overcome the gravitational force and keep the
truck moving upward, is applied over a distance of . Find (a) the work done on the truck
by the crane, (b) the work done on the truck by gravity, and (c) the net work done on the truck.

PICTURE In Parts (a) and (b), the force acting on the truck is constant and the displacement
is in a straight line, so we can use Equation 6-1, choosing the direction as the direction of
the displacement:

SOLVE

�y

2.0 m

31 kN3000-kg

F
S

net � Fnet xi
n.

Wtotal � F1x¢x � F2x¢x � Á � (F1x � F2x � Á )¢x � Fnet x¢x

¢x.

Wtotal � F1x¢x1 � F2x¢x2 � F3x¢x3 � Á

3.0 m?
u � 20°,12 N

MeV (106 eV).keV (103 eV)

y

yf

vi = 0
yi = 0

0 x

Fapp

w

v
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(a) 1. Sketch the truck at its initial and final positions, and choose the
direction to be the direction of the displacement (Figure 6-4):

2. Calculate the work done by the applied 
force:

�y

62 kJ� (31 kN)(2.0 m) �

Wapp � Fappy¢y

(b) Calculate the work done by the force of
gravity:
(Note: The vector is directed downward
and the direction is upward.
Consequently, )gy � g cos180° � �g.

�y
gS

�59 kJ�

� (3000 kg)(�9.81 N>kg)(2.0 m)

Wg � mgy¢y

(c) The net work done on the truck is the sum
of the work done by each force: 3 kJ�

Wnet � Wappy � Wg � 62 kJ � (�59 kJ)

CHECK In Part (a), the force is applied in the same direction as the displacement, so we ex-
pect the work done on the truck to be positive. In Part (b), the force is applied in a direction
opposite the displacement, so we expect the work done on the truck to be negative. Our re-
sults match these expectations.

TAKING IT FURTHER In Part (c), we also could have found the total work by first calcu-
lating the net force on the truck and then using Equation 6-5.
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THE WORK–KINETIC-ENERGY THEOREM

Energy is one of the most important unifying concepts in science. All physical
processes involve energy. The energy of a system is a measure of its ability to
do work. 

Different terms are used to describe the energy associated with different
conditions or states. Kinetic energy is energy associated with motion. Potential
energy is energy associated with the configuration of a system, such as the
separation distance between two objects that attract each other. Thermal energy is
associated with the random motion of the atoms, molecules, or ions within a
system and is closely connected with the temperature of the system. In this
chapter, we focus on kinetic energy. Potential energy and thermal energy are
discussed in Chapter 7.

When forces do work on a particle, the result is a change in the energy associ-
ated with the motion of the particle—the kinetic energy. To evaluate the relation-
ship between kinetic energy and work, let us look at what happens if a constant net
force acts on a particle of mass m that moves along the x axis. Applying
Newton’s second law, we see that

If the net force is constant, the acceleration is constant, and we can relate the dis-
placement to the initial speed and final speed by using the constant-
acceleration kinematic equation (Equation 2-16)

Solving this for gives

Substituting for in and then multiplying both sides by gives

The term on the left is the total work done on the particle. Thus

6-6

The quantity is a scalar quantity that represents the energy associated with
the motion of the particle, and is called the kinetic energy K of the particle:

6-7

DEFINITION — KINETIC ENERGY

Note that the kinetic energy depends on only the particle’s speed and mass, not its
direction of motion. In addition, kinetic energy can never be negative, and is zero
only when the particle is at rest. 

The quantity on the right side of Equation 6-6 is the change in the kinetic energy
of the particle. Thus, Equation 6-6 gives us a relationship between the total work
done on a particle and the kinetic energy of the particle. The total work done on a
particle is equal to the change in kinetic energy of the particle:

6-8

WORK – KINETIC-ENERGY THEOREM

Wtotal � ¢K

K � 1
2mv2

1
2mv2

Wtotal � 1
2mv2

f � 1
2mv2

i

Fnet x¢x

Fnet x¢x � 1
2mv2

f � 1
2mv2

i

¢x,Fnetx � maxax

ax �
1

2¢x
(v2

f � v2
i )

ax

v2
f � v2

i � 2ax¢x

vfvi

Fnetx � max

F
S

net
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This result is known as the work–kinetic-energy theorem. This theorem tells us
that when is positive, the kinetic energy increases, which means the particle
is moving faster at the end of the displacement than at the beginning. When 
is negative, the kinetic energy decreases. When is zero, the kinetic energy
does not change, which means the particle’s speed is unchanged. 

Because total work on a particle is equal to its change in kinetic energy, we can
see that the units of energy are the same as those of work. Three commonly used
units of energy are the joule (J), the foot-pound (ft-lb), and the electron volt (eV).

The derivation of the work–kinetic-energy theorem presented here is valid only
if the net force remains constant. However, as you will see later in this chapter, this
theorem is valid even when the net force varies and the motion is not along a
straight line.

PROBLEM-SOLVING STRATEGY

Solving Problems Involving Work 

and Kinetic Energy

PICTURE The way you choose the direction or direction can help you
to easily solve a problem that involves work and kinetic energy.

SOLVE

1. Draw the particle first at its initial position and second at its final
position. For convenience, the object can be represented as a dot or a box.
Label the initial and final positions of the object.

2. Put one or more coordinate axes on the drawing. 
3. Draw arrows for the initial and final velocities, and label them

appropriately. 
4. On the initial-position drawing of the particle, place a vector for each

force acting on it. Accompany each vector with a suitable label.
5. Calculate the total work done on the particle by the forces and equate this

total to the change in the particle’s kinetic energy.

CHECK Make sure you pay attention to negative signs during your
calculations. For example, values for work done can be positive or negative,
depending on the direction of the displacement relative to the direction of
the force. 

Example 6-2 Force on an Electron

In a television picture tube*, electrons are accelerated by an electron gun. The force that ac-
celerates the electron is an electric force due to the electric field in the gun. An electron is
accelerated from rest by an electron gun to a kinetic energy of over a distance of

Find the force on the electron, assuming it to be both constant and in the direction
of the electron’s motion.

PICTURE The electron can be modeled as a particle. Its initial and final kinetic energies are
both given, and the electric force is the only force acting on it. Apply the work–kinetic-
energy theorem and solve for the force.

2.5 cm.
2.5 keV

�x�y

Wtotal

Wtotal

Wtotal
Note that kinetic energy depends
on the speed of the particle, not the

velocity. If the velocity changes
direction, but not magnitude, the
kinetic energy remains the same. 

!

* A television picture tube is a type of cathode-ray tube.
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SOLVE

F

vi = 0 vf

Δx î
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1. Make a drawing of the electron in its initial and
final positions. Include the displacement, the
initial and final speeds, and the force (Figure 6-5):

2. Set the work done equal to the change in kinetic
energy: Fx¢x � Kf � Ki

Wtotal � ¢K

3. Solve for the force using the conversion factor
1.6 � 10�19 J � 1.0 eV :

1.6 � 10�14 N�

Fx �
Kf � Ki

¢x
�

2500 eV � 0
0.025 m

�
1.6 � 10�19 J

1.0 eV

CHECK The mass of an electron is only Thus, it is no surprise that such a
small force would give it a large speed and thus a noticeable change in kinetic energy.

TAKING IT FURTHER (a) so (b) is the kinetic energy
acquired by a particle of charge (an electron, for example) when it is accelerated from
the terminal to the terminal of a battery through a vacuum.

Example 6-3 A “Dogsled” Race

During your winter break you enter a “dogsled” race across a frozen
lake. This is a race where each sled is pulled by a person, not by dogs. To
get started you pull the sled (total mass ) with a force of at

above the horizontal. Find (a) the work you do, and (b) the final
speed of the sled after it moves assuming that it starts from
rest and there is no friction.

PICTURE The work done by you is where we choose the direction
of the displacement as the positive x direction. This is also the total work
done on the sled because the other forces, mg and have no x compo-
nents. The final speed of the sled can be found by applying the work–
kinetic-energy theorem to the sled. Calculate the work done by each
force on the sled (Figure 6-6) and equate the total work to the change in
kinetic energy of the sled. 

SOLVE

Fn ,

Fx¢x,

¢x � 5.0 m,
40°

180 N80 kg

1-V��

�e
1 eV1 J>m � 1 N.1 J � 1 N # m,

9.1 � 10�31 kg.

F
θ

Fnmg
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+x
0 5.0 m

Δxî

θ

F
v

Fnmg
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(a) 1. Sketch the sled both in its initial
position and in its position after
moving the Draw the x
axis in the direction of the
motion (Figure 6-7).

5.0 m.

2. The work done by you on the sled
is This is the total work done
on the sled. The other two forces
each act perpendicular to the x
direction (see Figure 6-7), so they do
zero work:

Fx¢x.

6.9 � 102 J�

� (180 N)(cos40°)(5.0 m) � 689 J

Wtotal � Wyou � Fx¢x � F cosu¢x

(b) Apply the work–kinetic-energy
theorem to the sled and solve for the
final speed:

4.2 m>svf � 217.2 m2>s2 � 4.151 m>s �

� 0 �
2(689 J)
80 kg

� 17.2 m2>s2

v2
f � v2

i �
2Wtotal

m

Wtotal � 1
2mv2

f � 1
2mv2

i
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CHECK In Part (b) we used that This is correct because

TAKING IT FURTHER The square root of 17.2 is 4.147, which rounds off to 4.1. However,
the correct answer to Part (b) is It is correct because it is calculated by taking the
square root of 17.235 999 970 178 (the value stored in my calculator after executing the cal-
culation of ).

PRACTICE PROBLEM 6-2 What is the magnitude of the force you exert if the sled
starts with a speed of and its final speed is after you pull it through a dis-
tance of while keeping the angle at ?

6-2 WORK DONE BY A VARIABLE
FORCE – STRAIGHT-LINE MOTION

Many forces vary with position. For example, a stretched spring exerts a force
proportional to the distance it is stretched. In addition, the gravitational force
Earth exerts on a spaceship varies inversely with the square of the center-to-cen-
ter distance between the two bodies. How can we calculate the work done by
forces like these? 

Figure 6-8 shows the plot of a constant force as a function of position x.
Notice that the work done by the force on a particle whose displacement is is
represented by the area under the force-versus-position curve — indicated by the
shading in Figure 6-8. We can approximate a variable force by a series of essen-
tially constant forces (Figure 6-9). For each small displacement interval the
force is approximately constant. Therefore the work done is approximately equal
to the area of the rectangle of height and width The work W done by a
variable force is then equal to the sum of the areas of an increasingly large num-
ber of these rectangles in the limit that the width of each individual rectangle ap-
proaches zero: 

6-9

This limit is the integral of over the interval from to So the work done
by a variable force acting on a particle as it moves from to is

6-10

WORK BY A VARIABLE FORCE — STRAIGHT-LINE MOTION

If the force plotted in Figure 6-9 is the net force on the particle, then each term
in the sum in Equation 6-9 represents the total work done on the particle by

a constant force as the particle undergoes the incremental displacement Thus,
is equal to the change in kinetic energy of the particle during incremen-

tal displacement (see Equation 6-8). In addition, the total change in the kinetic
energy of the particle during the total displacement is equal to the sum of the
incremental changes in kinetic energy. It follows that the total work done on
the particle for the total displacement equals the change in kinetic energy for the
total displacement. Therefore, (Equation 6-8) holds for variable forces
as well as for constant forces.

Wtotal � ¢K

Wtotal

¢K
¢xi

¢KiFxi¢xi
¢xi .

Fxi¢xi

W � �
x2

x1

Fxdx � area under the Fx-versus-xcurve

x2x1Fx

x2 .x1Fxdx

W � lim
¢xiS0a

i

Fxi¢xi � areaunder theFx-versus-xcurve

¢xi .Fx i

¢xi ,

¢x
Fx

40°5.0 m
4.5 m>s2.0 m>s 80-kg

vf

4.2 m>s.

1 J>kg � 1 N # m>kg � (1 kg # m>s2) # m>kg � 1 m2>s2

1 J>kg � 1 m2>s2.

Fx

xΔx
x1 x2

W = Fx Δx

F I G U R E  6 - 8 The work done by a
constant force is represented graphically as
the area under the -versus-x curve.Fx

Δxi

x

Fx

Fxi

x2x1

F I G U R E  6 - 9 A variable force can be
approximated by a series of constant forces
over small intervals. The work done by the
constant force in each interval is the area of
the rectangle beneath the force curve. The sum
of these rectangular areas is the sum of the
work done by the set of constant forces that
approximates the varying force. In the limit of
infinitesimally small the sum of the areas
of the rectangles equals the area under the
complete force curve.

¢xi ,

See

Math Tutorial for more

information on 

Integrals
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4.0
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Example 6-4 Work Done by a Varying Force

A force varies with x, as shown in Figure 6-10. Find the work done by the force on
a particle as the particle moves from to 

PICTURE The work done is the area under the curve from to Because
the curve consists of straight-line segments, the easiest approach is to break the area into two
segments, one consisting of a rectangle (area ) and the other consisting of a right triangle

and then use the geometric formulas for area to find the work. (The alternative
approach is to set up and execute an integration, as is done in Example 6-5.)

SOLVE

(A2),
A1

x � 6.0 m.x � 0.0 m

x � 6.0 m.x � 0.0 m
F
S

� Fxi
n

1. We find the work done by calculating the
area under the -versus-x curve:Fx

W � Atotal

2. This area is the sum of the two areas
shown. The area of a triangle is one half
the altitude times the base:

25 J� 20 J � 5.0 J �

� (5.0 N)(4.0 m) � 1
2 (5.0 N)(2.0 m)

W � Atotal � A1 � A2

CHECK If the force were a constant over the entire the work would be
The step-2 result of is slightly less than the as expected.

PRACTICE PROBLEM 6-3 The force shown is the only force that acts on a particle of mass
If the particle starts from rest at how fast is it moving when it reaches

WORK DONE BY A SPRING THAT OBEYS HOOKE’S LAW

Figure 6-11 shows a block on a horizontal frictionless surface connected to a spring.
If the spring is stretched or compressed, the spring exerts a force on the block.
Recall from Equation 4-7 that the force exerted by the spring on the block is
given by

(Hooke’s law) 6-11

where the k is a positive constant and x is the extension of the spring. If the spring
is extended, then x is positive and the force component is negative. If the spring
is compressed, then x is negative and the force component is positive. 

Because the force varies with x, we can use Equation 6-10 to calculate the
work done by the spring force on the block as the block undergoes a displace-
ment from to (Besides the spring force, two other forces act on the
block; the force of gravity, and the normal force of the table, However,
each of these forces does no work because neither has a component in the di-
rection of the displacement. The only force that does work on the block is the
spring force.) Substituting from Equation 6-11 into Equation 6-10, we get

6-12

Rearranging this gives:

6-13

WORK BY A SPRING FORCE

Wby spring � 1
2 kx2

i � 1
2 kx2

f

Wbyspring � �
xf

xi

Fxdx � �
xf

xi

(�kx)dx � �k�
xf

xi

xdx � �k ax2
f

2
�
x2

i

2
b

Fx

F
S

n .mgS,
x � xf .x � xi

Fx

Fx

Fx � �kx

x � 6.0 m?
x � 0.0 m,3.0 kg.

30 J,25 J(5.0 N)(6.0 m) � 30 J.
6.0 m,5.0 N

Fx î

Fx = 0

+x

+x

+x

0

0

Fx = −kx is negative because x is positive.

0

Fx = −kx is positive because x is negative.

x

x

Fx î

F I G U R E  6 - 1 1 A horizontal spring.
(a) When the spring is unstretched, it exerts no
force on the block. (b) When the spring is
stretched so that x is positive, it exerts a force
of magnitude kx in the direction. 
(c) When the spring is compressed so that x is
negative, the spring exerts a force of
magnitude in the direction.�xk ƒx ƒ

�x
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The integral in Equation 6-12 can also be computed using geometry to calculate the
area under the curve (Figure 6-12a). This gives

which is identical to Equation 6-13.

PRACTICE PROBLEM 6-4

Using geometry, calculate the area under the curve shown in Figure 6-12b and show you
get an expression identical to that shown in Equation 6-13.

Suppose you pull on an initially relaxed spring (Figure 6-13), stretching it to a final
extension How much work does the force exerted on the spring by your hand 
do? The force by your hand on the spring is equal to kx. (It is equal and opposite to
the force by the spring on your hand.) As x increases from 0 to the force on the
spring increases linearly from to and so has an average value*
of The work done by this force is equal to the product of this average value
and Thus, the work W done on the spring by your hand is given by 

W � 1
2 kx2

f

xf .

1
2 kxf .

FSHx � kxf ,FSHx � 0
xf ,

F
S

SHxf .

Wby spring � A1 � A2 � ƒA1 ƒ � ƒA2 ƒ � 1
2 kx2

1 � 1
2 kx2

2

xf0 x

FSH

F I G U R E  6 - 1 3

xi

xf

Fx

Fx

A1

A2

kxi

xi xf

x

x

(a)

(b)

kxf

F I G U R E  6 - 1 2

Example 6-5 Work Done on a Block by a Spring

A block on a frictionless table is attached to a horizontal spring with
The spring is initially compressed (Figure 6-14). Find

(a) the work done on the block by the spring as the block moves from
to its equilibrium position and (b) the

speed of the block at 

PICTURE Make a graph of versus x. The work done on the block as it
moves from to equals the area under the -versus-x curve between
these limits, shaded in Figure 6-15, which can be calculated by integrating
the force over the distance. The work done equals the change in kinetic en-
ergy, which is simply its final kinetic energy because the initial kinetic
energy is zero. The speed of the block at is found from the kinetic
energy of the block. 

x � 0.0 cm

Fxx2x1

Fx

x2 � 0.0 cm.
x � x2 � 0.0 cm,x � x1 � �5.0 cm

5.0 cmk � 400 N>m.
4.0-kg

+x

x1 = –5.0 cm x2 = 0.0

F

+y

F I G U R E  6 - 1 4

40

x, cm

20

–20

–40

753–1–3–5–7

Fx, N

Fx = –kx

x1 x2

1

F I G U R E  6 - 1 5

*Typically, an average value refers to an average over time. In this case, it refers to an average over position.

SOLVE

(a) The work W done on
the block by the
spring is the integral
of from to x2 :x1Fxdx

(b) Apply the work–
kinetic-energy
theorem to the block
and solve for v2 :

so

0.50 m>sv2 �

v2
2 � v2

1 �
2Wtotal

m
� 0 �

2(0.50 J)
4.0 kg

� 0.25 m2>s2

Wtotal � 1
2mv2

2 � 1
2mv2

1

0.50 J�

� � 1
2 (400 N>m)3(0.000 m)2 � (0.050 m)24� � 1
2 kx2 2 x2

x1

� � 1
2 k(x2

2 � x2
1)

W � �
x2

x1

Fxdx � �
x2

x1

� kxdx � �k�
x2

x1

xdx



182 | C H A P T E R  6 Work and Kinetic Energy

CHECK The work done is positive. The force and displacement are in the same direction, so
this is as expected. The work is positive, so we expect the kinetic energy, and thus the speed,
to increase. Our results fulfill this expectation.

TAKING IT FURTHER Note that we could not have solved this example by first applying
Newton’s second law to find the acceleration, and then using the constant-acceleration
kinematic equations. This is so because the force exerted by the spring on the block,

varies with position. Thus, the acceleration also varies with position. Therefore,
the constant-acceleration kinematic equations are not in play.

PRACTICE PROBLEM 6-5 Find the speed of the block when it reaches if
it starts from with velocity 

6-3 THE SCALAR PRODUCT

Work is based on the component of force in the direction of an object’s displace-
ment. For straight-line motion, it is easy to calculate the component of the force in
the direction of the displacement. However, in situations involving motion along a
curved path, the force and the displacement can point in any direction. For these
situations we can use a mathematical operation known as the scalar or dot product
to determine the component of a given force in the direction of the displacement.
The scalar product involves multiplying one vector by a second vector to produce
a scalar.

Consider the particle moving along the arbitrary curve shown in Figure 6-16a.
The component in Figure 6-16b is related to the angle between the directions
of and by so the work dW done by for the displacement is

This combination of two vectors and the cosine of the angle between their direc-
tions is called the scalar product of the vectors. The scalar product of two general
vectors and is written and defined by 

6-14

DEFINITION — SCALAR PRODUCT

where A and B are the magnitudes of the vectors and is the angle between and
. (The “angle between two vectors” means the angle between their directions in

space.) Because of the notation, the scalar product is also known as the dot
product.

The scalar product can be thought of either as A times the component of
in the direction of or as B times

the component of in the direction of 
(Figure 6-17). Properties of the scalar

product are summarized in Table 6-1. We can use
unit vectors to write the scalar product in terms of
the rectangular components of the two vectors: 

The scalar product of any rectangular unit vector
with itself, such as , is equal to 1. (This is because

) Thus, a
term like is equal to 
Also, because the unit vectors and are mutu-
ally perpendicular, the scalar product of one of them

knjn,in,
AxBx .Ax i

n # Bx in � AxBx i
n # in

in # in � ƒ in ƒ ƒ in ƒ cos (0) � 1 � 1 � cos (0) � 1.
in # in

A
S # B

S
� (Ax i

n � Ay j
n � Azk

n) # (Bx i
n � By j

n � Bzk
n)

(B � A cosf)
B
S

A
S

(A � B cosf),A
S

B
S

A
S # B

S

B
S

A
S

f

A
S # B

S
� AB cosf

A
S # B

S
B
S

A
S

dW � F||d� � F cos fd�

d�
S

F
S

F|| � F cosf,d�
S

F
S

fF||

vx � 0.50 m>s.x � 0.0 cm
x � 3.0 cm4.0-kg

Fx � �kx,

F

F

φ

F

d�

F

v

(a)

(b)

F I G U R E  6 - 1 6 (a) A particle moving
along an arbitrary curve in space. (b) The
perpendicular component of the force 
changes the direction of the particle’s motion,
but not its speed. The tangential, or parallel,
component changes the particle’s speed, but
not its direction of motion. is equal to the
mass m times the tangential acceleration
dv/dt. The parallel component of the force
does work and the perpendicular
component does no work. 

F||d�

F||

F||

F⊥

Table 6-1 Properties of Scalar Products

If Then

and are perpendicular,

and are parallel,

Either or or 

Furthermore,

Because is parallel to itself

Commutative rule of multiplication

Distributive rule of multiplication(A
S

� B
S

) # C
S

� A
S # C

S
� B

S # C
S

A
S # B

S
� B

S # A
S

A
S

A
S # A

S
� A2

A
S
⊥ B

S
B
S

� 0A
S

� 0A
S # B

S
� 0,

(because f � 0°, cosf � 1)A
S # B

S
� ABB

S
A
S

(because f � 90°, cosf � 0)A
S # B

S
� 0B

S
A
S
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with any other one of them, such as is zero. (This 
is because )
Thus, any term like (called a cross term) is equal
to zero. The result is

6-15

The component of a vector in a specific direction can
be written as the scalar product of the vector and the unit
vector in that direction. For example, the component 
is found from

6-16

This result provides an algebraic procedure for obtaining
a component equation, given a vector equation. That is,
multiplying both sides of the vector equation 
by gives which in turn gives

The rule for differentiating a dot product is

6-17

This rule is analogous with the rule for differentiating the product of two scalars.
The rule for differentiating a dot product can be obtained by differentiating both
sides of Equation 6-15.

Example 6-6 Using the Scalar Product

(a) Find the angle between the vectors and 
(Figure 6-18). (b) Find the component of in the direction of .

PICTURE For Part (a), we find the angle from the definition of the scalar product. Because
we are given the components of the vectors, we first determine the scalar product and the
values of A and B. Then, we use these values to determine the angle For Part (b), the com-
ponent of in the direction of is found from the scalar product where 

SOLVE

Bn � B
S>B.A

S # Bn ,B
S

A
S

f.

f

B
S

A
S

� (4.00in � 3.00jn)mB
S

A
S

� (3.00in � 2.00jn)m

d
dt

(A
S # B

S
) �
dA

S

dt
# B

S
� A

S # dB
S

dt

Ax � Bx � Cx .
(A

S
� B

S
) # in � C

S # in,in
A
S

� B
S

� C
S

A
S # in � (Ax i

n � Ay j
n � Azk

n) # in � Ax

Ax

A
S # B

S
� AxBx � AyBy � AzBz

Ax i
n # By jn

1 � 1 � cos (90°) � 0.�in # jn � ƒ in ƒ ƒ jn ƒ cos (90°)
in # jn,

A

B

A

B

A

B A
 = B cos φ

B
AB = A cos φ

φ

φ

φ

(a)

A

A +

B

C

B
(A

+ B) C

A C

B C

(b)

F I G U R E  6 - 1 7 (a) The scalar product 
is the product of A and the projection of on 
or the product of B and the projection of on

That is, 
(b) equals (the projection
of in the direction of times C).
However, so 

That is, for the scalar product,
multiplication is distributive over addition.
A
S # C

S
� B

S # C
S

.
�(AC � BC)C � ACC � BCC�(A

S
� B

S
) # C

S
(A

S
� B

S
)C � AC � BC ,

C
S

A
S

� B
S

(A
S

� B
S

)CC(A
S

� B
S

) # C
S

A
S # B

S
� AB cosf � ABA � BAB .B

S
.

A
S

A
S

,B
S

A
S # B

S

y

x

A

B

AB

φ

(a) 1. Write the scalar product of and in terms of
A, B, and and solve for cos f:cos f

B
S

A
S

so

cosf �
A
S # B

S

AB

A
S # B

S
� AB cosf,

2. Find from the components of and B
S

:A
S

A
S # B

S

� 12.0 m2 � 6.00 m2 � 6.0 m2

A
S # B

S
� AxBx � AyBy � (3.00 m)(4.00 m) � (2.00 m)(�3.00 m)

3. The magnitudes of the vectors are obtained
from the scalar product of the vector with itself:

and

so   B � 5.00 m

� (4.00 m)2 � (�3.00 m)2 � 25.0 m2B
S # B

S
� B2 � B2

x � B2
y

so A � 213.0 m

A
S # A

S
� A2 � A2

x � A2
y � (3.00 m)2 � (2.00 m)2 � 13.0 m2

4. Substitute these values into the equation in
step 1 for to find f :cos f

71°f �

cosf �
A
S # B

S

AB
�

6.0 m2

(213 m)(5.00 m)
� 0.333

(b) The component of in the direction of is the
scalar product of with the unit vector Bn � B

S>B :A
S

B
S

A
S

1.2 m�
6.0 m2

5.00 m
�AB � A

S # Bn � A
S # B

S

B
�

A
S # B

S

B

F I G U R E  6 - 1 8
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Example 6-7 Pushing a Box

You push a box up a ramp using a constant horizontal force . For each distance of
along the ramp, the box gains of height. Find the work done by for each
the box moves along the ramp (a) by directly computing the scalar product from the

components of and where is the displacement, (b) by multiplying the product of the
magnitudes of and by where is the angle between the direction of and the di-
rection of (c) by finding (the component of in the direction of ) and multiplying it
by (the magnitude of ), and (d) by finding (the component of in the direction of )
and multiplying it by the magnitude of the force.

PICTURE Draw a sketch of the box in its initial and final positions. Place coordinate axes on
the sketch with the x axis horizontal. Express the force and displacement vectors in compo-
nent form and take the scalar product. Then find the component of the force in the direction
of the displacement, and vice versa.

SOLVE

F
S

�
S

�||�
S

�
�
S

F
S

F||�
S

,
F
S

fcosf,�
S

F
S

�
S

�
S

,F
S

5.00 m
F
S

3.00 m5.00 m
F
S

100-N

CHECK The component of in the direction of is 
This answer verifies our Part (b) result.

PRACTICE PROBLEM 6-6 (a) Find for and 
(b) Find A, B, and the angle between and for these vectors. 

WORK IN SCALAR-PRODUCT NOTATION

In scalar-product notation, the work dW done by a force on a particle over an
infinitesimal displacement is

6-18

INCREMENTAL WORK

where is the magnitude of and is the component of in the direction of 
The work done on the particle as it moves from point 1 to point 2 is

6-19

THE DEFINITION OF WORK

(If the force remains constant, the work can be expressed where is the
displacement. In Chapter 3, the displacement is denoted and

are different symbols for the same quantity.)
When several forces act on a particle whose displacement is the total work

done on it is

6-20dWtotal � F
S

1
# d�S � F

S

2
# d�S � Á � (F

S

1 � F
S

2 � Á ) # d�S � (©F
S

i ) # d�S

d�
S

,F
S

i

¢rS
�
S

¢rS � ¢x in � ¢y jn;
�
S

W � F
S # �

S
,

W � �
2

1
F
S # d�S

d�
S

.F
S

F||d�
S

d�

dW � F||d� � F cosfd� � F
S # d�S

d�
S

F
S

B
S

A
S

B
S

� (2.0in � 8.0jn)m.A
S

� (3.0in � 4.0jn)mA
S # B

S

A cosf � (213 m) cos71° � 1.2 m.B
S

A
S

(a) 1. Draw a sketch of the situation (Figure 6-19).

2. Express and in component form and take
the scalar product:

�
S

F
S

4.00 � 102 J�

� (100 N)(4.00 m) � 0(3.00 m)W � F
S # �

S
� Fx¢x � Fy¢y

�
S

� (4.00in � 3.00jn)m

F
S

� (100in � 0jn)N

y

4.00 m

5.00 m

θF

O

x

3.00 m

F I G U R E  6 - 1 9
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(b) Calculate where is the angle between
the directions of the two vectors as shown. Equate
this expression with the Part-(a) result and solve
for cos Then solve for the work:f.

fF� cosf,

so

and

4.00 � 102 J�W � F� cosf � (100 N)(5.00 m)0.800

cosf �
Fx¢x � Fy¢y

F�
�

(100 N)(4.00 m) � 0
(100 N)(5.00 m)

� 0.800

F
S # �

S
� F� cosf and F

S # �
S

� Fx¢x � Fy¢y

(c) Find and multiply it by � :F|| F|| � F cosf � (100 N)0.800 � 80.0 N

4.00 � 102 JW � F||� � (80.0 N)(5.00 m) �

(d) Multiply F and where is the component of 
in the direction of F

S
:

�
S

�||�|| ,

4.00 � 102 JW � F�|| � (100 N) (4.00 m) �

�|| � � cosf � (5.00 m)0.800 � 4.00 m

CHECK The four distinct calculations give the same result for the work.

TAKING IT FURTHER For this problem, computing the work is easiest using the procedure
in Part (a). For other problems, the procedure in Part (b), Part (c), or Part (d) may be the eas-
iest. You need to be competent in using all four procedures. (The more problem-solving tools
you have at your disposal, the better.)

Example 6-8 A Displaced Particle

A particle undergoes a displacement During this displacement a con-
stant force acts on the particle. Find (a) the work done by the force,
and (b) the component of the force in the direction of the displacement.

PICTURE The force is constant, so the work W can be found by computing
Combining this with the relation we can find

the component of in the direction of the displacement.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

(a) 1. Make a sketch showing and (Figure 6-20).F||�
S

,F
S

,

F
S

F
S # �

S
� F||�,W � F

S # �
S

� Fx¢x � Fy¢y.

F
S

� (3.00in � 4.00jn)N
�
S

� (2.00in � 5.00jn)m.

y

x

ˆ

ˆ ˆ

ˆ

O = 2.00 mi – 5.00 mj

F = 3.00 Ni + 4.00 Nj

F||

F I G U R E  6 - 2 0

2. Compute the work done W. �14.0 JW � F
S # �

S
�

(b) 1. Compute and use your result to find �.�
S # �

S
so � � 229.0 m�

S # �
S

� 29.0 m2,

2. Using solve for F|| .F
S # �

S
� F||�, �2.60 NF|| � F

S # �
S >� �

CHECK From Figure 6-20, we see that the angle between and is between 90° and 180°,
so we expect both and the work to be negative. Our results are in agreement with this
expectation.

TAKING IT FURTHER Nowhere in the wording of either the problem statement or the
solution of Example 6-8 does it say that the motion of the particle is along any particular
path. Because the force is constant, the solution depends on the net displacement but
not on the path taken. The path could be a straight-line path or a curved path (Figure 6-21)
and not a word in the solution would have to be changed.

PRACTICE PROBLEM 6-7 Find the magnitude of and the angle between and �
S

.F
S

fF
S

�
S

,

F||

�
S

F
S

Path�

F I G U R E  6 - 2 1
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Example 6-9 Differentiating a Scalar Product

Show that where the acceleration, the velocity, and v the speed.

PICTURE Note that so the rule for differentiating scalar products can be used
here.

SOLVE

v2 � vS # vS,

vSaSaS # vS � 1
2 d(v2)>dt,

Apply the rule for differentiating scalar products
(Equation 6-17) to the scalar product vS # vS :

so aS # vS �
1
2
d
dt
v2

�
dvS

dt
# vS � vS # dvS

dt
� 2
dvS

dt
# vS � 2aS # vS

d
dt
v2 �

d
dt

(vS # vS)

CHECK Speed v has dimensions of length over time, so has dimensions of length
squared over time cubed. Acceleration has dimensions of length over time squared, so 
has dimensions of length squared over time cubed. Thus, both sides of have
the same dimensions (length squared over time cubed).

TAKING IT FURTHER This example involves only kinematic parameters, so the resulting
relation is a strictly kinematic relation. The equation has unrestricted valid-
ity (unlike some kinematic equations we have studied that are valid only if the acceleration
remains constant).

From Example 6-9 we have the kinematic relation

6-21

In Section 6 -4, this equation is used to derive the work–kinetic-energy theorem
for particles moving along curved paths under the influence of forces that are not
necessarily constant.

POWER

The definition of work says nothing about how long it takes to do the work. For
example, if you push a box a certain distance up a hill with a constant velocity, you
do the same amount of work on the box regardless of how long it takes you to push
the box that distance. In physics, the rate at which a force does work is called the
power P. Because work is the measure of energy transferred by a force, power is
the rate of transfer of energy.

Consider a particle moving with instantaneous velocity In a short time inter-
val dt, the particle undergoes the displacement The work done by a 
force acting on the particle during this time interval is

The power is then

6-22

POWER BY A FORCE

Note the difference between power and work. Two motors that lift a given load a
given distance expend the same amount of energy, but the power is greater for the
force that does the work in the least time.

Like work and energy, power is a scalar quantity. The SI unit of power, one joule
per second, is called a watt (W):

1 W � 1 J>s

P �
dW
dt

� F
S # vS

dW � F
S # d�S � F

S # vS dt

F
S

d�
S

� vS dt.
vS.

aS # vS �
1
2
d
dt
v2 �

d
dt
a1

2
v2b

aS # vS � 1
2 d(v2)>dt

aS # vS � 1
2 d(v2)>dt aS # vSaS

dv2>dt



The Scalar Product S E C T I O N  6 - 3 | 187

In the U.S. customary system, the unit of energy is the foot-pound and the unit of
power is the foot-pound per second. A commonly used multiple of this unit, called
a horsepower (hp), is defined as

The product of a unit of power and a unit of time is a unit of energy. Electric
companies charge for energy, not power, usually by the kilowatt-hour (kW h). A
kilowatt-hour of energy is the energy transferred in 1 hour at the constant rate of 1
kilowatt, or

Example 6-10 The Power of a Motor

A small motor is used to operate a lift that raises a load of bricks weighing to a height
of in (Figure 6-22) at constant speed. The lift weighs What is the power out-
put of the motor? 

PICTURE Because the acceleration is zero, the magnitude of the upward force exerted by
the motor is equal to the weight of the lift plus the weight of the bricks. The rate the motor
does work is the power.

SOLVE

F
S

300 N.20 s10 m
500 N

1 kW # h � (103 W)(3600 s) � 3.6 � 106 W # s � 3.6 MJ

#

1 hp � 550 ft # lb>s � 746 W

The power is given by F
S # vS:

4.0 � 102 W� (800 N)
10 m
20 s

�

P � F
S # vS � Fv cosf � Fv cos (0) � Fv

CHECK The work done by the force is This work took to do, so
we expect the power to be the Our result is in perfect agreement
with this.

TAKING IT FURTHER (1) The lift could not actually operate at constant speed. The bricks
and lift will have to initially be brought up to speed (because they are starting from rest.) The
power output will exceed during this speedup interval. In addition, the power out-
put will be less than as the lift slows to a stop at the top. The average power output
of the motor during the lift is (and the power provided by the force of gravity is

). (2) A power of is slightly more than 

PRACTICE PROBLEM 6-8 Find the average power output of the motor needed to raise the
bricks and lift to a height of in What is the work done by the force of the motor?
What is the work done by the force of gravity?

Example 6-11 Power and Kinetic Energy

Show that the power delivered by the net force acting on a particle equals the rate at which
the kinetic energy of the particle is changing.

PICTURE The power delivered by the net force equals Show that
where 

SOLVE

K � 1
2mv2.F

S

net
# vS � dK>dt, F

S

net
# vS.Pnet

40 s.10 m

1
2 hp.400 W�400 W

400 W
400 W

400 W

8000 J>20 s � 4.0 � 102 W.
20s(800 N) (10 m) � 8000 J.

0

10 m

Motor

v
F

Fg

y

F I G U R E  6 - 2 2

1. Substitute for using Newton’s second
law:

F
S

net F
S

net
# vS � maS # vS

2. The product is related to the time
derivative of by 
(Equation 6–21):

2aS # vS � d(v2)>dtv2
aS # vS

d
dt
v2 �

d
dt

(vS # vS) � 2aS # vS
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CHECK The joule is the unit for energy, so dK/dt has units of joules per second, or watts. The
watt is the unit for power, so is dimensionally consistent.

From Example 6-11 we have

6-23

which relates the power delivered by the net force to the rate of change of kinetic
energy of any object that can be modeled as a particle.

6-4 WORK – KINETIC-ENERGY
THEOREM—CURVED PATHS

The work–energy theorem for motion along a curved path can be established by
integrating both sides of (Equation 6-23). Integrating both sides
over time gives

6-24

Because where is the displacement during time dt, and because
Equation 6-24 can be expressed

The integral on the left is the total work, done on the particle. The integral
on the right can be evaluated, giving

6-25

WORK – KINETIC-ENERGY THEOREM

Equation 6-25 follows directly from Newton’s second law of motion.

Example 6-12 Work Done on a Skier

You and your friend are at a ski resort with two ski runs, a beginner’s run and an expert’s
run. Both runs begin at the top of the ski lift and end at a finish line at the bottom of the
same lift. Let h be the vertical descent for both runs. The beginner’s run is longer and less
steep than the expert’s run. You and your friend, who is a much better skier than you, are
testing some experimental frictionless skis. To make things interesting, you offer a wager
that if she takes the expert’s run and you take the beginner’s run, her speed at the finish
line will not be greater than your speed at the finish line. Forgetting that you are study-
ing physics, she accepts the bet. The conditions are that you both start from rest at the top
of the lift and both of you coast for the entire trip. Who wins the bet? (Assume air drag is
negligible.)

�
2

1
F
S

net
# d�S � K2 � K1 (orWtotal � ¢K)

Wtotal ,

�
2

1
F
S

net
# d�S � �

2

1
dK

(dK>dt)dt � dK,
d�

S
d�

S
� vS dt,

�
2

1
F
S

net
# vS dt � �

2

1

dK
dt
dt

F
S

net
# vS � dK>dt

Pnet � F
S

net
# vS �

dK
dt

Pnet � dK>dt

3. Substitute the step-2 result into the step-1
result:

F
S

net
# vS � maS # vS � m

1
2
d
dt
v2

4. The mass m is constant, so it and the
fraction can be moved inside the
argument of the derivative:

1
2

F
S

net
# vS �

d
dt
a1

2
mv2b

5. The argument of the derivative is the
kinetic energy K:

Pnet � F
S

net
# vS �

dK
dt

(PhotoDisc/Getty.)
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PICTURE Because you and your friend are coasting on the skis, you both can
be modeled as particles. (The work–kinetic-energy theorem works only for
particles.) Two forces act on each of you, a weight force and a normal force. 

SOLVE

1. Make a sketch of yourself and draw the two force vectors on the sketch
(Figure 6-23a). Also include coordinate axes. The work–kinetic-energy
theorem, with relates the final speed to the total work. vfv1 � 0,

y

x

vi = 0

vfv = 0h

FnFF d�

(a)

(b)

mgm

F I G U R E  6 - 2 3

2. The final speed is related to the final
kinetic energy, which in turn is related to
the total work by the work–kinetic-
energy theorem:

Wtotal � 1
2mv2

f � 1
2mv2

i

3. For each of you, the total work is the
work done by the normal force plus the
work done by the gravitational force:

Wtotal � Wn � Wg

4. The force on you is constant, but the
force is not constant. First we calculate
the work done by Calculate the work

done on you by for an infinitesimal
displacement (Figure 6-23b) at an
arbitrary location along the run:

d�
S

F
S

ndWn

F
S

n .
F
S

n

mgS dWn � F
S

n
# d�

S
� Fn cosfd�

5. Find the angle between the directions
of and The displacement is
tangent to the slope:

d�
S

d�
S

.F
S

n

f f � 90°

6. Calculate the work done by for the
entire run:

F
S

n Wn � �Fn cos90° d� � �(0)d� � 0

7. The force of gravity is constant, so the
work done by gravity is 
where (Figure 6-24) is the net
displacement from the top to the bottom
of the lift:

�
S

Wg � F
S

g
# �

S
,

F
S

g

� �mg¢y
Wg � mgS # �

S
� �mg jn # (¢xin � ¢yjn)

8. The skier is descending the hill, so is
negative. From Figure 6-23a, we see that
¢y � �h :

¢y ¢y � �h

9. Substituting gives: Wg � mgh

10. Apply the work–kinetic-energy theorem
to find vf :

Wn � Wg � ¢K

11. The final speed depends only on h, which
is the same for both runs. Both of you will
have the same final speeds.

so

(The bet was that she would not be going faster than you.)YOU WIN!

vf � 22gh0 � mgh � 1
2mv2

f � 0

Δy

Δx

mg

�
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CHECK The force driving your motion is the gravitational force. This force is proportional
to the mass, so the work done by it is proportional to the mass. Because the kinetic energy is
also proportional to the mass, the mass cancels out of the work–kinetic-energy equation.
Thus, we expect the final speed to be independent of mass. Our result is independent of
mass as expected.

TAKING IT FURTHER Your friend on the steeper trail will cross the finish line in less time,
but that was not the bet. What was shown here is that the work done by the gravitational
force equals mgh. It does not depend upon the shape of the hill or upon the length of the path
taken. It depends only upon the mass m and the vertical drop h between the starting point
and the finishing point.
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6-5 CENTER-OF-MASS WORK

Here we present a work–kinetic-energy relation that works for systems that can-
not be modeled as a particle. (A particle is a system for which all parts undergo
identical displacements.) In Chapter 5 we found (Equation 5-23) that for a system
of particles

6-26

where is the mass of the system and is the acceleration of the center of mass.
Equation 6-26 can be integrated to obtain a useful equation involving work and kinetic en-
ergy that can be applied to systems that cannot be modeled as a particle. First, we take the
scalar product of both sides of Equation 6-26 with to obtain

6-27

where called the translational kinetic energy, is the kinetic en-
ergy associated with the motion of the center of mass. Multiplying both sides of
Equation 6-27 by dt and then integrating gives

6-28

CENTER-OF-MASS WORK – TRANSLATIONAL-KINETIC-ENERGY RELATION

where The integral is referred to as the center-of-

mass work* done by the net force on a system of particles, and is the
incremental displacement of the center of mass. Equation 6-28 is the center-of-
mass work–translational-kinetic-energy relation. Stated in words “The center-of-
mass work done by the net external force on a system equals the change in the
translational kinetic energy of the system. Although Equation 6-28 looks like the
equation for the work–kinetic-energy theorem (Equation 6-25), there are some im-
portant differences. The center-of-mass work–translational-kinetic-energy relation
deals only with the displacement and speed of the center of mass of the system, so
when using this relation, we ignore the motion of any part of the system relative to
the center-of-mass reference frame. (A center-of-mass reference frame is a nonro-
tating reference frame† that moves with the center of mass.) This allows us to cal-
culate the bulk motion of the system without knowing all the internal details of the
system.

For a system that moves as a particle (with all parts having the same velocity)
the center-of-mass work – translational-kinetic-energy relation reduces to the
work–kinetic-energy theorem (Equation 6-25).

It is also sometimes useful to refer to the center-of-mass work done by a single
force. The center-of-mass work done by any particular force is given by 

6-29Wcm � �
2

1
F
S # d�Scm

F
S

Wcm

d�
S

cm � vScmdt

�
2

1
F
S

netext
# d�Scmd�

S

cm � vScmdt.

�
2

1
F
S

netext
# d�Scm � ¢Ktrans

Ktrans � 1
2Mv2

cm ,

F
S

netext
# vScm �MaScm

# vScm �
d
dt
A 12Mv2

cm B �
dKtrans

dt

vScm

aScmM � ©mi

F
S

netext � a F
S

iext �MaScm

* Center-of-mass work is also called pseudowork.
† A nonrotating reference frame is a frame that is not rotating relative to an inertial reference frame.

*
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Example 6-13 Two Pucks and a String 

Two identical pucks on an air table are connected by a length of string (see Figure 6-25).
The pucks, each of mass m, are initially at rest in the configuration shown. A constant
force of magnitude F accelerates the system toward the right. After the point of applica-
tion P of the force has moved a distance d, the pucks collide and stick together. What is
the speed of the pucks immediately following the collision? 

PICTURE Let the system be the two pucks and the string. Apply the center-of-mass
work–kinetic-energy relation to the system. Following the collision the speed of each
puck equals the speed of the center of mass. (The pucks can move without friction on the
air table.)

SOLVE

L

L

m

0θ

0θ

m

FP

F I G U R E  6 - 2 5

1. Make a drawing showing the system initially, and after it has moved distance d
(Figure 6-26):

2. Apply the center-of-mass-
work–translational-kinetic-energy
relation to the system. The net force
on the system is F

S
� Fin :

F¢xcm � 1
2 (2m)v2

cm � mv2
cm

F�
f

i
dxcm � Ktrans f � 0

�
f

i
Fin # dxcmin � Ktrans f � Ktrans i

�
f

i
F
S

netext
# d�

S

cm � ¢Ktrans

3. Find in terms of d and L.
Figure 6-26 makes the calculation of

fairly straightforward:¢xcm

¢xcm

so ¢xcm � d � L(1 � cosu0)

¢xcm � L � L cosu0 � d

4. Substitute the step-3 result into the
step-2 result and solve for vcm :

so C
F 3d � L(1 � cosu0)4

m
vcm �

F 3d � L(1 � cosu0)4 � mv2
cm

F¢xcm � mv2
cm

CHECK If the initial angle is zero, the system can be modeled as a particle and the
work–kinetic-energy theorem can be used. This would give or

Our step-4 result gives the very same expression for the speed if 

TAKING IT FURTHER (1) In this example, the displacement of the center of mass is less
than the displacement d of the point of application of the force As a result, the center-of-
mass work done by the force is less than the work Fd done by the force. (2) The pucks lose ki-
netic energy when they collide and stick together. This energy appears as some other form of
energy, such as thermal energy. The conservation of energy is discussed further in Chapter 7.

F
S

.
¢xcm

u0 � 0.v � 2Fd>m.
Fd � 1

2 (2m)v2 � mv2,
u0

L cos d

d

Δxcm L

L

L

cm F

m

0θ

0θ

0θ

m

vcm

F
F I G U R E  6 - 2 6 As the center of mass
moves the distance the point 
of application of the force moves the
distance d.

F
S

¢xcm,
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CHECK We would expect the stopping distance to increase with initial speed, and to
decrease with increasing coefficient of friction. The step-5 expression for meets these
expectations.

TAKING IT FURTHER The translational kinetic energy of the car is dissipated as thermal
energy of the tires and of the pavement. The dissipation of kinetic energy into thermal
energy by kinetic friction is discussed further in Chapter 7. 

¢xcm

Example 6-14 Stopping Distance

To avoid an accident, the driver of a car moving at on a straight horizontal
road steps on the brakes with maximum force. The antilock braking system (ABS) is not
working, so the wheels lock and the tires skid as the car comes to a stop. The kinetic coeffi-
cient of friction between the road and the tires is 0.80. How far does the car travel during
the skid?

PICTURE The car cannot be modeled as a particle. The points of application of the kinetic
frictional forces are the parts of the tires in contact with the road surface. The high points of
the contacting surfaces alternatively stick and slip. Therefore, the car cannot be modeled as
a particle during the skid. The center-of-mass work–translational-kinetic-energy relation
applied to the car enables us to calculate the stopping distance.

SOLVE

90 km>h1000-kg

fk

mg

+y

+x

Fn
v
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1. Write the center-of-mass work–translational-
kinetic-energy relation. We need to solve for the
displacement of the center of mass of the car:

�
2

1
F
S

netext
# d�

S

cm � ¢Ktrans

2. Draw a free-body diagram of the car during the
skid (Figure 6-27):

3. The vertical acceleration is zero, so the normal
force and the gravitational force sum to zero.
The net external force on the car is equal to the
frictional force. Solve for the net force on the car:

so

F
S

net � �mkmgin
Fnet � fk � mkFn � mkmg

F
S

net � F
S

n � mgS � f
S

k � f
S

k

4. Apply the center-of-mass work–translational-
kinetic-energy relation to the car:

�msmg (xcm2 � xcm1) � � 1
2mv2

cm1

�msmg�
2

1
dxcm � 0 � Ktrans1

�
2

1
� msmgin # dxcm in � Ktrans2 � Ktrans1

�
2

1
F
S

net
# d�

S

cm � ¢Ktrans

5. Solve for the displacement, but first convert the
initial speed from km/h to m/s:

so

40 m¢xcm �
(25 m>s)2

2 # (0.80) (9.81 m>s2)
�

¢xcm � xcm2 � xcm1 �
v2

cm1

2mkg

vcm1 � 90 km>h # 1 h
(3.6 ks)

� 25 m>s
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Physics Spotlight

Coasters and Baggage and Work (Oh My!)

Baggage transfer methods at some major airports have a lot in common with roller
coasters. High rates of change of acceleration for long periods of time are bad for
both coaster passengers and baggage items. Both must move swiftly without un-
wanted jerking and halting.

Some roller coaster cars (and some baggage carriers) gain kinetic energy because
of the work done on them by constant forces exerted on them by banks of linear
induction motors (LIMs). A LIM is an electromagnetic method of providing force with-
out moving parts.* The main reason for the use of linear induction motors is the
flexibility of applying force at calculated locations during the travel of the coaster
train or the baggage buggy. The roller coaster and the baggage buggies run on tracks
that use sensors to determine the speed of the vehicles, and communicate that speed
to the controllers for the motors. The LIMs can be turned off when the vehicle has
reached the right speed. In both cases, some LIMs are also wired to act as brakes on
the vehicles, exerting forces on them in opposition to their direction of travel. 

Speed—The Ride is a roller coaster launched from the NASCAR Café in the
Sahara Hotel and Casino in Las Vegas. The design firm, Ingenieurbuero Stengel
GmbH, specified 88 motors in three locations along the track. The first bank of
motors launches the coaster train. The 6-car, 24-passenger coaster train is smoothly
accelerated to in 2.0 s. It swoops around a corner and plunges un-
derground before rising and going through a clothoid loop-the-loop.† After it goes
through the loop-the-loop, forces exerted on it by the second bank of LIMs quadru-
ple its kinetic energy in ‡ The roller coaster glides along Las Vegas Boulevard,
and races two hundred feet up a near-vertical incline. For safety’s sake, a series of
LIMs near the top of the incline can slow the train, if necessary. The coaster train
then runs backward through the entire coaster route. As it returns to the station,
the LIMs in the station act as brakes, and bring the train to a stop.

Other than the forces from the LIMs, the forces acting on the coaster train 
are gravity, friction, and the normal force. Each of the cars in the coaster train 
travels over the same path, although the starting and ending points for each car 
are not the same. The maximum acceleration of any passenger is 3.5 g. This is not
excessive—the momentary acceleration caused by being hit on the head with a
pillow can go above 20 g.§

Heathrow International Airport often transfers luggage between Terminals One
and Four. The terminals are more than apart and are separated by a runway.
Each piece of luggage is loaded onto a small buggy that rides on rails. (The speeds
of the buggies are controlled by LIMs mounted on the tracks.) The buggy goes
down a steep incline to reach the level of a tunnel, underground. It travels
through the tunnel at and is kept at that speed by regularly spaced LIMs.
At the end of the tunnel, the buggy climbs up into the appropriate floor of the other
terminal. When you transfer between flights at a large airport, remember that your
luggage may well be going on its own special ride.

* ”Whoa! Linear motors blast Vegas coaster straight up.” Machine Design, May 4, 2000. Vol. 28; ”Sectors” EI-WHS
http://www.eiwhs.co.uk/sectors.asp April 2006; ”Baggage Handling Case Study.” Force Engineering
http://www.force.co.uk/bagcase.htm, April 2006; ”Leisure Rides.” Force Engineering, http://www.force.co.uk/
leishome.htm April 2006.

† ”Roller coaster constructor Werner Stengel receives honorary doctorate at Göteborg University.” Göteborg University
Faculty of Science. http://www2.science.gu.se/english/werner_stengel.shtml April 2006.

‡ ”Speed Facts.” Sahara Hotel and Casino, http://www.saharavegas.com/thrills/facts.html April 2006.
§ Exponent Failure Analysis Associates. Investigation of Amusement Park and Roller Coaster Injury Likelihood and Severity:

48. http://www.emerson-associates.com/safety/articles/ExponentReport.pdf April 2006.

30 km>h,
20 m

1.0 km

2.0 s.

25 ft45 mi>h
The speeds of the buggies transporting
luggage between terminals at Heathrow
International Airport are controlled by LIMs. 
(Vanderlande Industries.)

http://www.eiwhs.co.uk/sectors.asp
http://www.force.co.uk/bagcase.htm
http://www.force.co.uk/leishome.htm
http://www.force.co.uk/leishome.htm
http://www2.science.gu.se/english/werner_stengel.shtml
http://www.saharavegas.com/thrills/facts.html
http://www.emerson-associates.com/safety/articles/ExponentReport.pdf
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SUMMARY

1. Work, kinetic energy, and power are important derived dynamic quantities.

2. The work–kinetic-energy theorem is an important relation derived from Newton’s laws
applied to a particle. (In this context, a particle is a perfectly rigid object that moves with-
out rotating.)

3. The scalar product of vectors is a mathematical definition that is useful throughout
physics.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Work (definition)

Constant force

Constant force—straight-line motion

Variable force—straight-line motion

2. Kinetic Energy (definition)

3. Work–Kinetic-Energy Theorem

4. Scalar or Dot Product (definition)

In terms of components

Unit vector times vector

Derivative product rule

5. Power

6-2

This relation is a useful problem-solving tool if for systems that 
cannot be modeled as a particle. 

Center-of-Mass Work 6-3

Translational Kinetic Energy where M � ©miKtrans � 1
2Mv2

cm,

Wcm � �
2

1
F
S # d�

S

cm

�
2

1
F
S

netext
# d�

S

cm � ¢Ktrans

6. Center-of-Mass Work–Translational-
Kinetic-Energy Relation

P �
dW
dt

� F
S # vS

d
dt

(A
S # B

S
) �
dA

S

dt
# B

S
� A

S # dB
S

dt

A
S # in � Ax

A
S # B

S
� AxBx � AyBy � AzBz

A
S # B

S
� ABcosf

Wtotal � ¢K � 1
2mv2

f � 1
2mv2

i

K � 1
2mv2

W � �
x2

x1

Fxdx � areaunder theFx-versus-xcurve

W � Fx¢x � F ƒ ¢x ƒ cosu

W � F
S # �

S
� F||� � F�|| � F� cosu

W � �
2

1
F
S # d�

S
� �

2

1
F||d�

Answers to Concept Checks

6-1 The work being done by the force is negative.

Answers to Practice Problems

6-1

6-2

6-3

6-4 The region of interest is below the x axis, so the “area
under the curve” is negative. The “area under the
curve” is where and are shown
in Figure 6-28. The work done by the spring is equal to

A2A1�( ƒA1 ƒ � ƒA2 ƒ ),

4.1 m>s1.7 � 102 N

34 J
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Fx

A1

xf

x

Fx = −kx

Fx

xi

x

Fx = −kx

A2
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the “area under the curve,” and the area of a triangle is
one-half the altitude times the base. Thus,

which is identical to Equation 6-13. 

6-5

6-6 (a) (b)

6-7

6-8 W � �8.0 � 103 JW � 8.0 � 103 J,P � 2.0 � 102 W,

f � 121°F � 5.00 N,

f � 23°B � 8.2 m,A � 5.0 m,38 m2,

0.40 m>s
1
2 kx2

i � 1
2 kx2

fWbyspring � �( ƒA1 ƒ � ƒA2 ƒ ) � �(1
2
# kxf

# xf � 1
2
# kxi

# xi) �

PROBLEMS

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimates.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

For all problems, use for the free-fall
acceleration due to gravity and neglect friction and air
resistance unless instructed to do otherwise.

g � 9.81 m/s2

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • True or false: (a) If the net or total work done on a parti-
cle was not zero, then its speed must have changed. (b) If the net or
total work done on a particle was not zero, then its velocity must
have changed. (c) If the net or total work done on a particle was not
zero, then its direction of motion could not have changed. (d) No
work is done by the forces acting on a particle if it remains at rest.
(e) A force that is always perpendicular to the velocity of a particle
never does work on the particle.

2 • You push a heavy box in a straight line along the top of a
rough horizontal table. The box starts at rest and ends at rest.
Describe the work done on it (including sign) by each force acting
on it and the net work done on it.

3 • You are riding on a Ferris wheel that is rotating at con-
stant speed. True or false: During any fraction of a revolution: (a)
None of the forces acting on you does work on you. (b) The total
work done by all forces acting on you is zero. (c) There is zero net
force on you. (d) You are accelerating.

4 • By what factor does the kinetic energy of a particle
change if its speed is doubled but its mass is cut in half?

5 • Give an example of a particle that has constant kinetic
energy but is accelerating. Can a non-accelerating particle have a
changing kinetic energy? If so, give an example.

6 • An particle initially has kinetic energy K. Later it is found
to be moving in the opposite direction with three times its initial
speed. What is the kinetic energy now? (a) K, (b) 3K, (c) 23K, (d) 9K,
(e)

7 • How does the work required to stretch a spring
from its unstressed length compare with the work

required to stretch it from its unstressed length? SSM1.0 cm
2.0 cm

�9K

8 • A spring is first stretched from its unstressed
length. It is then stretched an additional How does the
work required for the second stretch compare to the work
required for the first stretch (give a ratio of second to first)? 

9 • The dimension of power is (a) (b)
(c) (d)

10 • Show that the SI units of the force constant of a spring
can be written as 

11 • True or false: (a) The gravitational force cannot do work
on an object, because it is not a contact force. (b) Static friction can
never do work on an object. (c) As a negatively charged electron is
removed from a positively charged nucleus, the force on the
electron does work that as a positive value. (d) If a particle is
moving along a circular path, the total work being done on it is
necessarily zero.

12 •• A hockey puck has an initial velocity in the direction
on a horizontal sheet of ice. Qualitatively sketch the force-versus-
position graph for the (constant) horizontal force that would need
to act on the puck to bring it to rest. Assume that the puck is located
at when the force begins to act. Show that the sign of the area
under the curve agrees with the sign of the change in the puck’s ki-
netic energy and interpret this in terms of the work–kinetic-energy
theorem.

13 •• True or false: (a) The scalar product cannot have units.
(b) If the scalar product of two nonzero vectors is zero, then they
are parallel. (c) If the scalar product of two nonzero vectors is
equal to the product of their magnitudes, then the two vectors
are parallel. (d) As an object slides up an incline, the sign of the
scalar product of the force of gravity on it and its displacement
is negative. 

14 •• (a) Must the scalar product of two perpendicular unit
vectors always be zero? If not, give an example. (b) An object has

SSM

x � 0

�x

kg>s2.

M # L2>T3.M # L2>T2,
M # L2>T,M # L2 # T2,

2.0 cm.
2.0 cm
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a velocity at some instant. Interpret physically. (c) A ball
rolls off a horizontal table. What is the scalar product between
its velocity and its acceleration the instant after it leaves the
table? Explain. (d) In Part (c), what is the sign of the scalar prod-
uct of its velocity and acceleration the instant before it impacts
the floor? 

15 •• You lift a package vertically upward a distance L in
time You then lift a second package that has twice the mass of
the first package vertically upward the same distance while
providing the same power as required for the first package. How
much time does lifting the second package take (answer in terms
of )?

16 •• There are lasers that output more than of power.
A typical large modern electric generation plant typically outputs

of electrical power. Does this mean the laser outputs a
huge amount of energy? Explain. Hint: These high-power lasers are
pulsed on and off, so they are not outputting power for very long time
intervals.

17 •• You are driving a car that accelerates from rest on a
level road without spinning its wheels. Use the center-of-mass
work – translational-kinetic-energy relation and free-body dia-
grams to clearly explain which force (or forces) is (are) directly
responsible for the gain in translational kinetic energy of both 
you and the car. Hint: The relation refers to external forces only, so the
car’s engine is not the answer. Pick your “system” correctly for each
case.

ESTIMATION AND APPROXIMATION

18 •• (a) Estimate the work done on you by gravity as you 
take an elevator from the ground floor to the top of the Empire 
State Building, a building 102 stories high. (b) Estimate the
amount of work the normal force of the floor did on you. Hint:
The answer is not zero. (c) Estimate the average power of the force
of gravity.

19 •• ENGINEERING APPLICATION, CONTEXT-RICH The nearest
stars, apart from the Sun, are light-years away from Earth. If we are
to investigate these stars, our space ships will have to travel at an
appreciable fraction of the speed of light. (a) You are in charge of es-
timating the energy required to accelerate a capsule from
rest to 10 percent of the speed of light in one year. What is the min-
imum amount of energy that is required? Note that at velocities ap-
proaching the speed of light, the kinetic energy formula is not
correct. However, it gives a value that is within 1% of the correct
value for speeds up to 10% of the speed of light. (b) Compare your
estimate to the amount of energy that the United States uses in a
year (about ). (c) Estimate the minimum average power
required of the propulsion system. 

20 •• The mass of the Space Shuttle orbiter is about 
and the period of its orbit is Estimate the kinetic energy of
the orbiter and the work done on it by gravity between launch and
orbit. (Although the force of gravity decreases with altitude, this ef-
fect is small in low-Earth orbit. Use this fact to make the necessary
approximation; you do not need to do an integral.) The orbits are
about 250 miles above the surface of Earth.

21 • CONTEXT-RICH Ten inches of snow have fallen during
the night, and you must shovel out your driveway
(Figure 6-29). Estimate how much work you do on the snow by
completing this task. Make a plausible guess of any value(s) needed
(the width of the driveway, for example), and state the basis for
each guess. 

50-ft-long

90 min.
8 � 104 kg

5 � 1020 J

1
2mv2

10,000-kg

SSM

1.0 GW

1.0 GW

¢t

¢t.

2vS # vSvS

WORK, KINETIC ENERGY, 
AND APPLICATIONS

22 • A piece of space junk has a speed of 
(a) What is its kinetic energy? (b) What is its kinetic energy if its speed
is halved? (c) What is its kinetic energy if its speed is doubled?

23 • Find the kinetic energy of (a) a baseball moving
with a speed of and (b) a jogger running at a
steady pace of 

24 • A box is raised a distance of from rest by a
vertical applied force of Find (a) the work done on the box by
the applied force, (b) the work done on the box by gravity, and (c)
the final kinetic energy of the box.

25 • A constant force acts on a box. The box initially
is moving at in the direction of the force, and later the box
is moving at Determine both the work done by this force and
the average power delivered by the force during the interval.

26 •• You run a race with a friend. At first you each have the
same kinetic energy, but she is running faster than you are. When
you increase your speed by 25 percent, you are running at the same
speed she is. If your mass is what is her mass?

27 •• A particle moving along the x axis has a
velocity of as it passes through the origin. It is sub-
jected to a single force, that varies with position, as shown in
Figure 6-30. (a) What is the kinetic energy of the particle as it
passes through the origin? (b) How much work is done by the
force as the particle moves from to 
(c) What is the speed of the particle when it is at SSMx � 4.0 m?

x � 4.0 m?x � 0.0 m

Fx ,
�2.0 m>s3.0-kg

85 kg,

3.0-s
68 m>s.

3.0 s20 m>s 5.0 kg80-N

80 N.
3.0 m6.0-kg

9.00 min>mi.
60.0-kg45.0 m>s,

0.145-kg

1.2 km>s.15-g

50 ft
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4321

1
2
3
4
5

6

Fx, N

x, m
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28 •• A object moving along the x axis has a velocity
of as it passes through the origin. It is acted on by a sin-
gle force, that varies with x, as shown in Figure 6-31. (a) Find
the work done by the force from to 
(b) What is the kinetic energy of the object at (c) What
is the speed of the object at (d) What is the work done
on the object from to (e) What is the speed of
the object at x � 4.0 m?

x � 4.0 m?x � 0.0
x � 2.0 m?

x � 2.0 m?
x � 2.0 m.x � 0.0 m

Fx ,
2.4 m>s 3.0-kg

29 •• One end of a light spring (force constant k) is attached to
the ceiling, the other end is attached to an object of mass m. The
spring initially is vertical and unstressed. You then “ease the object
down” to an equilibrium position a distance h below its initial po-
sition. Next, you repeat this experiment, but instead of easing the
object down, you release it, with the result that it falls a distance H
below the initial position before momentarily stopping. (a) Show
that (b) Use the work–kinetic-energy theorem to show
that Try this experiment on your own.

30 •• A force acts on a particle that has a mass of The
force is related to the position x of the particle by the formula

where if x is in meters and is in newtons.
(a) What are the SI units of C? (b) Find the work done by this force
as the particle moves from to (c) At 
the force points opposite the direction of the particle’s velocity
(speed is ). What is its speed at Can you tell its
direction of motion at using only the work–kinetic-
energy theorem? Explain.

31 •• You have a vacation cabin that has a nearby solar (black)
water container used to provide a warm outdoor shower. For a few
days last summer, your pump went out and you had to personally
haul the water up the from the pond to the tank. Suppose
your bucket has a mass of and holds of water when
it is full. However, the bucket has a hole in it, and as you moved it
vertically at a constant speed v, water leaked out at a constant rate.
By the time you reached the top, only of water remained.
(a) Write an expression for the mass of the bucket plus water as a
function of the height above the pond surface. (b) Find the work
done by you on the bucket for each of water delivered to 
the tank.

32 •• A block slides 1.5 m down a frictionless incline that
makes an angle of 60° with the horizontal. (a) Draw the free-body
diagram of the block, and find the work done by each force when
the block slides (measured along the incline). (b) What is the
total work done on the block? (c) What is the speed of the block
after it has slid if it starts from rest? (d) What is its speed after

if it starts with an initial speed of 2.0 m>s?1.5 m,
1.5 m,

1.5 m

6.0-kg

5.0 kg

5.0 kg

15.0 kg5.0 kg
4.0 m

x � 1.5 m
x � 1.5 m?12.0 m>s x � 3.0 m,x � 1.5 m.x � 3.0 m

FxC � 0.50Fx � Cx3,

1.5 kg.Fx

H � 2h.
h � mg>k.

3

1 2 3 4

2

1

–1

–2

–3

Fx, N

x, m

F I G U R E  6 - 3 1 Problem 28

33 •• ENGINEERING APPLICATION You are designing a jungle-
vine–swinging sequence for the latest Tarzan movie. To determine
his speed at the low point of the swing and to make sure it does not
exceed mandatory safety limits, you decide to model the system of
Tarzan vine as a pendulum. Assume your model consists of a
particle (Tarzan, mass ) hanging from a light string (the vine)
of length attached to a support. The angle between the vertical
and the string is written as (a) Draw a free-body diagram for the
object on the end of the string (Tarzan on the vine). (b) An infinites-
imal distance along the arc (along which the object travels) is 
Write an expression for the total work done on the particle as
it traverses that distance for an arbitrary angle (c) If the

and if the particle starts from rest at an angle 50°, deter-
mine the particle’s kinetic energy and speed at the low point of the
swing using the work–kinetic-energy theorem. 

34 •• Simple machines are frequently used for reducing the
amount of force that must be supplied to perform a task such as lift-
ing a heavy weight. Such machines include the screw, block-and-
tackle systems, and levers,
but the simplest of the sim-
ple machines is the inclined
plane. In Figure 6-32, you are
raising a heavy box to the
height of the truck bed by
pushing it up an inclined
plane (a ramp). (a) The me-
chanical advantage MA of the
inclined plane is defined as
the ratio of the magnitude of
the force it would take to lift
the block straight up (at constant speed) to the magnitude of the
force it would take to push it up the ramp (at constant speed). If the
plane is frictionless, show that where H is the
height of the truck bed and L is the length of the ramp. (b) Show that
the work you do by moving the block into the truck is the same
whether you lift it straight up or push it up the frictionless ramp.

35 •• Particle a has mass m, is initially located on the positive 
x axis at and is subject to a repulsive force from particle b.
The location of particle b is fixed at the origin. The force is in-
versely proportional to the square of the distance x between the
particles. That is, where A is a positive constant. Particle a
is released from rest and allowed to move under the influence of the
force. Find an expression for the work done by the force on a as a
function of x. Find both the kinetic energy and speed of a as x
approaches infinity.

36 • You exert a force of
magnitude F on the free end of
the rope. (a) If the load moves 
up a distance h, through what
distance does the point of ap-
plication of the force move? 
(b) How much work is done by the
rope on the load? (c) How much
work do you do on the rope?
(d) The mechanical advantage (de-
fined in Problem 34) of this system
is the ratio where is the
weight of the load. What is this
mechanical advantage?

FgF>Fg ,

Fx � A>x2,

Fx

Fxx � x0

MA � 1> sinu � L>H,

SSM

� � 7.0 m,
f.

dWtotal

�df.

f.
�

100 kg
�

H

L
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F

Fg

load
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SCALAR (DOT) PRODUCTS

37 • What is the angle between the vectors and if

38 • Two vectors and each have magnitudes of and
the angle between their directions is 60°. Find 

39 • Find for the following vectors: (a)
(b) and (c)

40 • Find the angles between the vectors and given:
(a) (b)
and (c)

41 • A particle is given a displacement of 
During the displacement, a con-

stant force acts on the particle.
(a) Find the work done by for this displacement. (b) Find the com-
ponent of in the direction of this displacement.

42 •• (a) Find the unit vector that is in the same direction as the
vector (b) Find the component of the vec-
tor in the direction of the vector

43 •• (a) Given two nonzero vectors and show 
that if then (b) Given a vector

find a vector in the xy plane that is perpendicular
to and has a magnitude of 10. Is this the only vector that
satisfies the specified requirements? Explain. 

44 •• Unit vectors and are in the xy plane. They make
angles of and respectively, with the axis. (a) Use
trigonometry to find the x and y components of the two 
vectors directly. (Your answer should be in terms of the angles.)
(b) By considering the scalar product of and show that

45 •• In Chapter 8, we shall introduce a new vector for a particle,
called its linear momentum, symbolized by Mathematically, it is re-
lated to the mass m and velocity of the particle by (a) Show 

that the particle’s kinetic energy K can be expressed as 

(b) Compute the linear momentum of a particle of mass that is
moving at a speed of at an angle of 25° clockwise from the 
axis in the xy plane. (c) Compute its kinetic energy using both 

and and verify that they give the same result.

46 ••• (a) Let be a constant vector in the xy plane with its tail
at the origin. Let be a vector in the xy plane that satis-
fies the relation Show that the points with coordinates
(x, y) lie on a straight line. (b) If find the slope and y
intercept of the line. (c) If we now let and be vectors in three-
dimensional space, show that the relation specifies a plane.

47 ••• A particle moves in a circle that is centered at the 
origin and the magnitude of its position vector is constant. 
(a) Differentiate with respect to time to show
that and therefore (b) Differentiate with
respect to time and show that , and therefore

(c) Differentiate with respect to time to show
that and therefore 

WORK AND POWER

48 • Force A does of work in Force B does 
of work in Which force delivers greater power, A or B?
Explain.

5.0 s.
3.0 J10 s.5.0 J

SSMat � dv>dt.aS # vn � dv>dt, vS # vS � v2ar � �v2>r. aS # rS � v2 � 0
vS # rS � 0vS ⊥ rS.vS # rS � 0,

rS # rS � r2 � constant
rS

A
S # rS � 1

rSA
S

A
S

� 2in � 3jn,
A
S # rS � 1.
rS � xin � yjn
A
S

K �
pS # pS

2m
K �

1
2
mv2

�x15m>s 2.5kg

K �
pS # pS

2m
.

pS � mvS.vS
pS.

cos (u1 � u2) � cosu1 cosu2 � sinu1 sinu2 .
Bn ,An

�xu2 ,u1

BnAn
SSM
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S
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S
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S
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S
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S
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S
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S
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49 • MULTISTEP A single force of in the direction
acts on an object. (a) If the object starts from rest at at
time write an expression for the power delivered by this force
as a function of time. (b) What is the power delivered by this force
at time 

50 • Find the power delivered by a force acting on a 
particle that moves with a velocity where (a)

and (b)
and and (c)
and

51 •• ENGINEERING APPLI-

CATION You are in charge of in-
stalling a small food-service ele-
vator (called a dumbwaiter in the
food industry) in a campus cafe-
teria. The elevator is connected
by a pulley system to a motor, as
shown in Figure 6-34. The motor
raises and lowers the dumb-
waiter. The mass of the dumb-
waiter is In operation, it
moves at a speed of 
upward, without accelerating
(except for a brief initial period,
which we can neglect, just after
the motor is turned on). Electric
motors typically have an effi-
ciency of 78%. If you purchase a motor with an efficiency of 78%,
what minimum power rating should the motor have? Assume that
the pulleys are frictionless. 

52 •• A cannon placed at the edge of a cliff of height H fires a
cannonball directly upward with an initial speed The cannon-
ball rises, falls back down (missing the cannon by a small margin),
and lands at the foot of the cliff. Neglecting air resistance, calculate
the velocity as a function of time, and show explicitly that the
integral of over the time that the cannonball spends in flight
is equal to the change in the kinetic energy of the cannonball over
the same time.

53 •• A particle of mass m moves from rest at under 
the influence of a single constant force Show that the power
delivered by the force at any time t is

54 •• A box is being lifted by means of a light rope that
is threaded through a single, light, frictionless pulley that is at-
tached to the ceiling. (a) If the box is being lifted at a constant speed
of what is the power delivered by the person pulling on the
rope? (b) If the box is lifted, at constant acceleration, from rest on the
floor to a height of above the floor in what average
power is delivered by the person pulling on the rope?

CENTER OF MASS WORK 
AND CENTER OF MASS
TRANSLATIONAL KINETIC ENERGY

55 ••• ENGINEERING APPLICATION, CONTEXT-RICH, SPREAD-

SHEET You have been asked to test drive a car and study its actual
performance relative to its specifications. This particular car’s en-
gine is rated at This value is the peak rating, which means
that it is capable, at most, of providing energy at the rate of 
to the drive wheels. You determine that the car’s mass (including
test equipment and driver on board) is (a) When cruising
at a constant your onboard engine-monitoring computer
determines that the engine is producing From previous
coasting experiments, it has been determined that the coefficient of

13.5 hp.
55.0 mi>h,

1220 kg.

164 hp
164 hp.

0.42 s,1.5 m

2.0 m>s,

7.5-kg
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F
S

.
t � 0

F
S
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# vS

vS

v0 .

SSM
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vS � (2.0 m>s)in � (3.0 m>s)jn.
F
S
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F
S

� (6.0 N)in � (5.0 N)jnvS � (6.0 m>s)in;(4.0 N)in � (3.0 N)kn
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S
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F
S

t � 3.0s?
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�x5.0 N
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rolling friction on the car is 0.0150. Assume that the drag force on
the car varies as the square of the car’s speed. That is, 
(a) What is the value of the constant, C? (b) Considering the peak
power, what is the maximum speed (to the nearest ) that you
would expect the car could attain? (This problem can be done by
hand analytically, but it can be done more easily and quickly using
a graphing calculator or spreadsheet.)

56 •• CONTEXT-RICH, CONCEPTUAL As you drive your car
along a country road at night, a deer jumps out of the woods and
stands in the middle of the road ahead of you. This occurs just as
you are passing from a zone to a zone. At the

speed-limit sign, you slam on the car’s brakes, causing
them to lock up, and skid to a stop inches from the startled deer. As
you breathe a sigh of relief, you hear the sound of a police siren. The
policeman proceeds to write you a ticket for driving in

zone. Because of your preparation in physics, you are able
to use the skid marks that your car left behind as evi-
dence that you were not speeding. What evidence do you present?
In formulating your answer, you will need to know the coefficient
of kinetic friction between automobile tires and dry concrete (see
Table 5-1).

GENERAL PROBLEMS

57 • APPROXIMATION In February 2002, a total of 60.7 bil-
lion of electrical energy was generated by nuclear power
plants in the United States. At that time, the population of the
United States was about 287 million people. If the average
American has a mass of and if 25% of the entire energy out-
put of all nuclear power plants was diverted to supplying energy
for a single giant elevator, estimate the height h to which the 
entire population of the country could be lifted by the elevator. In
your calculations, assume also that g is constant over the entire
height h.

58 • ENGINEERING APPLICATION One of the most powerful
cranes in the world operates in Switzerland. It can slowly raise a

load to a height of (Note that tonne is
sometimes called a metric ton. It is a unit of mass, not force, and is
equal to ) (a) How much work is done by the crane during
this lift? (b) If it takes to lift this load to this height at con-
stant velocity, and the crane is 20 percent efficient, find the total
(gross) power rating of the crane.

59 • In Austria, there once was a ski lift. It took
about for a gondola to travel up its length. If there were 12
gondolas going up, each with a cargo of mass and if there
were 12 empty gondolas going down, and the angle of ascent was
30°, estimate the power P the engine needed to deliver in order to
operate the ski lift.

60 •• ENGINEERING APPLICATION To complete your master’s
degree in physics, your advisor has you design a small, linear
accelerator capable of emitting protons, each with a kinetic energy
of (The mass of a single proton is ) In
addition, protons per second must reach the target at the
end of the accelerator. (a) What the average power
must be delivered to the stream of protons? (b) What force (assumed
constant) must be applied to each proton? (c) What speed does each
proton attain just before it strikes the target, assuming the protons
start from rest?

61 ••• The four strings pass over the bridge of a violin, as
shown in Figure 6-35. The strings make and angle of 72.0° with the
normal to the plane of the instrument on either side of the bridge.
The resulting total normal force pressing the bridge into the violin
is The length of the strings from the bridge to the peg
to which each is attached is (a) Determine the tension in the32.6 cm.

1.00 � 103 N.

1.50-m-long
1.00 � 109

1.67 � 10�27 kg.10.0 keV.

550 kg,
60min

5.6-km-long

1.00 min
1000 kg.

1 t � one12.0 m.6000-t

60 kg,

kW # h

25-m-long
50-mi>h 56 mi>h
50-mi>h 50-mi>h55-mi>h

1 mi>hFd � Cv2.

72.0°
72.0°4.00 mm

18.0° 18.0°
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strings, assuming the tension is the same for each string. (b) One of
the strings is plucked out a distance of as shown. Make a
free-body diagram showing all of the forces acting on the segment
of the string in contact with the finger (not shown), and determine
the force pulling the segment back to its equilibrium position.
Assume the tension in the string remains constant during the pluck.
(c) Determine the work done on the string in plucking it out that
distance. Remember that the net force pulling the string back to its
equilibrium position is changing as the string is being pulled out,
but assume that the magnitudes of the tension forces remain
constant.

62 •• The magnitude of the single force acting on a particle of
mass m is given by where b is a constant. The particle starts
from rest. After it travels a distance L, determine its (a) kinetic
energy and (b) speed.

63 •• A single horizontal force in the direction acts on a
cart of mass m. The cart starts from rest at and the speed of
the cart increases with x as where C is a constant. (a) Find
the force acting on the cart as a function of x. (b) Find the work
done by the force in moving the cart from to 

64 ••• A force is applied to a particle ini-
tially at rest in the xy plane. Find the work done by this force on
the particle and the final speed of the particle as it moves along
a path that is (a) in a straight line from point to
point and (b) in a straight line from point

to point The given force is the only
force doing work on the particle.

65 •• A particle of mass m moves along the x axis. Its position
varies with time according to where x is in meters
and t is in seconds. Find (a) the velocity and acceleration of the par-
ticle as functions of t, (b) the power delivered to the particle as a
function of t, and (c) the work done by the net force from to

66 •• A particle starts from rest at and
moves along the x axis under the influence of a single force

where is in newtons and x is in meters.
(a) Find the work done by the force as the particle moves from

to (b) Find the power delivered to the parti-
cle as it passes through the point 

67 •• The initial kinetic energy imparted to a bullet
is (a) Assuming it accelerated down a rifle bar-
rel, estimate the average power delivered to it during the firing.
(b) Neglecting air resistance, find the range of this projectile when
it is fired at an angle such that the range equals the maximum
height attained.

68 •• The force acting on a particle is shown as a
function of x in Figure 6-36. (a) From the graph, calculate the work
done by the force when the particle moves from to the
following values of x: �2.00,�1.00,�1.00,�2.00,�3.00,�4.00,

x � 0.00

0.500-kgFx

1.00-m-long1200 J.
0.0200-kg

x � 3.0 m.
x � 3.0 m.x � 0.050 m

FxFx � 6.0 � 4.0x � 3.0x2,

x � 0.050 m3.0-kg

t � t1 .
t � 0

x � 2t3 � 4t2,

(5.0 m, 6.0 m).(2.0 m, 2.0 m)
(2.0 m, 7.0 m)

(2.0 m, 2.0 m)

F
S

� (2.0 N>m2)x2in
SSMx � x1 .x � 0

v � Cx,
x � 0,
�x

F � bx2,

4.00 mm,
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and (b) If it starts with a velocity of in the
direction, how far will the particle go in that direction before

stopping?

69 •• (a) Repeat Problem 68(a) for the force shown in
Figure 6-37. (b) If the object starts at the origin moving to the right
with a kinetic energy of how much kinetic energy does it
have at x � 4.00 m.

25.0 J,

Fx

�x
2.00 m>s�4.00 m.�3.00,

74 •• Two horses pull a large crate at constant speed across a
barn floor by means of two light steel cables. A large box of mass

sits on the crate (Figure 6-40). As the horses pull, the cables
are parallel to the horizontal floor. The coefficient of friction be-
tween the crate and the barn floor is 0.25. (a) What is the work done
by each horse if the box is moved a distance of (b) What is the
tension in each cable if the angle between each cable and the direc-
tion the crate moves is 15°? 

25m?

250 kg

x, m

Fx, N

3

321

2

1

–1

–2

4

–1–2–3–4 40
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70 •• A box of mass M is at rest at the bottom of a frictionless
inclined plane (Figure 6-38). The box is attached to a string 
that pulls with a constant tension T. (a) Find the work done by 
the tension T as the box moves through a distance x along
the plane. (b) Find the speed of the box as a function of x.
(c) Determine the power delivered by the tension in the string as
a function of x.

71 ••• A force acting on a particle in the xy plane at
coordinates (x, y) is given by where is a
positive constant and r is the distance of the particle from the
origin. (a) Show that the magnitude of this force is and that its
direction is perpendicular to (b) Find the work
done by this force on a particle that moves once around a circle
of radius that is centered at the origin. 

72 ••• A force acting on a particle in the xy plane at
coordinates (x, y) is given by where b is a
positive constant and r is the distance from the origin. (a) Show
that the magnitude of the force is inversely proportional to 
and that its direction is antiparallel (opposite) to the radius vec-
tor (b) If find the work done by this
force as the particle moves from to 
along a straight-line path. (c) Find the work done by this force
on a particle moving once around a circle of radius 
that is centered at the origin. 

73 ••• A block of mass m on a horizontal frictionless tabletop is
attached by a swivel to a spring that is attached to the ceiling
(Figure 6-39). The vertical distance between the top of the block and
the ceiling is and the horizontal position is x. When the block is
at the spring, which has force constant k, is completely un-
stressed. (a) What is the x component of the force on the block
due to the spring, as a function of x? (b) Show that is proportional
to for sufficiently small values of (c) If the block is released
from rest at where what is its speed when it
reaches x � 0?

ƒ x0 ƒ V y0 ,x � x0 ,
ƒ x ƒ .x3

Fx

Fx ,
x � 0,

y0 ,

r � 7.0 m

(5.0 m, 0.0 m)(2.0 m, 0.0 m),
b � 3.0 N # m2,rS � xin � yjn.

r2,

F
S

� �(b>r3)(xin � yjn),
2.0-kg

SSM5.0m

rS � xin � yjn.
F0

F0F
S

� (F0>r)(yin � xjn),

x, m

Fx, N

321

2

1

–1

–2

–1–2–3–4 4
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M

T

θ
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x

F

y0
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f
T

T

θ
θ
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Conservation of Energy

7-1 Potential Energy

7-2 The Conservation of Mechanical Energy

7-3 The Conservation of Energy

7-4 Mass and Energy

7-5 Quantization of Energy

W
hen work is done by one system on another, energy is transferred be-
tween the two systems. For example, when you pull a sled, energy from
you goes partly into the kinetic energy of the sled and partly into the
thermal energy that arises from the friction between the sled and the
snow. At the same time, the internal chemical energy of your body
decreases. The net result is the transfer of the internal chemical energy

of your body to the external kinetic energy of the sled plus the thermal energy of
the sled and the snow. This transfer of energy highlights one of the most important
principles in science, the law of conservation of energy, which states that the total en-
ergy of a system and its surroundings does not change. Whenever the energy of a
system changes, we can account for the change by the appearance or disappear-
ance of energy somewhere else.

In this chapter, we continue the study of energy begun in Chapter 6 by de-
scribing and applying the law of conservation of energy and examining the
energy associated with several different states, including potential energy
and thermal energy. We also discuss that energy changes for a system are
often not continuous, but occur in discrete “bundles” or “lumps” called
quanta. Although a quantum of energy in a macroscopic system typically is
so small that it goes unnoticed, its presence has profound consequences for
microscopic systems such as atoms and molecules. 

7
C H A P T E R

How can we use the concept of

energy transformation to determine

how high the cars must be when

they start their descent for them to

complete the loop-the-loop? 

(See Example 7-8.)

?

AS A ROLLER COASTER RUSHES
THROUGH ITS TWISTS AND TURNS,
ENERGY IS TRANSFERRED IN DIFFERENT
WAYS. ELECTRICAL POTENTIAL ENERGY
PURCHASED FROM THE POWER
COMPANY IS TRANSFORMED INTO
GRAVITATIONAL POTENTIAL ENERGY AS
THE CARS AND PASSENGERS ARE
RAISED TO THE HIGHEST POINT OF THE
RIDE. AS THE ROLLER-COASTER CARS
PLUMMET DOWN THE STEEP INCLINE,
THIS GRAVITATIONAL POTENTIAL
ENERGY IS TRANSFORMED INTO KINETIC
ENERGY AND THERMAL ENERGY—
INCREASING THE TEMPERATURE OF
BOTH THE CARS AND THEIR
SURROUNDINGS BY A SMALL AMOUNT.
(Michael S. Lewis/Corbis.)
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* Systems of particles are discussed more thoroughly in Chapter 8.

7-1 POTENTIAL ENERGY

In Chapter 6, we showed that the total work done on a particle equals the change
in its kinetic energy. However, sometimes a particle is part of a system consisting of
two or more particles, and we need to examine the external work done on the sys-
tem.* Often, the energy transferred to such a system by the work done by external
forces on the system does not go into increasing the total kinetic energy of the sys-
tem. Instead, the energy transferred is stored as potential energy—energy associ-
ated with the relative positions of different parts of the system. The configuration
of a system is the way the different parts of the system are positioned relative to
each other. Potential energy is an energy associated with system configuration,
whereas kinetic energy is an energy associated with motion.

For example, consider a pile driver whose driver is suspended some distance h
above a pile (a long, slender column). When the driver is released, it falls—gaining
kinetic energy until it smashes into the pile, driving the pile into the ground. The
driver is then raised back up to its initial height and released again. Each time the
driver is raised from its lowest to its highest position, a gravitational force does
work on it given by where m is the mass of the driver. A second force, the
force provided by the lifting agent, acts on the driver. As the driver is raised, the
force exerted by the lifting agent does work on the driver that has a positive value.
During the raising of the driver, these two work values sum to zero. We know they
sum to zero because during the lift, the driver can be modeled as a particle, so the
work–kinetic-energy theorem (Equation 6-8) tells us that the total work done on
the driver is equal to the change in its kinetic energy—which is zero.

Consider lifting a barbell of mass m to a height h. The barbell starts at rest and
ends at rest, so the net change in the kinetic energy of the barbell is zero. The bar-
bell can be modeled as a particle during the lift, so the work–kinetic-energy theo-
rem tells us that the total work done on the barbell is zero. There are two forces on
the barbell, the force of gravity and the force of your hands. The gravitational force
on the barbell is and the work done on the barbell by this force during the lift
is Because we know that the total work done on the barbell is zero, it fol-
lows that the work done on the barbell by the force of your hands is 

Consider the barbell and planet Earth to be a system of two particles (Figure 7-1).
(You are not part of this system.) The external forces acting on the Earth–barbell
system are the three forces exerted on it by you. These forces are the contact force
by your hands on the barbell, the contact force by your feet on the floor, and the grav-
itational force by you on Earth. The gravitational force on Earth by you is equal and
opposite to the gravitational force on you by Earth. (The gravitational forces you
and the barbell attract each other with are negligible.) The barbell moves through
a displacement of one or two meters, but displacements of the floor and planet
Earth are negligibly small, so the force exerted on the barbell by your hands is the
only one of the three external forces that does work on the Earth–barbell system.
Thus, the total work done on this system by all three external forces is (the
work done on the barbell by your hands). The energy transferred to the system by
this work is stored as gravitational potential energy, energy associated with the posi-
tion of the barbell relative to Earth (energy associated with the height of the bar-
bell above the floor).

Another system that stores energy associated with its configuration is a spring.
If you stretch or compress a spring, energy associated with the length of the spring
is stored as elastic potential energy. Consider the spring shown in Figure 7-2 as the
system. You compress the spring, pushing it with equal and opposite forces 
and These forces sum to zero, so the net force on the spring remains zero. Thus,
there is no change in the kinetic energy of the spring. The energy transfer associ-
ated with the work you do on the spring is stored not as kinetic energy, but as

F
S

2 .
F
S

1

�mgh

�mgh.
�mgh.

mgS,

�mgh,

Fn on Earth by you 

Fn on Earth by you 

Fg on Earth by you

System
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F1

ΔO1 ΔO2

F2

F I G U R E  7 - 2 The spring is compressed
by external forces and Both forces do
work on the spring as they compress it. 
These work values are positive, so the elastic
potential energy of the spring increases as it is
compressed.

F
S

2 .F
S
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elastic potential energy. The configuration of this system has been changed, as ev-
idenced by the change in the length of the spring. The total work done on the
spring is positive because both and do positive work. (The work done by 
is positive because both and the displacement are in the same direction. 
The same can be said for and )

CONSERVATIVE AND NONCONSERVATIVE FORCES

When you ride a ski lift to the top of a hill of height h, the work done on you by
gravity is where m is your mass. When you ski down the hill to the bottom,
the work done by gravity is independent of the shape of the hill (as you saw
in Example 6-12). The total work done on you by gravity during the round-trip up
and down the hill is zero and is independent of the path you take. In a situation
such as this, where the total work done on an object by a force depends on only the
initial and final positions of the object, and not the path taken, the force doing the
work is called a conservative force.

The work done by a conservative force on a particle is independent of the
path taken as the particle moves from one point to another.

DEFINITION — CONSERVATIVE FORCE

From Figure 7-3 we see that this definition implies that:

A force is conservative if the work it does on a particle is zero when the
particle moves around any closed path, returning to its initial position.

ALTERNATIVE DEFINITION — CONSERVATIVE FORCE

In the ski-lift example, the force of gravity, exerted by Earth on you, is a conserva-
tive force, because the total work done by gravity on you during the round-trip is
zero, independent of the path you take. Both the gravitational force on an object
and the force exerted by a spring of negligible mass on an object are conservative
forces. (If a spring’s mass is negligible then its kinetic energy is also negligible.)
Any spring in this book has negligible mass unless otherwise stated.

Not all forces are conservative. A force is said to be nonconservative if it does
not meet the definition for conservative forces. Suppose, for example, that you
push a block across a table along a straight line from point A to point B and back
again, so that the block ends up at A, its original position. Friction opposes the
block’s motion, so the force you push on the block with is in the direction of mo-
tion and the value of the work done by the push is positive on both legs of the
round-trip. The total work done by the push does not equal zero. Thus, the push
is an example of a nonconservative force.

As another example, consider the force a donkey exerts on a pole as the don-
key pulls the pole around the circle at constant speed. As the donkey walks, is
continuously doing work whose value is positive. The point of application (point P)
of returns to the same position each time the donkey completes one pass around
the circle, so the work done by is not equal to zero each time P completes one
trip around a closed path (the circle). We can thus conclude that is a nonconser-
vative force.

If the work done around any particular closed path is not zero, we can con-
clude that the force is nonconservative. However, we can conclude the force is
conservative only if the work is zero around all possible closed paths. Because
there are infinitely many possible closed paths, it is impossible to calculate the
work done for each one. Therefore, finding a single closed path along which the
work done by a particular force is not zero is sufficient for showing that the force
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Path B

F I G U R E  7 - 3 Two paths in space
connecting the points 1 and 2. If the work
done by a conservative force along path A
from 1 to 2 is the work done on the
return trip along path B must be because
the roundtrip work is zero. When traversing
path B from 1 to 2, the force is the same at
each point, but the displacement is opposite to
that when going on path B from 2 to 1. Thus,
the work done along path B from 1 to 2 must
also be W. It follows that the work done as a
particle goes from point 1 to 2 is the same
along any path connecting the two points.

�W,
�W,

F

P

A machine for pumping water. The donkey
exerts force on the pole at P, the point of
application of the force. (O. Alamany and
E. Vicens/Corbis.)
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Example 7-1 Integral Around a Closed Path

To calculate the work done by a force around a closed curve (path) C, we evaluate
where the circle on the integral sign means that the integration is evaluated for

one complete trip around C. For calculate for the path C shown in
Figure 7-4.

PICTURE The path C consists of four straight segments. Evaluate on each
segment and calculate separately for each of the four segments.� F

S # d�
S

d�
S

� dxin � dyjn

ACF
S # d�

S
F
S

� Axin,
ACF

S # d�
S

,
F
S

y

x
0

0
d�1

C3 C2

C

C1
C4

d�3

d�2

d�4

ymax

xmax
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SOLVE

1. The integral around C is equal
to the sum of the integrals
along the segments that make
up C:

� �
C3

F
S # d�

S

3 � �
C4

F
S # d�

S

4

CC F
S # d�

S
� �

C1

F
S # d�

S

1 � �
C2

F
S # d�

S

2

2. On so d�
S

1 � dxin:C1 , dy � 0, �
C1

F
S # d�

S

1 � �
xmax

0
Axin # dxin � A�

xmax

0
xdx � 1

2Ax2
max

3. On and 

so and F
S

� Axmax in:d�
S

2 � dyjn
x � xmax ,C2 , dx � 0

( because and are perpendicular.)jninin # jn � 0

�
C2

F
S # d�

S

2 � �
ymax

0
Axmax in # dyjn � Axmax �

ymax

0
in # jn dy � 0

4. On so d�
S

3 � dxin:C3 , dy � 0, �
C3

F
S # d�

S

3 � �
0

xmax

Axin # dxin � �A�
xmax

0
x dx � � 1

2Ax2
max

5. On and so
and F

S
� 0:d�

S

4 � dyjn
x � 0,C4 , dx � 0 �

C4

F
S # d�

S

4 � �
0

y
max

0in # dyjn � 0

6. Add the step-2, -3, -4, and -5
results:

0CC F
S # d�

S
� 1

2Ax2
max � 0 � 1

2Ax2
max � 0 �

CHECK The force is described by Hooke’s law (the force for a spring). Thus, it is conserva-
tive, so the integral of this force around any closed path is zero.

TAKING IT FURTHER The negative sign in step 4 appeared because the integration limits
were reversed.

PRACTICE PROBLEM 7-1 For calculate for the path C shown in 
Figure 7-4.

POTENTIAL-ENERGY FUNCTIONS

The work done by a conservative force on a particle does not depend on the path,
but it does depend on the endpoints of the path. We can use this property to define
the potential-energy function U that is associated with a conservative force. Let us
return to the ski-lift example once again. Now consider yourself and Earth to be a
two-particle system. (The ski lift is not part of this system.) When a ski lift raises you
to the top of the hill, it does work mgh on the you–Earth system. This work is
stored as the gravitational potential energy of the you–Earth system. When you
ski down the hill, this potential energy is converted to the kinetic energy of your

ACF
S # d�

S
F
S

� Bxyin,

is nonconservative, but is of limited use when investigating whether a given
force is conservative. In more advanced physics courses, more sophisticated
mathematical methods for evaluating whether a force is conservative are
studied.
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We are free to choose U to be zero
at any convenient reference point.!

motion. Note that when you ski down the hill, the work done by gravity decreases
the potential energy of the system. We define the potential-energy function U such
that the work done by a conservative force equals the decrease in the potential-
energy function:

or

7-1a

DEFINITION — POTENTIAL-ENERGY FUNCTION

This equation gives the change in potential energy due to a change in the configu-
ration of the system as an object moves from point 1 to point 2.

For an infinitesimal displacement, the change in potential energy is given by

7-1b

Gravitational potential energy Using Equation 7-1b we can calculate the
potential-energy function associated with the gravitational force near the surface
of Earth. For the force we have

where we have exploited the fact that and Integrating,
we obtain

7-2

GRAVITATIONAL POTENTIAL ENERGY NEAR EARTH’S SURFACE

where the arbitrary constant of integration, is the value of the potential energy
at Because only a change in the potential energy is defined, the actual value
of U is not important. For example, if the gravitational potential energy of the
Earth–skier system is chosen to be zero when the skier is at the bottom of the hill,
its value when the skier is at a height h above that level is mgh. Or we could choose
the potential energy to be zero when the skier is at point P halfway down the ski
slope, in which case its value at any other point would be mgy, where y is the
height of the skier above point P. On the lower half of the slope, the potential
energy would then be negative.

PRACTICE PROBLEM 7-2

A window washer stands on a platform above the ground. What is the po-
tential energy U of the window-washer–Earth system if (a) U is chosen to be zero on the
ground, (b) U is chosen to be zero above the ground, and (c) U is chosen to be zero

above the ground?10 m
4.0 m

8.0 m55-kg

y � 0.
U0 ,

U � U0 � mgy

U � �mgdy � mgy � U0

jn # jn � 1.jn # in � jn # kn � 0

dU � �F
S # d�S � �(�mgjn) # (dxin � dyjn � dzkn) � �mgdy

F
S

� �mgjn,

dU � �F
S # d�S

d�
S

,

¢U � U2 � U1 � ��
2

1
F
S # d�S

W � �
2

1
F
S # d�S � �¢U

See

Math Tutorial for more

information on 

Integrals
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SOLVE

1. Make a sketch showing the bottle on the shelf and
again when it is about to impact the floor 
(Figure 7-5). Choose the potential energy of the
bottle–Earth system to be zero when the bottle is
on the floor, and place a y axis on the sketch with
the origin at floor level:

2. The only force doing work on the falling bottle is
the force of gravity, so Apply the
work–kinetic-energy theorem to the falling bottle:

Wtotal � Wg .
Wtotal � Wg � ¢K

3. The gravitational force exerted by Earth on the
falling bottle is internal to the bottle–Earth
system. It is also a conservative force, so the work
done by it equals the negative of the change in the
potential energy of the system:

� mg(yi � yf) � mg(h � 0) � mgh

Wg � �¢U � �(Uf � Ui) � �(mgyf � mgyi)

h

mg

y

0

v
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4. Substitute the step-3 result into the step-2 result
and solve for the final kinetic energy. The original
kinetic energy is zero:

6.01 J� 6.01 N # m �

� 0 � (0.350 kg)(9.81 N>kg)(1.75 m)

Kf � Ki � mgh

mgh � Kf � Ki

mgh � ¢K

Example 7-2 A Falling Bottle

A bottle falls from rest from a shelf that is above the floor. Find the potential
energy of the bottle–Earth system when the bottle is on the shelf and just before impact with
the floor. Find the kinetic energy of the bottle just before impact.

PICTURE The work done by Earth on the bottle as it falls equals the negative of the change
in the potential energy of the bottle–Earth system. Knowing the work, we can use the
work–kinetic-energy theorem to find the kinetic energy.

1.75 m0.350-kg

CHECK The units of the answer in step 4 are units of energy, because 

TAKING IT FURTHER Potential energy is associated with the configuration of a system of
particles, but we sometimes have systems, such as the bottle–Earth system in this example,
in which only one particle moves (Earth’s motion is negligible). For brevity, then, we some-
times refer to the potential energy of the bottle–Earth system as simply the potential energy
of the bottle.

The gravitational potential energy of a system of particles in a uniform gravita-
tional field is the same as if the entire mass of the system were concentrated at the
system’s center of mass. For such a system, let be the height of the ith particle
above some reference level. The gravitational potential energy of the system is then

where the sum is over all the particles in the system. By definition of the center of
mass, the height of the center of mass of the system is given by

Mhcm � a
i

mihi ,        whereM � a
i

mi

Ug � a
i

mighi � ga
i

mihi

hi

1 N # m � 1 J.
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Substituting for gives

7-3

GRAVITATIONAL POTENTIAL ENERGY OF A SYSTEM

Elastic potential energy Another example of a conservative force is that of a
stretched (or compressed) spring of negligible mass. Suppose you pull a block
attached to a spring from its equilibrium position at to a new position at

(Figure 7-6). The work done by the spring on the block is negative because
the force exerted by the spring on the block and the displacement of the block are
oppositely directed. If we then release the block, the force of the spring does posi-
tive work on the block as the block accelerates back toward its initial position. The
total work done on the block by the spring as the block moves from to

and then back to is zero. This result is independent of the size of 
(as long as the stretching is not so great as to exceed the elastic limit of the spring).
The force exerted by the spring is therefore a conservative force. We can calculate
the potential-energy function associated with this force from Equation 7-1b:

Then

where is the potential energy when that is, when the spring is unstressed.
Choosing to be zero gives

7-4

POTENTIAL ENERGY OF A SPRING

The formula for the potential energy of a spring requires that the spring
is relaxed if Thus, the location of the point where is not arbitrary
when using the potential energy function 

When we pull the block from to the agent doing the pulling
must exert an applied force on the block. If the block starts from rest at and
ends at rest at the change in its kinetic energy is zero. The work–energy
theorem then tells us that the total work done on the block is zero. That is,

or

The energy transferred from the agent doing the pulling to the block–spring sys-
tem is equal to and is stored as potential energy in the spring.

PRACTICE PROBLEM 7-3

A suspension spring on a Toyota Prius has a force constant of How much
energy is transferred to one of these springs when, starting from its relaxed length, it is
compressed 30.0 cm?

11,000 N>m.

Wapp

Wapp � �Wspring � ¢Uspring � 1
2 kx2

1 � 0 � 1
2 kx2

1

Wapp � Wspring � 0,

x � x1 ,
x � 0

x � x1 ,x � 0
U � 1

2 kx2.
x � 0x � 0.

U � 1
2 kx2

U � 1
2 kx2

U0

x � 0,U0

U � �kxdx �
1

2
kx2 � U0

dU � �F
S # d�S � �Fx dx � �(�kx)dx � �kxdx

x1x � 0,x � x1 ,
x � 0

x � x1

x � 0

Ug �Mghcm

©mihiMhcm

x

0 x1

Fapp

F I G U R E  7 - 6 The applied force pulls
the block to the right, stretching the spring 
by x1 .

Fapp
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Example 7-3 Potential Energy of a Basketball Player

A system consists of a basketball player, the rim of a basketball hoop, and Earth.
Assume that the potential energy of this system is zero when the player is standing on the
floor and the rim is horizontal. Find the total potential energy of this system when the player
is hanging on the front of the rim (much like that shown in Figure 7-7). Also, assume that the
center of mass of the player is above the floor when he is standing and above
the floor when he is hanging. The force constant of the rim is and the front of the
rim is displaced downward a distance of Assume the mass of the rim is negligible.

PICTURE When the player changes position from standing on the floor to hanging on
the rim, the total change in potential energy is the change in gravitational potential en-
ergy plus the change in elastic potential energy stored in the stressed rim, whose po-
tential energy can be measured just as if it were a spring: Choose 
above the floor as the reference point where Ug � 0.

0.80 mUs � 1
2 kx2.

15 cm.
7.2 kN>m 1.30 m0.80 m

110-kg

F I G U R E  7 - 7

(Elio Castoria/
APF/Getty
Images.)

y

cm

cm

k = 7.2 kN/m

0.80 m

ycm i = 0
m = 110 kg

ycm f

xi = 0 xf

0
1.30 m

F I G U R E  7 - 8 A basketball player jumps, grabs
hold of the rim, and dangles from it.

SOLVE

1. Sketch the system, first in the initial
configuration and again in the final
configuration (Figure 7-8):

2. The gravitational potential energy
reference point where is

above the floor. Thus, 
The initial total potential energy
equals zero:

Ugi � 0.0.80 m
Ug � 0

Ui � Ugi � Usi � 0

Usi � 1
2 kx2

i � 1
2 k(0)2 � 0

Ugi � mgycm i � mg(0) � 0

3. The total final potential energy is the
sum of final gravitational potential
energy and the final elastic potential
energy of the rim:

6.2 � 102 J� 540 N # m � 81 N # m �

� 1
2 (7.2 kN>m)(0.15 m)2

� (110 kg)(9.81 N>kg)(0.50 m)

Uf � Ugf � Usf � mgycmf � 1
2 kx2

f

CHECK The units check out if we use the definition of the joule. That definition is

TAKING IT FURTHER The front of the rim and player oscillate vertically immediately after
the player grabs. However, they eventually come to rest with the front of the rim 
below its initial position. The total potential energy is a minimum when the system is in
equilibrium (Figure 7-9). Why this is so is explained near the end of Section 7-2.

15 cm

1 J � 1 N # m.

x, m

 690

 670

 650

 630

 610
0.00 0.05 0.10 0.15 0.20

U, J

F I G U R E  7 - 9 The graph shows the total
potential energy as a function of
the downward displacement of the rim.

U � Ug � Us

PRACTICE PROBLEM 7-4 A block is hung vertically from a spring with a force con-
stant of (a) By how much is the spring stretched? (b) How much potential energy
is stored in the spring?

600 N>m.
3.0-kg
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7-2 THE CONSERVATION 
OF MECHANICAL ENERGY

We are now ready to look at the relationship between kinetic energy and potential
energy. Recall that the total work done on each particle in a system equals the
change in the kinetic energy of that particle, so the total work done by all the
forces equals the change in the total kinetic energy of the system 

7-5

Two sets of forces do work on a particle in a system: the external forces and the
internal forces. Each internal force is either conservative or nonconservative. The
total work done by all forces equals the work done by all external forces plus
the work done by all internal nonconservative forces plus that done by all
internal conservative forces 

Rearranging gives

The negative of the total work done by all the conservative internal forces 
equals the change in the potential energy of the system 

7-6

Substituting from Equations 7-5 and 7-6, we have

7-7

The right side of this equation can be simplified as

7-8

The sum of the kinetic energy and the potential energy is called the total
mechanical energy

7-9

DEFINITION — TOTAL MECHANICAL ENERGY

Combining Equations 7-8 and 7-9, and then substituting into Equation 7-7 gives

7-10

WORK-ENERGY THEOREM FOR SYSTEMS

The mechanical energy of a system of particles is conserved if
the total work done by all external forces and by all internal nonconservative forces
is zero.

7-11

CONSERVATION OF MECHANICAL ENERGY

This is conservation of mechanical energy, and is the origin of the expression
“conservative force.”

Emech � Ksys � Usys � constant

(Emech � constant)

Wext � ¢Emech � Wnc

Emech � Ksys � Usys

Emech :
UsysKsys

¢Ksys � ¢Usys � ¢(Ksys � Usys)

Wext � Wnc � ¢Ksys � ¢Usys

�Wc � ¢Usys

¢Usys

�Wc

Wext � Wnc � Wtotal � Wc

Wtotal � Wext � Wnc � Wc

Wc :
Wnc ,

Wext ,

Wtotal � a¢Ki � ¢Ksys

¢Ksys :Wtotal

¢Ki
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If is the initial mechanical energy of the system and
is the final mechanical energy of the system, conservation of me-

chanical energy implies that

7-12

In other words, when the mechanical energy of a system is conserved, we can re-
late the final mechanical energy of the system to the initial mechanical energy of
the system without considering the intermediate motion and the work done by the
forces involved. Therefore, conservation of mechanical energy allows us to solve
problems that might be difficult to solve using Newton’s laws directly.

APPLICATIONS

Suppose that you are on skis and, starting at rest from a height above the bottom
of a hill, you coast down the hill. Assuming that friction and air drag are negligi-
ble, what is your speed as you pass by a marker on the hill a height h above the
bottom of the hill? 

The mechanical energy of the Earth–skier system is conserved because the only
force doing work is the internal, conservative force of gravity. If we choose 
at the bottom of the hill, the initial potential energy is This energy is also the
total mechanical energy because the initial kinetic energy is zero. Thus,

As you pass the marker, the potential energy is mgh and the speed is v. Hence,

Setting we find

Solving for v gives

Your speed is the same as if you had undergone free-fall, falling straight down through
a distance However, by skiing down the hill, you travel a greater distance and
take more time than you would if you were in free-fall and falling straight down.

PROBLEM-SOLVING STRATEGY

Solving Problems Involving Mechanical Energy

PICTURE Identify a system that includes the object (or objects) of interest and
any other objects that interact with the object of interest by either a
conservative or a kinetic-frictional force.

SOLVE

1. Make a sketch of the system and include labels. Include a coordinate axis
(or axes) and show the system in its initial and final configurations.
(Showing an intermediate configuration is often helpful also.) Objects
may be represented as dots, just as is done in free-body diagrams.

2. Identify any external forces acting on the system that do work, and any
internal nonconservative forces that do work. Also identify any internal
conservative forces that do work.

3. Apply Equation 7-10 (the work–energy theorem for systems). For each
internal conservative force doing work use a potential-energy function to
represent the work done.

CHECK Make sure that you have accounted for the work done by all
conservative and nonconservative forces in determining your answer.

hi � h.

v � 22g (hi � h)

1
2mv2 � mgh � mghi

Emech f � Emech i ,

Emech f � Kf � Uf � 1
2mv2 � mgh

Emech i � Ki � Ui � 0 � mghi

mghi .
U � 0

hi

Emech f � Emech i    (orKf � Uf � Ki � Ui)

Emech f � Kf � Uf

Emech i � Ki � Ui
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Example 7-4 Kicking a Ball

Standing near the edge of the roof of a building, you
kick a ball with an initial speed of at an angle of 
above the horizontal. Neglecting effects due to air resistance,
find (a) how high above the height of the building the ball rises,
and (b) its speed just before it hits the ground.

PICTURE We choose the ball and Earth as the system. We con-
sider this system during the interval from just after the kick to
just before impact with the ground. No external forces do work
on the system, and no internal nonconservative forces do work,
so the mechanical energy of the system is conserved. At the top
of its flight, the ball is moving horizontally with a speed 
equal to the horizontal component of its initial velocity We
choose at the roof of the building.y � 0

vix .
vtop ,

60°vi � 16 m>s12-m-high

SOLVE

(a) 1. Make a sketch (Figure 7-10) of the trajectory. Include
coordinate axes and show the initial position of the ball
and its position at the top of its flight. Choose at
the roof of the building:

y � 0

2. Apply the work–energy equation for systems. Choose
the ball and Earth as the system. Following the kick and
before impact with the ground no external forces do
work and no nonconservative forces do work (we are
neglecting the effects of air resistance):

‹ Emech f � Emech i

0 � ¢Emech � 0

Wext � ¢Emech � Wnc

3. The gravitational force does work on the system. We
account for this work using the gravitational potential
energy function mgy: 1

2mv2
top � mghtop � 1

2mv2
i � 0

1
2mv2

top � mgytop � 1
2mv2

i � mgyi

Emech top � Emech i

4. Conservation of mechanical energy relates the height
above the roof of the building to the initial speed 

and the speed at the top of its flight vtop :
viytop

1
2mv2

top � mgytop � 1
2mv2

i � 0

1
2mv2

top � mgytop � 1
2mv2

i � mgyi

Emech top � Emech i

5. Solve for ytop : ytop �
v2

i � v2
top

2g

6. The velocity at the top of its flight equals the x
component of its initial velocity:

vtop � vix � vi cosu

7. Substitute the step-3 result into the step-2 result and
solve for ytop :

9.8 m�
(16 m>s)2(1 � cos2 60°)

2(9.81 m s2)
�

ytop �
v2

i � v2
top

2g
�
v2

i � v2
i cos2u

2g
�
v2

i (1 � cos2u)

2g

(b) 1. If is the speed of the ball just before it hits the ground
(where ), its energy is expressed:y � yf � �12 m
vf Emech f � 1

2mv2
f � mgyf

2. Set the final mechanical energy equal to the initial
mechanical energy:

1
2mv2

f � mgyf � 1
2mv2

i � 0

3. Solve for and set to find the final
velocity:

yf � �12 mvf ,

22 m>s�

� 2(16 m>s)2 � 2(9.81 m>s2)(�12 m)

vf � 2v2
i � 2gyf

CHECK We would expect that the higher the building, the greater the speed at impact. The
expression for in step 3 of Part (b) reflects this expectation.vf

vi = 16 m/s

vtop

60

12 m

y

x

F I G U R E  7 - 1 0
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Example 7-5 A Pendulum

A pendulum consists of a bob of mass m attached to a string of length L. The
bob is pulled aside so that the string makes an angle with the vertical, and
is released from rest. As it passes through the lowest point of the arc, find
expressions for (a) the speed of the bob, and (b) the tension in the string.
Effects due to air resistance are negligible.

PICTURE Let the system be the pendulum and Earth. The tension force 
is an internal nonconservative force acting on the bob. The rate at which 
does work is The other force acting on the bob is the gravitational 
force which is an internal conservative force. Use the work –
energy theorem for systems (Equation 7-10) to find the speed at the bottom
of the arc. The tension in the string is obtained using Newton’s second law.

mgS,
T
S # vS.

T
S
T
S

u0

SOLVE

(a) 1. Make a sketch of the system in its initial and final configurations
(Figure 7-11). We choose at the bottom of the swing and

at the initial position:y � h
y � 0

2. The external work done on the system equals the change in its
mechanical energy minus the work done by internal
nonconservative forces (Equation 7-10):

Wext � ¢Emech � Wnc

3. There are no external forces acting on the system. The tension
force is an internal nonconservative force:

Wnc � �
2

1
T
S # d�

S

Wext � 0

4. The displacement increment equals the velocity times the
time increment dt. Substitute into the step-3 result. The tension is
perpendicular to the velocity, so T

S # vS � 0:

d�
S

so Wnc � �
2

1
T
S # d�

S
� �

2

1
T
S # vS dt � 0

d�
S

� vS dt

5. Substitute for and in the step-2 result. The bob initially
is at rest:

WncWext

¢Emech � 0

0 � ¢Emech � 0

Wext � ¢Emech � Wnc

6. Apply conservation of mechanical energy. The bob initially 
is at rest:

1
2mv2

bot � 0 � 0 � mgh

1
2mv2

f � mgyf � 1
2mv2

i � mgyi

Emech f � Emech i

7. Conservation of mechanical energy thus relates the speed to
the initial height yi � h:

vbot
1
2mv2

bot � mgh

8. Solve for the speed vbot : vbot � 12gh

9. To express speed in terms of the initial angle we need to relate
h to This relation is illustrated in Figure 7-11:u0 .

u0 ,

so h � L � L cosu0 � L(1 � cosu0)

L � L cosu0 � h

10. Substitute this value for h to express the speed at the bottom in
terms of :u0

22gL (1 � cosu0)vbot �

(b) 1. When the bob is at the bottom of the circle, the forces on it are 
and Apply ©Fy � may :T

S
.

mgS T � mg � may

2. At the bottom, the bob has an acceleration in the centripetal
direction (toward the center of the circle), which is upward:

v2
bot >L � 2g (1 � cosu0)ay �

v2
bot

L
�

2 gL (1 � cosu0)

L

3. Substitute for in the Part-(b), step-1 result and solve for T:ay

(3 � 2 cosu0)mg�

� m3g � 2g (1 � cosu0)4T � mg � may � m (g � ay)

θL

mg

mg
v

T T T

L cos 0

θh = L − L cos 0

vbot

mg

θθ 0

F I G U R E  7 - 1 1

CHECK (1) The tension at the bottom is greater than the weight of the bob because the bob
is accelerating upward. (2) Step 3 in Part (b) shows that for the expected
result for a stationary bob hanging from a string.

T � mg,u0 � 0,



Example 7-6 A Block Pushing a Spring

A block on a frictionless horizontal surface is pushed against a spring
that has a force constant of compressing the spring by The
block is then released, and the force of the spring accelerates the block as the
spring decompresses. The block then glides along the surface and then up a
frictionless incline of angle How far up the incline does the block travel
before momentarily coming to rest?

PICTURE Let the system include the block, the spring, Earth, the horizontal
surface, the ramp, and the wall to which the spring is attached. After the block
is released there are no external forces on this system. The only forces that do
work are the force exerted by the spring on the block and the force of gravity,
both of which are conservative. Thus, the total mechanical energy of the sys-
tem is conserved. Find the maximum height h from the conservation of me-
chanical energy, and then the maximum distance up the incline s from

SOLVE

Cover the column to the right and try these on your own before looking at
the answers.

Steps Answers

sin45° � h>s.

45°.

20 cm.500 N>m,
2.0-kg

Try It Yourself

TAKING IT FURTHER (1) The rate at which a force does work is given by 
(Equation 6-22). Step 4 of Part (a) reveals that the rate at which the tension force is doing
work is zero. Any force that remains perpendicular to the velocity does zero work. (2) Step 8
of Part (a) shows that the speed at the bottom is the same as if the bob had dropped in free-
fall from a height h. (3) The speed of the bob at the bottom of the arc can also be found using
Newton’s laws directly, but such a solution is more challenging because the tangential ac-
celeration varies with position, and therefore with time, so the constant-acceleration for-
mulas do not apply. (4) If the string had not been included in the system then the would
equal the work done by the tension force and would equal zero because there would be
no internal nonconservative forces. The results would be identical.

Wnc

Wext

at

F
S # vS

The Conservation of Mechanical Energy S E C T I O N  7 - 2 | 213

1. Choose the block, the spring, Earth, the horizontal
surface, the ramp, and the wall to which the
spring is attached. Sketch the system with both the
initial and final configurations (Figure 7-12).

2. Apply the work-energy theorem for systems.
Following release no external forces act on the
system and no internal nonconservative forces do
work on the system: ‹ Emech f � Emech i

0 � ¢Emech � 0

Wext � ¢Emech � Wnc

3. Write the initial mechanical energy in terms of the
compression distance xi .

Emech i � Us i � Ug i � Ki � 1
2 kx2

i � 0 � 0

4. Write the final mechanical energy in terms of the
height h.

Emech f � Us f � Ug f � Kf � 0 � mgh � 0

5. Substitute into the step-3 result and solve for h.

h �
kx2

i

2mg
� 0.51 m

mgh � 1
2 kx2

i

6. Find the distance s from h and the angle of
inclination (Figure 7-13). 0.72 ms �

h � s � sinu

s
h

θ

F I G U R E  7 - 1 3

20 cm

m = 2.0 kgk = 500 N/m

45°

F I G U R E  7 - 1 2
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Example 7-7 Bungee Jumping

You jump off a platform above the Nevis River. After you have free-fallen
for the first the bungee cord attached to your ankles starts to stretch. (The un-
stretched length of the cord is ) You continue to descend another before
coming to rest. Assume that your mass is the cord follows Hooke’s law, and
the cord has negligible mass. What is your acceleration when you are momentar-
ily at rest at the lowest point in the jump? (Neglect air drag.)

PICTURE Choose as the system everything mentioned in the problem statement,
plus Earth. As you fall, your speed first increases, then reaches some maximum
value, and then decreases until it is again zero when you are at your lowest point.
Apply the work–energy theorem for systems. To find your acceleration at the bot-
tom we use Newton’s second law and Hooke’s law 

SOLVE

(Fx � �kx).(gFx � max)

100 kg,
80 m40 m.

40 m,
134 m

1. The system includes you, Earth and the cord. Sketch the
system showing the initial and final positions of the first

of descent, and again for the next of descent
(Figure 7-14). Include a y axis with up as the positive y
direction and with the origin at your final position (lowest).
Let be the length of the unstressed cord and let

be the maximum extension of the cord.L2 � 80m
L1 � 40m

80 m40 m

2. Apply the work–energy theorem for systems. There are no
external forces and no internal nonconservative forces
doing work: ‹ Emech f � Emech i

0 � ¢Emech � 0

Wext � ¢Emech � Wnc

3. Apply the step-2 result to the part of the descent that 
the cord is stretching. The extension of the cord is 
L2 � y:

1
2 kL2

2 � mgL2 � 1
2mv2

2

0 � 1
2 kL2

2 � 0 � mgL2 � 0 � 1
2mv2

2

mgy2 � 1
2 ky2

2 � 1
2mv2

2mgy3 � 1
2 k(L2 � y3)

2 � 1
2mv2

3 �

Ug3 � Us 3 � K3 � Ug 2 � Us 2 � K2

Emech 3 � Emech 2

4. To solve for k, we need to find the kinetic energy at the end
of the free-fall region. Apply the step-2 result again and
solve for the kinetic energy:

1
2mv2

2 � mgL1

mgL2 � 1
2mv2

2 � mg(L1 � L2) � 0

mgy2 � 1
2mv2

2 � mgy1 � 1
2mv2

1

Ug 2 � K2 � Ug 1 � K1

Emech 2 � Emech 1

CHECK The expression for h in step 5 is plausible. It tells us by inspection that increasing 
results in a larger maximum height, and using a larger mass results in a smaller maximum
height.

TAKING IT FURTHER (1) In this problem, the initial mechanical energy of the system is the
potential energy of the spring. This energy is transformed first into kinetic energy and then
into gravitational potential energy. (2) The normal force on the block always acts at right
angles to the velocity, so at all times.

PRACTICE PROBLEM 7-5 Find the speed of the block just as it leaves the spring.

PRACTICE PROBLEM 7-6 How much work did the normal force on the block do?

F
S

n
# vS � 0

F
S

n

xi

y2 = 0

v2 = 0

y

y1

y0

v1

v

m

L2 − y

L2y

y

v0 = 0
L1

F I G U R E  7 - 1 4
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5. Substitute the step-4 result into the step-3 result and solve
for k:

k �
2mg (L2 � L1)

L2
2

1
2 kL2

2 � mgL2 � mgL1

6. Apply Newton’s second law when you are at the lowest
point. First we construct a free-body diagram (Figure 7-15): 

kL2

mg

y

0

F I G U R E  7 - 1 5

7. Apply Newton’s second law and solve for the acceleration.
Use the expression for k from step 5:

2.0g� g a1 � 2
L1

L2

b � g a1 � 2
40
80
b �

ay � �g � k
L2

m
� �g �

2mg(L2 � L1)

L2
2

L2

m

�mg � kL2 � may

©Fy � may

CHECK We expect the acceleration at the bottom to be upward (the direction) and our
result is in agreement with that. Any time the velocity reverses directions, immediately
following the reversal the velocity vector and the acceleration vector are in the same direction.

PRACTICE PROBLEM 7-7 As you fall, you gain speed until the upward pull of the cord
equals the downward pull of gravity. What is your height above the lowest point when you
achieve maximum speed?

�y

Context-RichExample 7-8 Back to the Future

Imagine that you have time-traveled back to the late 1800s and are watching your great-
great-great-grandparents on their honeymoon taking a ride on the Flip Flap Railway, a
Coney Island roller coaster with a circular loop-the-loop. The car they are in is about to enter
the loop-the-loop when a sack of sand falls from a construction-site platform and
lands in the back seat of the car. No one is hurt, but the impact causes the car to lose 25 per-
cent of its speed. The car started from rest at a point 2 times as high as the top of the circu-
lar loop. Neglect losses due to friction or air drag. Will their car make it over the top of the
loop-the-loop without falling off?

PICTURE Let the system be the car, its contents, the track (including the loop-
the-loop), and Earth. The car has to have enough speed at the top of the loop to
maintain contact with the track. We can use the work-energy theorem for systems
to determine the speed just before the sandbag hits the car, and we can use it
again to determine the speed the car has at the top of the loop. Then we can use
Newton’s second law to determine the magnitude of the normal force, if any, ex-
erted on the car by the track.

100-lb

SOLVE

1. Choose the system to be the car, its contents, the track, and Earth.
Draw a picture of the car and track, with the car at the starting 
point, at the bottom of the track, and again at the top of the loop
(Figure 7-16):

2. Apply Newton’s second law to relate the speed at the top of the loop
to the normal force:

Fn � mg � m
v2

top

R

4R
R

vtop

v2

v1

F I G U R E  7 - 1 6
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* The derivative in Equation 7-13 is replaced by the partial derivative with respect to x if the motion is not restricted to
the x axis.

3. Apply the work–energy theorem to the interval prior to impact.
There are no external forces and no internal nonconservative forces
do work. Find the speed just prior to impact. Measuring heights from
the bottom of the loop, the initial height of 4R, where R is the radius
of the loop, is two times the height of the top of the loop:

so v1 � 18Rg

mg 4R � 0 � 0 � 1
2mv2

1

U0 � K0 � U1 � K1

‹ Emech f � Emech i

0 � ¢Emech � 0

Wext � ¢Emech � Wnc

4. The impact with the sandbag results in a 25 percent decrease in
speed. Find the speed after impact:

v2 � 0.75v1 � 0.7518Rg

5. Apply the work–energy theorem to the interval following impact.
Find the speed at the top of the loop-the-loop:

so v2
top � (0.752 # 8 � 4)Rg � 0.5Rg

mg2R � 1
2mv2

top � 0 � 1
2m (0.752 # 8Rg)

Utop � Ktop � U2 � K2

6. Substituting for in the step-2 result gives:v2
top

Fn � mg � 0.5mg

Fn � mg � m
0.5Rg

R

7. Solve for Fn : Fn � �0.5mg

8. is the magnitude of the normal force. It cannot be negative:Fn Oops! The car has left the track.

CHECK A loss of 25 percent of your speed means losing almost 44 percent of your kinetic
energy. The speed is the same as would be attained if the car started from rest at a height of

(12 percent higher than the height of the top of the loop). We should
not be too surprised to find that the car left the track.

TAKING IT FURTHER Fortunately, there were safety devices to prevent the cars from
falling, so your ancestors likely would have survived. The biggest concern for riders on the
Flip Flap Railway was a broken neck. The Flip Flap Railway subjected riders to accelerations
of up to 12g’s during the loop-the-loop and was the last of the circular loop-the-loop roller
coasters. Loop-the-loops on modern rides are higher than they are wide.

POTENTIAL ENERGY AND EQUILIBRIUM

We can gain insight into the motion of a system by looking at a graph of its poten-
tial energy versus the position of a particle in that system. For simplicity, we re-
strict our consideration to a particle constrained to move along a straight line—the
x axis. To create such a graph, we first must find the relationship between the po-
tential energy function and the force acting on the particle. Consider a conserva-
tive force acting on the particle. Substituting this into Equation 7-1b gives

The force component is therefore the negative of the derivative* of the potential-
energy function:

7-13

We can illustrate this general relation for a block–spring system by differentiating
the function We obtain

Figure 7-17 shows a plot of versus x for a block and spring. The de-
rivative of this function is represented graphically as the slope of the tangent line

U � 1
2 kx2

Fx � �
dU
dx

� �
d
dx
a1

2
kx2b � �kx

U � 1
2 kx2.

Fx � �
dU
dx

Fx

dU � �F
S # d�S � �Fxdx

F
S

� Fxi
n

0.56 � 4R � 1.12 � 2R

U

x

1
2

U = kx2

Fx =  –        = – kxdU
dx

(a)

x
m

0

F

x

(b)

F I G U R E  7 - 1 7 (a) Plot of the potential-
energy function U versus x for an object on a
spring. A minimum in the potential-energy
curve is a point of stable equilibrium.
Displacement in either direction results in a
force directed toward the equilibrium
position. (b) The applied force pulls the
block to the right, stretching the spring by x1 .

F
S

app
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to the curve. The force is thus equal to the negative of the slope of the tangent line
to the curve. At the force is zero and the block is in equilibrium,
assuming no other forces are acting on it.

When x is positive in Figure 7-17a, the slope is positive and the force is nega-
tive. When x is negative, the slope is negative and the force is positive. In either
case, the force is in the direction that will accelerate the block in the direction of de-
creasing potential energy. If the block is displaced slightly from the force is
directed back toward The equilibrium at is thus stable equilibrium,
because a small displacement results in a restoring force that accelerates the parti-
cle back toward its equilibrium position.

In stable equilibrium, a small displacement in any direction results in a
restoring force that accelerates the particle back toward its equilibrium
position.

CONDITION FOR STABLE EQUILIBRIUM

Figure 7-18 shows a potential-energy curve with a maximum rather than a min-
imum at the equilibrium point Such a curve could represent the potential
energy of a space ship at the point between Earth and the moon where the gravi-
tational pull on the ship by Earth is equal to the gravitational pull on the ship by
the moon. (We are neglecting any gravitational pull from the Sun.) For this curve,
when x is positive, the slope is negative and the force is positive, and when x is
negative, the slope is positive and the force is negative. Again, the force is in the
direction that will accelerate the particle toward lower potential energy, but this
time the force is away from the equilibrium position. The maximum at in
Figure 7-18 is a point of unstable equilibrium because a small displacement
results in a force that accelerates the particle away from its equilibrium position.

In unstable equilibrium, a small displacement results in a force that accelerates
the particle away from its equilibrium position.

CONDITION FOR UNSTABLE EQUILIBRIUM

Figure 7-19 shows a potential-energy curve that is flat in the region near 
No force acts on a particle at and hence the particle is at equilibrium;
furthermore, there will be no resulting force if the particle is displaced slightly in
either direction. This is an example of neutral equilibrium.

In neutral equilibrium, a small displacement in any direction results in zero
force and the particle remains in equilibrium.

CONDITION FOR NEUTRAL EQUILIBRIUM

x � 0,
x � 0.

x � 0

Fx

Fx

x � 0.

x � 0x � 0.
x � 0,

Fx

Fx

Fx � �dU>dxx � 0, The potential energy function is a
minimum at a point of stable

equilibrium.
!

U

x

F I G U R E  7 - 1 8 A particle with a potential
energy shown by this potential-energy curve
will be in unstable equilibrium at 
because a displacement from results in a
force directed away from the equilibrium
position.

x � 0
x � 0

U

x

F I G U R E  7 - 1 9 Neutral equilibrium. The
force is zero at and at
neighboring points, so displacement away
from results in no force, and the system
remains in equilibrium.

x � 0

x � 0Fx � �dU>dx

Example 7-9 Force and the Potential-Energy Function

In the region the force on a particle is represented by the potential-energy
function

where a and b are positive constants. (a) Find the force in the region (b) At
what value of x is the force zero? (c) At the location where the force equals zero, is the equi-
librium stable or unstable?

�a 	 x 	 a.Fx

U � �b a 1
a � x

�
1
a � x

b
�a 	 x 	 a
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SOLVE

(a) Compute Fx � �dU>dx. �b a 1
(a � x)2 �

1
(a � x)2 b�Fx � �

d
dx
c�b a 1

(a � x)
�

1
(a � x)

b d
(b) Set equal to zero and solve for x.Fx at x � 0Fx � 0

PICTURE The force is the negative of the derivative of the potential-energy function. The
equilibrium is stable where the potential-energy function is a minimum and it is unstable
where the potential-energy function is a maximum.

CHECK If U is expressed in joules and x and a are expressed in meters, then b must be ex-
pressed in joule�meters and must be expressed in newtons. Our Part-(a) result shows that

has the same units as those of Part (b) divided by That is, our expression for has
units of Because our expression for has units of newtons.
Consequently, our Part-(a) result is dimensionally correct, and therefore is plausible.

TAKING IT FURTHER The potential-energy function in this example is for a particle under
the influence of the gravitational forces exerted by two identical fixed-point masses, one at

the other at The particle is located on the line joining the masses. Midway be-
tween the two masses the net force on the particle is zero. Otherwise, it is toward the closest mass.

x � �a.x � �a,

Fx1 J � 1 N # m,J # m>m2 � J>m.
Fxm2.Fx

Fx

(c) Compute If it is positive at the
equilibrium position, then U is a minimum and
the equilibrium is stable. If it is negative, then U
is a maximum and the equilibrium is unstable.

d2U>dx2.

At

Thus, equilibrium.unstable

x � 0,
d2U
dx2 �

�4b
a3 	 0

d2U
dx2 � �2b a 1

(a � x)3 �
1

(a � x)3 b

cm
m1

m2

Frictionless
pivot

m1g

m2g

F I G U R E  7 - 2 0

m1

m2

cm Frictionless
pivot

m1g

m2g

F I G U R E  7 - 2 1

cm

cm

F I G U R E 7 - 2 2 The center of mass of an
irregular object can be found by suspending 
it first from one point and then from a 
second point.

We can use the result that a position of stable equilibrium is a potential-energy
minimum to locate the center of mass experimentally. For example, two objects con-
nected by a light rod will balance if the pivot is at the center of mass (Figure 7-20).
If we pivot the system at any other point, the system will rotate until the gravita-
tional potential energy is at a minimum, which occurs when the center of mass is
at its lowest possible point directly below the pivot (Figure 7-21). (The gravita-
tional potential energy of a system is given by [Equation 7-3].)Ug � mghcm

If we suspend any irregular object from a pivot, the object will hang so that its
center of mass lies somewhere on the vertical line drawn directly downward from
the pivot. Now suspend the object from another point and note where the vertical
line through the pivot point now passes. The center of mass will lie at the inter-
section of the two lines (Figure 7-22).
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For a system for which mechanical energy remains constant, graphs that plot
both potential energy U and mechanical energy E are often useful. For example,
Figure 7-23 is a plot of the potential-energy function

which is the negative of the potential-energy function used in Example 7-9. 
Figure 7-23 contains plots of both this potential-energy function and the total me-
chanical energy E. The kinetic energy K for a specified value of x is represented by
the distance that the total mechanical-energy line is above the potential-energy
curve because 

7-3 THE CONSERVATION OF ENERGY

In the macroscopic world, dissipative nonconservative forces, such as kinetic fric-
tion, are always present to some extent. Such forces tend to decrease the mechani-
cal energy of a system. However, any such decrease in mechanical energy is
accompanied by a corresponding increase in thermal energy. (Consider that exces-
sive automotive braking sometimes causes the temperature of the rotors or brake
drums to increase to the point that the metal warps.) Another type of nonconserv-
ative force is that involved in the deformations of objects. When you bend a metal
coat hanger back and forth, you do work on the coat hanger, but the work you do
does not appear as mechanical energy. Instead, the coat hanger becomes warm.
The work done in deforming the hanger is dissipated as thermal energy. Similarly,
when a falling ball of modeling clay lands on the floor (thud), it becomes warmer
as it deforms. The dissipated kinetic energy appears as thermal energy. For the
clay–floor–Earth system, the total energy is the sum of the thermal energy and the
mechanical energy. The total energy of the system is conserved even though nei-
ther the total mechanical energy nor the total thermal energy is individually
conserved.

A third type of nonconservative force is associated with chemical reactions.
When we include systems in which chemical reactions take place, the sum of
mechanical energy plus thermal energy is not conserved. For example, suppose
that you begin running from rest. You initially have no kinetic energy. When
you begin to run, chemical energy stored in certain molecules in your muscles
is transformed into kinetic energy and thermal energy. It is possible to identify
and measure the chemical energy that is transformed into kinetic energy and
thermal energy. In this case, the sum of mechanical energy, thermal energy, and
chemical energy is conserved.

Even when thermal energy and chemical energy are included, the total energy
of the system does not always remain constant, because energy can be converted
to radiation energy, such as sound waves or electromagnetic waves. But the increase
or decrease in the total energy of a system can always be accounted for by the disappearance
or appearance of energy outside the system. This experimental result, known as the law
of conservation of energy, is one of the most important laws in all of science. Let

be the total energy of a given system, be the energy that enters the system,
and be the energy that leaves the system. The law of conservation of energy
then states

7-14

LAW OF CONSERVATION OF ENERGY

Ein � Eout � ¢Esys

Eout

EinEsys

K � E � U.

U � b a 1
a � x

�
1
a � x

b
E

K

U

0
x

U U(x)
E

F I G U R E  7 - 2 3 The potential energy U
and the total mechanical energy E are plotted
versus x. The sum of the kinetic energy K and
the potential energy equals the total
mechanical energy. That is, K � E � U.
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Alternatively,

The total energy of the universe is constant. Energy can be converted from
one form to another, or transmitted from one region to another, but energy
can never be created or destroyed.

LAW OF CONSERVATION OF ENERGY

The total energy E of many systems from everyday life can be accounted for com-
pletely by mechanical energy thermal energy and chemical energy

To be comprehensive and include other possible forms of energy, such as
electromagnetic or nuclear energy, we include and write

7-15

THE WORK–ENERGY THEOREM

One way energy is transferred into or out of a system is for work to be done on the
system by agents outside the system. In situations where this is the only method of
energy transfer into or out of a system, the law of conservation of energy is ex-
pressed as:

7-16

WORK – ENERGY THEOREM

where is the work done on the system by external forces and is the
change in the system’s total energy. This work–energy theorem for systems,
which we call simply the work–energy theorem, is a powerful tool for studying a
wide variety of systems. Note that if the system is just a single particle, its energy
can only be kinetic. In that case, the work–energy theorem (Equation 7-16) reduces
to the work–kinetic-energy theorem (Equation 6-8) studied in Chapter 6.

There are two methods for transferring energy into or out of a system. The sec-
ond method is called heat. Heat is the transfer of energy due to a temperature dif-
ference. Exchanges of energy due to a temperature difference between a system
and its surroundings are discussed in Chapter 18. In this chapter, the transfer of
energy by heat is assumed to be negligible.

¢EsysWext

Wext � ¢Esys � ¢Emech � ¢Etherm � ¢Echem � ¢Eother

Esys � Emech � Etherm � Echem � Eother

Eother ,
Echem.

Etherm,Emech ,

Example 7-10 Falling Clay

A ball of modeling clay with mass m is released from rest from a height h and falls to the per-
fectly rigid floor (thud). Discuss the application of the law of conservation of energy to (a) the
system consisting of the clay ball alone, and (b) the system consisting of Earth, the floor, and
the clay ball.

PICTURE Two forces act on the clay ball following its release: the force of gravity and the
contact force of the floor. Because the floor does not move (it is rigid), the contact force it
exerts on the clay ball does no work. There are no chemical or other energy changes, so we
can neglect and (We neglect the sound energy radiated when the clay ball hits
the floor.) Thus, the only energy transferred to or from the clay ball is the work done by the
force of gravity.

¢Eother .¢Echem

SOLVE

(a) 1. Write the work–energy theorem for the clay ball:

Wext � ¢Esys � ¢Emech � Etherm

Wext � ¢Esys � ¢Emech � ¢Etherm � ¢Echem � ¢Eother
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2. The two external forces on the system (the clay ball) are the
force of gravity and the normal force exerted by the floor on
the clay ball. However, the part of the ball in contact with the
floor does not move, so the normal force on the ball by the
floor does no work. Thus, the only work done on the clay ball
is done by the force of gravity on the ball:

Wext � mgh

3. Because the clay ball alone is our system, its mechanical energy
is entirely kinetic, which is zero both initially and finally. Thus,
the change in mechanical energy is zero:

¢Emech � 0

4. Substitute mgh for and 0 for in step 1:¢EmechWext

so

Note: If the floor were not perfectly rigid, the increase in
thermal energy would be shared by the ball and the floor.

¢Etherm � mgh

mgh � 0 � ¢Etherm

Wext � ¢Emech � Etherm

(b) 1. No external forces act on the clay ball–Earth–floor system
(the force of gravity and the force of the floor are now internal
to the system), so there is no external work done:

Wext � 0

2. Write the work–energy theorem with Wext � 0:

0 � ¢Emech � ¢Etherm

Wext � ¢Esys � ¢Emech � ¢Etherm

CHECK The Part-(a) and Part-(b) results are the same—that the thermal energy of the sys-
tem increases by mgh. This is as one would expect.

TAKING IT FURTHER In Part (a), energy is transferred to the ball by the work done on it
by the force of gravity. This energy appears as the kinetic energy of the ball before it impacts
the floor and as thermal energy after impact. The ball warms slightly and the energy is even-
tually transferred to the surroundings. In Part (b), no energy is transferred to the
ball–Earth–floor system. The original potential energy of the system is converted to kinetic
energy of the ball just before it hits, and then into thermal energy.

PROBLEMS INVOLVING KINETIC FRICTION
When surfaces slide across each other, kinetic friction decreases the mechanical energy of the
system and increases the thermal energy. Consider a block that begins with initial velocity 
and slides along a board that is on a frictionless surface (Figure 7-24). The board is initially
at rest. We choose the block and board to be our system, and No exter-
nal work is done on this system. The work–energy theorem gives

7-17

The change in mechanical energy is given by

7-18

where m is the mass of the block, M is the mass of the board, v is the speed of the
block, and V is the speed of the board. We can relate this change in mechanical
energy to the kinetic frictional force. If is the magnitude of the frictional force on
either the block or the board, Newton’s second law applied to the block gives

�fk � max

fk

¢Emech � ¢Kblock � ¢Kboard � (1
2mv2

f � 1
2mv2

i ) � (1
2MV2

f � 0)

0 � ¢Emech � ¢Etherm

¢Echem � ¢Eother � 0.

vi

3. The initial mechanical energy of the clay ball–Earth system is
the initial gravitational potential energy. The final mechanical
energy is zero:

Emech f � 0

Emech i � mgh

4. The change in mechanical energy of the clay ball–Earth system
is thus:

¢Emech � 0 � mgh � �mgh

5. The work–energy theorem thus gives the same result as 
in Part (a):

�¢Emech � mgh¢Etherm �

v

fk

F I G U R E  7 - 2 4
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Example 7-11 Pushing a Box

A box is initially at rest on a horizontal tabletop. You push the box a dis-
tance of along the tabletop with a horizontal force of The coefficient
of kinetic friction between the box and tabletop is 0.35. Find (a) the external
work done on the block–table system, (b) the energy dissipated by friction,
(c) the final kinetic energy of the box, and (d) the speed of the box.

PICTURE The box plus table is the system (Figure 7-25). You are external to
this system, so the force you push with is an external force. The final speed of
the box is found from its final kinetic energy, which we find using the
work–energy theorem with and The energy of the
system is increased by the external work. Some of the energy increase is kinetic
energy and some is thermal energy.

¢Etherm � fksrel.¢Echem � 0

25 N.3.0 m
4.0-kg

25 N

x

F I G U R E  7 - 2 5

where is the acceleration of the block. Multiplying both sides by the displace-
ment of the block we obtain

7-19

Solving the constant-acceleration formula for and substitut-
ing into Equation 7-19 gives

7-20

Equation 7-20 is just the center-of-mass work–translational-kinetic-energy relation
(Equation 6-27) applied to the block. Applying this same relation to the board gives

7-21

where and are the displacement and acceleration of the board. Adding
Equations 7-20 and 7-21 gives

7-22

We note that is the distance that the block slides relative to the board,
and that the right side of Equation 7-22 is the change in mechanical energy 
of the block–board system. Substituting into Equation 7-22 gives

7-23

The decrease in mechanical energy of the block–board system is accompanied by
a corresponding increase in the thermal energy of the system. This thermal energy
appears both on the bottom surface of the block and on the upper surface of the
board. Substituting for (Equation 7-17), we obtain

7-24

ENERGY DISSIPATED BY KINETIC FRICTION

where is the distance one contacting surface slides relative to the other contact-
ing surface. Because the distance is the same in all frames of reference,
Equation 7-24 is valid in all frames of reference, independent of whether they are
inertial frames of reference or not.

Substituting this result into the work – energy theorem (with 
), we obtain

7-25

WORK-ENERGY THEOREM WITH FRICTION

Wext � ¢Emech � ¢Etherm � ¢Emech � fksrel

¢Eother � 0
¢Echem �

srel

srel

fksrel � ¢Etherm

�¢Emech¢Etherm

�fksrel � ¢Emech

¢Emech

srel¢x � ¢X

�fk(¢x � ¢X) � (1
2mv2

f � 1
2mv2

i ) � 1
2MV2

f

Ax¢X

fk¢X �MAX ¢X �M (1
2V2

f � 1
2V2

i ) � 1
2MV2

f � 0

�fk ¢x � max ¢x � m (1
2 v2

f � 1
2 v2

i ) � 1
2mv2

f � 1
2mv2

i

ax¢x2ax¢x � v2
f � v2

i

�fk ¢x � ma¢x

¢x,
ax
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SOLVE

(a) Four external forces are acting on the system. However,
only one of them does work. The total external work done
is the product of the push force and the distance traveled:

75 J�

� Fpush ¢x � 0 � 0 � 0 � (25 N)(3.0 m)

� Wby gravity on table � Wby floor on table©Wext � Wby you on block � Wby gravity on block

(b) The energy dissipated by friction is (the magnitude
of the normal force equals mg):

fk ¢x

41 J�

� (0.35)(4.0 kg)(9.81 N>kg)(3.0 m)

¢Etherm � fk ¢x � mkFn ¢x � mkmg¢x

CHECK Part of the energy transferred to the system by the pusher (you) ends up as kinetic
energy and some of the energy ends up as thermal energy. As expected, the change in ther-
mal energy (Part (b)) is positive and is less than the work done by the external force (Part (a)).

(c) 1. Apply the work–energy theorem to find the final
kinetic energy:

Wext � ¢Emech � ¢Etherm

2. No internal conservative forces do work, so the change
in potential energy is zero. Thus, the change in
mechanical energy equals the change in kinetic energy:

¢U
� 0 � (Kf � 0) � Kf¢Emech � ¢U � ¢K

3. Substitute this into the step-1 result, then use the values
from Parts (a) and (b) to find Kf : so

34 J� 75 J � 41 J �

Kf � Wext � ¢Etherm

Wext � Kf � ¢Etherm

(d) The final speed of the box is related to its kinetic energy.
Solve for the final speed of the box:

so 4.1 m>svf � A2Kf

m
� A2(34 J)

4.0 kg
�

Kf � 1
2mv2

f

Try It Yourself

Steps Answers

1. Sketch the system in its initial and final configurations
(Figure 7-26).

srel vf = 0

vi

2. Apply the work–energy theorem. Relate the change in
thermal energy to the frictional force. � (¢U � ¢K) � fksrel

Wext � ¢Emech � ¢Etherm

3. Solve for The normal force is equal to mg.fk . fk � mkFn � mkmg

4. There are no external forces doing work on the system
and there are no internal conservative forces doing
work. Use these observations to eliminate two terms
from the step-2 result.

and

so
0 � 0 � ¢K � mkmg srel

Wext � ¢U � ¢K � fksrel

¢U � 0Wext � 0

5. Express the change in kinetic energy in terms of the mass
and the initial speed, and solve for srel .

5.8 msrel �
v2

2mkg
�

Example 7-12 A Moving Sled

A sled is coasting on a horizontal snow-covered surface with an initial speed of If
the coefficient of friction between the sled and the snow is 0.14, how far will the sled travel
before coming to rest?

PICTURE We choose the sled and snow as our system and then apply the work–energy
theorem.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

4.0 m>s.

F I G U R E  7 - 2 6

CHECK The expression for the displacement in step 5 is dimensionally correct. The coeffi-
cient of friction is dimensionless, and has the dimension of length.v2>gmk
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SOLVE

1. Make a sketch of the child–slide–Earth system, showing
both its initial and final configurations (Figure 7-27).

2. Write out the conservation-of-energy equation: � (¢U � ¢K) � fksrelWext � ¢Emech � ¢Etherm

3. The initial kinetic energy is zero. The speed at the bottom is
related to the final kinetic energy:

¢K � Kf � 0 � 1
2mv2

f

4. There are no external forces acting on the system: Wext � 0

5. The change in potential energy is related to the change in
height (which is negative):¢h

¢U � mg ¢h

6. To find we apply Newton’s second law to the child. First
we draw a free-body diagram (Figure 7-28):

fk

7. Next, we apply Newton’s second law. The normal component
of the acceleration is zero. To find we take components in
the normal direction. Then we solve for using fk � mkFn :fk

Fn so fk � mkFn � mkmg cosu

Fn � mg cosu � 0

8. We use trigonometry to relate to ¢h:s � srel ƒ ¢h ƒ � s sinu

9. Substituting into the step-2 result gives: � �mgs sinu � 1
2mv2

f � mkmg cosu s 0 � mg ¢h � 1
2mv2

f � fks

10. Solving for gives:vf

so 5.6 m>svf �

� 30.9 m2>s2

� 2(9.81 m>s2)(8.0 m)(sin30° � 0.35 cos30°)v2
f � 2gs (sinu � mk cosu)

CHECK Note that, as expected, the expression for in step 10 is independent of the mass
of the child. This is expected because all forces acting on the child are proportional to the
mass m.

PRACTICE PROBLEM 7-8 Use the bottom end of the slide as the reference level where the
potential energy is zero. For the Earth–child–slide system, calculate (a) the initial mechanical
energy, (b) the final mechanical energy, and (c) the energy dissipated by friction.

v2
f

m1

m2

F I G U R E  7 - 2 9 The system is everything shown
plus Earth.

Example 7-13 A Playground Slide

A child of mass goes down an slide inclined at with the hor-
izontal. The coefficient of kinetic friction between the child and the slide is 0.35.
If the child starts from rest at the top of the slide, how fast is he traveling when
he reaches the bottom?

PICTURE As the child travels down the slide, some of his initial potential en-
ergy is converted into kinetic energy and, due to friction, some into thermal
energy. We choose the child–slide–Earth as our system and apply the conserva-
tion of energy theorem.

30°8.0-m-long40 kg

m = 40 kg

30°

    s = 8.0 m

= 4.0 mΔh

F I G U R E  7 - 2 7

y

x

Fn

fk

mg

θ
θ

F I G U R E  7 - 2 8

Example 7-14 Two Blocks and a Spring

A block hangs by a light string that passes over a massless, frictionless
pulley and is connected to a block that rests on a shelf. The coefficient of
kinetic friction is 0.20. The block is pushed against a spring, compress-
ing it The spring has a force constant of Find the speed of the
blocks after the block is released and the block has fallen a
distance of (Assume the block is initially or more from
the pulley.)

PICTURE The speed of the blocks is obtained from their final kinetic energy.
Consider the system to be everything shown in Figure 7-29 plus Earth. This
system has both gravitational and elastic potential energy. Apply the work–en-
ergy theorem to find the kinetic energy of the blocks. Then, use the kinetic en-
ergy of the blocks to solve for their speed.

40 cm6.0-kg40 cm.
4.0-kg6.0-kg

180 N>m.30 cm.
6.0-kg
6.0-kg

4.0-kg
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SOLVE

1. The system is everything
shown plus Earth. Write
out the equation for the
conservation of energy of
the system.

2. Make a sketch of the system (Figure 7-30) in both the initial
and final configurations:

k

k

m1

m1

m2

m2

vi = 0

xf = 0 +y

0y2i = 0

y2f = −s

vf

0

xi

s

+x

vf

+x0

F I G U R E  7 - 3 0 The system is everything shown plus Earth.
The system is shown in both its initial and final configurations.

3. There are no external
forces on the system.

Wext � 0

4. The potential energy of the
spring depends on its
force constant k and its
extension x. (If the spring is
compressed, x is negative.)
The gravitational potential
energy depends on the
height of block 2:

Us Us � mgy2

Us � 1
2 kx2

5. Make a table of the mechanical-energy terms both initially,
when the spring is compressed and finally, when each
block has moved a distance and the spring is
unstressed. Let the gravitational potential energy of the initial
configuration equal zero. Also, write down the difference
(final minus initial) between each initial and final expression.

s � 40 cm
30 cm,

Final Initial Difference

0

0

K 0 1
2 (m1 � m2)v

2
f

1
2 (m1 � m2)v

2
f

�m2gs�m2gsUg

�1
2kx2

i
1
2kx2

iUs

6. Find an expression for that includes mk .fk fk � mkm1g

7. Substitute the results for steps 3–6 into the step-1 result. 0 � � 1
2 kx2

i � m2gs � 1
2 (m1 � m2)v

2
f � mkm1gs

8. Solve the step-7 result for then substitute numerical
values and solve for vf :

v2
f ,

so 2.0 m>svf �

v2
f �
kx2

i � 2 (m2 � mkm1)gs

m1 � m2

CHECK If then the final speed does not depend on either g or (see step 8).
This is as expected because is the gravitational force on pulling the system forward
and is the frictional force on opposing the forward motion. If these two forces sum
to zero, the effects of gravity and friction do not affect the final speed.

TAKING IT FURTHER This solution assumes that the string remains taut at all times,
which will be true if the acceleration of block 1 remains less than g, that is, if the net force
on block 1 is less than The force exerted by the spring on
block 1 initially has the magnitude and the frictional force
initially has magnitude These forces combine to produce
a net force of directed to the right. Because the spring’s force decreases as block 1
moves following release, the acceleration of the block will never exceed g and the
string will remain taut.

6.0-kg
42 N

fk � mkm1g � 0.20 (59 N) � 12 N.
kx1 � (180 N>m)(0.30 m) � 54 N

m1g � (6.0 kg)(9.81 N>kg) � 59 N.

m1mkm1g
m2m2g

mkm2 � mk � 0,

� (¢Us � ¢Ug � ¢K) � fksrel

Wext � ¢Emech � ¢Etherm
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Example 7-15 Climbing Stairs

Suppose that you have mass m and you run up a flight of stairs of height h. Discuss the
application of energy conservation to the system consisting of you alone.

PICTURE There are two forces that act on you: the force of gravity and the force of the stair
treads on your feet. Apply the work–energy theorem to the system (you).

PROBLEMS INVOLVING CHEMICAL ENERGY

Sometimes a system’s internal chemical energy is converted into mechanical energy
and thermal energy with no work being done on the system by external forces. For
example, at the beginning of this section we described the energy conversions that
take place when you start running. To move forward, you push back on the floor
and the floor pushes forward on you with a static frictional force. This force causes
you to accelerate, but it does not do work because the displacement of the point of
application of the force is zero (assuming your shoes do not slip on the floor).
Because no work is done, no energy is transferred from the floor to your body. The
kinetic-energy increase of your body comes from the conversion of internal chemi-
cal energy derived from the food you eat. Consider the following example.

SOLVE

1. You are the system. Write the work–energy
theorem (Equation 7-16) for this system:

Wext � ¢Esys � ¢Emech � ¢Etherm � ¢Echem

2. There are two external forces, the gravitational
force of Earth on you and the contact force of the
stair treads on your feet. The force of gravity does
negative work because the component of your
displacement in the direction of the force is 
which is negative. The force of the stair treads
does no work because the points of application,
the soles of your feet, do not move while this
force is applied:

�h,

Wext � �mgh

3. You alone are the system. Because your
configuration does not change (you remain
upright), any change in your mechanical energy is
entirely a change in your kinetic energy, which is
the same initially and finally:

¢Emech � 0

4. Substitute these results into the work–energy
theorem: so

or ¢Echem � � (mgh � ¢Etherm)

�mgh � 0 � ¢Etherm � ¢Echem � 0

Wext � ¢Emech � ¢Etherm � ¢Echem � ¢Eother

CHECK We expect your chemical energy to decrease. According to the step-4 result, the
change in chemical energy is negative as expected. 

TAKING IT FURTHER If there were no change in thermal energy, then your chemical en-
ergy would decrease by mgh. Because the human body is relatively inefficient, the increase
in thermal energy will be considerably greater than mgh. The decrease in stored chemical en-
ergy equals mgh plus some thermal energy. Any thermal energy is eventually transferred
from your body to the surroundings.

CONCEPT CHECK 7-1

Discuss the energy conservation for the system consisting of both you and
Earth.

✓

(Corbis.)
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s

v

vx

vy

h

x

θ

θ

tan    = h/x ~ sin = h/s θ θ

F I G U R E  7 - 3 1

Example 7-16 An Uphill Drive

You are driving a gasoline-powered car at a constant speed of 
up a 10.0 percent grade (Figure 7-31). (A 10.0 percent grade means

that the road rises for each of horizontal distance—that is, the angle of incli-
nation is given by ) (a) If the efficiency is 15.0 percent, what is the rate at
which the chemical energy of the car–Earth–atmosphere system changes? (The efficiency is
the fraction of the chemical energy consumed that appears as mechanical energy.) (b) What
is the rate at which thermal energy is generated?

PICTURE Some of the chemical energy goes into increasing the potential energy of the car
as it climbs the hill, and some goes into an increase in thermal energy, much of which is ex-
pelled by the car as exhaust. To solve this problem, we consider a system consisting of the
car, the hill, the atmosphere, and Earth. We first need to find the rate of loss of the chemical
energy. Then, we can apply the work–energy theorem to solve for the rate at which thermal
energy is generated.

tanu � 0.100.u

10.0 m1.00 m
(� 27.8 m>s � 62.2 mi>h)

100 km>h1000-kg

SOLVE

(a) 1. The rate of loss of chemical energy equals the absolute
value of the change in chemical energy per unit time:

Chemical energy loss rate �
ƒ ¢Echem ƒ

¢t

2. The increase in mechanical energy equals 15.0 percent
of the decrease in chemical energy:

¢Emech � 0.150 ƒ ¢Echem ƒ

3. Solve for the loss rate of chemical energy:
ƒ ¢Echem ƒ

¢t
�

1
0.150

¢Emech

¢t

4. The car moves at constant speed, so and
Relate the change in mechanical energy

to the change in height and substitute it into the
step-3 result. (The chemical energy is decreasing):

¢h
¢Emech � ¢U.

¢K � 0

so
¢Echem

¢t
� �

1
0.150

mg ¢h
¢t

¢Emech � mg¢h

5. Convert the changes to time derivatives. That is, take
the limit of both sides as approaches zero:¢t

dEchem

dt
� �

1
0.150

mgdh

dt

6. The rate of change of h equals which is related to
the speed v, as shown in Figure 7-31:

vy ,
dh
dt

� vy � v sinu

7. We can approximate by because the angle
is small:

tanusinu sinu � tanu � 0.100

8. Solve for the loss rate of chemical energy:

182 kW‹ �
dEchem

dt
�

� �182 kW

� �
(1000 kg)(9.81 N>kg)

0.15
(27.8 m>s)0.100

dEchem

dt
� �

mg

0.15
v sinu

(b) 1. Write out the work–energy relation: Wext � ¢Emech � ¢Etherm � ¢Echem

2. Set equal to zero, divide both sides by 
convert to derivatives, and solve for dEtherm >dt:¢t,Wext

so

154 kW� �0.850
dEchem

dt
� 0.850(182 kW) �

dEtherm

dt
� �

dEmech

dt
�
dEchem

dt
� 0.150

dEchem

dt
�
dEchem

dt

0 �
dEmech

dt
�
dEtherm

dt
�
dEchem

dt

CHECK The relative size of the Part (a) and Part (b) results are as expected because it was
given that the efficiency was only 15 percent. 

TAKING IT FURTHER Gasoline-powered cars are typically only about 15 percent efficient.
About 85 percent of the chemical energy of the gasoline goes to thermal energy, most of
which is expelled out the exhaust pipe. Additional thermal energy is created by rolling fric-
tion and air resistance. The energy content of gasoline is about 31.8 MJ>L.
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7-4 MASS AND ENERGY

In 1905, Albert Einstein published his special theory of relativity, a result of which
is the famous equation

7-26

where is the speed of light in a vacuum. We will study this the-
ory in some detail in later chapters. However, we use this equation here to present
a more modern and complete view of energy conservation.

According to Equation 7-26, a particle or system of mass m has “rest” energy
This energy is intrinsic to the particle. Consider the positron—a particle

emitted in a nuclear process called beta decay. Positrons and electrons have identi-
cal masses, but equal and opposite electrical charges. When a positron encounters
an electron, electron–positron annihilation can occur. Annihilation is a process in
which the electron and positron disappear and their energy appears as electro-
magnetic radiation. If the two particles are initially at rest, the energy of the elec-
tromagnetic radiation equals the rest energy of the electron plus the rest energy of
the positron.

Energies in atomic and nuclear physics are usually expressed in units of electron
volts (eV) or mega-electron-volts A convenient unit for the
masses of atomic particles is or Table 7-1 lists rest energies (and
therefore the masses) of some elementary particles and light nuclei. The rest energy
of a positron plus the rest energy of an electron is which is the en-
ergy of the electromagnetic radiation energy emitted upon annihilation of the
electron and positron in a reference frame in which the electron and positron are
initially at rest.

The rest energy of a system can consist of the potential energy of the system or
other internal energies of the system, in addition to the intrinsic rest energies of the
particles in the system. If the system at rest absorbs energy and remains at rest,
its rest energy increases by and its mass increases by where

7-27¢M �
¢E
c2

¢M,¢E
¢E

2(0.511 MeV),

MeV>c2.eV>c2
(1 MeV � 106 eV).

E � mc2.

c � 3.00 � 108 m>s E � mc2

Table 7-1 Rest Energies* of Some Elementary Particles 

and Light Nuclei†

Rest Energy
Particle Symbol (MeV)

Electron e- 0.5110

Positron e+ 0.5110

Proton p 938.272

Neutron n 939.565

Deuteron d 1875.613

Triton t 2808.921

Helion h 2808.391

Alpha particle a 3727.379

* Table values are from 2002 CODATA (except for the value for the triton).
† The proton, deuteron and triton are identical with the nuclei of 1H, 2H, and 3H, respectively, and the helion and alpha

particle are identical with the nuclei of 3He and 4He, respectively.
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Consider two 1.00-kg blocks connected by a spring of force constant k. If we
stretch the spring a distance x, the potential energy of the system increases by

According to Equation 7-27, the mass of the system has also increased
by Because c is such a large number, this increase in mass cannot be
observed in macroscopic systems. For example, suppose and

The potential energy of the spring system is then
The corresponding increase in mass of the

system is The fractional
mass increase is given by

which is much too small to be observed. However, in nuclear reactions, the energy
changes are often a much, much larger fraction of the rest energy of the system.
Consider the deuteron, which is the nucleus of deuterium, an isotope of hydrogen
also called heavy hydrogen. The deuteron consists of a proton and neutron bound
together. From Table 7-1 we see that the mass of the proton is and
the mass of the neutron is The sum of these two masses is

But the mass of the deuteron is which is less
than the sum of the masses of the proton and neutron by Note that
this mass difference is much greater than any uncertainties in the measurement of
these masses, and the fractional mass difference of is 
almost 14 orders of magnitude greater than the discussed for the
spring–blocks system.

Heavy water (deuterium oxide) molecules are produced in the primary cooling
water of a nuclear reactor when neutrons collide with the hydrogen nuclei (pro-
tons) of the water molecules. If a slow moving neutron is captured by a proton,

of energy are released in the form of electromagnetic radiation. Thus, the
mass of a deuterium atom is less than the sum of the masses of an iso-
lated atom and an isolated neutron. (The superscript 1 is the mass number of
the isotope. So refers to protium, the isotope of hydrogen with no neutrons.)

This process can be reversed by breaking a deuteron into its constituent parts if
at least of energy is transferred to the deuteron with electromagnetic ra-
diation or by collisions with other energetic particles. Any transferred energy in ex-
cess of appears as kinetic energy of the resulting proton and neutron.

The energy needed to completely separate a nucleus into individual neutrons
and protons is called the binding energy. The binding energy of a deuteron is

The deuteron is an example of a bound system. A system is bound if it
does not have enough energy to spontaneously separate into separate parts. The
rest energy of a bound system is less than the sum of the rest energies of its parts,
so energy must be put into the system to break it apart. If the rest energy of a sys-
tem is greater than the sum of the rest energies of its parts, the system is unbound.
An example is uranium-236, which breaks apart or fissions into two smaller
nuclei.* The sum of the masses of the resultant parts is less than the mass of the
original nucleus. Thus, the mass of the system decreases, and energy is released.

In nuclear fusion, two very light nuclei such as a deuteron and a triton (the nu-
cleus of the hydrogen isotope tritium) fuse together. The rest mass of the resul-
tant nucleus is less than that of the original parts, and again energy is released.
During a chemical reaction that liberates energy, such as burning coal, the mass
decrease is of the order of per atom. This is more than a million times
smaller than the mass changes per nucleus in many nuclear reactions, and is not
readily observable.

1 eV>c2

2.22 MeV.

2.22 MeV

2.22 MeV

1H

1H
2.22 MeV>c2

2.22 MeV

2.2 � 10�17
¢M>M � 1.2 � 10�3

2.22 MeV>c2.
1875.613 MeV>c2,1877.837 MeV>c2.

939.565 MeV>c2.
938.272 MeV>c2

¢M
M

�
4.44 � 10�17 kg

2.00 kg
� 2.22 � 10�17

¢M � ¢U>c2 � 4.00 J>(3.00 � 108 m>s)2 � 4.44 � 10�17 kg.

1
2 kx2 � 1

2 (800 N>m)(0.100 m)2 � 4.00 J.
x � 10.0 cm � 0.100 m.

k � 800 N>m¢M � ¢U>c2.
¢U � 1

2 kx2.

* Uranium-236, written is made in a nuclear reactor when the stable isotope absorbs a neutron. This reaction
is discussed in Chapter 34.

235U236U,
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CHECK The units work out. If we express all masses in units of we get the fractional
difference as a dimensionless number.

TAKING IT FURTHER This mass difference, is too small to be mea-
sured directly. However, binding energies can be accurately measured, so the mass differ-
ence can be found from Eb � (¢m)c2.¢m

¢m � (me � mp) � mH,

eV>c2,

SOLVE

1. The fractional difference (FD) in mass is the ratio
of the binding energy to me � mp:Eb>c2

�
13.6 eV>c2

me � mp

 FD �
(me � mp) � mH

me � mp

�
Eb>c2

me � mp

2. Obtain the rest masses of the proton and electron
from Table 7-1: me � 0.511 MeV>c2

mp � 938.28 MeV>c2;

3. Add to find the sum of these masses: mp � me � 938.79 MeV>c2

4. The rest mass of the hydrogen atom is less than this
by The fractional difference FD is:13.6 eV>c2.

1.45 � 10�6 %�FD �
13.6 eV>c2

938.79 � 106 eV>c2
� 1.45 � 10�8

Steps Answers

1. Write down the rest energies of d and t from Table 7-1
and add to find the total initial rest energy.

� 4684.534 MeVEinitial � 1875.613 MeV � 2808.921 MeV

2. Do the same for and n to find the final rest energy.a � 4666.944 MeVEfinal � 3727.379 MeV � 939.565 MeV

3. Find the energy released from Ereleased � Einitial � Efinal . 17.59 MeV � 17.6 MeV�Ereleased � 4684.534 MeV � 4666.944 MeV

CHECK The energy released is a small fraction of the initial energy. This fraction is
which is the same order of magnitude as the fractional

mass increase during the fusion of a proton and a neutron that was discussed at the begin-
ning of this subsection on nuclear energy. Thus, is a plausible value for the energy
release when a deuteron and helion fuse to form an alpha particle.

TAKING IT FURTHER This fusion reaction and other fusion reactions occur in the Sun. The
energy that is released bathes Earth and is ultimately responsible for all life on the planet.
The energy continuously emitted by the Sun is accompanied by a continuous decrease in the
Sun’s rest mass.

17.6 MeV

17.6 MeV>4685 MeV � 3.76 � 10�3,

Example 7-17 Binding Energy

A hydrogen atom consisting of a proton and an electron has a binding energy of By
what percentage is the mass of a proton plus the mass of an electron greater than that of the
hydrogen atom?

PICTURE The mass of the proton plus the mass of the electron is equal to mass of the
hydrogen atom plus the binding energy divided by Thus, the fractional difference be-
tween and the mass of the hydrogen atom is the ratio of to me � mp .Eb>c2mHme � mp

c2.Eb

memp

13.6 eV.

Example 7-18 Nuclear Fusion

In a typical nuclear fusion reaction, a triton (t) and a deuteron (d) fuse together to form an
alpha particle plus a neutron. The reaction is written How much energy
is released per deuteron produced for this fusion reaction? 

PICTURE Because energy is released, the total rest energy of the initial particles must be
greater than that of the final particles. This difference equals the energy released.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

d � t S a � n.(a)
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NONRELATIVISTIC (NEWTONIAN) 
MECHANICS AND RELATIVITY

As the speed of a particle approaches a significant fraction of the speed of light,
Newton’s second law breaks down, and we must modify Newtonian mechanics
according to Einstein’s theory of relativity. The criterion for the validity of
Newtonian mechanics can also be stated in terms of the energy of a particle. In
nonrelativistic (Newtonian) mechanics, the kinetic energy of a particle moving
with speed v is

where is the rest energy of the particle. Solving for gives

Nonrelativistic mechanics is valid if the speed of the particle is much less than the
speed of light, or alternatively, the kinetic energy of a particle is much less than its
rest energy.

PRACTICE PROBLEM 7-9

A low-Earth-orbit satellite has an orbital speed of What fraction
of the speed of light c is this speed? What speed, in is equal to one percent of c?

7-5 QUANTIZATION OF ENERGY

When energy is put into a system that remains at rest, the internal energy of the
system increases. (Internal energy is synonymous with rest energy. It is the total
energy of the system less any kinetic energy associated with the motion of the
system’s center of mass.) While it might seem that we could change the internal
energy of a bound system, like the solar system or a hydrogen atom, by any
amount, this is found not to be true. This is particularly noticeable for microscopic
systems, such as molecules, atoms, and atomic nuclei. The internal energy of a
bound system can increase only by discrete increments.

If we have two blocks attached to a spring (Figure 7-32) and we stretch the
spring by pulling the blocks further apart, we do work on the block–spring sys-
tem, and its potential energy increases. If we then release the blocks, they oscillate
back and forth. The energy of oscillation E— the kinetic energy of motion of the
blocks plus the potential energy (due to the stretching of the spring)—equals the
initial potential energy. In time, the energy of the system decreases because of var-
ious damping effects such as friction and air resistance. As closely as we can measure,
the energy decreases continuously. All the energy is eventually dissipated and the
energy of oscillation is zero.

Now consider a diatomic molecule such as molecular oxygen, The force of
attraction between the two oxygen atoms varies approximately linearly with the
change in separation (for small changes), like that of two blocks connected by a
spring. If a diatomic molecule is set oscillating with some energy E, the energy
decreases with time as the molecule radiates or interacts with its surroundings, but
careful measurements can show that the decrease is not continuous. The energy
decreases in finite steps, and the lowest energy state, called the ground state, does
not have zero energy. The vibrational energy of a diatomic molecule is said to be

O2.

mi>s,
v � 5.0 mi>s � 8.0 km>s.

v
c

� A2K
E0

v>cE0 � mc2

K � 1
2mv2 � 1

2mc2 v
2

c2
� 1

2E0

v2

c2

F I G U R E  7 - 3 2
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quantized; that is, the molecule can absorb or release energies only in certain
amounts, known as quanta.

When either blocks on a spring or diatomic molecules oscillate, the time for one
oscillation is called the period T. The reciprocal of the period is the frequency of
oscillation We will see in Chapter 14 that the period and frequency of an os-
cillator do not depend on the energy of oscillation. As the energy decreases, the fre-
quency remains the same. Figure 7-33 shows an energy-level diagram for an
oscillator. The allowed energies are approximately equally spaced, and are given by*

7-28

where f is the frequency of oscillation and h is a fundamental constant of nature
called Planck’s constant: †

7-29

The integer n is called a quantum number. The lowest possible energy is the
ground state energy 

Microscopic systems often gain or lose energy by absorbing or emitting electro-
magnetic radiation. By conservation of energy, if and are the initial and final
energies of a system, the energy of the radiation emitted or absorbed is

Because the system energies and are quantized, the radiated energy is also
quantized.‡ The quantum of radiation is called a photon. The energy of a photon
is given by

7-30

where f is the frequency of the electromagnetic radiation.§

As far as we know, all bound systems exhibit energy quantization. For macro-
scopic bound systems, the steps between energy levels are so small that they are
unobservable. For example, typical oscillation frequencies for two blocks on a
spring are 1 to 10 times per second. If oscillations per second, the spacing
between allowed levels is Because
the energy of a macroscopic system is of the order of a quantum step of 
is too small to be noticed. To put it another way, if the energy of a system is the
value of n is of the order of and changes of one or two quantum units will not
be observable.

PRACTICE PROBLEM 7-10

For a diatomic molecule, a typical frequency of vibration is 1014 vibrations per second.
Use Equation 7-28 to find the spacing between the allowed energies.

1032
1 J,
10�33 J1 J,

hf � (6.626 � 10�34 J # s)(10 s�1) � 7 � 10�33 J.
f � 10

Ephoton � hf

EfEi

Erad � ƒEf � Ei ƒ

EfEi

E0 � 1
2 hf.

h � 6.626 � 10�34 J # s � 4.136 � 10�15 eV # s

En � (n � 1
2)hf n � 0, 1, 2, 3, Á

f � 1>T.

* A diatomic molecule can also have rotational energy. The rotational energy is also quantized, but the energy levels are
not equally spaced, and the lowest possible energy is zero. We will study rotational energy in Chapters 9 and 10.

† In 1900, the German physicist Max Planck introduced this constant during calculations to explain discrepancies
between the theoretical curves and experimental data on the spectrum of blackbody radiation. The significance of
Planck’s constant was not appreciated by Planck or anyone else until Einstein postulated in 1905 that the energy of elec-
tromagnetic radiation is not continuous, but occurs in packets of size hf, where f is the frequency of the radiation.

U

x

E3

E2

E1

0

E0
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A typical energy for a diatomic
molecule is Thus, changes

in the energy of oscillation are of the
same order of magnitude as the energy
of the molecule, and quantization is
definitely not negligible.

10�19 J.!

‡ Historically, the quantization of electromagnetic radiation, as proposed by Max Planck and Albert Einstein, was the
first “discovery” of energy quantization.

§ Electromagnetic radiation includes light, microwaves, radio waves, television waves, X rays, and gamma rays. These
differ from one another in their frequencies.
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Blowing Warmed Air

Wind farms dot the Danish coast, the plains of the upper Midwest, and hills from
California to Vermont. Harnessing the kinetic energy of the wind is nothing new.
Windmills have been used to pump water, ventilate mines,* and grind grain for
centuries.

Today, the most visible wind turbines run electrical generators. These turbines
transform kinetic energy into electromagnetic energy. Modern turbines range
widely in size, cost, and output. Some are very small, simple machines that cost
under $500/turbine, and put out less than 100 watts of power.† Others are complex
behemoths that cost over $2 million and put out as much as ‡ All
of these turbines take advantage of a widely available energy source—the wind.

The theory behind the windmill’s conversion of kinetic energy to electromag-
netic energy is straightforward. The moving air molecules push on the turbine
blades, driving their rotational motion. The rotating blades then turn a series of
gears. The gears, in turn, step up the rotation rate, and drive the rotation of a gen-
erator rotor. The generator sends the electromagnetic energy out along power lines.

But the conversion of the wind’s kinetic energy to electromagnetic energy is not
100 percent efficient. The most important thing to remember is that it cannot be
100 percent efficient. If turbines converted 100 percent of the kinetic energy of the
air into electrical energy, the air would leave the turbines with zero kinetic energy.
That is, the turbines would stop the air. If the air were completely stopped by the
turbine, it would flow around the turbine, rather than through the turbine.

So the theoretical efficiency of a wind turbine is a trade-off between capturing
the kinetic energy of the moving air, and preventing most of the wind from flow-
ing around the turbine. Propeller-style turbines are the most common, and their
theoretical efficiency at transforming the kinetic energy of the air into electromag-
netic energy varies from 30 percent to 59 percent.§ (The predicted efficiencies vary
because of assumptions made about the way the air behaves as it flows through
and around the propellers of the turbine.)

So even the most efficient turbine cannot convert 100 percent of the theoretically
available energy. What happens? Upstream from the turbine, the air moves along
straight streamlines. After the turbine, the air rotates and is turbulent. The rotational
component of the air’s movement beyond the turbine takes energy. Some dissipation
of energy occurs because of the viscosity of air. When some of the air slows, there is
friction between it and the faster moving air flowing by it. The turbine blades heat up,
and the air itself heats up.° The gears within the turbine also convert kinetic energy
into thermal energy through friction. All this thermal energy needs to be accounted
for. The blades of the turbine vibrate individually—the energy associated with those
vibrations cannot be used. Finally, the turbine uses some of the electricity it generates
to run pumps for gear lubrication, and to run the yaw motor that moves the turbine
blades into the most favorable position to catch the wind.

In the end, most wind turbines operate at between 10 and 20 percent efficiency.#

They are still attractive power sources, because of the free fuel. One turbine owner
explains, “The bottom line is we did it for our business to help control our future.”**

* Agricola, Georgius, De Re Metallic. (Herbert and Lou Henry Hoover, Transl.) Reprint Mineola, NY: Dover, 1950, 200–203.
† Conally, Abe, and Conally, Josie, “Wind Powered Generator,” Make, Feb. 2006, Vol. 5, 90–101.
‡ ”Why Four Generators May Be Better than One,” Modern Power Systems, Dec. 2005, 30.
§ Gorban, A. N., Gorlov, A. M., and Silantyev, V. M., “Limits of the Turbine Efficiency for Free Fluid Flow.” Journal of

Energy Resources Technology, Dec. 2001, Vol. 123, 311–317.
° Roy, S. B., S. W. Pacala, and R. L. Walko. “Can Large Wind Farms Affect Local Meteorology?” Journal of Geophysical

Research (Atmospheres), Oct. 16, 2004, 109, D19101.
# Gorban, A. N., Gorlov, A. M., and Silantyev, V. M., “Limits of the Turbine Efficiency for Free Fluid Flow.” Journal of

Energy Resources Technology, December 2001, Vol. 123, 311–317.
** Wilde, Matthew, “Colwell Farmers Take Advantage of Grant to Produce Wind Energy.” Waterloo-Cedar Falls Courier,

May 1, 2006, .B1�

2.5 MW>turbine.

A wind farm converting the kinetic energy of
the air to electrical energy. (Image Slate.)
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Summary

1. The work–energy theorem and the conservation of energy are fundamental laws of nature
that have applications in all areas of physics.

2. The conservation of mechanical energy is an important relation derived from Newton’s
laws for conservative forces. It is useful in solving many problems.

3. Einstein’s equation is a fundamental relation between mass and energy.

4. Quantization of energy is a fundamental property of bound systems.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Conservative Force A force is conservative if the total work it does on a particle is zero when the particle moves
along any path that returns it to its initial position. Alternatively, the work done by a con-
servative force on a particle is independent of the path taken by the particle as it moves from
one point to another.

2. Potential Energy The potential energy of a system is the energy associated with the configuration of the sys-
tem. The change in the potential energy of a system is defined as the negative of the work
done by all internal conservative forces acting on the system.

Definition
7-1

Gravitational 7-2

Elastic (spring)

Conservative force 7-13

Potential-energy curve At a minimum on the curve of the potential-energy function versus the displacement, the
force is zero and the system is in stable equilibrium. At a maximum, the force is zero and the
system is in unstable equilibrium. A conservative force always tends to accelerate a particle
toward a position of lower potential energy.

3. Mechanical Energy The sum of the kinetic and potential energies of a system is called the total mechanical
energy 

7-9

Work–Energy Theorem for Systems The total work done on a system by external forces equals the change in mechanical energy
of the system less the total work done by internal nonconservative forces:

7-10

Conservation of Mechanical Energy If no external forces do work on the system, and if no internal nonconservative forces do
work, then the mechanical energy of the system is constant:

7-12

4. Total Energy of a System The energy of a system consists of mechanical energy thermal energy chemical
energy and other types of energy such as sound radiation and electromagnetic
radiation:

7-15

5. Conservation of Energy

Universe The total energy of the universe is constant. Energy can be transformed from one form to
another, or transmitted from one region to another, but energy can never be created or
destroyed.

Esys � Emech � Etherm � Echem � Eother

Eother ,Echem,
Etherm,Emech ,

Kf � Uf � Ki � UI

Wext � ¢Emech � Wnc

Emech � Ksys � Usys

Fx � �
dU
dx

U � 1
2 kx2

U � U0 � mgy

dU � �F
S # d�

S

¢U � U2 � U1 � �W � ��
2

1
F
S # d�

S

E � mc2



Summary | 235

TOPIC RELEVANT EQUATIONS AND REMARKS

System The energy of a system can be changed by work being done on the system and by energy
transfer by heat. (These transfers include the emission or absorption of radiation.) The in-
crease or decrease in the energy of the system can always be accounted for by the disap-
pearance or appearance of some kind of energy somewhere else:

7-14

Work–energy theorem 7-16

6. Energy Dissipated by Friction For a system that has a surface that slides on a second surface, the energy dissipated by fric-
tion on both surfaces equals the increase in thermal energy of the system and is given by

7-24

where is the distance one surface slides relative to the other.

7. Problem Solving The conservation of mechanical energy and the work–energy theorem can be used as an al-
ternative to Newton’s laws to solve mechanics problems that require the determination of
the speed of a particle as a function of its position.

8. Mass and Energy A particle with mass m has an intrinsic rest energy E given by

7-26

where is the speed of light in a vacuum. A system with mass M also has a
rest energy If a system gains or loses internal energy it simultaneously gains or
loses mass where 

Binding energy The energy required to separate a bound system into its constituent parts is called its bind-
ing energy. The binding energy is where is the sum of the masses of the con-
stituent parts, less the mass of the bound system.

9. Newtonian Mechanics If the speed of a particle approaches the speed of light c (when the kinetic energy of the
and Special Relativity particle is significant in comparison to its rest energy), Newtonian mechanics breaks down,

and must be replaced by Einstein’s special theory of relativity.

10. Energy Quantization The internal energy of a bound system is found to have only a discrete set of possible val-
ues. For a system oscillating with frequency f, the allowed energy values are separated by an
amount hf, where h is Planck’s constant: 

7-29

Photons Microscopic systems often exchange energy with their surroundings by emitting or absorb-
ing electromagnetic radiation, which is also quantized. The quantum of energy of radiation
is called the photon:

7-30

where f is the frequency of the electromagnetic radiation.

Ephoton � hf

h � 6.626 � 10�34 J # s

¢M¢Mc2,

¢M � ¢E>c2.¢M,
¢E,E �Mc2.

c � 3 � 108 m>s E � mc2

srel

fksrel � ¢Etherm

Wext � ¢Esys � ¢Emech � ¢Etherm � ¢Echem � ¢Eother

Ein � Eout � ¢Esys

Answer to Concept Checks

7-1 On the you–Earth system no external work is done, so
the total energy, which now includes gravitational
potential energy, is conserved. The change in
mechanical energy is mgh, so the work–energy theorem
again gives ¢Echem � �(mgh � ¢Etherm).

Answers to Practice Problems

7-1

7-2 (a) (b) (c)

7-3

7-4 (a) (b)

7-5

7-6 None

7-7

7-8 (a) (b) (c)

7-9

7-10 En�1 � En � hf � (6.63 � 10�34 J # s)(1014 s) � 6 � 10�20 J

2.7 � 10�5; 1.9 � 103 mi>s950 J620 J,1600 J,

53 m

3.16 m>s 0.72 J4.9 cm,

495 J

�1.1 kJ2.2 kJ,4.3 kJ,

ACF
S # d�

S
� � 1

2Bx2
max ymax
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Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

For all problems, use for the free-fall acceleration
and neglect friction and air resistance unless instructed to
do otherwise.

9.81 m>s2

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM
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Problem 1

CONCEPTUAL PROBLEMS

1 • Two cylinders of unequal mass are connected by a
massless cord that passes over a frictionless pulley (Figure 7-34).
After the system is released from rest, which of the following
statements are true? (U is the gravitational potential energy and
K is the kinetic energy of the system.) (a) and 
(b) and (c) and (d) and

(e) and SSM¢K 	 0.¢U 
 0¢K � 0,
¢U � 0¢K � 0,¢U 	 0¢K 
 0,¢U � 0

¢K 
 0,¢U 	 0

4 • As a novice ice hockey player (assume frictionless situa-
tion), you have not mastered the art of stopping except by coasting
straight for the boards of the rink (assumed to be a rigid wall).
Discuss the energy changes that occur as you use the boards to slow
your motion to a stop. 

5 • True or false (The particle in this question can move only
along the x axis and is acted on by only one force, and U(x) is the
potential-energy function associated with this force.):
(a) The particle will be in equilibrium if it is at a location where

(b) The particle will accelerate in the direction if it is at a loca-
tion where 

(c) The particle will both be in equilibrium and have constant
speed if it is at a section of the x axis where through-
out the section.

(d) The particle will be in stable equilibrium if it is at a location
where both and 

(e) The particle will be in neutral equilibrium if it is at a location
where both and 

6 • Two knowledge seekers decide to ascend a mountain. Sal
chooses a short, steep trail, while Joe, who weighs the same as Sal,
chooses a long, gently sloped trail. At the top, they get into an ar-
gument about who gained more potential energy. Which of the fol-
lowing is true?
(a) Sal gains more gravitational potential energy than Joe.
(b) Sal gains less gravitational potential energy than Joe.
(c) Sal gains the same gravitational potential energy as Joe.
(d) To compare the gravitational potential energies, we must know

the height of the mountain.
(e) To compare the gravitational potential energies, we must know

the lengths of the two trails.

7 • True or false:
(a) Only conservative forces can do work.
(b) If only conservative forces act on a particle, the kinetic energy of

the particle cannot change.
(c) The work done by a conservative force equals the change in the

potential energy associated with that force.
(d) If, for a particle constrained to the x axis, the potential energy

associated with a conservative force decreases as the particle
moves to the right, then the force points to the left.

(e) If, for a particle constrained to the x axis, a conservative force
points to the right, then the potential energy associated with the
force increases as the particle moves to the left.

8 • Figure 7-35 shows the plot of a potential-energy function U
versus x. (a) At each point indicated, state whether the x component
of the force associated with this function is positive, negative, or
zero. (b) At which point does the force have the greatest magnitude?
(c) Identify any equilibrium points, and state whether the equilib-
rium is stable, unstable, or neutral.

d2U>dx2 
 0.dU>dx � 0

d2U>dx2 
 0.dU>dx � 0

dU>dx � 0

dU>dx 
 0.
�x

dU>dx � 0.

2 • Two stones are simultaneously thrown with the same
initial speed from the roof of a building. One stone is thrown at
an angle of above the horizontal, the other is thrown
horizontally. (Neglect effects due to air resistance.) Which state-
ment below is true?
(a) The stones strike the ground at the same time and with equal

speeds.
(b) The stones strike the ground at the same time with different

speeds.
(c) The stones strike the ground at different times with equal

speeds.
(d) The stones strike the ground at different times with different

speeds.

3 • True or false:
(a) The total energy of a system cannot change.
(b) When you jump into the air, the floor does work on you,

increasing your mechanical energy.
(c) Work done by frictional forces must always decrease the total

mechanical energy of a system.
(d) Compressing a given spring from its unstressed length takes

more work than stretching it from its unstressed length.2.0 cm
2.0 cm

30°
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9 • Assume that, when the brakes are applied, a constant
frictional force is exerted on the wheels of a car by the road. If that
is so, then which of the following are necessarily true? (a) The dis-
tance the car travels before coming to rest is proportional to the
speed of the car just as the brakes are first applied, (b) the car’s
kinetic energy diminishes at a constant rate, (c) the kinetic energy of
the car is inversely proportional to the time that has elapsed since
the application of the brakes, (d) none of the above.

10 •• If a rock is attached to a
massless, rigid rod and swung in a
vertical circle (Figure 7-36) at a
constant speed, the total me-
chanical energy of the
rock–Earth system does not
remain constant. The kinetic
energy of the rock remains
constant, but the gravitational
potential energy is continually
changing. Is the total work done
on the rock equal to zero during
all time intervals? Does the force by
the rod on the rock ever have a nonzero
tangential component?

U

xA B

C D

E F
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11 •• Use the rest energies given in Table 7-1 to answer the fol-
lowing questions. (a) Can the triton naturally decay into a helion? 
(b) Can the alpha particle naturally decay into helion plus a neutron?
(c) Can the proton naturally decay into a neutron and a positron?

ESTIMATION AND APPROXIMATION

12 • Estimate (a) the change in your gravitational potential
energy on taking an elevator from the ground floor to the top of the
Empire State Building, (b) the average force exerted by the elevator
on you during the trip, and (c) the average power delivered by that
force. The building is 102 stories high. (You may need to estimate
the time for the trip.)

13 • A tightrope walker whose mass is walks across a
tightrope held between two supports apart; the tension in the
rope is when she stands at the exact center of the rope.
Estimate: (a) the sag in the tightrope when the acrobat stands in the
exact center, and (b) the change in her gravitational potential energy
from when she steps onto the tightrope to when she stands at its
exact center.

14 •• BIOLOGICAL APPLICATION The metabolic rate is defined as
the rate at which the body uses chemical energy to sustain its 
life functions. The average metabolic rate has been found to be
proportional to the total skin surface area of the body. The surface

5000 N
10 m

50 kg

area for a 5-ft, 10-in. male weighing is about and for a
5-ft, 4-in. female weighing it is approximately There is
about a 1 percent change in surface area for every three pounds
above or below the weights quoted here and a 1 percent change for
every inch above or below the heights quoted. (a) Estimate your
average metabolic rate over the course of a day using the following
guide for metabolic rates (per square meter of skin area) for various
physical activities: sleeping, sitting, walking,

moderate physical activity, and moderate
aerobic exercise, How do your results compare to the
power of a 100-W light bulb? (b) Express your average metabolic
rate in terms of kcal/day (A kcal is the “food
calorie” used by nutritionists.) (c) An estimate used by nutritionists
is that each day the “average person” must eat roughly 12–15 kcal
of food for each pound of body weight to maintain his or her
weight. From the calculations in Part (b), are these estimates
plausible?

15 •• BIOLOGICAL APPLICATION Assume that your maximum
metabolic rate (the maximum rate at which your body uses its
chemical energy) is (about ). Assuming a 40 percent
efficiency for the conversion of chemical energy into mechanical en-
ergy, estimate the following: (a) the shortest time you could run up
four flights of stairs if each flight is high, (b) the shortest time
you could climb the Empire State Building (102 stories high) using
your Part (a) result. Comment on the feasibility of you actually
achieving your Part (b) result.

16 •• ENGINEERING APPLICATION, CONTEXT-RICH You are in
charge of determining when the uranium fuel rods in a local nu-
clear power plant are to be replaced with fresh ones. To make this
determination, you decide to estimate how much the mass of a core
of a nuclear-fueled electric-generating plant is reduced per unit of
electric energy produced. (Note: In such a generating plant the
reactor core generates thermal energy, which is then transformed to
electric energy by a steam turbine. It requires of thermal
energy for each of electric energy produced.) What are your
results for the production of (a) of thermal energy? (b) enough
electric energy to keep a 100-W light bulb burning for 
(c) electric energy at a constant rate of for a year? (This is
typical of modern plants.) 

17 •• ENGINEERING APPLICATION, MULTISTEP The chemi-
cal energy released by burning a gallon of gasoline is approxi-
mately Estimate the total energy used by all of the
cars in the United States during the course of one year. What
fraction does this represent of the total energy use by the United
States in one year (currently about )?

18 •• ENGINEERING APPLICATION The maximum efficiency
of a solar-energy panel in converting solar energy into useful
electrical energy is currently about 12 percent. In a region such
as the southwestern United States the solar intensity reaching
Earth’s surface is about on average during the day.
Estimate the area that would have to be covered by solar panels
in order to supply the energy requirements of the United States
(approximately ) and compare it to the area of
Arizona? Assume cloudless skies. 

19 •• ENGINEERING APPLICATION Hydroelectric power plants
convert gravitational potential energy into more useful forms by
flowing water downhill through a turbine system to generate
electric energy. The Hoover Dam on the Colorado River is 
high and generates At what rate (in L/s) must
water be flowing through the turbines to generate this power?
The density of water is Assume a total efficiency of 90.0
percent in converting the water’s potential energy into electrical
energy.

1.00 kg>L.

4 � 109 kW # h>y.
211 m

5 � 1020 J>y
1.0 kW>m2

SSM5 � 1020 J

1.3 � 105 kJ.

1.0 GW
10.0 y?

1.0 J
1.0 J

3.0 J

SSM

3.5 m

2.7 hp1500 W

(1 kcal � 4.19 kJ).

300 W>m2.
175 W>m2;160 W>m2;

60 W>m2;40 W>m2;

1.5 m2.110 lb
2.0 m2,175 lb

m
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Problem 10
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FORCE, POTENTIAL ENERGY, 
AND EQUILIBRIUM

20 • Water flows over Victoria Falls, which is high, at a
rate of If half the potential energy of this water were
converted into electric energy, how much electric power would be
produced by these falls?

21 • A 2.0-kg box slides down a long, frictionless incline of
angle It starts from rest at time at the top of the incline at
a height of above the ground. (a) What is the potential energy
of the box relative to the ground at (b) Use Newton’s laws to
find the distance the box travels during the interval 
and its speed at (c) Find the potential energy and the ki-
netic energy of the box at (d) Find the kinetic energy and
the speed of the box just as it reaches the ground at the bottom of
the incline.

22 • A constant force is in the direction. (a) Find
the potential-energy function U(x) associated with this force if

(b) Find a function U(x) such that (c) Find
a function U(x) such that 

23 • A spring has a force constant of How far
must the spring be stretched for its potential energy to equal (a)
and (b)

24 • (a) Find the force associated with the potential-energy
function where A is a constant. (b) At what value(s) of x
does the force equal zero?

25 •• The force is associated with the potential-energy
function where C is a positive constant. (a) Find the
force as a function of x. (b) Is this force directed toward the ori-
gin or away from it in the region Repeat the question for
the region (c) Does the potential energy U increase or de-
crease as x increases in the region (d) Answer Parts (b)
and (c) where C is a negative constant.

26 •• The force is associated with the potential-energy
function U(y). On the potential-energy curve for U versus y,
shown in Figure 7-37, the segments AB and CD are straight
lines. Plot versus y. Include numerical values, with units,
on both axes. These values can be obtained from the U versus
y plot.

Fy

Fy

SSM

x 
 0?
x 	 0?

x 
 0?
Fx

U � C>x, Fx

U � Ax4,
Fx

100 J?
50 J,

1.0 � 104 N>m.

U(6.0 m) � 14 J.
U(4.0 m) � 0.U(x0) � 0.

�xFx � 6.0 N

t � 1.0 s.
t � 1.0 s.

0.0 s 	 t 	 1.0 s
t � 0?

20 m
t � 030°.

1.4 � 106 kg>s.
128 m

function. (b) Assuming no other forces act on the object, at what po-
sitions is this object in equilibrium? (c) Which of these equilibrium
positions are stable and which are unstable?

29 •• The potential energy of an object constrained to the x
axis is given by where U is in joules and x is in
meters. (a) Determine the force associated with this potential-
energy function. (b) Assuming no other forces act on the object,
at what positions is this object in equilibrium? (c) Which of these
equilibrium positions are stable and which are unstable?

30 •• The net force acting on an object constrained to the x
axis is given by (The force is in newtons and x
in meters.) Locate the positions of unstable and stable equilib-
rium. Show that each position is stable or unstable by calculat-
ing the force one millimeter on either side of the locations. 

31 •• The potential energy of a 4.0-kg object constrained to
the x axis is given by for and for

where U is in joules and x is in meters, and the only
force acting on this object is the force associated with this poten-
tial-energy function. (a) At what positions is this object in equi-
librium? (b) Sketch a plot of U versus x. (c) Discuss the stability of
the equilibrium for the values of x found in Part (a). (d) If the total
mechanical energy of the particle is what is its speed at

32 •• A force is given by where 
(a) For positive values of x, does the potential energy associated
with this force increase or decrease with increasing x? (You can de-
termine the answer to this question by imagining what happens to
a particle that is placed at rest at some point x and is then released.)
(b) Find the potential-energy function U associated with this force
such that U approaches zero as x approaches infinity. (c) Sketch U
versus x.

33 •• MULTISTEP A straight rod of negligible mass is mounted
on a frictionless pivot, as shown in Figure 7-38. Blocks having
masses and are attached to the rod at distances and 
(a) Write an expression for the gravitational potential energy of the
blocks–Earth system as a function of the angle made by the rod
and the horizontal. (b) For what angle is this potential energy a
minimum? Is the statement “systems tend to move toward a con-
figuration of minimum potential energy” consistent with your re-
sult? (c) Show that if the potential energy is the same
for all values of (When this holds, the system will balance at any
angle This result is known as Archimedes’ law of the lever.) SSMu.

u.
m1�1 � m2�2 ,

u

u

�2 .�1m2m1

A � 8.0 N # m3.Fx � Ax�3,

x � 2.0 m?
12 J,

x � 3.0 m,
U � 0x � 3.0 mU � 3x2 � x3

Fx(x) � x3 � 4x.

SSM

Fx

U(x) � 8x2 � x4,

8

8

A

B

C

D

7654321

6

4

2

y, m

U, J
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θ
m1

1

�

�
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27 •• The force acting on an object is given by At
the force is known to point in the direction and have

a magnitude of 25 N. Determine the potential energy associated
with this force as a function of x, assuming we assign a reference
value of at for the potential energy.

28 •• The potential energy of an object constrained to the x axis
is given by where U is in joules and x is in meters.
(a) Determine the force associated with this potential-energyFx

U(x) � 3x2 � 2x3,

x � 2.0 m�10 J

�xx � 5.0 m,
Fx � a>x2.
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34 •• An Atwood’s machine (Figure 7-39)
consists of masses and and a pulley of
negligible mass and friction. Starting from
rest, the speed of the two masses is at
the end of At that time, the kinetic
energy of the system is and each mass
has moved a distance of Determine the
values of and 

35 ••• ENGINEERING APPLICATION,

MULTISTEP You have designed a novelty
desk clock, as shown in Figure 7-40. You are
worried that it is not ready for market be-
cause the clock itself might be in an unstable
equilibrium configuration. You decide to
apply your knowledge of potential energies
and equilibrium conditions and analyze the
situation. The clock (mass m) is supported
by two light cables running over the two frictionless pulleys of neg-
ligible diameter, which are attached to counterweights that each
have mass M. (a) Find the potential energy of the system as a func-
tion of the distance y. (b) Find the value of y for which the potential
energy of the system is a minimum. (c) If the potential energy is a
minimum, then the system is in equilibrium. Apply Newton’s sec-
ond law to the clock and show that it is in equilibrium (the forces
on it sum to zero) for the value of y obtained for Part (b). (d) Finally,
determine whether you are going to be able to market this gadget:
is this a point of stable or unstable equilibrium?

m2 .m1

6.0 m.
80 J

3.0 s.
4.0 m>sm2 ,m1

m1

m2
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THE CONSERVATION 
OF MECHANICAL ENERGY

36 • A block of mass m on a horizontal frictionless tabletop is
pushed against a horizontal spring, compressing it a distance x, and
the block is then released. The spring propels the block along the
tabletop, giving a speed v. The same spring is then used to propel a
second block of mass 4m, giving it a speed 3v. What distance was
the spring compressed in the second case? Express your answer in
terms of x.

37 • A simple pendulum of length L with a bob of mass m is
pulled aside until the bob is at a height L/4 above its equilibrium
position. The bob is then released. Find the speed of the bob as it
passes through the equilibrium position. Neglect any effects due to
air resistance.

38 • A 3.0-kg block slides along a frictionless horizontal sur-
face with a speed of (Figure 7-41). After sliding a distance
of 2.0 m, the block makes a smooth transition to a frictionless ramp
inclined at an angle of to the horizontal. What distance along
the ramp does the block slide before coming momentarily to rest?

40°

7.0 m>s

d d

y
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7.0 m/s
40°

F I G U R E  7 - 4 1 Problems 38 and 64

k = 400 N/m

x

5.00 m

F I G U R E  7 - 4 2 Problem 39

40 • ENGINEERING APPLICATION, CONTEXT-RICH You are de-
signing a game for small children and want to see if the ball’s
maximum speed is sufficient to require the use of goggles. In your
game, a 15.0-g ball is to be shot from a spring gun whose spring has
a force constant of The spring will be compressed 
when in use. How fast will the ball be moving as it leaves the gun
and how high will the ball go if the gun is aimed vertically upward?
What would be your recommendation on the use of goggles?

41 • A 16-kg child on a 6.0-m-long playground swing moves
with a speed of when the swing seat passes through its
lowest point. What is the angle that the swing makes with the
vertical when the swing is at its highest point? Assume that the
effects due to air resistance are negligible, and assume that the child
is not pumping the swing. SSM

3.4 m>s
5.00 cm600 N/m.

39 • The 3.00-kg object in Figure 7-42 is released from rest at a
height of on a curved frictionless ramp. At the foot of the
ramp is a spring of force constant The object slides down
the ramp and into the spring, compressing it a distance x before
coming momentarily to rest. (a) Find x. (b) Describe the motion of
the object (if any) after the block momentarily comes to rest?

400 N>m.
5.00 m

42 •• The system shown in Figure 7-43
is initially at rest when the lower string is
cut. Find the speed of the objects when
they are momentarily at the same height.
The frictionless pulley has negligible mass.

1 m

F I G U R E  7 - 4 3

Problem 42
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43 •• A block of mass m rests on an inclined plane
(Figure 7-44). The coefficient of static friction between the block and
the plane is A gradually increasing force is pulling down on
the spring (force constant k). Find the potential energy U of the
spring (in terms of the given symbols) at the moment the block
begins to move.

ms .

48 •• A single roller-coaster car is moving with speed on the
first section of track when it descends a 5.0-m-deep valley, then
climbs to the top of a hill that is above the first section of
track. Assume any effects of friction or of air resistance are negligi-
ble. (a) What is the minimum speed required if the car is to travel
beyond the top of the hill? (b) Can we affect this speed by changing
the depth of the valley to make the coaster pick up more speed at
the bottom? Explain.

49 •• The Gravitron single-car roller coaster consists of a single
loop-the-loop. The car is initially pushed, giving it just the right me-
chanical energy so the riders on the coaster will feel “weightless”
when they pass through the top of the circular arc. How heavy will
they feel when they pass through the bottom of the arc (that is,
what is the normal force pressing up on them when they are at the
bottom of the loop)? Express the answer as a multiple of mg (their
actual weight). Assume any effects of friction or of air resistance are
negligible.

50 •• A stone is thrown upward at an angle of above the
horizontal. Its maximum height above the release point is 
What was the stone’s initial speed? Assume any effects of air resis-
tance are negligible.

51 •• A 0.17-kg baseball is launched from the roof of a building
above the ground. Its initial velocity is at above the

horizontal. Assume any effects of air resistance are negligible.
(a) What is the maximum height above the ground that the ball
reaches? (b) What is the speed of the ball as it strikes the ground?

52 •• An 80-cm-long pendulum with a 0.60-kg bob is released
from rest at an initial angle of with the vertical. At the bottom of
the swing, the speed of the bob is (a) What is (b) What
angle does the pendulum make with the vertical when the speed of
the bob is Is this angle equal to Explain why or
why not.

53 •• The Royal Gorge bridge over the Arkansas River is 
above the river. A 60-kg bungee jumper has an elastic cord with an
unstressed length of attached to her feet. Assume that, like an
ideal spring, the cord is massless and provides a linear restoring
force when stretched. The jumper leaps, and at at her lowest point
she barely touches the water. After numerous ascents and descents,
she comes to rest at a height h above the water. Model the jumper
as a point particle and assume that any effects of air resistance are
negligible. (a) Find h. (b) Find the maximum speed of the jumper.

54 •• A pendulum consists of a 2.0-kg bob attached to a light
3.0-m-long string. While hanging at rest with the string vertical, the
bob is struck a sharp horizontal blow, giving it a horizonal velocity
of At the instant the string makes an angle of with the
vertical, what is (a) the speed, (b) the gravitational potential energy
(relative to its value is at the lowest point), and (c) the tension in the
string? (d) What is the angle of the string with the vertical when the
bob reaches its greatest height?

55 •• A pendulum consists of a string of length L and a bob of
mass m. The bob is rotated until the string is horizontal. The bob
is then projected downward with the minimum initial speed
needed to enable the bob to make a full revolution in the 
vertical plane. (a) What is the maximum kinetic energy of the bob?
(b) What is the tension in the string when the kinetic energy is
maximum?

56 •• A child whose weight is 360 N swings out over a pool of
water using a rope attached to the branch of a tree at the edge of the
pool. The branch is above ground level and the surface of the
water is below ground level. The child holds onto the rope at
a point from the branch and moves back until the angle be-
tween the rope and the vertical is When the rope is in the ver-
tical position, the child lets go and drops into the pool. Find the
speed of the child just as he impacts the surface of the water. 

23°.
10.6 m
1.8 m

12 m

SSM

30°4.5 m>s.

50 m

310 m

1
2 u0?1.4 m>s?

u0?2.8 m>s.
u0

40°30 m>s12 m

24 m.
53°

v0

4.5 m

v0

km

θ
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45 •• A ball at the end of a string moves in a vertical circle
with constant mechanical energy E. What is the difference be-
tween the tension at the bottom of the circle and the tension at
the top?

46 •• A girl of mass m is taking a picnic lunch to her grand-
mother. She ties a rope of length R to a tree branch over a creek
and starts to swing from rest at a point that is a distance R/2
lower than the branch. What is the minimum breaking tension
for the rope if it is not to break and drop the girl into the creek? 

47 •• A 1500-kg roller coaster car starts from rest at a height
(Figure 7-46) above the bottom of a 15.0-m-diameter

loop. If friction is negligible, determine the downward force of the
rails on the car when the upside-down car is at the top of the loop.

H � 23.0 m

SSM

H
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44 •• A 2.40-kg block is dropped onto a
spring and platform (Figure 7-45) of negligible
mass. The block is released a distance of 5.00 m
above the platform. When the block is mo-
mentarily at rest, the spring is compressed by
25.0 cm. Find the speed of the block when the
compression of the spring is only 15.0 cm.



θ

m

L

L
2
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59 ••• A pendulum is suspended from the ceiling
and attached to a spring fixed to the floor directly
below the pendulum support (Figure 7-48). The mass
of the pendulum bob is m, the length of the pendu-
lum is L, and the force constant is k. The un-
stressed length of the spring is L/2 and the dis-
tance between the floor and ceiling is 1.5L. The
pendulum is pulled aside so that it makes an
angle with the vertical and is then released
from rest. Obtain an expression for the speed
of the pendulum bob as the bob passes
through a point directly below the pendu-
lum support. SSM

u

(Model the child as a point particle attached to the rope from
the branch.)

57 •• Walking by a pond, you find a rope attached to a stout
tree limb that is above ground level. You decide to use the
rope to swing out over the pond. The rope is a bit frayed, but sup-
ports your weight. You estimate that the rope might break if the ten-
sion is greater than your weight. You grab the rope at a point

from the limb and move back to swing out over the pond.
(Model yourself as a point particle attached to the rope from
the limb.) (a) What is the maximum safe initial angle between the
rope and the vertical at which it will not break during the swing?
(b) If you begin at this maximum angle, and the surface of the pond
is below the level of the ground, with what speed will you
enter the water if you let go of the rope when the rope is vertical?

58 ••• A pendulum bob of mass m is attached to a light string of
length L and is also attached to a spring of force constant k. With the
pendulum in the position shown in Figure 7-47, the spring is at its
unstressed length. If the bob is now pulled aside so that the string
makes a small angle with the vertical and released, what is the
speed of the bob as it passes through the equilibrium position?
Hint: Recall the small-angle approximations: if is expressed in radians,
and if then and cosu � 1 � 1

2 u
2.sinu � tanu � uƒ u ƒ V 1,

u

u

1.2 m

4.6 m
4.6 m

80 N

5.2 m

10.6 m was released during this eruption? (b) The energy released by ther-
monuclear bombs is measured in megatons of TNT, where 1 mega-
ton of Convert your answer for Part (a) to
megatons of TNT.

61 • CONTEXT-RICH To work off a large pepperoni pizza you
ate on Friday night, on Saturday morning you climb a 120-m-high
hill. (a) Assuming a reasonable value for your mass, determine 
your increase in gravitational potential energy. (b) Where does this
energy come from? (c) The human body is typically 20 percent effi-
cient. How much energy was converted into thermal energy?
(d) How much chemical energy is expended by you during the
climb? Given that oxidation (burning) of a single slice of pepperoni
pizza releases about (250 food calories) of energy, do you
think one climb up the hill is enough?

62 • A 2000-kg car moving at an initial speed of along
a horizontal road skids to a stop in (a) Find the energy dissi-
pated by friction. (b) Find the coefficient of kinetic friction between
the tires and the road. (Note: When stopping without skidding and
using conventional brakes, 100 percent of the kinetic energy is dis-
sipated by friction within the brakes. With regenerative braking,
such as that used in hybrid vehicles, only 70 percent of the kinetic
energy is dissipated.)

63 • An 8.0-kg sled is initially at rest on a horizontal road. The
coefficient of kinetic friction between the sled and the road is 0.40.
The sled is pulled a distance of by a force of applied to
the sled at an angle of above the horizontal. (a) Find the work
done by the applied force. (b) Find the energy dissipated by friction.
(c) Find the change in the kinetic energy of the sled. (d) Find the
speed of the sled after it has traveled 

64 •• Using Figure 7-41, suppose that the surfaces described are
not frictionless and that the coefficient of kinetic friction between the
block and the surfaces is 0.30. The block has an initial speed of

and slides 2.0 m before reaching the ramp. Find (a) the speed
of the block when it reaches the ramp, and (b) the distance that the
block slides along the inclined surface before coming momentarily
to rest. (Neglect any energy dissipated along the transition curve.)

65 •• The 2.0-kg block in Figure 7-49 slides down a friction-
less curved ramp, starting from rest at a height of The
block then slides on a rough horizontal surface before
coming to rest. (a) What is the speed of the block at the bottom
of the ramp? (b) What is the energy dissipated by friction?
(c) What is the coefficient of kinetic friction between the block
and the horizontal surface? SSM

9.0 m
3.0 m.

7.0 m>s
3.0 m.

30°
40 N3.0 m

60 m.
25 m>s

1.0 MJ

TNT � 4.2 � 1015 J.

66 •• A 20-kg girl slides down a playground slide with a
vertical drop of 3.2 m. When she reaches the bottom of the slide,
her speed is (a) How much energy was dissipated by
friction? (b) If the slide is inclined at with the horizontal,
what is the coefficient of kinetic friction between the girl and
the slide? 

20°
1.3 m>s.

L

m

k
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Problem 59

3.0 m

9.0 m

m = 2.0 kg
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TOTAL ENERGY AND
NONCONSERVATIVE FORCES

60 • In a volcanic eruption, of mountain with an
average density of was raised an average height of

(a) What is the minimum amount of energy, in joules, that500 m.
1600 kg>m3

4.00 km3
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68 •• A small object of mass m moves in a horizontal circle of
radius r on a rough table. It is attached to a horizontal string fixed
at the center of the circle. The speed of the object is initially After
completing one full trip around the circle, the speed of the object is

(a) Find the energy dissipated by friction during that one rev-
olution in terms of m, and r. (b) What is the coefficient of kinetic
friction? (c) How many more revolutions will the object make be-
fore coming to rest?

69 •• The initial speed of a 2.4-kg box traveling up a plane in-
clined to the horizontal is The coefficient of kinetic fric-
tion between the box and the plane is 0.30. (a) How far along the in-
cline does the box travel before coming to a stop? (b) What is its
speed when it has traveled half the distance found in Part (a)?

70 ••• A block of mass m rests on a plane inclined at an angle 
with the horizontal (Figure 7-51). A spring with force constant k is
attached to the block. The coefficient of static friction between the
block and plane is The spring is pulled upward along the plane
very slowly. (a) What is the extension of the spring the instant the
block begins to move? (b) The block stops moving just as the exten-
sion of the contracting spring reaches zero. Express (the coeffi-
cient of kinetic friction) in terms of and u.ms

mk

ms .

u

SSM

3.8 m>s.37°

v0 ,
0.5v0 .

v0 .

MASS AND ENERGY

71 • (a) Calculate the rest energy of of dirt. (b) If you
could convert this energy completely into electrical energy and sell
it for how much money would you take in? (c) If you
could power a 100-W light bulb with this energy, for how long
could you keep the bulb lit?

72 • One kiloton of TNT, when detonated, yields an explosive
energy of roughly How much less is the total mass of the
bomb remnants after the explosion than before? If you could find
and reassemble the pieces, would this loss of mass be noticeable?

73 • CONCEPTUAL Calculate your rest energy in both mega
electron-volts and joules. If that energy could be converted com-
pletely to the kinetic energy of your car, estimate its speed. Use the
nonrelativistic expression for kinetic energy and comment on
whether or not your answer justifies using the nonrelativistic
expression for kinetic energy.

74 • If a black hole and a “normal” star orbit each other, gases
from the normal star falling into the black hole can have their tem-
perature increased by millions of degrees due to frictional heating.
When the gases are heated that much, they begin to radiate light in
the X-ray region of the electromagnetic spectrum (high-energy light
photons). Cygnus X-1, the second strongest known X-ray source in
the sky, is thought to be one such binary system; it radiates at an es-
timated power of If we assume that 1.0 percent of the
in-falling mass escapes as X ray energy, at what rate is the black
hole gaining mass?

75 • ENGINEERING APPLICATION You are designing the
fuel requirements for a small fusion electric-generating plant.
Assume 33 percent conversion to electric energy. For the deu-
terium–tritium (D–T) fusion reaction in Example 7-18, calculate
the number of reactions per second that are necessary to gener-
ate of electric power.

76 • Use Table 7-1 to calculate the energy needed to re-
move one neutron from a stationary alpha particle, leaving a sta-
tionary helion plus a neutron with a kinetic energy of 

77 • A free neutron can decay into a proton plus an electron
and an electron antineutrino [an electron antineutrino (symbol )
is a nearly massless elementary particle]: Use
Table 7-1 to calculate the energy released during this reaction.

78 •• During one type of nuclear fusion reaction, two
deuterons combine to produce an alpha particle. (a) How much
energy is released during this reaction? (b) How many such
reactions must take place per second to produce of power?

79 •• A large nuclear power plant produces of elec-
trical power by nuclear fission. (a) By how many kilograms does the
mass of the nuclear fuel decrease in one year? (Assume an effi-
ciency of 33 percent for a nuclear power plant.) (b) In a coal-burn-
ing power plant, each kilogram of coal releases of thermal en-
ergy when burned. How many kilograms of coal are needed each
year for a 1000-MW coal-burning power plant? (Assume an effi-
ciency of 38 percent for a coal-burning power plant.)

QUANTIZATION OF ENERGY

80 •• A mass on the end of a spring with a force constant of
oscillates at a frequency of 2.5 oscillations per second.

(a) Determine the quantum number, n, of the state it is in if it has a
total energy of (b) What is its ground state energy? 10 J.

1000 N>kg

31 MJ

1000 MW

1 kW

n S p � e� � ne .
ne

1.5 MeV.

SSM1.00 kW

4 � 1031 W.

4 � 1012 J.

$0.10>kW # h,

1.0 g

m1

m2

2.0 m

v = ?

k

m

θ
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67 •• In Figure 7-50, the coefficient of kinetic friction between
the 4.0-kg block and the shelf is 0.35. (a) Find the energy dissipated
by friction when the 2.0-kg block falls a distance y. (b) Find the
change in the mechanical energy of the two-block–Earth sys-
tem during the time it takes the 2.0-kg block to fall a distance y.
(c) Use your result for Part (b) to find the speed of either block after
the 2.0-kg block falls 2.0 m.

Emech
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Problem 67



Problems | 243

81 •• Repeat Problem 80, but consider instead an atom in a
solid vibrating at a frequency of oscillations per second
and having a total energy of 

GENERAL PROBLEMS

82 • A block of mass m, starting from rest, is pulled up a fric-
tionless inclined plane that makes an angle with the horizontal by
a string parallel to the plane. The tension in the string is T. After
traveling a distance L, the speed of the block is Derive an ex-
pression for work done by the tension force.

83 • A block of mass m slides with constant speed v down a
plane inclined at angle with the horizontal. Derive an expression
for the energy dissipated by friction during the time interval 

84 • In particle physics, the potential energy associated with a
pair of quarks bound together by the strong nuclear force is in one
particular theoretical model written as the following function:

where k and are positive constants, and r is
the distance of separation between the two quarks.* (a) Sketch the
general shape of the potential-energy function. (b) What is a general
form for the force each quark exerts on the other? (c) At the two ex-
tremes of very small and very large values of r, what does the force
simplify to?

85 • ENGINEERING APPLICATION, CONTEXT-RICH You are
in charge of “solar-energizing” your grandfather’s farm. At the
farm’s location, an average of reaches the surface
during the daylight hours on a clear day. If this could be con-
verted at 25 percent efficiency to electric energy, how large a col-
lection area would you need to run a 4.0-hp irrigation water
pump during the daylight hours?

86 •• ENGINEERING APPLICATION The radiant energy from
the Sun that reaches Earth’s orbit is (a) Even when
the Sun is directly overhead and under dry desert conditions,
25 percent of this energy is absorbed and/or reflected by the at-
mosphere before it reaches Earth’s surface. If the average fre-
quency of the electromagnetic radiation from the Sun is

how many photons per second would be incident
upon a solar panel? (b) Suppose the efficiency of the pan-
els for converting the radiant energy to electrical energy and de-
livering it is a highly efficient 10.0 percent. How large a solar
panel is needed to supply the needs of a 5.0-hp solar-powered
car (assuming the car runs directly off the solar panel and not
batteries) during a race in Cairo at noon on March 21?
(c) Assuming a more-realistic efficiency of 3.3 percent and 
panels capable of rotating to be always perpendicular to the
sunlight, how large an array of solar panels is needed to 
supply the power needs of the International Space Station 
(ISS)? The ISS requires about of continuous electric
power.

87 •• In 1964, after the 1250-kg jet-powered car Spirit of America
lost its parachute and went out of control during a run at Bonneville
Salt Flats, Utah, it left skid marks about long. (This earned
a place in the Guinness Book of World Records for longest skid
marks.) (a) If the car was moving initially at a speed of about

and was still going at about when it crashed
into a brine pond, estimate the coefficient of kinetic friction 
(b) What was the kinetic energy of the car after the skid began?

88 •• ENGINEERING APPLICATION, CONTEXT-RICH A T-bar tow
is planned in a new ski area. At any one time, it will be required, to

60 s
mk .

300 km>h800 km>h,

8.00 km

110 kW

1.0-m2
5.5 � 1014 Hz,

1.35 kW>m2.

SSM

1.0 kW>m2

aU(r) � �(a>r) � kr,

¢t.
u

vf .

u

2.7 eV.
1.00 � 1014

pull a maximum of 80 skiers up a 600-m slope inclined at above
the horizontal at a speed of The coefficient of kinetic fric-
tion between the skiers skis and the snow is typically 0.060. As the
manager of the facility, what motor power should you request of
the construction contractor if the mass of the average skier is

Assume you want to be ready for any emergency and will
order a motor whose power rating is 50 percent larger than the bare
minimum.

89 •• MULTISTEP A box of mass m on the floor is connected to
a horizontal spring of force constant k (Figure 7-52). The coefficient
of kinetic friction between the box and the floor is The other end
of the spring is connected to a wall. The spring is initially
unstressed. If the box is pulled away from the wall a distance 
and released, the box slides toward the wall. Assume the box does
not slide so far that the coils of the spring touch. (a) Obtain an ex-
pression for the distance the box slides before it first comes to a
stop. (b) Assuming obtain an expression for the speed of the
box when it has slid a distance following the release. (c) Obtain
the special value of such that d1 � d0 .mk

d0

d1 
 d0 ,
d1

d0

mk .

75.0 kg.

2.50 m>s.
15°

90 •• ENGINEERING APPLICATION, CONTEXT-RICH You operate
a small grain elevator near Champaign, Illinois. One of your silos
uses a bucket elevator that carries a full load of through a
vertical distance of (A bucket elevator works with a continu-
ous belt, like a conveyor belt.) (a) What is the power provided by
the electric motor powering the bucket elevator when the bucket
elevator ascends with a full load at a speed of 
(b) Assuming the motor is 85 percent efficient, how much does it
cost you to run this elevator, per day, assuming it runs 60 percent of
the time between 7:00 a.m. and 7:00 p.m. with an average load of
85 percent of a full load? Assume the cost of electric energy in your
location is 15 cents per kilowatt hour. 

91 •• ENGINEERING APPLICATION To reduce the power
requirement of elevator motors, elevators are counterbalanced with
weights connected to the elevator by a cable that runs over a pulley
at the top of the elevator shaft. Neglect any effects of friction in the
pulley. If a 1200-kg elevator that carries a maximum load of 
is counterbalanced with a mass of (a) what is the power
provided by the motor when the elevator ascends fully loaded at a
speed of (b) How much power is provided by the motor
when the elevator ascends at without a load?

92 •• In old science fiction movies, writers attempted to come
up with novel ways of launching spacecraft toward the moon. In
one hypothetical case, a screenwriter envisioned launching a moon
probe from a deep, smooth tunnel, inclined at 65.0° above the hori-
zontal. At the bottom of the tunnel a very stiff spring designed to
launch the craft was anchored. The top of the spring, when the
spring is unstressed, is from the upper end of the tunnel. 
The screenwriter knew from his research that to reach the moon, the
318-kg probe should have a speed of at least when it exits
the tunnel. If the spring is compressed by just before launch,
what is the minimum value for its force constant to achieve a suc-
cessful launch? Neglect friction with the tunnel walls and floor.

95.0 m
11.2 km>s30.0 m

2.3 m>s2.3 m>s?

1500 kg,
800 kg

2.3 m>s?

40 m.
800 kg

* This is known as the “Cornell potential,” developed in Physical Review Letters. Make
reference here also to the 2004 Nobel Prize to Gross, Wilczek, and Politzer.

Release position

d0

m
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93 •• In a volcanic eruption, a 2-kg piece of porous volcanic
rock is thrown straight upward with an initial speed of It
travels upward a distance of before it begins to fall back to
Earth. (a) What is the initial kinetic energy of the rock? (b) What is
the increase in thermal energy due to air resistance during ascent?
(c) If the increase in thermal energy due to air resistance on the way
down is 70 percent of that on the way up, what is the speed of the
rock when it returns to its initial position?

94 •• A block of mass m starts from rest at a
height h and slides down a frictionless plane
inclined at angle with the horizontal, as
shown in Figure 7-53. The block strikes
a spring of force constant k. Find the
distance the spring is com-
pressed when the block mo-
mentarily stops.

u

SSM

50 m
40 m>s.

are on horizontal straight sections, all at the same height of 
above the ground. Point C is at a height of above the ground
on an inclined section of slope angle 30°. Point B is at the crest of a
hill, while point D is at ground level at the bottom of a valley; the
radius of curvature at both of these points is Point F is at the
middle of a banked horizontal curve with a radius of curvature of

and at the same height as points A, E, and G. At point A the
speed of the car is (a) If the car is just barely to make it over
the hill at point B, what must be the height of point B above the
ground? (b) If the car is to just barely make it over the hill at point B,
what should be the magnitude of the force exerted by the track on
the car at that point? (c) What will be the acceleration of the car at
point C? (d) What will be the magnitude and direction of the force
exerted by the track on the car at point D? (e) What will be the mag-
nitude and direction of the force exerted by the track on the car at
point F? ( f ) At point G a constant braking force is to be applied to
the car, bringing it to a halt in a distance of What is the mag-
nitude of this required braking force?

98 •• ENGINEERING APPLICATION The cable of a 2000-kg eleva-
tor has broken, and the elevator is moving downward at a steady
speed of A safety braking system that works on friction
prevents the downward speed from increasing. (a) At what rate is
the braking system converting mechanical energy to thermal
energy? (b) While the elevator is moving downward at the
braking system fails and the elevator is in free-fall for a distance of

before hitting the top of a large safety spring with force con-
stant of After the elevator hits the top of the spring,
find the distance d that the spring is compressed before the elevator
is brought to rest.

99 ••• ENGINEERING APPLICATION, CONTEXT-RICH To mea-
sure the combined force of friction (rolling friction plus air drag)
on a moving car, an automotive engineering team you are on
turns off the engine and allows the car to coast down hills of
known steepness. The team collects the following data: (1) On a

hill, the car can coast at a steady (2) On a hill,
the steady coasting speed is The total mass of the car is

(a) What is the magnitude of the combined force of fric-
tion at and at (b) How much power
must the engine deliver to drive the car on a level road at steady
speeds of and (c) The maximum power
the engine can deliver is What is the angle of the steep-
est incline up which the car can maintain a steady 
(d) Assume that the engine delivers the same total useful work
from each liter of gas, no matter what the speed. At on a
level road, the car gets How many kilometers per
liter does it get if it goes instead?

100 •• ENGINEERING APPLICATION (a) Calculate the kinetic
energy of a 1200-kg car moving at (b) If friction (rolling
friction and air drag) results in a retarding force of at a
speed of what is the minimum energy needed to move
the car a distance of at a constant speed of 50 km>h?300 m

50 km>h,
300 N

50 km/h.

SSM30 m>s12.7 km>L.
20 m>s20 m>s?

40 kW.
30 m>s (P30)?20 m>s (P20)

30 m>s (F30)?20 m>s (F20)
1000 kg.

30 m>s.
5.74°20 m>s.2.87°

1.5 � 104 N>m.
5.0 m

1.5 m>s,

1.5 m>s.

25 m.

12 m>s.
30 m,

20 m.

10 m
10 m

95 •• SPREADSHEET A block of mass m is suspended from a
wall bracket by a spring and is free to move vertically (Figure 7-54). 
The direction is downward and the origin
is at the position of the block when the spring
is unstressed. (a) Show that the potential
energy as a function of position may be 
expressed as (b) Using a
spreadsheet program or graphing calculator,
make a graph of U as a function of y, with

and (c) Explain how
this graph shows that there is a position of
stable equilibrium for a positive value of y.
Using the Part (a) expression for U, deter-
mine (symbolically) the value of y when
the block is at its equilibrium position. 
(d) From the expression for U, find the 
net force acting on m at any position y.
(e) The block is released from rest with the
spring unstressed; if there is no friction, what
is the maximum value of y that will be
reached by the mass? Indicate on your
graph/spreadsheet.

96 •• A spring-loaded gun is cocked by compressing a short,
strong spring by a distance d. It fires a signal flare of mass m directly
upward. The flare has speed as it leaves the spring and is observed
to rise to a maximum height h above the point where it leaves the
spring. After it leaves the spring, effects of drag force by the air on the
flare are significant. (Express answers in terms of m, d, h, and g.)
(a) How much work is done on the spring during the compression?
(b) What is the value of the force constant k? (c) Between the time of
firing and the time at which maximum elevation is reached, how
much mechanical energy is dissipated into thermal energy?

97 •• ENGINEERING APPLICATION, CONTEXT-RICH Your firm is
designing a new roller-coaster ride. The permit process requires the
calculation of forces and accelerations at various important loca-
tions on the ride. Each roller-coaster car will have a total mass
(including passengers) of and will travel freely along the
winding frictionless track shown in Figure 7-55. Points A, E, and G

500 kg

v0 ,

v0

SSM

ymax

mg � 1 N.k � 2 N>m
U � 1

2 ky2 � mgy.

�y

m

y

A
B

C

D

E

F
G 30°

v = 12 m/s
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101 ••• A pendulum consists of a small bob of mass m attached
to a string of length L. The bob is held to the side with the string
horizontal (see Figure 7-56). Then the bob is released from rest.
At the lowest point of the swing, the string catches on a thin peg a
distance R above the lowest point. Show that R must be smaller
than 2L/5 if the string is to remain taut as the bob swings around
the peg in a full circle.

R

Lm

103 •• A standard introductory-
physics lab-experiment to examine the
conservation of energy and Newton’s laws
is shown in Figure 7-57. A glider is set up
on a linear air track and is attached by a
string over a massless-frictionless pulley
to a hanging weight. The mass of the
glider is M, while the mass of the hanging
weight is m. When the air supply to the air
track is turned on, the track becomes es-
sentially frictionless. You then release the
hanging weight and measure the speed of
the glider after the weight has fallen a
given distance (y). (a) To show that the
measured speed is the speed predicted by theory, apply conserva-
tion of mechanical energy and calculate the speed as a function of
y. (b) To verify this calculation, apply Newton’s second and third
laws directly by sketching a free-body diagram for each of the two
masses and applying Newton’s laws to find their accelerations.
Then use kinematics to calculate the speed of the glider as a func-
tion of y.

104 •• BIOLOGICAL APPLICATION In one model of a person
jogging, the energy expended is assumed to go into accelerating
and decelerating the feet and the lower portions of the legs. If the

jogging speed is v, then the maximum speed of the foot and lower
leg is about 2v. (From the moment a foot leaves the ground, to the
moment it next contacts the ground, the foot travels nearly twice as
far as the torso, so it must be going, on average, nearly twice as fast
as the torso.) If the mass of the foot and lower portion of a leg is m,
the energy needed to accelerate the foot and lower portion of a leg
from rest to speed 2v is and the same energy is
needed to decelerate this mass back to rest for the next stride.
Assume that the mass of the foot and lower portion of a man’s leg
is and that he jogs at a speed of with between
one footfall and the next. The energy he must provide to each leg in
each of travel is so the energy he must provide to both
legs during each second of jogging is Calculate the rate of the
man’s energy expenditure using this model, assuming that his mus-
cles have an efficiency of 20 percent.

105 •• A high school teacher once suggested measuring the
magnitude of free-fall acceleration by the following method: Hang
a mass on a very fine thread (length L) to make a pendulum with
the mass a height H above the floor when the mass is at its lowest
point P. Pull the pendulum back so that the thread makes an angle

with the vertical. Just above point P, place a razor blade that is
positioned to cut through the thread as the mass swings through
point P. Once the thread is cut, the mass is projected horizontally,
and hits the floor a horizontal distance D from point P. The idea
was that the measurement of D as a function of should somehow
determine g. Apart from some obvious experimental difficulties,
the experiment had one fatal flaw: D does not depend on g! Show
that this is true, and that D depends only on the angle

106 ••• The bob of a pendulum of length L is pulled aside so that
the string makes an angle with the vertical, and the bob is then
released. In Example 7-5, the conservation of energy was used to
obtain the speed of the bob at the bottom of its swing. In this prob-
lem, you are to obtain the same result using Newton’s second law.
(a) Show that the tangential component of Newton’s second law
gives where v is the speed and is the angle
between the string and the vertical. (b) Show that v can be written

(c) Use this result and the chain rule for derivatives to 

obtain (d) Combine the results of Parts (a) and (c) to ob-

tain (e) Integrate the left side of the equation in
Part (d) from to the final speed v and the right side from 
to and show that the result is equivalent to where
h is the original height of the bob above the bottom of its swing.

107 ••• SPREADSHEET A rock climber is rappelling down the
face of a cliff when his hold slips and he slides down over the rock
face, supported only by the bungee cord he attached to the top of
the cliff. The cliff face is in the form of a smooth quarter-cylinder
with height (and radius) (Figure 7-58). Treat the bungeeH � 300 m

v � 12gh,u � 0,
u � u0v � 0

v dv � �gLsinudu.

dv
dt

�
dv
du
v
L

.

v � L du>dt. udv>dt � �gsinu,

u0

SSMu0 .

u0

u0

6mv2.
2mv2,2.0 m

1.0 m3.0 m>s5.0 kg

1
2m (2v)2 � 2mv2,

y

H

θ

H

s
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102 •• A 285-kg stunt boat is driven on the surface of a lake at a
constant speed of toward a ramp, which is angled at 
above the horizontal. The coefficient of friction between the boat
bottom and the ramp’s surface is 0.150, and the raised end of the
ramp is above the water surface. (a) Assuming the engines
are cut off when the boat hits the ramp, what is the speed of the
boat as it leaves the ramp? (b) What is the speed of the boat when it
strikes the water again? Neglect any effects due to air resistance.

2.00 m

25.0°13.5 m>s
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cord as a spring with force constant and unstressed
length The climber’s mass is (a) Using a
spreadsheet program, make a graph of the rock climber’s potential
energy as a function of s, his distance from the top of the cliff mea-
sured along the curved surface. Use values of s between and

(b) His fall began when he was a distance from
the top of the cliff, and ended when he was a distance 
from the top. Determine how much energy is dissipated by friction
between the time he initially slipped and the time when he came to
a stop.

108 ••• SPREADSHEET A block of wood (mass m) is connected to
two massless springs, as shown in Figure 7-59. Each spring has un-
stressed length L and force constant k. (a) If the block is displaced a
distance x, as shown, what is the change in the potential energy
stored in the springs? (b) What is the magnitude of the force pulling
the block back toward the equilibrium position? (c) Using a spread-
sheet program or graphing calculator, make a graph of the poten-

sf � 110 m
si � 60.0 m200 m.

60.0 m

85.0 kg.L � 60.0 m.
k � 5.00 N>m

L L

m

x
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tial energy U as a function of x for Assume
and (d) If the block is dis-

placed a distance and released, what is its speed as it
passes through the equilibrium point? Assume that the block is
resting on a frictionless surface.

x � 0.10 m
m � 1.0 kg.L � 0.10 m,k � 1.0 N>m,

0 � x � 0.20 m.
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If the golfer drives the ball 200

yards, how large a force does the

clubface exert on the ball? (See

Example 8-8.)

?
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DURING THE BRIEF PERIOD OF TIME THAT
THE HEAD OF A GOLF CLUB IS IN
CONTACT WITH A GOLF BALL, IT EXERTS
A VERY LARGE FORCE ON THE BALL,
SENDING THE BALL FLYING THROUGH
THE AIR. THIS FORCE CAN BE ROUGHLY
10 000 TIMES THE WEIGHT OF THE BALL,
GIVING THE BALL AN AVERAGE
ACCELERATION OF APPROXIMATELY

FOR ABOUT ONE-HALF OF A
MILLISECOND.
(Joe McNally/Getty Images.)

10000g

* In this chapter, the term momentum refers to linear momentum. (Angular momentum is developed in Chapter 10.)

Conservation 
of Linear Momentum

8-1 Conservation of Linear Momentum

8-2 Kinetic Energy of a System

8-3 Collisions

8-4 Collisions in the Center-of-Mass Reference Frame

8-5 Continuously Varying Mass and Rocket Propulsion

W
hen the head of a golf club strikes a golf ball, the magnitude of the force
exerted on the ball increases to a maximum value and then returns to
zero as the ball leaves the club head. To describe how such a time-
varying force affects the motion of an object it acts on, we need to intro-
duce two new concepts: the impulse of a force and the momentum* of
an object. Like energy, momentum is a conserved quantity. One of the

most important principles in physics is the law of conservation of momentum, which
says that the total momentum of a system and its surroundings does not change.
Whenever the momentum of a system changes, we can account for the change by
the appearance or disappearance of momentum somewhere else. By having these
new ideas in our problem-solving toolbox, we can analyze collisions such as those
that occur between golf clubs and golf balls, cars, and between subatomic particles
in a nuclear reactor.

*
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In this chapter, we introduce the ideas of impulse and linear momentum,
and show how integrating Newton’s second law produces an important the-
orem known as the impulse–momentum theorem. We will also determine if
the momentum of a system remains constant, and how to exploit constant
momentum to solve problems involving collisions between objects. In ad-
dition, we examine a new reference frame, known as the center-of-mass ref-
erence frame, and explore situations in which a system has a continuously
changing mass.

8-1 CONSERVATION OF LINEAR MOMENTUM

When Newton devised his second law, he considered the product of mass and ve-
locity as a measure of an object’s “quantity of motion.” Today, we call the product
of a particle’s mass and velocity linear momentum,

8-1

DEFINITION — MOMENTUM OF A PARTICLE

The quantity is called the linear momentum of a particle to distinguish linear mo-
mentum from angular momentum, which is presented in Chapter 10. However,
when there is no need to distinguish between the two types, the adjective linear is
often dropped and we just refer to the momentum. The plural of momentum is
momenta.

Linear momentum is a vector quantity. It is the product of a vector (velocity)
and a scalar (mass). Its magnitude is mv and it has the same direction as The
units of momentum are units of mass times speed, so the SI units of momentum
are 

Momentum may be thought of as a measurement of the effort needed to bring
a particle to rest. For example, a massive truck has more momentum than a small
passenger car traveling at the same speed. It takes a greater force to stop the truck
in a given time than it does to stop the car in the same time.

Using Newton’s second law, we can relate the momentum of a particle to the
resultant force acting on the particle. Differentiating Equation 8-1, we obtain

Then, substituting the force for 

8-2

Thus, the net force acting on a particle equals the time rate of change of the parti-
cle’s momentum. (In his famous treatise Principia (1687), Isaac Newton presents the
second law of motion in this form, rather than as )

The total momentum of a system of particles is the vector sum of the mo-
menta of the individual particles:

According to Equation 5-20, equals the total mass M times the velocity of the
center of mass:

8-3

TOTAL MOMENTUM OF A SYSTEM

P
S

sys � a
i

miv
S
i �MvScm

©miv
S
i

P
S

sys � a
i

miv
S
i � a

i

pSi

P
S

sys

F
S

net � maS.

F
S

net �
dpS

dt

maS,F
S

net

dpS

dt
�
d(mvS)
dt

� m
dvS

dt
� maS

kg # m>s.

vS.

pS

pS � mvS

pS:



Conservation of Linear Momentum S E C T I O N  8 - 1 | 249

Differentiating this equation, we obtain

But according to Newton’s second law for a system of particles, equals the
net external force acting on the system. Thus,

8-4

When the sum of the external forces acting on a system of particles remains
zero, the rate of change of the total momentum remains zero and the total mo-
mentum of the system remains constant. That is,

If then 8-5

CONSERVATION OF MOMENTUM

This result is known as the law of conservation of momentum:

If the sum of the external forces on a system remains zero, the total momen-
tum of the system remains constant.

This law is one of the most important in physics. It is more widely applicable than
the law of conservation of mechanical energy because internal forces exerted by one
particle in a system on another are often not conservative. The nonconservative in-
ternal forces can change the total mechanical energy of the system, though they ef-
fect no change of the system’s total momentum. If the total momentum of a system
remains constant, then the velocity of the center of mass of the system remains con-
stant. The law of conservation of momentum is a vector relation, so it is valid com-
ponent by component. For example, if the sum of the x components of the external
forces on a system remains zero, then the x component of the total momentum of
the system remains constant. That is,

If then 8-6

CONSERVATION OF A COMPONENT OF MOMENTUM

PROBLEM-SOLVING STRATEGY

Finding Velocities Using Momentum 

Conservation (Equation 8-5)

PICTURE Determine that the net external force (or ) on the system
is negligible for some interval of time. If the net force is determined not to be
negligible, do not proceed.

SOLVE

1. Draw a sketch showing the system both before and after the time interval.
Include coordinate axes and label the initial and final velocity vectors.

2. Equate the initial momentum to the final momentum. That is, write out
the equation (or 

).
3. Substitute the given information into the step-2 equation(s) and solve for

the quantity of interest.

CHECK Make sure you include any minus signs that accompany velocity
components because they influence your final answer. 

m1v1fx � m2v2fx

m1v1ix � m2v2ix �m1vS1i � m2vS2i � m1vS1f � m2vS2f

©Fext x©F
S

ext

Psys x � constant©Fext x � 0,

P
S

sys � a
i

miv
S
i �MvScm � constant©F

S

ext � 0,

a
i

F
S

ext � F
S

netext �
dP

S

sys

dt

MaScm

dP
S

sys

dt
�M

dvScm

dt
�MaScm

The two pucks are moving on an air cushion
on a horizontal flat surface. (The hoses
supplying the air are not shown.) The velocity
of each puck changes in both magnitude and
direction during the collision, but the velocity
of the center of mass remains constant—
unaffected by the internal forces of the
collision. (Courtesy of Daedalon Corporation.)



Example 8-2 A Runaway Railroad Car

A runaway 14,000-kg railroad car is rolling horizontally at toward a switchyard. As
it passes by a grain elevator, of grain suddenly drops into the car. How long does it
take the car to cover the 500-m distance from the elevator to the switchyard? Assume that
the grain falls straight down and that slowing due to rolling friction or air drag is negligible.

2000 kg
4.00 m>s
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Example 8-1 A Space Repair

During repair of the Hubble Space Telescope, an astronaut replaces a damaged solar panel
during a spacewalk. Pushing the detached panel away into space, she is propelled in the op-
posite direction. The astronaut’s mass is and the panel’s mass is Both the astro-
naut and the panel initially are at rest relative to the telescope. The astronaut then gives the
panel a shove. After the shove it is moving at relative to the telescope. What is her
subsequent velocity relative to the telescope? (During this operation the astronaut is tethered
to the ship; for our calculations assume that the tether remains slack.)

PICTURE Let us choose the system to be the astronaut and the panel, and let us choose the
direction of motion of the panel to be the direction. For this system, there are no external
forces, so the momentum of the system is conserved. Because we know both the mass of the
astronaut and the panel, the velocity of the astronaut can be found from the velocity of the
panel using conservation of momentum. Because the total momentum of the system is ini-
tially zero, it remains zero.

�x

0.30 m>s 80 kg.60 kg

(NASA.)

SOLVE

1. Sketch a figure showing the system
before and after the shove. Include
velocity vectors (Figure 8-1):

2. Apply Newton’s second law to the
system. There are no external forces
on the system, so the momentum of
the system remains constant:

� constantso P
S

sys

0 �
dP

S

sys

dt
,

a
i

F
S

ext �
dP

S

sys

dt

3. Equate the initial momentum of the
system to the final momentum.
Because the initial momentum is
zero, the momentum of the system
remains zero:

0 � 0 � mPvSP f � mAvSA f

mPvSP i � mAvSA i � mPvSP f � mAvSA f

P
S

sys i � P
S

sys f

4. Solve for the astronaut’s velocity:

CHECK We expect the astronaut’s velocity to be in the direction because the velocity of
the panel was in the direction. Also, because her mass is less than the mass of the panel,
we expect that her speed would be greater than the speed of the panel. Our result meets both
these expectations.

TAKING IT FURTHER Although momentum is conserved, the mechanical energy of this
system increased because chemical energy in the astronaut’s muscles was transformed into
kinetic energy.

PRACTICE PROBLEM 8-1 Find the final kinetic energy of the astronaut–panel system.

�x
�x

(0.40 m>s)in� �
80 kg

60 kg
(�0.30 m>s)in �vSA f � �

mP

mA

vSP f

vPi = vAi = 0
AfterBefore

+ x
mA mAmP mP

Panel Astronaut

vAfvPf
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Before After

vci

vgi

mg

mc
mc + mg

vf
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y

x

Fg car

Fn

System

Fg grain
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PICTURE We can find the travel time we seek from the distance traveled
and the speed of the car. Consider the car and the grain as our system 
(Figure 8-2). Let the direction of the car be the direction. There are no
external forces with nonzero x components, so the x component of the mo-
mentum is conserved. The final speed of the grain-filled car is found from
its final momentum, which equals the car’s initial momentum (the grain ini-
tially has zero momentum in the x direction). Let and be the masses
of the car and grain, respectively.

mgmc

�x

SOLVE

1. The time for the car to travel from the
elevator to the yard is related to the
distance to the yard d and the car’s
speed following the grain dump. We
are looking for this time:

vfx

d � vfx¢t

2. Sketch a free-body diagram (FBD) of
the system consisting of the car, the
grain already in the car, and the grain
that is falling into the car (Figure 8-3).
Include coordinate axes:

3. The sum of the external forces acting
on the grain–car system equals the
rate of change of the momentum of the
system (Equation 8-4):

a F
S

i ext � F
S

g grain � F
S

g car � F
S

n �
dP

S

sys

dt

4. Each of the external forces is vertical,
so the x component of each is zero.
Take the x component of each term in
the step-3 result. The x component of
the net external force is zero, so is
constant:

Psys x ‹ Psys fx � Psys ix

0 � 0 � 0 �
dPsysx

dt

Fg grainx � Fg carx � Fnx �
dPsysx

dt

5. Make a sketch of the system before the
collision and again after the collision
(Figure 8-4):

6. Apply conservation of momentum to
relate the final velocity to the initial
velocity The x component of the
system’s momentum is conserved:

vix .
vfx  (mc � mg)vfx � mcvix � mg(0)

Psys fx � Psys i

7. Solve for vfx : vfx �
mc

mc � ms

vix

8. Substitute the result for into step 1
and solve for the time:

vfx

1.43 � 102 s�

�
(14000 kg � 2000 kg)(500 m)

(14000 kg)(4.00 m>s)

¢t �
d
vfx

�
(mc � ms)d

mcvix

CHECK The mass of the empty car is seven times greater than the mass of the grain, so we
do not expect the grain to reduce the speed of the car by much. If the car continued at its ini-
tial speed of the time to travel the would be The
step-8 result of is only slightly longer than as expected.

PRACTICE PROBLEM 8-2 Suppose that there is a small vertical chute in the bottom of the
car so that the grain leaks out at Now how long does it take the car to cover the
500 m?

10 kg>s.

125 s,140 s
(500 m)>(4.00 m>s) � 125 s.500 m4.00 m>s,

F I G U R E  8 - 3 Three forces act on
the system: the gravitational forces on
the grain and the car, and the normal
force of the track on the car.

mg  = 2000 kg

m

x

c = 14,000 kg
vi  = 4.00 m/s

F I G U R E  8 - 2
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Time 0

Vsg1 − 7.00 m/s 

Vsg2 − 7.00 m/s 

5.00 kg

40.0 kg

3.00 kg

Vsg1

Time 1

Time 2
5.00 kg

40.0 kg

3.00 kg

Vsg2Vsg1

+x

F I G U R E  8 - 5 The numbers in the subscripts
stand for times. Time 0 occurs just before the first
throw, time 1 occurs between the two throws, and
time 2 occurs following the second throw.

SOLVE

(a) 1. Let and be the x
components of the velocities of
the skateboarder and the thrown
weight relative to the ground,
respectively. Apply conservation
of momentum for the first throw:

vws1xVsg1x

so

(M � m)Vsg1x � mvwg1x � 0

Psys 1x � Psys 0x

0 �
dPsysx

dt
⇒ Psysx � constant

aFx �
dPsysx

dt

2. The velocity of the thrown weight
relative to the ground equals the
velocity of the weight relative to
the skateboarder plus the velocity
of the skateboarder relative to the
ground:

vwg1x � vws lx � Vsg1x

3. Substitute for into the step-1
result and solve for Vsg1x :

vwg1x

so

0.660 m>s� �
5.00 kg

43.0 kg � 10.0 kg
(�7.00 m>s) �

Vsg1x � �
m

M � 2m
vws1x

(M � m)Vsg1x � m(vws1x � Vsg1x) � 0

(b) 1. Repeat step 1 of Part (a) for the
second throw. Let and be
the x components of the respective
velocities of the skateboarder and
the second thrown weight relative
to the ground:

vw’g2xVsg2x MVsg2x � mvw�g2x � (M � m)Vsg1x

Psys2x � Psys1x

2. Repeat step 2 of Part (a) for the
second throw.

vw�g2x � vw�s2x � Vsg2x

3. Substitute for in the Part-(b)
step-1 result and solve for Vsg2x :

vw�g2x

so

1.39 m>s�� 0.660 m>s �
5.00 kg

48.0 kg
(�7.00 m>s)

Vsg2x �
(M � m)Vsg1x � mvw�s2x

M � m
� Vsg1x �

m
M � m

vw�s2x

MVsg2x � m(vw�s2x � Vsg2x) � (M � m)Vsg1x

PICTURE Let the system be the skate-
board, the skateboarder, and the
weights, and let the direction be the
direction she throws the first weight.
Because only negligible external forces
with horizontal components act along
the x direction, the x component of the
momentum of the system is conserved.
We need to find the velocity of the skate-
boarder after throwing each weight
(Figure 8-5). We can do this using con-
servation of momentum, where the
mass m of each weight is and the
mass of the skateboard plus skate-
boarder is The ground is an in-
ertial reference frame. 

43.0 kg.
M

5.00 kg

�x

Example 8-3 A Skateboard Workout

A 40.0-kg skateboarder on a 3.00-kg board is training with two 5.00-kg weights. Beginning
from rest, she throws the weights horizontally, one at a time, from her board. The speed of
each weight is relative to her after it is thrown. Assume the board rolls without
friction. (a) How fast is she moving in the opposite direction after throwing the first weight?
(b) After throwing the second weight?

7.00 m>s
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CHECK After the second throw, the mass of the skateboard and its cargo is which
is less than it was after the first throw. Because its mass was less for the second throw,
we expect the increase in the speed of the skateboarder to be greater during the second
throw. Our results show that her speed increases by during the first throw and by

during the second throw, a small increase in the change in
speed, as we expected.

TAKING IT FURTHER This example illustrates the principle of the rocket; a rocket moves
forward by throwing its fuel out backward in the form of exhaust gases. As a rocket’s mass
lessens its acceleration increases, just as the skateboarder gains more speed with the second
throw than she did with the first throw.

PRACTICE PROBLEM 8-3 How fast is the skateboarder moving if, starting from rest, she
throws both weights simultaneously? The weights move at speed relative to her
after they are thrown. Does she gain more speed by throwing them simultaneously or
sequentially?

Example 8-4 Radioactive Decay

A thorium-227 nucleus (mass ) at rest decays into a radium-223 nucleus
(mass ) by emitting an alpha particle (mass ) (Figure 8-6). The kinetic
energy of the particle is measured to be What is the kinetic energy
of the recoiling radium nucleus?

PICTURE A decay of a particle into two particles is like a collision run backwards
in time. There are no external forces, so the momentum of the system is conserved.
Recall that the kinetic energy of an object is Because the thorium nucleus before
decay is at rest, its total momentum is zero. Therefore, we can relate the velocity of the radium
nucleus to that of the alpha particle using conservation of momentum.

K � 1
2mv2.

6.00 MeV.a

4.00 u223 u
227 u

7.00 m>s

1.39 m>s � 0.660 m>s � 0.73 m>s 0.660 m>s5.00 kg
43.0 kg,

SOLVE

1. Write the kinetic energy of the radium nucleus in terms of
its mass and speed vra .mra

Kra Kra � 1
2mrav

2
ra

2. Write the kinetic energy of the alpha particle in terms of its
mass and speed v

a
.m

a

K
a

K
a

� 1
2mav

2
a

3. Use conservation of momentum to relate to The thorium
nucleus was at rest, so the momentum of the system is zero:

v
a
.vra m

a
v
a

� mravra

4. Solve the step-1 and step 2-results for the speeds and and
substitute these expressions into the step-3 result.

v
a
,vra

so m
a
a2K

a

m
a

b 1>2
� mraa2Kra

mra

b 1>2
vra � a2Kra

mra

b 1>2
 v

a
� a2K

a

m
a

b 1>2Kra � 1
2mrav

2
ra  K

a
� 1

2mav
2
a

CHECK Let us check the step-5 result for several values of the ratio
If the two masses are equal, our result gives as expected. If 

then our result gives which means the kinetic energy of the alpha particle is
much greater than that of the radium nuclei. This also means that the speed of the alpha par-
ticle is much greater than that of the radium nuclei, as expected.

TAKING IT FURTHER In this process, some of the rest energy of the thorium nucleus is
converted into kinetic energy of the alpha particle and radium nucleus. The mass of the
thorium nucleus is greater than the sum of the masses of the alpha particle and radium nu-
cleus by (K

a
� Kra)>c2 � 6.11 MeV>c2.

Kra V K
a
,

m
a

V mraKra � K
a
,m

a
>mra .

Kra � (m
a
>mra)Ka

5. Solve the step-4 result for Kra . 0.107 MeV�Kra �
m
a

mra

K
a

�
4.00 u
223 u

(6.00 MeV)

Thorium-227 Radium-223

αvRa vα

F I G U R E  8 - 6
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8-2 KINETIC ENERGY OF A SYSTEM

If the net external force on a system of particles remains zero, then the total mo-
mentum of a system must remain constant; however, the total mechanical energy
of the system can change. As we saw in the examples of the previous section, in-
ternal forces that cannot change the total momentum may be nonconservative and
thus change the total mechanical energy of the system. There is an important the-
orem concerning the kinetic energy of a system of particles that allows us to treat
the energy of complex systems more easily and gives us insight into energy
changes within a system:

The kinetic energy of a system of particles can be written as the sum of two
terms: (1) the kinetic energy associated with the motion of the center of
mass, where M is the total mass of the system; and (2) the kinetic
energy associated with the motion of the particles of the system relative to
the center of mass, where is the velocity of the ith particle rela-
tive to the center of mass.

THEOREM FOR THE KINETIC ENERGY OF A SYSTEM

So

8-7

KINETIC ENERGY OF A SYSTEM OF PARTICLES

where M is the total mass and is the kinetic energy of the particles relative to the
center of mass.

To prove this theorem, recall that the kinetic energy K of a system of particles is
the sum of the kinetic energies of the individual particles:

where we have used the result that The velocity of the particle can
be written as the sum of the velocity of the center of mass and the velocity of
the particle relative to the center of mass 

8-8

Substituting, we obtain

We can write this as the sum of three terms: 

where in the term on the right we have factored from the sum ( is a system
parameter and does not change from particle to particle). The quantity is
equal to where is the velocity of the center of mass relative to the center
of mass. It follows that and thus are equal to zero. (The velocity of
anything relative to itself is always equal to zero.) It follows that is equal to
zero, so

K � a
i

1
2miv

2
cm � a

i

1
2miu

2
i � 1

2Mv2
cm � Krel

©miu
S
i

©miu
S
iuScm

uScmMuScm,
©miu

S
i

vScmvScm

K � a
i

1
2miv

2
cm � a

i

1
2miu

2
i � vScm

# a
i

miu
S
i

� a
i

1
2mi(v

2
cm � u2

i � 2vScm
# uSi)

K � a
i

1
2mi(v

S
i
# vSi) � a

i

1
2mi(v

S
cm � uSi) # (vScm � uSi)

vSi � vScm � uS i

uSi :i th
vScm

i thv2
i � vS i # vSi .

K � a
i

Ki � a
i

1
2miv

2
i � a

i

1
2mi(v

S
i
# vSi)

Krel

K � a
i

1
2miv

2
cm � a

i

1
2miu

2
i � 1

2Mv2
cm � Krel

uS i© 1
2miu

2
i ,

1
2Mv2

cm,

See

Math Tutorial for more

information on 

Factoring
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which completes the proof of Equation 8-7. If the net external force is zero, 
remains constant and the kinetic energy associated with bulk motion of the system

does not change. Only the relative kinetic energy can change in an iso-
lated system.

PRACTICE PROBLEM 8-4

Air-track glider A is moving at in the direction along a frictionless horizontal
air track. An identical glider, glider B, is parked on the track ahead of glider A. The mass
of each glider is and the system consists of the two gliders. (a) What is the veloc-
ity of the center of mass, and what is the velocity of each glider, relative to the center of
mass? (b) What is the kinetic energy of each glider relative to the center of mass? (c) What
is the total kinetic energy relative to the center of mass? (d) The gliders collide and stick
together. What then is the total kinetic energy relative to the center of mass?

8-3 COLLISIONS

A car crashes head-on into another car. A bat smashes into a baseball. A dart lands
with a resounding “thunk” in the bull’s-eye of a dartboard. Each of these is an
example of a collision in which two objects approach and interact strongly for a
very short time.

During the brief time of collision, any external forces on the two objects are usu-
ally much much weaker than the forces of interaction between the two objects.
Thus, the colliding objects can usually be treated as an isolated system for the
duration of the collision. During the collision the only significant forces are the
internal interaction forces, which are equal and opposite. As a result, momentum
is conserved. That is, the total momentum of the system the instant before the
collision is equal to the total momentum the instant following the collision. In
addition, the collision time is usually so short that the displacements of the collid-
ing objects during the collision can be neglected.

When the total kinetic energy of the two-object system is the same after the col-
lision as before, the collision is called an elastic collision. Otherwise, it is called an
inelastic collision. An extreme case is the perfectly inelastic collision, during
which all of the kinetic energy relative to the center of mass is converted to ther-
mal or internal energy of the system, and the two objects share a common velocity
(often because they stick together) at the end of the collision. We examine these dif-
ferent types of collisions in more detail later in this section.

IMPULSE AND AVERAGE FORCE

When two objects collide, they usually exert very large forces on each other for a
very brief time. The force exerted by a baseball bat on a ball, for example, may be
several thousand times the weight of the ball, but this enormous force is exerted
for only a millisecond or so. Such forces are sometimes called impulsive forces.
Figure 8-7 shows the time variation of the magnitude of a typical force exerted by
one object on another during a collision. The force is large during much of the
collision time interval For other times the force is negligibly small. 
The impulse of a force during time interval is a vector defined as

8-9

DEFINITION — IMPULSE

The impulse is a measure of both the strength and the duration of the collision
force. The x component of the impulse of the force is the area under its -versus-t
curve, and the S.I. units of impulse are newton seconds (N s). #

Fx

I
S

� �
tf

ti

F
S
dt

¢t � tf � tiF
S

I
S

¢t � tf � ti .

1.0 kg,

�x1.0 m>s
Krel

1
2Mv2

cm

vScm

Fx

ttfti Δt

Favx

F I G U R E  8 - 7 Typical time variation of
force during a collision. The area under the 

-versus-t curve is the x component of the
impulse, is the average force for time
interval The rectangular area is the
same as the area under the -versus-t curve.Fx

Favx¢t¢t.
Ix . Favx

Fx



256 | C H A P T E R  8 Conservation of Linear Momentum

The net force acting on a particle is related to the rate of change of momen-
tum of the particle by Newton’s second law: Taking the time integral
of both sides of this equation gives

Recognizing the left side of this equation as the impulse of the net force, we have

8-10

IMPULSE – MOMENTUM THEOREM FOR A PARTICLE

where and Equation 8-10 is called the impulse–
momentum theorem for a particle. Also, the net impulse on a system due to the ex-
ternal forces acting on the system equals the change in the total momentum of the
system:

8-11

IMPULSE – MOMENTUM THEOREM FOR A SYSTEM

By definition, the average of a force for the interval is given by

8-12

AVERAGE FORCE

Rearranging gives

8-13

IMPULSE AND AVERAGE FORCE

The average force is the constant force that gives the same impulse as the actual
force in the time interval as shown by the rectangle in Figure 8-7. The average
net force can be calculated from the change in momentum if a collision time is
known. This time can often be estimated using the displacement of one of the bod-
ies during the collision.

PROBLEM-SOLVING STRATEGY

Estimating the Average Force

PICTURE To estimate the average force we first estimate the impulse 
of the force The impulse of the force equals the net impulse (assuming
any other forces are negligible). The net impulse is equal to the change in
momentum, and the change in momentum equals the product of the 
mass m and the change of velocity An estimate of the change in
velocity can be gotten from estimates of both the collision time and the
displacement

SOLVE

1. Calculate (or estimate) the impulse and the time This estimate
assumes that during the collision, the collision force on the object is very

¢t.I
S

¢rS.
¢t

vSf � vSi .

I
S

.
F
S

av

¢t,

I
S

� F
S

av ¢t

F
S

av �
1

¢t �
tf

ti

F
S
dt �

1
¢t

I
S

¢t � tf � tiF
S

I
S

netext � �
tf

ti

F
S

netextdt � ¢P
S

sys

¢pS � pSf � pSi .I
S

net � �tfti F
S

netdt

I
S

net � ¢pS

�
tf

ti

F
S

netdt � �
tf

ti

dpS

dt
dt � pSf � pSi

F
S

net � dpS>dt.F
S

net
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vf = 0

0

F
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large compared to all other forces on the object. This procedure works
only if the displacement during the collision can be determined.

2. Draw a sketch showing the before and after position of the object. Add
coordinate axes and label the pre- and postcollision velocities and In
addition, label the displacement during the collision.

3. Calculate the change in momentum of the object during a collision. The
impulse on the object equals its change in momentum ( ).

4. Use kinematics to estimate the collision time. This means using both
and to obtain and then

solving for 
5. Use to calculate the average force (Equation 8-13).

CHECK Average force is a vector. Your result for average force should have
the same direction as the change in velocity vector.

F
S

av � I
S>¢t � m¢vS>¢t¢t.

¢rS � 1
2 (vSi � vSf) ¢t,¢rS � vSav ¢tvSav � 1

2 (vSi � vSf)

I
S

� ¢pS � m¢vS

¢rS
vSf .vSi

SOLVE

(a) 1. Make a before and after sketch of your hand and the block. In 
the before picture, the edge of you hand is just reaching the block.
Include a vertical coordinate axis on the sketch (Figure 8-8).

2. Set the impulse equal to the change in momentum: I
S

� ¢pS � m¢vS

3. The initial velocity is that of the hand just before it hits
the block. The final velocity is zero:

vS i

vSf � 0

vS i � �5.0 m>s jn

4. Substitute the values from step 3 into the equation from
step 2 to find the impulse exerted by the block on your hand: 3.5 N # s jn� 3.5 kg # m>s j

S
�

I
S

� m¢vS � (0.70 kg)30 � (�5.0 m>s jn)4
(b) 1. The displacement equals the average velocity multiplied by

the time. We estimate the average velocity by assuming
constant acceleration. For constant ay , vav y � 1

2 (viy � vfy):

¢y � vav ¢t � 1
2 (viy � vfy) ¢t

2. Because we have chosen up as the direction, both and
are negative. Calculate ¢t:vav y

¢y�y � 2.4 ms¢t �
¢y

1
2 (viy � vfy)

�
�0.006 m
�2.5 m>s � 0.0024 s

3. From Equation 8-12, the average force is the impulse
divided by the collision time:

1.5 k N jnF
S

av �
I
S

¢t
�

3.5 N # s jn

2.4 ms
�

(Robert R. Edwards/ BOB-E.)

Example 8-5 A Karate Collision

With an expert karate blow, you shatter a concrete block. Consider your hand to have a mass
to be moving as it strikes the block, and to stop beyond the point of

contact. (a) What impulse does the block exert on your hand? (b) What is the approximate
collision time and the average force the block exerts on your hand?

PICTURE The net impulse equals the change in momentum We find from the mass
and velocity of your hand. The time of collision for Part (b) comes from the given displace-
ment during the collision and by estimating the average velocity during the collision using a
constant-acceleration kinematic formula.

¢pS¢pS.

6.0 mm5.0 m>s0.70 kg,

CHECK The average force on your hand is in the direction (upward). This is the 
same direction as the change in velocity vector, as expected. (The average force by the edge
of your hand on the block is equal and opposite to the average force by the block on
the hand.)

TAKING IT FURTHER Note that the average force relatively is large. Assuming the mass of a
hand is about one kilogram, the average force is about 150 times the weight of a hand. The av-
erage collision force is much larger than the gravitational force on the hand during the collision.

�y
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SOLVE

1. The front end of the car is the engine compartment, the
radiator, the grill and the bumper. Estimate the fraction of
the entire length of the car that the front end occupies. 

The front end is
approximately 25% of the
length of the car.

2. Estimate the displacement of the passenger
compartment if the front end completely crumples.

As the front end completely crumples, the displacement of the rest of
the car, including the dummy, might be equal to 25 percent of the
length of the car.

3. Estimate the length of a typical car. The length of a car is about (about ).13 ft4.0 m

4. The length of the displacement is equal to the length of
the front end.

The length of the displacement is 25% of the length of the car,

or about .1.0 m

CHECK The dummy was from the wall at impact. Our result is half of that distance,
which is plausible.

2.0 m

Steps Answers

1. Relate the average force to the impulse, and thus to the
change in momentum.

I
S

� F
S

av ¢t � ¢pS

2. Sketch and label a figure showing a representation of the
dummy both before and after the crash (Figure 8-10).

3. Find the change in the dummy’s momentum. Let the
forward direction of the car be the direction.�x

¢pS � mvSf � mvSi � �2000 N # s in

4. Relate the time to the displacement, assuming constant
acceleration.

¢x � vav ¢t

5. Get the displacement of the dummy during the crash from
step 4 of Example 8-6:

¢x � 1.0 m

6. Estimate the average velocity and use it and the steps-4 and
-5 results to find the time.

so

¢t � 0.080 s � 80 ms

vSav � 1
2 (vSf � vSi) � 12.5 m>s in,

7. Substitute the step-3 and step-6 results into the step-1 result
and solve for the force.

�25 kNinF
S

av �

Example 8-6 A Crumpled Car

A car equipped with an 80-kg crash-test dummy (Figure 8-9) drives into a massive con-
crete wall at (about ) Estimate the displacement of the dummy during
the crash.

PICTURE The passenger compartment of a modern car is designed to remain rigid,
whereas the front and rear ends of the car are designed to collapse upon impact.
Assume the dummy is halfway between the front and rear bumpers and that the front
end of the car completely collapses.

56 mi>h.25 m>s

Example 8-7 A Crash Test

For the car crash described in Example 8-6, estimate the average force that the seat belt ex-
erts on the dummy during the crash.

PICTURE To estimate the average force, calculate the impulse and then divide it by an
estimate of the collision time, 

SOLVE

Cover the column on the right and try these on your own before looking at the answers.

¢t.
I
S

,

vi = 25 m/s

F I G U R E  8 - 9 (Romilly Lockyer/ The Image Bank.)



Example 8-8 Hitting a Golf Ball

You strike a golf ball with a driving iron. What are reasonable estimates for the
magnitudes of the (a) impulse (b) collision time and (c) average force 
A typical golf ball has a mass and a radius For a typical
drive, the range R is roughly (about ). Assume the ball leaves the
ground at an angle above the horizontal (Figure 8-12).

PICTURE Let denote the speed of the ball as it leaves the clubface. The im-
pulse on the ball equals its change in momentum during the collision. We
estimate from the range. We estimate the collision time from the displacement

and the average velocity during the collision, assuming constant
acceleration. Taking (half the diameter of the ball), the average
force is then obtained from the impulse and collision time ¢t.I

S
¢x � 2.0 cm

1
2 (vix � vfx)¢x

v0

(mv0)
v0

u0 � 13°
210 yd190m

r � 2.0 cm.m � 45 g
F
S

av?¢t,I
S

,

xi

x
xfm

vi = 0

vf = v0

vf

13°

F I G U R E  8 - 1 3

r =
   = 2 cm

m = 45 g

R = 190 m
to hole

Δ x
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CHECK The average force is in the direction, which is opposite to the forward direction
of the car. This result is what is expected because the force must oppose the forward motion
of the dummy.

TAKING IT FURTHER The magnitude of the average acceleration is 
or roughly Such an acceleration means a net force about 30 times the weight

of the dummy, clearly enough to cause serious injuries. An air bag increases the stopping
time somewhat, which helps to reduce the force. In addition, the air bag allows the force to
be distributed over a much larger area. In Figure 8-11, plot (a) shows the average force on the
dummy as a function of the stopping distance. With no seat belt or air bag, you either fly
though the windshield, or are stopped in a small fraction of a meter by the dashboard or
steering wheel. Plot (b) shows the force as a function of the initial velocity for three stopping
distances: and 1.0 m.2.0 m, 1.5 m,

30g.�  300 m>s2,
aav � ¢v>¢t

�x

0.0 3.0

100

60

Fo
rc

e,
 k

N

Stopping distance, m
2.01.0

20

0

40

80

60

20

0

40

80

Example 8-7

(a)

100

(b)

Example 8-7

0
Initial velocity, m/s

30 4010 20

Stopping
distance

1.0 m

1.5 m

2.0 m

Fo
rc

e,
 k

N
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SOLVE

(a) 1. Set the impulse equal to the change in momentum of
the ball:

Ix � Favx¢t � ¢px

2. Make a sketch showing the ball in both the pre- and
postcollision positions (Figure 8-13):

3. The speed immediately after the collision is related to
the range R, which is given by 
(Equation 2-23) with equal to the post-collision speed vf :v0

R � (v2
0>g) sin2u0

vf R �
v2

f

g
sin2u0

4. Take and calculate the initial speed for the
projectile motion:

u0 � 13° � A (190 m)(9.81 m>s2)

sin26°
� 65.2 m>sv0 � A Rg

sin2u0



F I G U R E  8 - 1 5 The engine bumps into the
car causing the two to couple together—an
example of a perfectly inelastic collision.
(Courtesy of Dick Tinder.)
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CHECK The weight of the ball is mg, which is We found the
force of the golf club on the ball to be many times the weight of the ball, as expected.

TAKING IT FURTHER In this example, the force of the air on the ball has been left out of
our analysis. However, for an actual golf shot the effects of the air are definitely not negligi-
ble, as any player with a slice can verify.

COLLISIONS IN ONE DIMENSION

Collisions in which the colliding objects move along the same straight line, say
along the x axis, both before, during, and after the collision are called one-
dimensional collisions (Figure 8-14).

For motion along the x axis, v represents a speed and represents velocity
(a signed quantity). We are now departing this convention and adopting a less spe-
cific but more concise notation. In the discussion that follows and in the remainder
of this book, the symbol “v” may represent either a speed or a velocity in one di-
mension. In each appearance of v, it will be up to the reader to determine from con-
text whether v represents a speed or a velocity.

Consider an object of mass with initial velocity approaching a second ob-
ject of mass that is moving in the same direction with initial velocity If

the objects collide. Let and be their velocities after the collision. The
two objects can be considered an isolated system. Conservation of momentum
gives one equation between the two unknown velocities and 

8-14

To determine and a second equation is needed. That second equation
depends on the type of collision.

Perfectly inelastic collisions In perfectly inelastic collisions, the objects have the
same velocity after the collision, often because they are stuck together. A low-speed
collision between a moving railroad car and an initially stationary railroad car in
which the two cars couple (Figure 8-15) is a perfectly inelastic collision. For per-
fectly inelastic collisions, the final velocities are equal to each other and to the
velocity of the center of mass:

Substituting this result into Equation 8-14 gives

8-15

It is sometimes useful to express the kinetic energy, K, of a particle in terms of
its momentum, p. For a mass, m, moving along the x axis with velocity, v, we have

Because

8-16K �
p2

2m

p � mv,

K � 1
2mv2 �

(mv)2

2m

(m1 � m2)vcm � m1v1i � m2v2i

v1f � v2f � vcm

v2f ,v1f

m1v1f � m2v2f � m1v1i � m2v2i

v2f :v1f

v2fv1fv2i 	 v1i ,
v2i.m2

v1im1

vx

(0.045 kg)(9.81 N>kg) � 0.50 N.

(c) Use the calculated values of and to find the magnitude
of the average force:

¢tIx 4.8 kN�Fav � Favx �
Ix
¢t

�
2.93 N # s

6.13 � 10�4 s
� 4.78 kN

5. Use this value of to calculate the impulse:v0

2.90 N # s� 2.93 kg # m>s �

Ix � ¢px � m(v0x � 0) � (0.045 kg)(65.2 m>s)

(b) Calculate the collision time using and
vavx � 1

2 (vix � vfx):
¢x � 2.0 cm¢t

6.1 � 10�4 s� 6.13 � 10�4 s �

¢t �
¢x
vavx

�
¢x

1
2 (0 � v0)

�
0.020m

1
2 (65.2 m>s)

The symbol “v” can represent
either a speed or a velocity in one

dimension. (In one dimension, velocity
is a signed quantity.)

!

F I G U R E  8 - 1 4 In stock car racing, a driver
sometimes bumps his car into the car ahead to
“send a message”—an example of an inelastic
collision. (Sam Sharpe/The Sharpe Image/Corbis.)
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We can apply this to a perfectly inelastic collision where one object is initially at
rest. The momentum of the system is that of the incoming object:

The initial kinetic energy is

8-17

After colliding, the objects move together as a single mass with velocity
Momentum is conserved, so the final momentum equals The final kinetic

energy is then

8-18

Comparing Equations 8-17 and 8-18, we see that the final kinetic energy is less than
the initial kinetic energy.

Kf �
P2

sys

2(m1 � m2)
    (perfectly inelastic collisions)

Psys .vcm.
m1 � m2

Ki �
P2

sys

2m1

Psys � p1i � m1v1i

(Romilly Lockyer/ The Image Bank.)

Example 8-9 A Catch in Space

An astronaut of mass is on a space walk to repair a communications
satellite when he realizes he needs to consult the repair manual. You happen to
have it with you, so you throw it to him with speed relative to the
spacecraft. He is at rest relative to the spacecraft before catching the 3.0-kg book
(Figure 8-16). Find (a) his velocity just after he catches the book, (b) the initial
and final kinetic energies of the book–astronaut system, and (c) the impulse
exerted by the book on the astronaut.

4.0 m>s60 kg

PICTURE This collision is a perfectly inelastic collision. So, following the
catch, the book and astronaut move with the same final velocity. (a) We find the
final velocity using conservation of momentum, as expressed in Equation 8-15.
(b) The kinetic energies of the book and astronaut can be calculated directly from their
masses and their initial and final velocities. (c) The impulse exerted by the book on the as-
tronaut equals the change in momentum of the astronaut.

SOLVE

(a) 1. Make a drawing (Figure 8-17) showing the objects
just before and just after the catch. Let the direction
you throw the book be the direction:�x

xmB mA

vBi vf

mA + mB
vf = vcm

vAi = 0
AfterBefore

F I G U R E  8 - 1 7

2. Use conservation of momentum to relate the final
velocity of the system to the initial velocities:vf

mBvBi � mAvAi � (mA � mB)vf

3. Solve for vf :

0.19 m>s� 0.190 m>s �

�
(3.0 kg)(4.0 m>s) � (60 kg)(0 m>s)

3.0 kg � 60 kg
vf �

mBvB � mAvA

mB � mA

(b) 1. Because the astronaut is initially at rest, the initial
kinetic energy of the book–astronaut system is the
initial kinetic energy of the book:

24 J� 1
2 (3.0 kg)(4.0 m>s)2 �Ksys i � KBi � 1

2mBv
2
Bi

2. The final kinetic energy is the kinetic energy of the
book and astronaut moving together at vf :

1.1 J� 1.14 J �Ksys f � 1
2 (mB � mA)v2

f � 2(63 kg)(0.190 m>s)2

(c) Set the impulse exerted on the astronaut equal to the
change in momentum of the astronaut:

11 N # s� 11.4 kg # m>s �

Iby B on A � ¢pA � mA ¢vA � (60 kg)(0.190 m>s � 0)

4.0 m/s

3.0 kg

60 kg 63 kg

F I G U R E  8 - 1 6
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CHECK The final velocity, the Part (a) step-3 result, is equal to the velocity of the center of
mass Before the collision, the book–astronaut system had both kinetic energy as-
sociated with the motion of the center of mass and kinetic energy relative to the center of
mass. After the collision, the kinetic energy relative to the center of mass is equal to zero. As
expected, the total kinetic energy of the system decreased.

TAKING IT FURTHER Most of the initial kinetic energy in this collision is lost by conver-
sion to thermal energy. In addition, the impulse exerted by the book on the astronaut is equal
and opposite to that exerted by the astronaut on the book, so the total change in momentum
of the book–astronaut system is zero.

Example 8-10 A Ballistic Pendulum

In a feat of public marksmanship, you fire a bullet into a hanging wood
block (Figure 8-18), which is a device known as a ballistic pendulum. The
block, with bullet embedded, swings upward. Noting the height reached
at the top of the swing, you immediately inform the crowd of the bullet’s
speed. How fast was the bullet traveling?

PICTURE Although the block moves upward after the collision, we can
still consider this a one-dimensional collision, because the direction of
the bullet and the block just after the collision is in the bullet’s original
direction of motion. The precollision velocity of the bullet is related to
the postcollision velocity of the bullet–block system by conservation
of momentum. The speed is related to the height, h, by conservation of
mechanical energy. Let be the mass of the bullet and be the mass
of the block.

m2m1

vf

vf

v1i

(vf � vcm).

m1

m2v1i vf

h
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SOLVE

1. Using conservation of mechanical
energy after the collision, we relate
the postcollision speed to the
maximum height h:

vf

vf � 12gh

1
2 (m1 � m2)v

2
f � (m1 � m2)gh

2. Using conservation of momentum
during the collision we relate
velocities and vf :v1i

v1i �
m1 � m2

m1

vf

m1v1i � (m1 � m2)vf

3. Substituting for in the step-2
result, we can solve for v1i :

vf

m1 � m2

m1

12ghv1i �
m1 � m2

m1

vf �

CONCEPT CHECK 8-1

Can this example be solved by equating the initial kinetic energy of the bul-
let with the potential energy of the block–bullet composite at maximum
height? That is, is mechanical energy conserved both during the perfectly in-
elastic collision and during the rise of the pendulum?

✓

CHECK The mass of the block is much greater than the mass of the bullet. Thus, we expect
the speed of the bullet to be much greater than the speed of the block after impact. Our step-2
result meets this expectation.

TAKING IT FURTHER We assumed that the time of the collision is so short that the dis-
placement of the block during the collision is negligible. This assumption means the block
had the postcollision speed while still at the lowest point in the arc.vf
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Example 8-11 Collision with an Empty Box

You repeat your feat of Example 8-10, this time with an empty 
box as the target. The bullet strikes the box and passes through 
it completely. A laser ranging device indicates that the bullet
emerged with half its initial velocity. Hearing this, you correctly
report how high the target must have swung. How high did 
it swing?

PICTURE The height h is related to the box’s speed just 
after colliding by the conservation of mechanical energy 
(Figure 8-19). This speed can be determined using conservation 
of momentum. 

SOLVE

Cover the column to the right and try these on your own before
looking at the answers.

v2

1. Use conservation of mechanical energy to relate the final height h to
the speed of the box just after the collision.v2

m2gh � 1
2m2v

2
2

CHECK The quotient has units of divided by which reduce to just m
(meters). Thus, the step-3 result has appropriate units for height.

TAKING IT FURTHER The collision of the bullet and the box is an inelastic collision, but it
is not a perfectly inelastic collision, because the two objects do not have the same velocity
after the collision. Inelastic collisions also occur in microscopic systems. For example, when
an electron collides with an atom, the atom is sometimes excited to a higher internal energy
state. As a result, the total kinetic energy of the atom and the electron is less after the colli-
sion than before the collision.

m>s2,m2>s2v2>g

Steps Answers

2. Use conservation of momentum to write an equation relating to
the postcollision speed of the box, v2 .

v1i m1v1i � m2v2 � m1(1
2 v1i)

3. Eliminate from the two equations and solve for h.v2

m2
1v

2
1i

8m2
2g

h �

A bullet traveling collides inelastically
with an apple, which disintegrates completely
moments later. Exposure time is less than a
millionth of a second. (Estate of Harold E.
Edgerton/ Palm Press Inc.)

850 m>s

h

v1i

m1

m2 v2 1
2v1f = v1i

F I G U R E  8 - 1 9
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Example 8-12 Collisions with Putty

Mary has two small balls of equal mass, a ball of plumber’s putty and a one of Silly Putty.
She throws the ball of plumber’s putty at a block suspended by strings shown in Figure 8-20.
The ball strikes the block with a “thonk” and falls to the floor. The block subsequently swings
to a maximum height h. If she had thrown the ball of Silly Putty (instead of the plumber’s
putty) at the same speed, would the block subsequently have risen to a height greater than
h? Silly Putty, unlike plumber’s putty, is elastic and would bounce back from the block.

PICTURE During impact the change in momentum of the ball–block system is zero. The
greater the magnitude of the change in momentum of the ball is, the greater the magnitude
of the change in momentum of the block is. Does magnitude of the change in momentum of
the ball increase more if the ball bounces back than if it does not?

v

F I G U R E  8 - 2 0

SOLVE

The ball of plumber’s putty loses a large fraction of
its forward momentum. The ball of Silly Putty
would lose all of its forward momentum and then
gain momentum in the opposite direction. It would
undergo a larger change in momentum than did the
ball of plumber’s putty.

The block would swing to a greater 
height after being struck with the ball 
of Silly Putty than it did after being 
struck with the ball of plumbers putty.

CHECK The block exerts a backward impulse on the ball of plumber’s putty to slow the ball
to a stop. The same backward impulse on the ball of Silly Putty would also bring it to a stop,
and an additional backward impulse on the ball would give it momentum in the backward
direction. Thus, the block exerts the larger backward impulse on the Silly-Putty ball. In ac-
cord with Newton’s third law, the impulse of a ball on the block is equal and opposite to the
impulse of the block on the ball. Thus, the Silly-Putty ball exerts the larger forward impulse
on the block, giving the block a larger forward change in momentum.

Elastic collisions In elastic collisions, the kinetic energy of the system is the same
before and after the collision. Elastic collisions are an ideal that is sometimes ap-
proached but never realized in the macroscopic world. If a ball dropped onto a
concrete platform bounces back to its original height, then the collision between
the ball and the concrete would be elastic. That situation has never been observed.
At the microscopic level, elastic collisions are common. For example, the collisions
between air molecules at the temperatures found on the surface of Earth are almost
always elastic.

Figure 8-21 shows two objects before and after they have a one-dimensional
head-on collision. Momentum is conserved during this collision so 

8-19

The collision is elastic. Only for elastic collisions is the kinetic energy the same after
the collision as before the collision. Therefore,

8-20

These two equations are sufficient to determine the final velocities of the two
objects if given the initial velocities and the masses. However, the quadratic nature
of Equation 8-20 often complicates the solution of simultaneous Equations 8-19 and
8-20. Such problems can be treated more easily if we express the velocity of the two

1
2m1v

2
1f � 1

2m2v
2
2f � 1

2m1v
2
1i � 1

2m2v
2
2i

m1v1f � m2v2f � m1v1i � m2v2i

v2fv1f m2m2 m1

v2iv1i
m1

F I G U R E  8 - 2 1 Closing (approaching) and separating (receding) in a head-on elastic collision.
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objects relative to each other after the collision in terms of their relative velocity
before the collision. Rearranging Equation 8-20 gives 

Because and we
have

8-21

From conservation of momentum, we have that

Rearranging the equation for conservation of momentum (Equation 8-19) gives

8-22

Dividing Equation 8-21 by Equation 8-22, we get

Rearranging yet again, we obtain

8-23

RELATIVE VELOCITIES IN AN ELASTIC COLLISION

where is the speed of approach (closing speed) of the two particles before the
collision and is the speed of separation following the collision (Figure 8-22).
Equation 8-23 states: 

In elastic collisions, the speed of separation equals the speed of approach.

Solving head-on elastic-collision problems is always easier using Equations 8-19
and 8-23 rather than Equations 8-19 and 8-20.

v2f � v1f

v1i � v2i

v1i � v2i � v2f � v1f

v2f � v2i � v1i � v1f

m2(v2f � v2i) � m1(v1i � v1f)

m1v1f � m2v2f � m1v1i � m2v2i

m2(v2f � v2i)(v2f � v2i) � m1(v1i � v1f)(v1i � v1f)

(v2
1i � v2

1f) � (v1i � v1f)(v1i � v1f),(v2
2f � v2

2i) � (v2f � v2i)(v2f � v2i)

m2 (v2
2f � v2

2i) � m1 (v2
1i � v2

1f)

Equation 8-23 is valid only if the
initial and final kinetic energies are

equal, so it applies only to elastic
collisions.

!

v1i − v2i = speed of approach

v1i − v2i = −(v1i − v2i) = speed of separation

v1i − v2i = − (v1f − v2f)

v1i − v2i

v1f − v2f v1f

−v2i

−v2f

v1i

F I G U R E  8 - 2 2

Example 8-13 Elastic Collision of Two Blocks

A 4.0-kg block moving to the right at undergoes an elastic head-on collision with a
2.0-kg block moving to the right at (Figure 8-23). Find their final velocities. 

PICTURE Conservation of momentum and the equality of the initial and final kinetic ener-
gies (expressed as a reversal of relative velocities) give two equations for the two unknown
final velocities. Let subscript 1 denote the 4.0-kg block, subscript 2 the 2.0-kg block.

3.0 m>s6.0 m>s
6.0 m/s 3.0 m/s

F I G U R E  8 - 2 3

SOLVE

1. Apply conservation of momentum and simplify
to obtain an equation relating the two final
velocities: so 2v1f � v2f � 15 m>s � (4.0 kg)v1f � (2.0 kg)v2f(4.0 kg)(6.0 m>s) � (2.0 kg)(3.0 m>s)

m1v1i � m2v2i � m1v1f � m2v2f

2. Because this is a head-on elastic collision, we can
use Equation 8-23 to obtain a second equation: � 6.0 m>s � 3.0 m>s � 3.0 m>sv2f � v1f � v1i � v2i

3. Subtract the step-2 result from the step-1 result
and solve for v1f :

so 4.0 m>sv1f �2v1f � v1f � 12 m>s
4. Substitute into the step-2 result and solve for v2f : so 7.0 m>sv2f �v2f � 4.0 m>s � 3.0 m>s
CHECK As a check, we calculate the initial and final kinetic energies.

The pre- and postcollision kinetic energies are equal, as expected.

Kf � 1
2 (4.0 kg)(4.0 m>s)2 � 1

2 (2.0 kg)(7.0 m>s)2 � 32 J � 49 J � 81 J.

Ki � 1
2 (4.0 kg)(6.0 m>s)2 � 1

2 (2.0 kg)(3.0 m>s)2 � 72 J � 9.0 J � 81 J.
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Example 8-14 Elastic Collision of a Neutron and a Nucleus

A neutron of mass and speed undergoes a head-on elastic collision with a carbon nu-
cleus of mass initially at rest (Figure 8-24). (a) What are the final velocities of both parti-
cles? (b) What fraction f of its initial kinetic energy does the neutron lose? 

PICTURE Conservation of momentum and conservation of kinetic energy allow us to find
the final velocities. Because the kinetic energy of the carbon nucleus is initially zero, its final
kinetic energy equals the kinetic energy lost by the neutron.

mC

vnimn

vni
mn

mC

Neutron 12C
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SOLVE

(a) 1. Use conservation of momentum to obtain one relation for the final
velocities:

mnvni � mnvnf � mCvCf

2. Use Equation 8-23 to equate the speeds of recession and approach:

so      vCf � vni � vnf

� vni � 0

vCf � vnf � vni � vCi

3. To eliminate substitute the expression for from step 2 into
the step-1 result:

vCfvCf , mnvni � mnvnf � mC(vni � vnf)

4. Solve for vnf : �
mC � mn

mn � mC

vnivnf �

5. Substitute the step-4 result into the step-2 result and solve for vCf :
2mn

mn � mC

vnivCf � vni �
mC � mn

mn � mC

vni �

(b) 1. The collision is elastic, so the kinetic energy lost by the neutron is
the final kinetic energy of the carbon nucleus:

�

1
2mCv

2
Cf

1
2mnv

2
ni

�
mC

mn

avCf

vni

b 2

f �
�¢Kn

Kni

�
KCf

Kni

2. Solve the Part-(a) step-5 result for the ratio of the velocities;
substitute into the Part-(b) step-1 result, and solve for the
fractional energy loss of the neutron:

4mnmC

(mn � mC)2f �
mC

mn

a 2mn

mn � mC

b 2

�

CHECK Note that our calculated value for is negative. The neutron bounces back
from the more massive carbon nucleus This result is expected when a light particle
undergoes a head-on elastic collision with a more massive particle that is initially at rest. 

TAKING IT FURTHER The fractional energy loss for head-on collisions depends on the
ratio of the masses (see Figure 8-25).

mC.
mnvnf

0
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F I G U R E  8 - 2 5 Fractional energy loss as a
function of the ratio of the two masses. The
maximum energy loss occurs when m1 � m2.
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PRACTICE PROBLEM 8-5 Consider an elastic head-on collision between a moving object
(object 1) and a second moving object of equal mass (object 2). Use Equations 8-19 and 8-23
to show that the two objects exchange velocities. That is, show that the final velocity of
object 2 equals the initial velocity of object 1, and vice versa.

The final velocity of the incoming particle and that of the originally station-
ary particle are related to the initial velocity of the incoming particle by

8-24a

and

8-24b

These equations were derived in Example 8-14. Here we show they give plausible
results for limiting values of the masses. When a very massive object (say a bowl-
ing ball) collides with a light stationary object (say a Ping-Pong ball), the massive
object is essentially unaffected. Before the collision, the relative speed of approach
is If the massive object continues with a velocity that is essen-
tially after the collision, the velocity of the smaller object must be

so that the speed of recession is equal to the speed of approach.
This result also follows from Equations 8-24a and 8-24b if we take 
to be much smaller than in which case and as
expected.

The coefficient of restitution Most collisions lie somewhere be-
tween the extreme cases of elastic, in which the relative velocities are
reversed, and perfectly inelastic, in which there is no relative veloc-
ity after the collision. The coefficient of restitution e is a measure of
the elasticity of a collision. It is defined as the ratio of the speed of re-
cession to the speed of approach.

8-25

DEFINITION—COEFFICIENT OF RESTITUTION

For an elastic collision, For a perfectly inelastic collision, 

PRACTICE PROBLEM 8-6

From the picture (Figure 8-26) of the golf club hitting the golf ball, estimate the coefficient
of restitution of the golf ball–golf club interaction. 

e � 0.e � 1.

e �
vrec

vapp

�
v1f � v2f

v2i � v1i

v2f � 2v1i ,v1f � v1im1 ,
m2

2v1i ,
v1i

v1i .

v2f �
2m1

m1 � m2

v1i

v1f �
m1 � m2

m1 � m2

v1i

v2f

v1f

Δxci
Δxcf

Δxbf

Club

Ball

COLLISIONS IN TWO AND THREE DIMENSIONS

For one-dimensional collisions, the directions of the initial and final velocity
vectors can be specified by a or a . For two- or three-dimensional collisions,
this is not the case. During such a collision, momentum is conserved in each of
the x, y, and z directions.

��

F I G U R E  8 - 2 6

(Estate of Harold E. Edgerton/Palm Press Inc.)



268 | C H A P T E R  8 Conservation of Linear Momentum

Inelastic collisions For collisions in two or three dimensions, the total initial
momentum is the sum of the initial momentum vectors of each object involved in
the collision. Because following a perfectly inelastic collision the two objects have the
same final velocity and because momentum is conserved, we have 

Due to this relation we know that the velocity vectors, and thus the col-
lision, takes place in a single plane. In addition, from the definition of the center of
mass we know that vSf � vScm.

(m1�m2)v
S

f .
m1iv

S
1i �m2vS2i �

SOLVE

1. Make a drawing (Figure 8-28) showing the two
objects just before and just after the collision.
Choose a coordinate system so that initially the car
is traveling in the direction and the truck is
traveling in the direction:�y

�x

mc vc

m t vt

(mc + m t) vf

y

x
θ

m t

mc

N

E

vc

vt
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2. Write out the conservation of momentum
equation in terms of masses and velocities:

mcv
S

c � mtv
S

t � (mc � mt)vSf

3. Equate the x component of the initial momentum
to the x component of the final momentum:

mcvc � 0 � (mc � mt)vf cosu

4. Equate the y component of the initial momentum
to the y component of the final momentum:

0 � mtvt � (mc � mt)vf sinu

5. Eliminate by dividing the y component equation
by the x component equation:

vf

so 75 km>hvc �
mtvt

mc tanu
�

(3000 kg) (50 km>h)

(1200 kg) tan59°
�

mtvt

mcvc

�
sinu
cosu

� tanu

6. Does this undermine the truck driver’s claim that
you were speeding?

Because 75 km>h is less than the 80 km>h speed
limit, the truck driver’s claim is undermined by
the careful application of physics.

CHECK The mass of the truck is the mass of the car. If the car were going 
the truck’s speed would be that of the car, and the ratio of the magnitude of the momen-
tum of the truck to that of the car would be Because and

is slightly less than the step-6 result seems about right.

Next, we consider a three-dimensional inelastic collision in which the colliding
objects do not share the same final velocity.

59°,57°
tan�1 1.56 � 57°2.5 � 5>8 � 1.56.

5>8 80km>h,2.5 times

Example 8-15 A Car–Truck Collision

You are at the wheel of a 1200-kg car traveling east through an intersection when a 3000-kg
truck traveling north through the intersection crashes into your car, as shown in Figure 8-27.
Your car and the truck remain stuck together after impact. The driver of the truck claims you
were at fault because you were speeding. You look for evidence to disprove this claim. First,
there are no skid marks, indicating that neither you nor the truck driver saw the accident
coming and braked hard; second, the posted speed limit for the road on which you were dri-
ving is third, the speedometer of the truck was smashed on impact, leaving the nee-
dle stuck at and fourth, the wreck initially skidded from the impact zone at an
angle of north of east. Does this evidence support or undermine the claim that you were
speeding?

PICTURE We are given the masses of the vehicles and the velocity of the truck at impact.
We know this is a perfectly inelastic collision because the car and truck stick together. Use
conservation of momentum to determine your car’s initial velocity.

59°
50 km>h;

80 km>h;

F I G U R E  8 - 2 8
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Example 8-16 A Glancing Collision

An object with mass and with an initial speed of undergoes an off-center collision
with a second object of mass The second object is initially at rest. After the collision the
first object is moving at at an angle of with the direction of the initial velocity of
the first object. In what direction is the second object moving?

PICTURE Momentum is conserved during this collision. It is a two-dimensional collision,
so we equate the sum of the initial momentum vectors to the sum of the final momentum
vectors and solve for the desired direction. (The problem does not indicate whether or not
the collision is elastic, so we do not assume that it is.)

25°15 m>sm2 .
20 m>sm1

+x

+y

v2f

m2m1

2

v1f

v1i

v2i = 0 θ
1θ

F I G U R E  8 - 2 9

SOLVE

1. Sketch the two particles both before and after the collision (Figure 8-29).
Choose the direction to be the direction of the initial velocity of
object 1. Include velocity vectors and labels in the sketch:

�x

2. Write down the conservation of momentum relation, both in vector
and in component form: or

m1v1iy � m1v1fy � m2v2fy

m1v1ix � m1v1fx � m2v2fx

m1vS1i � 0 � m1vS1f � m2vS2f

3. Express the component equations in terms of magnitudes and angles:

 0 � m1v1f sinu1 � m2v2f sinu2

m1v1i � m1v1f cosu1 � m2v2f cosu2

4. In order to solve for we exploit the relation 
First we solve the step-3 results for the ratio sinu2>cos u2 :

tan u � sin u>cos u.u2

so

and tanu2 �
�sinu1

v1i

v1f

� cosu1

m2v2f sinu2

m2v2f cosu2

�
�m1v1f sinu1

miv1i � m1v1f cosu1

m2v2f cosu2 � m1v1i � m1v1f cosu1

m2v2f sinu2 � �m1v1f sinu1

5. Substitute in numbers and solve for u2 :

�45°‹ u2 �

tanu2 �
�sin25°

20
15

� cos25°
� �0.990

CHECK In step 1 we chose a coordinate system such that We expected that 
would be between zero and Our result that meets this expectation.

TAKING IT FURTHER The problem did not specify either or so you may have been
surprised that solving for was possible. It was possible because both initial and one final
momentum vectors were fully specified in the problem statement, so the conservation of mo-
mentum relation (step 2) completely specifies the other final momentum vector. Once all
four momentum vectors were fully specified, solving for the direction of the final momen-
tum of particle 2 became possible.

Elastic collisions Elastic collisions in two and three dimensions are more com-
plicated than those we have already covered. Figure 8-30 shows an off-center col-
lision between an object of mass moving with velocity parallel to the x axis
toward an object of mass that is initially at rest at the origin. This type of colli-
sion is often referred to as a glancing collision (as opposed to a head-on collision).
The distance b between the centers measured perpendicular to the direction of 
is called the impact parameter. After the collision, object 1 moves off with velocity

making an angle with the direction of its initial velocity, and object 2 moves
with velocity making an angle with The final velocities depend on the
impact parameter and on the type of force exerted by one object on the other.

vS1i .u2vS2f ,
u1vS1f ,

vS1i

m2

vS1im1

u2

v2f ,m2

u2 � �45°�90°.
u2u1 � �25°.

m1

m2

m2

m1

v2f

v1f

v1i

θ1

θ2

b

F I G U R E  8 - 3 0 Off-center collision. The
final velocities depend on the impact
parameter b and on the type of force exerted
by one object on the other.
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Linear momentum is conserved, so we know that

8-26

We can see from this equation that the vector must lie in the plane formed by
and which we will take to be the xy plane. Assuming that we know the

initial velocity we have four unknowns: the x and y components of both final
velocities; or alternatively, the two final speeds and the two angles of deflection.
We can apply the law of conservation of momentum in component form to give us
two of the needed relations among these quantities:

8-27

8-28

Because the collision is elastic, we can use the conservation of kinetic energy to find
a third relation:

8-29

We need an additional equation to be able to solve for the unknowns. The fourth
relation depends on the impact parameter b and on the type of interacting force
exerted by the colliding objects on each other. In practice, the fourth relation is
often found experimentally, by measuring the angle of deflection or the angle of
recoil. Such a measurement can then give us information about the type of inter-
acting force between the bodies.

Now let us consider the interesting special case of the glancing elastic collision
of two objects of equal mass when one is initially at rest (Figure 8-31a). If and 
are the initial and final velocities of object 1, and if is the final velocity of ob-
ject 2, conservation of momentum gives

or

These vectors form the triangle shown in Figure 8-31b. Because the collision is
elastic,

or

8-30v2
1i � v2

1f � v2
2f

1
2mv2

1i � 1
2mv2

1f � 1
2mv2

2f

vS1i � vS1f � vS2f

mvS1i � mvS1f � mvS2f

vS2f

vS1fvS1i

1
2m1v1i

2 � 1
2m1v1f

2 � m2v2f
2

 0 � m1v1f sinu1 � m2v2f sinu2

m1v1i � m1v1f cosu1 � m2v2f cosu2

vS1i ,
vS1f ,vS1i

vS2f

P
S

sys � m1vS1i � m1vS1f � m2vS2f

v1i

v1f

v2f

Before collision After collision

(a)

v1f v2f

v1i

(b)

F I G U R E  8 - 3 1 (a) Off-center elastic collision of two spheres of equal mass when one sphere
is initially at rest. After the collision, the spheres move off at right angles to each other. (b) The
velocity vectors for this collision form a right triangle.

The relation 
(Equation 8-23) is very useful for

solving 1-dimensional elastic-collision
problems. Do not think you can use
this equation, or a vector form of the
equation, to solve 2- or 3-dimensional
elastic-collision problems. You cannot.

v1i � v2i � v2f � v1f!
(Joe Strunk/Visuals Unlimited.)

Multiflash photograph of an off-center elastic
collision of two balls of equal mass. The
dotted ball, entering from the left, strikes the
striped ball, which is initially at rest. The final
velocities of the two balls are perpendicular to
each other. (Berenice Abbot/Photo Researchers.)



v1 vcm v2
m1

m2

m1

m2

u1 u2

cm

cm

Center-of-mass reference frame

Original reference frame

(b)

(a)

F I G U R E  8 - 3 2 (a) Two particles viewed
from a frame in which the center of mass has a
velocity (b) The same two particles
viewed from a reference frame for which the
center of mass is at rest.

vScm.
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Equation 8-30 is the Pythagorean theorem for a right triangle formed by the vec-
tors and with the hypotenuse of the triangle being So for this spe-
cial case, the final velocity vectors and are perpendicular to each other, as
shown in Figure 8-31b.

PRACTICE PROBLEM 8-7

In a friendly game of pool, the cue ball moving at speed glances off the initially sta-
tionary 2 ball. The collision is elastic, the 2 ball is at rest prior to the collision, and the cue
ball is deflected from its pre-collision path. What is the speed of the 2 ball following
the collision? (The 2 ball and the cue ball have the same mass.)

8-4 COLLISIONS IN THE CENTER-OF-MASS 
REFERENCE FRAME

If the net external force on a system remains zero, the velocity of the center of mass
remains constant in any inertial reference frame. It is often convenient to do calcu-
lations in an alternate reference frame that moves with the center of mass. Relative
to the original reference frame, called the laboratory reference frame, this reference
frame moves with a constant velocity relative to the laboratory frame. A refer-
ence frame that moves at the same velocity as the center of mass is called the cen-
ter-of-mass reference frame. If a particle has velocity relative to the laboratory
reference frame, then its velocity relative to the center-of-mass reference frame is

Because the total momentum of a system equals the total mass times
the velocity of the center of mass, the total momentum is also zero in the center-of-
mass frame. Thus, the center-of-mass reference frame is also a zero-momentum
reference frame.

The mathematics of collisions is greatly simplified when considered from the
center-of-mass reference frame. The velocities of the particles in the center-of-mass
frame are and The momenta, and of the two incoming objects are
equal and opposite:

After a perfectly inelastic collision, the objects remain at rest. However, for an elas-
tic head-on collision the direction of each velocity vector is reversed without
changing its magnitude. That is,

Consider a simple two-particle system in a reference frame in which one parti-
cle of mass is moving with a velocity and a second particle of mass is
moving with a velocity (Figure 8-32). In this frame, the velocity of the center of
mass is 

We can transform the velocities of each particle to its velocity in the center-of-mass
reference frame by subtracting from it. Thus, the velocities of the particles in
the center-of-mass frame are and given by

8-31a

and

8-31buS2 � vS2 � vScm

uS1 � vS1 � vScm

uS2 ,uS1

vScm

vScm �
m1vS1 � m2vS2

m1 � m2

vS2

m2vS1m1

uS1i � �uS1f and uS2i � �uS2f (one dimensional collision)

m1uS1 � m2uS2 � 0

m2uS2 ,m1uS1uS2 .uS1

uS � vS � vScm.

vS

vScm

30°

v0

vS2fvS1f

vS1i .vS1i ,vS2f ,vS1f ,

Proton–proton collision in a liquid-hydrogen
bubble chamber. A proton entering from the
left interacts with a stationary proton. The two
then move off at right angles. The slight
curvature of the tracks is due to a magnetic
field. (Brookhaven National Laboratory.)

*
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6.0 m/s 3.0 m/s

vcm = 5.0 m/s

Initial conditions
F I G U R E  8 - 3 3

SOLVE

1. Calculate the velocity of the center of mass (Figure 8-33):vcm

� 5.0 m>s�
(4.0 kg)(6.0 m>s) � (2.0 kg)(3.0 m>s)

4.0 kg � 2.0 kg

vcm �
m1v1i � m2v2i

m1 � m2

2. Transform the initial velocities to the center-of-mass reference frame by
subtracting from the initial velocities (Figure 8-34):vcm

vcm = 0

2.0 m/s1.0 m/s

cm

Transform to the center-of-mass
frame by subtracting vcm

F I G U R E  8 - 3 4

2.0 m/s1.0 m/s

vcm = 0

cm

Solve collision
F I G U R E  8 - 3 5

4.0 m/s 7.0 m/s

Transform back to the original frame
by adding vcm

vcm = 5.0 m/s

F I G U R E  8 - 3 6

3. Solve the collision in the center-of-mass reference frame by reversing the
velocity of each object (Figure 8-35): u2f � �u2i � �2.0 m>su1f � �u1i � �1.0 m>s

4. To find the final velocities in the original frame, add to each final
velocity (Figure 8-36).

vcm

7.0 m>s� 2.0 m>s � 5.0 m>s �

v2f � u2f � vcm

4.0 m>s� �1.0 m>s � 5.0 m>s �

v1f � u1f � vcm

� 3.0 m>s � 5.0 m>s � �2.0 m>su2i � v2i � vcm

� 6.0 m>s � 5.0 m>s � 1.0 m>su1i � v1i � vcm

Example 8-17 The Elastic Collision of Two Blocks

Find the final velocities for the elastic head-on collision in Example 8-13 (in which a 4.0-kg
block moving right at collides elastically with a 2.0-kg block moving right at 
by transforming their velocities to the center-of-mass reference frame.

PICTURE We transform to the center-of-mass reference frame by first finding and sub-
tracting it from each velocity. We then solve the collision by reversing the velocities and
transforming back to the original frame.

vcm

3.0 m>s)6.0 m>s
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CHECK This result is the same result found in Example 8-13.

PRACTICE PROBLEM 8-8 Verify that the total momentum of the system both before the
collision and after the collision is zero in the center-of-mass reference frame. 

8-5 CONTINUOUSLY VARYING MASS 
AND ROCKET PROPULSION

A creative and important step in solving physics problems is specifying the system.
In this section, we explore situations in which the system has a continuously
changing mass. One example of such a system is a rocket. For a rocket, we specify
the system to be the rocket plus any unspent fuel in it. As the spent fuel (the
exhaust) spews out the back, the mass of the system decreases. Another example is
the sand falling onto base of an hourglass (Figure 8-37). We specify the system as
the sand currently resting on the base. The mass of the system continues to increase
as the sand on the base continues to accumulate. 

On the Jovian moon Io there is a large volcano. When the volcano erupts the
speed of the effluence exceeds the escape speed of Io. Consequently, a stream of the
effluence is projected into space. The material in the stream collides with and sticks
to the surface of an asteroid passing through the stream. We now consider the ef-
fect of the impact of this material on the motion of the asteroid. Doing so involves
developing an equation, that is, a version of Newton’s second law for systems with
continuously varying mass.

Suppose a continuous stream of matter moving at velocity is impacting an
object of mass M that is moving with velocity (Figure 8-38). These impacting par-
ticles stick to the object, increasing its mass by during time In addition,
during time the velocity changes by as shown. Applying the impulse–
momentum theorem to this system gives 

where the first term in square brackets is the momentum at time and the sec-
ond term in square brackets is the momentum at time t. Rearranging terms gives

8-32

Dividing through Equation 8-32 by gives

Taking the limit as (which also means as and as ) gives

Rearranging once again, we obtain

8-33

NEWTON’S SECOND LAW—CONTINUOUSLY VARIABLE MASS

where is the velocity of the impacting material relative to the object.
Note that except for the term Equation 8-33 is the identical to the equa-
tion for Newton’s second law for a system with constant mass.

(dM>dt)vSrel ,
vSrel � uS � vS

F
S

net ext �
dM
dt

vSrel �M
dvS

dt

F
S

net ext �M
dvS

dt
�
dM
dt

(vS � uS) �
dM
dt

(0)

¢vS S 0¢MS 0¢tS 0

F
S

net ext �M
¢vS

¢t
�

¢M
¢t

(vS � uS) �
¢M
¢t

¢vS

¢t

F
S

net ext ¢t �M¢vS � ¢M (vS � uS) � ¢M¢vS

t � ¢t

F
S

net ext ¢t � ¢P
S

� P
S

f � P
S

i � 3(M � ¢M)(vS � ¢vS)4 � 3MvS � ¢MuS4
¢vS,vS¢t

¢t.¢M
vS

uS

v + Δv

Time t

Time t + Δt

Particle
stream

M

M
+

ΔM

ΔM
u

v

Fnet ext

Fnet ext

F I G U R E  8 - 3 8 Particles in a continuous
stream and moving at velocity undergo
perfectly inelastic collisions with an object of
mass M moving at velocity In addition,
there is a net external force acting on
the object. The system is shown at time t and
again at time t � ¢t.

F
S

net ext

vS.

uS

F I G U R E  8 - 3 7

(Brand-X Pictures/PunchStock.)
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2. Express Equation 8-33 in component form. Let m
denote the mass of the system (the pan plus that
portion of the rope on the scale). The velocity of the
system remains zero, so the is zero:dvy >dt Fn � mg �

dm
dt
vrel y � 0

Fnet ext y �
dm
dt
vrel y � m

dvy

dt

3. Let dm denote the mass of the rope segment of length
that falls on the scale during time dt. Because the

rope is uniform, the relation between dm and is:d�
d�

dm
d�

�
M
L

4. Solve for by multiplying both sides of the step-
3 result by :d�>dtdm>dt dm

dt
�
M
L
d�
dt

5. is the impact speed of the segment, so
( is negative because up is the 

direction and the rope is descending). Substituting
this into the step-4 result gives:

�yvrel yvrel y � �d�>dt.d�>dt dm
dt

� �
M
L
vrel y

6. Substituting the step-5 result into the step-2 result
and solving for gives:Fn

Fn � mg �
M
L
v2

rel y

7. Until it touches the scale, each point along the rope 
falls with the free-fall acceleration Using

(Equation 2-23) with gives:¢y � �L>2v2
y � v2

0y � 2ay ¢y
gS.

� 0 � 2(�g)(�L>2) � gLv2
rel y � v2

rel y0 � 2ay¢y

8. Substituting the step-7 result into the step-6 result,
with gives:m � mpan � 1

2M,

3
2
MgFn � ampan �

M
2
bg �

M
L
gL � mpang �

9. The normal force of the scale on the scale pan equals the
weight of the pan plus the force by the rope on the pan: so Fby rope on pan � Fn � mpang

Fn � mpang � Fby rope on pan

10. Subtract from both sides of the step-8 result and
substitute into the step-9 result:

mpang
3
2
MgFby rope on pan �

CHECK When the midpoint of the rope strikes the scale pan, the force of the rope currently
on the scale pan is greater than (the weight of the rope on the pan at that instant), as
expected. We expect the force of the rope on the pan to be greater than because the scale
pan must both support the weight of the rope on it, and stop the momentum of the impact-
ing rope.

PRACTICE PROBLEM 8-9 Find the force exerted by the scale pan on the rope (a) just before
the upper end of the rope reaches the pan, and (b) just after the upper end of the rope comes
to rest on the pan.

1
2Mg

1
2Mg

Example 8-18 A Falling Rope

A uniform rope of mass M and length L is held by one end, with the other end just touching
the surface of a scale pan. The rope is released and begins to fall. Find the force of the rope
on the scale pan just as the midpoint of the rope reaches the scale pan.

PICTURE Apply Equation 8-33 to the system consisting of the scale pan and that portion of
the rope on the scale at time t. There are two external forces on that system, the force of
gravity and the normal force exerted by the scale on the scale pan. The impact velocities of
the different points along the falling rope depend upon their initial heights above the scale
pan. The normal force exerted by the scale must both change the momentum of the rope
impacting the scale, support the weight of both the pan and that portion of the rope already
on the pan.

y

M

m

L

L/2
Scale

vrel

Frope on pan

Scale
pan

F I G U R E  8 - 3 9 A very flexible rope of
length L and mass M is released from rest
and falls on the pan of a scale.

SOLVE

1. Draw a sketch of the situation (Figure 8-39). Include the initial configuration and the
configuration at an arbitrary time later. Include a coordinate axis:
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F I G U R E  8 - 4 0 (NASA/ Superstock.)

Rocket propulsion is a striking example of the conservation of momentum in ac-
tion. We now derive the rocket equation (a special case of Equation 8-33). The mass
of the rocket changes continuously as it burns fuel and expels exhaust gas.
Consider a rocket moving straight up with velocity relative to Earth, as shown in
Figure 8-40. Assuming that the fuel is burned at a constant rate R, the rocket’s mass
at time t is

8-34

where is the initial mass of the rocket. The exhaust gases leave the rocket en-
gine with velocity relative to the rocket, and the rate at which the fuel is burned
is the rate at which the mass M decreases. We choose the rocket, including unspent
fuel in it, as the system. Neglecting air drag, the only external force on the system
is that of gravity. With and , equation 8-33 becomes the
rocket equation:

8-35

ROCKET EQUATION

The quantity is the force exerted on the rocket by the exhaust gases. This
force is called the thrust

8-36

DEFINITION — ROCKET THRUST

The rocket is moving straight up, so we choose upward as the positive y direction
and express Equation 8-35 in component form

The direction of is downward, so Substituting gives

8-37

Solving for (the acceleration) gives

where is the contribution of the thrust to the acceleration and is the
contribution of the gravitational force to the acceleration. Substituting for M from
Equation 8-34 gives

8-38

Equation 8-38 is solved by integrating both sides with respect to time. For a rocket
starting at rest at this gives

where Rearranging, after substituting t for and for b, gives

8-39vy � uexln a M0

M0 � Rt
b � gt

M0>Rtfb �M0>R.

vy � �
tf

0
a Ruex

M0 � Rt
� gb dt � uex �

tf

0

dt
b � t

� �
tf

0
gdt � �uexln

b � tf
b

� gtf

t � 0,

dvy

dt
�

Ruex

M0 � Rt
� g

�gRuex>M
dvy

dt
�
Ruex

M
� g

dvy>dt
�Mg � Ruex �M

dvy

dt

uex y � �uex .uSex

�Mg � Ruex y �M
dvy

dt

F
S

th � �RuSex � � 2 dM
dt
2 uSex

F
S

th :
�RuSex

MgS � RuSex �M
dvS

dt

dM>dt � �RF
S

net ext �MgS

uSex

M0

M �M0 � Rt

vS



CHECK At burnout, the mass being accelerated is 73 percent less than the mass being ac-
celerated at liftoff. Therefore, we would expect the acceleration at burnout to be much larger
than the initial acceleration. This is shown by our results in Parts (c) and (d).

TAKING IT FURTHER (1) The initial acceleration is small—only At burnout (also
called flameout), the rocket’s acceleration has increased to Immediately following
burnout, the acceleration is The speed of the rocket at burnout is 

(2) The calculations for Parts (d) and (e) assume the rocket moved vertically
upward and that g did not vary with altitude. In practice the actual rocket initially moved
vertically upward, but it then gradually turned eastward.

�  3900 mi>h.
1.75 km>s � 6300 km>h�g.

3.5g.
0.21g.
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(b) 1. Calculate the mass of the rocket at
burnout (when it runs out of fuel). 

Mb Mb � 0.270M0 � 7.70 � 105 kg

2. The mass of the fuel equals the burn
rate multiplied by the burn time tb .

so 150 stb �
Mfuel

R
�
M0 �Mb

R
�

Mfuel � Rtb

(c) Calculate at using
Equation 8-38.

t � 0dvy >dt Initially,

2.14 m>s2�

�
2.46 km>s

2.85 � 106 kg
(13.84 � 103 kg>s) � 9.81 m>s2

dvy

dt
�
uex

M0

2 dM
dt
2 � g

(d) Calculate at using Equation
8-38.

t � tbdvy >dt At burnout,

34.3 m>s2�

�
2.46 km>s

7.70 � 105 kg
(13.84 � 103 kg>s) � 9.81 m>s2

dvy

dt
�
uex

Mb

2 dM
dt
2 � g

(e) Calculate the speed at using
Equation 8-39.

t � tb 1.75 km>s�vy � uex ln a M0

M0 � Rt
b � gt

SOLVE

(a) 1. Calculate from the given thrust and
burn rate.

uex

so 2.46 km>suex �
Fth

ƒ dM>dt ƒ �
34.0 � 106 N

13.84 � 103 kg>s �

Fth � 2 dM
dt
2 uex

Example 8-19 Liftoff

The Saturn V rocket used in the Apollo moon-landing program had an initial mass of
73.0 percent of which was fuel, a burn rate R of and a thrust

of Find (a) the exhaust speed relative to the rocket, (b) the burn time 
(c) the acceleration at liftoff, (d) the acceleration at just before burnout and (e) the final
speed of the rocket.

PICTURE (a) The exhaust speed relative to the rocket can be found from the thrust and burn
rate. (b) The mass of the rocket without any fuel is 73.0% of the initial mass. To find the burn
time, you need to find the total mass of fuel burned, which is the initial mass minus the mass
at burnout. (c) and (d) The acceleration is found from Equation 8-38. (e) The final speed is
given by Equation 8-39.

tb ,
tb ,34.0 � 106 N.Fth

13.84 � 103 kg>s,2.85 � 106 kg,
M0
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Pulse Detonation Engines: Faster (and Louder)

Liquid-fueled rocket engines need expensive, delicate pumps to compress the fuel
to very high pressures in the combustion chamber. Most jet engines are gas-turbine
engines, which have many moving parts with tight tolerances and high mainte-
nance needs. Rocket and aeronautical engineers want an engine with higher fuel
efficiency, few moving parts, and an ability to operate at a wide range of speeds.

The pulse detonation engine (PDE) may fulfill these requirements. The PDE is
powered by detonation rather than deflagration.

Both detonation and deflagration are types of combustion. Deflagration propa-
gates slower than the speed of sound by heating up the air around it. Fireworks,
properly tuned automobile engines, and charcoal barbecues with too much starter
fluid on them are deflagrations. Detonation propagates faster than the speed of
sound—sometimes much faster, by a shock wave that compresses and ignites the
air. Confined high explosives used in mining and demolition detonate; improperly
tuned car engines can also have internal detonations.

In a PDE, a detonation tube is closed at one end, and open at the other for ex-
haust. Air and fuel are admitted into the closed end, and are ignited by a spark.
This starts a deflagration. As the deflagration moves down the complex interior
surface* of the detonation tube, it is compressed quickly and begins to detonate.
Once the detonation begins, it propagates much faster than the speed of sound.
Detonation wavefronts as fast as Mach 5 have been measured in various
laboratories.† The exhaust leaves the open end of the tube very rapidly. Because the
exhaust has such a high velocity, it has higher momentum than the same exhaust
would have from a deflagration. This gives a greater thrust to the rocket for the
same amount of fuel. Detonation has given double the impulse of deflagration,
using the same fuel and apparatus.‡

The only moving parts in the PDE are the valves to admit the fuel/air mixture.
The ignition can be supplied by an automobile spark plug, and the rest of the en-
gine is just the detonation tube. It seems very simple at first glance. But combus-
tion is a complex process, and the combustion in a PDE is over very quickly. To
power a jet or rocket, the PDE needs many detonations per second, just as an au-
tomobile needs many combustion incidents per second to move. PDEs have been
tested at 80 detonations per second for several minutes and hours, but ideally,
PDEs would reach speeds of a few hundred detonations per second.§

But detonation is a violent process. It is extremely loud, and causes the engine
to vibrate even more than existing jet and rocket engines do.° Excess vibration can
be harmful to rockets and jets. The noise produced by existing PDEs is not practi-
cal for a vehicle with a human pilot or passenger. Finally, heavy tubes have been
used to contain the detonation. The tubes need to be made of a material strong
enough to withstand the detonations, but lightweight enough to fly.

By early 2006, no planes have flown with a PDE, but the idea of engines for jets
and rockets that cost less, generate a wide range of thrusts, and have higher fuel
efficiency is well worth pursuing.

* Paxson, D. E., Rosenthal, B. N., Sgondea, A., and Wilson, J.,”Parametric Investigation of Thrust Augmentation by
Ejectors on a Pulsed Detonation Tube” Paper presented at the 41st Joint Propulsion Conference, 2005, Tuscon, AZ.

† Borisov, A.A., Frolov, S.M., Netzer, D. W., and Roy, G. D., “Pulse Detonation Propulsion: Challenges, Current Status,
and Future Perspective.” Progress in Energy and Combustion Science 30 (2004) 545-672

‡ ”Detonation Initiation and Impulse Measurement.” Explosion Dynamics Laboratory: Pulse Detonation Engines,
http://www.galcit.caltech.edu/EDL/projects/pde/pde.html May, 2006

§ Kandebo, Stanley W., “Taking the Pulse.” Aviation Week and Space Technology, 160:10 Mar. 8, 2004, 32-33.
° Borisov et al. op. cit.

Experimental pulse detonation engine in
Rutan Vari-Eze. (Tim Anderson.)

http://www.galcit.caltech.edu/EDL/projects/pde/pde.html
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Summary

The conservation of momentum for an isolated system is a fundamental law of
nature that has applications in all areas of physics.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Momentum

Definition for a particle 8-1

Kinetic energy of a particle 8-16

Momentum of a system 8-3

Newton’s second law for a system 8-4

Law of conservation of momentum If the net external force acting on a system remains zero, the total momentum of the system
is conserved.

2. Energy of a System

Kinetic energy The kinetic energy associated with the motion of the particles of a system relative to its center
of mass is , where is the speed of the ith particle relative to the center of mass.

8-7

3. Collisions

Impulse The impulse of a force is defined as the integral of the force over the time interval during
which the force acts.

8-9

Impulse–momentum theorem 8-10

Average force ) 8-13

Elastic collisions An elastic collision between two objects is one in which the sum of their kinetic energies is
the same before and after the collision.

Relative speeds of approach For an elastic collision, the speed of separation equals the speed of approach. For a head-on
and separation elastic collision, 

8-23

Perfectly inelastic collisions Following a perfectly inelastic collision, the two objects stick together and move with the
velocity of the center of mass.

*Coefficient of restitution The coefficient of restitution e is a measure of the elasticity. It is the ratio of the separation
speed to the closing speed:

8-25

For an elastic collision, for a perfectly inelastic collision 

4. Continuously Variable Mass

Newton’s second law 8-33

where is the burn rate.

Rocket equation 8-35

Thrust 8-36F
S
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Answer to Concept Check

8-1 No

Answers to Practice Problems

8-1

8-2 The grain leaking out does not impart any
momentum to the rest of the system. If the ground were
frictionless and flat, all of the grain initially in the car
would arrive at the switchyard along with the car.

8-3 She gains more speed by throwing them
sequentially rather than simultaneously.

8-4 (a) and
(b)

(c) (d)

8-5 Momentum conservation implies 
elastic collision implies Together,
these imply and 

8-6 0.73

8-7

8-8 Before:

After:

8-9 (a) (b)Mg3Mg,

� 0.0 kg # m>sPsys f � (4.0 kg)(�1.0 m>s) � (2.0 kg)(2.0 m>s)
� 0.0 kg # m>s;

Psys i � (4.0 kg)(1.0 m>s) � (2.0 kg)(�2.0 m>s)

1
2 v0

v1f � v2i .v2f � v1i

v1i � v2i � v2f � v1f .
v1i � v2i � v1f � v2f ,

Krel � 0Krel � 0.25 J,
KA rel � KB rel � 0.125 J,vB � �0.50 m>s,

vcm � 0.50 m>s, vA � �0.50 m>s,

1.32 m>s.

140 s.

8.4 J

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimates.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

For all problems, use for the free-fall acceleration
and neglect friction and air resistance unless instructed to
do otherwise.

9.81 m>s2

Problems

CONCEPTUAL PROBLEMS

1 • Show that if two particles have equal kinetic energies,
the magnitudes of their momenta are equal only if they have the
same mass.

2 • Particle A has twice the momentum and four times
the kinetic energy of particle B. What is the ratio of the mass of
particle A to that of particle B? Explain your reasoning. 

3 • Using SI units, show that the units of momentum
squared divided by those of mass is equivalent to the joule.

4 • True or false:
(a) The total linear momentum of a system may be conserved even

when the mechanical energy of the system is not.
(b) For the total linear momentum of a system to be conserved,

there must be no external forces acting on the system.
(c) The velocity of the center of mass of a system changes only

when there is a net external force on the system.

5 • If a bullet is fired due west, explain how conservation of
linear momentum enables you to predict that the recoil of the rifle
will be exactly due east. Is kinetic energy conserved here?

SSM

6 • A child jumps from a small boat to a dock. Why does she
have to jump with more effort than she would need if she were
jumping through an identical displacement, but from a boulder to
a tree stump?

7 •• Much of the early research in rocket motion was done by
Robert Goddard, physics professor at Clark College in Worcester,
Massachusetts. A quotation from a 1920 editorial in the New York
Times illustrates the public’s opinion of his work: “That Professor
Goddard with his ‘chair’ at Clark College and the countenance of
the Smithsonian Institution does not know the relation between ac-
tion and reaction, and the need to have something better than a vac-
uum against which to react—to say that would be absurd. Of
course, he only seems to lack the knowledge ladled out daily in
high schools.”* The belief that a rocket needs something to push
against was a prevalent misconception before rockets in space were
commonplace. Explain why that belief is wrong. SSM

* On page 43 of the July 17, 1969, edition of the New York Times “A Correction” to their
editorial of 1920 was printed. This commentary, which was published three days be-
fore man’s first walk on the moon, stated that “it is now definitely established that a
rocket can function in a vacuum as well as in an atmosphere. The Times regrets the
error.



8 • Two identical bowling balls are moving with the same
center-of-mass velocity, but one just slides down the alley without
rotating, whereas the other rolls down the alley. Which ball has
more kinetic energy?

9 • A philosopher tells you, “Changing motion of objects
is impossible. Forces always come in equal but opposite pairs.
Therefore, all forces cancel out. Because forces cancel, the momenta
of objects can never be changed.” Answer his argument.

10 • A moving object collides with a stationary object. Is it
possible for both objects to be at rest immediately after the colli-
sion? (Assume any external forces acting on this two-object system
are negligibly small.) Is it possible for one object to be at rest im-
mediately after the collision? Explain.

11 • Several researchers in physics education claim that part
of the cause of physical misconceptions among students comes
from special effects they observe in cartoons and movies. Using the
conservation of linear momentum, how would you explain to a
class of high school physics students what is conceptually wrong
with a superhero hovering at rest in midair while tossing massive
objects such as cars at villains? Does this action violate the conser-
vation of energy as well? Explain.

12 •• A struggling physics student asks, “If only external
forces can cause the center of mass of a system of particles to accel-
erate, how can a car move? Doesn’t the car’s engine supply the
force needed to accelerate the car?” Explain what external agent
produces the force that accelerates the car, and explain how the en-
gine makes that agent do so. 

13 •• When we push on the brake pedal to slow down a car, a
brake pad is pressed against the rotor so that the friction of the pad
slows the rotation of the rotor and thus the rotation of the wheel.
However, the friction of the pad against the rotor cannot be the
force that slows the car down because it is an internal force—both
the rotor and the wheel are parts of the car, so any forces between
them are internal, not external forces. What external agent exerts
the force that slows down the car? Give a detailed explanation of
how this force operates.

14 •• Explain why a circus performer falling into a safety net
can survive unharmed, while a circus performer falling from 
the same height onto the hard concrete floor suffers serious 
injury or death. Base your explanation on the impulse–momentum
theorem.

15 •• In Problem 14, estimate the ratio of the collision time
with the safety net to the collision time with the concrete for the
performer falling from a height of Hint: Use the procedure
outlined in step 4 of the Problem-Solving Strategy located in 
Section 8-3.

16 •• (a) Why does a drinking glass survive a fall onto a car-
pet but not a fall onto a concrete floor? (b) On many automobile
race tracks, dangerous curves are surrounded by massive bails
of hay. Explain how this setup reduces the chances of car dam-
age and driver injury. 

17 • True or false:
(a) Following any perfectly inelastic collision, the kinetic energy of

the system is zero in all inertial reference frames.
(b) For a head-on elastic collision, the relative speed of recession

equals the relative speed of approach.
(c) In a perfectly inelastic head-on collision with one object initially

at rest, only some of the system’s kinetic energy is dissipated.
(d) After a perfectly inelastic head-on collision along the east–west

horizontal axis, the two objects are observed to be moving west.
The initial total system momentum was therefore to the west.

SSM

25 m.

18 •• Under what conditions can all the initial kinetic energy
of an isolated system consisting of two colliding objects be lost in a
collision? Explain how this result can be, and yet the momentum of
the system can be conserved.

19 •• Consider a perfectly inelastic collision of two objects of
equal mass. (a) Is the loss of kinetic energy greater if the two objects
are moving in opposite directions, each moving at speed or if
one of the two objects is initially at rest and the other has an initial
speed of (b) In which of these situations is the percentage loss in
kinetic energy the greatest?

20 •• A double-barreled pea shooter is shown in Figure 8-41.
Air is blown into the left end of the pea shooter, and identical peas
A and B are positioned inside each straw as shown. If the pea
shooter is held horizontally while the peas are shot off, which pea,
A or B, will travel farther after leaving the straw? Explain. (Base
your explanation on the impulse–momentum theorem.) 

v?

v>2,
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A

B
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21 •• A particle of mass traveling with a speed v makes a
head-on elastic collision with a stationary particle of mass In
which scenario will the largest amount of energy be imparted to
the particle of mass (a) (b) (c)
(d) None of the above

22 •• ENGINEERING APPLICATION, CONTEXT-RICH Suppose
you are in charge of an accident reconstruction team that has re-
constructed an accident in which a car was “rear-ended,” causing
the two cars to lock bumpers and skid to a halt. During the trial,
you are on the stand as an expert witness for the prosecution and
the lawyer for the defense claims that you wrongly neglected fric-
tion and the force of gravity during the fraction of a second while
the cars collided. Defend your report. Why were you correct in
ignoring these forces? You did not ignore these two forces in your
skid analysis both before and after the collision. Can you explain to
the jury why you did not ignore these two forces during the pre-
and postcollision skids?

23 •• Nozzles for a garden hose are often made with a right-
angle shape, as shown in Figure 8-42. If
you open the nozzle to spray water
out, you will find that the nozzle
presses against your hand with 
a pretty strong force — much
stronger than if you used a
nozzle not bent into a right
angle. Why is this situation
true? 

m2 
 m1 ,m2 � m1 ,m2 	 m1 ,m2?

m2 .
m1

F I G U R E  8 - 4 2

Problem 23
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L

vb

Glider

F I G U R E  8 - 4 3 Problem 32

CONCEPTUAL PROBLEMS 
FROM OPTIONAL SECTIONS

24 • Describe a perfectly inelastic head-on collision between
two stunt cars as viewed in the center-of-mass reference frame.

25 •• One air-hockey puck is initially at rest. An identical air-
hockey puck collides with it, striking it with a glancing blow.
Assume the collision is elastic and neglect any rotational motion of
the pucks. Describe the collision in the center-of-mass frame of
the pucks.

26 •• A baton with one end more massive than the other is
tossed at an angle into the air. (a) Describe the trajectory of the cen-
ter of mass of the baton in the reference frame of the ground.
(b) Describe the motion of the two ends of the baton in the center-
of-mass frame of the baton.

27 •• Describe the forces acting on a descending Lunar lander
as it fires its retrorockets to slow down for a safe landing. (Assume
the lander’s mass loss during the rocket firing is not negligible.) 

28 •• A railroad car rolling along by itself is passing by a grain
elevator, which is dumping grain into it at a constant rate. (a) Does
momentum conservation imply that the railroad car should be
slowing down as it passes the grain elevator? Assume that the
track is frictionless and perfectly level and that the grain is falling
vertically. (b) If the car is slowing down, this situation implies that
there is some external force acting on the car to slow it down.
Where does this force come from? (c) After passing the elevator, the
railroad car springs a leak, and grain starts leaking out of a verti-
cal hole in its floor at a constant rate. Should the car speed up as it
loses mass?

29 •• To show that even really intelligent people can make
mistakes, consider the following problem, which was asked of a
freshman class at Caltech on an exam (paraphrased): A sailboat is
sitting in the water on a windless day. In order to make the boat move, a
misguided sailor sets up a fan in the back of the boat to blow into the 
sails to make the boat move forward. Explain why the boat will not move.
The idea was that the net force of the wind pushing the sail
forward would be counteracted by the force pushing the fan 
back (Newton’s third law). However, as one of the students
pointed out to his professor, the sailboat could in fact move for-
ward. Why is that?

ESTIMATION AND APPROXIMATION

30 •• ENGINEERING APPLICATION A 2000-kg car traveling at
crashes into an immovable concrete wall. (a) Estimate the

time of collision, assuming that the center of the car travels halfway
to the wall with constant acceleration. (Use any plausible length 
for the car.) (b) Estimate the average force exerted by the wall on 
the car.

31 •• In hand-pumped railcar races, a speed of has
been achieved by teams of four people. A car that has a mass equal
to is moving at that speed toward a river when Carlos, the
chief pumper, notices that the bridge ahead is out. All four people
(each with a mass of ) simultaneously jump backward off the
car with a velocity that has a horizontal component of rel-
ative to the car. The car proceeds off the bank and falls into the
water a horizontal distance of from the bank. (a) Estimate the
time of the fall of the railcar. (b) What is the horizontal component
of the velocity of the pumpers when they hit the ground?

32 •• A wooden block and a gun are firmly fixed to opposite
ends of a long glider mounted on a frictionless air track 
(Figure 8-43). The block and gun are a distance L apart. The system

25.0 m

4.00 m>s75.0 kg

350 kg

32.0 km>h
90 km>h

SSM

is initially at rest. The gun is fired and the bullet leaves the gun with
a velocity and impacts the block, becoming imbedded in it. The
mass of the bullet is and the mass of the gun–glider–block sys-
tem is (a) What is the velocity of the glider immediately
after the bullet leaves the gun? (b) What is the velocity of the glider
immediately after the bullet comes to rest in the block? (c) How far
does the glider move while the bullet is in transit between the gun
and the block? 

CONSERVATION 
OF LINEAR MOMENTUM

33 • Tyrone, a 85-kg teenager, runs off the end of a hori-
zontal pier and lands on a free-floating 150-kg raft that was ini-
tially at rest. After he lands on the raft, the raft, with him on it,
moves away from the pier at What was Tyrone’s speed
as he ran off the end of the pier?

34 •• A 55-kg woman contestant on a reality television
show is at rest at the south end of a horizontal 150-kg raft that is
floating in crocodile-infested waters. She and the raft are ini-
tially at rest. She needs to jump from the raft to a platform that
is several meters off the north end of the raft. She takes a run-
ning start. When she reaches the north end of the raft she is run-
ning at relative to the raft. At that instant, what is her ve-
locity relative to the water? 

35 • A 5.0-kg object and a 10-kg object, both resting on a fric-
tionless table, are connected by a massless compressed spring. The
spring is released and the objects fly off in opposite directions. The
5.0-kg object has a velocity of to the left. What is the veloc-
ity of the 10-kg object?

36 • Figure 8-44 shows the behavior of a projectile just after it
has broken up into three pieces. What was the speed of the projec-
tile the instant before it broke up: (a) (b) (c) (d)
(e) (v1 � v2 � v3)>4?

4v3 ,v3 >4,v3 >3,v3 ,

8.0 m>s

5.0 m>s

SSM

2.0 m>s.

mp .
mb

vb

m m

2m

v2 = 2v1

v3

v1
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Problem 36
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37 • A shell of mass m and speed v explodes into two identi-
cal fragments. If the shell was moving horizontally with respect to
Earth, and one of the fragments is subsequently moving vertically
with speed v, find the velocity of the other fragment immediately
following the explosion.

38 •• For this week’s physics lab, the experimental setup
consists of two gliders on a horizontal frictionless air track 
(see Figure 8-45). Each glider supports a strong magnet centered
on top of it, and the magnets are oriented so they attract each
other. The mass of glider 1 and its magnet is and the
mass of glider 2 and its magnet is You and your lab
partners are instructed to take the origin to be at the left end of 
the track and to center glider 1 at and glider 2 
at Glider 1 is long, and glider 2 is 
long, and each glider has its center of mass at its geometric 
center. When the two gliders are released from rest, they will
move toward each other and stick. (a) Predict the position of 
the center of each glider when they first touch. (b) Predict the ve-
locity that the two gliders will continue to move with after they
stick. Explain the reasoning behind this prediction for your
lab partners.

20.0 cm10.0 cmx2 � 1.600 m.
x1 � 0.100 m

0.200 kg.
0.100 kg,

vS�

39 •• Bored, a boy shoots his pellet gun at a piece of cheese that
sits on a massive block of ice. On one particular shot, his 1.2-g
pellet gets stuck in the cheese, causing it to slide before
coming to a stop. If the muzzle velocity of the gun is known to be

and the cheese has a mass of what is the coefficient of
friction between the cheese and the ice?

40 ••• MULTISTEP A wedge of mass M is placed on a friction-
less, horizontal surface, and a block of mass m is placed on 
the wedge, which also has a frictiononless surface (Figure 8-46).
The block’s center of mass moves downward a distance h as the
block slides from its initial position to the horizontal floor. 
(a) What are the speeds of the block and of the wedge as they
separate from each other and go their own ways? (b) Check your
calculation plausibility by considering the limiting case when
MW m.

120 g,65 m>s,

25 cm

Final

h
vwvb

Initial

M
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KINETIC ENERGY 
OF A SYSTEM OF PARTICLES

41 •• MULTISTEP A 3.0-kg block is traveling to the right
(the direction) at and a second 3.0-kg block is trav-
eling to the left at (a) Find the total kinetic energy of the
two blocks. (b) Find the velocity of the center of mass of the two-
block system. (c) Find the velocity of each block relative to the
center of mass. (d) Find the kinetic energy of the blocks relative
to the center of mass. (e) Show that your answer for Part (a) is
greater than your answer for Part (d) by an amount equal to the
kinetic energy associated with the motion of the center of mass.

42 •• Repeat Problem 41 with the second 3.0-kg block re-
placed by a 5.0-kg block moving to the right at 

IMPULSE AND AVERAGE FORCE

43 • You kick a soccer ball whose mass is The ball
leaves your foot with an initial speed of (a) What is the
magnitude of the impulse associated with the force of your foot
on the ball? (b) If your foot is in contact with the ball for 
what is the magnitude of the average force exerted by your foot
on the ball?

44 • A 0.30-kg brick is dropped from a height of It
hits the ground and comes to rest. (a) What is the impulse ex-
erted by the ground on the brick during the collision? (b) If it
takes from the time the brick first touches the ground
until it comes to rest, what is the average force exerted by the
ground on the brick at impact?

45 • A meteorite that has a mass equal to 30.8 tonnes 
is exhibited in the American Museum of Natural History

in New York City. Suppose that the kinetic energy of the meteorite
as it hit the ground was Find the magnitude of the impulse
experienced by the meteorite up to the time its kinetic energy was
halved (which took about ). Also find the average force ex-
erted on the meteorite during this time interval.

46 •• A 0.15-kg baseball traveling horizontally is hit by a bat
and its direction is exactly reversed. Its velocity changes from

to (a) What is the magnitude of the impulse de-
livered by the bat to the ball? (b) If the baseball is in contact with the
bat for what is the average force exerted by the bat on
the ball?

47 •• A 60-g handball moving with a speed of strikes
the wall at a 40° angle with the normal, and then bounces off with
the same speed at the same angle with the normal. It is in contact
with the wall for What is the average force exerted by the
ball on the wall?

48 •• ESTIMATION You throw a 150-g ball straight up to a
height of (a) Use a reasonable value for the displacement of
the ball while it is in your hand to estimate the time the ball is in
your hand while you are throwing it. (b) Calculate the average force
exerted by your hand while you are throwing it. (Is it okay to ne-
glect the gravitational force on the ball while it is being thrown?)

49 •• A 0.060-g handball is thrown straight toward a wall with
a speed of It rebounds straight backward at a speed of

(a) What impulse is exerted on the wall? (b) If the ball is in
contact with the wall for what average force is exerted on
the wall by the ball? (c) The rebounding ball is caught by a player
who brings it to rest. In the process, her hand moves back 
What is the impulse received by the player? (d) What average force
was exerted on the player by the ball?

0.50 m.

3.0 ms,
8.0 m>s.

10 m>s.

40.0 m.

2.0 ms.

5.0 m>s
1.3 ms,

�20 m>s.�20 m>s
t � 3.0 s

617 MJ.

1000 kg)
�(1 tonne

0.0013 s

8.0 m.

SSM

8.0 ms,

25 m>s.
0.43 kg.

3.0 m>s.

SSM

2.0 m>s.
5.0 m>s,�x
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50 •• A spherical 0.34-kg orange, in radius, is dropped
from the top of a 35-m-tall building. After the orange strikes the
pavement, its shape is that of a 0.50-cm-thick pancake. Neglect air
resistance and assume that the collision is completely inelastic. 
(a) How much time did the orange take to completely “squish” to a
stop? (b) What average force did the pavement exert on the orange
during the collision?

51 •• The pole vault landing pad at an Olympic competition
contains what is essentially a bag of air that compresses from its
“resting” height of down to as the vaulter is slowed to
a stop. (a) What is the time interval during which a vaulter who has
just cleared a height of slows to a stop? (b) What is the time
interval if instead the vaulter is brought to rest by a 20-cm layer of
sawdust that compresses to when he lands? (c) Qualitatively
discuss the difference in average force the vaulter experiences from
the two different landing pads. That is, which landing pad would
exert the least force on the vaulter and why?

52 ••• Large limestone caverns have been formed by dripping
water. (a) If water droplets of fall from a height of at
a rate of 10 droplets per minute, what is the average force exerted
on the limestone floor by the droplets of water during a 1.0-min
period? (Assume the water does not accumulate on the floor.) 
(b) Compare this force to the weight of one water droplet.

COLLISIONS IN ONE DIMENSION

53 • A 2000-kg car traveling to the right at is chas-
ing a second car of the same mass that is traveling in the same
direction at (a) If the two cars collide and stick together,
what is their speed just after the collision? (b) What fraction of
the initial kinetic energy of the cars is lost during this collision?
Where does it go?

54 • An 85-kg running back moving at makes a
perfectly inelastic head-on collision with a 105-kg linebacker
who is initially at rest. What is the speed of the players just after
their collision? 

55 • A 5.0-kg object with a speed of collides head-on
with a 10-kg object moving toward it with a speed of The
10-kg object stops dead after the collision. (a) What is the postcolli-
sion speed of the 5.0-kg object? (b) Is the collision elastic?

56 • A small superball of mass m moves with speed v to the
right toward a much more massive bat that is moving to the left
with speed v. Find the speed of the ball after it makes an elastic
head-on collision with the bat.

57 •• A proton that has a mass m and is moving at 
undergoes a head-on elastic collision with a stationary carbon nu-
cleus of mass 12m. Find the velocities of the proton and the carbon
nucleus after the collision.

58 •• A 3.0-kg block moving at has a head-on elastic
collision with a stationary block of mass Use conservation of
momentum and the fact that the relative speed of recession equals
the relative speed of approach to find the velocity of each block
after the collision. Check your answer by calculating the initial and
final kinetic energies of each block.

59 •• A block of mass slides along a frictionless
table with a speed of Directly in front of it, and moving 
in the same direction with a speed of is a block of 
mass A massless spring that has a force constant

is attached to the second block, as in Figure 8-47. (a)
What is the velocity of the center of mass of the system? (b) During
the collision, the spring is compressed by a maximum amount ¢x.

k � 1120 N>mm2 � 5.0 kg.
3.0 m>s,

10 m>s.
m1 � 2.0 kg

2.0 kg.
4.0 m>s

300 m>s

3.0 m>s.
4.0 m>s

7.0 m>sSSM

10 m>s.

30 m>s

5.0 m0.030 mL

5.0 cm

6.40 m

0.20 m1.2 m

2.0 cm

What is the value of (c) The blocks will eventually separate
again. What are the velocities of the two blocks measured in the ref-
erence frame of the table, after they separate? 

60 •• A bullet of mass m is fired vertically from below into a
thin horizontal sheet of plywood of mass M that is initially at rest,
supported by a thin sheet of paper (Figure 8-48). The bullet punches
through the plywood, which rises to a height, H, above the paper
before falling back down. The bullet continues rising to a height, h,
above the paper. (a) Express the upward velocity of the bullet and
the plywood immediately after the bullet exits the plywood in
terms of h and H. (b) What is the speed of the bullet? (c) What is the
mechanical energy of the system before and after the inelastic colli-
sion? (d) How much mechanical energy is dissipated during the
collision?

¢x?

10 m/s 3.0 m/s
k = 1120 N/m

m1 m2
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Paper Plywood

M

m
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61 •• A proton of mass m is moving with initial speed di-
rectly toward the center of an particle of mass 4m, which is ini-
tially at rest. Both particles carry positive charge, so they repel each
other. (The repulsive forces are sufficient to prevent the two parti-
cles from coming into direct contact.) Find the speed of the par-
ticle (a) when the distance between the two particles is a minimum,
and (b) later when the two particles are far apart.

62 •• An electron collides elastically with a hydrogen atom
that is initially at rest. Assume all the motion occurs along a straight
line. What fraction of the electron’s initial kinetic energy is trans-
ferred to the atom? (Take the mass of the hydrogen atom to be 1840
times the mass of an electron.)

63 •• A 16-g bullet is fired into the bob of a 1.5-kg ballistic pen-
dulum (Figure 8-18). When the bob is at its maximum height, the
strings make an angle of 60° with the vertical. The pendulum strings
are long. Find the speed of the bullet prior to impact.

64 •• Show that in a one-dimensional elastic collision, if the
mass and velocity of object 1 are and and if the mass and ve-
locity of object 2 are and then their final velocities and 
are given by

and

65 •• Investigate the plausibility of the results of Problem 64
by calculating the final velocities in the following limits: (a) When
the two masses are equal, show that the particles “swap” velocities:

and (b) If and show that
and (c) If and show that

and v2f � 2v1i .v1f � v1i

v2i � 0,m1 W m2 ,v2f � 0.v1f � �v1i

v2i � 0,m2 W m1 ,v2f � v1i .v1f � v2i

 v2f �
2m1

m1 � m2

v1i �
m2 � m1

m1 � m2

v2i

v1f �
m1 � m2

m1 � m2

v1i �
2m2

m1 � m2

v2i

v2fv1fv2i ,m2

v1i ,m1

SSM2.3 m

av
a

a

v0
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66 •• A bullet of mass is fired horizontally with a speed 
into the bob of a ballistic pendulum of mass The pendulum con-
sists of a bob attached to one end of a very light rod of length L. The
rod is free to rotate about a horizontal axis through its other end.
The bullet is stopped in the bob. Find the minimum such that the
bob will swing through a complete circle.

67 •• A bullet of mass is fired horizontally with a speed v
into the bob of a ballistic pendulum of mass (Figure 18-19). Find
the maximum height h attained by the bob if the bullet passes
through the bob and emerges with a speed 

68 •• A heavy wooden block rests on a flat table and a high-
speed bullet is fired horizontally into the block, the bullet stopping
in it. How far will the block slide before coming to a stop? The mass
of the bullet is the mass of the block is the bullet’s
impact speed is and the coefficient of kinetic friction be-
tween the block and the table is 0.220. (Assume that the bullet does
not cause the block to spin.)

69 •• A 0.425-kg ball with a speed of rolls across a
level surface toward an open 0.327-kg box that is resting on its side.
The ball enters the box, and the box (with the ball inside it) then
slides across the surface a distance of What is the coeffi-
cient of kinetic friction between the box and the table?

70 •• Tarzan is in the path of a pack of stampeding elephants
when Jane swings in to the rescue on a rope vine, hauling him off
to safety. The length of the vine is and Jane starts her 
swing with the rope horizontal. If Jane’s mass is and
Tarzan’s mass is to what height above the ground will the
pair swing after she rescues him? (Assume the rope is vertical
when she grabs him.)

71 •• Scientists estimate that the meteorite responsible for the
creation of Barringer Meteorite Crater in Arizona weighed roughly

and was traveling at a speed
of Take Earth’s orbital speed to be about 
(a) What should the direction of impact be if Earth’s orbital speed is
to be changed by the maximum possible amount? (b) Assuming the
condition of collision in Part (a), estimate the maximum percentage
change in Earth’s orbital speed as a result of this collision. (c) What
mass of an asteroid, having a speed equal to Earth’s orbital speed,
would be necessary to change Earth’s orbital speed by 1.00%?

72 ••• William Tell shoots an apple from his son’s head. The
speed of the 125-g arrow just before it strikes the apple is 
and at the time of impact it is traveling horizontally. If the arrow
sticks in the apple and the arrow/apple combination strikes the
ground behind the son’s feet, how massive was the apple?
Assume the son is tall.

EXPLOSIONS
AND RADIOACTIVE DECAY

73 •• The beryllium isotope is unstable, decays into
two particles and releases 
of energy. Determine the velocities of the two particles that
arise from the decay of a nucleus at rest, assuming that all
the energy appears as kinetic energy of the particles.

74 •• The light isotope, of lithium is unstable and breaks
up spontaneously into a proton and an particle. In this process,

of energy are released, appearing as the kinetic en-
ergy of the two decay products. Determine the velocities of the
proton and the particle that arise from the decay of a nucleus
at rest. (Note: The masses of the proton and alpha particle are

and ) m
a

� 4mp � 6.64 � 10�27 kg.mp � 1.67 � 10�27 kg

5Lia

3.15 � 10�13 J
a

5Li,

SSM

8Be
a

1.5 � 10�14 J(m
a

� 6.64 � 10�27 kg),a

8Be

1.85 m
8.50 m

25.0 m>s,

SSM

30.0 km>s.17.9 km>s.
2.72 � 105 tonnes (1 tonne � 1000 kg)

82 kg,
54 kg,

25 m,

SSM

0.520 m.

1.30 m>s
750 m>s,

10.5 kg,10.5 g,

v>3.

m2

m1

v0

m2 .
v0m1 75 ••• A 3.00-kg projectile is fired with an initial speed of

at an angle of 30.0° with the horizontal. At the top of its tra-
jectory, the projectile explodes into two fragments of masses 
and At after the explosion, the 2.00-kg fragment lands
on the ground directly below the point of explosion. (a) Determine
the velocity of the 1.00-kg fragment immediately after the explo-
sion. (b) Find the distance between the point of firing and the point
at which the 1.00-kg fragment strikes the ground. (c) Determine the
energy released in the explosion.

76 ••• The boron isotope is unstable and disintegrates into a
proton and two particles. The total energy released as kinetic en-
ergy of the decay products is In one such event, with
the nucleus at rest prior to decay, the velocity of the proton is
measured as If the two particles have equal ener-
gies, find the magnitude and the direction of their velocities with
respect to the direction of the proton.

COEFFICIENT OF RESTITUTION

77 • ENGINEERING APPLICATION, CONTEXT-RICH You are
in charge of measuring the coefficient of restitution for a new
alloy of steel. You convince your engineering team to accom-
plish this task by simply dropping a small ball onto a plate, both
ball and plate made from the experimental alloy. If the ball is
dropped from a height of and rebounds to a height of

what is the coefficient of restitution?

78 • According to official racquetball rules, to be accept-
able for tournament play, a ball must bounce to a height of
between 173 and when dropped from a height of 
at room temperature. What is the acceptable range of values for
the coefficient of restitution for the racquetball– floor system?

79 • A ball bounces to 80 percent of its original height.
(a) What fraction of its mechanical energy is lost each time it
bounces? (b) What is the coefficient of restitution of the ball– floor
system?

80 •• A 2.0-kg object moving to the right at collides
head-on with a 4.0-kg object that is initially at rest. After the colli-
sion, the 2.0-kg object is moving to the left at (a) Find the
velocity of the 4.0-kg object after the collision. (b) Find the energy
lost in the collision. (c) What is the coefficient of restitution for these
objects?

81 •• A 2.0-kg block moving to the right with a speed of
collides with a 3.0-kg block that is moving in the same di-

rection at as in Figure 8-49. After the collision, the 3.0-kg
block moves to the right at Find (a) the velocity of the 
2.0-kg block after the collision, and (b) the coefficient of restitution
between the two blocks. 

4.2 m>s.
2.0 m>s,

5.0 m>s
1.0 m>s.

6.0 m>s

254 cm183 cm

SSM2.5 m,
3.0 m

a6.0 � 106 m>s.
9B

4.4 � 10�14 J.
a

9B

3.60 s2.00 kg.
1.00 kg

120 m>s

5.0 m/s 2.0 m/s
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82 ••• CONTEXT-RICH To keep homerun records and distances
consistent from year to year, organized baseball randomly checks
the coefficient of restitution between new baseballs and wooden
surfaces similar to that of an average bat. Suppose you are in charge
of making sure that no “juiced” baseballs are produced. (a) In a ran-
dom test, you find one that when dropped from rebounds

What is the coefficient of restitution for this ball? (b) What is
the maximum distance home run shot you would expect from this
0.25 m.

2.0 m



Problems | 285

5.0 kg

5.0 kg

30°

60°

v1

v2

v = 2.0 m/s
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ball, neglecting any effects due to air resistance and making
reasonable assumptions for bat speeds and incoming pitch speeds?
Is this a “juiced” ball, a “normal” ball, or a “dead” ball?

83 •• CONCEPTUAL To make puck handling easy, hockey
pucks are kept frozen until they are used in the game. (a) Explain
why room-temperature pucks would be more difficult to handle on
the end of a stick than a frozen puck. (Hint: Hockey pucks are made of
rubber.) (b) A room-temperature puck rebounds when
dropped onto a wooden surface from If a frozen puck has
only half the coefficient of restitution of a room-temperature one,
predict how high the frozen puck would rebound under the same
conditions.

COLLISIONS IN MORE 
THAN ONE DIMENSION

84 •• In Section 8-3, it was proved by using geometry that when
a particle elastically collides with another particle of equal mass that
is initially at rest, the two postcollision velocities are perpendicular.
Here we examine another way of proving this result that illustrates
the power of vector notation. (a) Given that square both
sides of this equation (obtain the scalar product of each side with it-
self) to show that (b) Let the momentum of
the initially moving particle be and the momenta of the particles
after the collision be and Write the vector equation for the con-
servation of linear momentum and square both sides (obtain the dot
product of each side with itself). Compare it to the equation gotten
from the elastic collision condition (kinetic energy is conserved) and
finally show that these two equations imply that 

85 •• In a pool game, the cue ball, which has an initial speed of
makes an elastic collision with the eight ball, which is ini-

tially at rest. After the collision, the eight ball moves at an angle of
30° to the right of the original direction of the cue ball. Assume that
the balls have equal mass. (a) Find the direction of motion of the cue
ball immediately after the collision. (b) Find the speed of each ball
immediately after the collision. 

86 •• Object A, which has a mass m and a velocity collides
with object B, which has a mass 2m and a velocity Following the
collision, object B has a velocity of (a) Determine the velocity of
object A after the collision. (b) Is the collision elastic? If not, express
the change in the kinetic energy in terms of m and

87 •• A puck of mass moving at approaches
an identical puck that is stationary on frictionless ice. After the
collision, the first puck leaves with a speed at 30° to the orig-
inal line of motion; the second puck leaves with speed at 60°,
as in Figure 8-50. (a) Calculate the speeds and (b) Was the
collision elastic? SSM

v2 .v1

v2

v1

2.0 m>s5.0 kg

v0 .

1
4 v0 in.

1
2 v0 jn.

v0 in,

5.0 m>s,

pS1
# pS2 � 0.

pS2 .pS1

P
S

A2 � B2 � C2 � 2B
S # C

S
.

A
S

� B
S

� C
S

,

SSM

100 cm.
15 cm

88 •• Figure 8-51 shows the result of a collision between
two objects of unequal mass. (a) Find the speed of the larger
mass after the collision; also find the angle (b) Show that the
collision is elastic.

u2 .
v2

m
3v

5v0

v2

√
θ1

θ2

θtan 1 = 2
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89 •• A 2.0-kg ball moving at makes an off-center colli-
sion with a 3.0-kg ball that is initially at rest. After the collision, the
2.0-kg ball is deflected at an angle of 30° from its original direction
of motion and the 3.0-kg ball is moving at Find the speed
of the 2.0-kg ball and the direction of the 3.0-kg ball after the colli-
sion. Hint:
90 •• A particle has initial speed It collides with a second
particle with the same mass that is initially at rest. The first particle
is deflected through an angle Its speed after the collision is v. The
second particle recoils, and its velocity makes an angle with the
initial direction of the first particle. (a) Show that 

(b) Show that if the collision is elastic, then

CENTER-OF-MASS
REFERENCE FRAME

91 •• In the center-of-mass reference frame, a particle with
mass and momentum makes an elastic head-on collision with
a second particle of mass and momentum After the
collision the first particle’s momentum is Write the total kinetic
initial energy in terms of and and the total final energy in
terms of and and show that If the
particle is merely turned around by the collision and leaves with
the speed it had initially. What is the situation for the 
solution?
92 •• MULTISTEP A 3.0-kg block is traveling in the direc-
tion at and a 1.0-kg block is traveling in the direction at

(a) Find the velocity of the center of mass. (b) Subtract
from the velocity of each block to find the velocity of each block

in the center-of-mass reference frame. (c) After they make a head-on
elastic collision, the velocity of each block is reversed (in the center-
of-mass frame). Find the velocity of each block in the center-of-
mass frame after the collision. (d) Transform back into the original
frame by adding to the velocity of each block. (e) Check your re-
sult by finding the initial and final kinetic energies of the blocks in
the original frame and comparing them.
93 •• Repeat Problem 92 with the second block having a mass
of and moving to the right at 

SYSTEMS WITH 
CONTINUOUSLY VARYING 
MASS: ROCKET PROPULSION

94 • ENGINEERING APPLICATION A rocket burns fuel at a rate
of and exhausts the gas at a speed of relative to
the rocket. Find the magnitude of the thrust of the rocket.

6.00 km>s200 kg>s

SSM3.0 m>s.5.0 kg

vcm

vcm

vcm3.0 m>s.
�x5.0 m>s,

�x

p�1 � �p1

p�1 � �p1 ,p�1 � � p1 .p�1 ,m1 , m2 ,
p1m1 ,m2 ,

p�1 .
p2 � �p1 .m2

p1m1

v � v0 cosf.
3(v0 � vcosf)4. tanu � (vsinf)>u

f.

v0 .
sin2 u � cos2 u � 1.

4.0 m>s.

10 m>s

*

*
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95 •• ENGINEERING APPLICATION A rocket has an initial mass
of 80 percent of which is the fuel. It burns fuel at a rate of

and exhausts its gas at a relative speed of Find
(a) the thrust of the rocket, (b) the time until burnout, and (c) the
rocket’s speed at burnout, assuming it moves straight upward near
the surface of Earth. Assume g is constant and neglect any effects of
air resistence.

96 •• ENGINEERING APPLICATION The specific impulse of a
rocket propellant is defined as where is the thrust
of the propellant, g is the magnitude of free-fall acceleration, and R
is the rate at which the propellant is burned. The rate depends pre-
dominantly on the type and exact mixture of the propellant.
(a) Show that the specific impulse has the dimension of time.
(b) Show that where is the relative speed of the
exhaust. (c) What is the specific impulse (in seconds) of the propel-
lant used in the Saturn V rocket of Example 8-19.

97 ••• SPREADSHEET, ENGINEERING APPLICATION The initial
thrust-to-weight ratio of a rocket is where is
the rocket’s thrust and the initial mass of the rocket, includ-
ing the propellant. (a) For a rocket launched straight up from
Earth’s surface, show that where is the initial
acceleration of the rocket. For manned rocket flight, cannot be
made much larger than 4 for the comfort and safety of the
astronauts. (As the rocket lifts off, the astronauts will feel that
their weight is equal to times their normal weight.) (b) Show
that the final velocity of a rocket launched from Earth’s surface
can, in terms of and (see Problem 96), be written as

where is the mass of the rocket (not including the spent pro-
pellant). (c) Using a spreadsheet program or graphing calculator,
graph as a function of the mass ratio for and

for values of the mass ratio from 2 to 10. (Note that the
mass ratio cannot be less than 1.) (d) To lift a rocket into orbit, a
final velocity after burnout of is needed. Calculate
the mass ratio required of a single-stage rocket to do this, using the
values of specific impulse and thrust ratio given in Part (b). For en-
gineering reasons, it is difficult to make a rocket with a mass ratio
much greater than 10. Can you see why multistage rockets are
usually used to put payloads into orbit around Earth?

98 •• ENGINEERING APPLICATION The height that a model
rocket launched from Earth’s surface can reach can be estimated
by assuming that the burn time is short compared to the total
flight time; the rocket is therefore in free-fall for most of the
flight. (This estimate neglects the burn time in calculations of
both time and displacement.) For a model rocket with specific
impulse mass ratio and initial thrust-
to-weight ratio (these parameters are defined in
Problems 96 and 97), estimate (a) the height the rocket can reach,
and (b) the total flight time. (c) Justify the assumption used in the
estimates by comparing the flight time from Part (b) to the time
it takes to consume the fuel.

GENERAL PROBLEMS

99 • A 250-g model-train car traveling at links up
with a 400-g car that is initially at rest. What is the speed of the
cars immediately after they link up? Find the pre- and postcolli-
sion kinetic energies of the two-car system.

100 • MULTISTEP A 250-g model-train car traveling at
heads toward a 400-g car that is initially at rest. (a) Find

the total kinetic energy of the two-car system. (b) Find the
0.50 m>s

SSM

0.50 m>s

t0 � 5.00
m0 >mf � 1.20,Isp � 100 s,

SSM

vf � 7.0 km>st0 � 2
Isp � 250 sm0 >mfvf

mf

vf � gIsp c1n am0

mf

b �
1
t0

a1 �
mf

m0

b dIspt0

t0

t0

a0t0 � 1 � (a0 >g),m0

Ftht0 � Fth >(m0g),t0

uexuex � gIsp ,

FthIsp � Fth >(Rg),

1.80 km>s.200 kg>s30,000 kg,

2.0 m

1.0 kg

O
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103 •• A 1.0-kg steel ball and a 2.0-m cord of negligible mass
make up a simple pendulum that can pivot without friction about the
point O, as in Figure 8-53. This pendulum is released from rest in a
horizontal position, and when the ball is at its lowest point it strikes
a 1.0-kg block sitting at rest on a shelf. Assume that the collision is
perfectly elastic and that the coefficient of kinetic friction between the
block and shelf is 0.10. (a) What is the velocity of the block just after
impact? (b) How far does the block slide before coming to rest (as-
suming that the shelf is long enough)? 

6.0 m

120 kg

60 kg
0.50 m
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velocity of each car in the center-of-mass reference frame, and
use these velocities to calculate the kinetic energy of the two-car
system in the center-of-mass reference frame. (c) Find the kinetic
energy associated with the motion of the center of mass of the
system. (d) Compare your answer for Part (a) with the sum of
your answers for Parts (b) and (c).

101 •• A 1500-kg car traveling north at collides at an in-
tersection with a 2000-kg car traveling west at The two
cars stick together. (a) What is the total momentum of the system
before the collision? (b) What are the magnitude and direction of
the velocity of the wreckage just after the collision.

102 •• A 60-kg woman stands on the back of a 6.0-m-long,
120-kg raft that is floating at rest in still water. The raft is 
from a fixed pier, as shown in Figure 8-52. (a) The woman walks to
the front of the raft and stops. How far is the raft from the pier now?
(b) While the woman walks, she maintains a constant speed of

relative to the raft. Find the total kinetic energy of the sys-
tem (woman plus raft), and compare your answer with the kinetic
energy if the woman walked at on a raft tied to the pier.
(c) Where do these kinetic energies come from, and where do they
go when the woman stops at the front of the raft? (d) On land, the
woman puts a lead shot Then, standing at the back of the raft,
she aims forward, and puts the shot so that just after it leaves her
hand, it has the same velocity relative to her as it did when she
threw it from the ground. Approximately, where does her shot land? 

6.0 m.

3.0 m>s3.0 m>s
0.50 m

55 km>h.
70 km>h
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105 ••• MULTISTEP One popular, if dangerous, classroom
demonstration involves holding a baseball an inch or so directly
above a basketball that you are holding a few feet above a hard
floor, and dropping the two balls simultaneously. The two balls
will collide just after the basketball bounces from the floor; the
baseball will then rocket off into the ceiling tiles, while the bas-
ketball will stop in midair. (a) Assuming that the collision of the
basketball with the floor is elastic, what is the relation between
the velocities of the balls just before they collide? (b) Assuming
the collision between the two balls is elastic, use the result of
Part (a) and the conservation of momentum and the conserva-
tion of energy to show that, if the basketball is three times as
heavy as the baseball, the final velocity of the basketball will be
zero. (This is approximately the true mass ratio, which is why
the demonstration is so dramatic.) (c) If the speed of the baseball
is v just before the collision, what is its speed just after the
collision?

106 ••• (a) In Problem 105, if we held a third ball above the
baseball and basketball and wanted both the baseball and basket-
ball to stop in midair, what should the ratio of the mass of the top
ball to the mass of the baseball be? (b) If the speed of the top ball is
v just before the collision, what is its speed just after the collision?

107 ••• In the “slingshot effect,” the transfer of energy in an elas-
tic collision is used to boost the energy of a space probe so that it
can escape from the solar system. All speeds are relative to an iner-
tial frame in which the center of the Sun remains at rest. Figure 8-55
shows a space probe moving at toward Saturn, which is
moving at toward the probe. Because of the gravitational
attraction between Saturn and the probe, the probe swings around

9.6 km>s 10.4 km>s

SSM

104 •• Figure 8-54 shows a World War I cannon mounted on a
railcar and set so that it will project a shell at an angle of 30° above
the horizontal. With the car initially at rest on a horizontal friction-
less track, the cannon fires a 200-kg projectile at (All val-
ues are for the frame of reference of the track.). (a) Will the vector
momentum of the car–cannon–shell system be the same just before
and just after the shell is fired? Explain your answer. (b) If the mass
of the railcar plus cannon is what will be the recoil
velocity of the car along the track after the firing? (c) The
shell is observed to rise to a maximum height of

as it moves through its trajectory. At
this point, its speed is On the
basis of this information, cal-
culate the amount of thermal
energy produced by air friction
on the shell from the cannon’s
mouth to this maximum
height.

80.0 m>s.
180 m

5000 kg,

125 m>s.

Saturn and heads back in the opposite direction with speed 
(a) Assuming this collision to be a one-dimensional elastic collision
with the mass of Saturn much much greater than that of the probe,
find (b) By what factor is the kinetic energy of the probe in-
creased? Where does this energy come from?

108 •• A 13-kg block is at rest on a level floor. A 400-g glob of
putty is thrown at the block so that the putty travels horizontally,
hits the block, and sticks to it. The block and putty slide along
the floor. If the coefficient of kinetic friction is 0.40, what is the ini-
tial speed of the putty?

109 ••• CONTEXT-RICH Your accident-reconstruction team has
been hired by the local police to analyze the following accident. 
A careless driver rear-ended a car that was halted at a stop sign. Just
before impact, the driver slammed on his brakes, locking the
wheels. The driver of the struck car had his foot solidly on the brake
pedal, locking his brakes. The mass of the struck car was 
and that of the initially moving vehicle was On collision,
the bumpers of the two cars meshed. Police determine from the
skid marks that after the collision the two cars moved to-
gether. Tests revealed that the coefficient of kinetic friction between
the tires and pavement was 0.92. The driver of the moving car
claims that he was traveling at less than as he approached
the intersection. Is he telling the truth?

110 •• A pendulum consists of a compact 0.40-kg bob attached
to a string of length A block of mass m rests on a horizontal
frictionless surface. The pendulum is released from rest at an angle
of 53° with the vertical. The bob collides elastically with the block at
the lowest point in its arc. Following the collision, the maximum angle
of the pendulum with the vertical is 5.73°. Determine the mass m.

111 ••• A 1.00-kg block (mass m) and a second block (mass M)
are both initially at rest on a frictionless inclined plane 
(Figure 8-56). Mass M rests against a spring that has a force con-
stant of The distance along the plane between the
two blocks is The 1.00-kg block is released, making an
elastic collision with the larger block. The 1.00-kg block then re-
bounds a distance of back up the inclined plane. The
block of mass M momentarily comes to rest from its ini-
tial position. Find M. SSM

4.00 cm
2.56 m

4.00 m.
11.0 kN>m.

1.6 m.

SSM

15 km>h
0.76 m

1200 kg.
900 kg,

15 cm

SSM

vf .

vf .

9.6 km/s

10.4 km/s

v

F I G U R E  8 - 5 5 Problem 107

F I G U R E  8 - 5 4 Problem 104

M

m

4.00 m

30°

F I G U R E  8 - 5 6 Problem 111

112 ••• A neutron of mass m makes an elastic head-on colli-
sion with a stationary nucleus of mass M. (a) Show that the ki-
netic energy of the nucleus after the collision is given by

where is the initial kinetic
energy of the neutron. (b) Show that the fractional change in the
kinetic energy of the neutron is given by

¢Kn
Kn

� �
4(m>M)

(1 � 3m>M4)2

KnKnucleus � 34mM>(m �M)24Kn ,
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(c) Show that this expression gives plausible results both if
and if What is the best stationary nucleus for

the neutron to collide head-on with if the objective is to produce
a maximum loss in the kinetic energy of the neutron? 

113 ••• ENGINEERING APPLICATION The mass of a carbon nu-
cleus is approximately 12 times the mass of a neutron. (a) Use the
results of Problem 112 to show that after N head-on collisions of a
neutron with carbon nuclei at rest, the kinetic energy of the neutron
is approximately where is its initial kinetic energy.
(b) Neutrons emitted in the fission of a uranium nucleus have
kinetic energies of about For such a neutron to cause the
fission of another uranium nucleus in a reactor, its kinetic energy
must be reduced to about How many head-on collisions
are needed to reduce the kinetic energy of a neutron from 
to assuming elastic head-on collisions with stationary car-
bon nuclei?

114 ••• ENGINEERING APPLICATION On average, a neutron actu-
ally loses only 63 percent of its energy in an elastic collision with a
hydrogen atom (not 100 percent) and 11 percent of its energy in an
elastic collision with a carbon atom (not 28 percent). (These num-
bers are an average over all types of collisions, not just head-on
ones. Thus, the results are lower than the ones determined from
analyses like that in Problem 112, because most collisions are not
head-on.) Calculate the actual number of collisions, on average,
needed to reduce the energy of a neutron from to 
if the neutron collides with (a) stationary hydrogen atoms and 
(b) stationary carbon atoms.

115 ••• Two astronauts at rest face each other in space. One, who
has mass throws a ball of mass to the other, whose mass is

The second astronuat catches the ball and throws it back to the
first astronaut. Following each throw, the ball has a speed of v rela-
tive to the thrower. After each has made one throw and one catch,
(a) how fast are the astronauts moving? (b) How much has the two-
astronaut system’s kinetic energy changed and where did this en-
ergy come from?

116 ••• A stream of elastic glass beads, each with a mass of
comes out of a horizontal tube at a rate of 100 per second (see0.50 g,

SSM

m2 .
mbm1 ,

0.020 eV2.0 MeV

0.020 eV,
2.0 MeV

0.020 eV.

2.0 MeV.

K00.716NK0 ,

m �M.m V M

Figure 8-57). The beads fall a distance of to a balance pan
and bounce back to their original height. How much mass must be
placed in the other pan of the balance to keep the pointer at zero? 

117 ••• A dumbbell consisting of two balls of mass m connected
by a massless 1.00-m-long rod rests on a frictionless floor against a
frictionless wall with one ball directly above the other. The center-
to-center distance between the balls is equal to 1.00 m. The dumb-
bell then begins to slide down the wall, as in Figure 8-58. Find the
speed of the bottom ball at the moment when it equals the speed of
the top ball.

0.50 m

v1 v2

F I G U R E  8 - 5 8 Problem 117

m

F I G U R E  8 - 5 7 Problem 116



Rotation

9-1 Rotational Kinematics: Angular Velocity and

Angular Acceleration

9-2 Rotational Kinetic Energy

9-3 Calculating the Moment of Inertia

9-4 Newton’s Second Law for Rotation

9-5 Applications of Newton’s Second Law for Rotation

9-6 Rolling Objects

I
n Chapters 4 and 5, we explored Newton’s laws. In Chapters 6 and 7, we ex-
amined the conservation of energy, and we studied the conservation of mo-
mentum in Chapter 8. We discovered tools (laws, theorems, and problem-
solving techniques) that are useful in analyzing new situations and solving
new problems in those chapters. We now continue to use those tools as we ex-
plore rotational motion.

Rotational motion is all around us. Earth rotates about its axis. Wheels, gears,
propellers, motors, the drive shaft in a car, a CD in its player, a pirouetting ice
skater, all rotate.

In this chapter, we consider rotation about an axis that is fixed in space, as
in a merry-go-round, or about an axis that is moving without changing its di-
rection in space, as in a rolling wheel on a car that is traveling in a straight
line. The study of rotational motion is continued in Chapter 10 where more
general examples of rotational motion are considered.

9
C H A P T E R

What is the torque required to stop

the wheel so that the passengers 

travel a distance of 10 m as the wheel

slows to a stop? (See Example 9-15.)

?

289

THE LONDON EYE IS A 135-METER-HIGH
OBSERVATION WHEEL THAT CARRIES A
MAXIMUM OF 800 PASSENGERS. 
(Ian Britton/FreeFoto.com.)
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F I G U R E 9 - 1

dsi

ri
Reference line

dθ

Pi

θ i

F I G U R E 9 - 2

(Fred Habegger/Grant Heilman Photography, Inc.)

9-1 ROTATIONAL KINEMATICS: ANGULAR 
VELOCITY AND ANGULAR ACCELERATION

Every point of a rigid object rotating about a fixed axis moves in a circle whose cen-
ter is on the axis and whose radius is the radial distance from the axis of rotation
to that point. A radius drawn from the rotation axis to any point on the body
sweeps out the same angle in the same time. Imagine a disk spinning about a fixed
axis perpendicular to the disk and through its center (Figure 9-1). Let be the dis-
tance from the center of the disk to the ith particle (Figure 9-2), and let be the
angle measured counterclockwise from a fixed reference line in space to a radial
line from the axis to the particle. As the disk rotates through an angle the par-
ticle moves through a circular arc of directed length such that

9-1

where is measured in radians. If counterclockwise is designated as the positive
direction, then and shown in Figure 9-2, are all positive. (If clockwise is
designated the positive direction, they are all negative.) The angle the directed
length and the distance vary from particle to particle, but the ratio 
called the angular displacement is the same for all particles of the disk. For one
complete revolution, the arc length is and the angular displacement is

The time rate of change of the angle is the same for all particles of the disk, and
is called the angular velocity of the disk. The instantaneous angular velocity
is an angular displacement of short duration divided by the time. That is,

9-2

DEFINITION—ANGULAR VELOCITY

so is positive if is positive and negative if is negative. All points on the disk
undergo the same angular displacement during the same time, so they all have the
same angular velocity. The SI units of are Because radians are dimension-
less, the dimension of angular velocity is that of reciprocal time, The magni-
tude of the angular velocity is called the angular speed. We often use revolutions
per minute ( or RPM) to specify the angular speed. To convert between
revolutions, radians, and degrees, we use

PRACTICE PROBLEM 9-1

A compact disk is rotating at What is its angular speed in radians per
second?

Angular acceleration is the rate of change of angular velocity. If the rotation rate of
a rotating object increases, the angular speed increases. (If is increasing, and
if the angular velocity is clockwise, then the change in the angular velocity is
also clockwise.) The average angular acceleration vector

9-3

DEFINITION—AVERAGE ANGULAR ACCELERATION

aav �
¢v
¢t

¢vv

ƒv ƒƒv ƒ

3000 rev>min.

1 rev � 2p rad � 360°

rev>min

T �1.
rad>s.v

duduv

v �
du
dt

vv

¢u �
si
ri

�
2pri
ri

� 2p rad � 360° � 1 rev

¢u2prisi

du,
dsi>ri ,ridsi ,

ui ,
dsi ,du, ui ,

du

dsi � ri du

dsi ,
du,

ui

ri
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is always in the same direction as If the rotation rate decreases, then both 
and are in the opposite direction to 

The instantaneous rate of change of angular velocity is called the angular
acceleration That is,

9-4

DEFINITION—ANGULAR ACCELERATION

The SI units of are is positive if is increasing, and is negative if is
decreasing.

The angular displacement the angular velocity and angular acceleration 
are analogous to the linear displacement x, linear velocity and linear accelera-
tion in one-dimensional motion. If the angular acceleration is constant, we can
integrate both sides of (Equation 9-4) to obtain:

9-5
CONSTANT ANGULAR ACCELERATION

where the constant of integration is the initial angular velocity. (Equation 9-5 is the
rotational analog of the equation ) Substituting in Equation 9-5,
we obtain Integrating both sides of this equation gives

9-6
CONSTANT ANGULAR ACCELERATION

(which is the rotational analog of ). By eliminating t from
Equations 9-5 and 9-6, we get

9-7
CONSTANT ANGULAR ACCELERATION

These constant-angular-acceleration kinematic equations have exactly the same
form as the equations for constant linear acceleration developed in Chapter 2.

Example 9-1 A CD Player

A compact disk rotates from rest to in (a) What is its angular acceleration,
assuming that it is constant? (b) How many revolutions does the disk make in (c) How
far does a point on the rim from the center of the disk travel during the it takes
to get to 

PICTURE Part (a) is analogous to the one-dimensional linear problem of finding the accel-
eration, given the time and the final velocity. Part (b) is analogous to the one-dimensional lin-
ear problem of finding the displacement, given the time and the final velocity. Part (c), unlike
Parts (a) and (b), involves both a linear quantity (distance traveled) and an angular quantity
(angular displacement). Thus, Part (c) is not analogous to a one-dimensional angular
problem.

SOLVE

500 rev>min?
5.5 s6.0 cm

5.5 s?
5.5 s.500 rev>min

v2 � v2
0 � 2a(u � u0)

x � x0 � v0xt � 1
2 axt

2

u � u0 � v0t � 1
2at2

du � (v0 � at)dt.
du>dtvx � v0x � axt.

v0

v � v0 � at

dv � a dt
aax

vx ,
av,u,

vavarad>s2.a

a �
dv
dt

�
d2u

dt2

a.

v.aav

¢v¢v.

Star tracks in a time exposure of the night sky.
(David Malin/Anglo-Australian Telescope Board.)

(a) 1. The angular acceleration is related to the initial and final angular
velocities:

� 0 � atv � v0 � at

2. Solve for a:

9 .5 rad/s2 � 9.52 rad/s2 �

�
500 rev/min

5.5 s
�

2p rad
1 rev

�
1 min
60 s

a �
v

t

(b) 1. The angular displacement is related to the time by Equation 9-6:

� 144 rad

� 0 � 1
2 (9 .52 rad/s2)(5.5 s)2u � u0 � v0t � 1

2a t2

2. Convert radians to revolutions: 23 rev144 rad �
1 rev

2p rad
� 22.9 rev �



CHECK The average angular velocity is In the compact disk rotates

TAKING IT FURTHER A compact disk is scanned by a laser that begins at the inner radius
of and moves to the outer radius of As the laser moves outward, the angular
velocity of the disk decreases from to so that the linear (tangential)
velocity of the disk at the point where the laser beam strikes remains constant.

PRACTICE PROBLEM 9-2 (a) Convert to (b) Check the result of Part (b)
in the example using 

The linear velocity of a particle on the disk is tangent to the circular path of
the particle and has magnitude We can relate this tangential velocity to the
angular velocity of the disk using Equations 9-1 and 9-2:

so

9-8

Similarly, the tangential acceleration of a particle on the disk is 

so

9-9

Each particle of the disk also has a centripetal acceleration, which points inward
along the radial line and has the magnitude

so

9-10

PRACTICE PROBLEM 9-3

A point on the rim of a compact disk is from the axis of rotation. Find the tan-
gential speed tangential acceleration and centripetal acceleration of the point
when the disk is rotating at a constant angular speed of 

PRACTICE PROBLEM 9-4

Find the linear speed of a point on the CD in Example 9-1 at (a) when the
disk rotates at and (b) when the disk rotates at 

9-2 ROTATIONAL KINETIC ENERGY

The kinetic energy of a rigid object rotating about a fixed axis is the sum of the ki-
netic energies of the individual particles that collectively constitute the object. The
kinetic energy of the ith particle, with mass is

K � 1
2miv

2
i

mi ,

200 rev>min.r � 6.00 cm,500 rev>min,
r � 2.40 cm,

300 rev>min.
acat ,vt ,

6 .00 cm

ac � riv
2

ac �
v2

t

ri
�

(riv)2

ri

at � ra

at �
dvt

dt
� ri
dv
dt

dvt>dt:vt � riv

vt �
dsi
dt

�
ridu

dt
� ri
du
dt

dsi>dt.vt

v2 � v2
0 � 2a(0 � u0).

rad>s.500 rev>min

200 rev>min500 rev>min
6.0 cm.2.4 cm

(250 rev>60 s)(5.5 s) � 23 rev.
5.5 s,250 rev>min.
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(c) The distance traveled is r times the angular displacement in
radians:

¢s 8.7 m� 8.65 m �¢s � r¢u � (6.0 cm)(144 rad)

Equations that contain both linear
and angular parameters, such as

Equations 9-1, 9-8, 9-9, and 9-10, are
valid only if the angle values are
expressed in radians.

!
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Summing over all the particles and using gives

The sum in the expression farthest to the right is the
object’s moment of inertia I for the axis of rotation.

9-11

MOMENT OF INERTIA DEFINED

The kinetic energy is thus

9-12

KINETIC ENERGY OF ROTATING OBJECT

Example 9-2 A Rotating System of Particles

An object consists of four point particles, each of mass m, connected by rigid massless rods
to form a rectangle of edge lengths 2a and 2b, as shown in Figure 9-3. The system rotates with
angular speed about an axis in the plane of the figure through the center, as shown.
(a) Find the kinetic energy of this object using Equations 9-11 and 9-12. (b) Check your result
by individually calculating the kinetic energy of each particle and then taking their sum.

PICTURE Because we are given that the objects are point particles, we use Equation 9-11 to
calculate I and then use Equation 9-12 to calculate K.

SOLVE

v

K � 1
2 Iv2

I � a
i

mir
2
i

K � a
i

(1
2miv

2
i ) � 1

2 a (mir
2
iv

2) � 1
2 (a

i

mir
2
i )v

2

vi � riv

F I G U R E 9 - 3

2

r1

m1

m3

m2

m4
r3

r2

r4

a

2b

Axis of rotation

(a) 1. Apply the definition of moment of inertia 
(Equation 9-11), where is the radial

distance from the rotation axis to the particle of
mass mi :

riI � ©mir2i
� m1r

2
1 � m2r

2
2 � m3r

2
3 � m4r

2
4I � a

i

mir
2
I

2. The masses and the distances are given:rimi
r1 � r2 � r3 � r4 � a

m1 � m2 � m3 � m4 � m

3. Substitution gives the moment of inertia: I � ma2 � ma2 � ma2 � ma2 � 4ma2

4. Using Equation 9-12, solve for the kinetic energy: 2ma2v2K � 1
2 Iv2 � 1

2 4ma2v2 �

(b) 1. To find the kinetic energy of the ith particle, we
must first find its speed:

Ki � 1
2miv

2
i

2. The particles are all moving in circles of radius a.
Find the speed of each particle:

vi � riv � av    (i � 1, Á , 4)

3. Substitute into the Part-(b) step-1 result: Ki � 1
2miv

2
i � 1

2ma2v2

4. Each particle has the same kinetic energy. 
Sum the kinetic energies to get the total:

5. Compare with the Part-(a) result:

CHECK The fact that the two calculations give the same result is a plausibility check.

TAKING IT FURTHER Notice that I is independent of the length b. The moment of inertia de-
pends only upon how far from the axis the masses are, and not where along the axis they are.

PRACTICE PROBLEM 9-5 Find the moment of inertia of this system for rotation about an
axis parallel to the first axis but passing through two of the particles, as shown in Figure 9-4. F I G U R E 9 - 4

2a

2b

Axis of rotation

� 4(1
2ma2v2) � 2ma2v2

K � a
4

i�1

Ki � 1
2m1v

2
1 � 1

2m2v
2
2 � 1

2m3v
2
3 � 1

2m4v
2
4

The two calculations give the same result.

The Crab Pulsar is one of the fastest-rotating neutron stars known, but it is
slowing down. It appears to blink on (left) and off (right) like the rotating
lamp in a lighthouse, at the fast rate of about 30 times per second, but the
period is increasing by about This rate of loss in rotational energy
is equivalent to the power output of The lost kinetic energy
appears as light emitted by electrons accelerated in the magnetic field of the
pulsar. (David Malin/ Anglo-Australian Telescope Board.)

100,000 suns.
10�5 s>y.



9-3 CALCULATING THE MOMENT OF INERTIA

The moment of inertia about an axis is a measure of the inertial resistance of the
object to changes in its rotational motion about the axis. It is the rotational analog
of mass. The farther an element of mass is from the axis, the greater its contribu-
tion to the moment of inertia about that axis. Thus, unlike the mass of an object,
which is a property of the object itself, the moment of inertia depends on the loca-
tion of the axis as well as the mass distribution of the object.

SYSTEMS OF DISCRETE PARTICLES

For systems consisting of discrete particles, we can compute the moment of inertia
about a given axis directly from Equation 9-11. We can also use Equation 9-10 to
obtain approximate values for the moment of inertia, as is done in the following
example.

Example 9-3 Estimating the Moment of Inertia

Estimate the moment of inertia of a thin uniform rod of length L and mass M about an axis
perpendicular to the rod and through one end. Execute this estimation by modeling the rod
as three point masses, each point mass representing one-third of the rod.

PICTURE Divide the rod into three identical segments, each of mass and length and
approximate each segment as a point mass located at its center of mass. Apply 
(Equation 9-11) to obtain an approximate value for I.

SOLVE

1. Sketch the rod divided into three segments and superpose the point-particle constructs
at the center of each segment (Figure 9-5):

I � ©mir2i

1
3L,1

3M
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The moment of inertia of an object
about an axis depends both on the

mass and on the distribution of the
mass relative to the axis.

!

F I G U R E 9 - 5

5
6

x

y

L
L

M/3 M/3 M/3

3
6 L

1
6 L

2. Apply the equation to the approximate system
(the point-particle constructs):

I � ©mir2i I � ©mir2i � m1r
2
1 � m2r

2
2 � m3r

2
3

3. The mass of each particle is and the distances of the
particles from the axis are and 56L:1

6L, 3
6L,

1
3M,

35
108
ML2�

1
3
Ma1 � 32 � 52

62 bL2 �

I � (1
3M)(1

6L)2 � (1
3M)(3

6L)2 � (1
3M)(5

6L)2

CHECK The exact value for the moment of inertia of the rod about this axis is (The
exact value is calculated in Example 9-4.) One-third is equal to so our result is within
1% of the exact value.

PRACTICE PROBLEM 9-6 The contribution to the moment of inertia of the third of the rod
farthest from the axis is many times greater than is the contribution of the third closest to the
axis. About how many times greater is it?

CONTINUOUS OBJECTS

To calculate the moment of inertia for continuous objects, we imagine the object to
consist of a continuum of very small mass elements. Thus, the finite sum in
Equation 9-11 becomes the integral

9-13

where r is the radial distance from the axis to mass element dm. To evaluate this in-
tegral, we first express dm as a density times an element of length, area, or volume,
as is done in the following examples.

I � �r2dm

©mir2i

36>108,

1
3ML2.



2

Thin cylindrical shell about
axis

S ut diameter

parallelepiped
h center 
face

H

Thin cylindrical shell about
diameter through center

Thin rod about
perpendicular line

Thin spherical shell about
diameter

1 2 12 ( )
4 12( 1 2)
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Example 9-4 Moment of Inertia of a Thin Uniform Rod

Find the moment of inertia of a thin uniform rod of length L and mass M about an
axis perpendicular to the rod and through one end.

PICTURE Use (Equation 9-13) to calculate the moment of inertia about
the specified axis. The rod is uniform, which means that for any segment of the rod,
the mass per unit length is equal to 

SOLVE

1. Draw a sketch (Figure 9-6) showing the rod along the axis with its end at 
the origin. To calculate I about the y axis, we choose a mass element dm at a 
distance x from the axis:

�x

M>L.l

I � �r2dm

y

dx

dm =       dx

x

L
M
L

x

F I G U R E 9 - 62. The moment of inertia about the y axis is given by the integral: I � �x2 dm

3. To compute the integral, we first relate dm to dx. Express dm in
terms of the linear mass density and dx:l

dm � ldx �
M
L
dx

4. Substitute and perform the integration. We choose integration
limits so that we integrate through the mass distribution in the
direction of increasing x: 1

3
ML2�

M
L

1
3
x3 ` L

0
�
M
L
L3

3
�

I � �x2 dm � �
L

0
x2 M
L
dx �

M
L �

L

0
x2 dx

CHECK This result is in good agreement with the approximate result obtained in Example 9-3.

TAKING IT FURTHER The moment of inertia about the z axis is also and that about
the x axis is zero (assuming that all of the mass is a negligible distance from the x axis).

We can calculate I for continuous objects of various shapes, again using
Equation 9-13 (Table 9-1). Some of these calculations are done here.

1
3ML2,

Table 9-1 Moments of Inertia of Uniform Bodies of Various Shapes

*A disk is a cylinder whose length L is negligible. By setting the above formulas for cylinders hold for disks.L � 0,



Hoop about a perpendicular axis through its center Assume that a hoop has
mass M and radius R (Figure 9-7). The axis of rotation is the symmetry axis of the
hoop, which is perpendicular to the plane of the hoop and through its center. All the
mass is at a distance and the moment of inertia is

Uniform disk about a perpendicular axis through its center For the case of
a uniform disk that has mass M and radius R, we expect that I will be smaller than

because, unlike the hoop, virtually all of the mass is closer to the axis than R.
In Figure 9-8, each mass element is a hoop (or ring) of radius r and thickness dr.
The moment of inertia of any given mass element is Because the disk is uni-
form, the mass per unit area is the same for any piece of it, so where

is the area of the disk. Because the area of each hoop-shaped mass ele-
ment is the mass of each element is

We thus have

Uniform solid cylinder about its axis We consider a cylinder to be a set of
disks, each with mass dm and moment of inertia (Figure 9-9). The
moment of inertia of the complete cylinder is then

where M is the total mass of the cylinder.

I � � 1
2
dmR2 �

1
2
R2�dm �

1
2
MR2

dI � 1
2 (dm)R2

�
2pM
A
R4

4
�
pM

2pR2R
4 �

1
2
MR2

I � �r2 dm � �
R

0
r2s 2prdr � 2ps�

R

0
r3 dr � 2p

M
A
r4

4
` R
0

dm � sdA �
M
A

2prdr

dA � 2prdr,
A � pR2

s �M>A,s

r2dm.

MR2

I � �r2 dm � �R2 dm � R2�dm �MR2

r � R,
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z

R

r

dr
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M

dm

R
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CONCEPT CHECK 9-2

Consider two uniform one-inch-radius disks A and B. The disks are identical,
except that the density of B is slightly greater than that of A. You drill a quar-
ter-inch-diameter hole through the center of disk B and find that the disks
now have identical masses. Which disk, A or B, then has the greater moment
of inertia? (For each disk, consider only the moment of inertia about the axis
through the center of, and perpendicular to, the disk.)

✓

CONCEPT CHECK 9-1

Consider two identical uniform one-inch-diameter disks A and B. You drill a
quarter-inch-diameter hole through the center of disk B. Which disk, A or B,
then has the greater moment of inertia? (For each disk, consider only the mo-
ment of inertia about the axis through the center of, and perpendicular to, the
disk.)

✓
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THE PARALLEL-AXIS THEOREM

We can often simplify the calculation of moments of inertia for various objects by
using the parallel-axis theorem, which relates the moment of inertia about an axis
through the center of mass to the moment of inertia about a second, parallel axis
(Figure 9-10). Let I be the moment of inertia, and let be the moment of inertia
about a parallel axis through the center of mass. In addition, let M be the total mass
of the object and let h be the distance between the two axes. The parallel-axis
theorem states that

9-14

PARALLEL-AXIS THEOREM

Example 9-2 and the Practice Problem following it illustrate a special case of this
theorem with and 

Example 9-5 Applying the Parallel-Axis Theorem

A thin uniform rod of mass M and length L on the x axis (Figure 9-11) has one end at the ori-
gin. Using the parallel-axis theorem, find the moment of inertia about the axis, which is
parallel to the y axis, and through the center of the rod.

PICTURE Here you know that about one end (see Example 9-4) and want to find
Use the parallel-axis theorem with 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

h � 1
2L.Icm.

I � 1
3ML2

y�

Icm � 4ma2.h � a,M � 4m,

I � Icm �Mh2

Icm

h

cmcm

F I G U R E  9 - 1 1

y

x

L
2

cm

y ’

Steps Answers

1. Apply the parallel-axis theorem to write I about the end in
terms of Icm.

Iy � Iy� �M(1
2L)2

I � Icm �Mh2

2. Substitute, using for for and solve for Icm.Iy ,Iy , Icm
1
3ML2 1

12ML2�Icm � Iy �Mh2 � 1
3ML2 �M(1

2L)2

CHECK Calculate the moment of inertia by direct integration. This calculation is the same
as the calculation in Example 9-4 except that the integration limits are from to The
result is

which is the same as the step-2 result.

TAKING IT FURTHER The step-2 result is only 25% of the result gotten in Example 9-4,
where the uniform rod is rotated about an axis through one end.

PROOF OF THE PARALLEL-AXIS THEOREM

To prove the parallel-axis theorem, we start with an object (Figure 9-12) that is ro-
tating about a fixed axis, one that does not pass through the center of mass. The ki-
netic energy K of such an object is given by (Equation 9-12), where I is the mo-
ment of inertia about the fixed axis. We saw in Chapter 8 (Equation 8-7) that the ki-
netic energy of a system can be written as the sum of its translational kinetic en-
ergy ( ) and the kinetic energy relative to the center of mass. For an object
that is rotating, the kinetic energy relative to its center of mass is where Icm

1
2 Icmv

2,

1
2Mv2

cm

1
2 Iv2

I � �x2 dm �
M
L �

�L>2
�L>2 x2 dx �

M
L

1
3
x3 ` �L>2

�L>2 �
M
3L
aL3

8
�
L3

8
b �

1
12
ML2

� 1
2L.� 1

2L

*

F I G U R E 9 - 1 2

h

cm
vcm

ω

ω

vcm = h

F I G U R E 9 - 1 0 An object rotating about
an axis parallel to an axis through the center
of mass and a distance h from it.



Context-Rich

is the moment of inertia about the axis through the center of mass.* Thus, the total
kinetic energy of the object is

The center of mass moves along a circular path of radius h, so 
Substituting for K and for gives

Multiplying through this equation by gives

which completes the proof of the parallel-axis theorem.

PRACTICE PROBLEM 9-7

Using the parallel-axis theorem, show that when comparing the moments of inertia of an
object about two parallel axes, the moment of inertia is less about the axis that is nearer
to the center of mass.

Example 9-6 A Flywheel-Powered Car

You are driving an experimental hybrid vehicle that is designed for use in stop-and-go
traffic. In a car with conventional brakes, each time you brake to a stop the kinetic energy is
dissipated as heat. In this hybrid vehicle, the braking mechanism transforms the transla-
tional kinetic energy of the vehicle’s motion into the rotational kinetic energy of a massive
flywheel. As the car returns to cruising speed, this energy is transferred back into the
translational kinetic energy of the car. The 100-kg flywheel is a hollow cylinder with an inner
radius of an outer radius of and a maximum angular speed of

On a dark and dreary night, the car runs out of gas from home with
the flywheel spinning at maximum speed. Is there sufficient energy stored in the flywheel
for you and your nervous grandmother to make it home? (When driving at the minimum
highway speed of air drag and rolling friction dissipate energy at )

PICTURE The kinetic energy is calculated directly from 

SOLVE

K � 1
2 Iv2.

10.0 kW.40.0 mi>h,

15.0 mi30,000 rev>min.
40.0 cm,R225.0 cm,R1

I �Mh2 � Icm

2>v2

1
2 Iv2 � 1

2Mh2v2 � 1
2 Icmv

2

vcmhv1
2 Icmv

2
vcm � hv

K � 1
2Mv2

cm � 1
2 Icmv

2
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CHECK There are of energy in a gallon of gasoline. If the engine is 10% efficient, only
are available to move the car. The initial energy in the flywheel is more than the

energy available to move the car in three gallons of gasoline. This energy should be more
than enough to get you the needed to get home.15 mi

13 MJ>gal
130 MJ

K � 1
2 Iv21. The kinetic energy of rotation is

I � 1
2m(R2

1 � R2
2) � 11.1 kg # m22. Calculate the moment of inertia of the hollow cylinder using an

expression from Table 9-1:
v � 30,000 rev/min � 3142 rad/s3. Convert to rad>s:v

K � 1
2 Iv2 � 54.9 MJ4. Substitute these values to find the kinetic energy:

so ¢t � 1350 s¢x � v¢t,5. Energy is dissipated at at a speed of To find the
energy dissipated during the 15-mi trip, we first need to find the
time required for the trip:

40 mi>h.10 kW

13.5 MJ6. The energy is dissipated at for The total energy
dissipated is

1350 s.10 kW

are available and are dissipated.

Yes, there is more than enough energy stored in the flywheel.

13.5 MJ54.9 MJ7. Is there enough energy stored in the flywheel?

* Relative to its center of mass means “relative to an inertial reference frame in which the center of mass is at least
momentarily at rest.”
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Example 9-7 The Pivoted Rod

A uniform thin rod of length L and mass M, pivoted at one end as shown in Figure 9-13, is held
horizontal and then released from rest. Assuming that effects due to friction and air resistance
are negligible, find (a) the angular speed of the rod as it sweeps through the vertical position,
and (b) the force exerted on the rod by the pivot at this instant. (c) What initial angular speed
would be needed for the rod to just reach a vertical position at the top of its swing?

PICTURE We choose everything shown in Figure 9-13 plus Earth as the system. (a) As the rod
swings down, the potential energy decreases and the kinetic energy increases. Because the
pivot is frictionless, mechanical energy remains constant. The angular speed of the rod is then
found from its rotational kinetic energy. (b) To find the force of the pivot we apply Newton’s
second law for a system to the rod. (c) As in Part (a), mechanical energy remains constant.

SOLVE

(a) 1. The diagram of the rod (Figure 9-13) shows both the initial and final configurations
of the rod-Earth system. The origin of the y axis is at the same height as the rotation
axis.

F I G U R E 9 - 1 3

cm

L

0

ycm f

ω

+y

+

F I G U R E 9 - 1 4

L/2

0

Mg

Fp

+

+y

acm

cm

F I G U R E 9 - 1 5

cm

L

0

ycm f

+

+y

2. Apply conservation of mechanical energy to
relate the initial and final mechanical
energies:

1
2
Iv2

f �Mga� L
2
b � 0 � 0

1
2 Iv2

f �Mgycmf � 1
2 Iv2

i �Mgycmi

Kf � Uf � Ki � Ui

3. Solve for vf . vf � AMgLI
4. Obtain I from Table 9-1 and substitute into

the step-3 result:
so A3g

L
vf � AMgL1

3ML2
�I � 1

3ML2

2. Apply Newton’s second law for a system to
the rod. At the bottom of the swing the
acceleration of the center of mass is in the
centripetal (upward) direction:

Fp �Mg �Macm

©Fexty �Macm

3. Relate the acceleration of the center of mass
to the angular speed using 
Substitute the Part-(a) step-4 result for and
solve for acm :

v

ac � rv2.
acm �

L
2

3g

L
�

3
2
g

acm � rv2

4. Substitute into the Part-(b) step-2 result and
calculate Fp :

5
2Mg�Fp �Mg �Macm �Mg �M 3

2 g

(c) 1. The initial angular velocity is related to
the initial kinetic energy:

vi Ki � 1
2 Iv2

i

3. Apply conservation of mechanical energy to
relate the initial kinetic energy to the final
position:

0 �Mg
L
2

�
1
2
Iv2

i � 0

1
2 Iv2

f �Mgycm f � 1
2 Iv2

i �Mgycm i

Kf � Uf � Ki � Ui

4. Solve for the initial angular velocity: A3g

L
vi � AMgLI � AMgL1

3ML2
�

(b) 1. Draw a free-body diagram of the rod as it sweeps through the vertical position at the
bottom of its swing (Figure 9-14).

2. Make a diagram of the rod showing both the initial and final configuration 
(Figure 9-15). Include the same coordinate axis as in Part (a):

CHECK It is no coincidence that the answers to Part (a) and Part (c) are identical. The de-
crease in both height and potential energy in Part (a) is equal to the increase in height and
potential energy in Part (c). Thus, the increase in kinetic energy in Part (a) is equal to the de-
crease in kinetic energy in Part (c).
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Example 9-8 A Winch and a Bucket

A winch is at the top of a deep well. The drum of the winch has mass and radius R.
Virtually all its mass is concentrated a distance R from the axis. A cable wound around the
drum suspends a bucket of water of mass The entire cable has mass and length L. Just
when you have the bucket at the highest point, your hand slips and the bucket falls back
down the well, unwinding the winch cable as it goes. How fast is the bucket moving after it
has fallen a distance d, where d is less than L? Assume that effects due to friction and air
resistance are negligible.

PICTURE As the load falls, mechanical energy of the drum-cable-bucket of water-Earth system
remain constant. Choose the initial potential energy to be zero. When the load has fallen a dis-
tance d, the center of mass of the hanging part of the cable has dropped a distance Because
the hanging part of the cable moves with speed v and the cable does not stretch or become slack,
the entire cable must move at speed v. We find v from the conservation of mechanical energy.

SOLVE

d>2.

mcmb .

mw

Before

R

mw mc

m'c

R

mw mc

mb

mb

After

cm

0

+y

0

+y

d

v

d/2
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1. Make a diagram of the system in both its initial and its final configuration
(Figure 9-16). Include a y axis with the origin at the height of the rotation
axis of the drum.

2. Apply conservation of mechanical
energy. Choose the potential energy
to be zero when the bucket of water
is at the highest point:

� 0 � 0 � 0

Uf � Kf � Ui � Ki

3. Write an expression for the total
potential energy when the bucket
has fallen a distance d. Let 
denote the mass of the hanging part
of the cable:

m�c

� �(mb � 1
2m�c)gd

� mbg(�d) � m�cga� d2 b � 0

Uf � Ubf � Ucf � Uwf

4. Express the total kinetic energy
when the bucket is falling with
speed v. All the cable and the entire
mass of the drum move with the
same speed v as the bucket:

� 1
2 (mc � mb � mw)v2

� 1
2mcv

2 � 1
2mbv

2 � 1
2mwv

2

Kf � Kfc � Kfb � Kfw

6. Assume that the cable is uniform
and express in terms of 
and L:

mc , d,m�c

m�c

d
�
mc

L
⇒ m�c �

d
L
mc

5. Substitute into the conservation of
mechanical energy equation
(step 2) and solve for v: so v � A

(2mb � m�c)gd

(mc � mb � mw)

�(mb � 1
2m�c)gd � 1

2 (mc � mb � mw)v2 � 0

7. Substitute the step-6 result into
the step-5 result:

C
(2mbL � mcd)gd

(mc � mb � mw)Lv �

CHECK The step-7 result has the correct dimensions for speed because acceleration times
length has dimensions of length squared divided by time squared.

TAKING IT FURTHER Because the entire mass of the drum is moving at the same speed v,
we can express its kinetic energy as However, we can also express it as where

and With these substitutions, Kw � 1
2 Iwv

2 � 1
2mwR

2(v2>R2) � 1
2mwv

2.v � v>R.Iw � mwR
2

1
2 Iwv

2,1
2mwv

2.

(D. S. Kerr/ Visuals Unlimited.)



F1 F2

Newton’s Second Law for Rotation S E C T I O N  9 - 4 | 301

9-4 NEWTON’S SECOND LAW FOR ROTATION

To set a top spinning, you twist it. In Figure 9-17, a disk is set spinning by the forces
and exerted at the edges of the disk in the tangential direction. The directions

of these forces and their points of application are important. If the same forces are
applied at the same points but in the radial direction (Figure 9-18a), the disk will
not start to spin. In addition, if the same forces are applied in the tangential direc-
tion, but at points closer to the center of the disk (Figure 9-18b), the disk will not
gain angular speed as quickly.

F
S

2F
S

1

F I G U R E 9 - 1 7

F2

F1

F I G U R E 9 - 1 8

F2

F1

F I G U R E 9 - 1 9

Rotation axis

A

Tangential
direction

r

Particle

Massless rigid rod

F

Ft

φ

(b)(a)

Figure 9-19 shows a particle of mass m attached to one end of a massless rigid
rod of length r. The rod is free to rotate about a fixed axis perpendicular to the rod
and passing through the end of the rod at A. Consequently, the particle is con-
strained to move in a circle of radius r. A single force is applied to the particle as
shown. Applying Newton’s second law to the particle and taking components in
the tangential direction gives

where is the tangential component of and is the tangential com-
ponent of the acceleration. We wish to obtain an equation involving angular quan-
tities. Substituting for (Equation 9-9) and multiplying both sides by r gives

9-15

The product is the torque T about the rotation axis associated with the force.
That is,

9-16

TORQUE ABOUT AN AXIS

(Torque about a point is defined as a vector quantity in Chapter 10. What we refer to
as “torque about an axis” is the component of the torque vector parallel with the axis.)

Substituting for in Equation 9-15 gives

9-17

A rigid object that rotates about a fixed axis is just a collection of individual particles,
each of which is constrained to move in a circular path with the same angular ve-
locity and acceleration Applying Equation 9-17 to the ith of these particles gives

where is the torque due to the net force on the ith particle. Summing both sides
over all particles gives

9-18

In Chapter 8, we saw that the net force acting on a system of particles is equal to
the net external force acting on the system because the internal forces (those exerted

a ti net � amir2ia � (amir2i )a � Ia

tinet

ti net � mir
2
ia

a.v

t � mr2a

rFtt

t � Ftr

rFt

rFt � mr2a

atra

atF
S

Ft � Fsinf

Ft � mat

F
S

See

Math Tutorial for more

information on 

Trigonometry
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by the particles within the system on one another) cancel in pairs. The treatment of
internal torques exerted by the particles within a system on one another leads to a
similar result, that is, the net torque acting on a system equals the net external
torque acting on the system. We can thus write Equation 9-18 as

9-19

NEWTON’S SECOND LAW FOR ROTATION

This equation is the rotational analog of Newton’s second law for linear motion
( ).

CALCULATING TORQUES

Figure 9-20 shows a force acting on an object constrained to rotate about a fixed
axis A, not shown, which passes through O and is perpendicular to the page. The
positive tangential direction is shown at the point of application of the force, and r is
the radial distance of this point of application from axis A. The torque due to this
force about axis A is (Equation 9-16). In principle, the expression is all that
is needed to calculate torques. However, in practice, calculations are often simpler if
alternative expressions for torque are used. From the figure, we can see that

where is the angle between the radial direction and the direction of the force.
Thus, we can express the torque as The line of action of a force
is the line through the point of application of the force that is parallel to the force.
From Figure 9-21 we can see that where the moment arm is the per-
pendicular distance between A and the line of action. (The moment arm is also
called the lever arm.) Consequently, the torque is also given by Putting all
three equivalent expressions for the torque in one place, we have

9-20

EQUIVALENT EXPRESSIONS FOR TORQUE

The torque of a force about an axis is also called the moment of the force about the axis.

TORQUE DUE TO GRAVITY

We can model an extended object as an assembly of microscopic point particles,
and there is a microscopic gravitational force on each particle. Each of these mi-
croscopic gravitational forces exerts a microscopic torque about a given axis, and
the net gravitational torque on the object is the sum of these microscopic torques.
The net gravitational torque can be calculated by considering the total gravita-
tional force (the sum of the microscopic gravitational forces) to act at a single point-
the center of gravity. Consider an object (Figure 9-22) constrained to rotate about
a horizontal axis A coming out of the page. We choose the z axis of our coordinate
system to coincide with axis A, and choose the x axis direction to be horizontal and
the y axis vertical as shown. The torque on a particle of mass due to gravity is

where is the moment arm of the force The net gravitational torque onmig
S.ximigxi ,

mi

t � Ftr � F sinf r � F�

t � F�.

�r sinf � �,

t � Ftr � (F sinf)r.
f

Ft � F sinf

Ftrt � Ftr
t

F
S

©F
S

� maS

tnet ext � a text � Ia

+

m
F

Ft

Fr

A

φ

r

m

φ

Line of
action

A

F

r
�

xxi

mi

mig

y

A

cg

M

(a)

xcg
x

y

A

cgM

Mg

(b)

(Richard Menga/ Fundamental Photographs.)

F I G U R E 9 - 2 2 In a uniform
gravitational field, the center of
gravity coincides with the center
of mass.

F I G U R E 9 - 2 1 The force produces a
torque about the center.F�

F
S

F I G U R E 9 - 2 0 The force produces a
torque about the center.FtR

F
S
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the object is the sum of the gravitational torques for all the particles that make
up the object. That is, If is uniform (has the same magnitude
and direction) throughout the region of space occupied by object, then g can be fac-
tored out of the sum. Factoring g out of the sum gives You
should recognize the sum in the parentheses as (see Equation 5-13).
Substituting this for the sum gives

9-21

TORQUE DUE TO GRAVITY

The torque due to a uniform gravitational field is calculated as if the entire gravi-
tational force is applied at the center of gravity. 

9-5 APPLICATIONS OF NEWTON’S 
SECOND LAW FOR ROTATION

In this section, we give several applications of Newton’s second law for rotation as
expressed in Equation 9-19.

PROBLEM-SOLVING STRATEGY

Applying Newton’s Second Law for Rotation

PICTURE Angular accelerations for rigid objects can be found by using 
free-body diagrams and Newton’s second law for rotation, which is

If is constant, then the constant angular 
acceleration equations apply. Time intervals and angular positions, 
velocities, and angular accelerations can then be determined using these
equations.

SOLVE

1. Draw a free-body diagram with the object shown as a likeness of the
object (not just as a dot). 

2. Draw each force vector along the line of action of that force. 

3. On the diagram indicate the positive direction (clockwise or
counterclockwise) for rotations.

CHECK Make sure that the signs of your results are consistent with your
choice for the positive directions of rotation. 

tnet exttnet ext � ©text � Ia.

tgrav net �Mgxcg

Mxcg

tgrav net � (©mixi)g.

gStgrav net � ©migxi .

For any object in a uniform
gravitational field, the center of

gravity and the center of mass
coincide.

!

Example 9-9 A Stationary Bike

To get some exercise without going anywhere, you set your bike on a stand so that the rear
wheel is free to turn. As you pedal, the chain applies a force of to the rear sprocket
wheel at a distance of from the rotation axis of the wheel. Consider the wheel to
be a hoop of radius and mass What is the angular veloc-
ity of the wheel after 

PICTURE The angular velocity is found from the angular acceleration, which is found from
Newton’s second law for rotation. Because the forces are constant, the torques are also con-
stant. Thus, the constant angular acceleration equations apply. Note that acts in the direc-
tion of the chain, so the line of action of is tangent to the sprocket wheel, and the moment
arm is the radius of the sprocket wheel (Figure 9-23).rs

F
S

F
S

5.0 s?
M � 2.4 kg.R � 35 cm(I �MR2)

rs � 7.0 cm
18 N

F I G U R E 9 - 2 3

Sprocket
wheel

F = 18 N
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SOLVE

1. The angular velocity is related to the angular acceleration
and the time:

v � v0 � at � 0 � at

2. Apply Newton’s second law for rotational motion to relate 
a to the net torque and the moment of inertia:

tnet � Ia

3. The only torque acting on the system is that due to the
applied force F with moment arm rs:

tnet � Frs

4. Substitute this value for the torque and for the
moment of inertia:

I �MR2 a �
tnet

I
�
Frs
MR2

5. Substitute into the step-1 result and solve for the angular
velocity after 5.0 s:

21 rad>s� 21.4 rad>s �v � at �
Frs
MR2 t �

(18 N)(0.070 m)
(2.4 kg)(0.35 m)2 5.0 s

CHECK The tangential speed of the rim is given by 
which is a plausible speed. (A world-class runner can sprint at speeds in excess of )10 m>s.

Rv � (0.36 m)(21 rad>s) � 7.6 m>s,

Example 9-10 A Uniform Rod, Pivoted at One End

A uniform thin rod of length L and mass M is pivoted at one end. It is held horizontal and
released. Effects due to friction and air resistance are negligible. Find (a) the angular accel-
eration of the rod immediately following its release, and (b) the magnitude of the force 
exerted on the rod by the pivot at this instant.

PICTURE The angular acceleration is found from Newton’s second law for rotation
(Equation 9-19). The force is found from Newton’s second law for a system 
(Equation 5-23). The tangential acceleration of the center of mass is related to the angu-
lar acceleration (Equation 9-6), and the centripetal acceleration of the center of mass is
related to the angular speed (Equation 9-7).

SOLVE

(a) 1. Sketch a free-body diagram of the rod (Figure 9-24).

FA

FA

F I G U R E 9 - 2 4

cm

L

Mg
FA

+

+y

2. Write Newton’s second law for rotation: ©text � Ia

3. Compute the torque due to gravity about the given axis. The
rod is uniform so its center of gravity is at its center, a distance

from the axis:L>2 tgrav �Mg
L
2

4. Find the moment of inertia about the end of the rod from Table 9-1: I � 1
3ML2

5. Substitute these values into the step-2 equation to compute :a
3g

2L
a �

tgrav

I
�
Mg(L>2)

(1>3)ML2 �

(b) 1. Write Newton’s second law for a system for the rod:

Mg � FA �Macm y

©Fext y �Macm y

4. Substitute the Part-(b) step-3 result into the Part-(b) step-1 result
and solve for FA :

so 1
4MgFA �

Mg � FA �M 3
4 g

2. Use the relation to find Immediately following
release, v � 0:

acm c .ac � rv2 acm c � rcmv
2 �
L
2
v2 � 0

3. We now have two equations and three unknowns, and 
Use the relation to obtain a third equation, one relating

to Then substitute the Part-(a) step- 5 result for a.a.acm y

at � ra
FA.a,acm y ,

acm y � acm t � rcma �
L
2

3g

2L
�

3
4
g

at � ra
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(Fundamental Photographs.)

CHECK The axis exerts an upward force on the rod. Consequently, we expect that following
release, the acceleration of the center of mass will be somewhat less than the free-fall accel-
eration Our Part-(b) step-3 result confirms this expectation.

TAKING IT FURTHER Just after the rod is released, the acceleration of the center of mass is
directed straight down. Because the net external force and the acceleration of the center of
mass are in the same direction, it follows that does not have a horizontal component at
this instant.

PRACTICE PROBLEM 9-8 A small pebble of mass is placed on top of the rod at its
center. Just after the rod is released find (a) the acceleration of the pebble, and (b) the force it
exerts on the rod.

NONSLIP CONDITIONS

In physics courses, there are many situations in which a taut string is in contact
with a rotating pulley wheel. For the string not to slip on the pulley wheel, the
parts of the string and the wheel that are in direct contact with each other must
share the same tangential velocity. As a result,

9-22

NONSLIP CONDITION FOR AND 

where is the tangential velocity of the string and is the tangential velocity of
the perimeter of the pulley wheel. The wheel has radius and is rotating with an-
gular velocity . Differentiating both sides of the nonslip condition (Equation 9-22)
with respect to time gives

9-23

AND UNDER NONSLIP CONDITIONS

where is the tangential acceleration of the string and is the angular accelera-
tion of the wheel.

aat

aat

at � Ra

v

R
Rvvt

vvt

vt � Rv

m V M

F
S

A

g.

Example 9-11 Tension in a String

An object of mass is suspended from a light string that is wound around the rim of a pul-
ley wheel that has moment of inertia and radius The wheel bearing is frictionless and
the string does not slip on the rim. The wheel is released from rest. It starts to rotate as the
object descends and the string unwinds. Find the tension in the string and the acceleration
of the object.

PICTURE The object descends with a downward acceleration while the wheel rotates
with an angular acceleration (Figure 9-25). We apply Newton’s second law for rotation to
the wheel to determine and Newton’s second law to the object to obtain Relate and

using the nonslip condition.

SOLVE

1. Draw a free-body diagram of the pulley wheel, drawing each force vector with its tail at
the point of application of the force. Put labels on the diagram and indicate the positive
rotational direction as shown in Figure 9-26:

a

ata.a,
a

a,

R.I
m

F I G U R E 9 - 2 5

m
a

α

θ

R

+

F I G U R E  9 - 2 6

+

FA

R

I
A

mpg T
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2. The only force that exerts a torque on the wheel is the tension which has
moment arm Apply Newton’s second law for rotational motion to relate

to the angular acceleration a:T
R.

T,

TR � Ia

©text � Ia

3. Draw a free-body diagram for the suspended object, and apply Newton’s
second law to relate to the tangential acceleration (Figure 9-27):atT mg � T � mat

©Fext y � may

4. We have two equations for three unknowns, and A third equation is 
the relation between and called the nonslip condition. (The tangential
accelerations of the object, the string, and the perimeter of the wheel are all equal.):

a,at

a.T, at , at � Ra

5. We now have three equations enabling us to determine and To solve
for substitute into the step-4 equation. Substitute for using the step-2
result and for using the step-3 result. Then solve for T.at

aT,
a.T, at ,

so
mg

1 � (mR2>I)T �

mg � T

m
� R
TR
I

6. Substitute this result for into the step-3 result and solve for The object
and the wheel perimeter gain speed at the same rate. Thus, is the
acceleration of the wheel perimeter:

at

at .T

so
1

1 � (I>mR2)
gat �

mg �
mg

1 � (mR2>I) � mat

CHECK Let us evaluate our results for a couple of limiting cases. If the object should
fall freely and the string should be slack; our results give as expected. For very
large values of we expect the wheel to remain at rest. If our equations give 
and as expected.at S 0,

TS mgIS ,I
T � 0,at � g,

I � 0,

F I G U R E 9 - 2 7

+

T

mg

Conceptual Example 9-12 Two Blocks and a Pulley I

The system shown in Figure 9-28 is released from rest. The mass of the pulley wheel is not
negligible, but the friction in the bearing is negligible. The string does not slip on the pulley
wheel. Given that what can be determined about the tensions and 

PICTURE Following release will accelerate downward, will accelerate upward, and
the pulley wheel will angularly accelerate counterclockwise. Apply Newton’s second law to
each mass and apply Newton’s second law for rotations to the pulley wheel.

SOLVE

m2m1

T2?T1m1 
 m2 ,

F I G U R E 9 - 2 8

m

T1

T2

1

m21. Because accelerates downward, the net force on it must
be downward:

m1 m1g 
 T1

2. Because accelerates upward, the net force on it must be
upward:

m2 T2 
 m2g

3. Because the angular acceleration of the pulley wheel is
counterclockwise, the net torque on it must be counterclockwise.
Because the two moment arms are equal, larger torque means
larger tension:

so T1 
 T2t1 
 t2

4. Combining the three results gives: m1g 
 T1 
 T2 
 m2g

CHECK If were not greater than the angular acceleration of the pulley wheel
would not be counterclockwise.

T2 ,T1
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Try It YourselfExample 9-13 Two Blocks and a Pulley II

Two blocks are connected by a string that passes over a pulley of radius R and moment of
inertia I. The block of mass slides on a frictionless, horizontal surface; the block of mass

is suspended from the string (Figure 9-29). Find the acceleration of the blocks and the
tensions and The string does not slip on the pulley.

PICTURE The tensions and are not equal because the pulley has mass and because
there is static friction between the string and the pulley (Figure 9-29). (If the two tensions
were equal, the torque on the pulley by the string would be zero.) Note that exerts a clock-
wise torque and exerts a counterclockwise torque on the pulley. Use Newton’s second law
for each block, and Newton’s second law for rotational motion for the pulley. Relate and 
using the nonslip condition.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

aa

T1

T2

T2T1

T2 .T1

am2

m1

F I G U R E 9 - 2 9

m
2

m
1

T1

T2

a
α

a

R

I

+

+

+

T

I

1

R

T2

Fs

m2g

T2

m2

m1g

mpg

T1

Fn

m1

F I G U R E 9 - 3 0

Do not assume that the tension in a
string passing over a pulley is the

same on either side of the pulley. If it
were, the string would not exert a
torque on the pulley wheel and the
wheel would not change its rotation
rate. Use two distinct labels, such as 
and for the tensions in the string on
opposite sides of the wheel.
T2 ,

T1

!

1. Draw a free-body diagram for each block and for the pulley, as
shown in Figure 9-30. Note that the center of mass of the pulley
wheel does not accelerate, so the support must exert a force on
the axle that balances the resultant of the gravitational force
on the wheel and the forces exerted on it by the string.

Fs

2. Apply Newton’s second law to each block. T1 � m1a; m2g � T2 � m2a;

3. Apply Newton’s second law for rotation to the pulley wheel. T2R � T1R � Ia

4. We have three equations and four unknowns. To get a fourth
equation, use the nonslip condition. The acceleration of the
blocks is equal to the tangential acceleration of the string
and pulley-wheel perimeter.

at

a a � at � Ra

at � Ra

5. We have four equations and four unknowns, so the rest is
algebra. Do the algebra and obtain expressions for and

Hint: To find obtain expressions for and from the step-2
results. Substitute these results into the step-3 result to obtain an
equation with unknowns and Use the step-4 result to eliminate

and solve for a.a

a.a

T2T1a,T2 .
a,T1 ,

m1 � (I>R)2

m1 � m2 � (I>R)2m2gT2 � m2(g � a) �

m2

m1 � m2 � (I>R)2m1gT1 � m1a �

m2

m1 � m2 � (I>R)2 ga �

CHECK If and as expected. If then 
and again as expected.

POWER

When you spin up an object, you do work on it, increasing its kinetic energy.
Consider the force acting on a rotating object. As the object rotates through an
angle the point of application of the force moves a distance and the
force does work

where is the torque exerted by the force , and is the tangential component
of The work done by a torque on an object when the object rotates through
a small angle is thus

9-24

WORK

dW � t du

du
tdWF

S
.

FtF
S

t

dW � Ft ds � Ftr du � t du

ds � r du,du,
F
S

T2 S m2g,
aS 0,T1 S 0,IS ,a � m2g>(m1 � m2),I � 0,T1 � T2 ,



Example 9-15 Stopping the Wheel

The specifications for the London Eye include that it be able to brake to a stop so that the
passenger compartments move no more than during braking. The operating speed of 
the 135-m-diameter 1600-tonne wheel is (One tonne equals ) A picture 
of the wheel can be found at the beginning of this chapter. (a) Estimate the torque that is
required to stop the wheel so the rim travels during the braking. (b) Assuming that the
braking force is applied at the rim, what is the magnitude of the breaking force?

PICTURE The work done on the wheel is equal to its change in kinetic energy. Use 
(Equation 9-24) to calculate the work in terms of the torque. Almost all of the mass is near the
perimeter of the wheel (see the picture on the first page of this chapter). This suggests a way
to estimate the moment of inertia. The braking force can be found from the torque.

SOLVE

dW � tdu

10 m

1000 kg.2.0 rev>h.
10 m

308 | C H A P T E R  9 Rotation

The rate at which the torque does work—the power input of the torque—is

or

9-25

POWER

Equations 9-24 and 9-25 are the rotational analogs of the linear equations
and P � F7v.dW � F7 d�

P � tv

P �
dW
dt

� t
du
dt

Example 9-14 Torque Exerted by an Automobile Engine

The maximum torque produced by the engine of a 2005 Ford is 678 of
torque at Find the power output of the engine operating at these maximum
torque conditions.

PICTURE The power equals the product of the torque and angular velocity (in radians per
second).

SOLVE

1. Write the power in terms of and :

2. Convert to 

3. Calculate the power:

CHECK One horsepower equals 746 watts, so This
value is plausible for a high-performance automobile engine.

PRACTICE PROBLEM 9-9 The maximum power produced by the Ford engine is
at What is the torque when the engine is operating at maximum

horsepower?

There are many parallels between one-dimensional linear motion and rotational
motion about a fixed axis. The similarities of the formulas can be seen in Table 9-2.
The relations are the same, but the symbols are different.

6000 rev>min.500 hp
GT

320 kW � 1 hp>0.746 kW � 429 hp.

320 kWP � (678 N # m) # (471 rad>s) �

v � 4500 rev>min � 471 rad>srad>s:rev>min

P � tvvt

4500 rev>min.
N # mGT5.4-L V8

(a) 1. Set the work done equal to the change in kinetic energy: W � ¢K
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Table 9-2 Analogs in Fixed-Axis Rotational and One-Dimensional Linear Motion

Rotational Motion Linear Motion

Angular displacement Displacement

Angular velocity Velocity

Angular acceleration Acceleration

Constant-angular-acceleration equations Constant-acceleration equations

Torque t Force Fx

Moment of inertia I Mass m

Work Work

Kinetic energy Kinetic energy

Power Power

Angular momentum* Momentum

Newton’s second law Newton’s second law

*Angular momentum is introduced in Chapter 10.

Fnetx � max �
dpx
dt

tnet � Ia �
dL
dt

px � mvxL � Iv

P � FxvxP � tv

K � 1
2mv2K � 1

2Iv2

dW� Fx dxdW� tdu

v2
x � v2

0x � 2ax¢xv2 � v2
0 � 2a¢u

x � x0 � v0xt � 1
2axt

2u � u0 � v0t � 1
2at2

vavx � 1
2 (v0x � vx)vav � 1

2 (v0 � v)

¢x � vavx¢t¢u � vav ¢t

vx � v0x � axtv � v0 � at

ax �
dvx
dt

�
d2x
dt2

a �
dv
dt

�
d2u

dt2

vx �
dx
dt

v �
du
dt

¢x¢u

2. Using (Equation 9-24), relate the work to the
torque and the angular displacement:

dW � tdu W � t¢u

4. The mass is concentrated near the rim of the wheel, so
I � mr2 :

� 7.29 � 109 kg # m2

I � mr2 � (1.6 � 106 kg)(67.5 m)2

5. Substitute into the step-1 result and solve for the torque. The
initial angular velocity is 2.0 rev>h � 3.49 � 10�3 rad>s:

so

�3.0 � 105 N # m�

� �
(7.29 � 109 kg # m2)(3.49 � 10�3 rad/s)2

2 (0.148 rad)
t � �

Iv2
0

2 ¢u

t¢u � 0 � 1
2 Iv2

0

(b) 1. The line of action of the braking force is tangent to the rim,
so the moment arm is equal to the radius of the wheel.

4 .4 � 103 NF �
ƒ t ƒ
R

�
3.0 � 105 N # m

67.5 m
�

ƒ t ƒ � FR

CHECK From the expression for the torque in step 5 of Part (a) we can see that is negative
if is positive, and vice versa. This result is expected because the torque opposes the
motion during braking. 

TAKING IT FURTHER The braking force of is approximately equal to one-half
ton.

1.3 � 105 N

¢u
t

3. Using (Equation 9-2), relate the angular
displacement to the stopping distance s:

ds � r du s � r¢u ⇒ ¢u �
s
r

�
10 m

67.5 m
� 0.148 rad



Instantaneous rotation axis

Path of contact pointR
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r

v

ω

vcm
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9-6 ROLLING OBJECTS

ROLLING WITHOUT SLIPPING

When a spool rolls without slipping down an incline (Figure 9-31), the points of
the spool in contact with the incline are instantaneously at rest and the spool
rotates about a rotation axis through the contact points. This can be observed
because rapid motion causes blurring, which means the part of the spool that 
is moving slowest is blurred the least. In Figure 9-32 a wheel of radius is 
rolling without slipping along a flat surface. Point on the wheel moves as shown
with speed

9-26

NONSLIP CONDITION FOR SPEED

where is the radial distance from the rotation axis to point 
The center of mass of the wheel moves with speed

9-27

NONSLIP CONDITION FOR 

For a point on the very top of the wheel, so the top of the
wheel is moving at twice the speed of the center of the wheel.

Differentiating both sides of Equation 9-27 gives

9-28

NONSLIP CONDITION FOR ACCELERATION

A falling yo-yo that is unwinding from a string—the top end of which is held
fixed—follows the same nonslip conditions as the wheel.

A wheel of radius is rolling without slipping along a straight path. As the
wheel rotates through angle (Figure 9-33), the point of contact between the wheel
and the surface moves a distance s that is related to by

9-29

NONSLIP CONDITION FOR DISTANCE

If the wheel is rolling on a flat surface, the wheel’s center of mass remains directly
over the point of contact, so it also moves through distance 

In Chapter 8 we saw (Equation 8-7) that the kinetic energy of a system can be
written as the sum of its translational kinetic energy ( ) and the kinetic en-
ergy relative to the center of mass For an object that is rotating, the kinetic
energy relative to an inertial frame moving with center of mass Thus, the
total kinetic energy of the object is

9-30

TOTAL KINETIC ENERGY OF A ROTATING OBJECT

K � 1
2Mv2

cm � 1
2 Icmv

2

1
2 Icmv

2 .
Krel .

1
2Mv2

cm

Rf.

s � Rf

f

f

R

acm � Ra

r � 2R,

vcm

vcm � Rv

P.r

v � rv

P
R

F I G U R E 9 - 3 2 As the disk rolls to the
right, point P moves upward and to the right.
Point P reaches its greatest height when is
passes over the center of the disk.

Remember, a rolling object has
both translational and rotational

kinetic energy.
!

F I G U R E 9 - 3 3

R

s

s = R

φ

φ

F I G U R E 9 - 3 1 A spool that has dots on it
is rolling without slipping down an inclined
meter stick. The shaft of the spool is in contact
with the stick. The exposure time for this
photo was long enough that the dots appear
as streaks, with the length of the streaks
increasing with distance from the rotation
axis. (Loren Winters/Visuals Unlimited.)
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Example 9-16 A Bowling Ball

A bowling ball that has an 11-cm radius and a 7.2-kg mass is rolling
without slipping at on a horizontal ball return. It continues to roll
without slipping up a hill to a height before momentarily coming to rest
and then rolling back down the hill. Model the bowling ball as a uniform
sphere and find 

PICTURE No slipping occurs, so no energy is dissipated by kinetic friction.
No external forces act on the ball–hill–Earth system, so no external forces
do work on the system. The initial kinetic energy, which is the transla-
tional kinetic energy, plus the kinetic energy of rotation about the
center of mass, is converted to potential energy Because 
the sphere rolls without slipping, the initial linear and angular speeds are
related by 

SOLVE

1. Make a labeled sketch showing the ball in both its initial 
and final positions (Figure 9-34).

vcm � Rv

Mgh.1
2 Icmv

2 ,

1
2Mv2

cm,

h.

h
2.0 m>s

h

v = 0

= 0ω

ω

M

R i

vi

F I G U R E 9 - 3 4

3. Apply conservation of mechanical energy with and
Write the total initial kinetic energy in terms of

the speed and the angular speed v1 :vcm

KiKf � 0.
Ui � 0

Mgh � 0 � 0 � 1
2Mv2

cm i � 1
2 Icmv

2
i

Uf � Kf � Ui � Ki

2. No external forces act on the system, so the work done by
external forces is zero, and no slipping occurs, so no energy
is dissipated by kinetic friction. Thus, mechanical energy is
constant:

0 � ¢Emech � 0

Wext � ¢Emech � ¢Etherm

4. Substitute from and and solve
for h:

Icm � 2
5MR2vi � vcm i >R

so 29 cmh �
7v2

cm i

10g
� 0.2854 m �

Mgh �
1
2
Mv2

cm i �
1
2
a2

5
MR2b v2

cm i

R2 �
7

10
Mv2

cm i

CHECK The height is independent of the mass. This result is expected because both the
kinetic energy and the potential energy are proportional to the mass.

TAKING IT FURTHER The height is also independent of the radius of the ball. This re-
sult is because and so in the product the cancel.

PRACTICE PROBLEM 9-10 Find the initial kinetic energy of the ball.

RsIcmv
2
i ,vi � vcm i >R,Icm � 2

5MR2
Rh

h

Example 9-17 Playing Pool

A cue stick strikes a cue ball horizontally at a point a distance d above the center of the ball
(Figure 9-35). Find the value of d for which the cue ball will roll without slipping from the
beginning. Express your answer in terms of the radius R of the ball.

PICTURE The lines of action of the gravitational and normal forces both pass through the
center of mass of the ball, and thus exert no torque about the center of mass. The frictional
force exerted by the table is much smaller than the collision force of the cue stick, so its
effects during the collision can be ignored. If the stick strikes the ball at the level of the ball’s
center, the ball initially translates with no rotation. If the stick strikes below the level of the
center, the ball initially has backspin. However, if the stick strikes a certain distance d above
the level of the center, the ball acquires just the right forward spin and forward translational
motion to satisfy the nonslip condition. The value of d determines the torque-to-force ratio
applied to the ball and hence the ball’s angular acceleration to linear acceleration ratio. The
linear acceleration is independent of d. For the ball to roll without slipping from the
start, we find a and then set (the nonslip condition) to find d.acm � Raacm,

F>m,acm

F I G U R E 9 - 3 5

d

F
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SOLVE

1. Sketch a free-body diagram of the ball (Figure 9-36). We are assuming that friction
between the ball and the table is negligible, so do not include this frictional force:

F I G U R E 9 - 3 6

mg

F

Fn

+

+d2. The torque about the horizontal axis through the center of the
ball (and out of the page) equals F times d:

t � Fd

3. Apply Newton’s second law for a system and Newton’s second
law for rotational motion about the center of the ball:

F � macm and t � Icma

4. The nonslip condition relates and a:acm acm � Ra

5. Substitute from steps 2 and 3 into step 4:
F
m

� R
Fd
Icm

6. Find the moment of inertia from Table 9-1 and solve for d:
2
5
Rd �

Icm

mR
�

2
5mR2

mR
�

CHECK The step-6 result is plausible because the value obtained for d is greater than zero
and less than R, as expected.

TAKING IT FURTHER Striking the ball at a point either higher or lower than from the
center will result in the ball rolling and slipping (skidding). Skidding is often desirable in
the game of pool. Rolling and slipping is discussed in the next subsection.

When an object rolls down an incline, its center of mass accelerates. The analy-
sis of such a problem is simplified by an important theorem concerning the center
of mass:

Newton’s second law for rotation holds in any inertial reference
frame. It also holds in reference frames moving with the center of mass—
even when the center of mass is accelerating—as long as the moment of
inertia and all torques are computed about an axis through the center
of mass. That is,

9-31

Equation 9-31 is the same as Equation 9-19, except that in Equation 9-31 the
torques and the moment of inertia are computed from a reference frame 
moving with the center of mass. When the center of mass is accelerating (a 
ball rolling down an incline, for example), the center-of-mass reference frame 
is a noninertial one, where we would not expect our equations for Newton’s
second law for rotation to be valid. Nevertheless, they are valid for this special
case.

tnet cm � Icma

(t � Ia)

2R>5

(Scott Goldsmith/ Stone/Getty.)

Example 9-18 Acceleration of a Ball That Is Rolling Without Slipping

A uniform solid ball of mass m and radius R rolls without slipping down a plane inclined at
an angle f above the horizontal. Find the frictional force and the acceleration of the center
of mass.

PICTURE From Newton’s second law, the acceleration of the center of mass equals the net
force divided by the mass. The forces acting are the gravitational force downward, the
normal force and the static frictional force acting up the incline (Figure 9-37). As the
object accelerates down the incline, its angular velocity must increase to maintain the non-
slip condition. This angular acceleration requires a net external torque about the axis

f
S

sF
S

n ,
mgS

F I G U R E 9 - 3 7

+

+ x

ω

R

fs
Fn

vcm

ωvcm = R

φ

mg
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through the center of mass. We apply Newton’s second law for rotation to find a. The non-
slip condition relates a and

SOLVE

acm.

1. Apply Newton’s second law for a system in component form for the
x axis: mg sin f � fs � macm

©Fx � macm x

2. Apply Newton’s second law for rotational motion about a horizontal
axis passing through the center of mass and perpendicular to 
The moment arms for the normal and gravitational forces each equal
zero, so they do not exert torques on the ball:

vScm. fsR � 0 � 0 � Icma

©ti � Icma

3. Relate and a using the nonslip condition:acm acm � Ra

4. We now have three equations and three unknowns. Solve the step-1
result for and the step-3 result for a, substitute for these quantities
in the step-2 result, and solve for acm :

fs

so acm �
g sin f

1 �
Icm

mR2

(mg sin f � macm)R � Icm

acm

R

5. Substitute the step-4 result into the step-1 result and solve for fs : � mg sin f �
mg sin f

1 �
Icm

mR2

�
mg sin f

1 �
mR2

Icm

fs � mg sin f � macm

6. For a solid sphere, (see Table 9-1). Substitute for in the
step-4 and step-5 results:

IcmIcm � 2
5mR2

2
7
mg sin ffs �

mg sin f

1 � 5
2

�

5
7
g sin facm �

g sin f

1 � 2
5

�

CHECK If the incline was frictionless the ball would not rotate and the acceleration would
be With friction, we expect the acceleration to be less than which is evidenced
by our first step-6 result.

TAKING IT FURTHER Because the ball rolls without slipping, the friction is static friction.
Note that the result seems independent of the coefficient of static friction. However, we have
assumed that the coefficient of static friction was large enough to prevent slipping.

The results of steps 5 and 6 in Example 9-18 apply to any round object with the
center of mass at the geometric center that is rolling without slipping. For such ob-
jects, where for a solid sphere, for a rolling solid cylinder, 1 for
a thin hollow cylinder, and so forth. (These values of b are obtained from the ex-
pressions for I found in Table 9-1.) For such objects the step-5 and step-6 results can
be expressed as

9-32

9-33

The linear acceleration of any object rolling without slipping down an incline is
less than because of the frictional force directed up the incline. Note that
these accelerations are independent of the mass and the radius of the objects. That
is, all uniform solid spheres will roll without slipping down an incline with the
same acceleration. However, if we release a sphere, a cylinder, and a hoop at the
top of an incline, and if they all roll without slipping, the sphere will reach the bot-
tom first because it has the greatest acceleration. The cylinder will be second and
the hoop last (Figure 9-38). A block that slides without friction down the incline
will arrive at the bottom ahead of all three rolling objects. Perhaps surprisingly, a
full can of soda pop that rolls without slipping will reach the bottom almost as fast

g sin f

acm �
g sin f

1 � b

fs �
mg sin f

1 � b�1

1
2b � 2

5Icm � bmR2 ,

g sin f,g sin f.

F I G U R E 9 - 3 8
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as the friction-free block. That is because the liquid in the can does not rotate with
the can, so the effective moment of inertia of the can full of pop is just the moment
of inertia of the metal can.

Static frictional forces do no work on the rolling objects, and if there is no slip-
ping there is no dissipation of energy. Therefore, we use the conservation of me-
chanical energy to find the final speed of an object released from rest that is rolling
without slipping down an incline. At the top of the incline, the total energy is the
potential energy mgh. At the bottom, the total energy is kinetic energy.
Conservation of mechanical energy therefore gives

We can use the nonslip condition to eliminate either or v. Substituting
and we obtain Solving

for gives

9-34

For a cylinder, with we obtain Note that this speed is inde-
pendent of both the mass and the radius of the cylinder, and is less than (the
final speed if there were no friction so that the object just slides down the incline).

For an object rolling without slipping down an incline, the frictional force is
less than or equal to its maximum value; that is, where 
Substituting the expression from Equation 9-32 for the frictional force, we have

or

9-35

For a uniform cylinder, and Equation 9-35 becomes If the tan-
gent of the angle of incline is greater than the object will slip as it rolls
down the incline.

PRACTICE PROBLEM 9-11 A uniform cylinder rolls down a plane inclined at 
What is the minimum value of the coefficient of static friction for which the cylinder will
roll without slipping? 

PRACTICE PROBLEM 9-12 For a uniform hoop of mass m that is rolling without slip-
ping down an incline, (a) what is the force of friction, and (b) what is the maximum value
of tan for which the hoop will roll without slipping? 

ROLLING WITH SLIPPING

When an object slips (skids) as it rolls, the nonslip condition does not
hold. Suppose a bowler releases the ball with no initial rotation As the
ball skids along the bowling lane, However, the kinetic frictional force
will both reduce its linear speed (Figure 9-39) and increase its angular speed v
until the nonslip condition is reached, after which the ball rolls without
slipping.

Another example of rolling with slipping is a ball with topspin, such as a cue
ball struck at a point higher than above the center (see Example 9-17) so that

Then the kinetic frictional force both increases and decreases v until
the nonslip condition is reached (Figure 9-40).vcm � Rv

vcmvcm 	 Rv.

2
5R

vcm � Rv
vcm

vcm 
 Rv.
(v0 � 0).

vcm � Rv

f

f � 50°.

(1 � b�1)ms ,
tan f � 3ms .b � 1

2 ,

tan f � (1 � b�1)ms

mg sin f

1 � b�1 � msmg cos f

Fn � mg cos f.fs � msFn ,
fs

22gh
vcm � 24

3 gh.b � 1
2 ,

v2
cm �

2gh

1 � b

v2
cm

1
2mv2

cm � 1
2bmR2(v2

cm>R2) � mgh.v � vcm>R,Icm � bmR2
vcm

1
2mv2

cm � 1
2 Icmv

2 � mgh

*

fk

vcm

F I G U R E 9 - 4 0 Ball with excess topspin.
The frictional force accelerates the ball in the
direction of motion.

ω
ω vcm

fk

> R
vcm

F I G U R E 9 - 3 9 A bowling ball moving
with no initial angular speed. The frictional
force exerted by the floor reduces the linear
speed and increases the angular speed v
until vcm � Rv.

vcm

f
S

k
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Example 9-19 A Skidding Bowling Ball

A bowling ball of mass M and radius R is released at floor level so that at release it is
moving horizontally with speed and is not rotating. The coefficient of kinetic
friction between the ball and the floor is Find (a) the time the ball skids 
along the floor (after which it begins rolling without slipping), and (b) the distance the 
ball skids.

PICTURE During the skidding, We calculate and v as functions of time, set
equal to Rv, and solve for the time. The linear and angular accelerations are found from

Let the direction of motion be positive. There is slipping so the
friction is kinetic (not static). This means that energy is dissipated by friction, so conserva-
tion of mechanical energy cannot be used to solve this problem.

SOLVE

(a) 1. Sketch a free-body diagram of the ball (Figure 9-41).

©F � ma and ©tcm � Icma.
vcm

vcmvcm 
 Rv.

mk � 0.080.
v0 � 5.0 m>s

F I G U R E  9 - 4 1

Mg

fk
Fn

MR
+

+ y

+ x

v

2. The net force on the ball is the force of kinetic friction 
which acts in the negative x direction. Apply Newton’s
second law:

fk ,

�fk �Macmx

©Fx �Macmx

3. The acceleration is in the negative x direction and 
Find by first finding Fn :fk

acmy � 0.

so fk � mkFn � mkMg

©Fy �Macmy � 0 ⇒ Fn �Mg

4. Find the acceleration using the step-2 and step-3 results: �mkMg �Macmx ⇒ acmx � �mkg

5. Relate the linear velocity to the constant acceleration and the
time using a kinematic equation:

vcmx � v0 � acmxt � v0 � mkgt

6. Find a by applying Newton’s second law for rotational
motion to the ball. Compute the torques about the axis
through the center of mass. Note that the free-body diagram
has clockwise as positive: so a �

5
2

mkg

R

mkMgR � 0 � 0 � 2
5MR2a

©t � Icma

7. Relate the angular velocity to the constant angular
acceleration and the time using a kinematic equation:

v � v0 � at � 0 � at �
5
2

mkg

R
t

8. Solve for the time t at which vcm � Rv:

so 1.8 st �
2v0

7mkg
�

2(5.0 m>s)

7(0.080)(9.81 m>s2)
�

(v0 � mkgt) � Ra5
2

mkg

R
tbvcm � Rv

(b) The distance traveled while skidding is

7.8 m�
12
49

(5.0 m>s)2

(0.080)(9.81 m>s2)
�

� v0a 2v0

7mkg
b �

1
2

(�mkg)a 2v0

7mkg
b 2

�
12
49

v2
0

mkg
¢x � v0t � 1

2 acmt
2

CHECK A bowling alley is about or long. That the ball skids for almost
half way down the alley, is plausible.

TAKING IT FURTHER At a bowling alley, or on television, you can observe bowling balls
skidding a considerable distance down the alley. The lanes at a well-maintained bowling
alley are lightly oiled and very slick, so the balls skid for considerable distances.

PRACTICE PROBLEM 9-13 Find the speed of the bowling ball when it begins to roll with-
out slipping. Does this speed depend on the value of ?

PRACTICE PROBLEM 9-14 Find the total kinetic energy of the ball as it initiates rolling
without slipping.

mk

7.8 m,18 m,60 feet,
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Physics Spotlight

Spindizzy—Ultracentrifuges

One research team studies changes in blood lipids as people change their
diets.* Another team investigates the stability of viral proteins.† All the re-
searchers are using the tool that won Theodor (The) Svedberg the 1926
Nobel Prize in chemistry—the analytical ultracentrifuge.‡

As a centrifuge spins, each particle suspended in the sample experi-
ences a force exerted on it by its surroundings in the radially inward
direction. In accord with Newton’s third law, each particle exerts an
equal force in the radially outward direction on its surroundings.
Consequently, the particles sediment, or settle, to the outer region of the
sample tube as the centrifuge spins. Larger, more-dense particles move
most quickly to the end of the sample tube farthest from the rotation axis.
This movement depends on several variables—the mass, density, and
friction coefficients of the particles in the solution. The final result, sedi-
mentation equilibrium, has layers, or strata, of particles arranged according
to these variables. An ultracentrifuge is powerful enough to analyze com-
plex molecules, and an ultracentrifuge that has windows into the sample
chambers to measure changes in the absorption of ultraviolet light is
called an analytical ultracentrifuge. These changes in absorption show
the sedimentation velocity, or the speed at which different particles stratify.
From the sedimentation velocities and sedimentation equilibrium, the purity, mass, shape, and composition of complex
molecules can be calculated.

To analyze complex molecules, analytical ultracentrifuges must rotate extremely fast. Svedberg’s first ultracentrifuge, built
with an oil turbine rotor in 1924, spun at and generated an acceleration of In 1935, an ultracentrifuge
was created that spun in a vacuum. This prevented delicate samples from being heated by the friction between air and the
centrifuge.§ This centrifuge was able to generate an acceleration of at the outer edge of the sample tubes. Today, an-
alytical ultracentrifuges spin at with accelerations of . Other types of ultracentrifuges can generate ac-
celerations as large as .°

The enormous accelerations and associated forces in these centrifuges cause high mechanical stresses on the rotors. At full
speed, a single gram of material in an analytical ultracentrifuge sample tube has an apparent weight equal to In fact,
the speed of the rotors is limited mostly by the tensile strength of the materials from which the rotors are made.# Over time,
the stresses cause material fatigue in the ultracentrifuge. Caustic solutions can also make stress corrosion more likely in alu-
minum rotors. Rotor failures are catastrophic events** and have cracked cement block walls, shattered windows, and sent
parts through the laboratory at high speeds.

Fortunately, ultracentrifuge rotor failures are very rare. The rotors in analytic ultracentrifuges are cast from strong materials—
titanium, aluminum, or even carbon fiber compounds. The windows of analytic ultracentrifuges are made of optical-grade
quartz or sapphire. Samples are carefully balanced in the rotors. Rotors are matched to particular ultracentrifuges and particu-
lar purposes. Finally, time logs are kept for each ultracentrifuge rotor. After a set number of hours, the rotors are replaced.

An early user of centrifuges was happy that “by means of the centrifuge, forces can be obtained many times greater than
gravity, which otherwise exist only on the very largest planets.”†† Today, ultracentrifuges give researchers the effects of forces
nearly 1000 times greater than the force of gravity at the surface of our Sun.

* Dragsted, L. O., Finne´ Nielsen, I.-L., Grønbæk, M., Hansen, A. S., Marckmann, P., and Nielsen, S. E., “Effect of Red Wine and Red Grape Extract on Blood Lipids, Haemostatic Factors,
and Other Risk Factors for Cardiovascular Disease,” European Journal of Clinical Nutrition, 2005 Vol. 59, 449–455.

† Chang, G.-G., Chang, H.-C., Chou, C.-Y., Hsu, W.-C., Lin, C.-H., and Lin, T.-Z., “Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease.”
Biochemistry, Nov. 30, 2004, Vol. 43 No. 47, 14958–14970.

‡ Svedberg, Theodor, “The Ultracentrifuge,” 1926 Nobel Lectures. http://nobelprize.org/chemistry/laureates/1926/svedberg-lecture.pdf May 2006.
§ Beams, H. W., “The Air Turbine Ultracentrifuge, Together with Some Results upon Ultracentrifuging the Eggs of Fucus serratus,” Journal of the Marine Biological Association, Mar., 1937,

Vol XXI, No. 2, 571–588.
° Introduction to Analytical Ultracentrifugation. http://www.beckman.com/literature/Bioresearch/361847.pdf May 2006.
# “Rotor Safety Guide.” Beckman Coulter. http://www.beckman.com/resourcecenter/labresources/centrifuges/pdf/rotor.pdf May, 2006.
** “Urgent Corrective Action Notice.” http://www.ehs.cornell.edu/lrs/Centrifuge/letter.pdf May 2006; “Laboratory Safety Incidents—Explosions.” American Industrial Hygiene

Association. http://www2.umdnj.edu/eohssweb/aiha/accidents/explosion.htm May 2006.
†† Beams, op. cit., p. 571.

550 lb.

810000g
250000g60000 rev>min,

150000g

7000g.12000 rev>min,

Sample tubes being loaded into an ultracentrifuge.
(Atherotech.)

http://nobelprize.org/chemistry/laureates/1926/svedberg-lecture.pdf
http://www.beckman.com/literature/Bioresearch/361847.pdf
http://www.beckman.com/resourcecenter/labresources/centrifuges/pdf/rotor.pdf
http://www.ehs.cornell.edu/lrs/Centrifuge/letter.pdf
http://www2.umdnj.edu/eohssweb/aiha/accidents/explosion.htm
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SUMMARY

1. Angular displacement, angular velocity, and angular acceleration are fundamental defined
quantities in rotational kinematics.

2. Torque and moment of inertia are important derived dynamic concepts. Torque is a mea-
sure of the effect of a force in changing an object’s rate of rotation. Moment of inertia is the
measure of an object’s inertial resistance to angular accelerations. The moment of inertia
depends on the distribution of the mass relative to the rotation axis.

3. The parallel-axis theorem, which follows from the definition of the moment of inertia,
often simplifies the calculation of I.

4. Newton’s second law for rotation, is derived from Newton’s second law and
the definitions of t, I, and a. It is an important relation for problems involving the rotation
of a rigid object about an axis of fixed direction.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Angular Velocity and Angular Acceleration

Angular velocity 9-2

Angular acceleration 9-4

Tangential velocity 9-8

Tangential acceleration 9-9

Centripetal acceleration 9-10

2. Equations for Rotation with Constant 9-5
Angular Acceleration

9-6

9-7

3. Moment of Inertia

System of particles 9-11

Continuous object 9-13

Parallel-axis theorem The moment of inertia about an axis a distance h from a parallel axis through the center of
mass is 

9-14

where is the moment of inertia about the axis through the center of mass and M is the
total mass of the object.

4. Energy

Kinetic energy for rotation about a 9-12
fixed axis

Kinetic energy for a rotating object 9-30

Power 9-25P � tv

K � 1
2Mv2

cm � 1
2 Icmv

2

K � 1
2 Iv2

Icm

I � Icm �Mh2

I � �r2dm
I � ©mir2i     (Definition)

v2 � v2
0 � 2a(u � u0)

u � u0 � v0t � 1
2at2

v � v0 � at

ac �
v2

r
� rv2

at � ra

vt � rv

a �
dv
dt

    (Definition)

v �
du
dt

    (Definition)

©text � Ia,
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TOPIC RELEVANT EQUATIONS AND REMARKS

5. Torque About an Axis The torque due to a force equals the product of the tangential component of the force and the
radial distance from the axis to the point of application of the force:

9-20

6. Newton’s Second Law for Rotation 9-19

Newton’s second law for rotation holds, even if the reference frame is noninertial, if the mo-
ment of inertia and the torques are calculated about an axis through the center of mass.

7. Nonslip Conditions If a string that is wrapped around a pulley wheel does not slip, the linear and angular quan-
tities are related by

9-22

9-23

8. Rolling Objects

Rolling without slipping 9-27

*Rolling with slipping When an object slips while rolling, Kinetic friction then tends to change both 
and v (increasing one while decreasing the other) until at which point rolling
without slipping occurs.

vcm � Rv,
vcmvcm � Rv.

vcm � Rv

at � Ra

vt � Rv

tnetext � a
i

tiext � Ia

t � Ftr � Fr sin f � F�

Answer to Concept Checks

9-1 Disk A has the greater moment of inertia. Mentally
divide disk A into two parts, the part closer to the axis
than one-eighth inch (Part 1), and the part farther from
the axis than one-eighth inch (Part 2). Part 2 alone
has the same mass and moment of inertia as does
disk B, so the additional moment of inertial of Part 1
gives disk A the greater moment of inertia.

9-2 Disk B has the greater moment of inertia. The two disks
have the same mass, but the mass of disk B is
distributed farther from its axis than the mass of disk A
is from its axis.

Answers to Practice Problems

9-1

9-2 (a)

9-3

9-4 (a) (b)

9-5

9-6 Approximately 25 times greater

9-8 downward, (b) downward

9-9

9-10

9-11 0.40

9-12 (a) (b)

9-13 No.

9-14 K � 5
14mv2

0

vcm � 5
7v0 .

tan f � 2msf � 1
2mg sin f,

20 J

594 N # m

F � mg>4a � 3g>4
I � 8ma2

1.26 m>s1.26 m>s,

vt � 1.88 m>s, at � 0, ac � 59.2 m>s2

500 rev>min � 52.4 rad>s314 rad>s

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

For all problems, use for the free-fall acceleration
and neglect friction and air resistance unless instructed to
do otherwise.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

9.81 m>s2

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM
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CONCEPTUAL PROBLEMS

1 • Two points are on a disk that is turning about a fixed
axis perpendicular to the disk and through its center at increasing
angular velocity. One point is on the rim and the other point is
halfway between the rim and the center. (a) Which point moves 
the greater distance in a given time? (b) Which point turns 
through the greater angle? (c) Which point has the greater speed?
(d) Which point has the greater angular speed? (e) Which point has
the greater tangential acceleration? ( f ) Which point has the greater
angular acceleration? (g) Which point has the greater centripetal
acceleration?

2 • True or false: (a) Angular speed and linear speed have the
same dimensions. (b) All parts of a wheel rotating about a fixed axis
must have the same angular speed. (c) All parts of a wheel rotating
about a fixed axis must have the same angular acceleration. (d) All
parts of a wheel rotating about a fixed axis must have the same cen-
tripetal acceleration.

3 • Starting from rest and rotating at constant angular accel-
eration, a disk takes 10 revolutions to reach an angular speed v.
How many additional revolutions at the same angular acceleration
are required for it to reach an angular speed of (a)
(b) (c) (d) (e)

4 • You are looking down from above at a merry-go-round
and observe that it is rotating counterclockwise and that its rotation
rate is slowing. If we designate counterclockwise as positive, what
is the sign of the angular acceleration?

5 • Chad and Tara go for a ride on a merry-go-round. Chad
sits on a pony that is from the rotation axis, and Tara sits on a
pony from the axis. The merry-go-round is traveling counter-
clockwise and is speeding up. Does Chad or Tara have (a) the larger
linear speed? (b) the larger centripetal acceleration? (c) the larger
tangential acceleration?

6 • Disk B was identical to disk A before a hole was drilled
though the center of disk B. Which disk has the largest moment of
inertia about its symmetry axis center? Explain your answer.

7 • CONTEXT-RICH The pitcher in a baseball game has a
blazing fastball. You have not been able to swing the bat in 
time to hit the ball. You are now just trying to make the bat
connect with the ball, hit the ball foul, and avoid a strikeout. 
So you decide to take your coach’s advice and grip the bat high
rather than at the very end. This change should increase bat speed;
thus, you will be able to swing the bat quicker and increase your
chances of hitting the ball. Explain how this theory works in terms
of the moment of inertia, angular acceleration, and torque of 
the bat.

8 • (a) Is the direction of an object’s angular velocity neces-
sarily the same as the direction net torque on it? Explain. (b) If net
torque and angular velocity are in opposite directions, what does
that tell you about the angular speed? (c) Can the angular velocity
be zero even if the net torque is not zero? If your answer is yes, give
an example.

9 • A disk is free to rotate about a fixed axis. A tangential
force applied a distance d from the axis causes an angular accelera-
tion a. What angular acceleration is produced if the same force is
applied a distance 2d from the axis? (a) (b) (c) (d)
(e)

10 • The moment of inertia of an object about an axis that
does not pass through its center of mass is ______ the moment of in-
ertia about a parallel axis through its center of mass: (a) always less
than, (b) sometimes less than, (c) sometimes equal to, (d) always
greater than.

a>4?
4a,a>2,2a,a,

SSM

4.0 m
2.0 m

50 rev?40 rev,30 rev,20 rev,
10 rev,2v?

11 • The motor of a merry-go-round exerts a constant
torque on it. As it speeds up from rest, the power output of the
motor (a) is constant, (b) increases linearly with the angular speed
of the merry-go-round, (c) is zero, (d) none of the above.
12 • A constant net torque acts on a merry-go-round from
startup until it reaches its operating speed. During this time,
the merry-go-round’s kinetic energy (a) is constant, (b) increases
linearly with angular speed, (c) increases quadratically as the
square of the angular speed, (d) none of the above. 

13 • ENGINEERING APPLICATION Most doors knobs are de-
signed so the knob is located on the side opposite the hinges (rather
than in the center of the door, for example). Explain why this prac-
tice makes doors easier to open.
14 • A wheel of radius R and angular speed v is rolling with-
out slipping toward the north on a flat, stationary surface. The ve-
locity of the point on the rim that is (momentarily) in contact with
the surface is (a) equal in magnitude to Rv and directed toward the
north, (b) equal to in magnitude Rv and directed toward the south,
(c) zero, (d) equal to the speed of the center of mass and directed to-
ward the north, (e) equal to the speed of the center of mass and di-
rected toward the south.
15 • A uniform solid cylinder and a uniform solid sphere
have equal masses. Both roll on a horizontal surface without slip-
ping. If their total kinetic energies are the same, then (a) the trans-
lational speed of the cylinder is greater than the translational
speed of the sphere, (b) the translational speed of the cylinder is less
than the translational speed of the sphere, (c) the translational
speeds of the two objects are the same, (d), (a), (b), or (c) could be
correct, depending on the radii of the objects.
16 • Two identical-looking 1.0-m-long pipes are each plugged
with of lead. In the first pipe, the lead is concentrated at the mid-
dle of the pipe, while in the second the lead is divided into two 5-kg
masses placed at opposite ends of the pipe. The ends of the pipes are
then sealed using four identical caps. Without opening either pipe,
how could you determine which pipe has the lead at the ends?
17 •• Starting simultaneously from rest, a coin and a hoop roll
without slipping down an incline. Which of the following statements
is true? (a) The hoop reaches the bottom first. (b) The coin reaches the
bottom first. (c) The coin and hoop arrive at the bottom simulta-
neously. (d) The race to the bottom depends on their relative masses.
(e) The race to the bottom depends on their relative diameters.
18 •• For a hoop of mass M and radius R that is rolling with-
out slipping, which is larger, its translational kinetic energy or its
kinetic energy relative to the center of mass? (a) Its translational ki-
netic energy is larger. (b) Its kinetic energy relative to the center of
mass is larger. (c) Both energies have the same magnitude. (d) The
answer depends on the radius of the hoop. (e) The answer depends
on the mass of the hoop.
19 •• For a disk of mass M and radius R that is rolling without
slipping, which is larger, its translational kinetic energy or its ki-
netic energy relative to the center of mass? (a) Its translational ki-
netic energy is larger. (b) Its kinetic energy relative to the center of
mass is larger. (c) Both energies have the same magnitude. (d) The
answer depends on the radius of the disk. (e) The answer depends
on the mass of the disk.
20 •• A perfectly rigid ball rolls without slipping along a per-
fectly rigid horizontal plane. Show that the frictional force acting on
the ball must be zero. Hint: Consider a possible direction for the action
of the frictional force and what effects such a force would have on the
velocity of the center of mass and on the angular velocity.
21 •• A spool is free to rotate about a fixed axis, and a string
wrapped around the axle of the spool causes the spool to rotate in
a counterclockwise direction (Figure 9-42a). However, if the spool is
set on a horizontal tabletop, the spool instead (given sufficient fric-
tional force between the table and the spool) rotates in a clockwise

10 kg

SSM
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direction and rolls to the right (Figure 9-42b). By considering torque
about the appropriate axes, show that these conclusions are both
consistent with Newton’s second law for rotations.
22 •• You want to locate the center of gravity of an arbitrarily
shaped flat object. You are told to suspend the object from a point,
and to suspend a plumb line from the same point. Then draw a ver-
tical line on the object to represent the plumb line. Next, you repeat
the process using a different suspension point. The center of grav-
ity will be at the intersection of the drawn lines. Explain the princi-
ple(s) behind this process.

ESTIMATION AND APPROXIMATION

23 • A baseball is thrown at and with a spin rate of
If the distance between the pitcher’s point of release

and the catcher’s glove is about estimate how many revolu-
tions the ball makes between release and catch. Neglect any effects
of gravity or air resistance on the ball’s flight.
24 •• Consider the Crab Pulsar, discussed on page 293. Justify
the statement that the loss in rotational energy is equivalent to the
power output of The total power radiated by the 
Sun is about Assume that the pulsar has a mass that is

, has a radius that is is rotating at about 
and has a rotational period that is increasing at 
25 •• A 14-kg bicycle has 1.2-m-diameter wheels, each with a
mass of The mass of the rider is Estimate the fraction
of the total kinetic energy of the rider–bicycle system that is associ-
ated with rotation of the wheels.
26 •• Why does toast falling off a table always land jelly-side
down? The question may sound silly, but it has been a subject of se-
rious scientific enquiry. The analysis is too complicated to repro-
duce here, but R. D. Edge and Darryl Steinert showed that a 
piece of toast, pushed gently over the edge of a table until it tilts 
off, typically falls off the table when it makes an angle of about 

with the horizontal (Figure 9-43) and at that instant has an 
angular speed of where is the length of one 
edge of the piece of toast (assumed to be square).* Assuming that a
piece of toast is jelly-side up, what side will it land on if it falls from
a 0.500-m-high table? If it falls from a 1.00-m-high table? Assume
that Ignore any forces due to air resistance. � � 10.0 cm.

�v � 0.9561g>�,
30°

38 kg.3.0 kg.

10�5 s>y.
30 rev>s,20 km,2 � 1030 kg

4 � 1026 W.
100000 stars.

61 feet,
1500 rev>min.

88 mi>h

SSM

27 •• Consider your moment of inertia about a vertical axis
through the center of your body, both when you are standing
straight up with your arms flat against your sides, and when you are
standing straight up holding your arms straight out to your sides.
Estimate the ratio of the moment of inertia with your arms straight
out to the moment of inertia with your arms flat against your sides.

ANGULAR VELOCITY, 
ANGULAR SPEED, 
AND ANGULAR ACCELERATION

28 • A particle moves with a constant speed of in a
90-m-radius circle. (a) What is its angular speed in radians per sec-
ond about the center of the circle? (b) How many revolutions does
it make in 

29 • A wheel released from rest is rotating with constant an-
gular acceleration of At after the release: (a) What
is its angular speed? (b) Through what angle has the wheel
turned? (c) How many revolutions has it completed? (d) What is
the linear speed and what is the magnitude of the linear accel-
eration of a point from the axis of rotation?

30 • MULTISTEP When a turntable rotating at 
is shut off, it comes to rest in Assuming constant angular ac-
celeration, find (a) the angular acceleration. During the find
(b) the average angular speed and (c) the angular displacement
in revolutions.

31 • A 12-cm-radius disk that begins to rotate about its axis at
rotates with a constant angular acceleration of At

(a) what is the angular speed of the disk, and (b) what are
the tangential and centripetal components of the acceleration of a
point on the edge of the disk?

32 • A 12-m-radius Ferris wheel rotates once each (a) What
is its angular speed (in radians per second)? (b) What is the linear
speed of a passenger? (c) What is the acceleration of a passenger?

33 • A cyclist accelerates uniformly from rest. After the
wheels have rotated (a) What is the angular acceleration of
the wheels? (b) What is the angular speed of the wheels at the end
of the 

34 • What is the angular speed of Earth in radians per second
as it rotates about its axis?

35 • A wheel rotates through in as it is brought to
rest with constant angular acceleration. Determine the wheel’s ini-
tial angular speed before braking began.

36 • A bicycle has 0.750-m-diameter wheels. The bicyclist ac-
celerates from rest with constant acceleration to in 
What is the angular acceleration of the wheels?

14.0 s.24.0 km>h
2.8 s5.0 rad

8.0 s?

3.0 rev.
8.0 s,

27 s.

t � 5.0 s,
8.0 rad>s2.t � 0,

26 s,
26 s.

33 rev>min

SSM0.30 m

6.0 s2.6 rad>s2 .

30 s?

25 m>s
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(b)

(a)

v

Fixed axis

30°

F I G U R E 9 - 4 3 Problem 26

* For readers interested in this problem and a host of others, we highly recommend
Robert Erlich’s wonderful book, Why Toast Lands Jelly-Side Down: Zen and the Art of
Physics Demonstrations.
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37 •• ENGINEERING APPLICATION The tape in a standard VHS
videotape cassette has a total length of which is enough for the
tape to play for (Figure 9-44). As the tape starts, the full reel has
a 45-mm outer radius and a 12-mm inner radius. At some point dur-
ing the play, both reels have the same angular speed. Calculate this
angular speed in radians per second and in revolutions per minute.
Hint: Between the two reels the tape moves at constant speed. SSM

2.0 h
246 m,

42 •• Use the parallel-axis theorem and the result for
Problem 41 to find the moment of inertia of the four-particle sys-
tem in Figure 9-45 about an axis that passes through the center
of mass and is parallel with the z axis. Check your result by di-
rect computation. 

43 • For the four-particle system of Figure 9-45, (a) find the
moment of inertia about the x axis, which passes through and

and (b) find the moment of inertia about the y axis, which
passes through and 

44 • Determine the moment of in-
ertia of a uniform solid sphere of mass M
and radius R about an axis that is tangent
to the surface of the sphere (Figure 9-46). 

45 •• A 1.00-m-diameter wagon
wheel consists of a thin rim having a
mass of and each with
a mass of Determine the mo-
ment of inertia of the wagon wheel
about its axis.

46 •• MULTISTEP Two point
masses and are separated by a
massless rod of length L. (a) Write an
expression for the moment of inertia I
about an axis perpendicular to the rod
and passing through it a distance x
from mass (b) Calculate and show that I is at a minimum
when the axis passes through the center of mass of the system.

47 •• A uniform rectangular plate has mass m and edges of
lengths a and b. (a) Show by integration that the moment of inertia
of the plate about an axis that is perpendicular to the plate and
passes through one corner is (b) What is the moment of
inertia about an axis that is perpendicular to the plate and passes
through its center of mass?

48 •• CONTEXT-RICH In attempting to ensure a spot on the pep
squad, you and your friend Corey research baton-twirling. Each of
you is using “The Beast” as a model baton: two uniform spheres,
each of mass and radius mounted at the ends of a
30.0-cm uniform rod of mass (Figure 9-47). You want to de-
termine the moment of inertia I of “The Beast” about an axis per-
pendicular to the rod and passing through its center. Corey uses the
approximation that the two spheres can be treated as point particles
that are from the axis of rotation, and that the mass of the
rod is negligible. You, however, decide to do an exact calculation.
(a) Compare the two results. (Give the percentage difference be-
tween them). (b) Suppose the spheres were replaced by two thin
spherical shells, each of the same mass as the original solid spheres.
Give a conceptual argument explaining how this replacement
would, or would not, change the value of I.

20.0 cm

60.0 g
5.00 cm,500 g

1
3m(a2 � b2).

dI>dxm1.

m2m1

1.20 kg.
6 spokes,8.00 kg

m2 .m1

Iym3 ,
m2Ix
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45 mm
12 mm

38 •• CONTEXT-RICH To start a lawn mower, you must pull on
a rope wound around the perimeter of a flywheel. After you pull
the rope for the flywheel is rotating at 4.5 revolutions per sec-
ond, at which point the rope disengages. This attempt at starting
the mower does not work, however, and the flywheel slows, coming
to rest after the disengagement. Assume constant acceleration
during both spin-up and spin-down. (a) Determine the average an-
gular acceleration during the 4.5-s spin-up and again during the
0.24-s spin-down. (b) What is the maximum angular speed reached
by the flywheel? (c) Determine the ratio of the number of revolu-
tions made during spin-up to the number made during spin-down.
39 ••• Mars orbits the Sun at a mean orbital radius of

and has an orbital period of Earth
orbits the Sun at a mean orbital radius of (a) The
Earth–Sun line sweeps out an angle of during one Earth–year.
Approximately what angle is swept out by the Mars-Sun line
during one Earth–year? (b) How frequently are Mars and the Sun in
opposition (on diametrically opposite sides of Earth)? 

CALCULATING 
THE MOMENT OF INERTIA

40 • A tennis ball has a mass of and a diameter of 
Find the moment of inertia about its diameter. Model the ball as a
thin spherical shell.

41 • Four particles, one at each of the four corners of a
square with 2.0-m-long edges, are connected by massless rods
(Figure 9-45). The masses of the particles are 
and Find the moment of inertia of the system
about the z axis. SSM

m2 � m4 � 4.0 kg.
m1 � m3 � 3.0 kg

7.0 cm.57 g

360°
149.6 Gm.

687 d.228 Gm (1 Gm � 109 m)

0.24 s

0.95 s,

2.0 m

2.0 m

m4

m3

m1

m2 x

z

y
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10.0 cm L =  30.0 cm 10.0 cm

500 g 500 g

Axis of
rotation

m =  60.0 g
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53 ••• Use integration to show that the moment of inertia of
a thin spherical shell of radius R and mass m about an axis
through its center is 

54 ••• According to one model, the density of Earth
varies with the distance r from the center of Earth as

where R is the radius of Earth and C is a
constant. (a) Find C in terms of the total mass M and the ra-
dius R. (b) According to this model, what is the moment of iner-
tia of Earth about an axis through its center. (See Problem 53.)

55 ••• Use integration to determine the moment of inertia about
its axis of a uniform right circular cone of height H, base radius R,
and mass M.

56 ••• Use integration to determine the moment of inertia of a
thin uniform disk of mass M and radius R about an axis in the plane
of the disk and passing through its center. Check your answer by
referring to Table 9-1.

57 ••• ENGINEERING APPLICATION, CONTEXT-RICH An adver-
tising firm has contacted your engineering firm to create a new ad-
vertisement for a local ice-cream stand. The owner of this stand
wants to add rotating solid cones (painted to look like ice-cream
cones, of course) to catch the eye of travelers. Each cone will rotate
about an axis parallel to its base and passing through its apex. The
actual size of the cones is to be decided upon, and the owner won-
ders if it would be more energy-efficient to rotate smaller cones
than larger ones. He asks your firm to write a report showing the
determination of the moment of inertia of a homogeneous right cir-
cular cone of height H, base radius R, and mass M. What is the re-
sult of your report?

TORQUE, MOMENT OF INERTIA, 
AND NEWTON’S SECOND LAW 
FOR ROTATION

58 • ENGINEERING APPLICATION, CONTEXT-RICH A firm
wants to determine the amount of frictional torque in their current
line of grindstones, so they can redesign them to be more energy ef-
ficient. To do this, they ask you to test the best-selling model, which
is basically a disk-shaped grindstone of mass and radius

that operates at When the power is shut off,
you time the grindstone and find it takes for it to stop rotat-
ing. (a) What is the angular acceleration of the grindstone? (Assume
constant angular acceleration.) (b) What is the frictional torque ex-
erted on the grindstone?

59 • A 2.5-kg 11-cm-radius cylinder, initially at rest, is free
to rotate about the axis of the cylinder. A rope of negligible mass
is wrapped around it and pulled with a force of Assuming
that the rope does not slip, find (a) the torque exerted on the
cylinder by the rope, (b) the angular acceleration of the cylinder,
and (c) the angular speed of the cylinder after

60 •• A grinding wheel is initially at rest. A constant exter-
nal torque of is applied to the wheel for giving
the wheel an angular speed of The external torque
is then removed, and the wheel comes to rest later. Find
(a) the moment of inertia of the wheel, and (b) the frictional
torque, which is assumed to be constant.

61 •• A pendulum consisting of a string of length L attached to
a bob of mass m swings in a vertical plane. When the string is at an
angle u to the vertical, (a) calculate the tangential acceleration of the
bob using (b) What is the torque exerted about the pivot
point? (c) Show that with gives the same tangen-
tial acceleration as found in Part (a).

at � La©t � Ia
©Ft � mat .

120 s
600 rev>min.

20.0 s,50.0 N # m

SSM0.50 s.

17 N.

31.2 s
730 rev>min.8.00 cm

1.70 kg

r � C 31.22 � (r>R)4,
SSM2mR2>3.
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49 •• The methane molecule has four hydrogen atoms
located at the vertices of a regular tetrahedron of edge length

with the carbon atom at the center of the tetrahedron
(Figure 9-48). Find the moment of inertia of this molecule for rota-
tion about an axis that passes through the centers of the carbon
atom and one of the hydrogen atoms. 

0.18 nm,

(CH4)
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50 •• A hollow cylinder has mass m, an outside radius and
an inside radius Use integration to show that the moment of
inertia about its axis is given by Hint: Review
Section 9-3, where the moment of inertia is calculated for a solid cylinder
by direct integration.

51 •• BIOLOGICAL APPLICATION While slapping the water’s
surface with his tail to communicate danger, a beaver must rotate it
about one of its narrow ends. Let us model the tail as a rectangle of
uniform thickness and density (Figure 9-49). Estimate its moment
of inertia about the line passing through its narrow end (dashed
line). Assume that the tail measures 15 by with a thickness of

and that the flesh has the density of water. 1.0 cm
30 cm

I � 1
2m(R2

2 � R2
1).

R1 .
R2 ,
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52 •• CONTEXT-RICH To prevent damage to her shoulders,
your elderly grandmother wants to purchase the rug beater
(Figure 9-50) with the lowest moment of inertia about its grip end.
Knowing you are taking physics, she asks your advice. There are
two models to choose from. Model A has a 1.0-m-long handle on a
40-cm-edge-length square, where the masses of the handle and
square are and respectively.
Model B has a 0.75-m-long handle and a 30-cm-
edge-length square, where the masses of the
handle and square are and re-
spectively. Which model should you recom-
mend? Determine which beater is easier to
swing from the very end by computing the
moment of inertia for both beaters.

0.60 kg,1.5 kg

0.50 kg,1.0 kg

F I G U R E 9 - 5 0

Problem 52
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65 • A 1.4-kg 15-cm-diameter solid sphere is rotating about its
diameter at (a) What is its kinetic energy? (b) If an ad-
ditional of energy are added to the kinetic energy, what is the
new angular speed of the sphere?

66 •• Calculate the kinetic energy of Earth due to its spinning
about its axis, and compare your answer with the kinetic energy of
the orbital motion of Earth’s center of mass about the Sun. Assume
Earth to be a homogeneous sphere of mass and radius

The radius of Earth’s orbit is 

67 •• A 2000-kg block is lifted at a constant speed of 
by a steel cable that passes over a massless pulley to a motor-driven
winch (Figure 9-53). The radius of the winch drum is 
(a) What is the tension in the cable? (b) What torque does the cable
exert on the winch drum? (c) What is the angular speed of the
winch drum? (d) What power must be developed by the motor to
drive the winch drum? SSM

30 cm.

8.0 cm>s1.5 � 1011 m.6.4 � 106 m.
6.0 � 1024 kg

SSM

5.0 mJ
70 rev>min.

62 ••• A uniform rod of mass M and length L is pivoted at one
end and hangs as in Figure 9-51 so that it is free to rotate without
friction about its pivot. It is struck a sharp horizontal blow a dis-
tance x below the pivot, as shown. (a) Show that, just after the rod
is struck, the speed of the center of mass of the rod is given by

where and are the average force and du-
ration, respectively, of the blow. (b) Find the horizontal component
of the force exerted by the pivot on the rod, and show that this 
force component is zero if This point (the point of impact
when the horizontal component of the pivot force is zero) is called
the center of percussion of the rod-pivot system. 

x � 2
3L.

¢tF0v0 � 3xF0 ¢t>(2ML),
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x

F0

63 ••• MULTISTEP A uniform horizontal disk of mass M and ra-
dius R is spinning about the vertical axis through its center with an
angular speed v. When the spinning disk is dropped onto a hori-
zontal tabletop, kinetic-frictional forces on the disk oppose its spin-
ning motion. Let be the coefficient of kinetic friction between the
disk and the tabletop. (a) Find the torque dt exerted by the force of
friction on a circular element of radius r and width dr. (b) Find the
total torque exerted by friction on the disk. (c) Find the time re-
quired for the disk to stop rotating.

ENERGY METHODS, INCLUDING
KINETIC ENERGY DUE TO ROTATION

64 • The particles in Figure 9-52 are connected by a very light
rod. They rotate about the y axis at (a) Find the speed of
each particle, and use it to calculate the kinetic energy of this sys-
tem directly from (b) Find the moment of inertia about the
y axis, calculate the kinetic energy from and compare
your result with your Part-(a) result. 

K � 1
2 Iv2,

© 1
2miv

2
i .

2.0 rad>s.

mk
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r

ω

0 4010 20 30–10–20

3.0 kg 3.0 kg
1.0 kg 1.0 kg

–30–40

y

x, cm

Light
od

    = 2.0 rad/s
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T

T

r = 30 cm

mg

68 •• A uniform disk that has a mass M and a radius R can ro-
tate freely about a fixed horizontal axis that passes through its cen-
ter and is perpendicular to the plane of the disk. A small particle
that has a mass m is attached to the rim of the disk at the top,
directly above the pivot. The system is gently nudged, and the disk
begins to rotate. As the particle passes through its lowest point, 
(a) what is the angular speed of the disk, and (b) what force is
exerted by the disk on the particle?

69 •• A uniform 1.5-m-diameter ring is pivoted at a point on its
perimeter so that it is free to rotate about a horizontal axis that is
perpendicular to the plane of the ring. The ring is released with the
center of the ring at the same height as the axis (Figure 9-54). (a) If
the ring was released from rest, what was its maximum angular
speed? (b) What minimum angular speed must it be given at release
if it is to rotate a full 360°?

F I G U R E 9 - 5 4 Problem 69
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76 •• The system in Figure 9-57 is released from rest when the
30-kg block is above the ledge. The pulley is a uniform 5.0-kg
disk with a radius of Just before the 30-kg block hits the
ledge, find (a) its speed, (b) the angular speed of the pulley, and
(c) the tensions in the strings. (d) Find the time of descent for the
30-kg block. Assume that the string does not slip on the pulley. 

10 cm.
2.0 m
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70 •• ENGINEERING APPLICATION, CONTEXT-RICH You set out
to design a car that uses the energy stored in a flywheel consisting
of a uniform 100-kg cylinder of radius R that has a maximum an-
gular speed of The flywheel must deliver an average of

of energy for each kilometer of distance. Find the smallest
value of R for which the car can travel without the flywheel
needing to be reenergized.

PULLEYS, YO-YOS, 
AND HANGING THINGS

71 •• The system shown
in Figure 9-55 consists of a
4.0-kg block resting on a
frictionless horizontal
ledge. This block is at-
tached to a string that
passes over a pulley,
and the other end of the string is attached to a
hanging 2.0-kg block. The pulley is a uniform
disk of radius and mass Find
the acceleration of each block and the tension
in the string.

72 •• For the system in Problem 71, the 
2.0-kg block is released from rest. (a) Find
the speed of the block after it falls a distance of (b) What is
the angular speed of the pulley at this instant?

73 •• For the system in Problem 71, if the (frictionless) ledge
were adjustable in angle, at what angle would it have to be tilted
upward so that once the system is set into motion the blocks will
continue to move at constant speed?

74 •• In the system shown in Figure 9-55, there is a 4.0-kg block
resting on a horizontal ledge. The coefficient of kinetic friction be-
tween the ledge and the block is 0.25. The block is attached to a string
that passes over a pulley, and the other end of the string is attached
to a hanging 2.0-kg block. The pulley is a uniform disk of radius
8.0 cm and mass Find the acceleration of each block and the
tensions in the segments of string between each block and the pulley.

75 •• A 1200-kg car is being raised over water by a winch. At
the moment the car is above the water (Figure 9-56), the gear-
box breaks, allowing the winch drum to spin freely as the car falls.
During the car’s fall, there is no slip-
ping between the (massless)
rope, the pulley wheel,
and the winch drum.
The moment of inertia
of the winch drum is

and the
moment of inertia of
the pulley wheel is

The ra-
dius of the winch
drum is and
the radius of the
pulley is 
Assume that the car
starts to fall from rest.
Find the speed of the
car as it hits the water. 

0.300 m.

0.800 m,

4.00 kg # m2.

320 kg # m2,

5.0 m

0.60 kg.

2.5 m.

SSM

0.60 kg.8.0 cm

300 km
2.00 MJ

400 rev>s.

F I G U R E 9 - 5 6

Problem 75

5.0 m

Winch
drum

Pulley
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2.0 m

m = 5.0 kg
  r = 10 cm
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77 •• A uniform solid sphere of
mass M and radius R is free to ro-
tate about a horizontal axis
through its center. A string is
wrapped around the sphere and
is attached to an object of mass m
(Figure 9-58). Assume that the
string does not slip on the sphere.
Find (a) the acceleration of the ob-
ject and (b) the tension in the string. 

78 •• Two objects, of masses 
and are connected by a string of
negligible mass that passes over a pulley with
frictionless bearings (Figure 9-59). The pulley is
a uniform 50.0-g disk with a radius of 
The string does not slip on the pulley. (a) Find
the accelerations of the objects. (b) What is the
tension in the string between the 500-g block
and the pulley? What is the tension in the string
between the 510-g block and the pulley? By
how much do these tensions differ? (c) What
would your answers be if you neglected the mass of the pulley?

4.00 cm.

m2 � 510 g,
m1 � 500 g

F I G U R E 9 - 5 9
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r = 4.00 cm

m = 50.0 g

m1g
m2g
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m1
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79 •• Two objects are attached to
ropes that are attached to two wheels on
a common axle, as shown in Figure 9-60.
The two wheels are attached together so
that they form a single rigid object. The
moment of inertia of the rigid object is

The radii of the wheels are
and (a) If
find such that there is

no angular acceleration of the wheels.
(b) If is placed on top of find
the angular acceleration of the wheels
and the tensions in the ropes.

80 •• The upper end of the string
wrapped around the cylinder in Figure 9-61
is held by a hand that is accelerated upward
so that the center of mass of the cylinder
does not move as the cylinder spins up. Find
(a) the tension in the string, (b) the angular
acceleration of the cylinder, and (c) the accel-
eration of the hand.

SSM

m1 ,12 kg

m2m1 � 24 kg,
R2 � 0.40 m.R1 � 1.2 m

40 kg # m2.

The system is then rewound, the object whose moment of iner-
tia I we wish to measure is placed on the platform, and the sys-
tem is again released from rest. The time required for the block
to drop the same distance D then provides the data needed to
calculate I. Using 
and (a) find the moment of inertia of the platform-
drum combination. (b) Find the moment of inertia of the platform-
drum-object combination. (c) Use your results for Parts (a) and (b)
to find the moment of inertia of the object.

OBJECTS ROTATING 
AND ROLLING WITHOUT SLIPPING

83 • A homogeneous 60-kg cylinder of radius is rolling
without slipping along a horizontal floor at a speed of What
is the minimum amount of work that was required to give it this
motion?

84 • An object is rolling without slipping. What percentage of
its total kinetic energy is its translational kinetic energy if the object
is (a) a uniform sphere, (b) a uniform cylinder, or (c) a hoop?

85 •• In 1993 a giant 400-kg yo-yo with a radius of 
was dropped from a crane at height of One end of the
string was tied to the top of the crane, so the yo-yo unwound as
it descended. Assuming that the axle of the yo-yo had a radius
of estimate its linear speed at the end of the fall.

86 •• A uniform cylinder of mass M and radius R has a
string wrapped around it. The string is held fixed, and the cylin-
der falls vertically as shown in Figure 9-61. (a) Show that the ac-
celeration of the cylinder is downward with a magnitude

(b) Find the tension in the string.

87 •• A 0.10-kg yo-yo consisting of two solid disks, each of ra-
dius is joined by a massless rod of radius A string is
wrapped around the rod. One end of the string is held fixed and is
under tension as the yo-yo is released. The yo-yo rotates as it de-
scends vertically. Find (a) the acceleration of the yo-yo, and (b) the
tension T.

88 •• A uniform solid sphere rolls down an incline without slip-
ping. If the linear acceleration of the center of mass of the sphere is
0.20g, then what is the angle the incline makes with the horizontal?

89 •• A thin spherical shell rolls down an incline without slip-
ping. If the linear acceleration of the center of mass of the shell is
0.20g, what is the angle the incline makes with the horizontal?

90 •• A basketball rolls without slipping down an incline of
angle u. The coefficient of static friction is Model the ball as a thinms.

1.0 cm.10 cm,

a � 2g>3.

SSM0.10 m,

57 m.
1.5 m

15 m>s.
18 cm

t2 � 6.8 s,
R � 10 cm,M � 2.5 kg,D � 1.8 m, t1 � 4.2 s,

t2

F I G U R E 9 - 6 1

Problems 80 and 86

T
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Problem 81

R

m1

m2

h θ
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M

R

81 •• A uniform cylinder of mass and radius R is piv-
oted on frictionless bearings. A massless string wrapped around
the cylinder is connected to a block of mass that is on a fric-
tionless incline of angle u as shown in Figure 9-62. The system is
released from rest when the block is at a vertical distance h
above the bottom of the incline. (a) What is the acceleration of
the block? (b) What is the tension in the string? (c) What is the
speed of the block as it reaches the bottom of the incline? 
(d) Evaluate your answers for the special case where 
and Are your answers what you would expect for this
special case? Explain. SSM

m1 � 0.
u � 90°

m2

m1
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Problem 79

82 •• A device for measuring the moment of inertia of an
object is shown in Figure 9-63. The circular platform is attached
to a concentric drum of radius R, and the platform and the drum
are free to rotate about a frictionless vertical axis. The string that
is wound around the drum passes over a frictionless and mass-
less pulley to a block of mass M. The block is released from rest,
and the time it takes for it to drop a distance D is measured.t1



(b) What is the cylinder’s linear acceleration (magnitude and
direction) relative to the table? (c) What is the magnitude and di-
rection of the linear acceleration of the center of mass of the cylin-
der relative to the slab?

98 ••• MULTISTEP If the force in Problem 96 acts over a dis-
tance d, in terms of the symbols given, find (a) the kinetic energy
of the slab, and (b) the total kinetic energy of the cylinder. (c) Show
that the total kinetic energy of the slab-cylinder system is equal to
the work done by the force.

99 ••• ENGINEERING APPLICATION Two large gears that are being
designed as part of a large machine are shown in Figure 9-66; each
is free to rotate about a fixed axis through its center. The radius
and moment of inertia of the smaller gear are and

respectively, and the radius and moment of inertia of
the larger gear are and respectively. The lever
attached to the smaller gear is long and has a negligible
mass. (a) If a worker will typically apply a force of to the end
of the lever, as shown, what will be the angular accelerations of 
the two gears? (b) Another part of the machine (not shown) will
apply a force tangentially to the outer edge of the larger gear to
temporarily keep the gear system from rotating. What should the
magnitude and direction of this force (clockwise or counterclock-
wise) be? SSM

2.0 N
1.0 m

16 kg # m2,1.0 m
1.0 kg # m2,

0.50 m
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spherical shell. Find (a) the acceleration of the center of mass of the
ball, (b) the frictional force acting on the ball, and (c) the maximum
angle of the incline for which the ball will roll without slipping.

91 •• A uniform solid cylinder of wood rolls without slipping
down an incline of angle u. The coefficient of static friction is 
Find (a) the acceleration of the center of mass of the cylinder, (b) the
frictional force acting on the cylinder, and (c) the maximum angle of
the incline for which the cylinder will roll without slipping.

92 •• Released from rest at the same height, a thin spherical
shell and solid sphere of the same mass m and radius R roll 
without slipping down an incline through the same vertical drop H
(Figure 9-64). Each is moving horizontally as it leaves the ramp. The
spherical shell hits the ground a horizontal distance L from the end
of the ramp and the solid sphere hits the ground a distance from
the end of the ramp. Find the ratio L� >L.

L�

ms.

F I G U R E  9 - 6 4 Problem 92

Solid
sphere

Spherical
shell

L’

L
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M

m

F

93 •• A uniform, thin cylindrical shell and a solid cylinder roll
horizontally without slipping. The speed of the cylindrical shell is
v. The solid cylinder and the hollow cylinder encounter an incline
that they climb without slipping. If the maximum height they reach
is the same, find the initial speed of the solid cylinder.

94 •• A thin cylindrical shell and a solid sphere start from rest
and roll without slipping down a 3.0-m-long inclined plane. The
cylinder arrives at the bottom of the incline after the sphere.
Determine the angle the incline makes with the horizontal.

95 •• A wheel has a thin 3.0-kg rim and four spokes, each of
mass Find the kinetic energy of the wheel when it is rolling
at on a horizontal surface.

96 ••• A uniform solid cylinder of mass M and radius R is at
rest on a slab of mass m, which in turn rests on a horizontal, fric-
tionless table (Figure 9-65). If a horizontal force is applied to the
slab, it accelerates and the cylinder rolls without slipping. Find the
acceleration of the slab in terms of M, R, and F.

F
S

6.0 m>s1.2 kg.

2.4 s

SSMv�

97 ••• (a) Find the angular acceleration of the cylinder in
Problem 96. Is the cylinder rotating clockwise or counterclockwise?

F I G U R E  9 - 6 6 Problem 99

2 N

100 ••• ENGINEERING APPLICATION, CONTEXT-RICH As the chief
design engineer for a major toy company, you are in charge of de-
signing a “loop-the-loop” toy for youngsters. The idea, as shown in
Figure 9-67, is that a ball of mass m and radius r will roll down an
inclined track and around the loop without slipping. The ball starts
from rest at a height h above the tabletop that supports the whole
track. The loop radius is R. Determine the minimum height h, in
terms of R and r, for which the ball will remain in contact with the
track during the whole of its loop-the-loop journey. (Do not neglect
the size of the ball’s radius when doing this calculation.) 

F I G U R E  9 - 6 7 Problem 100

h

r

R
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ROLLING WITH SLIPPING

101 •• A bowling ball of mass M and radius R is released so that
at the instant it touches the floor it is moving horizontally with a
speed and is not rotating. It slides for a time a distance s1 be-
fore it begins to roll without slipping. (a) If is the coefficient of ki-
netic friction between the ball and the floor, find and the final
speed of the ball. (b) Find the ratio of the final kinetic energy to
the initial kinetic energy of the ball. (c) Evaluate and for

and

102 •• CONTEXT-RICH During a game of pool, the cue ball (a
uniform sphere of radius r) is at rest on the horizontal pool table
(Figure 9-68). You strike the ball horizontally with your cue stick,
which delivers a large horizontal force of magnitude for a short
time. The stick strikes the ball at a point a vertical height h above
the tabletop. Assume that the striking location is above the ball’s
center. Show that the ball’s angular speed v is related to the initial
linear speed of its center of mass by 
Estimate the ball’s rotation rate just after the hit using reasonable
estimates for h, r, and vcm.

v � (5>2)vcm(h � r)>r2.vcm

F0

mk � 0.060.v0 � 8.0 m>s v1s1 , t1 ,
v1

s1 , t1 ,
mk

t1v0

107 •• A bowling ball of radius R has an initial speed down
the lane and a forward spin just after its release. The co-
efficient of kinetic friction is (a) What is the speed of the ball just
as it begins rolling without slipping? (b) For how long a time does
the ball slide before it begins rolling without slipping? (c) What dis-
tance does the ball slide down the lane before it begins rolling with-
out slipping?

GENERAL PROBLEMS

108 •• The radius of a small playground merry-go-round is
To start it rotating, you wrap a rope around its perimeter and

pull with a force of for During this time, the merry-go-
round makes one complete rotation. Neglect any effects of friction.
(a) Find the angular acceleration of the merry-go-round. (b) What
torque is exerted by the rope on the merry-go-round? (c) What is
the moment of inertia of the merry-go-round?

109 •• A uniform 2.00-m-long stick is raised at an angle of to
the horizontal above a sheet of ice. The bottom end of the stick rests
on the ice. The stick is released from rest. The bottom end of the
stick remains in contact with the ice at all times. How far will the
bottom end of the stick have traveled during the time the rest of the
stick is falling to the ice? Assume that the ice is frictionless.

110 •• A uniform 5.0-kg disk has a radius of and is pivoted
so that it rotates freely about its axis (Figure 9-70). A string wrapped
around the disk is pulled with a force equal to (a) What is the
torque being exerted by this force about the rotation axis? (b) What
is the angular acceleration of the disk? (c) If the disk starts from rest,
what is its angular speed after (d) What is its kinetic energy
after the (e) What is the angular displacement of the disk during
the ( f ) Show that the work done by the torque, equals the
kinetic energy. 

t¢u,5.0 s?
5.0 s?

5.0 s?

20 N.

0.12 m

30°

12 s.260 N
2.2 m.

mk .
v0 � 3v0 >R v0
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2R
3

R

F I G U R E 9 - 7 0 Problem 110

5.0 kg

R

20 N

rh

103 •• A uniform solid sphere is set rotating about a horizontal
axis at an angular speed and then is placed on the floor with its
center of mass at rest. If the coefficient of kinetic friction between
the sphere and the floor is find the speed of the center of mass
of the sphere when the sphere begins to roll without slipping.

104 •• A uniform solid ball that has a mass of and a radius
of rests on a horizontal surface. A sharp force is applied to
the ball in a horizontal direction above the horizontal sur-
face. During impact the force increases linearly from to

in and then it decreases linearly to in
(a) What is the speed of the ball just after impact? (b)

What is the angular speed of the ball after impact? (c) What is the
speed of the ball when it begins to roll without slipping? (d) How
far does the ball travel along the surface before it begins to roll
without slipping? Assume that 

105 •• A 0.16-kg billiard ball whose radius is is given
a sharp blow by a cue stick. The applied force is horizontal and
the line of action of the force passes through the center of the
ball. The speed of the ball just after the blow is and the
coefficient of kinetic friction between the ball and the billiard
table is 0.60. (a) How long does the ball slide before it begins to
roll without slipping? (b) How far does it slide? (c) What is its
speed once it begins rolling without slipping?

106 •• A billiard ball that is initially at rest is given a sharp
blow by a cue stick. The force is horizontal and is applied at a
distance below the centerline, as shown in Figure 9-69. The
speed of the ball just after the blow is and the coefficient of ki-
netic friction between the ball and the billiard table is (a)
What is the angular speed of the ball just after the blow? (b)
What is the speed of the ball once it begins to roll without slip-
ping? (c) What is the kinetic energy of the ball just after the hit? 

mk .
v0

2R>3
SSM

4.0 m>s,

3.0 cm

mk � 0.50.

1.0 � 10�4 s.
0.0 N1.0 � 10�4 s,40.0 kN
0.0 N

9.0 cm
5.0 cm

20 g

mk ,

v0
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111 •• A uniform 0.25-kg thin rod that has an length is
free to rotate about a fixed horizontal axis perpendicular to and
through one end of the rod. It is held horizontal and released.
Immediately after it is released, what is (a) the acceleration of the
center of the rod, and (b) the initial acceleration of the free end of
the rod? (c) What is the speed of the center of mass of the rod when
the rod is (momentarily) vertical?

112 •• A marble of mass M and radius R rolls without slipping
down the track on the left from a height as shown in Figure 9-71.
The marble then goes up the frictionless track on the right to a
height Find h2 .h2 .

h1 ,

80-cm

118 •• ENGINEERING APPLICATION The roof of the student
dining hall at your college will be supported by high cross-braced
wooden beams attached in the shape of an upside-down L
(Figure 9-73). Each vertical beam is high and wide, and
the horizontal cross-member is long. The mass of the vertical
beam is and the mass of the horizontal beam is 
As the workers were building the hall, one of these structures
started to fall over before it was anchored into place. (Luckily they
stopped it before it fell.) (a) If it started falling from an upright po-
sition, what was the initial angular acceleration of the structure?
Assume that the bottom did not slide across the floor and that it
did not fall out of plane; that is, during the fall, the structure
remained in the vertical plane defined by the initial position of
the structure. (b) What would be the magnitude of the initial linear
acceleration of the upper right corner of the horizontal beam?
(c) What would the horizontal component of the initial linear
acceleration be at this same location? (d) Estimate the structure’s
rotational speed at impact. 

280 kg.350 kg,
8.0 ft

2.0 ft10.0 ft

r

2.0 ft

8.0 ft

12.0 ft

2.0 ft
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h1

h2
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113 •• A uniform 120-kg disk with a radius equal to 
initially rotates with an angular speed of A con-
stant tangential force is applied at a radial distance of 
from the axis. (a) How much work must this force do to stop the
wheel? (b) If the wheel is brought to rest in what torque
does the force produce? What is the magnitude of the force? 
(c) How many revolutions does the wheel make in these

114 •• A day-care center has a merry-go-round that consists
of a uniform 240-kg circular wooden platform in diame-
ter. Four children run alongside the merry-go-round and push
tangentially along the platform’s circumference until, starting
from rest, the merry-go-round is spinning at 
During the spin-up: (a) If each child exerts a sustained force
equal to how far does each child run? (b) What is the an-
gular acceleration of the merry-go-round? (c) How much work
does each child do? (d) What is the increase in the kinetic energy
of the merry-go-round?

115 •• A uniform 1.5-kg hoop with a 65-cm radius has a string
wrapped around its circumference and lies flat on a horizontal fric-
tionless table. The free end of the string is pulled with a constant
horizontal force equal to and the string does not slip on the
hoop. (a) How far does the center of the hoop travel in 
(b) What is the angular speed of the hoop after 

116 •• A hand-driven grinding wheel is a uniform 60-kg disk
with a 45-cm radius. It has a handle of negligible mass from
the rotation axis. A compact 25-kg load is attached to the handle
when it is at the same height as the horizontal rotation axis.
Ignoring the effects of friction, find (a) the initial angular accelera-
tion of the wheel, and (b) the maximum angular speed of the wheel.

117 •• A uniform disk of radius R and mass M is pivoted about
a horizontal axis parallel to its symmetry axis and passing through
a point on its perimeter, so that it can swing freely in a vertical
plane (Figure 9-72). It is released from rest with its center of mass at
the same height as the pivot. (a) What is the angular speed of the
disk when its center of mass is directly below the pivot? (b) What
force is exerted by the pivot on the disk at this moment? 

65 cm

3.0 s?
3.0 s?

5.0 N

26 N,

2.14 rev>min.

4.00 m

SSM2.5 min?

2.5 min,

0.60 m
1100 rev>min.

1.4 m

119 •• CONTEXT-RICH You are participating in league bowling
with your friends. Time after time, you notice that your bowling
ball rolls back to you without slipping on the flat section of track.
When the ball encounters the slope that brings it up to the ball re-
turn, it is moving at The length of the sloped part of the
track is The radius of the bowling ball is (a) What is11.5 cm.2.50 m.

3.70 m>s.
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the angular speed of the ball before it encounters the slope? (b) If the
speed with which the ball emerges at the top of the incline is 
what is the angle (assumed constant) that the sloped section of the
track makes with the horizontal? (c) What is the magnitude of 
the angular acceleration of the ball while it is on the slope?

120 •• Figure 9-74 shows a hollow cylinder that has a length
equal to a mass equal to and radius equal to 
The cylinder is free to rotate about a vertical axis that passes
through its center and is perpendicular to the cylinder. Two objects
are inside the cylinder. Each object has a mass equal to and
is attached to a spring that has a force constant k and an unstressed
length equal to The inside walls of the cylinder are friction-
less. (a) Determine the value of the force constant if the objects are
located from the center of the cylinder when the cylinder
rotates at (b) How much work is required to bring the
system from rest to an angular speed of 24 rad>s?

24 rad>s.
0.80 m

0.40 m.

0.20 kg

0.20 m.0.80 kg,1.80 m,

SSM

0.40 m>s,
magnitude of the angular acceleration of the cylinder is twice the
magnitude of the angular acceleration needed for rolling without
slipping, so that the bottom point on the cylinder slides backward
against the table. (b) Find the magnitude and direction of the fric-
tional force between the table and cylinder that would be needed
for the cylinder to roll without slipping. What would be the magni-
tude of acceleration of the cylinder in this case?

125 ••• SPREADSHEET Let us calculate the position y of the
falling load attached to the winch in Example 9-8 as a function of
time by numerical integration. Let the direction be straight
downward. Then or

where t is the time taken for the bucket to fall a distance is a
small increment of and Hence, we can calculate t as
a function of d by numerical summation. Make a graph of y versus
t between and Assume that 

and Use 
Compare this position to the position of the falling load if it were in
free-fall.

126 ••• Figure 9-75 shows a solid cylin-
der that has mass M and radius R to which
a second solid cylinder that has mass m and
radius r is attached. A string is wound about
the smaller cylinder. The larger cylinder
rests on a horizontal surface. The coefficient
of static friction between the larger cylinder
and the surface is If a light tension is ap-
plied to the string in the vertical direction,
the cylinder will roll to the left; if the ten-
sion is applied with the string horizontally
to the right, the cylinder rolls to the right.
Find the angle between the string and the horizontal that will allow
the cylinder to remain stationary when a light tension is applied to 
the string. 

127 ••• In problems dealing with a pulley with a nonzero mo-
ment of inertia, the magnitude of the tensions in the ropes hanging
on either side of the pulley are not equal. The difference in the ten-
sion is due to the static frictional force be-
tween the rope and the pulley; however,
the static frictional force cannot be made
arbitrarily large. Consider a massless
rope wrapped partly around a cylinder
through an angle (measured in radi-
ans). It can be shown that if the tension
on one side of the pulley is T, while the
tension on the other side is 
the maximum value of that can be
maintained without the rope slipping is

where is the coefficient
of static friction. Consider the Atwood’s
machine in Figure 9-76: the pulley has a
radius the moment of inertia
is and the coefficient of
static friction between the wheel and the
string is (a) If the tension on
one side of the pulley is what is the
maximum tension on the other side that
will prevent the rope from slipping on
the pulley? (b) What is the acceleration of
the blocks in this case? (c) If the mass of one of the hanging blocks
is what is the maximum mass of the other block if, after the
blocks are released, the pulley is to rotate without slipping? SSM

1.0 kg,

10 N,
ms � 0.30.

I � 0.35 kg # m2,
R � 0.15 m,

msT�max � Tems¢u,

T�
T� (T� 
 T),

¢u

ms .

SSM

¢y� � 0.10 m.mc � 3.50 kg.L � 10.0 m,mb � 5.0 kg,
R � 0.50 m,mw � 10.0 kg,2.00 s.0 s

y� � N¢y�.y�,
y, ¢y�

t � �
y

0

1
v(y�)

dy� � a
N

i�0

1
v(y�i)

¢y�

v(y) � dy>dt, �y
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1.8 m

0.2 m

0.4 m

0.2 kg0.2 kg

0.4 m

0.8 kg

r

Mm

R

121 •• A popular classroom demonstration involves taking a
meterstick and holding it horizontally at the 0.0-cm end with a
number of pennies spaced evenly along its surface. If the hand
is suddenly relaxed so that the meterstick pivots freely about the
0.0-cm mark under the influence of gravity, an interesting thing
is seen during the first part of the stick’s rotation: the pennies
nearest the 0.0-cm mark remain on the meterstick, while those
nearest the 100-cm mark are left behind by the falling meterstick.
(This demonstration is often called the “faster than gravity”
demonstration.) Suppose this demonstration is repeated without
any pennies on the meterstick. (a) What would the initial acceler-
ation of the 100.0-cm mark then be? (The initial acceleration is the
acceleration just after the release.) (b) What point on the meter-
stick would then have an initial acceleration greater than g?

122 •• A solid metal rod long is free to pivot without
friction about a fixed horizontal axis perpendicular to the rod
and passing through one of its ends. The rod is held in a hori-
zontal position. Small coins, each of mass m, are placed on the
rod from the pivot. If
the free end is now released, calculate the initial force exerted on
each coin by the rod. Assume that the masses of the coins can be
ignored in comparison to the mass of the rod.

123 •• Suppose that for the system described in Problem 120,
the force constants are each The system starts from rest and
slowly accelerates until the masses are from the center of the
cylinder. How much work was done in the process?

124 ••• A string is wrapped around a uniform solid cylinder of
radius R and mass M that rests on a horizontal frictionless surface.
(The string does not touch the surface because there is a groove cut
in the surface to provide space for the string to clear.) The string is
pulled horizontally from the top with force F. (a) Show that the

0.80 m
60 N>m.

25 cm, 50 cm, 75 cm, 1 m, 1.25 m, and 1.5 m

1.5 m

SSM
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129 ••• A uniform rod that has a length L and a mass M is free to ro-
tate about a horizontal axis through one end, as shown in Figure 9-78.
The rod is released from rest at Show that the parallel and
perpendicular components of the force exerted by the axis on the
rod are given by and 
where is the component parallel with the rod and is the com-
ponent perpendicular to the rod. 

F⊥F7 F⊥� 1
4Mg sin u,F7 � 1

2Mg(5 cos u � 3 cos u0)

u � u0 .
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R r

T
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L

M

θ

128 ••• A massive, uniform cylinder has a mass m and a ra-
dius R (Figure 9-77). It is accelerated by a tension force that is
applied through a rope wound around a light drum of radius r
that is attached to the cylinder. The coefficient of static friction is
sufficient for the cylinder to roll without slipping. (a) Find the fric-
tional force. (b) Find the acceleration a of the center of the cylinder.
(c) Show that it is possible to choose r so that a is greater than 
(d) What is the direction of the frictional force in the circumstances
of Part (c)?

T>m.

T
S
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Momentum

10-1 The Vector Nature of Rotation

10-2 Torque and Angular Momentum

10-3 Conservation of Angular Momentum

10-4 Quantization of Angular Momentum

A
s with conservation of energy and conservation of linear momentum, con-
servation of angular momentum is one of the basic principles of physics.
Experimental evidence shows that angular momentum is never created
nor destroyed.

In this chapter, we extend our study of rotational motion to situations in
which the direction of the axis of rotation may change. Angular velocity,
angular acceleration, and torque are presented in Chapter 9. Here we begin
by introducing the vector nature of these quantities and of angular momen-
tum, which is the rotational analog of linear momentum. We then show that
the net torque acting on a system equals the time rate of change of its
angular momentum. Angular momentum is conserved in systems that have
zero net external torque. Like conservation of linear momentum, conserva-
tion of angular momentum is a fundamental law of nature, relating to even
atoms, molecules, subatomic particles, and photons.

10
C H A P T E R

In order to aim the Hubble telescope

in a new direction the telescope

must rotate. How is this

accomplished? (See Example 10-7.)

?

331

THE HUBBLE SPACE TELESCOPE WAS
PLACED IN ORBIT AND PUT INTO
OPERATION IN 1990. ALMOST
IMMEDIATELY A MAJOR FLAW IN ITS
PRIMARY MIRROR WAS DISCOVERED.
HOWEVER, IN 1993 A SERVICE SHIP
VISITED THE TELESCOPE AND
CORRECTED THE PROBLEM. SINCE THEN,
THE HUBBLE HAS PROVIDED
SPECTACULAR IMAGES OF THE
UNIVERSE. THE IMPACT OF THESE
IMAGES HAS BEEN TO ENRICH AND
EXTEND OUR KNOWLEDGE ABOUT THE
UNIVERSE. THE HUBBLE TELESCOPE IS
AN EXTRAORDINARY SCIENTIFIC
INSTRUMENT. (NASA.)

*
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F I G U R E  1 0 - 4* The angle between two vectors is the angle between their directions in space.

10-1 THE VECTOR NATURE OF ROTATION

In Chapter 9, we indicated the direction of rotation about an axis by assigning
plus and minus signs to indicate the direction of the angular velocity, just as in
Chapter 2 we used plus and minus signs to indicate the direction of the velocity
in one-dimensional motion. However, plus and minus signs are not adequate to
specify the direction of the angular velocity if the direction of the rotation axis is
not fixed in space. This inadequacy is overcome by treating the angular velocity
as a vector quantity directed along the rotation axis. Consider the rotating disk
in Figure 10-1. If the rotation is directed as shown, is directed as shown; if the
rotation direction is reversed, so is the direction of The convention relating the
direction of with the direction of rotation is specified by a convention called the
right-hand rule. You can obtain the direction of 
by curling the fingers of your right hand in the di-
rection of rotation (Figure 10-2); your thumb then
points along the rotation axis in the direction of 

In Chapter 9, we indicated the direction of
torque about an axis by assigning plus and minus
signs to indicate the direction of the torque. In this
chapter, we define the torque about a point as a
vector quantity, and, as with the direction of is
specified by a right hand rule. Figure 10-3 shows a force acting on a particle at some
position relative to the origin . The torque about exerted by this force is de-
fined as a vector that is perpendicular to both and and has magnitude 
where is the angle between the directions of and If and are both per-
pendicular to the z axis, as in Figure 10-3, the torque vector is parallel to the z axis.
If is applied to the rim of a disk of radius as shown in Figure 10-4, the torque
vector has the magnitude and is along the axis of rotation in the direction shown.

THE VECTOR PRODUCT

Torque is expressed mathematically as the vector product of and 

10-1

(Because of the used to indicate this type of multiplication, the vector product
is also called the cross product.) The vector product of two vectors and is de-
fined to be a vector whose magnitude equals the area of the parallelo-
gram formed by and (Figure 10-5). The vector is perpendicular to both 
and in the direction of the thumb of your right hand if you curl your fingers from
the direction of toward the direction of (Figure 10-6). If is the angle between

and * and is a unit vector that is perpendicular to both and in the di-
rection of the vector product of and is

10-2

DEFINITION—VECTOR PRODUCT

It follows from the definition of the vector product that

10-3
and

10-4

Note that the order in which two vectors are multiplied in a vector product
makes a difference. Below is a Problem-Solving Strategy that should help you
work with the vector product.
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F I G U R E  1 0 - 2 (a) When the fingers of the
right hand curl in the direction of rotation, the
thumb points in the direction of (b) Looked
at another way, the direction of is that of the
advance of a rotating right-hand screw.
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ω
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F I G U R E  1 0 - 3 If and are both
perpendicular to the z axis, then is parallel
with the z axis.
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Right-handed system ( î × ĵ = k̂)

Left-handed system ( î × ĵ = k̂)
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F I G U R E  1 0 - 9 A right-handed and a left-
handed coordinate system. In this book, only
right-handed coordinate systems are used.
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φ

C = A x B

B

A

F I G U R E  1 0 - 5 The vector product 
is a vector that is perpendicular to both 
and , and has a magnitude , which
equals the area of the parallelogram shown.

AB sin fB
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A
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A
S
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C = A x B

F I G U R E  1 0 - 6 The direction of is
given by the right-hand rule when the fingers
are rotated from the direction of toward 
through the angle .f

B
S

A
S

A
S

� B
S

PROBLEM-SOLVING STRATEGY

Finding the Vector Product of Two Vectors

PICTURE At times it is easier to find a vector product of two vectors by using
the equation At other times it is easier to find the vector
product using the Cartesian components of the two vectors.

SOLVE

1. The vector product obeys a distributive law under addition:

10-5

2. If and are functions of some variable such as t, the derivative of
follows the usual product rule for derivatives:

10-6

3. The unit vectors and (Figure 10-7), which are mutually
perpendicular, have vector products given by

and 10-7a

(Reversing the order of multiplication gives
and in accord with Equation 10-4. A tool for remembering
this is shown in Figure 10-8. Furthermore,

10-7b

CHECK Make sure that your vector products make sense. For example, the
vector product of two vectors is a vector and is perpendicular to each of
the two vectors. In addition, check your work to make certain you did not
inadvertently reverse the order of the two vectors being multiplied, and thus
create a sign error.

TAKING IT FURTHER Any coordinate system for which Equations 10-7a and
10-7b hold is called a right-handed coordinate system (Figure 10-9). Only right-
handed coordinate systems are used in this book.

in � in � jn � jn � kn � kn � 0

in � kn � �jn,
kn � jn � �injn � in � �kn,
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d
dt

(A
S

� B
S

) � aA
S

�
dB

S

dt
b � a dAS
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F I G U R E  1 0 - 8 Taking the vector product
by going around this figure in the direction of
the arrows (clockwise) and the sign is positive

Going around against the arrows
and the sign is negative (in � kn � �jn).
(in � jn � kn).
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Example 10-1 Vector Products and Dot Products

If and find 

PICTURE Express in terms of its Cartesian components and solve for each Cartesian com-
ponent of using the given information.

SOLVE

B
S

B
S

B
S

.A
S # B

S
� 12,A

S
� B

S
� 9in,A

S
� 3jn,

1. Express in terms of its Cartesian components. The task is
to solve for each of these components:

B
S

B
S

� Bx i
n � By j

n � Bzk
n

2. We are given Evaluate and simplify using
Equation 6-15:

A
S # B

S
A
S # B

S
� 12.

� 0 � 3By � 0 � 3By

� 3Bx j
n # in � 3By j

n # jn � 3Bz j
n # knA

S # B
S

� 3jn # (Bx i
n � By j

n � Bzk
n)

3. Set the step-2 result equal to 12 and solve for By: 3By � 12,    so By � 4

4. We are given Evaluate and simplify
using Equations 10-7a and 10-7b:

A
S

� B
S

A
S

� B
S

� 9in.

� 3Bx(�kn) � 3By(0) � 3Bz(in) � 3Bz i
n � 3Bxk

n

� 3Bx j
n � in � 3By j

n � jn � 3Bz j
n � knA

S
� B

S
� 3jn � (Bx i

n � By j
n � Bzk

n)

5. Set the step-4 result equal to and solve for the remaining
components of B

S
:

9in

so

and

4jn � 3kn‹ B
S

� 0in � 4jn � 3kn �

Bx � 0Bz � 3

3Bz i
n � 3Bxk

n � 9in
A
S

� B
S

� 9in

CHECK The vector product of any two vectors is perpendicular to both vectors
(except when the vector product is equal to zero). Because we expect to be
perpendicular to which means we expect the x component of to be zero. Our calculated
value of meets this expectation.

10-2 TORQUE AND ANGULAR MOMENTUM

Figure 10-10 shows a particle of mass m moving with a velocity at a position 
relative to the origin O. The linear momentum of the particle is The
angular momentum of the particle relative to the origin O is defined to be 
the vector product of and 

10-8

ANGULAR MOMENTUM OF A POINT PARTICLE DEFINED
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* In more advanced treatments Equation 10-9 is valid about any axis, but I is a tensor of rank 3.

If and are both perpendicular to the z axis, as in Figure 10-10, is parallel
to the z axis and is given by Like torque, angular mo-
mentum is defined relative to a point in space; in this case the angular momentum is
defined about the origin.

Figure 10-11 shows a particle of mass m attached to a circular disk of negligible
mass moving in a circle in the xy plane with its center at the origin. The disk is spin-
ning about the z axis with angular speed The speed of the particle and its angu-
lar speed are related by The angular momentum of the particle relative to the
center of the disk is

Note: In this example the angular momentum vector is in the same direction as
the angular velocity vector.

Because is the moment of inertia for a single particle about the z axis, we have

The angular momentum of this particle about a general point on the z axis is not
parallel to the angular velocity vector. Figure 10-12 shows the angular momentum
vector for the same particle attached to the same disk, but with computed
about a point on the z axis that is not at the center of the circle. In this case, the an-
gular momentum is not parallel to the angular velocity vector which is parallel
to the z axis.

V
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L
S

�L
S
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L
S

� mr2VS � IVS

mr2

L
S

� rS � pS � rS � mvS � rmv sin 90° kn � rmvkn � mr2vkn � mr2VS

v � rv.
vv.

L
S

� rS � pS � mvr sinf kn .
L
S

pSrS

In Figure 10-13, we attach a second particle of equal mass to the spinning disk at
a point diametrically opposite this first particle. The angular-momentum vectors 
and are shown relative to the same point The total angular momen-
tum of the two-particle system is again parallel to the angular velocity
vector In this case, the axis of rotation, the z axis, passes through the center of mass
of the two-particle system, and the mass distribution is symmetric about this axis.
Such an axis is called a symmetry axis. For any system of particles that rotates about
a symmetry axis, the total angular momentum (which is the sum of the angular mo-
menta of the individual particles) is parallel to the angular velocity and is given by

10-9

ANGULAR MOMENTUM OF A SYSTEM ROTATING ABOUT A SYMMETRY AXIS

where I is a scalar.*
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PICTURE For (a) and (b) we use because we are modeling the car as a point par-
ticle. For (c), we use because we are modeling the disk as a rigid extended body—a
disk. Draw a figure and apply the right-hand rule to find the direction of 

SOLVE
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(a) and are perpendicular and
is in the direction

(Figure 10-14):
�zrS � pS

pSrS

3.6 � 105 kg # m2>s kn�

� (20 m)(1200 kg)(15 m>s)kn
L
S

� rS � pS � rmv sin90°kn

(b) 1. For the same car moving in the
direction of decreasing x along
the line we express 
and in terms of unit vectors:pS

rSy � 20 m,
pS � mvS � �mvin
rS � xin � yjn � xin � y0 jn

2. Now compute 
(Figure 10-15):

rS � pS

3.6 � 105 kg # m2>s kn�

� (20 m)(1200 kg)(15 m>s)kn
� 0 � y0mv(�kn) � y0mvk

n

� �xmv(in � in) � y0mv(jn � in)

L
S

� rS � pS � (xin � y0 jn) � (�mvin)

(c) Use 
(Figure 10-16):

L
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� IVS

1.8 � 105 kg # m2>s kn�

� 1
2 (1200 kg)(20 m)2(0.75 rad>s)kn

L
S

� IVS � Ivkn � 1
2mR2vkn

CHECK In Part (c), the velocity of a point on the rim is 
the same as the velocity of the car in Parts (a) and (b). The angular mo-

mentum of the rotating disk is less than that of the car because virtually all of the
mass of the disk is less than 20 m from the axis of rotation.

TAKING IT FURTHER The angular momentum of the car moving in a circle in Part
(a) is the same as that of the car moving along a straight line in Part (b).

15 m>s,�

v � Rv � (20 m)(0.75 rad>s)

There are several additional results concerning torque and angular momentum
for a system of particles. The first of these is

10-10

The net external torque about a fixed point acting on a system equals the rate
of change of the angular momentum of the system about the same point.

NEWTON’S SECOND LAW FOR ANGULAR MOTION

T
S

net ext �
dL

S

sys

dt

Example 10-2 Angular Momentum About the Origin

Find the angular momentum about the origin for the following situations. (a) A car of mass
moves in a circle of radius with a speed of The circle is in the xy plane,

centered at the origin. When viewed from a point on the positive z axis, the car moves coun-
terclockwise. (b) The same car moves in the xy plane with velocity along the
line parallel to the x axis. (c) A uniform disk in the xy plane of radius and
mass rotates at about its axis, which is also the z axis. When viewed from
a point on the positive z axis, the disk rotates counterclockwise. Model the car as a point par-
ticle and the disk as a uniform disk.

0.75 rad>s1200 kg
20 my � y0 � 20 m
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In Equation 10-10, the net external torque about the point is the vector sum of the exter-
nal torques about that point acting on the system. Integrating both sides of this equation
with respect to time gives

10-11

ANGULAR IMPULSE–ANGULAR-MOMENTUM EQUATION

Equation 10-11 is the rotational analog of (Equation 8-11).

It is often useful to split the total angular momentum of a system about an ar-
bitrary point O into orbital angular momentum and spin angular momentum:

10-12

SPIN AND ORBITAL ANGULAR MOMENTUM

Earth has spin angular momentum due to its spinning motion about its rota-
tional axis, and it has orbital angular momentum about the center of the Sun due
to its orbital motion around the Sun (Figure 10-17). The total angular momentum
of Earth relative to the center of the Sun is the vector sum of the spin and orbital
angular momenta. is the angular momentum of a system about its center of
mass, and is the angular momentum that a point particle of mass M located
at the center of mass and moving at the velocity of the center of mass would have.
That is,

10-13

DEFINITION: ORBITAL ANGULAR MOMENTUM

In Chapter 9, torques are computed about axes instead of about points. The re-
lation between the torque about an axis and the torque about a point is straight-
forward. If point O is the origin and if force exerts torque about O, then
(the z component of ) is the torque of about the z axis.

Taking components of vector products requires some care. If then

10-14

TORQUE ABOUT z AXIS

where and (see Figure 10-18) are the vector components of and
The vector component in a given direction is the scalar component in that

direction times the unit vector in that direction. For example, Here,
is the vector component of in the positive radial direction (directly away

from the z axis), and is the component of perpendicular to the z axis, and
thus parallel to the xy plane The relation between angular mo-
mentum about an axis and angular momentum about a point is also straight-
forward. If the angular momentum of a point particle about the origin is

then the angular momentum of the particle about the z axis is

10-15

ANGULAR MOMENTUM ABOUT z AXIS
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F I G U R E  1 0 - 1 7 The total angular
momentum of Earth about the center of the
Sun is the sum of the orbital and the spin-
angular-momentum vectors.
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Do not confuse torque about a
point with torque about an axis.

The torque of a force about the z axis is
the z component of the torque of the
force about any point on the z axis.
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where is the component of the linear momentum perpendicular to the z axis
Taking the z vector components of both sides of Equation 10-10

gives

10-16

For a symmetric rigid object rotating about the z axis, where is the
moment of inertia about the z axis. Substituting this into Equation 10-16 gives

10-17

where the angular acceleration vector is defined by (Equation 10-17
is the vector form of Equation 9-18.)

For a system of particles, the total angular momentum about the z axis equals
the sum of the angular momenta about the z axis. In addition, the total torque
about the z axis is the sum of the external torques about the z axis acting on the
system.

a
S

� dVS >dt.a
S

T
S

net ext z �
dL

S

sys z

dt
�

d
dt

(IzV
S ) � Iza

S

IzL
S

sys z � IzV
S ,

T
S

net ext z �
dL

S

sys z

dt

(pSxy � pS � pzk
n).

pSpSxy

Example 10-3 The Atwood’s Machine Revisited

An Atwood’s machine has two blocks with masses and connected by a
string of negligible mass that passes over a pulley with frictionless bearings. The pulley is a
uniform disk of mass M and radius R. The string does not slip on the pulley. Apply
Equation 10-16 to the system consisting of the two blocks, the string, and the pulley, to find
the angular acceleration of the pulley and the linear acceleration of the blocks.

PICTURE Let the pulley and blocks be centered in the xy plane with the z axis out of the
page and through the center of the pulley at point O, as shown in Figure 10-19. We compute
the torques and angular momenta about the z axis and apply Newton’s second law for an-
gular motion (Equation 10-10). Because is greater than the disk will rotate counter-
clockwise, which means is directed in the direction. All the forces are in the xy plane,
so all torques are parallel to the z axis. Also, all the velocities are in the xy plane, so all the
angular-momentum vectors are also parallel with the z axis. Because the torque, angular ve-
locity, and angular-momentum vectors are all parallel with the z axis, we can treat this as a
one-dimensional problem with positive assigned to counterclockwise motion and negative
to clockwise motion. The acceleration a of the blocks is related to the angular acceleration 
of the pulley by the nonslip condition 

SOLVE

a � Ra.
a

�zV
S

m2 ,m1

m2 (m1 
 m2)m1

1. Let the system be everything that moves. Draw a free-body diagram of the system
(Figure 10-20). The only thing touching the system is the pulley bearings. The external
forces on the system are the normal force of the pulley bearings on the pulley and the
gravity forces on the two blocks and the pulley:

2. Express Newton’s second law for rotation, z components
only (Equation 10-16):

a text z �
dLz
dt

3. The total external torque about the z axis is the sum of
the torques exerted by the external forces. The moment
arms for and each equal R. (The moment arms of

and each equal zero.) and Fg2 � m2g:Fg1 � m1gFgpFn

Fg2Fg1

� 0 � 0 � m1gR � m2gR

a ti ext z � tn � tgp � tg1 � tg2

4. The total angular momentum about the z axis equals the
angular momentum of the pulley, plus the 
angular momenta of block and block each in
the positive z direction. The pulley has spin angular
momentum, but no orbital angular momentum because
its center of mass is at rest. Each block has orbital angular
momentum, but no spin angular momentum.

2, L
S

2 ,1, L
S

1 ,
L
S

p , � m1vR � m2vR � Iv

Lz � L1 � L2 � Lp
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CHECK The answers are dimensionally correct. Both the numerators and the denominators
contain factors that have the dimensions of mass, so these factors do not contribute to the di-
mensions of the ratios. For the first answer, a and g have dimension and for the second an-
swer, and have dimension Both of these dimensions are what one would expect.

TAKING IT FURTHER (1) This problem could be solved by writing the tensions on the
left and on the right and using (Equation 10-17) for the pulley and for
each block. However, using angular momentum (Equation 10-16) is easier, and once you
have solved for the acceleration, it is straightforward to solve for the two tensions.
(2) Because (Figure 10-21), the direction of is gotten by applying the right-
hand rule (Figure 10-6). And because (Figure 10-21), the direction of also is
gotten by applying the right-hand rule.

There are many problems in which the forces, position vectors, and velocities all
remain perpendicular to a fixed axis, so the torques, angular velocities, and angu-
lar-momentum vectors all remain parallel with an axis of rotation that remains
fixed in space. In such cases, we can assign positive and negative values to coun-
terclockwise or clockwise rotations, as we did in Example 10-3, and treat the case
like a one-dimensional problem. However, there are other situations, such as the
motion of a gyroscope, where torque, angular velocity, and angular momentum
must be treated as multidimensional vectors.

THE GYROSCOPE

A gyroscope is a common example of an object exhibiting motion in which its axis
of rotation changes direction. Figure 10-22 shows a gyroscope consisting of a bicy-
cle wheel that is free to turn on its axle. The axle is pivoted at a point a distance D
from the center of the wheel, and the axle is free to rotate about the pivot in any di-
rection. We can give a qualitative understanding of the complex motion of such a
system by using Newton’s second law for rotation,

10-18

along with the relations

and

where M is the mass of the wheel-axle system, is the position of the center of
mass relative to O, and and are the moment of inertia and angular velocity of
the wheel about its spin axis. (The torque about O on the system that is due to the
normal force exerted by the support stand is zero, so the net torque about O is
equal to the torque about O that is due to the gravitational force.)
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5. Substitute these results into Newton’s second law for
rotation in step 2:

m1gR � m2gR � (m1 � m2)Ra � Ia

m1gR � m2gR �
d
dt

(m1vR � m2vR � Iv)

a text z �
dLz
dt

6. Relate I to M and R, and use the nonslip condition to
relate to a and solve for both a and a:a
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In accord with Equation 10-18, the change in the angular momentum of the sys-
tem is in the same direction as the net torque acting on the system. We wish to de-
scribe the motion of the wheel-axle system after it is released from rest in the hor-
izontal position shown in Figure 10-22, and we will do this first without the wheel
spinning, and then with the wheel spinning rapidly. If the wheel is not spinning
about its axle, Equation 10-18 predicts that upon release the wheel-axle system will
simply tip downward, rotating about a horizontal axis that passes through O and
is perpendicular to the axle. This prediction is based on the following reasoning.
The torque vector is horizontal, perpendicular to the axle, and directed as shown
in Figure 10-22. Both the wheel and the axle shaft are initially at rest, so the initial
angular momentum is zero. Consequently, the change in angular momentum

equals the final angular momentum which, according to
Equation 10-18, is in the same direction as the torque. The final angular velocity
vector is in the same direction as the final angular-momentum vector If you
place your right thumb in the direction of your fingers will curl in the direction
of the motion of the wheel-axle system.

If the wheel is spinning rapidly about its axle, Equation 10-18 predicts that upon
release the wheel-axle system will slowly rotate about a vertical axis through O.
This prediction is based on the following reasoning. The torque vector is horizon-
tal, perpendicular to the axle, and directed into the page, just as before. The wheel
is spinning clockwise as viewed from O, so the initial angular momentum is di-
rected along the axle and away from O. (The direction of is obtained from the
right-hand rule.) In addition, according to Equation 10-18, is in the same di-
rection as the net torque, which is initially directed into the page (Figure 10-23a).
The final angular-momentum vector is equal to the initial angular momentum
plus the change in angular momentum. That is,

The direction of is shown in the vector-addition diagram (Figure 10-23b).
Because the wheel is spinning rapidly, and because the wheel contains much of the
system’s mass, the angular momentum of the wheel-axle system is dominated by
the spin angular momentum of the wheel, which means that is directed along
the axle and away from O. Thus, Equation 10-18 predicts the center of mass of the
system will rotate about a vertical axis through O in the direction that keeps the tip
of the angular-momentum vector moving horizontally—and in the direction of the
torque vector. This motion, which is always surprising when first encountered, is
called precession. We can calculate the angular speed of precession. In a small
time interval dt, the change in the angular momentum has a magnitude dL:

where MgD is the magnitude of the torque about the pivot point. From Figure
10-23b, the angle through which the axle moves is

The angular speed of the precession is thus

10-19

If the spin angular speed is very fast, then the precessional angular speed is
very slow.

If you release a spinning gyroscope with its spin axis at rest, upon release this
axis will initiate precessional motion with an up and down bouncing motion called
nutation. This initial bouncing motion can be avoided by releasing the gyroscope
with the spin axis already rotating with an initial angular velocity exactly equal to

(see Equation 10-19).vp
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dt

�
MgD

L
�
MgD

Isvs

df �
dL
L

�
t dt
L

�
MgD dt

L

df

dL � t dt �MgD dt
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10-3 CONSERVATION 
OF ANGULAR MOMENTUM

When the net external torque acting on a system about some point remains zero,
we have

or

10-20

Equation 10-20 is a statement of the law of conservation of angular momentum.

If the net external torque acting on a system about some point is zero, the
total angular momentum of the system about that point remains constant.

CONSERVATION OF ANGULAR MOMENTUM

This law is the rotational analog of the law of conservation of linear momentum.
If a system is isolated from its surroundings, so that there are no external forces or
torques acting on it, three quantities are conserved: energy, linear momentum, and
angular momentum. The law of conservation of angular momentum is a funda-
mental law of nature. There are many examples of the conservation of angular mo-
mentum in everyday life. Figure 10-24 and Figure 10-25 illustrate angular-momentum
conservation in diving and ice skating. Even on the scale of atomic and nuclear
physics, where Newtonian mechanics does not hold, the angular momentum of an
isolated system is found to be constant over time.

Although conservation of angular momentum is a law, independent of Newton’s
laws of motion, the fact that the internal torques of a system cancel is suggested by
Newton’s third law. Consider the two particles shown in Figure 10-26. Let be the
force exerted by particle 1 on particle 2 and be the force exerted by particle 2 on
particle 1. By Newton’s third law, The sum of the torques exerted by
these forces about the origin O is

The vector is along the line joining the two particles. If acts parallel
to the line joining and and are either parallel or antiparallel and

If this is true for all the internal forces, the internal torques cancel in pairs.*

(rS1 � rS2) � F
S

21 � 0

rS1 � rS2F
S

21m2 ,m1

F
S

21rS1 � rS2

� (rS1 � rS2) � F
S

21� rS1 � F
S

2 1 � rS2 � (�F
S

21)T
S

1 � T
S

2 � rS1 � F
S

2 1 � rS2 � F
S

1 2

F
S

21 � �F
S

1 2 .
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S

2 1
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S

1 2
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S

sys � constant

T
S

net ext �
dL

S

sys

dt
� 0
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F1,2

O

F21
r2

F12

r1

(r 1
– r 2)

F I G U R E  1 0 - 2 5 A spinning skater.
Because the torque exerted by the ice is small,
the angular momentum of the skater is
approximately constant. When she reduces her
moment of inertia by drawing in her arms, her
angular velocity increases. (Mike Powell/ Getty.)

F I G U R E  1 0 - 2 4 Multiflash photograph
of a diver. The diver’s center of mass moves
along a parabolic path after he leaves the
board. The angular momentum is provided by
the initial external torque due to the force of
the board, which does not pass through the
diver’s center of mass if he leans forward as
he jumps. If the diver wanted to undergo one
or more somersaults in the air, he would draw
in his arms and legs, decreasing his moment
of inertia to increase his angular velocity.
(© The Harold E. Edgerton 1992 Trust.)

F I G U R E  1 0 - 2 6

* Not all forces do come in pairs of equal and opposite forces. For example, the magnetic forces that moving charged par-
ticles exert on each other do not.



The rotating plates in the transmission of a
truck make inelastic collisions when engaged.
(Dick Luria/FPG International.)

Frictionless shaft

At rest

I1

I2

I1

I2

ω i

ω f
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Example 10-4 A Rotating Disk

Disk 1 is rotating freely and has an angular velocity about a vertical axis that coincides
with its symmetry axis, as shown in Figure 10-27. Its moment of inertia about this axis is 
It drops onto disk 2, of moment of inertia that is initially at rest. Disk 2 is centered on the
same axis as disk 1 and is free to rotate about that axis. Because of kinetic friction, the two
disks eventually attain a common angular velocity Find 

PICTURE We find the final angular velocity from the final angular momentum, which is
equal to the initial angular momentum because there are no external torques acting on the
two-disk system. The angular speed of the upper disk is reduced, while that of the lower disk
is increased by the forces of kinetic friction. Because the direction of the rotation axis is fixed,
the direction of the rotational motion can be specified by a or sign. Kinetic friction dissi-
pates mechanical energy, so we expect that the total mechanical energy is decreased.

SOLVE

��

vf .vf .

I2 ,
I1 .

vi

1. The final angular velocity is related to the initial angular velocity
by conservation of angular momentum: (I1 � I2)vf � I1vi

Lf � Li

2. Solve for the final angular velocity:
I1

I1 � I2
vi �

1
1 � (I2 >I1)vivf �

CHECK If the collision should have little effect on the motion of disk 1. Our answer
agrees, giving that as (Read ” ” as “approaches”.) If then disk
1 should slow almost to a stop without causing disk 2 to rotate appreciably. Our answer
again agrees, giving that as 

TAKING IT FURTHER Plates rotating at differing speeds engage in the drive trains of truck
and automobiles. The photo shows such plates in a truck transmission.

In the collision of the two disks in Example 10-4, mechanical energy is dissi-
pated. We can see this by writing the energy in terms of the angular momentum.
An object rotating with an angular velocity has kinetic energy

Substituting L for gives

10-21

(This result is analogous with that for linear motion Equation 8-25.)
The initial kinetic energy in Example 10-4 is

and the final kinetic energy is

Because the ratio of the final to the initial kinetic energy is

which is less than one. This interaction of the disks is analogous to a one-
dimensional perfectly inelastic collision of two objects.

Kf

Ki

�
I1

I1 � I2

Lf � Li ,

Kf �
L2

f

2(I1 � I2)

Ki �
L2

i

2I1

K � p2>2m,

K �
L2

2I

Iv

K � 1
2 Iv2 �

(Iv)2

2I

v

vf S 0.(I2 >I1) S  ,

I2 W I1 ,Svf S vi .(I2 >I1) S 0,
I2 V I1 ,
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Example 10-5 Mud in Your Eye 

You and three of your friends have been bullied for many years by Gene, who has avoided
taking physics classes. So you and your three friends who are taking advanced-placement
physics decide to teach him a lesson using conservation of angular momentum. Here is your
plan. A nearby park has a small merry-go-round (Figure 10-28) with a 3.0-m-diameter
turntable that has a moment of inertia. You initially get all five of you to stand on
the merry-go-round next to the rim while the merry-go-round is rotating at a modest

When the signal is given, you and your friends will quickly walk to the center
of the merry-go-round, leaving Gene near the rim. The merry-go-round will speed up,
throwing Gene off and into the mud. (You plan to do this after a heavy rain.) Gene is very
quick and very strong, so throwing him off will require that the centripetal acceleration 
of the rim be at least 4.0 gs. Will this plan work? (Assume that each person has a mass
of 60 kg.)

PICTURE By moving to the center of the merry-go-round, you and your friends are de-
creasing the moment of inertia of the students–merry-go-round system. No external torques
about the axis act on the system (assume effects due to friction and air resistance to be
negligible), so the angular momentum about the axis remains constant. The angular mo-
mentum is the moment of inertia times the angular velocity, so a decrease in the moment of
inertia means an increase in the angular velocity. The angular velocity can be used to find
the centripetal acceleration at the rim. Because the direction of the rotation axis is fixed, the
direction of the rotational motion can be specified by a or sign.

SOLVE

��

20 rev>min.

130-kg # m2

R

F I G U R E  1 0 - 2 8

ac � v2R1. The centripetal acceleration depends on the angular
speed and the radius R:v

Ifvf � Iivi

Lf � Li2. Angular momentum is conserved. For rotations about
a fixed axis, L � lv:

� 805 kg # m2

� 5(60 kg)(1.5 m)2 � 130 kg # m2Ii � 5mR2 � Imgr3. The moment of inertia of the system is the sum of the
moments of inertia of each person plus that of the
merry-go-round. Each person has mass m � 60 kg:

� 287 kg # m2

� (60 kg)(1.5 m)2 � 4(60 kg)(0.3 m)2 � 130 kg # m2If � mR2 � 4mr2 � Imgr4. To find the final moment of inertia, assume that you
and your friends are ( ) from the center:�1 ft30 cm

� 56.2 rev>min � 5.88 rad>svf �
Ii
If
vi �

805 kg # m2

287 kg # m2 20 rev>min5. Using conservation of angular momentum, solve for the
final angular velocity:

ac � v2R � (5.88 rad>s)2(1.5 m) � 51.9 m>s26. Solve for the centripetal acceleration of the rim:

5.3gac � 51.9 m>s2 �
1g

9.81 m>s2 � 5.29g �

Success! The acceleration is much greater
than 4.0g, so Gene flies off and lands in the mud.

7. Convert to gs:

8. Does Gene end up in the mud?

CHECK At the rim of the merry-go-round the four friends are five times farther from the
axis than they are after walking to the center. Thus, their contribution to the final moment of
inertia of the system is of their contribution to the initial moment of inertia. To conserve
angular momentum, this large reduction in the moment of inertia will be accompanied by a
compensating increase in the angular speed. Our step-5 results show that the angular speed
increased from to 

TAKING IT FURTHER The linear speed of the rotating merry-go-round is greatest at the rim
and decreases to zero at the center. At the rim, everyone is moving in a circle. As the four
friends walk toward the center, they are stepping onto a part of the merry-go-round that is
moving more slowly than they are, so the frictional force of their feet on the merry-go-round
has a component in the tangential direction that speeds up the merry-go-round. Also, the

56 rev>min.20 rev>min

1>25



Try It Yourself

An astronaut examines the reaction wheel of
the Hubble Space Telescope. (NASA/Goddard
Space Flight Center.)

R

v
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merry-go-round exerts an equal and opposite frictional force on the feet of the four friends,
slowing their motion in the tangential direction. The static frictional forces exerted by their
feet, result in a net torque on the merry-go-round, increasing its angular momentum about
the rotation axis. The equal and opposite static frictional forces on the feet of the friends exert
torque in the opposite direction on the friends, so the torques associated with these forces
decreases their angular momentum about the axis. The two net torques are equal and oppo-
site, as are the associated angular-momentum changes. Thus, the angular momentum of the
students–merry-go-round system remains constant.

The moment of inertia of the students–merry-go-round system decreases as the
friends walk toward the center. Thus, the system’s moment of inertia decreases
while its angular momentum remains constant. As a result, we can see from
Equation 10-21 that the kinetic energy of the students–merry-go-round system in-
creases. The energy for this kinetic energy increase comes from the internal energy
of the friends. Walking radially inward, like walking up a steep incline, requires
the expenditure of internal energy.

Example 10-6 Another Ride on the Merry-go-Round

A 25-kg child in a playground runs with an initial speed of along a path tangent to
the rim of a merry-go-round, whose radius is 2.0 m. The merry-go-round, which is initially
at rest, has a moment of inertia of The child then jumps on (Figure 10-29). Find
the final angular velocity of the child and the merry-go-round together.

PICTURE Once the child’s feet leave the ground, no external torques about the rotation axis
act on the child–merry-go-round system, hence, the total angular momentum of the system
about the rotation axis is conserved. The initial angular speed of the merry-go-round is zero.
Because the direction of the rotation axis is fixed, the direction of the rotational motion can
be specified by a or sign.

SOLVE

Cover the column at the right and solve it yourself before looking at the answers.

��

500 kg # m2

2.5 m>s

Steps Answers

1. Write an expression for the initial
angular momentum of the child–merry-
go-round system. The initial angular
momentum of the merry-go-round is
zero. The child has mass m and speed 
in the tangential direction just before
making contact with the merry-go-
round. Model the child as a point
particle.

vi

Li � ƒ rSchild � mvSi ƒ � Rmvi

2. Write an expression for the total final
angular momentum of the child–merry-
go-round system in terms of the final
angular velocity vf .

Lf � Isysvf � (mR2 � Im)vf

3. Set your expressions in steps 1 and 2
equal and solve for vf .

0.21 rad>svf �
mvR

mR2 � Im
�

CHECK The final speed of the child is As expected,
this speed is much less then the child’s initial speed of 

PRACTICE PROBLEM 10-1 Calculate the initial and final kinetic energies of the
child–merry-go-round system.

2.5 m>s.
vf R � (0.21 rad>s)(2.0 m) � 0.42 m>s.
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The Hubble Space Telescope is aimed by regulating the
spin rates of 45-kg reaction wheels arranged off-axis from
each other and spinning at up to Software-
controlled changes in the spin rates exchange angular
momentum between the flywheels and the rest of the
satellite. The changes in the angular momentum of the rest
of the satellite cause it to slew to different orientations. This
aiming mechanism can achieve and hold a target to within

which is equivalent to holding a flashlight
beam in Los Angeles on a dime in San Francisco. 
0.005 arcsec,

3000 rpm.

Conceptual Example 10-7 Spinning the Wheel

You are sitting on a stool on a frictionless turntable holding a bicycle wheel
(Figure 10-30). Initially, neither the wheel nor the turntable is spinning. Following
instructions from your teacher, you hold the spin axis of the wheel vertical with
one hand, and with your other hand you set the wheel spinning counterclock-
wise (as viewed from above). Surprise! When you start the wheel spinning one
way, the turntable, the stool, you, and the axis of the wheel start rotating in the
opposite direction. After a few seconds, you use your free hand to brake the spin-
ning motion of the wheel. You are surprised again when you, the stool, and the
wheel axis cease rotating as the wheel ceases spinning. Explain.

PICTURE Because the turntable is frictionless, there are no torques on the stu-
dent–turntable–stool–wheel system about the axis of the turntable. Thus, the
angular momentum of the system about the turntable axis remains constant.

SOLVE

Lspin

F I G U R E  1 0 - 3 0 As she starts
to spin the wheel clockwise, which
way does she start to rotate?

m

r

F

T

F I G U R E  1 0 - 3 1

Example 10-8 Pulling Through a Hole

A particle of mass m moves with speed in a circle of radius on a frictionless tabletop.
The particle is attached to a string that passes through a hole in the table, as shown in
Figure 10-31. The string is slowly pulled downward until the particle is a distance from
the hole, after which the particle moves in a circle of radius (a) Find the final velocity 
in terms of and (b) Find the tension when the particle is moving in a circle
of radius r in terms of m, r, and the angular momentum (c) Calculate the work done 
on the particle by the tension force by integrating Express your answer in terms
of r and L0 .

T
S # d�

S
.T

S
L
S

.
rf .v0r0 ,

rf .
rf

r0v0

Initially, the entire system is at rest, so its total
angular momentum is zero. As it spins up, the
wheel acquires an upward-directed spin angular
momentum. The total angular momentum of the
system must remain zero.

Thus, the orbital angular momentum acquired by the wheel about the turntable
axis, plus the angular momentum acquired by you, the stool, and the turntable
about the turntable axis, is equal in magnitude to the spin angular momentum
of the wheel, but is directed downward. A downward-directed angular
momentum means you start rotating clockwise (as viewed from above). As you
brake the wheel, its upward-directed spin angular momentum decreases to
zero. To keep the total angular momentum of the system equal to zero, the
entire system must slow to a stop as the wheel ceases spinning.

CHECK This situation is analogous to that of a person walking on flatbed cart that has fric-
tionless wheel bearings and is on a smooth horizontal track. As the person walks forward,
the cart moves backward, but when the person stops walking forward, the cart stops mov-
ing backward, as the principle of conservation of linear momentum predicts.

TAKING IT FURTHER The Hubble Space Telescope is aimed at different targets using four
wheels mounted on the telescope. The wheels are spun up and spun down by computer-con-
trolled electric motors. As a result the telescope is able to aim at the targets specified in the
instructions to the computers.
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PICTURE The speed of the particle is related to its angular momentum. The net torque is
equal to the rate of change of the angular momentum. Because the net force acting on the
particle is the tension force exerted by the string, which is always directed toward the hole,
the torque about the vertical axis through the hole is zero. Thus, the angular momentum
about this axis remains constant.

SOLVE

T
S

(a) Conservation of angular momentum relates the
final speed to the initial speed and the initial
and final radii:

so
r0
rf
v0vf �

mvfrf � mv0r0

Lf � L0

(b) 1. Apply Newton’s second law to relate T
to and r. Because the particle is being
pulled in slowly, the acceleration is virtually
the same as if the particle were moving in a
circle:

v
T � m

v2

r

2. Obtain a relation between L, r, and using
the definition of angular momentum.
Because the particle is being pulled in
slowly, (Figure 10-32a):ƒb ƒ V 1

v

L � rmv cosb � rmv ( ƒb ƒ V 1, so cosb � 1)

L
S

� rS � pS

3. Eliminate by solving the Part-(b) step-2
result for v and then substituting into the
Part-(b) step-1 result:

v
L2

mr3
T � m

v2

r
�
m
r
a L
mr
b 2

�

(c) 1. Make a drawing of the particle as it moves
closer to the hole (Figure 10-32b). When the
particle undergoes displacement its
distance r from the axis changes by dr.
Because r is decreasing, dr is negative.
Thus:

d�
S

,

dr � � ƒdr ƒ

2. Write in terms of T and dr:dW � T
S # d�

S

Because

dW � T ƒdr ƒ � �T dr

ƒdr ƒ � d� cos f,

dW � T
S # d�

S
� T d� cos f

3. Integrate from to after substituting for
T from the Part-(b) step-3 result:

rfr0

L2

2m
¢ 1
r2f

�
1
r20
≤�

� �
L2

m �
rf

r0

r�3 dr � �
L2

m
r�2

�2
` rf
r0

W � � �
rf

r0

T dr � � �
rf

r0

L2

mr3
dr

CHECK Note that work must be done to pull the string downward. Because is less than 
the work is positive. This work is equal to the increase in kinetic energy. We can calculate the
change in kinetic energy of the particle directly. Using with and

the change in kinetic energy is 
which is the same as the Part-(c) step-3 result found by direct integration.

TAKING IT FURTHER The increment of work dW can also be obtained by expressing the
increment of displacement as the change in the position vector The dot product

is then expanded by using components which give 
In this expansion is the radial component of and dr is the radial component 
of

PRACTICE PROBLEM 10-2 At what final radius would the tension be N times the tension
at initial radius r0?

rN

drS.
T
S

Tr � �T
dW � T

S # drS � Tr dr � �T dr.T
S # drS

rS.drS,d�
S

Kf � Ki � (L2>2mr2f ) � (L2>2mr20) � (L2>2m)(r�2
f � r�2

0 ),I � mr2,
L0 � Lf � L,K � L2>2I, r0 ,rf

T

r
rf

r0

d�

m

φβ

(a)

⎥dr⎥

r

φ

(b)

d�
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In Figure 10-33 a puck on a frictionless plane is given an initial speed The
puck is attached to a string that wraps around a vertical post. This situation looks
similar to Example 10-8, but it is not the same. There is no agent that does work on
the puck, nor is there any mechanism for energy dissipation. Thus, mechanical
energy must be conserved. Because where L is the magnitude of the
angular momentum about the axis of the post, is constant and I decreases as 
decreases, L must also decrease. Note that the tension force does not act toward 
the axis of the post. The tension force on the puck produces a torque vector about
the axis of the post in the downward direction, which reduces the puck’s angular-
momentum vector about the axis, which is in the upward direction.L

S

T
S

r0

K � L2>(2I),
v0.

Example 10-9 The Ballistic Pendulum Revisited

A thin rod of mass M and length d hangs vertically from a pivot attached to one end. A piece
of clay of mass m and moving horizontally at speed v hits the rod a distance x from the pivot
and sticks to it (Figure 10-34). Find the ratio of the clay–rod system’s kinetic energy just after
the collision to its kinetic energy just before the collision.

PICTURE The collision is inelastic, so we do not expect mechanical energy to be constant.
During the collision, the pivot exerts a large force on the rod, so the linear momentum of the
rod–clay system is not conserved. However, there are no external torques about the hori-
zontal axis perpendicular to the page and through the pivot point, so angular momentum of
the system about this axis is conserved. The kinetic energy after the inelastic collision can be
written in terms of the angular momentum and the moment of inertia of the combined
clay–rod system. Conservation of angular momentum allows you to relate to the mass
m and velocity of the clay. Model the clay as a point particle.

SOLVE

v
Lsys

IfLsys

d

xM

m v
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1. Before the collision the kinetic energy of the system is that of the
moving clay ball.

Ki � 1
2mv2

2. After the collision it is that of the swinging clay–rod object. Write the
kinetic energy after the collision in terms of the angular momentum

and the moment of inertia of the clay–rod system.IfLsys

Kf �
L2

sys

2If

3. During the collision, angular momentum is conserved. Write the
angular momentum in terms of and x. Before impact
the angular momentum of the rod is zero.

v,m,Lsys where is the vector from the axis to the clay and is the
velocity of the clay before impact.

vSrS
Lsys � ƒ rS � mvS ƒ � mvx

4. Write in terms of and d.M,x,m,If

5. Substitute these expressions for and into your equation for Kf .IfLsys

�
3
2

m2x2v2

(3mx2 �Md2)

Kf �
L2

sys

2If
�

(mvx)2

2(mx2 � 1
3Md2)

6. Divide the kinetic energy after the collision by the initial kinetic
energy.

1

1 �
Md2

3mx2

Kf

Ki
�

3
2

m2x2v2

(3mx2 �Md2)
1
2mv2

�

CHECK and obviously have the same dimensions, so the step-6 result has no di-
mensions, as is expected for a ratio of two energies. In addition, the ratio is between zero
and one, as expected for an inelastic collision. In the limit that and in
the limit that Both of these limiting values of meet expectations.

TAKING IT FURTHER This example is the rotational analog of the ballistic pendulum
discussed in Example 8-10. In that example, we used conservation of linear momentum to
determine the kinetic energy of the pendulum after the collision.

Kf >KiKf >Ki S 1.M>mS 0,
Kf >Ki S 0,M>mS  ,

Kf >Ki

mx2Md2

If � mx2 � 1
3Md2
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(a)

(b)
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The bicycle wheel is spinning
counterclockwise (if viewed from
above) with its spin axis vertical
when it is handed to the student
who is on the non-rotating
turntable. In what direction will
the turntable rotate as the student
rotates the axis of the wheel to-
ward the horizontal?

CONCEPT CHECK 10-1✓

Conceptual Example 10-10 Tipping the Wheel

A student sitting on a stool that rests on a turntable with frictionless bearings (Figure 10-35a)
is holding a rapidly spinning bicycle wheel. The rotation axis of the wheel is initially hori-
zontal, and the magnitude of the spin-angular-momentum vector of the spinning wheel is

What will happen if the student suddenly tips the axle of the wheel (Figure 10-35b)
so that after the rotation the spin axis of the wheel is vertical and the wheel is spinning
counterclockwise (when viewed from above)?

PICTURE The turntable–stool–student–wheel system is free to rotate about a vertical axis
through the center of the turntable. Because the turntable is frictionless, there can be no ex-
ternal torques about this axis. Thus, the angular momentum of the system about this axis re-
mains constant.

SOLVE

Lwheel i .

Rotating the axle changes the direction, but not the
magnitude, of the spin angular momentum of the wheel.
The final spin angular momentum of the wheel is directed
upward. The initial angular momentum of the
turntable–stool–student–wheel system about the vertical axis
of the turntable is zero. Thus, the final angular momentum of
the system about the same vertical axis is also zero. Following
the rotation of the axle, the spin angular momentum of the
wheel is counterclockwise (when viewed from above) and
equal in magnitude to Conservation of angular
momentum dictates that the remaining angular momentum
of the system about the vertical axis of the turntable must be
clockwise, and equal in magnitude to Lwheel i .

Lwheel i .

The turntable, stool, and
student will be rotating
clockwise with an angular
momentum about the vertical
axis of the turntable of
magnitude Lwheel i .

CHECK The student exerts an upward torque on the spinning wheel when she tips it up-
ward. (Due to the vector product definition of torque, an upward torque requires horizontal
forces.) The wheel exerts an equal and opposite torque (also horizontal forces) on the stu-
dent, causing her to rotate clockwise.

PROOFS OF EQUATIONS 10-10, 10-12, 10-13, 10-14, 
AND 10-15

Proof of Equation 10-10 We now show that Newton’s second law implies that
the rate of change of the angular momentum of a point particle equals the net
torque acting on the particle. If more than one force acts on a particle, then the net
torque relative to the origin O is the sum of the torques due to each force:

According to Newton’s second law, the net force on a particle equals the rate of
change of the particle’s linear momentum Thus

10-22

We now compare this expression with the expression for the time rate of change
of the particle’s angular momentum. The definition of the angular momentum of a
particle (Equation 10-8) is

We can compute using the product rule for derivatives:

dL
S

dt
�
d
dt

(rS � pS) � adrS

dt
� pSb � a rS �

dpS

dt
bdL

S>dt

L
S

� rS � pS

T
S

net � rS � F
S

net � rS �
dpS

dt

dpS>dt.

T
S

net � rS � F
S

1 � rS � F
S

2 � Á � rS � a
i

F
S

i � rS � F
S

net
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The second term from the right is zero because and so

because the vector product of two vectors in the same direction is zero. Thus

Substituting for (from Equation 10-22) gives

10-23

The net torque acting on a system of particles is the sum of the net torques on
the individual particles. The generalization of Equation 10-23 to a system of parti-
cles is then

In this equation, the sum of the torques may include internal as well as external
torques. The sum of the internal torques equals zero, so

10-10

NEWTON’S SECOND LAW FOR ANGULAR MOTION

Proofs of Equations 10-12 and 10-13 We now show that the an-
gular momentum of a system of particles can be written as the sum of
the orbital angular momentum and the spin angular momentum.

Figure 10-36 shows a system of particles. The angular momentum 
of the ith particle about arbitrary point O is given by

10-24

and the angular momentum of the system about O is

The angular momentum about the center of mass is given by

where and are the position and velocity, respectively, of the ith
particle relative to the center of mass. It can be seen from the figure that

Differentiating both sides gives

Substituting these into Equation 10-24, we have

Expanding the right side, we obtain

Summing both sides and factoring common terms out of the sums gives
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Because and are both zero, and because and 
we have or

10-12

where and

10-25

DEFINITION: SPIN ANGULAR MOMENTUM

Proofs of Equations 10-14 and 10-15 We now take the z components of the
vectors for the torque and the angular momentum about a point to obtain the for-
mulas for the torque and angular momentum about a fixed axis. The angular mo-
mentum of a particle about the origin is so finding the z component of
the angular momentum means finding the z component of the product To
do this, we express and as

and

where and are vector components (Figure 10-37) of and 
Substituting for and gives

and expanding the right side, we have

The vector product of any two vectors is perpendicular to both vectors, so the
product is parallel to the z axis. In each of the other three products at
least one of the two vectors is parallel to the z axis, so the z component of each of
these vector products is zero. Therefore,

10-14

ANGULAR MOMENTUM ABOUT z AXIS

The torque about the origin associated with a force acting on the particle is
given by (Equation 10-1). Following the same procedure with the
torque that we followed with the angular momentum gives

10-15

TORQUE ABOUT z AXIS

10-4 QUANTIZATION 
OF ANGULAR MOMENTUM

Angular momentum plays an important role in the description of atoms, mole-
cules, nuclei, and elementary particles. If a particle is bound to one or more other
particles, the particle is said to be a bound particle. The planets, the asteroids, 
the comets, and the Sun make up a bound system, called the solar system, and Earth 
is bound to the solar system. Like energy, the angular momentum of bound
systems is quantized, that is, changes in angular momentum occur only in dis-
crete amounts.
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The angular momentum of a particle due to its orbital motion is its orbital an-
gular momentum. The magnitude of the orbital angular momentum L of a bound
particle can have only the values

10-26

where (read “h-bar”) is the fundamental unit of angular momentum, which is
related to Planck’s constant h:

10-27

The component of orbital angular momentum along any direction in space is
also quantized and can have only the values where m is a nonnegative
integer that is less than or equal to For example, if m can equal 2, 1, 
or 0.

Because the quantum of angular momentum is so small, the quantization of
angular momentum is not noticed in the macroscopic world. Consider a particle 
of mass moving in a circle of radius 1.00 cm with a period
of 1.00 s. Its orbital angular momentum is

If we divide by we obtain

Thus, this typical macroscopic angular momentum contains units of
the fundamental unit of angular momentum. Even if we could measure L to one
part in a billion, we would never observe the quantization of this macroscopic an-
gular-momentum value.

The quantization of orbital angular momentum leads to the quantization of
rotational kinetic energy. Consider a molecule rotating about its center of mass
with angular momentum L (Figure 10-38). Let be its moment of inertia. Its kinetic
energy is

10-28

But is quantized to the values with Thus, the
kinetic energy is quantized to the values given by

10-29a

where

10-29b

Figure 10-39 shows an energy-level diagram for a rotating molecule with constant
moment of inertia Note that, unlike the energy levels for a vibrating system
(Section 7-4), the rotational energy levels are not equally spaced, and the lowest
level is zero.
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F I G U R E  1 0 - 3 9 Energy-level diagram
for a rotating molecule.

z

F I G U R E  1 0 - 3 8 Model of a rigid
diatomic molecule rotating about the z axis.
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Example 10-11 Rotational Energy Levels

The characteristic rotational energy (Equation 10-29b) for the rotation of the molecule is
Using this information, find the separation distance of the two nitrogen atoms.

PICTURE The characteristic rotational energy depends on the moment of inertia, and the
moment of inertia depends on the separation distance.

SOLVE

2.48 � 10�4 eV.
N2E0r

1. The characteristic rotational energy is related to the moment of inertia (see
Equation 10-29b):

E0r �
U2

2I

2. Model each nitrogen atom as a point mass at the center of its nucleus. The 
molecule then is modeled as two point masses rotating about the center of
mass of the molecule. Calculate the moment of inertia about the axis through
the center of mass and perpendicular to the line joining the molecules:

N2 I � m1r
2
1 � m2r

2
2

3. The distance of each molecule from the center of mass is half of the
separation distance d:

r1 � r2 �
d
2
  and  m1 � m2 � m

4. Calculate the moment of inertial in terms of d and m: I � m
d2

4
� m

d2

4
�

1
2
md2

5. Substitute for I in the step-1 result. The mass of a nitrogen atom is 
(Atomic masses can be found in Appendix C):

14.00 u.

where

and
� 3.973 � 10�23 J

E0r � (2.48 � 10�4 eV)(1.602 � 10�19 J>eV)

� 2.325 � 10�26 kg
m � (14.00 u)(1.661 � 10�27 kg>u)

E0r �
U2

2I
�

U2

md2

6. Solve for d:

0.110 nm� 1.097 � 10�10 m �

�
1.055 � 10�34 J # s

4(2.325 � 10�26 kg)(3.973 � 10�23 J)
d �

U
2mE0r

CHECK In 1911, the British physicist Ernest Rutherford (1871–1935) found the diameter of a
nucleus to be and the diameter of an atom to be typically which is ap-
proximately the same as our step-6 result. Is it plausible that the separation distance between
atoms in is about equal to the diameter of an isolated atom? Yes. In a nitrogen molecule,
the valence electrons are shared by the two atoms. This process, called covalent bonding, is
discussed further in Chapter 37.

Stable matter contains just three kinds of particles: electrons, protons, and neutrons.
In addition to orbital angular momentum, each of these particles also has an intrinsic
angular momentum called spin. The spin angular momentum of a particle, like its mass
and electric charge, is a fundamental property of the particle that cannot be changed.
The magnitude of the spin angular-momentum vector for electrons, protons, and 

neutrons is and the component of the spin angular momentum along
any direction in space can have just two values: and Particles with the same
spin angular momentum as electrons are called “spin-one-half” particles. Spin-one-
half particles are called fermions. Other particles, called bosons, have zero spin or in-
tegral spin. (Photons and particles are examples of bosons.) Curiously, spin is a quan-
tum property of the particle that has nothing to do with the motion of the particle.

The picture of an electron as a spinning ball that orbits the nucleus in an atom
(like the spinning Earth orbiting the Sun) is often a useful visualization. However,
the angular momentum of a spinning ball can be increased or decreased, whereas
the spin of the electron is a fixed property like its charge and mass. Furthermore,
as far as we know, electrons are point particles that have no size. In addition, elec-
trons do not orbit the nucleus as the planets orbit the Sun. The quantum mechani-
cal model of an atom allows us to calculate the probability that an electron will be
found in some specified volume of space.

a

� 1
2 U.� 1

2 U
s � 21

2 (1
2 � 1) U,

N2

�0.1 nm,�10�6 nm,
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Physics Spotlight

As the World Turns:
Atmospheric Angular Momentum

Air has measurable density, which varies both with the available moisture and the
altitude within the atmosphere. Air also has measurable speed. Most surface
winds are local, but masses of air higher in the atmosphere have measurable
global circulation.

Over the years, increased computing power* has allowed scientists to calculate
the total atmospheric angular momentum (AAM) for Earth. These calculations are
available at the Special Bureau for the Atmosphere of the Global Geophysical
Fluids Center.† They are based on measurements from meteorological services of
several countries. Most measurements made between 10 and 50 kilometers high, in
the upper troposphere and the stratosphere, are made with the help of weather bal-
loons. AAM is calculated using the magnitude and direction of winds at various
heights—wind vectors—and AAM Units, where .‡

In the past few decades, the length of day (LOD) for Earth also has been mea-
sured to great precision,# calculated by astronomical measurements, and reckoned
in solar time corrected for polar wobbling (UT1). The measurements use a combi-
nation of satellite laser ranging, very-long-baseline interferometry, recent data
from GPS, and the Doppler Orbitography and Radio Positioning Integrated by
Satellite (DORIS) system. Variations in LOD of tenths of a millisecond are routinely
reported. That value is less than one part in a hundred million. 

When variations in the LOD and the AAM are compared, they have striking similarity.° Both AAM and LOD have weekly,
monthly, seasonal, yearly, and multiyear variations.§ What is more, they correlate with each other to 95.4 percent and 98.02
percent,¶ depending on the model for AAM. These correlations are not accidental. The spin angular momentum of the entire
Earth–atmosphere system is conserved. Both Earth’s spin angular momentum and AAM are in the same direction—from west
to east. This means that when AAM speeds up, the angular momentum of Earth itself (excluding the atmosphere) slows down,
and LOD increases.

The strongest confirmation of this result is El Niño weather patterns.** During El Niños, the southern Pacific Ocean warms
and subtropical westerly winds speed up, while tropical easterly winds slow down. These wind patterns increase AAM. In
1984,†† measurements at Goddard Space Flight Center showed that the day had lengthened by over a millisecond during El
Niño. In 1997, the day grew by four-tenths of a millisecond‡‡ during the El Niño event. When the AAM decreases, Earth speeds
up, and days shorten. AAM is the strongest cause of variation in LOD for Earth. Other causes include solar flares, volcanic
eruptions, and even core–mantle friction.##

Because precise measurements of Earth’s AAM and LOD can be made, predictions about what changes in Earth’s atmos-
phere, such as an increase in carbon dioxide,°° will mean for the angular momentum of the atmosphere can be made as well
as studies of AAM of other planets.§§

* Marcus, S. L., et al., “Detection and Modeling of Nontidal Oceanic Effects on Earth’s Rotation Rate,” Science, Sept. 11, 1998, Vol. 281, 1656–1659.
† “GGFC Special Bureau for the Atmosphere,” International Earth Rotation and Reference Systems Service http://www.iers.org/MainDisp.csl?pid=76-54 as of June 2006.
‡ Huang, H.-P., Weickmann, K. M., and Rosen, R. D., “Unusual Behaviour in Atmospheric Angular Momentum during the 1965 and 1972 El Niños,” Journal of Climate, Aug. 2003, 

Vol. 16, 2526–2539.
# Chao, B. F. et al., “Space Geodesy Monitors Mass Transports in Global Geophysical Fluids,” Eos, Transactions, American Geophysical Union, May 30, 2000, Vol. 81, ; “Universal

Time (UT1) and Length of Day (LOD.) http://www.iers.org/MainDisp.csl?pid=95-97
° Marcus et al., op. cit. “Studies of Atmospheric Angular Momentum,” NOAA-CIRES Climate Diagnostics Center, http://www.cdc.noaa.gov/review/Chap04/sec3.html as of 

June, 2006.
§ Barnes, R. T. H., et al., “Atmospheric Angular Momentum Fluctuations, Length-of-Day Changes, and Polar Motion,” Proceedings of the Royal Society of London A, May 9, 1983, 

Vol. 387, 31–73.
¶ Koot, L., De Viron, O., and Dehant, V., “Atmospheric Angular Momentum Time Series: Characterization of Their Internal Noise and Creation of a Combined Series,” Proceedings of

the Journées 2004 Systèmes de Référence Spatio-Temporels, N. Capitaine, Ed., Observatoire de Paris, 2005, 138–139.
** Huang, H.-P., et al., op. cit.
†† Simon, C., “The Pull of El Niño: Sluggish Rotation and Longer Days,” Science News, Jan. 14, 1984, Vol. 125, 20 
‡‡ Monastersky, R., “El Niño Shifts Earth’s Momentum,” Science News, Jan 17, 1998, Vol. 153, 45.
## Marcus, S. L., et al., op. cit.
°° Rosen, R. D., and Gutowski, W. J., “Response of Zonal Winds and Atmospheric Angular Momentum to a Doubling Of CO2,” Journal of Climate, Dec. 1992, Vol. 5, 1391–1404.
§§ Zhu, Xun, “Dynamics in Planetary Atmospheric Physics: Comparative Studies of Equatorial Superrotation for Venus, Titan, and Earth,” Johns Hopkins APL Technical Digest, 2005,

Vol. 26, 164–174.

247�

1 AAM Unit � 1025 kg # m2>s
Cloud patterns suggest two adjacent low
pressure cells. (SeaWiFS Project, NASA/Goddard
Space Flight Center, and ORBIMAGE.)

http://www.iers.org/MainDisp.csl?pid=76-54
http://www.iers.org/MainDisp.csl?pid=95-97
http://www.cdc.noaa.gov/review/Chap04/sec3.html
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Summary

1. Angular momentum is an important derived dynamic quantity in macroscopic physics. In
microscopic physics, spin angular momentum is an intrinsic, fundamental property of el-
ementary particles.

2. Conservation of angular momentum is a fundamental law of nature.

3. Quantization of angular momentum is a fundamental law of nature.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Vector Nature of Rotation Right-hand rules are used to obtain the direction of the angular velocity and the torque.

Angular velocity The direction of the angular velocity is along the axis of rotation in the direction given by
the right-hand rule.

Torque 10-1

2. Vector Product 10-2

where is the angle between the vectors and is a unit vector perpendicular to the plane of
and in the direction given by the right-hand rule as is rotated into 

Properties 10-3

10-4

10-6

and 10-7a

10-7b

3. Angular Momentum

For a point particle 10-8

For a system rotating about a symmetry 10-9
axis

For any system The angular momentum about any point O is the angular momentum about the center of
mass (spin angular momentum) plus the angular momentum associated with center-of-mass
motion about O (orbital angular momentum).

10-12

Newton’s second law for angular motion 10-10

Conservation of angular momentum If the net external torque remains zero, the angular momentum of the system is conserved.
(If the component of the net external torque in a given direction remains zero, the component
of the angular momentum of the system in that direction remains conserved.)

Kinetic energy of an object rotating 
about a fixed axis

10-21

Quantization of angular momentum The magnitude of the orbital angular momentum of a bound particle can have only the
values

*Quantization of any component of The component of orbital angular momentum of a bound particle along any direction in
orbital angular momentum space is also quantized and can have only the values where m is a nonnegative inte-

ger that is less than or equal to 

Spin Electrons, protons, and neutrons have an intrinsic angular momentum called spin.
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Answers to Concept Check

10-1 Counterclockwise, if viewed from above.

Answers to Practice Problems

10-1

10-2 rN � r0 >23 NKf � 13.0 JKi � 78.2 J,

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimates.

For all problems, use for the free-fall acceleration
and neglect friction and air resistance unless instructed to
do otherwise.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

9.81 m>s2

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • True or false:
(a) If two vectors are exactly opposite in direction, their vector

product must be zero.
(b) The magnitude of the vector product of two vectors is at a min-

imum when the vectors are perpendicular.
(c) Knowing the magnitude of the vector product of two nonzero

vectors and the vectors’ individual magnitudes uniquely deter-
mines the angle between them.

2 • Consider two nonzero vectors and Their vector
product has the greatest magnitude if and are (a) parallel,
(b) perpendicular, (c) antiparallel, (d) at an angle of to each other.

3 • What is the angle between a force vector and a torque
vector generated by 

4 • A point particle of mass m is moving with a constant
speed along a straight line that passes through point P. What can
you say about the angular momentum of the particle relative to
point P? (a) Its magnitude is mv. (b) Its magnitude is zero. (c) Its
magnitude changes sign as the particle passes through point P.
(d) Its magnitude increases as the particle approaches point P.

5 • A particle travels in a circular path, and point P is at the
center of the circle. (a) If the particle’s linear momentum is dou-
bled without changing the radius of the circle, how is the magni-
tude of its angular momentum about P affected? (b) If the radius of
the circle is doubled but the speed of the particle is unchanged, how
is the magnitude of its angular momentum about P affected?

6 • A particle moves along a straight line at constant speed.
How does the particle’s angular momentum about any fixed point
vary with time?

7 •• True or false: If the net torque on a rotating object is zero,
the angular velocity of the object cannot change. If your answer is
false, give an example of such a situation.

8 •• You are standing on the edge of a turntable with friction-
less bearings that is initially rotating when you catch a ball that is
moving in the same direction but faster than you are moving and
on a line tangent to the edge of the turntable. Assume you do not
move relative to the turntable. (a) Does the angular speed of the
turntable increase, decrease, or remain the same during the catch?
(b) Does the magnitude of your angular momentum (about the
rotation axis of the table) increase, decrease, or remain the same
during the catch? (c) How does the ball’s angular momentum

SSM

pS

v

F
S

?T
S
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(about the rotation axis of the table) change after the catch? (d) How
does the total angular momentum of the system, you–table–ball
(above the rotation axis of the turntable), change after the catch?

9 •• If the angular momentum of a system about a fixed point
P is constant, which one of the following statements must be true?
(a) No torque about P acts on any part of the system.
(b) A constant torque about P acts on each part of the system.
(c) Zero net torque about P acts on each part of the system.
(d) A constant external torque about P acts on the system.
(e) Zero net external torque about P acts on the system.

10 •• A block sliding on a frictionless table is attached to a
string that passes through a narrow hole through the tabletop.
Initially, the block is sliding with speed in a circle of radius A
student under the table pulls slowly on the string. What happens as
the block spirals inward? Give supporting arguments for your
choice. (The term “angular momentum” refers to the angular mo-
mentum about a vertical axis through the hole.) (a) Its energy and
angular momentum are conserved. (b) Its angular momentum is
conserved and its energy increases. (c) Its angular momentum is
conserved and its energy decreases. (d) Its energy is conserved and
its angular momentum increases. (e) Its energy is conserved and its
angular momentum decreases.

11 •• One way to tell if an egg is hardboiled or uncooked with-
out breaking the egg is to lay the egg flat on a hard surface and try
to spin it. A hardboiled egg will spin easily, an uncooked egg will
not. However, once spinning, the uncooked egg may do something
unusual: If you stop it with your finger, it may start spinning again.
Explain the difference in the behavior of the two types of eggs.

12 •• Explain why a helicopter with just one main rotor has a
second smaller rotor mounted on a horizontal axis at the rear, as in
Figure 10-40. Describe the resultant motion of the helicopter if this
rear rotor fails during flight. 

SSM

r0 .v0

F I G U R E  1 0 - 4 0 Problem 12 
(Chris Sorenson/The Stock Market.)
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ESTIMATION AND APPROXIMATION

19 •• An ice-skater starts her pirouette with arms out-
stretched, rotating at Estimate her rotational speed
(in revolutions per second) when she brings her arms flat
against her body.

20 •• Estimate the ratio of angular velocities for the rotation
of a diver between the full tuck position and the full layout
position.

SSM

1.5 rev>s.

13 •• The spin angular-momentum vector for a spinning
wheel is parallel with its axle and is pointed east. To cause this vec-
tor to rotate toward the south, in which direction must a force be ex-
erted on the east end of the axle? (a) up, (b) down, (c) north,
(d) south, (e) east.

14 •• CONTEXT-RICH You are walking toward the north, and in
your left hand you are carrying a suitcase that contains a massive
spinning wheel mounted on an axle attached to the front and back
of the case. The angular velocity of the gyroscope points north. You
now begin to turn to walk toward the east. As a result, the front end
of the suitcase will (a) resist your attempt to turn it and will try to
maintain its original orientation, (b) resist your attempt to turn and
will pull to the west, (c) rise upward, (d) dip downward, (e) show
no effect whatsoever.

15 •• ENGINEERING APPLICATION The angular momentum
of the propeller of a small single-engine airplane points forward.
The propeller rotates clockwise if viewed from behind. (a) Just
after liftoff, as the nose of the plane tilts upward, the airplane
tends to veer to one side. To which side does it tend to veer and
why? (b) If the plane is flying horizontally and suddenly turns
to the right, does the nose of the plane tend to veer upward or
downward? Why?

16 •• CONTEXT-RICH, ENGINEERING APPLICATION You have
designed a car that is powered by the energy stored in a single
flywheel with a spin angular momentum In the morning,
you plug the car into an electrical outlet and a motor spins the
flywheel up to speed, adding a huge amount of rotational
kinetic energy to it—energy that will be changed into transla-
tional kinetic energy of the car during the day. Having taken a
physics course involving angular momentum and torques, you
realize that problems would arise during various maneuvers of
the car. Discuss some of these problems. For example, suppose
the flywheel is mounted so that points vertically upward
when the car is on a horizontal road. What would happen as the
car travels over a hilltop? Through a valley? Suppose the fly-
wheel is mounted so that points forward or to one side when
the car is on a horizontal road. Then what would happen if the
car attempts to turn to the left or right? In each case that you ex-
amine, consider the direction of the torque exerted on the car by
the road.

17 •• You are sitting on a spinning piano stool with your arms
folded. (a) When you extend your arms out to your sides, what hap-
pens to your kinetic energy? What is the cause of this change?
(b) Explain what happens to your moment of inertia, angular speed,
and angular momentum as you extend your arms.

18 •• A uniform rod of mass M and length L rests on a hori-
zontal frictionless table. A blob of putty of mass moves
along a line perpendicular to the rod, strikes the rod near its end,
and sticks to the rod. Describe qualitatively the subsequent motion
of the rod and putty.

m �M>4
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21 •• The days on Mars and Earth are of nearly identical
length. Earth’s mass is 9.35 times Mars’s mass, Earth’s radius is 1.88
times Mars’s radius, and Mars is on average 1.52 times farther away
from the Sun than Earth is. The Martian year is 1.88 times longer
than Earth’s year. Assume that they are both uniform spheres and
that their orbits about the Sun are circles. Estimate the ratio (Earth
to Mars) of (a) their spin angular momenta, (b) their spin kinetic
energies, (c) their orbital angular momenta, and (d) their orbital
kinetic energies.

22 •• The polar ice caps contain about of ice. This
mass contributes negligibly to the moment of inertia of Earth be-
cause it is located at the poles, close to the axis of rotation. Estimate
the change in the length of the day that would be expected if the
polar ice caps were to melt and the water were distributed uni-
formly over the surface of Earth.

23 •• A 2.0-g particle moves at a constant speed of 
around a circle of radius 4.0 mm. (a) Find the magnitude of the angu-
lar momentum of the particle. (b) If where is an in-
teger, find the value of and the approximate value of (c) By
how much does change if the particle’s speed increases by one-mil-
lionth of a percent, and nothing else changes? Use your result to ex-
plain why the quantization of angular momentum is not noticed in
macroscopic physics.

24 ••• Astrophysicists in the 1960s tried to explain the exis-
tence and structure of pulsars—extremely regular astronomical
sources of radio pulses whose periods ranged from seconds to
milliseconds. At one point, these radio sources were given the
acronym LGM (Little Green Men), a reference to the idea that they
might be signals from extraterrestrial civilizations. The explana-
tion given today is no less interesting. Consider the following.
Our Sun, which is a fairly typical star, has a mass of 
and a radius of Although it does not rotate uni-
formly, because it is not a solid body, its average rate of rotation is
about Stars larger than the Sun can expire in spectacu-
lar explosions called supernovae, leaving behind a collapsed rem-
nant of the star called a neutron star. These neutron-stars have
masses comparable to the original masses of the stars but radii of
only a few kilometers! The high rotation rate are due to the con-
servation of angular momentum during the collapses. These stars
emit beams of radio waves. Because of the rapid angular speed of
the stars, the beam sweeps past Earth at regular, very short, inter-
vals. To produce the observed radio-wave pulses, the star has to
rotate at rates that range from about to 
(a) Using data from the textbook, estimate the rotation rate of 
the Sun if it were to collapse into a neutron star of radius 
The Sun is not a uniform sphere of gas, and its moment of inertia
is given by Assume that the neutron star is spheri-
cal and has a uniform mass distribution. (b) Is the rotational
kinetic energy of the Sun greater or smaller after the collapse? By
what factor does it change, and where does the energy go to or
come from?

25 •• The moment of inertia of Earth about its spin axis is ap-
proximately (a) Because Earth is nearly spheri-
cal, assume that the moment of inertia can be written as 
where C is a dimensionless constant, is the
mass of Earth, and is its radius. Determine C. (b) If
Earth’s mass were distributed uniformly, C would equal From
the value of C calculated in Part (a), is Earth’s density greater near
its center or near its surface? Explain your reasoning.

26 ••• Estimate Timothy Goebel’s initial takeoff speed, rota-
tional velocity, and angular momentum when he performs a
quadruple lutz (Figure 10-41). Make any assumptions you think
reasonable, but justify them. Goebel’s mass is about and the
height of the jump is about Note that his angular speed will0.60 m,

60 kg

2>5.
R � 6370 km

M � 5.98 � 1024 kg
I � CMR2,

8.03 � 1037 kg # m2.

I � 0.059MR2.

10 km.

1000 rev>s.1 rev>s

1 rev>25 d.

6.96 � 108 m.
1.99 � 1030 kg

SSM

�
�.�(� � 1)

�L � 1�(� � 1) U,

3.0 mm>s

2.3 � 1019 kg
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change quite a bit during the jump, as he begins with arms out-
stretched and then pulls them in. Your answer should be accurate
to within a factor of 2, if you are careful.

28 • Compute the torque about the origin of the gravita-
tional force acting on a particle of mass m located at

and show that this torque is independent of the y
coordinate.

29 • Find for the following choices: (a) and
(b) and and (c)

and

30 •• For each case in Problem 29, compute Compare
it to to estimate which of the pairs of vectors are closest to
being perpendicular. Verify your answers by calculating the angle
using the dot product.

31 •• A particle moves in a circle that is centered at the origin.
The particle has position and angular velocity (a) Show that its
velocity is given by (b) Show that its centripetal accel-
eration is given by 

32 •• You are given three vectors and their components in
the form: and

Show that the following equalities hold:
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Problem 26 
(Chris Trotman/DUOMO/Corbis.)

THE VECTOR PRODUCT 
AND THE VECTOR NATURE 
OF TORQUE AND ROTATION

27 • A force of magnitude F is applied horizontally in
the direction to the rim of a disk of radius as shown in
Figure 10-42. Write and in terms of the unit vectors and

and compute the torque produced by this force about the ori-
gin at the center of the disk. SSM

kn,
jn,in,rSF
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TORQUE AND 
ANGULAR MOMENTUM

37 • A 2.0-kg particle moves directly eastward at a constant
speed of along an east–west line. (a) What is its angular
momentum (including direction) about a point that lies 
north of the line? (b) What is its angular momentum (including di-
rection) about a point that lies south of the line? (c) What is
its angular momentum (including direction) about a point that
lies directly east of the particle?

38 • You observe a 2.0-kg particle moving at a constant
speed of in a clockwise direction around a circle of radius

(a) What is its angular momentum (including direction)
about the center of the circle? (b) What is its moment of inertia
about an axis through the center of the circle and perpendicular
to the plane of the motion? (c) What is the angular velocity of the
particle?

39 •• (a) A particle moving at constant velocity has zero angu-
lar momentum about a particular point. Use the definition of angu-
lar momentum to show that under this condition the particle is
moving either directly toward or directly away from the point.
(b) You are a right-handed batter and let a waist-high fastball go
past you without swinging. What is the direction of the ball’s an-
gular momentum relative to your navel? (Assume that the ball trav-
els in a straight, horizontal line as it passes you.)

40 •• A particle that has a mass m is traveling with a constant
velocity along a straight line that is a distance b from the origin O
(Figure 10-44). Let be the area swept out by the position vector
from O to the particle during a time interval dt. Show that is
constant and is equal to where L is the magnitude of the an-
gular momentum of the particle about the origin.

L>2m,
dA>dt

dA
vS

4.0 m.
3.5m>s

SSM6.0 m

6.0 m

6.0 m
4.5 m>s

33 •• If and find 

34 •• If and deter-
mine

35 ••• Given three noncoplanar vectors, and show that
is the volume of the parallelepiped formed by the three

vectors.

36 ••• Using the vector product, prove the law of sines for the
triangle shown in Figure 10-43. That is, if A, B, and C are the lengths
of each side of the triangle, show
that A>sina � B>sinb � C>sin c.
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41 •• A 15-g coin that has a diameter equal to is spin-
ning at about a fixed vertical axis. The coin is spinning on
edge with its center directly above the point of contact with the
tabletop. As you look down on the tabletop, the coin spins clock-
wise. (a) What is the angular momentum (including direction) of the
coin about its center of mass? (To find the moment of inertia about
the axis, see Table 9-1.) Model the coin as a cylinder of length L and
take the limit as L approaches zero. (b) What is the coin’s angular
momentum (including direction) about a point on the tabletop

from the axis? (c) Now the coin’s center of mass travels at
in a straight line east across the tabletop, while spinning

the same way as in Part (a). What is the angular momentum
(including direction) of the coin about a point on the line of motion
of the center of mass? (d) When it is both spinning and sliding, what
is the angular momentum of the coin (including direction) about a
point north of the line of motion of the center of mass?

42 •• CONCEPTUAL (a) Two stars of masses and are
located at and relative to some origin O, as shown in Figure
10-45. They exert equal and opposite attractive gravitational forces
on each other. For this two-star system, calculate the net torque ex-
erted by these internal forces about the origin O and show that it is
zero only if both forces lie along the line joining the particles.
(b) The fact that the Newton’s third-law pair of forces are not only
equal and oppositely directed but also lie along the line connecting
the two objects is sometimes called the strong form of Newton’s
third law. Why is it important to add that last phrase? Hint:
Consider what would happen to these two objects if the forces were offset
from each other.

rS2rS1

m2m1

10 cm

5.0 cm>s10 cm

10 rev>s 1.5 cm

θ
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v

v

R
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F I G U R E  1 0 - 4 6 Problem 45

46 •• CONTEXT-RICH, ENGINEERING APPLICATION Figure 10-47
shows the rear view of a space capsule that was left rotating
rapidly about its axis at after a collision with another
capsule. You are the flight controller and have just moments to tell
the crew how to stop this rotation before they become ill from the
rotation and the situation becomes dangerous. You know that they
have access to two small jets mounted tangentially at a distance

from the axis, as indicated in the figure. These jets can
each eject of gas with a nozzle speed of Determine
the length of time these jets must run to stop the rotation. In flight,
the moment of inertia of the ship about its axis (assumed constant)
is known to be 4000 kg # m2.

800 m>s.10 g>sR � 3.0 m

30 rev>min

800 m/s

800 m/s

R = 3 m6 rev/min

F I G U R E  1 0 - 4 7 Problem 46

F I G U R E  1 0 - 4 5 Problem 42

43 •• A 1.8-kg particle moves in a circle of radius As
you look down on the plane of its orbit, the particle is initially
moving clockwise. If we call the clockwise direction positive, the
particle’s angular momentum relative to the center of the circle
varies with time according to 
(a) Find the magnitude and direction of the torque acting on the
particle. (b) Find the angular velocity of the particle as a function
of time.

44 •• CONTEXT-RICH, ENGINEERING APPLICATION You are de-
signing a lathe motor, part of which consists of a uniform cylinder
whose mass is and whose radius is that is mounted so
that it turns without friction on its axis, which is fixed. The cylinder
is driven by a belt that wraps around its perimeter and exerts a
constant torque. At the cylinder’s angular velocity is zero.
At its angular speed is (a) What is the mag-
nitude of the cylinder’s angular momentum at (b) At what
rate is the angular momentum increasing? (c) What is the magni-
tude of the torque acting on the cylinder? (d) What is the magnitude
of the frictional force acting on the rim of the cylinder?

45 •• In Figure 10-46, the incline is frictionless and the string
passes through the center of mass of each block. The pulley has a
moment of inertia I and radius R. (a) Find the net torque acting on

t � 25 s?
500 rev>min.t � 25 s,

t � 0,

0.40 m90 kg

L(t) � 10 N # m # s � (4.0 N # m)t.

3.4 m.

F1

F2

r2

r1
m2

m1

O

the system (the two masses, string, and pulley) about the center of
the pulley. (b) Write an expression for the total angular momentum
of the system about the center of the pulley. Assume the masses 
are moving with a speed . (c) Find the acceleration of the masses
by using your results for Parts (a) and (b) and by setting the 
net torque equal to the rate of change of the system’s angular
momentum. SSM

v

47 •• A projectile (mass M) is launched at an angle with an
initial speed Considering the torque and angular momentum
about the launch point, explicitly show that Ignore the
effects of air resistance. (The equations for projectile motion are
found in Chapter 3.)

dL>dt � t.
v0.

u
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CONSERVATION 
OF ANGULAR MOMENTUM

48 • A planet moves in an elliptical orbit about the Sun, with
the Sun at one focus of the ellipse, as in Figure 10-48. (a) What is the
torque about the center of
the Sun due to the
gravitational force of
attraction of the Sun
on the planet? (b) At
position A, the planet
has an orbital radius

and is moving with
a speed perpendi-
cular to the line from the Sun to the planet. At position B, the planet
has an orbital radius and is moving with speed again perpen-
dicular to the line from the Sun to the planet. What is the ratio of 
to in terms of and 

49 •• You stand on a frictionless platform that is rotating at
an angular speed of Your arms are outstretched, and
you hold a heavy weight in each hand. The moment of inertia of
you, the extended weights, and the platform is When
you pull the weights in toward your body, the moment of inertia
decreases to (a) What is the resulting angular speed of
the platform? (b) What is the change in kinetic energy of the sys-
tem? (c) Where did this increase in energy come from?

50 •• A small blob of putty of mass m falls from the ceiling
and lands on the outer rim of a turntable of radius R and mo-
ment of inertia that is rotating freely with angular speed 
about its vertical fixed-symmetry axis. (a) What is the postcolli-
sion angular speed of the turntable–putty system? (b) After sev-
eral turns, the blob flies off the edge of the turntable. What is the
angular speed of the turntable after the blob’s departure?

51 •• A lazy Susan consists of a heavy plastic cylinder mounted
on a frictionless bearing resting on a vertical shaft through its center.
The cylinder has a radius and mass A
cockroach (mass ) is on the lazy Susan, at a distance of

from the center. Both the cockroach and the lazy Susan are
initially at rest. The cockroach then walks along a circular path
concentric with the axis of the lazy Susan at a constant distance of

from the axis of the shaft. If the speed of the cockroach with
respect to the lazy Susan is what is the speed of the
cockroach with respect to the room? SSM

0.010 m>s,
8.0 cm

8.0 cm
m � 0.015 kg

M � 0.25 kg.R � 15 cm

v0I0

SSM

1.8 kg # m2.

6.0 kg # m2.

1.5 rev>s.

r2?r1v2

v1

v2,r2

v1

r1

52 •• Two disks of identi-
cal mass but different radii
(r and 2r) are spinning on fric-
tionless bearings at the same
angular speed but in oppo-
site directions (Figure 10-49).
The two disks are brought
slowly together. The resulting
frictional force between the
surfaces eventually brings
them to a common angular ve-
locity. (a) What is the magni-
tude of that final angular ve-
locity in terms of (b) What is the change in rotational kinetic
energy of the system? Explain. 

53 •• A block of mass m sliding on a frictionless table is at-
tached to a string that passes through a narrow hole through the
center of the table. The block is sliding with speed in a circle
of radius Find (a) the angular momentum of the block, (b) ther0 .

v0

v0?

v0,

ω0
ω0

2r r
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F I G U R E  1 0 - 5 0 Problem 54
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Problem 52

kinetic energy of the block, and (c) the tension in the string. (d) A
student under the table now slowly pulls the string downward.
How much work is required to reduce the radius of the circle from

to

54 ••• A 0.20-kg point mass moving on a frictionless horizontal
surface is attached to a rubber band whose other end is fixed at
point P. The rubber band exerts a force whose magnitude is 
where x is the length of the rubber band and b is an unknown con-
stant. The rubber band force points inward toward P. The mass
moves along the dotted
line in Figure 10-50.
When it passes point A,
its velocity is 
directed as shown. The
distance AP is
and BP is
(a) Find the speed of
the mass at points B
and C. (b) Find b.

1.0 m.
0.60 m

4.0 m>s,

F � bx,

r0>2?r0

0.6 m

1.0 m

A C

B

0.6 m

v

P

QUANTIZATION 
OF ANGULAR MOMENTUM

55 •• The z component of the spin of an electron is but
the magnitude of the spin vector is What is the angle be-
tween the electron’s spin angular-momentum vector and the posi-
tive z axis?

56 •• Show that the energy difference between one rotational
state of a molecule and the next higher state is proportional to 

57 •• CONTEXT-RICH, BIOLOGICAL APPLICATION You work
in a biochemical research lab, where you are investigating the
rotational energy levels of the HBr molecule. After consulting
the periodic chart, you know that the mass of the bromine atom
is 80 times that of the hydrogen atom. Consequently, in calculat-
ing the rotational motion of the molecule, you assume, to a good
approximation, that the Br nucleus remains stationary as the H
atom revolves around it. You also know
that the separation between the hydrogen atom and bromine
nucleus is Calculate (a) the moment of inertia of the
HBr molecule about the bromine nucleus, and (b) the rotational
energies for the bromine nucleus’s ground state (lowest energy)

and the next two states of higher energy (called the first
and second excited states) described by and 

58 ••• The equilibrium separation between the nuclei of the
nitrogen molecule is and the mass of each nitro-
gen nucleus is where For rotational
energies, the total energy is due to rotational kinetic energy.
(a) Approximate the nitrogen molecule as a rigid dumbbell of
two equal point masses and calculate the moment of inertia
about its center of mass. (b) Find the energy of the lowest three
energy levels using (c) Molecules
emit a particle (or quantum) of light called a photon when they
make a transition from a higher energy state to a lower one.
Determine the energy of a photon emitted when a nitrogen mol-
ecule drops from the to the state. Visible-light pho-
tons each have between 2 and 3 eV of energy. Are these photons
in the visible region?

� � 1� � 2
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u � 1.66 � 10�27 kg.14.0 u,
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64 •• If, for the system of Problem 63, 
and the maximum angle between the rod and the ver-

tical following the collision is find the speed of the particle be-
fore impact.

65 •• A uniform rod is resting on a frictionless table when it is
suddenly struck at one end by a sharp horizontal blow in a direction
perpendicular to the rod. The mass of the rod is M and the magni-
tude of the impulse applied by the blow is J. Immediately after the
rod is struck, (a) what is the velocity of the center of mass of the rod,
(b) what is the velocity of the end that is struck, (c) and what is the
velocity of the other end of the rod? (d) Is there a point on the rod that
remains motionless?

66 •• A projectile of mass is traveling at a constant velocity
toward a stationary disk of mass M and radius R that is free to

rotate its axis (Figure 10-54). Before impact, the projectile is travel-
ing along a line displaced a distance b below the axis. The projectile
strikes the disk and sticks to point B. Model the projectile as a point
mass. (a) Before impact, what is the total angular momentum of
the disk–projectile system about the axis? Answer the following
questions in terms of the symbols given at the start of this problem.
(b) What is the angular speed v of the disk–projectile system just
after the impact? (c) What is the kinetic energy of the disk–projec-
tile system after impact? (d) How much mechanical energy is lost in
this collision? 

L0

vS0

mp

60°,
m � 0.30 kg,

M � 0.80 kg,L � 1.2 m,

68 •• A uniform rod that has a length equal to and
a mass equal to is attached to a hinge of negligible
mass at one end and is free to rotate in the vertical plane (Figure
10-55). The rod is released from rest in the position shown. A
particle whose mass is m is suspended from a thin string whose
length is equal to from the hinge. The particle sticks to
the rod on contact, and after the collision the rod continues to ro-
tate until (a) Find m. (b) How much energy is dissi-
pated during the collision? SSM

umax � 37°.

0.80 mL2

2.0 kgM
1.2 mL1

62 •• Figure 10-52 shows a thin, uniform bar whose length is
L and mass is M and a compact hard sphere whose mass is m. The
system is supported by a frictionless horizontal surface. The sphere
moves to the right with velocity and strikes the bar at a distance

from the center of the bar. The collision is elastic, and following
the collision the sphere is at rest. Find the value of the ratio m>M.

1
4L

vS,

M

v
m

Ldv

M

(top view)
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Problem 61

L

xM

m v
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Problem 63

63 •• Figure 10-53 shows a uniform rod
whose length is L and mass is M pivoted at the
top. The rod, which is initially at rest, is struck
by a particle whose mass is m at a point

below the pivot. Assume that the
particle sticks to the rod. What must be the
speed of the particle so that following the
collision the maximum angle between the rod
and the vertical is 90°? 

v

x � 0.8L

F I G U R E  1 0 - 5 4

Problem 66

67 •• A uniform rod of length and mass M equal to
is attached to a hinge of negligible mass at one end and

is free to rotate in the vertical plane (Figure 10-55). The rod is re-
leased from rest in the position shown. A particle of mass

is suspended from a thin string of length from
the hinge. The particle sticks to the rod on contact. What should
the ratio be so that after the collision? SSMumax � 60°L2 >L1

L2m � 0.50 kg

0.75 kg
L1

L2

m

θ

L1

M

F I G U R E  1 0 - 5 5

Problem 67

61 •• Figure 10-52 shows a thin, uniform bar of length L
and mass M and a small blob of putty of mass m. The system is
supported by a frictionless horizontal surface. The putty moves
to the right with velocity strikes the bar at a distance d from
the center of the bar, and sticks to the bar at the point of contact.
Obtain expressions for the velocity of the system’s center of
mass and for the angular speed following the collision. SSM

vS,

59 ••• CONCEPTUAL Consider a transition from a lower energy
state to a higher one—that is, the absorption of a quantum of en-
ergy, resulting in an increase in the rotational energy of an mol-
ecule (see Problem 58). Suppose such a molecule, initially in its
ground rotational state, was exposed to photons, each with an en-
ergy equal to three times the energy of its first excited state.
(a) Would the molecule be able to absorb this photon energy?
Explain why or why not, and if it can, determine the energy level to
which it goes. (b) To make a transition from its ground state to its
second excited state requires how many times the energy of the first
excited state?

COLLISIONS WITH ROTATIONS

60 •• A 16.0-kg, 2.40-m-long rod is supported at its midpoint
on a knife edge. A 3.20-kg ball of clay drops
from rest from a height of and
makes a perfectly inelastic collision
with the rod from the point
of support (Figure 10-51). Find
the angular momentum of
the rod and clay system
about the point of sup-
port immediately after
the inelastic collision. 

0.90 m

1.20 m

N2

F I G U R E  1 0 - 5 1 Problem 60



1.5 m

2 kg

30°
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GENERAL PROBLEMS

71 • A particle whose mass is moves in the xy plane
with velocity along the line (a) Find
the angular momentum about the origin when the particle is
at ( ). (b) A force is applied to the parti-
cle. Find the torque about the origin due to this force as the par-
ticle passes through the point (12 m, 5.3 m).

72 • The position vector of a particle whose mass is 
is given by where is in meters and t is in
seconds. Determine the angular momentum and net torque
about the origin acting on the particle.

73 •• Two ice-skaters, whose masses are and hold
hands and rotate about a vertical axis that passes between them, mak-
ing one revolution in Their centers of mass are separated by

and their center of mass is stationary. Model each skater as a
point particle and find (a) the angular momentum of the system about
their center of mass and (b) the total kinetic energy of the system.

74 •• A 2.0-kg ball attached to a string whose length is 
moves counterclockwise (as viewed from above) in a horizontal cir-
cle (Figure 10-56). The string makes an angle

with the vertical. (a) Determine
both the horizontal and vertical compo-
nents of the angular momentum of
the ball about the point of support.
(b) Find the magnitude of and
verify that it equals the magnitude
of the torque exerted by gravity
about the point of support. 

75 •• A compact object whose mass is m resting on a horizon-
tal, frictionless surface is attached to a string that wraps around a
vertical cylindrical post attached to the surface. Thus, when the ob-
ject is set into motion, it follows a path that spirals inward. (a) Is the
angular momentum of the object about the axis of the post
conserved? Explain your answer. (b) Is the energy of the object con-

dL
S>dt

L
S

u � 30°

1.5 m

1.7 m,
2.5 s.

85 kg,55 kg

rSrS � (4.0 � 3.0t2) jn,
3.0 kg

SSM

F
S

� (�3.9 N)in5.3 m12 m,
L
S

y � 5.3 m.vS � (3.0 m>s)in
3.0 kg
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Problem 74

PRECESSION

69 •• A bicycle wheel that has a radius equal to is
mounted at the middle of a 50-cm-long axle. The tire and rim weigh

The wheel is spun at and the axle is then placed in a
horizontal position with one end resting on a pivot. (a) What is the
angular momentum due to the spinning of the wheel? (Treat the
wheel as a hoop.) (b) What is the angular velocity of precession?
(c) How long does it take for the axle to swing through around
the pivot? (d) What is the angular momentum associated with the
motion of the center of mass, that is, due to the precession? In what
direction is this angular momentum?

70 •• A uniform disk, whose mass is and radius is
is mounted at the center of a 10.0-cm-long axle and spun at

The axle is then placed in a horizontal position with
one end resting on a pivot. The other end is given an initial hori-
zontal velocity such that the precession is smooth with no nutation.
(a) What is the angular velocity of precession? (b) What is the speed
of the center of mass during the precession? (c) What is the acceler-
ation (magnitude and direction) of the center of mass? (d) What are
the vertical and horizontal components of the force exerted by the
pivot on the axle?

700 rev>min.
6.40 cm,

2.50 kg

SSM

360°

12 rev>s,30 N.

28 cm

served? Explain your answer. (c) If the speed of the object is when
the unwrapped length of the string is r, what is its speed when the
unwrapped length has shortened to 

76 •• CONTEXT-RICH, ENGINEERING APPLICATION Figure 10-57
shows a hollow cylindrical tube that has a mass M, a length L, and
a moment of inertia Inside the cylinder are two disks, each
of mass m and radius r, separated by a distance , and tied to a cen-
tral post by a thin string. The system can rotate about a vertical axis
through the center of the cylinder. You are designing this cylinder–
disk apparatus to shut down the rotations by triggering an elec-
tronic “shutoff” signal (sent to the rotating motor) when the strings
break as the disks hit the ends of the cylinder. During development,
you notice that with the system rotating at some critical angular
speed the string suddenly breaks. When the disks reach the ends
of the cylinder, they stick. Obtain expressions for the final angular
speed and the initial and final kinetic energies of the system.
Assume that the inside walls of the cylinder are frictionless. 

77 •• CONTEXT-RICH, ENGINEERING APPLICATION Repeat
Problem 76, but this time friction between the disks and the
walls of the cylinder is not negligible. However, the coefficient
of friction is not great enough to prevent the disks from reaching
the ends of the cylinder. Can the final kinetic energy of the sys-
tem be determined without knowing the coefficient of kinetic
friction?

78 •• CONTEXT-RICH, ENGINEERING APPLICATION Suppose
that in Figure 10-57 and

The string breaks when the system’s angular speed
approaches a critical angular speed at which time the tension
in the string approaches 108 The masses then move radially
outward until they undergo perfectly inelastic collisions with
the ends of the cylinder. Determine the critical angular speed
and the angular speed of the system after the inelastic collisions.
Find the total kinetic energy of the system at the critical angular
speed and again after the inelastic collisions. Assume that the
inside walls of the cylinder are frictionless.

N.
vi

m � 0.40 kg.
� � 0.60 m, L � 2.0 m,M � 0.80 kg,

SSM

v,

�
ML2>10.

r>2?

v0

L

m m
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79 •• Kepler’s second law states: The line from the center of the
Sun to the center of a planet sweeps out equal areas in equal times. Show
that this law follows directly from the law of conservation of angu-
lar momentum and the fact that the force of gravitational attraction
between a planet and the Sun acts along the line joining the centers
of the two celestial objects.

80 •• Consider a cylindrical turntable whose mass is M and
radius is R, turning with an initial angular speed (a) A para-
keet of mass m, after hovering in flight above the outer edge of
the turntable, gently lands on it and stays in one place on it, as

v1.

SSM
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Problem 81 (Courtesy
of Tangent Toy Co.)

shown in Figure 10-58. What is the angular speed of the turntable
after the parakeet lands? (b) Becoming dizzy, the parakeet jumps off
(not flies off) with a velocity relative to the turntable. The direc-
tion of is tangent to the
edge of the turntable and in
the direction of its rotation.
What will be the angular
speed of the turntable after-
wards? Express your an-
swer in terms of the two
masses m and M, the radius
R, the parakeet speed 
and the initial angular
speed v1.

v,

vS
vS

is given approximately by (c) By how many kilo-
meters would r need to increase for the period to change by

(so that leap years would no longer be necessary)?

83 •• The term precession of the equinoxes refers to the fact that
Earth’s spin axis does not stay fixed but sweeps out a cone once
every (This explains why our pole star, Polaris, will not re-
main the pole star forever.) The reason for this instability is that
Earth is a giant gyroscope. The spin axis of Earth precesses because
of the torques exerted on it by the gravitational forces of the Sun
and moon. The angle between the direction of Earth’s spin axis and
the normal to the ecliptic plane (the plane of Earth’s orbit) is
22.5 degrees. Calculate an approximate value for this torque, given
that the period of rotation of Earth is and its moment of iner-
tia is 

84 •• As indicated in the text, according to the Standard Model
of Particle Physics, electrons are pointlike particles having no spa-
tial extent. (This assumption has been confirmed experimentally,
and the radius of the electron has been shown to be less than

) The intrinsic spin of an electron could in principle be due
to its rotation. Let us check to see if this conclusion is feasible.
(a) Assuming that the electron is a uniform sphere whose radius is

what angular speed would be necessary to produce
the observed intrinsic angular momentum of (b) Using this
value of angular speed, show that the speed of a point on the
“equator” of a “spinning” electron would be moving faster than the
speed of light. What is your conclusion about the spin angular mo-
mentum being analogous to a spinning sphere with spatial extent?

85 •• An interesting phenomenon occurring in certain pulsars
(see Problem 24) is an event known as a “spin glitch,” that is, a
quick change in the spin rate of the pulsar due to a shift in mass lo-
cation and a resulting rotational change in inertia. Imagine a pulsar
whose radius is and whose period of rotation is 
The rotation period is observed to suddenly decrease from

to If that decrease was caused by a contraction
of the star, by what amount would the pulsar radius have had to
change?

86 ••• Figure 10-60 shows a pulley in the
form of a uniform disk with a rope hanging
over it. The circumference of the pulley is
1.2 m and its mass is 2.2 kg. The rope is 8.0 m
long and its mass is 4.8 kg. At the instant
shown in the figure, the system is at rest and
the difference in height of the two ends of the
rope is 0.60 m. (a) What is the angular speed
of the pulley when the difference in height
between the two ends of the rope is 7.2 m?
(b) Obtain an expression for the angular mo-
mentum of the system as a function of time
while neither end of the rope is above the
center of the pulley. There is no slippage be-
tween rope and pulley wheel.

25.028 ms.25.032 ms

25.032 ms.10.0 km

U>2?
1.00 � 10�18 m,

10�18 m.

SSM8.03 � 1037 kg # m2.
1.00 d

26,000 y.

0.25 d>y,

¢T>T � 2¢r>r.¢T
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0.6 m
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Problem 86

81 •• You are given a heavy but thin metal disk (like a coin, but
larger; Figure 10-59) that has a mass of and a radius of

(Objects like this are called Euler disks.) Placing the disk on
a turntable, you spin the disk, on edge, about a vertical axis through
a diameter of the disk and the center of the turntable. As you do
this, you hold the turntable still with your other hand, letting it go
immediately after you spin the disk. The turntable is a uniform
solid cylinder with a radius equal to and a mass equal to

and rotates on a frictionless bearing. The disk has an initial
angular speed of (a) The disk spins down and falls over,
finally coming to rest on the turntable with its symmetry axis
coinciding with the turntable. What is the final angular speed of the
turntable? (b) What will be the final angular speed if the disk’s
symmetry axis ends up from the axis of the turntable?0.100 m

30 rev>min.
0.735 kg

0.250 m

0.125 m.
0.500 kg

82 •• (a) Assuming Earth to be a homogeneous sphere that has
a radius r and a mass m, show that the period T (time for one daily
rotation) of Earth’s rotation about its axis is related to its radius by

where Here L is the magnitude of the spin
angular momentum of Earth. (b) Suppose that the radius r changes
by a very small amount, due to some internal cause, such as
thermal expansion. Show that the fractional change in the period

¢r,

b � (4>5)pm>L.T � br2,
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T
he theory of relativity consists of two rather different theories, the special
theory and the general theory. The special theory, developed by Albert
Einstein and others in 1905, concerns the comparison of measurements
made in different inertial reference frames moving with constant velocity
relative to one another. Its consequences, which can be derived with a min-
imum of mathematics, are applicable in a wide variety of situations en-

countered in physics and engineering. An application of the special theory can be
seen in the development of the global positioning system (GPS), which is able to
give your position coordinates (latitude, longitude, and altitude) to within a few
meters. The system contains 24 satellites, each carrying an atomic clock and each
broadcasting a time signal that can be picked up by any GPS receiver in the line of
sight of the satellite. The relative arrival times of the signals from several satellites
together with knowledge of the positions of the satellites enables the receiver to
calculate its position coordinates. According to the special theory, the faster the
speed of a clock, the slower it runs (Section R-3). The satellites are moving at about

and the effect of the clocks running more slowly at this speed is not3.9 km>s,

R
C H A P T E R

If an astronaut on a spaceship that is

traveling at 0.6c relative to Earth

takes a one-hour-long nap, does that

nap take one hour according to observers

on Earth? (See Example R-1.)

?

R-1

ABOARD THE SPACE SHUTTLE ORBITER,
ASTRONAUTS REST IN BUNKS. THEY
SLEEP STRAPPED IN SO THEY DO NOT
FLOAT AROUND THE CABIN AND THEY
DO NOT NEED SOFT MATTRESSES.
WHEN THE SHUTTLE IS IN A LOW EARTH
ORBIT, IT ORBITS EARTH ONCE EVERY
90 MIN AT A SPEED OF ABOUT

. THIS SPEED IS A
SMALL FRACTION OF THE SPEED OF
LIGHT, WHICH IS 
(NASA.)

3.0 � 105 KM>S.

7 KM>S (4.9 MI>S)



Edward Morley. 
(AIP Emilio Segre Visual Archives.)

Albert Michelson. 
(AIP Emilio Segre Visual Archives.)
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* Further discussion on inertial reference frames can be found in Chapter 4.

negligible. However, the design of the system accounts for the slowing down of the
orbiting clocks. (In addition, according to the general theory, the greater the grav-
itation potential energy of a clock, the faster it runs (Section 39-8). The design of the
system also accounts for the speeding up of the clocks due to their high altitude.)
The GPS is able to function only because it takes into account the effects of the spe-
cial and general theories of relativity on the observed clock rates.

In this chapter, we concentrate on the special theory of relativity (often re-
ferred to as special relativity). You will see how this theory challenges our
everyday experience of time and distance, as we describe the slowing down
of moving clocks, the shortening of moving sticks, the relativity of simul-
taneity for events that occur in different locations, and the relativity of the
momentum and energy relation.

R-1 THE PRINCIPLE OF RELATIVITY AND 
THE CONSTANCY OF THE SPEED OF LIGHT

The principle of relativity can be stated as follows:

It is impossible to devise an experiment that determines whether you are at
rest or moving uniformly.

POSTULATE I :  THE PRINCIPLE OF RELATIVITY

Moving uniformly means moving at constant velocity relative to an inertial refer-
ence frame. For example, suppose that you are in your seat on board a high-speed
airplane moving uniformly relative to the surface of Earth. If you drop your fork,
it will fall to the floor in the same way that it would if the plane were parked on a
runway. When the airplane is in flight, you can consider yourself and the airplane
to be at rest and the surface of Earth below you to be moving. There is nothing to
distinguish whether you and the plane are moving and the surface of Earth is at
rest, or vice versa.

Any reference frame in which a particle with no forces acting on it moves with
constant velocity is, by definition, an inertial reference frame.* The surface of Earth
is, to a good approximation, an inertial reference frame. The airplane is also an in-
ertial reference frame as long as it moves with constant velocity relative to the sur-
face of Earth. As long as you remain seated or standing still on the airplane, you
can consider yourself and the airplane to be at rest and the surface of Earth to be
moving, or you can consider the surface of Earth to be at rest and yourself and the
airplane to be moving.

In the nineteenth century, the existence of a preferred frame of reference that
could be considered to be at rest was widely accepted. This reference frame was
thought to be the reference frame of the ether, which is the medium filling all of
space through which light was thought to propagate. (It was then accepted that
light waves needed a medium to propagate through, just as it is now accepted that
sound waves need air or some other medium through which to propagate.) The
ether was considered to be the preferred “at rest” reference frame.

A carefully devised series of measurements to measure the orbital speed of
Earth relative to the ether were carried out in 1887 by Albert Michelson and
Edward Morley. These measurements were considered challenging because the
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Albert Einstein. 
(Underwood & Underwood/Corbis.)
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orbital speed of Earth is less than the speed of light in vacuum. Much to
the surprise of nearly everyone, the observations always found the speed of Earth
relative to the ether to be zero. It was Albert Einstein who came up with a theory
that was consistent with these observations. His explanation was that light is ca-
pable of traveling through empty space and that the ether was an unnecessary con-
struct that did not exist. Einstein also postulated:

The speed of light is independent of the speed of the light source.

POSTULATE I I

Here the speed of light refers to the speed at which light travels through the vacuum
of empty space.

A consequence of Postulate II and the principle of relativity (Postulate I) is that
all inertial observers measure the same value for the speed of light. (An inertial ob-
server is one that remains at rest relative to an inertial reference frame.) To estab-
lish that all inertial observers measure the same value for the speed of light, we
consider inertial observers A and B, where observer A is moving relative to ob-
server B. The principle of relativity states that it is impossible to devise an experi-
ment that determines whether an inertial observer is at rest or moving uniformly.
If observer A measures a different value for the speed of light than observer B, then
observers A and B could not both consider themselves to be at rest—a result in di-
rect contradiction with the principle of relativity. Thus, a consequence of both the
principle of relativity and Postulate II (that the speed of light is independent of the
speed of the source) leads to the constancy of the speed of light:

The speed of light c is the same in any inertial reference frame.

THE CONSTANCY OF THE SPEED OF LIGHT

That is, anything (not just light) that travels at speed c relative to one inertial ref-
erence frame travels at the same speed c relative to any inertial reference frame.

Suppose you are in your backyard here on Earth and Bob is on a spaceship mov-
ing away from you at half the speed of light (Figure R-1). You point a flashlight
in Bob’s direction and turn it on. The light leaves the flashlight, traveling at speed
c (relative to the flashlight), and passes by your neighbor Keisha, who is standing
on the roof of her house next door. Keisha measures the speed of the light going by
and finds it to be traveling at speed c. A few minutes later, the light travels past Bob
and his spaceship. Like Keisha, Bob measures the speed of the light going by him
and also finds it to be traveling at speed c. This surprises Bob because he expected
the light to be traveling past him at speed rather than at speed c—after all, Bob
is moving at speed relative to the source of the light (the flashlight in your back-
yard). Like many people, Bob finds the constancy of the speed of light to be coun-
terintuitive. As a result, he is faced with a dilemma. Should he trust his measuring
instruments or trust his intuition? It turns out that it is Bob’s intuition that needs
adjusting, not his instruments. Bob must change his concepts of both space
and time.

Suppose that instead of pointing a flashlight, you point a high-speed particle
beam in his direction, where by “high speed” we mean a speed very close to the
speed of light, c. (A particle such as an electron or proton cannot travel at the speed
of light, but it can travel at speeds that approach the speed of light.) If Keisha mea-
sures the particles going by her to be traveling at 0.9999c (relative to her), then how
fast will Bob measure the particles going by him? Bob’s intuition tells him that, be-
cause he is moving away from the source of the particles, they will be traveling

1
2 c

1
2 c

(1
2 c)

1>10,000
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Shrinking is a
hypothetical result
and not necessarily
what actually
happens

Stick A

Stick B

HYPOTHETIC
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F I G U R E  R - 2 During the flyby, marks like
this would be made on stick B by marking
pens attached to stick A, if the moving stick
was shortened.

Mark
placements
are
hypothetical

Stick A Stick B
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F I G U R E  R - 3 If the distance between
marks is greater than the distance between
marker pens, this would demonstrate that
stick B was shorter than stick A when the
marks were made.* Relative velocity in special relativity is covered in Chapter 39.

past him at the slower speed of 0.4999c, but that is not the case. When Bob mea-
sures the speed of the particles (relative to him) he finds it to be extremely close to
0.9999c. (The actual value is 0.9997c.)*

We tend to think of distances between cities as fixed. However, this too is not
the case. According to a certain road map, the distance between Baltimore and
Philadelphia is 160 km. However, if you travel from Baltimore to Philadelphia at a
significant fraction of the speed of light, the distance between the two cities will be
much shorter than it is if you travel at For someone driving
at the distance between Baltimore and Philadelphia is very close to
160 km. However, for someone traveling at a speed of 0.866c (relative to Earth’s
surface), the distance is only 80 km, and for someone traveling at 0.9999c, the dis-
tance is only 2.2 km.

The fastest speed that a human being has ever traveled relative to Earth is only
about (During the Apollo missions to the moon, the cap-
sule reached this speed on its return to Earth.) This speed is quite slow compared
to the speed of light. For someone traveling at that speed from Baltimore to
Philadelphia, the distance between those cities would be shorter than the distance
for someone traveling at by less than the diameter of a human hair. The
logic explaining how this is determined is presented in the next three sections.

R-2 MOVING STICKS

We wish to show that if a stick moves perpendicular to its length, its length does
not change. We do this by showing that any increase or decrease in length would
contradict the principle of relativity. Showing that a stick does not change its length
may seem mundane. However, we show it because an immediate consequence is
that moving clocks run slow.

Suppose that we have two identical metersticks, stick A and stick B. We verify
that the sticks are identical in length by placing them side by side and comparing
their lengths visually. We then give stick B to Bob just before he takes off on another
trip in his spaceship. On this trip, Bob makes sure to hold the stick at right angles
to the velocity of the spaceship relative to Earth. Stick A remains back on Earth
with us. During the trip, is stick B shorter than stick A?

To answer this question we conduct a thought experiment. We attach felt-tipped
marking pens to stick A, one at the 20-cm mark, the other at the 80-cm mark. Then
Bob and his spaceship execute a flyby, during which Bob holds stick B out a port-
hole, keeping it at right angles to the ship’s velocity. During the flyby, we hold up
our stick (stick A), keeping it parallel with stick B. As the sticks pass by each other,
two marks are drawn on stick B by the pens (Figure R-2). Bob then returns to Earth
with stick B, the two sticks are again placed side by side (Figure R-3), and the dis-
tance between the two marks on stick B and the distance between the two marking
pens on stick A are compared. Let us assume that a stick moving perpendicular to
its length is shorter than is an identical stick that is stationary. Then, the distance
between the two pens on A will be less than the distance between the two marks
on B (Figure R-3)—clear evidence that during the flyby the moving stick (stick B)
was shorter than the stationary stick. However, according to the principle of rela-
tivity it is equally valid to think of stick B as stationary and stick A as moving dur-
ing the flyby. From this perspective, the same evidence (Figure R-3) demonstrates
that the moving stick—now stick A—is longer than the stationary stick. Thus, our
assumption—that a stick moving perpendicular to its length is shorter than an
identical stationary stick—leads to a contradiction and must be rejected. The as-
sumption that a stick moving perpendicular to its length is longer than is an iden-

100 km>h
10 km>s � 3.3 � 10�5c.

100 km>h,
100 km>h (62 mi>h).
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tical stationary stick also leads to a contradiction, as can be shown using an analo-
gous argument. Thus, we conclude:

A stick moving perpendicular to its length has the same length as an identi-
cal stick that is stationary.

This rule is established without any consideration of the material from which the
two sticks are made. Thus, the rule does not reflect a property of sticks. Instead, it
reflects a property of space.

The frame of reference in which the stick is at rest is called the proper frame or
rest frame of the stick, and the length of a stick in its proper reference frame is
called its proper length or rest length.

R-3 MOVING CLOCKS

Clocks are used to measure time. In this section, we show that clocks moving at
high speeds run slowly, so if a high-speed spaceship travels by us, we would ob-
serve that all the clocks on the ship run slower than our clocks. However, the peo-
ple on the ship are free to consider themselves to be at rest and us to be moving,
and they would observe that our clocks run slow compared to their clocks. Let us
examine how these observations are consistent with the constancy of the speed of
light and the principle of relativity.

We construct a clock, called a light clock, using a stick of proper length and
two mirrors (Figure R-4). The two mirrors face each other, and a pulse of light
bounces back and forth between them. Each time the light pulse strikes one of the
mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the
light pulse travels a distance in the proper reference frame of the clock. Thus,
the time between ticks is related to by

R-1

Next, we consider the time between ticks T of the
same light clock, but this time we observe it from a refer-
ence frame in which the clock is moving perpendicular to
the stick with speed (Figure R-5). In this reference
frame, the clock moves a distance between ticks and
the light pulse moves a distance between ticks. The
distance the pulse moves in traveling from the bottom 
mirror to the top mirror is The light pulse
travels the same distance in traveling from the top mirror
to the bottom mirror. Thus,

R-2

Because the speed of light is the same in all inertial ref-
erence frames, we have used the same symbol c for the
speed of light in Equations R-1 and R-2. Solving Equation
R-1 for and substituting into Equation R-2 gives

R-3

Solving for gives

R-3

TIME DILATION

T �
T0

41 � (v2>c2)

T

2(1
2 cT0)

2 � (1
2 vT)2 � 1

2 cT

L0

22L0
2 � (1

2 vT)2 � cT

2L0
2 � (1

2 vT)2 .

cT
vT

v

2L0 � cT0

L0T0

2L0

L0

1
2 vT

1
2 cT 1

2 cT

1
2 vT

v v v
L0

F I G U R E  R - 5 The light clock moves with speed v.

Mirror

Mirror

Light

L0

F I G U R E  R - 4 The light clock ticks each
time the light pulse reflects off the lower
mirror.
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Stick

Mirror

Mirror

Conventional clock

Conventional clock

Rotating disk

Clock face

Slot in rotating
disk

Side view Overhead view

F I G U R E  R - 6 A small conventional clock
is placed on the lower mirror of the light
clock.

Conventional clock

Tick marks

Exposed
lines

F I G U R E  R - 7 The light striking the
conventional clock that passes through the
slot exposes the light-sensitive film behind
the slot.

According to Equation R-3, the time between ticks in the reference frame in
which the clock moves at speed v is greater than the time between ticks in the
proper reference frame of the clock.

This raises a question: Do other clocks run slow according to Equation R-3 when
they move with speed or is Equation R-3 valid only for light clocks? To answer
this question, we attach a conventional clock (with a conventional clock mecha-
nism) to the lower mirror of the light clock (Figure R-6). The conventional clock has
had the minute and hour hands removed. In place of a second hand, the clock has
an opaque disk with a narrow slot to indicate the time. The clock’s face contains 60
equal-spaced marks (called tick marks) around its perimeter—one for each second.
The clock ticks each time the slot passes over one of the tick marks. We adjust the
length of the light-clock stick so that the time between ticks of both clocks is the
same in the proper reference frame of the clocks. Next, we synchronize the clocks
so each tick of the light clock occurs simultaneously with a tick of the conventional
clock. We then ask, “If the ticks of the two clocks occur simultaneously in the
proper reference frame of the clocks, do they also occur simultaneously in a refer-
ence frame in which the clocks are moving at speed ?”

The answer is yes. To understand why this is so, consider the following thought
experiment. In the proper reference frame of the clocks, the time between ticks of
both clocks is exactly one second. A light-sensitive film is placed on the face of the
conventional clock, behind the rotating disk. Each time the light pulse reflects off
the lower mirror, a narrow region of the light-sensitive paper directly behind the
slot gets exposed. These exposed regions will be aligned with the tick marks as
shown in Figure R-7, and all observers must agree with this permanent record.

In reference frame A in which the clocks are both moving, the light pulse ex-
poses the film behind the slot on the clock face each time the pulse reflects off the
lower mirror. Because the light clock is moving, the time between these reflections
is greater than 1 s, in accordance with Equation R-3. When an observer of reference
frame A sees that the lines appearing where the film was exposed are aligned with
the tick marks, she realizes that in her reference frame the conventional clock runs
slow in exactly the same manner that the light clock runs slow—in accord with
Equation R-3—and that this has nothing to do with the mechanism of the conven-
tional clock. Thus, we conclude that all moving clocks run slow in exactly the same
manner that a moving light clock runs slow. Because this is the case, we conclude
that it is time itself that runs slow, a phenomenon known as time dilation.

Something that occurs at a specific instant in time and at a specific location in
space is called a spacetime event, or just an event. Each reflection of the light pulse
off the lower mirror of the light clock is a spacetime event. If we call one of these
reflections event 1, and the next reflection event 2, then the time between events 1

v

L0

v,
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and 2 in a frame of reference in which the two events occur at the same location is
called the proper time interval between the two events. Let T be the time be-
tween the same two events in a reference frame in which they occur at different lo-
cations. Equation R-3 relates the time T between two events to the proper time 
between the same two events.

Each time the light pulse reflects off the lower mirror, the slot (second hand) of
the conventional clock is directly over a tick mark. In the proper frame of the two
clocks, these two events—the arrival of the light pulse and the passing of the slot
over a tick mark—occur at the same time and at the same place. Any two events that
occur both at the same time and at the same place in one reference frame will occur
both at the same time and at the same place in all reference frames. This is because
such events can have lasting consequences—like producing lines on the light-sensi-
tive film aligned with the tick marks on the clock face. We cannot have the marks
aligned with the tick marks in one reference frame and not aligned with the tick
marks in another reference frame. After all, there is only one clock face and one set
of marks. This conclusion can be generalized into a principle called the principle of
invariance of coincidences:

If two events occur at the same time and at the same place in one reference
frame, then they occur at the same time and at the same place in all refer-
ence frames.

INVARIANCE OF COINCIDENCES

We can better visualize this principle by considering two automobiles passing
through an intersection at the same time. The two events are (1) automobile A
passes through the intersection, and (2) automobile B passes through the intersec-
tion. If these two events occur at the same time in one reference frame, then they
must occur at the same time in all reference frames. Either a fender becomes
dented or it does not. That is, if the automobiles collide, then there is no question
that the two cars were in the intersection at the same time. The lasting evidence
dictates that observers in all reference frames must agree on this fact. Any pair of
events that occur at the same time and at the same location are referred to as a
spacetime coincidence.

T0

T0

Context-RichExample R-1 The Napping Astronauts

You work at space control and communicate regularly with astronauts in a spaceship trav-
eling at relative to Earth. The astronauts sign off from space control, stating that
they are going to nap for 1.00 h and then will call back. How long does their nap last ac-
cording to you and other observers back on Earth?

PICTURE Clock S on the ship reads when the nap begins (a spacetime coincidence) and
reads when the nap ends (also a spacetime coincidence). Observers on the ship
agree that, because clock S is stationary it does not run slow, so the nap lasted 1.00 h. In the
reference frame of the ship, the two events (the beginning of the nap and the end of the nap)
occur at the same location, so the time interval between the events is the proper time inter-
val between them. You and other observers on Earth agree that clock S reads when the nap
begins and it reads when the nap ends. However, you and other observers on
Earth also agree that because clock S is moving at speed it is running slow, so the nap
lasted more than 1.00 h. In the reference frame of Earth, the ship is moving so the nap begins
and ends at different locations. Therefore, in the reference frame of Earth, the time interval
between the events is not the proper time interval between the events.

v,
t0 � 1.00 h

t0

t0 � 1.00 h
t0

v � 0.600c
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* A pion (short for pi meson) is a subatomic particle.

SOLVE

1. Event 1 is the beginning of the nap and event 2 is the end of the
nap. Clock S on the ship advances 1.00 h between these events.
Determine the proper time interval between these events:T0

T0 � 1.00 h

2. Find the time interval T between events 1 and 2 for you and
other observers on Earth:

1.25 h�
1.00 h

21 � 0.360
�

1.00 h

20.640
�

1.00 h
0.800

�

T �
T0

41 � (v2>c2)
�

1.00 h

C1 �
(0.600c)2

c2

CHECK The length of the nap is longer in the reference frame in which the napping person
is moving, which is in accord with Equation R-3.

TAKING IT FURTHER Clock S is an unnecessary construct, as the astronauts themselves
serve as clocks. What is necessary to realize is that the proper time between the beginning
and the end of the nap is 1.00 h, so the time T between the same two events in a reference
frame where the clocks (astronauts) are moving with speed is given by Equation R-3.

PRACTICE PROBLEM R-1 A pion* has a mean proper lifetime of 26 ns 
(measured when the pion is at rest). What is the mean pion lifetime if measured when the
pion is moving at 

PRACTICE PROBLEM R-2 A beam of pions (see Practice Problem R-1) moving at 0.995c
passes point P. How far from P do the pions travel before only half of the pions in the
beam remain?

R-4 MOVING STICKS AGAIN

In Section R-2 the length of a stick moving perpendicular to its length and the
length of an identical stationary stick are compared and found to be equal.
However, the technique used for this comparison works only if the velocity of the
moving stick is perpendicular to the length of the stick. Here we apply a different
technique to compare the length of a stick at rest to its length when the stick is
moving parallel to its length.

A light clock is shown in its proper frame in Figure R-8. This
clock ticks each time the light pulse reflects off the mirror on the
left. In its proper reference frame, the length of the clock is and
the time between ticks is (Equation R-1). To find the
length of the clock in a reference frame in which it is moving to the
right at speed v we consider three sequential events:

Event 0 Light pulse reflects off the mirror at the left end.
Event 1 Light pulse reflects off the mirror at the right end.
Event 2 Light pulse reflects off at the mirror at the left end.

In Figure R-9, the clock is shown at the time of each of these events in a reference
frame in which the clock moves to the right with speed . (The clock is drawn
lower down the page at later times to avoid visual overlap.) The times of occur-
rence for events 0, 1, and 2 in this reference frame are and respectively. In
the time between events 0 and 1, the clock moves a distance and the light
pulse travels a distance Thus,

R-4c(tœ1 � tœ0) � L � v(tœ1 � tœ0)

c(tœ1 � tœ0).
v(tœ1 � tœ0)
tœ2 ,tœ1 ,tœ0 ,

v

T0 � 2L0>c L0

0.995c?

(1 ns � 1 � 10�9 s)

v

Mirror Mirror

Light

L0

F I G U R E  R - 8
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In the time between events 1 and 2 the clock moves a distance
and the light pulse travels a distance so

R-5

Eliminating by solving Equation R-4 for substituting the
result into Equation R-5, and then solving for gives

R-6

The time interval is related to the proper time interval
between events 0 and 2 (Equation R-3) by

R-7

where (Equation R-1). Substituting for
gives

R-8

Equating the right sides of Equations R-6 and R-8, and then solving for L gives

R-9

LENGTH CONTRACTION

Establishing this result did not involve any properties of the stick. Thus,
Equation R-9 reflects the nature of space and time, and not the nature of the sticks.

L � L041 � (v2>c2)

tœ2 � tœ0 �
2L0>c

41 � (v2>c2)

t2 � t0

2L0>ct2 � t0 � 2L0>c
tœ2 � tœ0 �

t2 � t0

41 � (v2>c2)

t2 � t0

tœ2 � tœ0

tœ2 � tœ0 �
2L>c

1 � (v2>c2)

tœ2 � tœ0

tœ1 ,tœ1

c(tœ2 � tœ1) � L � v(tœ2 � tœ1)

c(tœ2 � tœ1),v(tœ2 � tœ1)

Example R-2 The Length of a Railroad Car

Keisha is on a train that is moving at 0.80c relative to the station. She measures the length of
the railroad car she is in, and finds its length to be 40 m. Bob is standing on the station
platform as the train streaks by. Bob measures the time it takes for the car to pass him and
multiplies this time by 0.80c to determine the length of the car. What is the length of the car
according to Bob’s calculation?

PICTURE The car is at rest in Keisha’s reference frame, so 40 m is the proper length of the car.

SOLVE

The car is at rest in Keisha’s frame, so 40 m is its proper length. In Bob’s
frame the train is moving at 0.8c. Use Equation R-9 to find the length of
the car in Bob’s frame:

24 mL � L041 � (v2>c2) � 40 m31 � 0.802 �

CHECK As expected, the car is shorter in the reference frame in which it is moving.

R-5 DISTANT CLOCKS AND SIMULTANEITY

We have established three useful relations: (1) that the length of a stick moving per-
pendicular to its length is the same as its rest length; (2) that the time T between two
ticks of a moving clock is greater than the proper time between the two ticks of the
same clock according to and (3) that the length L of a stick
moving parallel to its length is less than its rest length according to

But in order to analyze events from the perspective ofL � L011 � (v2>c2) .
L0

T � T0 >11 � (v2>c2) ;

L

L

v(t2' − t1') c(t2' − t1')

c(t1' − t0')

t0'

t1'

t2'

v(t1' − t0')

F I G U R E  R - 9 A light clock moving to the right at speed is shown
at times and t2.t1,t0,

v
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observers in reference frames moving at different velocities,
we need one more relation, one that concerns clocks at differ-
ent locations.

Clocks A and B (Figure R-10a) are at rest relative to each other,
and in their rest frame the clocks are separated by a distance 
To synchronize these clocks there is a flashlamp on clock A and
a light-sensitive film on the face of clock B. The alarm on clock A
is set to energize the flashlamp when the second hand on clock
A passes zero. Like the conventional clock described in Section
R-3, clock B has only a second hand, a rotating opaque disk with
a slot to indicate the time. Behind the disk is a light-sensitive
film. When the light from the flash reaches clock B, the film is il-
luminated on the narrow region behind the slot. This provides a
lasting record of the reading on clock B when the light from the
flashlamp reaches it. Let this reading be In the rest frame of
the clocks, the time for the light to travel at speed c from clock A
to clock B is so when the light arrives at clock B, clock A
reads and clock B reads To synchronize the two clocks,
we turn clock B back by 

With the two clocks synchronized in their rest frame (frame
1), we then determine whether they are also synchronized in a
reference frame (frame 2) in which they are moving at speed 
parallel to the line joining them (shown in Figure R-10b). We
reset the alarm to energize the flashlamp when clock A next
reads zero. These two events—clock A reads zero and the lamp flashes—are a
spacetime coincidence, so we know they occur simultaneously in all reference
frames. Also, the light reaching clock B and clock B reading are a spacetime
coincidence, so we know they occur simultaneously in all reference frames.

In frame 2, the distance L between the clocks is given by

and clock B is moving toward the flashlamp. In this frame, the light traveling from
clock A to clock B travels a distance where t is the time required for the light
to travel this distance. Thus, the time t, the distance L, and the speed are related by

Solving for the time gives 
Moving clocks run slow, so during time t the readings on both clocks advance

not by t but where This advance is equal to

Thus, when the light arrives at clock B, clock B reads and clock A reads
Therefore, in frame 2, clock B is ahead of clock A by 

If two clocks that are moving with the same velocity are synchronized in
their rest frame, then in a frame where they move with speed parallel to
the line joining them, the clock in the rear is ahead of the clock in front by

THE RELATIVITY OF SIMULTANEITY

In this case, is the distance between the clocks in their rest frame. It is also true
that if two clocks are synchronized in their rest frame, they are also synchronized

L0

vL0>c2.

v

vL0>c2:L0>c � vL0>c2.
L0>c

�
L0

c
�
vL0

c2�
L0

(c � v)
(c � v)(c � v)

c2

L
c � v41 � (v2>c2) �

L041 � (v2>c2)

c � v 41 � (v2>c2)

t � L>(c � v).t41 � (v2>c2),

t � L>(c � v).

ct � L � vt

v
L � vt,

L � L041 � (v2>c2)

L0>c,
v

¢t � t1 � L0>c.t1 .L0>c L0>c,
t1 .

L0 .
A B

L0

A B

L

v v

(b)

(a)

F I G U R E  R - 1 0 (a) The clocks are synchronized in the reference
frame in which they are at rest. (b) Are the clocks also synchronized in
the reference frame in which they are moving with speed parallel to
the line joining them?

v
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in any frame in which they are moving perpendicular to the line joining them. This
condition follows from the symmetry of the situation. (For one thing, there is no
way to state a rule specifying which of the two clocks is ahead.)

APPLYING THE RULES

Example R-3 A Train Through a Tunnel

A high-speed train is about to enter a tunnel
through a mountain. The tunnel has a proper
length of 1.2 km. The length of the train in the
reference frame of the mountain is also 1.2 km,
and the proper length of the train is 2.0 km.
Clock A is attached to the mountain at the en-
trance to the tunnel, and clock B is attached to
the mountain at the exit to the tunnel. In the
reference frame of the mountain, at the instant
the front of the train enters the tunnel both
clocks read zero. (a) In the reference frame of
the mountain, what is the speed of the train,
and what is the reading of both clocks at the
instant the front of the train exits the tunnel
(Figure R-11a)? (b) In the reference frame of
the train, what is the length of the tunnel,
what is the reading of both clocks at the in-
stant the front of the train enters the tunnel
(Figure R-11b), and what is the reading of both
clocks at the instant the front of the train exits
the tunnel? (c) For a passenger on the train,
how long does it take for the front of the train
to pass through the tunnel?

PICTURE The speed of the train and the length
of the train are related by the length-contraction
formula. Some of the clock readings in the two
reference frames can be equated because they
are event pairs that form spacetime coinci-
dences. Other clock readings can be related by
the relativity-of-simultaneity relation.

SOLVE

v

v

A B

A B

v

B

v

A B

A

(b)

(a)

F I G U R E  R - 1 1 (a) In the reference frame of the mountain, the train approaches the
tunnel at high speed. The clocks are synchronized in this reference. (b) In the reference frame
of the train, the tunnel (and the mountain) approaches at high speed. Clock B is ahead of
clock A in this reference frame.

(a) 1. Using the length-contraction formula, solve for the speed
of the train:

so 2.4 � 108 m>sv � 0.80c � 0.80(3.00 � 108 m>s) �

1.2 km � 2.0 km41 � (v2>c2)

L � L041 � (v2>c2)

2. The length of the tunnel equals its proper length, and
because the clocks are not moving, they do not run slow.
The reading on both clocks is the time t that it takes for the
front of the train to travel the length of the tunnel:

so 5.0 ms� 5.0 � 10�6 s �t �
Ltunnel 0

v
�

1.2 � 103 m
2.4 � 108 m>s

Ltunnel 0 � vt

3. The clocks are synchronized, so when the front of the train
exits the tunnel, both clocks read :5 ms

Clock A reading Clock B reading 5.0 ms��

(b) 1. In this frame, the mountain is moving at 0.80c. Using the
length-contraction formula, solve for the length of the
tunnel: 0.72 km � 720 m� 1.2 km31 � 0.802 �

Ltunnel � Ltunnel 021 � (v2>c2) � 1.2 km A1 �
(0.80c)2

c2



Event 1 is the front of the train en-
tering the tunnel, and event 2 is
the front of the train exiting the
tunnel. (a) In which reference
frame do these two events occur
at the same location? (b) What is
the proper time interval between
events 1 and 2?

CONCEPT CHECK R-1
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CHECK Our Part (c) result of is less than the Part-(a) step-2 result of This result
is as expected. After all, the train is 1.2-km long in Part (a) and the tunnel is only 720-m long
in Part (c).

TAKING IT FURTHER In the reference frame of the train, the train is longer than the tunnel
so at no time is the entire train within the tunnel.

It is often convenient to measure large distances in light-years, where a light-
year is the distance traveled when traveling at the speed of light for a time of one
year. That is,

where This notation is particularly convenient when distances are
divided by speeds. For example, the time T for a particle traveling at to
travel a distance of light-years is

where the c’s cancel.

PRACTICE PROBLEM R-3

In the reference frame of Earth, it takes 8 minutes for light to travel from the Sun to Earth,
so the distance between the Sun and Earth is How many minutes does it take
a particle from the Sun to reach Earth if the particle travels at 0.10c?

R-6 RELATIVISTIC MOMENTUM, MASS,
AND ENERGY

MOMENTUM AND MASS

In special relativity, both momentum and energy are conserved, just as they are in
classic physics. The laws of conservation of momentum and energy are essential
to analyzing the high-speed collisions that take place in high-energy physics
laboratories. However, the classic equations for conserving momentum and energy
are not adequate for the analysis of high-speed collisions. Here, we present the

8.3c # min.

T �
L
v

�
25 c # y

0.10c
� 250 y

L � 25
v � 0.10c

1 c # y � c # (1 y).

1 light-year � 1 c # y

5 ms.3.0 ms

✓

3. The two clocks are moving toward the train with clock B
in the rear, so clock B is ahead of clock A by When
the train enters the tunnel, clock A reads zero, so clock B
reads vL0 >c2:

vL0 >c2.

3.2 ms�
0.80(1.2 � 103 m)

3.0 � 108 m>s �

 Clock B reading �
vLtunnel 0

c2 �
0.80Ltunnel 0

c

4. The front of the train exiting the tunnel and a 5.0-
reading of clock B are a spacetime coincidence:

ms Clock B reads 5.0 ms�

(c) For an observer in the reference frame of the train, the
mountain is traveling at 0.80c and the tunnel is 720-m long:

so 3.0 mst �
Ltunnel

v
�
Ltunnel

0.80c
�

720 m
2.4 � 108 m>s �

Ltunnel � vt

5. Clock B is in the rear, so clock A lags behind clock B by
vL0 >c2.

1.8 ms� 5.0 ms � 3.2 ms �

 Clock A reading � clock B reading �
vLtunnel 0

c2

2. The front of the train entering the tunnel and a zero
reading on clock A are a spacetime coincidence:

Clock A reads zero
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* Equation R-10 is sometimes written where is called the relativistic mass: In the rest
frame of the particle, and (The mass m is sometimes called the rest mass to differentiate it from the rela-
tivistic mass.)

mr � m.v � 0
mr � m>41 � (v2>c2) .mrp � mrv,

relativistically correct form of these conservation equations. The momentum of a
particle moving with velocity is given by

R-10

RELATIVISTIC MOMENTUM

where m is the mass of the particle.* The relativity of momentum is discussed
further in Chapter 39.

ENERGY

In relativistic mechanics, as in classic mechanics, the net force on a particle is equal
to the time rate of change of the momentum of the particle. Considering one-
dimensional motion only, we have

R-11

We wish to find an expression for the kinetic energy. To do this, we multiply both
sides of Equation R-11 by the displacement This gives

R-12

where we identify the term on the left as the work and the term on the right as the
change in kinetic energy dK. Substituting for in the term on the right we
obtain

Integrating both sides gives

R-13

To evaluate this integral, we first change the integration variable from p to . Using
Equation R-10 and the quotient rule, we have

Substituting for dp in Equation R-13 gives

so

R-14

(In this expression, because the only speed is the subscript f is not needed.)vf ,

K �
mc2

41 � (v2>c2)
� mc2

K � �
pf

0

vdp � m�
vf

0

vdv31 � (v2>c2)43>2 � mc2£ 1

41 � (v2
f>c2) � 1≥

�
dv31 � (v2>c2)43>2�

31 � (v2>c2)41>2dv � v
1
2
31 � (v2>c2)4�1>2a�

2vdv
c2 b

1 � (v2>c2)

dp � d£ v

41 � (v2>c2)
≥

v

K � �
pf

0

v dp

dK �
dp

dt
v dt � v dp

d�v dt

Fnet d� �
dp

dt
d�

d�.

Fnet �
dp

dt

p �
mv

41 � (v2>c2)

v
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Defining as the total relativistic energy E, Equation R-14 can
be written

R-15

where called the rest energy is energy the particle has when it is at rest.
By multiplying both sides of Equation R-10 by c and then dividing the resulting

equation by Equation R-15, we obtain

R-16

which can be useful when trying to solve for the speed Eliminating from
Equations R-10 and R-16, and solving for gives

R-17

The relation between mass and energy is briefly discussed in Section 4 of
Chapter 7.

E2 � p2c2 � m2c4

E2,
vv.

v
c

�
pc

E

E0 ,mc2,

E � K � mc2 �
mc2

41 � (v2>c2)

mc2>11 � (v2>c2)

Example R-4 Momentum and Energy

A proton has kinetic energy of 1100 MeV and a mass of 938 What is its momentum?
What is its speed?

PICTURE Equations R-15 and R-17 relate the momentum to the total energy, the kinetic en-
ergy and the mass. Equation R-16 relates the speed to the momentum and the total energy.

MeV>c2.

SOLVE

1. The momentum is related to the total energy by
Equation R-17, and the total energy is related to the
kinetic energy by Equation R-15:

E � K � mc2

E2 � p2c2 � m2c4

2. Substitute for E in the first step-1 equation and solve
for p2c2: so p2c2 � (K � mc2)2 � m2c4

(K � mc2)2 � p2c2 � m2c4

3. Calculate the value of p2c2: � 3.27 � 106 (MeV)2p2c2 � (1100 MeV � 938 MeV)2 � (938 MeV)2

4. Solve for p: 1.8 � 103 MeV>cp � 33.27 � 106  MeV>c � 1.81 � 103 MeV>c �

5. Using Equation R-16 solve for the speed:

so v � 0.888c � 0.89c

�
1.81 � 103 MeV

1100 MeV � 938 MeV
� 0.888

v
c

�
pc

E
�

pc

K � mc2

CHECK As expected, the speed is greater than zero and less than c. In addition, the kinetic
energy is greater than the rest energy (938 MeV), so we expect the speed to be a significant
fraction of c.

Conceptual Example R-5 Colliding Particles

Two identical particles, each with mass m, travel in opposite directions, each with a total
energy equal to twice its rest energy. They undergo a perfectly inelastic head-on collision and
stick together to form a single particle of mass M. Find M.

PICTURE Use conservation of momentum to determine the speed of the mass-M particle.
Use conservation of energy to find the mass of the mass-M particle.

See

Math Tutorial for more

information on the

Binomial Expansion
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SOLVE

Do not think during an inelastic
collision mass is conserved. It is not.

Mass is proportional to rest energy. If
kinetic energy is transformed into rest
energy, then the mass increases.

!

1. The identical particles have the same mass, m, and the same total
energy, E, so they have the same speed. They are traveling in
opposite directions, so the momentum of one is equal and
opposite to the momentum of the other. The total momentum of
the two-particle system is zero.

Conservation of momentum tells us that the momentum, and thus
the speed, of the mass-M particle is zero.

2. The particle of mass M is at rest, so its total energy is equal to its
rest energy For each mass-m particle, the total energy is twice
the rest energy Conservation of energy tells us that the total
energy in the same before and after the collision.

mc2.
Mc2.

M � 4m‹

Mc2 � 2mc2 � 2mc2

Ef � Ei

CHECK The kinetic energies of the two mass-m particles is transformed into the rest energy
of the mass-M particle. Because the kinetic energy of each mass-m particle is equal to its rest
energy, the mass of the mass-M particle is equal to 4m.

Summary

1. The principle of relativity is a fundamental law of physics.

2. That the speed of light in a vacuum is independent of the speed of the source is a
fundamental law of physics.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Postulates of Special Relativity

Postulate I: Principle of relativity It is impossible to devise an experiment that determines whether you are at rest or moving
uniformly, where moving uniformly means moving at constant velocity relative to an iner-
tial reference frame.

Postulate II The speed of light is independent of the speed of the source.

Constancy of the speed of light It follows that the speed of light is the same in any inertial reference frame.

2. Moving Sticks The length of a stick moving perpendicular to its length is equal to its proper length. The
length of a stick moving with speed v parallel to its length is shorter than its proper length
according to

R-9

3. Moving Clocks

Time dilation The time between ticks of a clock moving with speed is longer than the proper time be-
tween ticks of the same clock by

R-3

Relativity of simultaneity If two clocks that move with the same velocity are synchronized in their rest frame, in a
frame where they move with speed parallel to the line joining them, the clock in the rear is
ahead of the clock in front by where is the distance between them in their
rest frame.

If two clocks that move with the same velocity are synchronized in their rest frame they
are also synchronized in any frame where they are moving perpendicular to the line join-
ing them.

L0vL0 >c2,
v

T �
T0

41 � (v2>c2)

v

L � L041 � (v2>c2)
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TOPIC RELEVANT EQUATIONS AND REMARKS

4. Spacetime Coincidence If two events occur both at the same time and at the same place in one reference frame, they
occur both at the same time and at the same place in any reference frame.

5. Momentum, Mass, and Energy

Momentum The momentum of a particle is given by

R-10

Kinetic energy
R-14

Mass and energy The total relativistic energy E of a particle equals its rest energy plus its kinetic energy.

R-15

where is the rest energy 

Momentum and Energy and R-16, R-17E2 � p2c2 � m2c4v
c

�
pc

E

E0 .mc2

E � K � mc2 �
mc2

41 � (v2>c2)

K � ¢ 1

41 � (v2>c2)
� 1≤mc2

p �
m0v

41 � (v2>c2)

Answers to Concept Checks

R-1 (a) The reference frame of the train, because both events
occur at the front end of the train, (b) 3.0 ms

Answers to Practice Problems

R-1 260 ns

R-2 78 m

R-3 (8.3 c # min)>0.10c � (8.3 min)>0.10 � 83 min

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • CONTEXT-RICH You are standing on a corner when you
see a friend drive past you in a car. Each of you is wearing a wrist-
watch. Both of you note the times when the car passes two different
intersections and determine from your watch readings the time that
elapses between the two events. Have either of you determined the
proper time interval? Explain your answer.

2 • CONTEXT-RICH In Problem 1, suppose your friend in
the car measures the width of the car door to be 90 cm. You also
measure the width as he goes by you. (a) Does either of you mea-
sure the proper width of the door? Explain your answer. (b) How
will your value for the door width compare to his? (1) Your value
will be smaller. (2) Your value will be larger. (3) Your value will
be the same. (4) You cannot compare the widths, as the answer
depends on the car’s speed.

3 • If event A occurs at a different location than event B in
some reference frame, might it be possible for there to be a
second reference frame in which they occur at the same location?
If so, give an example. If not, explain why not.

4 • If event A occurs prior to event B in some reference
frame, might it be possible for there to be a second reference
frame in which event B occurs prior to event A? If so, give an
example. If not, explain why not.

5 • Two events are simultaneous in a reference frame in
which they also occur at the same location. Are they simultane-
ous in all other reference frames?

6 • Two inertial observers are in relative motion. Under
what circumstances can they agree on the simultaneity of two
different events?

SSM

SSM
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7 • The approximate total energy of a particle of mass m
moving at speed is (a) (b) (c) (d)

8 • True or false:
(a) The speed of light is the same in all reference frames.
(b) The proper time interval is the shortest time interval between

two events.
(c) Absolute motion can be determined by means of length

contraction.
(d) The light-year is a unit of distance.
(e) For two events to form a spacetime coincidence, they must

occur at the same place.
(f) If two events are not simultaneous in one reference frame, they

cannot be simultaneous in any other reference frame.

9 •• (a) Show that pc has dimensions of energy. (b) There is a
geometrical interpretation of Equation R-17 based on the
Pythagorean theorem. Draw a picture of a triangle illustrating this
interpretation.

10 •• A wad of putty of mass strikes and sticks to a second
wad of putty of mass which is initially at rest. Do you expect
that after the collision the combined putty mass will be (a) greater
than, (b) less than, (c) the same as Explain your answer.

11 •• BIOLOGICAL APPLICATION Many nuclei of atoms are un-
stable; for example, an isotope of carbon, has a half-life of
5700 years. (By definition, the half-life is the time it takes for any
given number of unstable particles to decay to half that number
of particles.) This fact is used extensively for archeological and
biological dating of old artifacts. Such unstable nuclei decay into
several decay products, each with significant kinetic energy.
Which of the following is true? (a) The mass of the unstable nu-
cleus is larger than the sum of the masses of the decay products.
(b) The mass of the unstable nucleus is smaller than the sum of
the masses of the decay products. (c) The mass of the unstable nu-
cleus is the same as the sum of the masses of the decay products.
Explain your choice.

12 •• BIOLOGICAL APPLICATION Positron emission tomogra-
phy (PET) scans are common in modern medicine. During this pro-
cedure, positrons (a positron has the same mass but the opposite
charge of an electron) are emitted by radioactive nuclei that have
been introduced into the body. Assume that an emitted positron,
traveling slowly (with negligible kinetic energy), collides with an
electron traveling at the same slow speed in the opposite direction.
They undergo annihilation and two quanta of light (photons) are
formed. You are in charge of designing detectors to receive these
photons and measure their energies. (a) Explain why you would ex-
pect these two photons to come off in exactly opposite directions.
(b) In terms of the electron mass how much energy would each
photon have? (1) less than (2) greater (3) exactly 
Explain your choice.

ESTIMATION AND APPROXIMATION

13 •• In 1975, an airplane carrying an atomic clock flew
back and forth at low altitude for 15 hours at an average speed
of as part of a time-dilation experiment. The time on the
clock was compared to the time on an atomic clock kept on the
ground. What is the time difference between the atomic clock on
the airplane and the atomic clock on the ground? (Ignore any ef-
fects that accelerations of the airplane have on the atomic clock
that is on the airplane. Also assume that the airplane travels at
costant speed.) SSM

140 m>s

mc2.mc2,mc2,
me ,

SSM

14C,

m1 � m2?

m2 ,
m1

1
2 mc2.cmv,mv2,mc2 � 1

2 mv2,v V c 14 •• (a) By making any necessary assumptions and finding
certain stellar distances, estimate the speed at which a spaceship
would have to travel for its passengers to make a trip to the
nearest star (not the Sun!) and back to Earth in 1.0 Earth years,
as measured by an observer on the spaceship. Assume that
the passengers make the outgoing and return trips at constant
speed, and ignore any effects due to the spaceship stopping and
starting. (b) How much time would elapse on Earth during their
round-trip? Include 2.0 Earth years for a low-speed exploration
of the planets in the vicinity of the star.

15 •• (a) Compare the kinetic energy of a moving car to its rest
energy. (b) Compare the total energy of a moving car to its rest energy.
(c) Estimate the error made in computing the kinetic energy of a mov-
ing car using nonrelativistic expressions compared to the relativisti-
cally correct expressions. Hint: Use of the binomial expansion may help.

LENGTH CONTRACTION 
AND TIME DILATION

16 • The proper average (or mean) lifetime of a pion (a sub-
atomic particle) is (A neutral pion has a much shorter
lifetime. See Chapter 41.) A beam of pions has a speed of 0.85c rela-
tive to a laboratory. (a) What would be their mean lifetime as mea-
sured in that laboratory? (b) On average, how far would they travel
in that laboratory before they decay? (c) What would your answer
to Part (b) be if you had neglected time dilation?

17 • In the reference frame of a pion in Problem 16, how far
does the laboratory travel in 

18 • The proper average (or mean) lifetime of a muon (a sub-
nuclear particle) is Muons in a beam are traveling at 0.999c
relative to a laboratory. (a) What is their lifetime as measured in that
laboratory? (b) On average, how far do they travel in that labora-
tory before they decay?

19 • In the reference frame of the muon in Problem 18, how
far does the laboratory travel in 

20 • CONTEXT-RICH You have been posted to a remote region
of space to monitor traffic. Toward the end of a quiet shift, a space-
craft goes by and you measure its length using a laser device. This
device reports a length of 85.0 m. You flip open your handy refer-
ence catalog and identify the craft as a CCCNX-22, which has a
proper length of 100 m. When you phone in your report, what
speed should you give for this spacecraft?

21 • A spaceship travels from Earth to a star 95 light-years
away at a speed of How long does the spaceship take
to get to the star (a) as measured on Earth and (b) as measured by a
passenger on the a spaceship?

22 • The average lifetime of a beam of subatomic particles
called pions (see Problem 16 for details on these particles) traveling at
high speed is measured to be Their average lifetime at
rest is known to be How fast is this pion beam traveling?

23 • A meterstick moves with speed 0.80c relative to you in
the direction parallel to the stick. (a) Find the length of the stick as
measured by you. (b) How long does it take for the stick to
pass you?

24 • Recall that the half-life is the time it takes for any given
amount of unstable particles to decay to half that amount of parti-
cles. The proper half-life of a species of charged subatomic particles
called pions is (See Problem 16 for details on pions.)
Suppose a group of these pions are produced in an accelerator and
emerge with a speed of 0.998c. How far do these particles travel in
the accelerator’s laboratory before half of them have decayed?

1.80 � 10�8 s.

2.6 � 10�8 s.
7.5 � 10�8 s.

SSM

2.2 � 108 m>s.

2.20 ms?

2.20 ms.

SSM2.6 � 10�8 s?

2.6 � 10�8 s.
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25 •• Your friend, who is the same age as you, travels to the
star Alpha Centauri, which is 4.0 light-years away, and returns im-
mediately. He claims that the entire trip took just 6.0 y. What was
his speed? Ignore any accelerations of your friend’s spaceship and
assume that the spaceship traveled at the same speed during the
entire trip.

26 •• Two spaceships pass each other traveling in opposite di-
rections. A passenger in ship A, knows that her ship is 100 m long.
She notes that ship B is moving with a speed of 0.92c relative to ship
A and that the length of B is 36 m. What are the lengths of the two
spaceships as measured by a passenger in ship B?

27 •• Supersonic jets achieve maximum speeds of about
(a) By what percentage would a jet traveling at this

speed contract in length? (b) During a time of exactly one year or
on your clock, how much time would elapse on the

pilot’s clock? How many minutes are lost by the pilot’s clock in one
year of your time? Assume that you are on the ground and the pilot
is flying at the specified speed for the entire year.

28 •• The proper mean lifetime of a muon (see Problems 18
and 19 for details regarding muons) is Consider a muon,
created in Earth’s upper atmosphere, speeding toward the sur-
face 8.00 km below, at a speed of 0.980c. (a) What is the likeli-
hood that the muon will survive its trip to Earth’s surface before
decaying? The probability of a muon decaying is given by

where is the time interval as measured in the
reference frame in question. (b) Calculate the probability from
the point of view of an observer moving with the muon. Show
that the answer is the same from the point of view of an observer
on Earth.

29 •• A spaceship commander traveling to the Magellanic
Clouds travels at a uniform speed of 0.800c. When leaving the
Kuiper belt, whose outer edge is 50.0 AU from Earth (Note:
1 AU 150,000,000 km and represents the average distance
between Earth and the Sun; AU astronomical unit), he sends a
message to ground control in Houston, Texas, saying that he is
fine. Fifteen minutes later (according to him), he realizes he has
made a typo, so he sends a correction. How much time passes at
Houston between the receipt of his initial message and the receipt
of second message?

THE RELATIVITY OF SIMULTANEITY

Problems 30 through 34 refer to the following situation:
Mary is a worker on a large space platform. She places
clock A at point A and clock B at point B, which is 100 light-
minutes from point A (Figure R-12). She also places a
flashbulb at a point midway between points A and B.
Jamal, a worker on a different platform, is standing next to
clock C. Each clock immediately starts at zero when the
flash reaches it. Mary’s platform moves at speed of 0.600c to
the left relative to Jamal’s. As Mary’s platform passes by,
clock B, then the flashbulb, and then clock A pass directly
over clock C—just missing it as they go by. As the
flashbulb passes next to clock C, it flashes and clock C
immediately starts at zero.

�
�

¢tP � 1 � e�¢t>t,

2.20 ms.

3.15 � 107 s

3.00 � 10�6c.

SSM

30 •• According to Jamal: (a) What is the distance between the
flashbulb and clock A? (b) How far does the flash travel to reach
clock A? (c) How far does clock A travel while the flash is traveling
from the flashbulb to it?

31 •• According to Jamal, how long does it take the flash to
travel to clock A, and what does clock C read as the flash reaches
clock A.

32 •• Show that clock C reads 100 min as the light flash reaches
clock B, which is traveling away from clock C with speed 0.600c.

33 •• According to Jamal, the reading on clock C advances
from 25 min to 100 min between the reception of the flashes by
clocks A and B in Problems 31 and 32. According to Jamal, how
much will the reading on clock A advance during this 75-min
interval?

34 •• According to Jamal, the advance of clock A calculated in
Problem 33 is the amount that clock A leads clock B. Compare this
result with where 

35 •• In an inertial reference frame S, event B occurs
after and 1.50 km distant from event A. How fast must

an observer be moving along the line joining the two events
so that the two events occur simultaneously? For an observer
traveling fast enough, is it possible for event B to precede
event A?

36 •• A large flat space platform has an x axis painted on
it. A firecracker explodes on the x axis at and a sec-
ond firecracker explodes on the x axis later at

In the reference frame of a train traveling along-
side the x axis at speed relative to the platform, these two ex-
plosions occur at the same place on that axis. What is the sep-
aration in time between the two explosions in the reference
frame of the train?

v
x2 � 1200 m.

5.00 ms
x1 � 480 m,

SSM

2.00 ms

v � 0.600c.vL0 >c2,
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37 •• Herb and Randy are twin jazz musicians who perform as
a trombone-saxophone duo. At the age of twenty, however, Randy
got an irresistible offer to perform on a star 15 light-years away. To
celebrate his good fortune, he bought a new vehicle for the trip—a
deluxe space-coupé that travels at 0.99c. Each of the twins promises
to practice diligently, so they can reunite afterward. However,
Randy’s gig goes so well that he stays for a full 10 years before re-
turning to Herb. After their reunion, (a) how many years of practice
will Randy have had, and (b) how many years of practice will Herb
have had?

38 •• Al and Bert are twins. Al travels at 0.600c to Alpha
Centauri (which is from Earth, as measured in the refer-
ence frame of Earth) and returns immediately. Each twin sends the
other a light signal every 0.0100 y, as measured in his own reference
frame. (a) At what rate does Bert receive signals as Al is moving
away from him? (b) How many signals does Bert receive at this
rate? (c) How many total signals are received by Bert before Al re-
turns to Earth? (d) At what rate does Al receive signals as Bert is
moving away from him? (e) How many signals does Al receive at
this rate? (f) How many total signals are received by Al before Al
returns to Earth? (g) Which twin is younger at the end of the trip
and by how many years?

RELATIVISTIC ENERGY 
AND MOMENTUM

39 • Find the ratio of the total energy to the rest energy of a
particle of mass moving with speed (a) 0.100c, (b) 0.500c,
(c) 0.800c, and (d) 0.990c.

40 • A proton of rest energy 938 MeV has a total energy of
1400 MeV. (a) What is its speed? (b) What is its momentum?

41 • How much energy would be required to accelerate a par-
ticle of mass m from rest to (a) 0.500c, (b) 0.900c, and (c) 0.990c?
Express your answers as multiples of the rest energy, 

42 • If the kinetic energy of a particle equals its rest energy,
what percentage error is made by using for its momentum?
Is the nonrelativistic expression always smaller or larger than the
relativistically correct expression for momentum?

43 • What is the total energy of a proton whose momentum
is

44 •• SPREADSHEET, ESTIMATION Using a spreadsheet pro-
gram or graphing calculator, make a graph of the kinetic energy of
a particle with rest energy of 100 MeV for speeds between 0 and c.
On the same graph, plot by way of comparison. Using the
graph, estimate what speed of the nonrelativistic expression is no
longer a good approximation of the kinetic energy. As a suggestion,
plot the energy in units of MeV and the speed in the dimensionless
form

45 •• (a) Show that the speed of a particle of mass m and
total energy E is given by and that
when E is much greater than this can be approximated by

Find the speed of an electron with ki-
netic energy of (b) 0.510 MeV, and (c) 10.0 MeV.

46 •• Use the binomial expansion and Equation R-17 to
show that when the total energy is given approxi-
mately by E � mc2 � (p2>2m).

pc V mc2,

SSM

(v>c) � 1 � ((mc2)>2E2).
mc2,
v>c � 31 � ((mc2)2>E2)41>2,v

v>c.
1
2mv2

3mc?

p � mv

SSMmc2.

m

4.00 c # y

47 •• Derive the equation (Equation R-17) by
eliminating from Equations R-10 and R-16.

48 •• The rest energy of a proton is about 938 MeV. If its kinetic
energy is also 938 MeV, find (a) its momentum, and (b) its speed.

49 •• What percentage error is made in using for the
kinetic energy of a particle if its speed is (a) 0.10c, and (b) 0.90c?

GENERAL PROBLEMS

50 • A spaceship departs from Earth for the star Alpha
Centauri, which is away in the reference frame of Earth. The
spaceship travels at 0.75c. How long does it take to get there (a) as
measured on Earth, and (b) as measured by a passenger on the
spaceship?

51 • The total energy of a particle is three times its rest energy.
(a) Find for the particle. (b) Show that its momentum is given by

52 • A spaceship travels past Earth moving at 0.70c rela-
tive to Earth. Five minutes after the spaceship is closest to Earth,
a message is sent from the control center at Houston, Texas, to
the craft. (Ignore any effects of the rotational motion of Earth.)
(a) How long does it take for the signal to arrive? (b) The space-
ship and the control center agree on the time when the ship is
closest to Earth. Five minutes after the message is received
aboard the ship, a return message is sent by the ship back to
Houston. What is the time interval in Houston between the time
their message is sent, and the time the return message is
received?

53 •• Particles called muons traveling at 0.99995c are de-
tected at the surface of Earth. One of your fellow students claims
that the detected muons might have originated from the Sun.
Prove him wrong. (The proper mean lifetime of the muon is

)

54 •• (a) How tall is Mount Everest in a reference frame
traveling with a cosmic ray muon that is traveling straight
down, relative to Earth, at 0.99c? Take the height of 
Mount Everest according to an Earth-based observer to be
8846 m. (b) How long does it take the muon to travel the
height of the mountain from the reference frame traveling
with the muon? (c) How long does it take the muon to travel
the height of the mountain from the Earth-based reference
frame?

55 ••• A gold nucleus has a radius of and a
mass of 197 AMU. (One AMU has a rest energy of 932 MeV.) During
experiments at Brookhaven National Laboratory, these nuclei are
routinely accelerated to a kinetic energy of (a) How
much less than the speed of light are they traveling? (b) At these en-
ergies, how long does it take them to travel 100 m in the laboratory
reference frame?

56 ••• APPROXIMATION Consider the flight of a beam of neu-
trons produced in a nuclear reactor. These neutrons have kinetic en-
ergies of up to 1.00 MeV. The rest energy of a neutron is 939 MeV.
(a) What is the speed of 1.00 MeV neutrons? Express your answer

3.35 � 104 GeV.

3.00 � 10�14 m,

SSM2.20 ms.

p � 18mc.
v>c

4.0 c # y

1
2m0v

2

v
E2 � p2c2 � m2c4



in terms of (b) If the average lifetime of such a neutron is 
15.0 min (in the laboratory reference frame), what is the maximum
length of a beam of such neutrons (in a vacuum, in the absence of
any interactions between the neutrons and other material)?
Estimate this maximum range by calculating the length corre-
sponding to five mean lifetimes. After five mean lifetimes, only

or 0.007 (0.7%) of the neutrons remain. (c) Compare this range
to the range of so-called “thermally moderated” neutrons, whose
kinetic energies are around 0.025 eV. Express your answer as a
percentage. That is, what percent of the 1.00 MeV-neutron range is
the thermally moderated-neutron range? (Note that our assump-
tion of a vacuum continues; however, in reality neutrons of this
energy interact readily with matter, such as air or water, and
“real” ranges are much shorter.)

e�5

v>c.
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57 ••• CONTEXT-RICH You and Ernie are trying to fit a 15-ft-long
ladder into a 10-ft-long shed with doors at each end. You suggest to
Ernie that you open the front door to the shed and that he run to-
ward it with the ladder at a speed such that the length contraction
of the ladder shortens it enough so that it fits in the shed. As soon
as the back end of the ladder passes through the door, you will slam
it shut. (a) What is the minimum speed at which Ernie must run to
fit the ladder into the shed? Express it as a fraction of the speed of
light. (b) As Ernie runs toward the shed at a speed of 0.866c, he re-
alizes that in the reference frame of the ladder, it is the shed that is
shorter, not the ladder. How long is the shed in the rest frame of the
ladder? (c) In the reference frame of the ladder, is there any instant
that both ends of the ladder are simultaneously inside the shed?
Examine this from the point of view of relativistic simultaneity.



Gravity

11-1 Kepler’s Laws

11-2 Newton’s Law of Gravity

11-3 Gravitational Potential Energy

11-4 The Gravitational Field

11-5 Finding the Gravitational Field of a Spherical Shell 

by Integration

A
n understanding of gravity and its role in how celestial bodies move and
interact, galaxies expand and contract, and black holes develop is well un-
derstood. The gravitational force exerted by Earth on us and on the objects
around us is a fundamental part of our experience. It is gravity that binds
us to Earth and keeps Earth and the other planets within the solar system.
However, the variations in gravity are often too small to notice on the sur-

face of Earth. But these minuscule variations should not be completely disre-
garded. Geophysicists have found ways to use these small variations in gravity to
determine the location of oil and mineral deposits.

During the time of Newton, many believed that nature followed different rules in
other parts of the universe than here on Earth. Newton’s law of universal gravity,
along with his three laws of motion, revealed that nature follows the same rules every-
where, and this revelation has had a profound effect on our view of the universe.

In this chapter, we use the tools of conservation of angular momentum, con-
servation of energy, Newton’s laws of motion, and Newton’s law of gravity
to predict the motion of the planets and other celestial bodies, including
satellites that we have put in space.

11
C H A P T E R

Using two satellites, how might you

use your understanding of gravity to

detect a region of increased

gravitation-field strength? 

(See Example 11-9.)

?
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THIS EXAGGERATED GRAVITY MAP OF
THE WESTERN HEMISPHERE WAS
PRODUCED AS PART OF THE GRACE
MISSION, A MISSION JOINTLY
UNDERTAKEN BY DLR OF GERMANY
AND NASA OF THE UNITED STATES. THE
STRENGTH OF THE GRAVITATIONAL
FIELD VARIES SLIGHTLY FROM LOCATION
TO LOCATION. (THE VARIATIONS ON THIS
MAP ARE EXAGGERATED.) THE DATA
FOR THIS MAP WERE ACQUIRED BY
ACCURATELY MONITORING THE
DISTANCE BETWEEN A PAIR OF
ORBITING SATELLITES. (NASA/University
of Texas Center for Space Research.)
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11-1 KEPLER’S LAWS

The nighttime sky with its myriad stars and shining planets has always
fascinated people. Toward the end of the sixteenth century, the
astronomer Tycho Brahe studied the motions of the planets and made
observations that were considerably more accurate than those pre-
viously available. Using Brahe’s data, Johannes Kepler discovered that
the paths of the planets about the Sun are ellipses (Figure 11-1). He also
showed that each planet moves faster when its orbit brings it closer to
the Sun and slower when its orbit takes it farther away. Finally, Kepler
developed a precise mathematical relation between the orbital period
of a planet and its average distance from the Sun (Table 11-1). He stated
these results in three empirical laws of planetary motion. Ultimately,
these laws provided the basis for Newton’s discovery of the law of
gravity. Kepler’s three laws follow.

Law 1. All planets move in elliptical orbits with the Sun at one
focus.

An ellipse is the locus of points for which the sum of the dis-
tances from two fixed points, called foci F, is constant, as shown in
Figure 11-2. Figure 11-3 shows a planet following an elliptical path
with the Sun at one focus. Earth’s orbit is nearly circular, with the
distance to the Sun at perihelion (closest point) being 
and at aphelion (farthest point) being The semimajor
axis equals the mean of these two distances, which is 
(93 million miles) for Earth’s orbit. This mean distance defines the
astronomical unit (AU):

11-1

The AU is used frequently in problems dealing with the solar system.

1 AU � 1.50 � 1011 m � 93.0 � 106 mi

1.50 � 1011 m
1.52 � 1011 m.

1.48 � 1011 m

Mercury
Venus
Earth
Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Table 11-1 Mean Orbital Radii and Orbital 

Periods for the Planets

Mean Radius r Period T
Planet (� 1010 m) (y)

Mercury 5.79 0.241

Venus 10.8 0.615

Earth 15.0 1.00

Mars 22.8 1.88

Jupiter 77.8 11.9

Saturn 143 29.5

Uranus 287 84

Neptune 450 165

Pluto 590 248

F I G U R E  1 1 - 2 An ellipse is the locus of points for
which The distance a is called the
semimajor axis, and b is the semiminor axis. You can
draw an ellipse with a piece of string by fixing each
end at a focus F and using it to guide the pencil.
Circles are special cases in which the two foci coincide.

r1 � r2 � constant.

A mechanical model of the solar system, called an orrery, in
the collection of Historical Scientific Instruments at Harvard
University. (Collection of Historical Scientific Instruments, Harvard
University.)

F I G U R E  1 1 - 1 Orbits of the planets around the Sun. (The sizes are not to
scale.) In 2006, the International Astronomical Union passed a new definition of
planet that excludes Pluto and puts it in a new category of “dwarf planet.”
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Sun

Planet
Δt

Δt

F I G U R E  1 1 - 4 When a planet is close to the Sun, it moves faster than
when it is farther away. The areas swept out by the line joining the centers of
the Sun and the planet during a given time interval are equal.

r

rp ra

Planet

P A

Sun

* By mean orbital radius we refer to the average of the perihelion and aphelion distances.

Law 2. A line joining any planet to the Sun sweeps out equal areas in
equal times.

Figure 11-4 illustrates Kepler’s second law, the law of equal areas. A planet moves
so that the area swept out by the line joining the centers of the Sun and the planet
during a given time interval is the same throughout the orbit. The law of equal
areas is a consequence of the conservation of angular momentum, as we will see in
the next section.

Law 3. The square of the period of any planet is proportional to the cube
of the semimajor axis of its orbit.

Kepler’s third law relates the period of any planet to its mean distance from the
Sun, which equals the semimajor axis of its elliptical path. In algebraic form, if r is
the mean orbital radius* and T is the period of revolution, Kepler’s third law
states that

11-2

where the constant C has the same value for all the planets. This law is a conse-
quence of the fact that the force exerted by the Sun on a planet varies inversely
with the square of the distance from the Sun to the planet. We will demonstrate this
in Section 11-2 for the special case of a circular orbit.

T2 � Cr3

F I G U R E  1 1 - 3 The elliptical path of a planet with the Sun at
one focus. Point P, where the planet is closest to the Sun, is called
the perihelion, and point A, where it is farthest from the Sun, is called
the aphelion. The average distance between the planet and the Sun,
defined as is equal to the semimajor axis. (The known
planets travel along more circular paths than the orbit shown here.)

(rp � ra)>2,



366 | C H A P T E R  1 1 Gravity

Saturn
Jupiter

Uranus

Neptune

Pluto

Mercury
Venus

Earth
Mars

250

200

100

O
rb

it
al

 p
er

io
d

, y

50

150

(a)

40
0

0 25 30 355 10 15 20

Mean orbital radius, AU

30,00025,00020,00015,00010,0005,0000
0

5,000

10,000

15,000

20,000

Pe
ri

od
 s

qu
ar

ed
, y

2

Mean orbital radius cubed, AU3

Saturn

Jupiter

Uranus

Neptune

Earth

25,000

30,000

(b)

Example 11-1 Jupiter’s Orbit

Jupiter’s mean orbital radius is What is the period of Jupiter’s orbit around
the Sun?

PICTURE We use Kepler’s third law to relate Jupiter’s period to its mean orbital radius. The
constant C can be obtained from Earth’s known mean orbital radius and period.

SOLVE

5.20 AU.

1. Kepler’s third law relates Jupiter’s period and mean orbital radius rJ:TJ T2
J � Cr3J

2. Apply Kepler’s third law to Earth to obtain a second equation relating the
same constant C to and rE:TE

T2
E � Cr3

E

3. Divide the two equations, eliminating C, and solve for TJ:

so

11.9 y�

TJ � TEa rrE b 3>2
� (1 y)a5.20 AU

1 AU
b 3>2

T2
J

T2
E

�
r3J

r3E

CHECK The step-3 result agrees with the orbital period of Jupiter listed in Table 11-1.

TAKING IT FURTHER The periods of the planets Earth, Jupiter, Saturn, Uranus, and
Neptune are plotted in Figure 11-5 as functions of their mean orbital radii. In Figure 11-5a,
periods are plotted versus mean orbital radii. In Figure 11-5b, the squares of the periods are
plotted versus the cubes of the mean orbital radii. Here, the points fall on a straight line.

PRACTICE PROBLEM 11-1 The period of Neptune is 164.8 y. What is its mean orbital
radius?

PRACTICE PROBLEM 11-2 If the logarithms of the periods of the planets Earth, Jupiter,
Saturn, Uranus, and Neptune are plotted versus the logarithms of their mean orbital radii,
the points fall on a curve. What is the shape of this curve?

F I G U R E  1 1 - 5
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F12

r12
m1

m2

r2
r1

O

(a)

F21m1

m2

(b)

F I G U R E  1 1 - 6 (a) Particles at and 
(b) The particles exert equal and opposite
forces on each other.

rS2 .rS1

11-2 NEWTON’S LAW OF GRAVITY

Although Kepler’s laws were an important first step in understanding the motion
of planets, they were nothing more than empirical rules obtained from the astro-
nomical observations of Brahe. It remained for Newton to take the next giant step
by attributing the acceleration of a planet in its orbit to a specific force exerted on
it by the Sun. Using his second law, Newton proved that an attractive force that
varies inversely with the square of the distance between the Sun and a planet
would result in an elliptical orbit, as observed by Kepler. He then made the bold
assumption that this attractive force acts between any two objects in the universe.
Before Newton, it was not widely believed that the laws of physics observed on
Earth were applicable to the heavenly bodies. Newton changed our understanding
of the nature of the nonterrestrial realm by showing that the laws of physics apply
equally well to both terrestrial and nonterrestrial objects. Newton’s law of gravity
postulates that there is a force of attraction between each pair of point particles that
is proportional to the product of the masses of the particles and inversely propor-
tional to the square of the distance separating them. Let and be the masses
of point particles 1 and 2 (at positions and respectively) and be the posi-
tion of particle 2 relative to particle 1 (Figure 11-6a).

The gravitational force exerted by particle 1 on particle 2 is then

11-3

NEWTON’S LAW OF GRAVITY

where is a unit vector in the direction from 1 toward 2 and G is the
universal gravitational constant, which has the value

11-4

The force exerted by 2 on 1 is equal and opposite to in accord with
Newton’s third law (Figure 11-6b). The magnitude of the gravitational force ex-
erted by a point particle of mass on a point particle of mass a distance r away
is thus given by

11-5

Newton published his theory of gravitation in 1686, but it was not until a century
later that an accurate experimental determination of G was made by Henry
Cavendish, as is discussed in Section 11-4.

We can use the known value of G to compute the gravitational attraction be-
tween two ordinary objects.

PRACTICE PROBLEM 11-3

Show that the gravitational force that attracts a 65-kg man to a 50-kg woman when they
are apart is (Model them as point particles for the purpose of this
calculation.)

This calculation demonstrates that the gravitational force exerted by an object of
ordinary size on another such object is so small as to be unnoticeable. For compar-
ison, a mosquito weighs about so the force of attraction is equal to the
weight of 9 mosquitos. The weight of a 50-kg woman is about 490 N—half a billion
times greater than the force of attraction calculated in Practice Problem 11-3!
Gravitational attraction is easily noticed only when at least one of the objects is as-
tronomically massive. The gravitational attraction between the woman and Earth
for example, is readily apparent.

1 � 10�7 N

8.7 � 10�7 N.0.50 m

Fg �
Gm1m2

r2

m2m1

F
S

1 2 ,F
S

2 1

G � 6.67 � 10�11 N # m2>kg2

rn1 2 � rS1 2>r1 2

F
S

1 2 � �
Gm1m2

r21 2

rn1 2

F
S

1 2

rS1 2rS2 ,rS1

m2m1
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To check the validity of the inverse-square nature of the gravitational force,
Newton compared the acceleration of the moon in its orbit with the free-fall accel-
eration of objects near the surface of Earth (such as the legendary apple). He rea-
soned that the gravitational attraction due to Earth causes both accelerations. He
first assumed that Earth and the moon could be treated as point particles with their
total masses concentrated at their centers. The force on a particle of mass m a dis-
tance r from the center of Earth is

11-6

where is the mass of Earth. If this is the only force acting on the particle, then
its acceleration is

11-7

For objects near the surface of Earth, and the free-fall acceleration is g:

11-8

where is the radius of Earth. The distance to the moon is about 60 times the
radius of Earth ( ). Substituting this into Equation 11-7 gives

so the acceleration of the moon in its near-circular orbit is the
free-fall acceleration g at the surface of Earth divided by That is, the accelera-
tion of the moon should be The moon’s acceleration can be cal-
culated from its known distance from the center of Earth, and its
known period 

Then

In Newton’s words, “I thereby compared the force requisite to keep the Moon in
her orb with the force of gravity at the surface of the Earth, and found them answer
pretty nearly.”

The assumption that Earth and the moon can be treated as point particles in the
calculation of the force on the moon is reasonable because the Earth-to-moon dis-
tance is large compared with the radius of either Earth or the moon, but such an as-
sumption is certainly questionable when applied to an object near Earth’s surface.
After considerable effort, Newton was able to mathematically demonstrate that the
force exerted by any object with a spherically symmetric mass distribution on a
point mass either on or outside its surface is the same as if all the mass of the object
were concentrated at its center. (This calculation is the subject of Section 11-5.) The
proof involves integral calculus, which Newton developed to solve this problem.

Because is readily measured and the radius of Earth is known,
Equation 11-8 can be used to determine the value of the product Newton es-
timated the value of G from an estimation of the average density of Earth. When
Cavendish determined G to within one percent some 100 years later by measuring
the force between small spheres of known mass and separation, he called his
experiment “weighing Earth.” Knowing the value of G meant that the mass of the
Sun and the mass of any planet with a satellite could be determined. The method
for doing this is described in Section 11-4.

GME .
g � 9.81 m>s2

g

am

�
9.81 m>s2

2.72 � 10�3 m>s2 � 3607 � 3600

am �
v2

r
�

(2pr>T)2

r
�

4p2r
T2 �

4p2(3.84 � 108 m)
(2.36 � 106 s)2 � 2.72 � 10�3 m>s2

T � 27.3 d � 2.36 � 106 s:
r � 3.84 � 108 m,

(9.81>3600) m>s2.am

602.
a � g>602 � g>3600,

r � 60RE

RE

g �
GME

R2
E

r � RE

a �
Fg

m
�

GME

r2

ME

Fg �
GMEm

r2

Earth as seen from Apollo 11 orbiting the Moon
on July 16, 1969. (NASA.)
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(NASA.)

Example 11-2 Falling to Earth

What is the free-fall acceleration of an object at the altitude of the space shuttle’s orbit, about
above Earth’s surface?

PICTURE The only force acting on an object in freefall is the force of gravity.

SOLVE

400 km

1. The free-fall acceleration is given by a � Fg >m: a �
Fg

m
�

GmME >r2
m

�
GME

r2

2. The distance r is related to the radius of Earth
and the altitude h:RE � 6770 km

r � RE � h � 6370 km � 400 km

3. The acceleration is then:

8.70 m>s2��
(6.67 � 10�11 N # m2>kg2)(5.98 � 1024 kg)

(6.77 � 106 m)2

a �
GME

r2

CHECK The altitude of 400 km is 6% of the radius of Earth (6370 km), and the free-fall ac-
celeration of is 11% less than A free-fall acceleration that is only 11% less
than is plausible because the altitude is only 6% of Earth’s radius.

TAKING IT FURTHER The acceleration of both the shuttle and the shuttle astronauts as
they accelerate in their near circular orbit is 

The calculation in Example 11-2 can be simplified by using Equation 11-8 to
eliminate from Equation 11-7. Then the acceleration at a distance r is

11-9

PRACTICE PROBLEM 11-4

At what distance h above the surface of Earth is the free-fall acceleration half its value at
sea level?

MEASUREMENT OF G

The universal gravitational constant G was first measured in 1798 by Henry
Cavendish, who used the apparatus shown in Figure 11-7. Cavendish’s measure-
ment of G has been repeated by other experimenters with various improvements
and refinements. All measurements of G are difficult because of the extreme

a �
Fg

m
�

GME

r2
� g
R2

E

r2

GME

8.70 m>s2.

9.81 m>s2
9.81 m>s2.8.70 m>s2

How is it that the astronauts in the
orbiting shuttle are said to be
weightless, even though the force
of gravity on them is only 11 per-
cent less than it is on Earth’s
surface?

CONCEPT CHECK 11-1✓

m2

θ m2

m1 m1

Torsion fiber Equilibrium
position

(a)

m2

m2 Position 2

Position 1

θ2

(b)

Equilibrium

m1

m1

F I G U R E  1 1 - 7 (a) Two small spheres, each of mass are at the ends of
a light rod that is suspended by a fine fiber. Careful measurements determine
the torque required to turn the fiber through a given angle. Two large
spheres, each of mass are then placed near the small spheres. Because of
the gravitational attraction of the large spheres of mass for the small
spheres, the fiber is twisted through a very small angle from its equilibrium
position. (b) The apparatus as seen from above. After the apparatus comes to
rest, the positions of the large spheres are reversed, as shown by the dashed
lines, so that they are at the same distance from the equilibrium position of
the balance, but on the other side. If the apparatus is again allowed to come
to rest, the fiber will turn through angle in response to the reversal of the
torque. Once the torsion constant has been determined, the forces between
the masses and can be determined from the measurement of this angle.
Because the masses and their separations are known, G can be calculated.
Cavendish obtained a value for G within about 1 percent of the currently
accepted value given by Equation 11-4.

m2m1

2u

u

m1

m1 ,

m2 ,



Free-fall acceleration is the same
for all objects.
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weakness of the gravitational attraction. Consequently, the value of G is known
today only to about 1 part in 10,000. Although G was one of the first physical con-
stants ever measured, it remains one of the least accurately known.

GRAVITATIONAL AND INERTIAL MASS

The property of an object that is responsible for the gravitational force the object
exerts on another object, or for the gravitational force another object exerts on it, is
its gravitational mass. On the other hand, inertial mass is the property of an object
that measures the object’s resistance to acceleration. We have used the same sym-
bol m for these two properties because, experimentally, they are proportional. For
convenience, units are judiciously defined to make the proportionality constant
one. The fact that the gravitational force exerted on an object is proportional to its
inertial mass is a characteristic unique to the force of gravity. One consequence is
that all objects near the surface of Earth fall with the same acceleration if air resis-
tance is neglected. The well-known story of Galileo dropping objects from the
Leaning Tower of Pisa to demonstrate that the free-fall acceleration is the same for
objects with different inertial masses is just one example of the excitement this dis-
covery aroused in the sixteenth century.

We could easily imagine that the gravitational and inertial masses of an object
were not the same. Suppose we write for the gravitational mass and m for
the inertial mass. The force exerted by Earth on an object near its surface would
then be

11-10

where is the gravitational mass of Earth. The free-fall acceleration of the object
near Earth’s surface would then be

11-11

If gravity were just another property of matter, like porosity or hardness, it might
be reasonable to expect that the ratio would depend on such things as the
chemical composition of the object or its temperature. The free-fall acceleration
would then be different for different objects. The experimental evidence, however,
is that a is the same for all objects. Thus, we need not maintain the distinction be-
tween and m, and can set We must keep in mind, however, that the
equivalence of gravitational and inertial mass is an empirical law that is limited by
the accuracy of experiment. Experiments testing this equivalence were carried out
by Simon Stevin in the 1580s. Galileo publicized this law widely, and his contem-
poraries made considerable improvements in the experimental accuracy with
which the law was established. 

The most precise early comparisons of gravitational and inertial mass were
made by Newton. Through experiments using simple pendulums rather than
falling bodies, Newton was able to establish the equivalence between gravitational
and inertial mass to an accuracy of about 1 part in 1000. Experiments comparing
gravitational and inertial mass have improved steadily over the years. Their equiv-
alence is now established to about 1 part in Thus, the equivalence of grav-
itational and inertial mass is one of the best established of all physical laws. It is the
basis for the principle of equivalence, which is the foundation of Einstein’s general
theory of relativity.

DERIVATION OF KEPLER’S LAWS

Newton used his second law of motion to show that a particle moving under the
influence of an attractive force that varies inversely with the square of the distance
from a fixed point moves along a path the shape of a conic section (an ellipse, a

5 � 1013.

mG � m.mG

mG>m
a �
Fg

m
� aGME

R2
E

b mG

m

ME

Fg �
GMEmG

R2
E

mG

What is the difference between
gravitational mass and inertial
mass?

CONCEPT CHECK 11-2

!

Gravitational torsional balance used in
student labs for the measurement of G. A tiny
angular deflection of the balance results in a
large angular deflection of the laser beam that
reflects from a mirror on the balance. (Courtesy
of Central Scientific Company.)

✓
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parabola, or a hyperbola) with a focus located at the fixed point. He inferred from
this result and Kepler’s laws that the planets (and comets) are attracted to the cen-
ter of the Sun by a force that varies inversely with the square of their distances
from the center of the Sun. The parabolic and hyperbolic paths apply to objects that
make one pass by the Sun and never return. Such orbits are not closed. The only
closed orbits are those of objects that follow elliptical paths. Thus, Kepler’s first
law is a direct consequence of Newton’s law of gravity. Kepler’s second law, the
law of equal areas, follows from the fact that the force exerted by the Sun on a
planet is directed toward a force center—the center of the Sun. Such a force is
called a central force. Figure 11-8a shows a planet moving in an elliptical orbit
around the Sun. In time dt, the planet moves a distance dt and the radius vector

sweeps out the area shaded in the figure. This is half the area of the parallelo-
gram formed by the vectors and which is Thus, the area dA swept
out by the radius vector in time dt is given by

or

11-12

where is the magnitude of the orbital angular momentum of the
planet about the Sun. The area dA swept out in a given time interval dt is therefore
proportional to the magnitude of the orbital angular momentum L. Because the
force on a planet is along the line from the planet to the Sun, it exerts no torque
about the Sun. Thus, the orbital angular momentum of the planet is constant; that
is, L is constant. Therefore, the rate at which the area is swept out is the same for
all parts of the orbit, which is Kepler’s second law. Also, the fact that L is constant
means that rv sin is constant. At aphelion and perihelion (Figure 11-8b),
so rava � rpvp .

f � 90°f

L � ƒ rS � mvS ƒ

dA
dt

�
L

2m

dA �
1
2

ƒ rS � vS dt ƒ �
ƒ rS � mvS ƒ

2m
dt

rS
ƒ rS � vS dt ƒ .vS dt,rS

rS
v

Sun

Planet
m

vdt

r

dA

Sun

Perihelion

vp

va

v
φ

r

Aphelion

rp ra

F I G U R E  1 1 - 8 (a) The area dA swept out in time dt equals where 

Because remains constant, remains constant. (b) The magnitude of the
angular momentum, given by remains constant, so remains constant. In
addition, at both perihelion and aphelion, so rava � rpvp .f � 90°

rv sin uL � mvr sin f,
dA>dtL

S
L
S

� rS � mvS.

1
2

ƒ rS � vS dt ƒ �
1

2m
L dt,
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(NASA.)

We now show that Newton’s law of gravity implies Kepler’s third law for the
special case of a circular orbit. Consider a planet moving with speed in a circular
orbit of radius r about the Sun. The gravitational force on the planet by the Sun
provides the centripetal acceleration Applying Newton’s second law 
to the planet gives

11-13

where is the mass of the Sun and is that of the planet. Solving for gives

11-14

Because the planet moves a distance in time T, its speed is related to the pe-
riod by

11-15

Substituting for in Equation 11-14, we obtain

or

11-16

KEPLER’S THIRD LAW

Equation 11-16 is a version of Kepler’s third law. Equation 11-16 is the same as
Equation 11-2 with Equation 11-16 also applies to the orbits of the
satellites of any planet if we replace the mass of the Sun with the mass of
the planet.

MS

C � 4p2>GMS .

T2 �
4p2

GMS

r3

4p2r2

T2 �
GMS

r

v2pr>T v �
2pr
T

2pr

v2 �
GMS

r

v2MPMS

GMSMp

r2
�Mp

v2

r

(F � ma)v2>r. v

Context-RichExample 11-3 The Orbiting Space Station

You are trying to view the International Space Station (ISS), which travels in a roughly cir-
cular orbit around Earth. If its altitude is 385 km above Earth’s surface, how long do you
have to wait between sightings?

PICTURE The sightings occur only at night, and then only if the space station is above the
horizon at your location. Thus, the minimum time between sightings is approximately equal
to the orbital period. To find the orbital period we apply Newton’s second law to the space
station and use distance equals speed multiplied by time.

SOLVE

1. For a circular orbit, the orbital period T and orbital speed can be
related to the orbital radius r by using distance equals speed
multiplied by time.

v 2pr � vT

2. To obtain a second equation relating and r we apply Newton’s
second law to the space station of mass m:

v

GMEm

r2
� m

v2

r

Fg � ma

3. Substituting for (from our step-1 result) gives:v2pr>T GME

r2
�

4p2r
T2
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CHECK An Internet search for “NASA orbital period ISS” tells us that the orbital period is
so our step-2 result is in the right ballpark. In addition, our step-3 result is Kepler’s

third law (Equation 11-16) for a satellite orbiting Earth.

TAKING IT FURTHER Kansas City is due west of New York City by 23 degrees of longitude.
The plane of the near-circular orbit of the ISS, which is inclined to the equatorial plane,
does not rotate with Earth. If the ISS is directly over your home at time t, later it will
be directly over a location due west of your home. If the ISS passes over your home in
New York City at midnight Eastern Time, you could tell your friend in Kansas City that it
will pass over Kansas City at 12:32 A.M. Central Time (1:32 A.M. Eastern Time).

PRACTICE PROBLEM 11-5 How many degrees does Earth rotate in one hour? Hint: How
many degrees does Earth rotate in 24 h?

PRACTICE PROBLEM 11-6 Find the radius of the circular orbit of a satellite that orbits
Earth with a period of 1.00 d.

Because G is known, we can determine the mass of an astronomical object by
measuring the orbital period T and the mean orbital radius r of a satellite orbit-
ing it and by substituting these values into Equation 11-16. In establishing
Equation 11-16, the mass of the satellite was assumed negligible compared to the
mass of the central object. This means that the central object remains stationary
as the satellite revolves around it. In fact, the central object and satellite both re-
volve around a common point, their center of mass. If the mass of the satellite is
not assumed negligible, the result is

11-17

where r is the center-to-center separation of the objects. (The derivation of
Equation 11-17 for circular orbits is left to Problem 11-93. For the more general el-
liptical orbits, the math is more challenging, but the result is the same, only r is
replaced by the mean of the maximum and minimum center-to-center distances
between the objects.) If the mass of the satellite is not negligible, as is the case with
most binary star systems, then only the sum of the masses is determined, as re-
vealed by Equation 11-17. The moon, along with planets Mercury and Venus, have
no natural satellites, so their masses were not well known until the 1960s when ar-
tificial satellites were first placed in orbit around them.

PRACTICE PROBLEM 11-7

The Martian moon Phobos has a period of 460 min and a mean orbital radius of 9400 km.
What is the mass of Mars?

T2 �
4p2

G(M1 �M2)
r3

23.0°
92.1 min

�52°

91.5 min,

5. At an altitude Substitute
and solve for the period:r � RE � h

r � RE � h � 6760 km.h � 385 km,

so 92.1 minT � 5528 s �

� 30.56 � 106 s2

�
4p2

(6.67 � 10�11 N # m2>kg2)(5.98 � 1024 kg)
(6.76 � 106 m)3

T2 �
4p2

GME

(RE � h)3

4. Solving for we obtain:T2 , T2 �
4p2

GME

r3

Kepler’s first law is that the plan-
ets all follow elliptical paths with
the center of the Sun and a focus
of each ellipse. Newton inferred
from Kepler’s first law that the
planets are all attracted to the cen-
ter of the Sun by a force that varies
inversely with the square of the
distance. What led him to this
inference?

CONCEPT CHECK 11-3✓
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Earth

m

dr

dr = d� cos = r̂ d�

+r

φ

φ
r

ME

Fg

Fg = −Fgr̂

r̂

d�

F I G U R E  1 1 - 9 The distance r of the
particle from Earth increases by dr when the
particle undergoes displacement In the
figure the length of has been exaggerated.d�

S
d�

S
.

11-3 GRAVITATIONAL POTENTIAL ENERGY

Near the surface of Earth, the gravitational force exerted by Earth on an object is
essentially uniform because the distance to the center of Earth, is al-
ways approximately for The potential energy of an object near Earth’s
surface is where we have chosen at Earth’s surface,

When we are far from the surface of Earth, we must take into account the
fact that the gravitational force exerted by Earth is not uniform, but decreases as

The general definition of potential energy (Equation 7-1) is

where is a conservative force on a particle and is a general displacement of
the particle. For the gravitational force given by Equation 11-6 (Figure 11-9),
we have

11-18

where we have used and Integrating both sides
of Equation 11-18 we obtain

11-19

where is a constant of integration. The expression for U is algebraically simplest
if we choose Then

11-20

Thus, a choice of zero for means that U approaches zero as r approaches infinite.
At first this may seem like a strange choice, because for finite values of r all values
of U are negative. This just means, however, that the po-
tential energy is maximum when Earth and the particle are
at infinite separation. Negative potential energy is nothing
new. When we use the potential-energy function 
where h is the height above some reference point on a
tabletop, the potential energy is negative any time the par-
ticle of mass m is anywhere below the level of the tabletop.
This reflects the fact that when the particle is below the
level of the tabletop the potential energy is less than it is
when the particle is at the level of the tabletop.

Figure 11-10 is a plot of U (r) versus r for �

for This plot begins at the
negative value at Earth’s surface and
increases as r increases, approaching zero as r ap-
proaches infinity. The slope of this curve at is

(Recall that ) The equation of the tangent line,
drawn in blue, is where is the distance above
Earth’s surface. From the figure, you can see that for small h,

ESCAPE SPEED

Since the mid-1950s, the idea of escaping from Earth’s gravity has changed from
fantasy to reality. Space probes have been sent out to the far reaches of the solar
system. Many of these probes orbit the Sun, while a few leave the solar system and
drift on into outer space. We will see that a minimum initial speed, called the
escape speed, is required for a projectile to escape from Earth.

U(RE) � mgh � U(r).
h � r � REf(h) � U(RE) � mgh,

g � GMEm>R2
E .GMEm>R2

E � mg.
r � RE

U � �GMEm>RE

RE � r 	 .�GMEm>r U(r)

U � mgh,

U0

U(r) � �
GMm
r

U0 � 0.
U0

U � GMEm�r�2 dr � �
GMEm

r
� U0

rn # d�
S

� d� cos f � dr.F
S

g � �Fgrn

dU � �F
S

g
# d�

S
� �(�Fgrn) # d�

S
� Fgrn # d�

S
�

GMEm

r2
dr

F
S

g

d�
S

F
S

dU � �F
S # d�

S

1>r2.r � RE .
U � 0mgh � mg(r � RE),

h V RE .RE

r � RE � h,

r
0

GMEm
rU

U(RE) + mgh

U(RE) + mgh
U(RE + h)

(r) = –

GMEm
RE

 = –mgRU(RE) = –U(RE)

RE h

E

U(r)

F I G U R E  1 1 - 1 0
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If we project an object upward from the surface of Earth with some initial kinetic
energy, the kinetic energy decreases and the potential energy increases as the object
rises. But the maximum increase in potential energy is Therefore, this
amount is the most that the kinetic energy can decrease. If the initial kinetic energy
is greater than then the total energy E will be greater than zero ( in
Figure 11-11), and the object will still have some kinetic energy when r is very large
(even if r approaches infinity). Thus, if the initial kinetic energy is greater than

the object is said to escape from Earth. Because the potential energy at
Earth’s surface is the total energy must be greater than or
equal to zero in order for the object to escape Earth. The speed near Earth’s surface
corresponding to zero total energy is called the escape speed It is found from

so

11-21

ESCAPE SPEED

Using and
we obtain

This speed is about or An object that has this
speed will escape Earth, but it will not escape the solar system be-
cause we have neglected the gravitational attraction of the Sun
and other planets (see Problem 50).

The escape speed for a planet or moon relative to the thermal
speeds of gas molecules determines the kind of atmosphere a
planet or moon can have. The average kinetic energy of gas mol-
ecules, is proportional to the absolute temperature T
(Chapter 18). Near the surface of Earth, the speeds of nearly all of
the oxygen and nitrogen molecules are much much lower than
the escape speed, so these gases are retained in our atmosphere.
For the lighter molecules hydrogen and helium, however, a sig-
nificant fraction of them have speeds greater than the escape
speed. Hydrogen and helium gases are therefore not found in our
atmosphere. The escape speed at the surface of the moon is

which can be calculated from Equation 11-21 using the
mass and radius of the moon instead of and This speed is
considerably smaller than the escape speed for Earth and, in fact,
is too small for any atmosphere to exist.

PRACTICE PROBLEM 11-8

Find the escape speed at the surface of Mercury, which has a mass 
and a radius 

CLASSIFICATION OF ORBITS BY ENERGY

In Figure 11-11, two possible values for the total energy E are indicated on a graph
of U (r) versus r: which is negative, and which is positive. A negative total
energy simply means that the kinetic energy at Earth’s surface is less than

so that is never greater than zero. From this figure we see that,K � UGMEm>RE ,

E2 ,E1 ,

R � 2440 km.
M � 3.31 � 1023 kg

RE .ME

2.3 km>s,

(1
2mv2)av ,

25,000 mi>h.7 mi>sve � 22(9.81 m>s2)(6.37 � 106 m) � 11.2 km>sRE � 6.37 � 106 m,
ME � 5.98 � 1024 kg,G � 6.67 � 10�11 N # m2>kg2,

ve � A2GME

RE

0 � 0 �
1
2
mv2

e �
GMEm

RE

Kf � Uf � Ki � Ui

ve .

E � K � U�GMEm>RE ,
GMEm>RE ,

E2GMEm>RE ,

GMEm>RE .

r
0

E1 < 0
GMEm

rU(r) = –

RE

U(r)

rmax

K  =  E – U

E2 > 0

F I G U R E  1 1 - 1 1 The kinetic energy of an object at a distance
r from the center of Earth is When the total energy is
less than zero ( in the figure), the kinetic energy K is zero at

and the object is bound to Earth. When the total energy is
greater than zero ( in the figure), the object can escape Earth.E2

r � rmax

E1

E � U(r).

(NASA.)
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if the total energy is negative, the total-energy line intersects the potential-energy
curve at some maximum separation and the system is bound. On the other
hand, if the total energy is zero or positive, there is no such intersection and the
system is unbound. The criteria for a bound or unbound system are simply stated:

If the system is bound.
If the system is unbound.

When E is negative, its absolute value is called the binding energy. The binding
energy is the energy that must be added to the system to bring the total energy up
to zero.

The potential energy of an object such as a planet or comet of mass m at a dis-
tance r from the Sun is

11-22

where is the mass of the Sun. The kinetic energy of the object is If the total
energy, kinetic plus potential, is less than zero, then the orbit will be an ellipse (pos-
sibly a circle), and the object will be bound to the Sun. If, instead, the total energy is
positive, then the orbit will be a hyperbola, and the object will make one trip around
the Sun and leave the solar system, never to return. If the total energy is exactly
zero, the orbit will be a parabola, and again the object will make one trip and then
escape the solar system. To summarize, when the total energy is zero or positive the
object is not bound to the Sun, but will escape. Curiously, there have not been any
measurements of the energy E of a comet or an asteroid that are definitely nonnega-
tive. Thus, all observed comets and asteroids appear to be bound to the solar system.

1
2mv2.MS

U(r) � �
GMSm

r

ƒE ƒ

E � 0,
E 	 0,

rmax

Example 11-4 Height of a Projectile

A projectile is fired straight up from the south pole of Earth with an initial speed 
Find the maximum height it reaches, neglecting effects due to air resistance.

PICTURE The maximum height is found using energy conservation. We are neglecting air
resistance, so mechanical energy remains constant.

SOLVE

vi � 8.0 km>s.

1. Mechanical energy remains constant. At the maximum height
the speed is zero. Projectile is launched from the surface of
Earth, so ri � RE .

0 �
GMEm

rf
�

1
2
mv2

i �
GMEm

RE

1
2
mv2

f �
GMEm

rf
�

1
2
mv2

i �
GMEm

ri

Kf � Uf � Ki � Ui

2. Multiply through by and solve for rf:�1>(GMEm)

so rf � 1>(7.68 � 10�8 m�1) � 1.30 � 107 m

� 7.68 � 10�8 m�1

�
�(8000 m>s)2

2(6.67 � 10�11 N # m2>kg2)(5.98 � 1024 kg)
�

1
6.37 � 106 m

1
rf

� �
v2

i

2GME

�
1
RE

3. Solve for where hf � rf � RE:hf , 6.7 � 106 mh � rf � RE � 1.30 � 107 m � 6.37 � 106 m �

CHECK If g remained equal to then the maximum height h could be calculated
from Solving this for h gives

Our step-3 result is greater than this value—as expected.

TAKING IT FURTHER Our step-3 result is 4.5% greater than the radius of Earth.

3.3 � 106 m.
�(8000 m>s)2>(19.6 m>s2)�h � v2

i >(2g)mgh � 1
2mv2

i .
9.81 m>s2,
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Try It YourselfExample 11-5 Speed of a Projectile

Aprojectile is fired straight up from the south pole of Earth with an initial speed Find
the speed of the projectile when it is very far from Earth, neglecting effects due to air resistance.

PICTURE The maximum height is found using energy conservation. We are neglecting
effects due to air resistance, so mechanical energy remains constant. The initial speed of

is greater than the escape speed of so the total energy of the projectile is
positive and the projectile will retain some kinetic energy when it is very far from Earth.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

11.2 km>s,15 m>s
vi � 15 km>s.

Steps Answers

1. Mechanical energy remains constant.
Note that so Uf S 0.rf S ,

1
2
mv2

f � 0 �
1
2
mv2

i �
GMEm

RE

2. Solve for v2
f . v2

f � v2
i �

2GME

RE

3. Calculate vf . 1.0 � 104 m>svf �

CHECK The initial speed is just slightly less than times the escape
speed, so the initial kinetic energy is almost twice that needed to escape with
zero final speed. This means the final kinetic energy will be slightly less than
that of the projectile if it were moving at the escape speed of Our
step-3 result of is, as expected, slightly less than 

TAKING IT FURTHER In Figure 11-12, the speed of the projectile in kilo-
meters per second is plotted versus where h is the height above Earth’s
surface. At very large values of the speed of the projectile approaches
the horizontal line v � 10 km>s.

h>RE ,
h>RE ,

11 km>s.10 km>s 11 km>s.

12

11

10

12

13

14

15

0 5 10

h/RE

v, km/s

15 20

F I G U R E  1 1 - 1 2

Example 11-6 Total Energy of a Satellite

Show that the total energy of a satellite in a circular orbit about Earth is equal to half of the
potential energy.

PICTURE The total energy of a satellite is the sum of its potential and kinetic energies,
Newton’s second law allows us to relate the speed of the satellite to its orbital ra-

dius r. The kinetic energy depends on the speed, so we can find the kinetic energy in terms of r.

SOLVE

vE � U � K.

1. Write the total energy equal to the sum of the potential energy
and the kinetic energy.

E � K � U �
1
2
mv2 �

GMEm

r

2. Apply Newton’s second law to the satellite and solve for the
square of the speed.

so v2 �
GME

r

GMEm

r2
� m

v2

r

F � ma

3. Substitute into the step-1 result and simplify. E �
1
2
m

GME

r
�

GMEm

r
� �

GMEm

2r

4. Compare the step-3 result with U in step 1.
1
2
UE � �

GMEm

2r
�

1
2
a� GMEm

r
b �



(NASA.)
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CHECK so Because K is positive, this means that E is greater
than U. Because U is negative, is greater than U. Thus, our step-4 result correctly meets
the expectation that E is greater than U.

PRACTICE PROBLEM 11-9 A satellite of mass 450 kg orbits Earth in a circular orbit at 6830 km
above Earth’s surface. The potential energy is zero at infinite separation from Earth. Find
(a) the potential energy, (b) the kinetic energy, and (c) the total energy of the satellite.

11-4 THE GRAVITATIONAL FIELD

The gravitational force exerted by a point particle of mass on a second point
particle of mass a distance away is given by

where is a unit vector directed away from particle 1 toward particle 2.
The gravitational field at point P is determined by placing a point particle of mass
m at P and calculating the gravitational force on it due to all other particles. The
gravitational force divided by the mass m is the gravitational field at P:

11-23

DEFINITION—GRAVITATIONAL FIELD

The point P is called a field point. The gravitational field at a field point due to 
the masses of a collection of point particles is the vector sum of the fields due to the
individual masses:

11-24a

The locations of these point particles are called source points. To find the gravitational
field at a field point due to a continuous object, we find the field due to a small
element of volume with mass dm and integrate over the entire mass distribution of
the object (the entire set of source points).

11-24b

The gravitational field of Earth at a distance points toward Earth and has
the magnitude g(r) given by

11-25

GRAVITATIONAL FIELD OF EARTH

The following Problem-Solving Strategy and two examples involve calculations of
the gravitational field produced by rather artificial distributions of mass. We pre-
sent these here because the skills needed to accomplish these calculations are also
needed in many other areas of physics. More specifically, these skills will be used
extensively in Chapters 21 and 22 where the task at hand is to calculate the electric
field produced by distributions of electric charge.

g(r) �
Fg

m
�

GME

r2

r � RE

gS � � dgS

dgS

gS � a
i

gSi

gS �
F
S

g

m

gSF
S

g

F
S

g

rn1 2 � rS1 2>r1 2

F
S

1 2 � �
Gm1m2

r21 2

rn1 2

r1 2m2

m1

U>/2
K � E � U.E � K � U,
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PROBLEM-SOLVING STRATEGY

Calculating a Gravitational Field

PICTURE Making a sketch of the mass or masses described by a problem is
crucial in determining where the field point and source points are. These locations
are needed to find both the magnitude and the direction of the gravitational field.

SOLVE

1. Draw a diagram that describes the situation given in the problem
statement. Do not forget to identify the field point and the source points.
The placement of these points must be accurate because their locations
will help you solve the problem.

2. Determine r or the distance between the field point and the source points.
You may have to use geometry or trigonometry to determine r.

3. Use the equation to determine the magnitude of the
gravitational field. The direction can be obtained by using your diagram.

CHECK Do not forget that gravitational fields are vector fields, so your answers
for these fields must include both their magnitudes and their directions.

g(r) � (GM>r2)

Example 11-7 Gravitational Field of Two Point Particles

Two point particles, each of mass M, are fixed in position on the y axis at and 
Find the gravitational field at all points on the x axis as a function of x.

PICTURE Make a sketch of the two particles and the coordinate axis (Figure 11-13). Two
particles of mass M each produce a gravitational field at point P located at The dis-
tance r between P and either particle is The resultant field is the vector sum of
the fields and due to each particle.

SOLVE

gS2gS1

gS1x2
P � a2 .

x � xP .

y � �a.y � �a

1. Calculate the magnitude of and gS2:gS1 g1 � g2 �
GM
r2

2. The y component of the resultant field, the sum of and is
zero. The x component is the sum of and g2x:g1x

g2y ,g1y

�
2GM
r2

 cos u

gx � g1x � g2x � g1 cos u � g2 cos u � 2g1 cos u

gy � g1y � g2y � g1 sin u � g2 sin u � 0

3. Express in terms of and r from the figure:xPcos u cos u �
xP

r

P
g1

θ
θ

g2

r

r

a

a

M

M

y

xxP

4. Combining the last two results yields To express as a
function of substitute for r:(x2

P � a2)1>2xP ,
gSgS.

� �
2GMxP

(x2
P � a2)3>2 in

gS � gx i
n � �

2GM
r2
xP

r
in � �

2GMxP

r3
in

5. is an arbitrary point on the x axis. For simplicity, we replace it
with x:
xP �

2GMx
(x2 � a2)3>2 ingS �

CHECK: For is in the positive x direction and for is in the negative direc-
tion, as expected. If we find that the fields are equal and opposite at

and hence they cancel.

TAKING IT FURTHER For The field is the same as if a single
particle of mass 2M were at the origin.

gS � �(2GM>x2)in.xW a,

x � 0,
gS1 and gS2gS � 0;x � 0,

gSx 
 0,gSx 	 0,

F I G U R E  1 1 - 1 3 The particles are each
located at a source point, and point P is a
field point.
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Example 11-8 Gravitational Field of a Uniform Rod

A thin uniform rod of mass M and length L is centered at the origin and lies along
the x axis. Find the gravitational field due to the rod at all points on the x axis in the
region 

PICTURE Make a sketch of the rod (Figure 11-14). Identify a mass element dm of
length at where and choose a field point P on the 
x axis at where Each mass element of the rod produces a gravita-
tional field at P that points in the negative x direction. We can calculate the total
field at P by integrating the field due to the mass element over the length of the rod.

SOLVE

xP 
 L>2.x � xP ,
�L>2 	 xS 	 L>2,x � xS ,dxS

x 
 L>2.

1. Find the x component of the field at P due to the mass element dm: dgx � �
G dm
r2

2. Because the rod is uniform, the mass per unit length is constant and equal
to the total mass divided by the total length. The mass dm of an element of
length is equal to the mass per unit length times the length :dxSdxS

l

where l �
M
L

dm � l dx

3. Write the distance r between dm and point P in terms of and xP:xS r � xP � xS

4. Substitute these results to express dg in terms of x: dgx � �
G dm
r2

� �
Gl dxS

(xP � xS)
2

5. Integrate to find the x component of the resultant field: gx � � dgx � �Gl �
L>2

�L>2
dxS

(xP � xS)
2 � �

GM
x2

P � (L>2)2

6. Express the resultant field as a vector: gS � gxi
n � �

GM
x2

P � (L>2)2 in

7. Here is an arbitrary point on the x axis in the region For
simplicity, we replace it with x:

x 
 L>2.xP
�

GM
x2 � (L>2)2 in   x 
 L>2gS �

CHECK For the field approaches that of a point particle of mass M,
gS � �(GM>x2)in.

xW L>2,

x
P

M

−L/2 L/2dxS

dm

xS

xP

x = xP

r

dg

y

F I G U R E  1 1 - 1 4 All points on x axis in the
range are source points, and point P
is a field point.

�L>2 	 x 	 L>2

Example 11-9 A Gravity Map of Earth

Twin satellites, launched in March 2002, are making detailed measurements of Earth’s gravi-
tational field. They are in identical orbits, with one satellite directly in front of the other by
about 220 km. The distance between the satellites is continuously monitored with micrometer
accuracy using onboard microwave telemetry equipment. How does the distance between the
two satellites change as the satellites approach a region of increased mass?

PICTURE Earth’s gravitational-field strength varies because the mass of Earth is not uni-
formly distributed. For example, rock is denser than water, so the gravitational field is
stronger over a region of dense rock than it is over water.

SOLVE

As the twin satellites approach a region where there is excess mass, the
increased gravitational-field strength due to the excess mass pulls them
forward (toward the excess mass). The pull on the leading satellite is
greater than the pull on the trailing satellite because the leading satellite
is closer to the excess mass. Consequently, the leading satellite is gaining
speed more rapidly than is the trailing satellite. This results in an increase
in the separation distance between the satellites. Thus, the separation dis-
tance increases as the satellites approach a region of increased mass.

The distance between
them gets larger.

Conceptual 

Twin satellites monitoring the
distance between them and
measuring variations in Earth’s
gravitational field. (NASA and DLR
under the NASA Earth System Science
Pathfinder Program.)



When the twin satellites straddle a
region of increased mass, with the
leading satellite leaving the region
and the trailing satellite entering
the region, is the distance between
the twin satellites changing? If so,
is it increasing or decreasing?

CONCEPT CHECK 11-4

The Gravitational Field S E C T I O N  1 1 - 4 | 381

TAKING IT FURTHER A map of the gravitational field is also a map of the mass distribu-
tion both at and below the surface of Earth. The buildup of water in the western Pacific dur-
ing an El Niño can be detected by mapping the gravitational field of Earth with the twin
satellites. Gravitational maps provide information that is often useful in the search for un-
derground resources, such as water and oil.

OF A SPHERICAL SHELL AND OF A SOLID SPHERE

One of Newton’s motivations for developing calculus was to prove that the gravi-
tational field outside a solid sphere is the same as if all the mass of the sphere were
concentrated at its center. (This statement is correct only if the mass density of the
sphere is uniform or if it varies only with distance from the center of the sphere.)
A proof of this statement is in Section 11-5. Here, we merely discuss the conse-
quences of this proof. We first consider a uniform thin spherical shell of mass M
and radius R (Figure 11-15). We will show that the gravitational field due to the
shell a distance r from the center of the shell is given by

11-26a

11-26b

GRAVITATIONAL FIELD OF A UNIFORM THIN SPHERICAL SHELL

From Figure 11-16, which shows a point mass inside a uniform spherical 
shell, we can understand the result that inside the shell. In this figure,
the shell segments with masses and are proportional to the areas and 
respectively, and the areas and are proportional to the squares of radii and

respectively. It follows that

Because the gravitational force falls off inversely as the square of the distance, the
force on due to the smaller mass on the left is exactly balanced by that due
to the more distant, larger mass on the right.

The gravitational field outside a uniform solid sphere is a simple extension of
Equation 11-26a. We merely consider the solid sphere to consist of a continuum of
concentric uniform spherical shells. Because the field due to each shell is the same
as if its mass were concentrated at the center of the shell, the field due to the entire
sphere is the same as if the entire mass of the sphere were concentrated at its
center:

11-27

This result holds whether or not the sphere has uniform density, as long as the den-
sity depends only on r.

INSIDE A SOLID SPHERE

We now use Equations 11-26a and 11-26b to find the gravitational
field inside a solid sphere of uniform density at a point a distance r
from the center, where r is less than the radius R of the sphere. This
would apply, for example, to finding the gravitational force on an
object at the bottom of a deep mine shaft. As we have seen, the field
inside a spherical shell is zero. Thus, in Figure 11-17 the mass of
that part of the sphere outside r exerts no force at or inside r.
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F I G U R E  1 1 - 1 5 A uniform spherical
shell of mass M and radius R.
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F I G U R E  1 1 - 1 6 A point mass inside a
uniform spherical shell feels no net force.
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R F I G U R E  1 1 - 1 7 A uniform

solid sphere of radius R and mass
M. Only the mass which is
inside the sphere of radius r,
contributes to the gravitational
field at the distance r.

M�,
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Therefore, only the mass within the radius r contributes to the gravitational
field at r. This mass produces a field equal to that of a point mass at the center
of the sphere. For a uniform sphere, the fraction of the total mass of the sphere
within radius r is equal to the ratio of the volume of a sphere of radius r to that of
a sphere of radius R. Thus, if M is the total mass of the sphere, is given by

11-28

The gravitational field at the distance r is thus

or

11-29

The magnitude of the field is zero at the center and increases linearly with
distance r inside the uniform sphere. Figure 11-18 shows a plot of the field

as a function of r for a solid sphere of uniform mass density.gr
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Example 11-10 A Hollow Planet

A planet that has a hollow core consists of a uniform spherical shell with mass M, outer ra-
dius R, and inner radius (a) What amount of mass is closer than to the center of the
planet? (b) What is the gravitational field a distance from the center?

PICTURE The mass of that part of the spherical shell that is closer to the center than 
is the density times the volume of the spherical shell with outer radius and inner radius

First, find the density and volume, then find the mass. The gravitational field at 
is due only to the mass closer to the center than 

SOLVE

3
4R.

r � 3
4R

1
2R.

3
4R

3
4RM�

3
4R

3
4RR>2.

(a) 1. The mass (the mass of the spherical shell with outer radius 
and inner radius ) is the density times the volume V�:r1

2R

3
4RM� M� � rV�

2. The density is the total mass M divided by the total volume V: �
M

7
6pR3

�
6M

7pR3r �
M
V

�
M

4
3pR3 � 4

3p(1
2R)3

3. Find the volume of the thick shell with outer radius and inner
radius 1

2R:

3
4RV� V� �

4
3
p a3R

4
b 3

�
4
3
p aR

2
b 3

�
19
48
pR3

4. Find the mass :M�
19
56
MM� � rV� �

6M
7pR3

19
48
pR3 �

(b) The gravitational field at is due only to the mass M�:r � 3
4R �

38
63

GM
R2 rn�gS � �

GM�

r2
rn � �

G 19
56M

(3
4R)2

rn

CHECK The volume (step 3) is less than half the volume V (step 2), so we expect to
be less than half M. Our step-4 result meets this expectation.

M�V�

See

Math Tutorial for more

information on 

Geometry

F I G U R E  1 1 - 1 8 A plot of versus r for a uniform
solid sphere of mass M. The magnitude of the field
increases linearly with r inside the sphere and decreases
as outside the sphere.1>r2
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PICTURE (a) You can find C by integrating the density over the volume of the sphere and
setting the result equal to M. For a volume element, take a spherical shell of radius r and
thickness dr (Figure 11-19). Its volume is dr and its mass is 
(b) The field outside the sphere is the same as if the total mass M were at the center
of the sphere. (c) The field at is the same as if mass were at the center of the
sphere, where is the amount of mass within the sphere of radius The mass between

and produces zero field at r � 1
2R.r � Rr � 1

2R

1
2R.M�

M�r � 1
2R

(r � R)
dM � r dV � Cr(4pr2 dr).4pr2

Example 11-11 Radially Dependent Density

A solid sphere of radius R and mass M is spherically symmetric but not uniform. Its density
defined as its mass per unit volume, is proportional to the distance r from the center for

That is, for where C is a constant. (a) Find C. (b) Find for all 
(c) Find at r � 1

2R.gS
r � R.gSr � R,r � Crr � R.

r,

(a) 1. Integrate to relate C to the mass M,
where ( is the area of a
sphere of radius r so is the volume of a
spherical shell of radius r and thickness dr):

4pr2 dr
4pr2dV � 4pr2 dr.

dM � r dV

� �
R

0
Cr(4pr2 dr) � CpR4

M � � dM � �r dV

2. Solve for C in terms of the given quantities M
and R.

M
pR4C �

(b) Write an expression for the field outside the
sphere in terms of the mass M, the distance r from
the center, and the unit vector The unit vector 
is in the direction of increasing r:

rnrn.

 (r 
 R)�
GM
r2

rngS �

(c) 1. Compute the mass that is within the radius
by integrating from to 

and use the value of C found in Part (a), step 2.

1
2Rr � 0dm � r dV1

2R
M�

M� �
M
16

M� � �r dV � �
R>2

0
Cr(4pr2 dr) � CpR4>16

2. Write an expression for the field at in
terms of M and R.

r � 1
2R �

GM
4R2 rn at r � 1

2RgS � �
GM�

r2
rn �

CHECK For a uniform sphere, Equation 11-29 gives the field at as 
which is twice as large as our Part-(c) result. We expected a larger value for a uniform sphere,
because a uniform sphere has a larger fraction of its total mass in the region than
does the sphere in Example 11-11.

TAKING IT FURTHER Note that the units for C are so the units for are 
which is mass per volume.

kg>m3,rkg>m4,

0 	 r 	 1
2R

gr � �GM>(2R2),r � 1
2R

SOLVE

dr

r

R

Area

Area = A = 4πr2

dV = A dr = 4πr2 dr

dm

F I G U R E  1 1 - 1 9
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11-5 FINDING THE GRAVITATIONAL FIELD 
OF A SPHERICAL SHELL BY INTEGRATION

We now derive the equation for the gravitational field of a uniform thin spherical
shell. First, we find the gravitational field on the axis of a thin ring of uniform mass.
We then apply our result to a thin spherical shell, which we treat as a continuum of
thin coaxial rings.

Figure 11-20 shows a thin ring of total mass m and radius a and a field point P
on the axis of the ring a distance x from its center. We choose an element with mass
dm on the ring that is small enough to be considered a point particle. The distance
from the element to P is s, and the line joining the element and P makes an angle
with the axis of the ring.

The field at P, which is due to the element dm, is toward the element and has
magnitude dg given by

From the symmetry of the figure, we can see that when we sum over all the ele-
ments of the ring, the net field will be along the axis of the ring; that is, the com-
ponents of perpendicular to the x axis will sum to zero. For example, the
perpendicular component of the field shown in the figure will be canceled by 
the perpendicular component of the field due to another element of the ring
directly opposite the one shown. The net field will therefore be in the direction.
The x component of the field due to the element dm is

We obtain the total field by integrating both sides of this equation:

Because s and are the same for all points on the ring, they are constants as far as
this integration is concerned. Thus,

11-30

where is the total mass of the ring.
We now use this result to calculate the gravitational field of a thin uniform

spherical shell of mass M and radius R at a point a distance r from the center of
the shell. We first consider the case in which the field point P is outside the shell,
as in Figure 11-21. By symmetry, the field must be directed toward the center of
the spherical shell. We choose for our element of mass the strip shown, which can
be considered to be a thin ring of mass dM. The field due to this strip is given by
Equation 11-30 with m replaced by dM:

11-31

The mass dM is proportional to the area of the strip dA, which equals the circum-
ference times the width. The radius of the strip is so the circumference is

The width is If M is the total mass of the shell and is its
total area, the mass of the strip of area dA is

11-32dM �
M
A

dA �
M

4pR2 2pR2 sinu du �
1
2
M sinu du

A � 4pR2R du.2pR sinu.
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F I G U R E  1 1 - 2 0 The gravitational field at
a point P a distance x from a thin uniform
ring. The field due to the element with a mass
equal to dm points toward the element.
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Substituting this result into Equation 11-31 gives

11-33

The right-hand term of Equation 11-33 contains three variables ( and ). Before
integrating this term we must express it as a function of a single variable. It turns
out to be easiest if we express it in terms of s. By the law of cosines, we have

Differentiating gives

so

An expression for cos can be obtained by again applying the law of cosines to
the same triangle. We have

so

Substituting these results into Equation 11-33 gives

11-34

To find the field at P, we integrate over the entire shell. The integration limits for
this step depend on whether the field point P lies outside the shell or inside it. For
P outside the shell, s varies from to so the
field due to the entire shell is found by integrating from to 

Substituting the upper and lower limits for s yields for the quantity in the
square brackets. Thus,

which is the same result as for Equation 11-26a.
If the field point P is inside the shell (Figure 11-22), the calculation is identical

except that s now varies from to Thus,

Substituting these upper and lower limits for s yields Therefore,

which is the same as Equation 11-26b.
Applying these results to find the gravitational field due to a uniform spherical

shell of finite thickness is the topic of Problem 11-99.

gr � 0        for r 	 R

gr � 0.

gr � �
GM
4r2R

cs �
(r � R)(r � R)

s
dR�r

R�r

R � r.R � r

gr � �
GM
r2

        for r 
 R

4R

gr � �
GM
4r2R �

r�R

r�R
a1 �

(r � R)(r � R)
s2

b ds � �
GM
4r2R

cs �
(r � R)(r � R)

s
d r�R
r�R

s � r � R.s � r � R
s � r � R (at u � 180°),r � R (at u � 0)

� �
GM ds
4s2r2R

(s2 � r2 � R2) � �
GM
4r2R

a1 �
r2 � R2

s2
b ds

dgr � �
GM sinu du

2s2
 cosa � �

GM
2s2
a s ds
rR
b s2 � r2 � R2

2sr

cosa �
s2 � r2 � R2

2sr

R2 � s2 � r2 � 2sr cosa

a

sinu du �
s ds
rR

2s ds � �2rR sinu du

s2 � r2 � R2 � 2rR cosu

as, u,

dgr � �
G dM
s2

 cosa � �
GM sinu du

2s2
 cosa

r

R
θ P

dM

s

F I G U R E  1 1 - 2 2



386 | C H A P T E R  1 1 Gravity

Physics Spotlight

Gravitational Lenses: A Window on the Universe

In 1919, Arthur Eddington took photographs
during a 1919 solar eclipse which showed
stars where they should not be. The starlight
had been “bent” by the mass of the Sun. This
verified a key prediction of Einstein’s 1915
theory of general relativity, namely, space is
warped by massive objects. The degree of
curvature of space depends on the object’s
mass.

The bent light was mostly a curiosity for
many years after 1919. Years later, many as-
tronomers started studying quasars, star-
sized objects that gave off more light than
most galaxies. In 1979, twin images of a dis-
tant quasar were seen. These images had
been formed when the quasar’s light was
bent by a cluster of galaxies* between the
quasar and Earth.

Clusters of galaxies are massive objects. Space in and around them warps, and thus curves the light from distant objects
that travels through and near them on its journey toward Earth. The region of warped space near a massive object is called a
gravitational lens. Gravitational lenses can brighten the light of distant objects, just as light shining through a drop of water can
be brightened. Gravitational lenses are now used to study very distant quasars and galaxies. Because the lenses magnify faint
light, they help determine the age and expansion of the universe.†

Calculations using gravitational lenses are based on the images of the distant object. To get a precise description for an
object, the distance, mass, and shape of the intervening gravitational lens must be determined. A lens formed by a uniform
circular mass directly between the distant object and Earth would create a uniform circular image—an Einstein ring—with
easily calculated values.‡,# But gravitational lenses create multiple° or strangely distorted images much more often than
they create perfect rings. The strongest lenses are formed by clusters of galaxies.§ These galaxies are difficult to model, and
their detectable energy cannot account for all of the distorting mass. Calculations show that the galaxies must have a large
halo of unseen mass. Gravitational lenses confirm that most of the universe’s mass is dark matter, matter that does not emit
detectable energy.¶,**

A weak lens, or microlens, does not create multiple images of a distant object, but brightens the image of a known object for
a short time. This type of lens is formed by a massive compact halo object (macho), which passes between the known object
and Earth.†† The changes in brightness reveal much about the shape and mass of the macho. One microlens was determined to
be a red dwarf, orbited by the smallest planet known outside of our solar system.‡‡

Gravitational lenses have enabled the discovery of objects from galaxies## produced less than a billion years after the start
of the universe, to the smallest known objects outside of our solar system. These lenses have defined questions about matter
and energy in the universe. Gravitational lenses have come full circle—the curve of light is now used to measure things that
have not yet been seen.

* Walsh, D., Carswell, R. F., and Weymann, R.J., “0957 � 561 A, B - Twin Quasistellar Objects or Gravitational Lens,” Nature, May 31, 1979, Vol. 279, 381–384. 
† Irion, R., “Through a Lens, Deeply,” Science, Jan. 24, 2003, Vol 299, 
‡ Greene, Katie, “Ring Around the Galaxy,” Science News, Nov. 25, 2005, 342. 
# Liu, C., “The Quest for the Golden Lens,” Natural History, Sept. 2003, 64–66. 
° Rusin, D., Kochanek, C. S., Norbury, M., Falco, E. E., Impey, C. D., Lehár, J., McLeod, B. A., Rix, H.-W., Keeton, C. R., Muñoz, J. A., and Peng, C. Y., “B1359�154: A Six-Image Lens

Produced by a Compact Group of Galaxies,” Astrophysical Journal, Aug. 20, 2001, Vol. 557, 594–604. 
§ Abell, G. O., Corwin, H. G., and Olowin, R. P., 1989, A Catalog of Rich Clusters of Galaxies, The Astrophysical Journal Supplement Series, 1989, Vol. 70, 1–138. 
¶ Koopmans, L.V.E., and Blandford, R. D., “Gravitational Lenses,” Physics Today, June 2004, 45–51. 
** Seife, Charles, “The Intelligent Noncosmologist’s Guide to Spacetime,” Science, May 2002, Vol. 296, 1418–1421.
†† Mancini, L., Jetzer, Ph., and Scarpetta, G., “Compact Dark Objects and Gravitational Microlensing towards the Large Magellanic Cloud,” in Highlights in Condensed Matter Physics,

A. Avella et al., eds. New York: American Institute of Physics, 2003, 339–347. 
‡‡ Cowan, Ron, “Tiny Planet Orbits Faraway Star,” Science News, Feb. 25, 2006, 126. 
## Cowan, Ron, “A Galaxy that Goes the Distance?” Science News, Apr. 24, 2004, 270.

z M 1

500�.

The central reddish-white blobs are giant elliptical galaxies, and the thin blue light ringing
these blobs comes from galaxies twice as far away and directly behind the giant elliptical
galaxies. The light from the more distant galaxies is distorted into circular shapes by the
gravitation field of the giant elliptical galaxies. (NASA, ESA, A. Bolton (Harvard-Smithsonian
CfA), & the SLACS Team.)
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Summary

1. Kepler’s laws are empirical observations. They can also be derived from Newton’s laws of
motion and Newton’s law of gravity.

2. Newton’s law of gravity is a fundamental law of physics, and G is a fundamental universal
physical constant.

3. The gravitational potential energy of a two-particle system, relative to at infinite
separation, is given by If the system is bound, its total energy is negative.

4. The gravitational field is a fundamental physical concept that describes the condition in space
set up by a mass distribution.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Kepler’s Three Laws Law 1. All of the planets move in elliptical orbits with the Sun at one focus.

Law 2. A line joining any planet to the Sun sweeps out equal areas in equal times.

Law 3. The square of the period of any planet is proportional to the cube of the planet’s
mean distance from the Sun:

11-2

where C has almost the same value for all planets; from Newton’s law of gravity, C can be
shown to be If this can be expressed as

11-16

Kepler’s laws can be derived from Newton’s law of gravity. The first and third of Kepler’s
laws follow from the fact that the force exerted by the Sun on the planets varies inversely as
the square of the separation distance. The second law follows from the fact that the force ex-
erted by the Sun on a planet is along the line joining them, so the orbital angular momentum
of the planet is conserved. Kepler’s laws also hold for any object orbiting another in an
inverse-square gravitational field, such as a satellite orbiting a planet.

2. Newton’s Law of Gravity Every point particle exerts an attractive force on every other point particle that is propor-
tional to the masses of the two particles and inversely proportional to the square of the dis-
tance separating them:

11-3

Universal gravitational constant 11-4

3. Gravitational Potential Energy The gravitational potential energy U for a system consisting of a particle of mass m outside
a spherically symmetric object of mass M and at a distance r from its center is

11-20

This potential-energy function approaches zero as r approaches infinity.

4. Mechanical Energy The mechanical energy E for a system consisting of a particle of mass m outside a spherically
symmetric object of mass M and at a distance r from its center is

Escape speed For a given value of r, the speed of the particle for which is called the escape speed 
That is, if then 

5. Classification of Orbits If the system is bound and the orbit is an ellipse (or circle, which is a type of ellipse).

If the system is unbound and the orbit is a hyperbola (or a parabola for ).E � 0E � 0,

E 	 0,

E � 0.v � ve ,
ve .E � 0

E �
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TOPIC RELEVANT EQUATIONS AND REMARKS

6. Gravitational Field

Definition 11-23

Due to Earth 11-29

Due to a thin, spherical shell Outside the shell, the gravitational field is the same as if all the mass of the shell were con-
centrated at the center. The field inside the shell is zero.

11-26a

11-26bgS � 0 for r 	 R

gS � �
GM
r2

rn for r 
 R

gS(r) �
F
S

g

m
� �

GME

r2
rn (r � RE)

gS �
F
S

g

m

PROBLEMS

Answers to Concept Checks

11-1 An orbiting astronaut is said to be weightless because
both he and the orbiting shuttle are in free-fall with the
same acceleration, so if an astronaut would stand on a
scale that is attached to the shuttle, the scale would
read zero. An orbiting astronaut is not actually
weightless because we have defined weight to be the
magnitude of the gravitational force.

11-2 The property of an object responsible for the
gravitational force it exerts on another object, or for the
gravitational force another object exerts on it, is its
gravitational mass. On the other hand, the property of
an object that measures its inertial resistance to
acceleration is its inertial mass.

11-3 Using his second law, Newton proved that an attractive
force that varies inversely with the square of the
distance between the Sun and a planet would result in
an elliptical orbit with the center of the Sun at a focus of
the ellipse.

11-4 The distance between the satellites is decreasing.

Answers to Practice Problems

11-1 30.1 AU

11-2 A straight line that has a slope of 1.5

11-3

11-4

11-5 Earth rotates in 24 h, so in 1 h Earth rotates 
Because of Earth’s orbital motion, the direction of the
Sun relative to Earth changes by rev each 24
h. As a result, Earth rotates through 1 rev in about 4
min less than 24 h. The time for 1 rev is called the
sidereal day.

11-6 If such a
satellite is in orbit over the equator and moves in the
same direction as the rotation of Earth, it appears
stationary relative to Earth. Many communication
satellites are “parked” in such orbits, called
geosynchronous orbits.

11-7

11-8

11-9 (Note that )
(a) (b)
(c) E � �6.80 � 109 J

K � 6.80 � 109 J,U � �13.6 � 109 J,
r � RE � h � 13,200 km.

ve � 4.25 km>s6.45 � 1023 kg � 0.108ME

r � 6.63RE � 4.22 � 107 m � 26,200 mi.

(1>365.25)

15°.360°

2640 km

8.67 � 10�7 N

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimates.

For all problems, use for the free-fall acceleration
and neglect friction and air resistance unless instructed to
do otherwise.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

9.81 m>s2

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM
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CONCEPTUAL PROBLEMS

1 • True or false:
(a) For Kepler’s law of equal areas to be valid, the force of gravity

must vary inversely with the square of the distance between a
given planet and the Sun.

(b) The planet closest to the Sun has the shortest orbital period.
(c) Venus’s orbital speed is larger than the orbital speed of Earth.
(d) The orbital period of a planet allows accurate determination of

that planet’s mass.

2 • If the mass of a small Earth-orbiting satellite is doubled,
the radius of its orbit can remain constant if the speed of the satel-
lite (a) increases by a factor of 8, (b) increases by a factor of 2,
(c) does not change, (d) is reduced by a factor of 8, (e) is reduced by
a factor of 2. 

3 • During what season in the northern hemisphere does
Earth attain its maximum orbital speed about the Sun? In what
season does it attain its minimum orbital speed? Hint: Earth is at
perihelion in early January.

4 • Haley’s comet is in a highly elliptical orbit about the
Sun with a period of about 76 y. Its last closest approach to the
Sun occurred in 1987. In what years of the twentieth century
was it traveling at its fastest or slowest orbital speed about 
the Sun?

5 • Venus has no natural satellites. However, artificial satel-
lites have been placed in orbit around it. To use one of their orbits
to determine the mass of Venus, what orbital parameters would
you have to measure? How would you then use these parameters
to do the mass calculation?

6 • A majority of the asteroids are in approximately circular
orbits in a “belt” between Mars and Jupiter. Do they all have the
same orbital period about the Sun? Explain. 

7 • At the moon’s surface, the acceleration due to the
gravity of the moon is a. At a distance from the moon’s center
equal to four times the radius of the moon, the acceleration due
to the gravity of the moon is (a) 16a, (b) (c) (d)
(e) None of the above.

8 • At a depth equal to half the radius of Earth, the accel-
eration due to gravity is about (a) g (b) 2g (c) (d) (e)
( ) You cannot determine the answer based on the data given.

9 •• Two stars orbit their common center of mass as a binary
star system. If each of their masses were doubled, what would have
to happen to the distance between them in order to maintain the
same gravitational force? The distance would have to (a) remain the
same, (b) double, (c) quadruple, (d) be reduced by a factor of 2,
(e) You cannot determine the answer based on the data given.

10 •• CONTEXT-RICH If you had been working for NASA in
the 1960s and planning the trip to the moon, you would have de-
termined that a unique location exists somewhere between Earth
and the moon, where a spaceship is, for an instant, truly weightless.
(Consider only the moon, Earth, and the Apollo spaceship, and ne-
glect other gravitational forces.) Explain this phenomenon and ex-
plain whether this location is closer to the moon, midway on the
trip, or closer to Earth.

11 •• Suppose the escape speed from a planet is only slightly
larger than the escape speed from Earth, yet the planet is consider-
ably larger than Earth. How would the planet’s (average) density
compare to Earth’s (average) density? (a) It must be denser, (b) It
must be less dense. (c) It must be the same density. (d) You cannot
determine the answer based on the data given. SSM

f
g>8,g>4,g>2,

SSM

a>16,a>3,a>4,

SSM

SSM

12 •• Suppose that, using a telescope in your backyard, you
discovered a distant object approaching the Sun, and were able to
determine both its distance from the Sun and its speed. How would
you be able to predict whether the object will remain “bound” to
the solar system, or if it is an interstellar interloper that would come
in, turn around, and escape, never to return? 

13 •• CONTEXT-RICH, ENGINEERING APPLICATION Near the
end of their useful lives, several large Earth-orbiting satellites
have been maneuvered so they burn up as they enter Earth’s at-
mosphere. These maneuvers have to be done carefully so large
fragments do not impact populated land areas. You are in charge
of such a project. Assuming a satellite of interest has on-board
propulsion, in what direction would you fire the rockets for a
short burn time to start this downward spiral? What would hap-
pen to the kinetic energy, gravitational potential energy, and
total mechanical energy following the burn as the satellite came
closer and closer to Earth?

14 •• ENGINEERING APPLICATION During a trip back from
the moon, the Apollo spacecraft fires its rockets to leave its lunar
orbit. Then, it coasts back to Earth where it enters the atmos-
phere at high speed, survives a blazing reentry, and parachutes
safely into the ocean. In what direction do you fire the rockets to
initiate this return trip? Explain the changes in kinetic energy,
gravitational potential, and total mechanical energy that occur
to the spacecraft from the beginning to the end of this journey.

15 •• Explain why the gravitational field inside a solid sphere
of uniform mass is directly proportional to r rather than inversely
proportional to r.

16 •• In the movie 2001: A Space Odyssey, a spaceship containing
two astronauts is on a long-term mission to Jupiter. A model of their
ship could be a uniform pencil-like rod (containing the propulsion
systems) with a uniform sphere (the crew habitat and flight deck) at-
tached to one end (Figure 11-23). The design is such that the radius
of the sphere is much smaller than the length of the rod. At a loca-
tion a few meters away from the ship, at point P on the perpendicu-
lar bisector of the rodlike section, what would be the direction of the
gravitational field
due to the ship
alone (that is, as-
suming all other
gravitational fields
are negligible)?
Explain your an-
swer. At a large distance from the ship, what would be the depen-
dence of the ship’s gravitational field on the distance from the ship?

ESTIMATION AND APPROXIMATION

17 • Estimate the mass of our galaxy (the Milky Way) if the
Sun orbits the center of the galaxy with a period of 250 million years
at a mean distance of Express the mass in terms of mul-
tiples of the solar mass (Neglect the mass farther from the cen-
ter than the Sun, and assume that the mass closer to the center than
the Sun exerts the same force on the Sun, as would a point particle
of the same mass located at the center of the galaxy.)

18 •• Besides studying samples of the lunar surface, the Apollo
astronauts had several ways of determining that the moon is not
made of green cheese. Among these ways are measurements of the
gravitational acceleration at the lunar surface. Estimate the gravita-
tional acceleration at the lunar surface if the moon were, in fact, a
solid block of green cheese and compare your answer to the known
value of the gravitational acceleration at the lunar surface.

SSM

MS .
30,000 c # y.

SSM

P
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19 •• CONTEXT-RICH, ENGINEERING APPLICATION You are in
charge of the first manned exploration of an asteroid. You are con-
cerned that, due to the weak gravitation field and resulting low es-
cape speed, tethers might be required to bind the explorers to the
surface of the asteroid. Therefore, if you do not wish to use tethers,
you have to be careful about which asteroids to choose to explore.
Estimate the largest radius the asteroid can have that would still
allow you to escape its surface by jumping. Assume spherical
geometry and reasonable rock density.
20 ••• One of the great discoveries in astronomy in the past
decade is the detection of planets outside the solar system. Since
1996, more than 100 planets have been detected orbiting stars other
than the Sun. While the planets themselves cannot be seen directly,
telescopes can detect the small periodic motion of the star as the star
and planet orbit around their common center of mass. (This is mea-
sured using the Doppler effect, which is discussed in Chapter 15.)
Both the period of this motion and the variation in the speed of the
star over the course of time can be determined observationally. 
The mass of the star is found from its observed luminance and 
from the theory of stellar structure. Iota Draconis is the eighth
brightest star in the constellation Draco. Observations show that a
planet, with an orbital period of is orbiting this star. The
mass of Iota Draconis is (a) Estimate the size (in AU) of
the semimajor axis of this planet’s orbit. (b) The radial speed of the
star is observed to vary by Use conservation of momentum
to find the mass of the planet. Assume the orbit is circular, we 
are observing the orbit edge-on, and no other planets orbit Iota
Draconis. Express the mass as a multiple of the mass of Jupiter.
21 ••• One of the biggest unresolved problems in the theory of
the formation of the solar system is that, while the mass of the Sun is
99.9 percent of the total mass of the solar system, it carries only about
2 percent of the total angular momentum. The most widely accepted
theory of solar system formation has as its central hypothesis the col-
lapse of a cloud of dust and gas under the force of gravity, with most
of the mass forming the Sun. However, because the net angular mo-
mentum of this cloud is conserved, a simple theory would indicate
that the Sun should be rotating much more rapidly than it currently
is. In this problem, you are to show why it is important that most of
the angular momentum was somehow transferred to the planets.
(a) The Sun is a cloud of gas held together by the force of gravity. If
the Sun were rotating too rapidly, gravity could not hold it together.
Using the known mass of the Sun and its radius

estimate the maximum angular speed that the Sun
can have if it is to stay intact. What is the period of rotation corre-
sponding to this rotation rate? (b) Calculate the orbital angular mo-
mentum of Jupiter and of Saturn from their masses (318 and 95.1
Earth masses, respectively), mean distances from the Sun (778 and
1430 million km, respectively), and orbital periods (11.9 and 
respectively). Compare them to the experimentally measured value
of the Sun’s angular momentum of (c) If we
were to somehow transfer all of Jupiter’s and Saturn’s angular mo-
mentum to the Sun, what would be the Sun’s new rotational period?
The Sun is not a uniform sphere of gas, and its moment of inertia is
given by the formula Compare this to the maximum
rotational period of Part (a).

KEPLER’S LAWS

22 • The new comet Alex-Casey has a very elliptical orbit
with a period of If the closest approach of Alex-Casey to the
Sun is 0.1 AU, what is its greatest distance from the Sun?
23 • The radius of Earth’s orbit is and that of
Uranus is What is the orbital period of Uranus?
24 • The asteroid Hektor, discovered in 1907, is in a nearly cir-
cular orbit of radius 5.16 AU about the Sun. Determine the period
of this asteroid.

2.87 � 1012 m.
1.496 � 1011 m

127.4 y.

I � 0.059MR2.

1.91 � 1041 kg # m2>s.

29.5 y,

(6.96 � 108 m),
(1.99 � 1030 kg)

592 m>s.

1.05MSun .
1.50 y,

25 •• One of the so-called “Kirkwood gaps” in the asteroid
belt occurs at an orbital radius at which the period of the orbit is
half that of Jupiter’s. The reason there is a gap for orbits of this
radius is because of the periodic pulling (by Jupiter) that an as-
teroid experiences at the same location with every other orbit
around the Sun. Repeated tugs from Jupiter of this kind would
eventually change the orbit of such an asteroid. Therefore, all as-
teroids that would otherwise have orbited at this radius have
presumably been cleared away from the area due to this reso-
nance phenomenon. How far from the Sun is this particular 2:1
resonance “Kirkwood” gap?
26 •• The tiny Saturnian moon, Atlas, is locked into what is
known as an orbital resonance with another moon, Mimas, whose
orbit lies outside that of Atlas. The ratio between periods of these
orbits is 3:2, that is, for every 3 orbits of Atlas, Mimas completes 
2 orbits. Thus, Atlas, Mimas and Saturn are aligned at intervals
equal to two orbital periods of Atlas. If Mimas orbits Saturn at a
radius of 186,000 km, what is the radius of Atlas’s orbit?

27 •• The asteroid Icarus, discovered in 1949, was so named be-
cause its highly eccentric elliptical orbit brings it close to the Sun at
perihelion. The eccentricity e of an ellipse is defined by the relation

where is the perihelion distance and a is the semi-
major axis. Icarus has an eccentricity of 0.83 and a period of 
(a) Determine the semimajor axis of the orbit of Icarus. (b) Determine
the perihelion and aphelion distances of the orbit of Icarus.
28 •• CONTEXT-RICH, ENGINEERING APPLICATION, BIOLO-

GICAL APPLICATION A manned mission to Mars and its attendant
problems due to the extremely long time the astronauts would
spend weightless and without supplies space have been extensively
discussed. To examine this issue in a simple way, consider one pos-
sible trajectory for the spacecraft: the “Hohmann transfer orbit.”
This orbit consists of an elliptical orbit tangent to the orbit of Earth
at its perihelion and tangent to the orbit of Mars at its aphelion.
Given that Mars has a mean distance from the Sun of 1.52 times the
mean Sun–Earth distance, calculate the time spent by the astronauts
during the outbound part of the trip to Mars. Many adverse bio-
logical effects (such as muscle atrophy and decreased bone density)
have been observed in astronauts returning from near-Earth orbit
after only a few months in space. As the flight doctor, are there any
health concerns that you should be aware of?
29 •• ESTIMATION Kepler determined distances in the solar
system from his data. For example, he found the relative distance
from the Sun to Venus (as compared to the distance from the Sun to
Earth) as follows. Because Venus’s orbit is closer to the Sun than is
Earth’s orbit, Venus is a morning or evening star—its position in the
sky is never very far from the Sun (Figure 11-24). If we suppose

1.1 y.
rprp � a(1 � e),

SSM

Earth

Venus

a

b

c
Sun
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the orbit of Venus is a perfect circle, then consider the relative ori-
entation of Venus, Earth, and the Sun at maximum extension, that
is, when Venus is farthest from the Sun in the sky. (a) Under this
condition, show that angle b in Figure 11-24 is (b) If the maxi-
mum elongation angle a between Venus and the Sun is what is
the distance between Venus and the Sun in AU? (c) Use this result
to estimate the length of a Venusian “year.”

30 •• At apogee, the center of the moon is 406,395 km from the
center of Earth and at perigee, the moon is 357,643 km from the cen-
ter of Earth. What is the orbital speed of the moon at perigee and at
apogee? The mass of Earth is 

NEWTON’S LAW OF GRAVITY

31 • Jupiter’s satellite Europa orbits Jupiter with a period of
3.55 d at an average orbital radius of (a) Assuming
that the orbit is circular, determine the mass of Jupiter from the data
given. (b) Another satellite of Jupiter, Callisto, orbits at an average
radius of with an orbital period of Show that
these data are consistent with an inverse-square force law for grav-
ity (Note: Do NOT use the value of G anywhere in Part (b)).

32 • BIOLOGICAL APPLICATION Some people think that shuttle
astronauts are “weightless” because they are “beyond the pull of
Earth’s gravity.” In fact, this is completely untrue. (a) What is the
magnitude of the gravitational field in the vicinity of a shuttle
orbit? A shuttle orbit is about 400 km above the ground. (b) Given
the answer in Part (a), explain why shuttle astronauts suffer from
adverse biological affects such as muscle atrophy even though they
are not actually “weightless”?

33 • The mass of Saturn is (a) Find the pe-
riod of its moon Mimas, whose mean orbital radius is

(b) Find the mean orbital radius of its moon Titan,
whose period is 

34 • Calculate the mass of Earth from the period of the
moon, its mean orbital radius, 
and the known value of G.

35 • Suppose you leave the solar system and arrive at a planet
that has the same mass-to-volume ratio as Earth but has 10 times
Earth’s radius. What would you weigh on this planet compared
with what you weigh on Earth?

36 • Suppose that Earth retained its present mass but was
somehow compressed to half its present radius. What would be the
value of g at the surface of this new, compact planet?

37 • A planet orbits a massive star. When the planet is at per-
ihelion, it has a speed of and is from the
star. The orbital radius increases to at aphelion. What
is the planet’s speed at aphelion?

38 • What is the magnitude of the gravitational field at the
surface of a neutron star whose mass is 1.60 times the mass of the
Sun and whose radius is 10.5 km?

39 •• The speed of an asteroid is at perihelion and
at aphelion. (a) Determine the ratio of the aphelion to per-

ihelion distances. (b) Is this asteroid farther from the Sun or closer
to the Sun than Earth, on average? Explain.

40 •• A satellite that has a mass of moves in a circular
orbit above Earth’s surface. (a) What is the gravita-
tional force on the satellite? (b) What is the speed of the satellite?
(c) What is the period of the satellite?

41 •• A superconducting gravity meter can measure changes
in gravity on the order (a) You are hiding be-
hind a tree holding the meter, and your 80-kg friend approaches the

¢g>g � 1.00 � 10�11.

5.00 � 107 m
300 kg

14 km>s 20 km>s

2.2 � 1015 m
1.0 � 1015 m5.0 � 104 m>s

rm � 3.84 � 108 m;T � 27.3 d;

SSM1.38 � 106 s.
1.86 � 108 m.

5.69 � 1026 kg.

SSM

16.7 d.18.8 � 108 m

6.71 � 108 m.

5.98 � 1024 kg.

SSM

47°,
90°.

tree from the other side. How close to you can your friend come be-
fore the meter detects a change in g due to his presence? (b) You are
in a hot air balloon and are using the gravity meter to determine the
rate of ascent (assume the balloon has constant acceleration). What
is the smallest change in altitude that results in a detectable change
in the gravitational field of Earth?

42 •• Suppose that the attractive interaction between a star of
mass M and a planet of mass is of the form 
where K is the gravitational constant. What would be the relation
between the radius of the planet’s circular orbit and its period?

43 •• Earth’s radius is 6370 km and the moon’s radius is
1738 km. The acceleration of gravity at the surface of the moon
is What is the ratio of the average density of the moon to
that of Earth?

GRAVITATIONAL 
AND INERTIAL MASS

44 • The weight of a standard object defined as having a mass
of exactly is measured to be 9.81 N. In the same labora-
tory, a second object weighs 56.6 N. (a) What is the mass of the sec-
ond object? (b) Is the mass you determined in Part (a) gravitational
or inertial mass?

45 • ESTIMATION The Principle of Equivalence states that the
free-fall acceleration of any object in a gravitational field is inde-
pendent of the mass of the object. This can be deduced from the law
of universal gravitation, but how well does it hold up experimen-
tally? The Roll–Krotkov–Dicke experiment performed in the 1960s
indicates that the free-fall acceleration is independent of mass to at
least 1 part in Suppose two objects are simultaneously released
from rest in a uniform gravitational field. Also, suppose one of the
objects falls with a constant acceleration of exactly while
the other falls with a constant acceleration that is greater than

by one part in How far will the first object have
fallen when the second object has fallen 1.00 mm farther than the
first object has? Note that this estimate provides only an upper
bound on the difference in the accelerations; most physicists believe
that there is no difference in the accelerations.

GRAVITATIONAL 
POTENTIAL ENERGY

46 • (a) If we take the potential energy of a 100-kg object and
Earth are zero when the two are separated by an infinite distance,
what is the potential energy when the object is at the surface of
Earth? (b) Find the potential energy of the same object at a height
above Earth’s surface equal to Earth’s radius. (c) Find the escape
speed for a body projected from this height.

47 • Knowing that the acceleration of gravity on the moon
is 0.166 times that on Earth and that the moon’s radius is 
find the escape speed for a projectile leaving the surface of the
moon.

48 •• What initial speed would a particle need to be given
at the surface of Earth if it is to have a final speed that is equal
to its escape speed when it is very far from Earth? Neglect any
effects due to air resistance.

49 •• CONTEXT-RICH, ENGINEERING APPLICATION While
preparing its budget for the next fiscal year, NASA wants to report
to the nation a rough estimate of the cost (per kilogram) of launch-
ing a modern satellite into near-Earth orbit. You are chosen for this
task, because you know both physics and accounting. (a) Determine

SSM

0.273RE ,
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1012.9.81 m>s2

9.81 m>s2,
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1.00.... kg
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the energy, in , necessary to place a 1.0-kg object in low-Earth
orbit. In low-Earth orbit, the height of the object above the surface
of Earth is much smaller than Earth’s radius. Take the orbital height
to be 300 km. (b) If this energy can be obtained at a typical electri-
cal energy rate of what is the minimum cost of
launching a 400-kg satellite into low-Earth orbit? Neglect any ef-
fects due to air resistance.

50 •• The science fiction writer Robert Heinlein once said, “If
you can get into orbit, then you’re halfway to anywhere.” Justify
this statement by comparing the minimum energy needed to place
a satellite into low Earth orbit to that needed to set it
completely free from the bonds of Earth’s gravity. Neglect any ef-
fects due to air resistance.

51 •• An object is dropped from rest from a height of
above the surface of Earth. If there is no air resis-

tance, what is its speed when it strikes Earth?

52 •• An object is projected straight upward from the sur-
face of Earth with an initial speed of What is the max-
imum height it reaches?

53 •• A particle is projected from the surface of Earth with a
speed twice the escape speed. When it is very far from Earth, what
is its speed?

54 ••• When we calculate escape speeds, we usually do so with
the assumption that the object from which we are calculating es-
cape speed is isolated. This is, of course, generally not true in the
solar system. Show that the escape speed at a point near a system
that consists of two stationary massive spherical objects is equal to
the square root of the sum of the squares of the escape speeds from
each of the two objects considered individually.

55 ••• Calculate the minimum necessary speed, relative to
Earth, for a projectile launched from the surface of Earth to escape
the solar system. The answer will depend on the direction of
launch. Explain the choice of direction you would make for the di-
rection of the launch in order to minimize the necessary launch
speed relative to Earth. Neglect Earth’s rotational motion and ef-
fects due to air resistance.

56 ••• An object is projected vertically from the surface of Earth
at less than the escape speed. Show that the maximum height
reached by the object is where is the
height that it would reach if the gravitational field were constant.
Neglect any effects due to air resistance.

GRAVITATIONAL ORBITS

57 •• A 100-kg spacecraft is in a circular orbit about Earth at a
height (a) What is the orbital period of the spacecraft?
(b) What is the spacecraft’s kinetic energy? (c) Express the angular
momentum L of the spacecraft about the center of Earth in terms of
the kinetic energy K and find the numerical value of L.

58 •• ESTIMATION The orbital period of the moon is 27.3 d,
the average center-to-center distance between the moon and
Earth is the length of an Earth year 365.25 d, and the
average center-to-center distance between Earth and the Sun is

Use this data to estimate the ratio of the mass of the
Sun to the mass of Earth. Compare this estimation to the mea-
sured ratio of List some neglected factors that might
account for any discrepancy.

59 •• Many satellites orbit Earth at maximum altitudes above
Earth’s surface of or less. Geosynchronous satellites, how-
ever, orbit at an altitude of 35 790 km above Earth’s surface. How

1000 km

3.33 � 105.

1.50 � 1011 m.

3.82 � 108 m,

h � 2RE .

H�H � REH�>(RE � H�),

4.0 km>s.

SSM

4.0 � 106 m

(h � 400 km)

$0.15>kW # h,

kW # h much more energy is required to launch a 500-kg satellite into a
geosynchronous orbit than into an orbit above the surface
of Earth?

60 ••• CONTEXT-RICH, ENGINEERING APPLICATION The idea of
a spaceport orbiting Earth is an attractive proposition for launching
probes and/or manned missions to the outer planets of the solar
system. Suppose such a “platform” has been constructed, and or-
bits Earth at a distance of above Earth’s surface. Your re-
search team is launching a lunar probe into an orbit that has its
perigee at the spaceport’s orbital radius, and its apogee at the
moon’s orbital radius. (a) To launch the probe successfully, first de-
termine the orbital speed for the platform. (b) Next, determine the
necessary speed relative to the platform that is necessary to launch
the probe so that it attains the desired orbit. Assume that any effects
due to the gravitational pull of the moon on the probe are negligi-
ble. In addition, assume that the launch takes place in a negligible
amount of time. (c) You have the probe designed to radio back
when it has reached apogee. How long after launch should you
expect to receive this signal from the probe (neglect the second or
so delay for the transit time of the signal back to the platform)?

THE GRAVITATIONAL FIELD 

61 • A 3.0-kg space probe experiences a gravitational force of
as it passes through point P. What is the gravitational field at

point P?

62 • The gravitational field at some point is given by
What is the gravitational force on a 0.0040 kg

object located at that point?

63 •• A point particle of mass m is on the x axis at and an
identical point particle is on the y axis at (a) What is the di-
rection of the gravitational field at the origin? (b) What is the mag-
nitude of this field?

64 •• Five objects, each of mass M, are equally spaced on the
arc of a semicircle of radius R, as in Figure 11-25. An object of mass
m is located at the center of curvature of the arc. (a) If M is
m is and R is what is the gravitational force on the
particle of mass m due to the five objects? (b) If the object whose
mass is m is removed, what is the gravitational field at the center of
curvature of the arc?

10 cm,2.0 kg,
3.0 kg,

SSM

y � L.
x � L

gS � 2.5 � 10�6 N>kg jn.
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65 •• A point particle of mass is at the origin and a
second point particle of mass is on the x axis at

Find the gravitational field at (a) and
(b) (c) Find the point on the x axis for which 

66 •• Show that on the x axis, the maximum value of g for the
field of Example 11-7 occurs at points x � �a>12.

g � 0.x � 12 m.
x � 2.0 m,gSx � 6.0 m.

m2 � 4.0 kg
m1 � 2.0 kg
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67 ••• A nonuniform thin rod of length L lies on the x axis.
One end of the rod is at the origin, and the other end is at 
The rod’s mass per unit length varies as where C is a
constant. (Thus, an element of the rod has mass )
(a) Determine the total mass of the rod. (b) Determine the grav-
itational field due to the rod on the x axis at where

68 •• A uniform thin rod of mass M and length L lies on the
positive x axis with one end at the origin. Consider an element of
the rod of length dx, and mass dm, at point x, where 
(a) Show that this element produces a gravitational field at 
a point on the x axis in the region is given by 

(b) Integrate this result over the length of 

the rod to find the total gravitational field at the point due to
the rod. (c) Find the gravitational force on a point particle of
mass at (d) Show that for the field of the rod ap-
proximates the field of a point particle of mass M at

THE GRAVITATIONAL FIELD 
DUE TO SPHERICAL OBJECTS

69 • A uniform thin spherical shell has a radius of 2.0 m and a
mass of What is the gravitational field at the following dis-
tances from the center of the shell: (a) (b) (c)

70 • A uniform thin spherical shell has a radius of 2.00 m and
a mass of 300 kg and its center is located at the origin of a coordinate
system. Another uniform thin spherical shell with a radius of 1.00 m
and a mass of 150 kg is inside the larger shell, with its center at

on the x axis. What is the gravitational force of attraction be-
tween the two shells?

71 •• Two widely separated solid spheres, and each
have radius R and mass M. Sphere is uniform, whereas the
density of is given by where r is the distance from
its center. If the gravitational field strength at the surface of 

is what is the gravitational field strength at the surface 
of

72 •• Two widely separated uniform solid spheres, and
have equal masses, but different radii, and If the grav-

itational field strength on the surface of is what is the grav-
itational field strength on the surface of 

73 •• Two concentric uniform thin spherical shells have
masses and and radii a and 2a, as in Figure 11-26. What is the
magnitude of the gravitational force on a point particle of mass m
(not shown) located (a) a distance 3a from the center of the shells?
(b) a distance 1.9a from the center of the shells? (c) a distance 0.9a
from the center of the shells?

M2M1

S2?
g1 ,S1

R2 .R1S2 ,
S1

SSMS2?
g1 ,S1
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 Lx0
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 L.
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dm � l dx.
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74 •• The inner spherical shell in Problem 73 is shifted so that
its center is now on the x axis at What is the magnitude of
the gravitational force on a particle of point mass m located on the
x axis at (a) (b) (c)

75 •• Suppose you are standing on a spring scale in an eleva-
tor that is descending at costant speed in a mine shaft located on the
equator. Model Earth as a homogeneous sphere.
(a) Show that the force on you due to Earth’s gravity alone is

proportional to your distance from the center of the planet.
(b) Assume that the mine shaft is located on the equator and is ver-

tical. Do not neglect Earth’s rotational motion. Show that the
reading on the spring scale is proportional to your distance
from the center of the planet.

76 •• CONTEXT-RICH Suppose Earth were a nonrotating uni-
form sphere. As a reward for earning the highest lab grade, your
physics professor chooses your laboratory team to participate in a
gravitational experiment at a deep mine on the equator. This mine
has an elevator shaft going into Earth. Before making the
measurement, you are asked to predict the decrease in the weight
of a team member, who weighs at the surface of Earth, when
she is at the bottom of the shaft. The density of Earth’s crust actu-
ally increases with depth. Is your answer higher or lower than the
actual experimental result?

77 •• A solid sphere of radius R has its center at the origin.
It has a uniform mass density except that the sphere has a
spherical cavity in it of radius centered at as in
Figure 11-27. Find the gravitational field at points on the x axis
for Hint: The cavity may be thought of as a sphere of mass

plus a sphere of “negative” mass –m. SSMm � (4>3)pr3r0

ƒx ƒ 
 R.

x � 1
2R,r � 1

2R
r0 ,

800 N

15.0 km

SSM

x � 0.9a?x � 1.9a?x � 3a?

x � 0.8a.

y

x

2aa

O

M1M2
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y
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R
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78 ••• For the sphere with the cavity in Problem 77, show
that the gravitational field is uniform throughout the cavity, and
find its magnitude and direction there.

79 ••• A straight, smooth tunnel is dug through a uniform
spherical planet of mass density The tunnel passes through the
center of the planet and is perpendicular to the planet’s axis of ro-
tation, which is fixed in space. The planet rotates with a constant
angular speed so objects in the tunnel have no apparent weight.
Find the required angular speed of the planet 

80 ••• The density of a sphere is given by The
sphere has a radius of 5.0 m and a mass of 
(a) Determine the constant C. (b) Obtain expressions for the gravi-
tational field for the regions (1) and (2) 

81 ••• A small-diameter hole is drilled into the sphere of
Problem 80 toward the center of the sphere to a depth of 
below the sphere’s surface. A small mass is dropped from the sur-
face into the hole. Determine the speed of the small mass when it
strikes the bottom of the hole. SSM

2.0 m

r 	 5.0 m.r 
 5.0 m,

1.0 � 1011 kg.
r (r) � C>r.v.

v,

r0 .
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82 ••• CONTEXT-RICH, ENGINEERING APPLICATION As a geolo-
gist for a mining company, you are working on a method for deter-
mining possible locations of underground ore deposits. Assume
that where the company owns land the crust of Earth is 
thick and has a density of about Suppose a spherical
deposit of heavy metals with a density of and radius of

is centered below the surface. You propose to detect
it by determining its effect on the local surface value of g. Find 
at the surface directly above this deposit, where g is the increase
in the gravitational field due to the deposit.

83 ••• Two identical spherical cavities are made in a lead sphere
of radius R. The cavities each have a radius They touch the
outside surface of the sphere and its center as in Figure 11-28. The
mass of a solid uniform lead sphere of radius R is M. Find the force
of attraction on a point particle of mass m located a distance d from
the center of the lead sphere as shown. SSM

R>2.

¢
¢g>g2000 m1000 m

8000 kg>m3
3000 kg>m3.

40.0 km

neutron star (it cannot actually do this because it does not have
enough mass) of radius without losing any mass in the
process. (a) Calculate the ratio of the gravitational acceleration at
the surface of the Sun following the collapse compared to the
value at the surface of the Sun today. (b) Calculate the ratio of the
escape speed from the surface of the neutron-Sun to the Sun’s
value today.

90 •• CONTEXT-RICH, ENGINEERING APPLICATION Suppose
the Sun could collapse into a neutron star of radius as
in Problem 89. Your research team is in charge of sending a
probe from Earth to study the transformed Sun, and the probe
needs to end up in a circular orbit from the neutron-
Sun’s center. (a) Calculate the orbital speed of the probe.
(b) Later on, plans call for construction of a permanent space-
port in that same orbit. To transport equipment and supplies,
scientists on Earth need you to determine the escape speed for
rockets launched from the spaceport (relative to the spaceport)
in the direction of the spaceport’s orbital velocity at takeoff
time. What is that speed, and how does it compare to the es-
cape speed at the surface of Earth?

91 •• A satellite is circling the moon (radius ) close to
the surface at a speed A projectile is launched vertically up from
the moon’s surface at the same initial speed How high will the
projectile rise?

92 •• Black holes are objects whose gravitational field is so
strong that not even light can escape. One way of thinking about
this is to consider a spherical object whose density is so large that
the escape speed at its surface is greater than the speed of light, c. If
a star’s radius is smaller than a value called the Schwarzschild radius

then the star will be a black hole, that is, light originating from
its surface cannot escape. (a) For a nonrotating black hole, the
Schwarzschild radius depends only upon the mass of the black
hole. Show that it is related to that mass M by
(b) Calculate the value of the Schwarzschild radius for a black hole
whose mass is ten solar masses.

93 •• In a binary star system, two stars follow circular orbits
about their common center of mass. If the stars have masses and

and are separated by a distance r, show that the period of rota-
tion is related to r by

94 •• Two particles of masses and are released from
rest at a large separation distance. Find their speeds and 
when their separation distance is r. The initial separation distance
is given as large, but large is a relative term. Relative to what dis-
tance is it large?

95 •• Uranus, the seventh planet in the solar system, was
first observed in 1781 by William Herschel. Its orbit was then an-
alyzed in terms of Kepler’s laws. By the 1840s, observations of
Uranus clearly indicated that its true orbit was different from the
Keplerian calculation by an amount that could not be accounted
for by observational uncertainty. The conclusion was that there
must be another influence other than the Sun and the known
planets lying inside Uranus’s orbit. This influence was hypothe-
sized to be due to an eighth planet, whose predicted orbit was de-
scribed independently in 1845 by two astronomers: John Adams
(no relation to the former president of the United States) and
Urbain LeVerrier. In September of 1846, John Galle, searching in
the sky at the place predicted by Adams and LeVerrier, made the
first observation of Neptune. Uranus and Neptune are in orbit
about the Sun with periods of 84.0 and 164.8 years, respectively.
To see the effect that Neptune had on Uranus, determine the ratio
of the gravitational force between Neptune and Uranus to that
between Uranus and the Sun, when Neptune and Uranus are at
their closest approach to one another (i.e., when aligned with the

v2v1

m2m1

T2 � 4p2r3>[G(m1 � m2)].
m2

m1

RS � (2GM)>c2.

RS ,

v
v.

1700 km

4500 km

12.0 km,

SSM

12.0 km,

y

x
R

R
2

R
2

d

m
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84 ••• A globular cluster is a roughly spherical collection of up
to millions of stars bound together by the force of gravity.
Astronomers can measure the velocities of stars in the cluster to
study its composition and to get an idea of the mass distribution
within the cluster. Assuming that all of the stars have approxi-
mately the same mass and are distributed uniformly within the
cluster, show that the mean speed of a star in a circular orbit around
the center of the cluster should increase linearly with its distance
from the center.

GENERAL PROBLEMS

85 • The mean distance of Pluto from the Sun is 39.5 AU.
Calculate the period of Pluto’s orbital motion.

86 • Calculate the mass of Earth using the known values of G,
g, and

87 •• The force exerted by Earth on a particle of mass m a dis-
tance r from the center of Earth has the magnitude

where (a) Calculate the work you must do
to move the particle from distance to distance (b) Show that
when and the result can be written as

(c) Show that when the
work is given approximately by 

88 •• The average density of the moon is Find
the minimum possible period T of a spacecraft orbiting the moon.

89 •• A neutron star is a highly condensed remnant of a
massive star in the last phase of its evolution. It is composed of
neutrons (hence the name), because the star’s gravitational force
causes electrons and protons to “coalesce” into the neutrons.
Suppose at the end of its current phase, the Sun collapsed into a

r � 3340 kg>m3.

W � mgh.
h V RE ,W � mgR2

E[(1>RE) � 1>(RE � h)].
r2 � RE � h,r1 � RE

r2 .r1

g � GME >R2
E .mgR2

E >r2,(r 
 RE)

RE .
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Sun). The masses of the Sun, Uranus, and Neptune are 333,000,
14.5, and 17.1 times that of Earth, respectively.

96 •• It is believed that there is a “supermassive” black hole at
the center of our galaxy. One datum that leads to this conclusion is
the important recent observation of stellar motion in the vicinity of
the galactic center. If one such star moves in an elliptical orbit with
a period of 15.2 years and has a semimajor axis of 5.5 light-days (the
distance light travels in 5.5 days), what is the mass around which
the star moves in its Keplerian orbit?

97 •• Four identical planets are arranged in a square, as shown
in Figure 11-29. If the mass of each planet is M and the edge
length of the square is a, what must their speed be if they are to
orbit their common center under the influence of their mutual
attraction? SSM

SSM

98 •• A hole is drilled from the surface of Earth to its center,
as in Figure 11-30. Ignore Earth’s rotation and any effects due to
air resistance, and model Earth as a uniform sphere. (a) How
much work is required to lift a particle of mass m from the cen-
ter of Earth to Earth’s surface? (b) If the particle is dropped from
rest at the surface of Earth, what is its speed when it reaches the
center of Earth? (c) What is the escape speed for a particle pro-
jected from the center of Earth? Express your answers in terms of
m, g, and RE .

Orbit

a
M
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RE

m
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99 •• A thick spherical shell of mass M and uniform density
has an inner radius and an outer radius Find the gravita-
tional field as a function of r for Sketch a graph of 
versus r.

100 •• (a) A thin uniform ring of mass M and radius R lies in the
plane and is cenered at the origin. Sketch a plot of the gravi-

tational field versus x for all points on the x axis. (b) At what
point, or points, on the axis is the magnitude of a maximum?

101 ••• Find the magnitude of the gravitational field that is at a
distance r from an infinitely long uniform thin rod whose mass per
unit length is 

102 ••• One question in early planetary science was whether
each of the rings of Saturn were solid or were, instead, composed
of individual chunks, each in its own orbit. The issue could be re-
solved by an observation in which astronomers would measure

l.

gx

gx

x � 0

gr0 	 r 	 .gr

R2 .R1

the speed of the inner and outer portions of the ring. If the inner
portion of the ring moved more slowly than the outer portion,
then the ring was solid; if the opposite was true, then it was ac-
tually composed of separate chunks. Let us see how this results
from a theoretical viewpoint. Let the radial width of a given ring
(there are many) be the average distance of that ring from the
center of Saturn be represented by R, and the average speed of
that ring be (a) If the ring is solid, show that the difference in
speed between its outermost and innermost portions, is given
by the expression Here, is the
speed of the outermost portion of the ring, and is the speed of
the innermost portion. (b) If, however, the ring is composed of
many small chunks, show that (Assume
that )

103 ••• Find the gravitational potential energy of the thin rod
in Example 11-8 and a point particle of mass that is on the x axis
at where (a) Show that the potential energy shared
by an element of the rod of mass dm (shown in Figure 11-14)
and the point particle of mass is given by

where at (b) Integrate your result for Part (a) over
the length of the rod to find the total potential energy for the sys-
tem. Generalize your function to any place on the x axis in
the region by replacing with a general coordinate x
and write it as (c) Compute the force on at a general
point x using and compare your result with 
where g is the field at calculated in Example 11-8.

104 ••• A uniform sphere of mass M is located near a thin,
uniform rod of mass m and length L, as in Figure 11-31. Find the
gravitational force of attraction exerted by the sphere on the rod.

SSMx0

m0g,Fx � �dU>dx
m0U(x).

x0x 
 L>2 U(x0)

x0 � .U � 0

dU � �
Gm0 dm

x0 � xs

�
GMm0

L (x0 � xs)
dxs

m0 ,

x0 � 1
2L.x � x0

m0

¢r V R.
¢v � � 1

2 (vavg (¢r>R)).

vin

vout¢v � vout � vin � vavg (¢r>R).
¢v,

vavg .

¢r,

105 ••• A thin uniform 20-kg rod with a length equal to is
bent into a semicircle. What is the gravitational force exerted by the
rod on a 0.10-kg point mass located at the center of curvature of the
circular arc?

106 ••• Both the Sun and the moon exert gravitational forces on
the oceans of Earth, causing tides. (a) Show that the ratio of the
force exerted on a point particle on the surface of Earth by the Sun
to that exerted by the moon is Here and rep-
resent the masses of the Sun and moon, and and are the dis-
tances of the particle from Earth to the Sun and Earth to the moon,
respectively. Evaluate this ratio numerically. (b) Even though the
Sun exerts a much greater force on the oceans than does the moon,
the moon has a greater effect on the tides because it is the difference
in the force from one side of Earth to the other that is important.
Differentiate the expression to calculate the change
in F due to a small change in r. Show that (c) The
oceanic tidal bulge (that is, the elongation of the liquid water of the
oceans causing two opposite high and two opposite low spots) is
caused by the difference in gravitational force on the oceans from
one side of Earth to the other. Show that for a small difference in

dF>F � �2 dr>r.F � Gm1m2>r2
rmrS

MmMSMSr
2
m >Mmr

2
S .

5.0 m
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distance compared to the average distance, the ratio of the differ-
ential gravitational force exerted by the Sun to the differential grav-
itational force exerted by the moon on Earth’s oceans is given by

Calculate this ratio. What is your con-
clusion? Which object, the moon or the Sun, is the main cause of the
tidal stretching of the oceans on Earth?

¢FS >¢Fm � (MSr
3
m)>(Mmr

3
S).

107 ••• CONTEXT-RICH, ENGINEERING APPLICATION United
Federation Starship Excelsior drops two small robotic probes to-
ward the surface of a neutron star for exploration. The mass of
the star is the same as that of the Sun, but the star’s diameter is
only 10 km. The robotic probes are linked together by a 1.0-m-
long steel cord (which includes communication lines between
the two probes), and are dropped vertically (that is, one always
above the other). The ship hovers at rest above the star’s sur-
face. As the Chief of Materials Engineering on the ship, you are
concerned that the communication between the two probes, a
crucial aspect of the mission, will not survive. (a) Outline your
briefing session to the mission commander and explain the ex-
istence of a “stretching force” that will try to pull the robots
apart as they fall toward the planet. (See Problem 106 for hints.)
(b) Assume that the cord in use has a breaking tension of 

and that the robots each have a mass of How close
will the robots be to the surface of the star before the cord
breaks?

1.0 kg.25 kN

Earth

Moon

F I G U R E  1 1 - 3 2 Problem 106 The lunar tidal bulges 
(exaggerated here) are due to the difference in the gravitational 
pull of the moon on opposite sides of Earth.
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12-6 Indeterminate Problems

12-7 Stress and Strain

I
n this chapter, we study the forces and torques needed to keep extended ob-
jects static (stationary). For example, the forces exerted by the cables of a sus-
pension bridge must be known so the cables can be designed to be strong
enough to support the bridge. Similarly, cranes must be designed so that they
do not topple over when lifting a weight.

In this chapter, we study the equilibrium of rigid bodies and then briefly con-
sider the deformations and elastic forces that arise when real solids are
under stress.

12
C H A P T E R

Tower cranes are a part of the

landscape of cities around

the world. The model shown has a

maximum reach of 81 m. Counterweights

are used to counterbalance the load and

prevent the crane from tipping over.

(See Example 12-5.)

?
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LARGE FORCES AND TORQUES ARE
OFTEN EXERTED ON CONSTRUCTION
CRANES SUCH AS THIS ONE. CRANES
HAVE TO BE BOTH RIGID AND WELL
ANCHORED IF THEY ARE TO WITHSTAND
SUCH FORCES AND TORQUES AND NOT
COLLAPSE. (Eric M. Anderson/ Tower
Cranes of America, Inc.)
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F I G U R E  1 2 - 1 The direction of the torque
is gotten by applying the right-hand rule for
cross products. (a) is the torque about due
to the gravitational force on the th
element of mass. (b) The net gravitational
torque about can be calculated by
considering the total gravitational force to
be applied at a point called the center of
gravity.
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12-1 CONDITIONS FOR EQUILIBRIUM

A necessary condition for a particle at rest to remain at rest is that the net force act-
ing on it remains zero. Similarly, a necessary condition for the center of mass of a
rigid object to remain at rest is that the net force acting on the object remains zero.
A rigid object can rotate, even when its center of mass is at rest, but then the object
is not in static equilibrium. Therefore, a second necessary condition for a rigid object
to remain in static equilibrium is that the net torque acting on it about any axis
must remain zero. This condition gives us the option to choose any point or any
axis for calculating torques, an option that greatly simplifies the solution of most
static problems.

The two necessary conditions for a rigid body to be in static equilibrium are as
follows:

1. The net external force acting on the body must remain zero:

12-1

2. The net external torque about any point must remain zero:

12-2

CONDITIONS FOR EQUILIBRIUM

12-2 THE CENTER OF GRAVITY

In Section 4 of Chapter 9, the center of gravity is introduced in terms of torques
about an axis. Here we introduce the center of gravity in terms of torques 
about a point. Figure 12-1a shows a rigid object in static equilibrium and a point

We consider the object to be composed of many small mass elements. The
force of gravity on the th small mass element is and the total force of 
gravity on the object is If is the position vector of the th particle
relative to then where is the torque due to about The 
net gravitational torque about is then Conveniently, the net
torque due to gravity about a point can be calculated as if the entire force of
gravity were applied at a single point, the center of gravity (see Figure 12-1b).
That is,

12-3

CENTER OF GRAVITY

where is the position vector of the center of gravity relative to 
If the gravitational field is uniform over the object (as is nearly always the case

for objects of less than astronomical size), we can write Summing both
sides of this gives where is the mass of the object. The net
torque is the sum of the individual torques. That is,

Factoring from the term on the right gives
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The center of gravity of the Calder mobile is
directly below the suspension point. (Copyright
© 2002 Estate of Alexander Calder/ Artists Rights
Society (ARS), New York.)
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and substituting for using the definition of center of mass ( ),
we obtain

12-4

Equations 12-3 and 12-4 are valid for any choice of the point only if 
That is, the center of gravity and the center of mass coincide if the object
is in a uniform gravitational field.

If is directly above the center of gravity, then and are both in the 
same direction (downward), so For example, when a mobile
is suspended with its center of gravity directly below its suspension point, the
net torque on the mobile about the suspension point is zero, so it is in static
equilibrium.

12-3 SOME EXAMPLES OF STATIC EQUILIBRIUM

For most examples and problems in this chapter, all the forces are perpendicular to
the axis. It is therefore best in such problems to calculate torques about an axis
parallel to the axis (rather than about a point). For figures in this chapter, the 

axis is typically perpendicular to the page, and out of the page is frequently cho-
sen as direction. Calculating torques about the axis and choosing out of the
page as the direction is equivalent to choosing counterclockwise as positive and
clockwise as negative. (If into the page is chosen as the 
direction, then clockwise is positive and counterclockwise
is negative.)
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Example 12-1 Walking the Plank

A uniform plank of length and mass is
supported by scales a distance from the ends of the
board, as shown in Figure 12-2. (a) Find the reading on the scales
when Mary, whose mass stands on the left end of the
plank. (b) Sergio climbs onto the plank and walks toward Mary,
who jumps to the floor when the plank starts to tip. Sergio keeps
walking all the way to the left end of the plank, and when he
gets there the scale supporting the right end of the plank reads
zero. Find Sergio’s mass.

PICTURE The readings on the scales are the magnitudes of the
forces Mary and Sergio exert on the boards. To find these mag-
nitudes, we apply the two conditions for equilibrium to the sys-
tem consisting of Mary plus the plank.

SOLVE

(a) 1. Draw a free-body diagram of the system consisting of
Mary and the plank (Figure 12-3). Forces and are
the forces exerted by the left and right scales.

F
S

RF
S

L

m � 45 kg,

d � 0.50 m
M � 35 kgL � 3.00 m

Plank

d

L

m

dL − 2d

M

F I G U R E  1 2 - 2

d

Axis c.g.

L − 2d

L − 2d

mg

2

FL

Mg

FR

F I G U R E  1 2 - 3

2. Set the net force equal to zero,
taking upward as positive: FL � FR � Mg � mg � 0

©Fy � 0
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3. Calculate the net torque about the axis directed out of the
page (making counterclockwise positive) and through
the point of application of F

S

L:

©t � FL(0) � FR(L � 2d) � Mg
L � 2d

2
� mgd

4. Set the net torque equal to zero and solve for FR:

so FR � a1
2
M �

d
L � 2d

mbg
0 � FR(L � 2d) � Mg

L � 2d
2

� mgd

5. Substitute this result for into the step-2 result and solve
for FL:

FR � a1
2
M �

L � d
L � 2d

mbgFL � Mg � mg � a1
2
M �

d
L � 2d

mbg
6. Substitute numerical values to obtain numerical values for

the forces:

7.2 � 102 N� 723 N �

FL � a1
2

35 kg �
2.5 m
2.0 m

45kgb (9.81 N>kg)

61 N� 61.3 N �

FR � a1
2

35 kg �
0.50 m
1.5 m

45 kgb (9.81N>kg)

(b) Using the Part-(a) step-4 result, set and solve for m:FR � 0

so 70 kgm �
L � 2d

2d
M �

2.0 m
1.0 m

35 kg �

0 � a1
2
M �

d
L � 2d

mbg
CHECK In part (a), the sum should equal Mary’s weight plus the weight of the
plank. This total weight is Also,

as expected. In part (b), Sergio is 0.50 m from the
axis, and the center of gravity of the plank is 1.00 m from the axis, when the system is bal-
anced with and with Mary no longer on the plank. Thus, we expect Sergio’s mass to
be twice the mass of the plank.

Example 12-1 can be solved using an axis through the center of the plank, but
in this case both and appear in the torque equation, hence the algebra is a
bit more complex. In general, a statics problem can be simplified by computing
the torques about an axis through the line of action of one of the unknown
forces, as when we chose the axis through the point of application of force in
Example 12-1.

PROBLEM-SOLVING STRATEGY

Choosing the Axis

PICTURE Keep in mind the conditions for equilibrium and 

SOLVE

1. To obtain an algebraically simple solution, choose an axis through the line
of action of the force you have the least information about.

2. Then, equate the sum of the torques about this axis equal to zero.

CHECK Try finding alternative ways to solve a problem to check the
plausibility of your solution.

©t � 0).
(© F

S
� 0

FL

FRFL

FR � 0

723 N � 61 N � 7.8 � 102 N,�FL � FR

7.8 � 102 N.�(35 kg � 45 kg)(9.81 N>kg)�(M � m)g
FL � FR
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Example 12-2 Force on an Elbow

You hold a 6.0-kg weight in your hand with your forearm making a angle with your
upper arm, as shown in Figure 12-4. Your biceps muscle exerts an upward force that acts
3.4 cm from the pivot point at the elbow joint. Model the forearm and hand as a 30.0-cm-
long uniform rod with a mass of 1.0 kg. (a) Find the magnitude of if the distance from the
weight to the pivot point (elbow joint) is 30 cm, and (b) find the magnitude and direction of
the force exerted on the elbow joint by the upper arm.

PICTURE To find the two forces, apply the two conditions for static equilibrium (
and ) to the forearm.

SOLVE

(a) 1. Draw a free-body diagram of the forearm (Figure 12-5). Model the forearm as a
horizontal rod.

©t � 0
©F

S
� 0

F
S

m

O
F
S

m

90°

2. The force we know least about is the
force of the upper arm on the elbow
joint (we know neither its
magnitude nor its direction). Apply

about an axis directed out of
the page and through the point of
application of F

S

ua:

©t � 0

F
S

ua
so

5.6 � 102 N� 563 N �

� a1
2

(1.0 kg) � 6.0 kgb (9.81 N>kg)
30 cm
3.4 cm

Fm � a1
2
mh � mb g L

d

Fua(0) � mhg
L
2

� Fmd � mgL � 0

(b) Apply and to obtain F
S

ua:©Fy � 0©Fx � 0

and

so

and

� �494 N

� (7.0 kg)(9.81 N>kg) � 563 N

Fuay � (m � mh)g � Fm

Fuax � 0

Fuay � Fm � mhg � mg � 0

Fuax � 0 � 0 � 0 � 0

Therefore, 4.9 � 102 N, downF
S

ua �

CHECK can be found in one step by choosing the axis to be through the point where 
the biceps attaches to the forearm. Setting net torque equal to zero gives �

� � � This
equation yields the same as our Part-(b) result.

TAKING IT FURTHER (1) The force that must be exerted by the muscle is 9.6 times the
weight of the object! In addition, as the muscle pulls upward, the upper arm must push
downward to keep the forearm in equilibrium. The force exerted by the upper arm is 8.4
times greater than the object’s weight. (2) This example and plausibility check show that we
can choose the axis to be wherever it is convenient for our calculation.

Fua � 4.9 � 102 N,
0.(1.0 kg)(9.81 N>kg)(15.0 cm � 3.4 cm)(6.0 kg)(9.81 N>kg)(30.0 cm � 3.4 cm)
Fm(0)Fua(3.4 cm)

Fua

Example 12-3 Hanging a Sign

The manager of the campus bookstore has ordered a new 20-kg sign to hang in front of the
store, from the end of a rod that will be attached to the wall by a wire (Figure 12-6). The man-
ager needs to know how strong a wire is needed. She knows you are taking a physics course,
so she asks you to calculate the tension in the wire. She is also concerned about how much
force the rod puts on the wall, so she asks you to calculate that as well. The rod has a length
of 2.0 m and a mass of 4.0 kg, and the wire is attached to a point on the wall 1.0 m above
the rod.
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PICTURE The conditions for the rod to be in equilibrium are and 
where the torques are to be calculated about an axis through the line of action of the force
we have the least information about. The force exerted by the rod on the wall is equal but
opposite to the force exerted by the wall on the rod.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

©t � 0,©Fy � 0,©Fx � 0,

Steps Answers

1. Draw a free-body diagram for the rod (Figure 12-7).

2. Set about an axis perpendicular to the
page and through point which is on the line
of action of the force of the wall on the rod:

O,
©t � 0

so T �
(M � 1

2m)g

sinu

TL sinu � MgL � mg
L
2

� 0

3. Use trigonometry to solve for u: u � tan�1 1
2 � 26.6°

4. Solve the step-2 result for T: 4.8 � 102 NT � 483 N �

5. Set and and, using your values
for and solve for and Fy:Fxu,T

©Fy � 0©Fx � 0

so Fx � 432 N, Fy � 19.2 N
Fy � Ty � Mg � mg � 0

Fx � Tx � 0

�4.3 � 102 Nin � 19 NjnF
S

� � �F
S

�6. Solve for the force exerted by the rod on the
wall. The force exerted by the rod on the wall
and that by the wall on the rod constitute a 
pair:

N3L

F
S

�

CHECK The and components of the force on the wall by the rod are both negative, as
expected.

yx

Example 12-4 Raising a Wheel

A wheel of mass and radius R (Figure 12-8) rests on a horizontal surface against a step of
height The wheel is to be raised over the step by a horizontal force applied to
the axle of the wheel, as shown. Find the minimum force necessary to raise the wheel
over the step.

PICTURE If the magnitude of is less than the surface at the bottom of the wheel ex-
erts an upward normal force on the wheel. If is increased, this normal force decreases.
Apply the conditions for static equilibrium to find the value of that will hold the wheel in
place when the normal force is zero.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

F
F

Fmin,F

Fmin

F
S

h(h 	 R).
M

Steps Answers

1. Draw a free-body diagram of the wheel (Figure 12-9).

2. Apply to the wheel. Both the direction and
the magnitude of are unknown, so follow the
guidelines and calculate torques about an axis
through its point of application. Obtain expressions
for the moment arms from the free-body diagram
and solve for Fmin:

F
S

�

©t � 0

so Fmin �
Mgx

R � h

©t � Fmin(R � h) � Mgx � 0

3. Use the Pythagorean theorem to express in terms
of and R:h

x x �4h(2R � h)

4. Substitute for to obtain an expression
for Fmin:

x4h(2R � h)
4h(2R � h)

R � h
MgFmin �
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CHECK We evaluate for the limiting cases of and There is no curb for
so we expect to equal zero, and for we expect that no force is big enough

to get the wheel to roll up the step. Our step-4 result gives if as expected, and
gives as again as expected.

TAKING IT FURTHER Applying about the axis through the center of the wheel
shows that is directed toward the wheel’s center. (Otherwise, there would be a nonzero
net torque about the axis.)

F
S

�

©t � 0

hS R,Fmin S 

h � 0,Fmin � 0
h � RFminh � 0,

h � R.h � 0Fmin

Example 12-5 Balancing a Crane

Figure 12-10 shows a standard K-10000 tower crane.
The horizontal members extending to either side of 
the tower are called jibs. The tower is 12 m across. 
The forward jib is 80 m long with a mass of

The counterweight
(cw) jib is 44 m long with mass of the fixed
counterweight has a mass of the outer mo-
bile cw has a mass of the inner mobile cw
has a mass of and the tower has a mass of

A load with a mass of is sus-
pended from the center of the forward jib. Is the crane
balanced or unbalanced? If unbalanced, would you
move the load toward or away from the tower in order
to balance the load?

PICTURE The crane is balanced if the center of gravity,
and thus the center of mass, is inside the tower. Model
each jib as a uniform rod and each counterweight as a
point mass. Calculate the component of the center of
mass of the crane and load, where the direction it to
the right in Figure 12-10. If the center of gravity is within
the tower, the crane is balanced.

SOLVE

1. Draw a free-body diagram of the crane and load 
(Figure 12-11). Draw the axis with the origin at the
center of the tower.

x

�x
x

mL � 100 tmT � 100 t.
mIMcw � 83 t,

mOMcw � 40 t,
mFcw � 100 t,

mcwJ � 31 t,
mFJ � 80 t (1 t � 1 tonne � 1000 kg).

44 m 40 m

80 m

12 m
CW jib
(31 t)

Load
(100 t)

Forward jib
(80 t)

Tower

Fixed CW
(100 t)

Mobile CW
(40 t)

Mobile CW
(83 t)

F I G U R E  1 2 - 1 0 CW stands for counterweight.

L1 = 46 m
L2 = 50 m
L3 = 28 m
L4 = 6.0 m

+x

0

L2

L3

Axis of tower

L4

L1

mFJg

mcwJg

mOMcwg

mLg

mFcwg

mIMcwg
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2. Calculate the center of mass of the system:

so

� �0.16 m

xcm �
(180 t)(46 m) � 0 � (140 t)(50 m) � (31 t)(28 m) � (83 t)(6.0 m)

180 t � 100 t � 140 t � 31 t � 83 t

� (mFcw � mOMcw)L2 � mcwJL3 � mIMcwL4Mxcm � m(mFJ � mL)L1 � mT(0)

3. If the center of mass is outside the tower,
the crane is unbalanced:

The center of gravity is 16 cm to the left of the axis of the tower. The center of mass

is within the tower so the crane is balanced.

CHECK The left end of the cw jib is at and the right end of the forward jib is at
Thus, the step-2 result is plausible because it is within the range

This is a somewhat crude plausibility check, but if the step-2 result
was not within this range, the result would definitely not be plausible.

TAKING IT FURTHER The tower is fastened to a rotating platform that is firmly anchored
to a massive concrete base.

�50 m � x � �86 m.
x � 86 m.

x � �50 m,
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Example 12-6 A Leaning Ladder

A uniform 5.0-m ladder weighing 60 N leans against a frictionless vertical wall, as shown in
Figure 12-12. The foot of the ladder is 3.0 m from the wall. What is the minimum coefficient
of static friction necessary between the ladder and the floor if the ladder is not to slip?

PICTURE There are three conditions for the ladder to be in equilibrium: 
and Apply these along with to solve for the minimum value of needed
to prevent slipping.

SOLVE

msfs � msFn©t � 0.
©Fy � 0,©Fx � 0,

1. Draw a free-body diagram of the ladder as shown in Figure 12-13. The forces acting on
the ladder are the force due to gravity the force exerted by the wall (because the
wall is frictionless, it exerts only a normal force), and the force exerted by the floor,
which consists of a normal component and a frictional component fs.Fn

F
S

1F
S

g,

2. The minimum coefficient of static friction
relates the magnitude of the frictional force 
and the magnitude of the normal force To
solve for we first solve for and Fn:fsmsmin,

Fn.
fs

so msmin �
fs
Fn

ms �
fs
Fn

3. Set and ©Fy � 0:©Fx � 0 and Fn � Fg � 0fs � F1 � 0

4. Solve for and Fn:fs and Fn � Fg � 60 Nfs � F1

5. Set about an axis directed out of the
page and through the foot of the ladder,
the point of application of the force we
know the least about:

©t � 0 F1(4.0 m) � Fg(1.5 m) � 0

6. Solve for the force F1: F1 �
Fg(1.5 m)

4.0 m
�

(60 N)(1.5 m)
4.0 m

� 22.5 N

7. Use this result for and from step 4,
to find fs:

fs � F1F1, fs � F1 � 22.5 N

8. Use the results for and to obtain 
from step 2:

msminFnfs 0.38msmin �
fs
Fn

�
22.5 N
60 N

� 0.375 �

CHECK In the free-body diagram for the ladder shown in Figure 12-14, the lines of action of
and intersect at point This means the torques about due to and must both be

equal to zero. Because the sum of all the torques about point must equal zero, we know
the torque about due to must also equal zero. This means the line of action of must
pass through point as well. Consequently, which means

This value of is the same as that obtained in step 8.fs >Fnfs >Fn � 1.5>4.0 � 0.375.
tan u� � 4.0 m>1.5 m � Fn >fs,P

F
S

2F
S

2P
P

F
S

1F
S

gPP.F
S

1F
S

g

1.5 m 1.5 m

4.0 m

P F1

Fg
F2

Fn

'θ

fs
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If an object is in static equilibrium under the influence of three forces, where
the lines of action of any two of the forces intersect at a point, the lines of

action of all three forces will intersect at that same point.
!

1.5 m 1.5 m

4.0 m

F1

Fg

Fn

fs

F I G U R E  1 2 - 1 3

3.0 m

4.0 m5.0 m

Frictionless wall

Rough floor

Fg = 60 N

F I G U R E  1 2 - 1 2

PRACTICE PROBLEM 12-1

Show that if an object is in static equilibrium under the influence of three forces, where
the lines of action of two of the forces intersect at a point, the lines of action of all three
forces will intersect at that same point.
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mg
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D

β

φ

O

F2

r1 − r2

r1

r2τ

F1

F I G U R E  1 2 - 1 5 The torque produced
by the two forces is directed into the page—
perpendicular to the plane containing the two
forces. is the perpendicular distance
between the lines of action of the two forces.

D

T
S
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COUPLES

The forces and in Figure 12-13 of Example 12-6 are equal in magnitude, opposite
in direction, and are not collinear. Such a pair of forces, called a couple, tends to pro-
duce an angular acceleration, but its net force is zero. The forces and in Figure
12-13 also constitute a couple. Figure 12-15 shows a couple consisting of forces 
and a distance apart. The torque produced by this couple about an arbitrary point

is

12-5

This result does not depend on the choice of the point 

The torque produced by a couple is the same about all points in space.

The magnitude of the torque exerted by a couple is

12-6

where is the magnitude of either force and is the perpendicular distance
between the lines of action of the two forces.

PRACTICE PROBLEM 12-2

Show that the magnitude of (see Equation 12-5) is (see Equation 12-6),
where (shown in Figure 12-15) is the distance between the lines of action of the two
forces and is the magnitude of either force.F

D
FD(rS1 � rS2) � F

S

1

DF

t � FD

O.

T
S

� rS1 � F
S

1 � rS2 � F
S

2 � rS1 � F
S

1 � rS2 � (�F
S

1) � (rS1 � rS2) � F
S

1

O
DF

S

2

F
S

1

F
S

1f
S

s

F
S

gF
S

n

2. To relate the forces, apply and
to the block, where ax � ay � 0:©Fy � may

©Fx � max
and Fn

S
©Fy � 0⇒ mg �

©Fx � 0⇒ Fapp � fs

3. Identify any couples: and form couple 1

and and form couple 2Fn

S
mgS

f
S

sF
S

app

4. Choose counterclockwise as positive and, using
Equation 12-6, calculate the torque due to each couple:

and t2 � �mg 1
2Lt1 � �Fapph

5. Using solve for Fapp:©t � 0,

so
L
2h

mgFapp �

Fapph � mg 1
2L � 0

Example 12-7 Tipping the Block

In visiting a marble quarry you notice half of a $100 bill (Figure 12-16) sticking out from
under a block of marble of mass height and with a square cross section of edge-length

You try to retrieve the $100 bill, but it is stuck. To retrieve it, you push the block with a
horizontal force a distance above the floor. How hard do you have to push to cause the
block to tip up (slightly), thus freeing the $100 bill? (Assume friction is sufficient to prevent
the block from slipping.)

PICTURE Assume you are pushing so hard that if you pushed just slightly harder, the block
would start to tip up. Draw a free-body diagram of the block, and apply the conditions for
equilibrium. If there are any couples, use Equation 12-6 to calculate the magnitude of the
torque.

SOLVE

1. Assume the block is on the verge of tipping up, and draw a free-body diagram of the
block (Figure 12-17). Draw the normal force at the left edge of the block (see the remark
at the end of this example).

h
L.

H,m,
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a

L L

h
mg

Fn
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(b)

a
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* See the discussion surrounding Equation 9-30.
† By “effective point of application” of the normal force, we mean the point where the entire normal force can be con-

sidered to be applied for the purpose of calculating the torque exerted by the force.

CHECK We expect that the higher up on the block you push, the more gently you need to
push to start the block rotating. The step-6 result meets this expectation. That is, as in-
creases decreases.

TAKING IT FURTHER The normal force is uniformly distributed across the bottom of the
block before you start to push on the block. When you do push on the block, the harder you
push, the farther the centroid (the effective center) of the distribution of the normal force
moves to the left. When you push so hard that the block is on the verge of tipping up, the
centroid of the normal force is at the left edge of the bottom of the block.

12-4 STATIC EQUILIBRIUM 
IN AN ACCELERATED FRAME

By an accelerated frame, we mean a reference frame that is accelerating, but is not
rotating, relative to an inertial reference frame. The net force on an object that
remains at rest relative to an accelerated reference frame is not equal to zero. An
object at rest relative to the accelerated frame has the same acceleration as the
frame. The two conditions for an object to be in static equilibrium in an accelerated
reference frame follow:

1.
where is the acceleration of the center of mass, which is also the acceleration
of the reference frame.

2.
The sum of the torques about the center of mass must be zero.

The second condition follows from the fact that Newton’s second law for
rotation, holds for torques about the center of mass whether
or not the center of mass is accelerating.*

©TScm � IcmA
S ,

©TScm � 0

aScm

© F
S

� maScm

Fapp

h

There is a minimal-effort solution
to this example. There is a specific
axis choice such that the first step-
6 equation is immediately ob-
tained by setting the sum of the
torques about the axis equal to
zero. What is the axis choice used
in the minimal-effort solution?

CONCEPT CHECK 12-1✓

Example 12-8 Moving the Block

A truck (Figure 12-18a) carries a uniform block of marble of mass height and square
cross section of edge-length What is the greatest acceleration the truck can have without
the block tipping over? Assume that the block tips before it slides.

PICTURE There are three forces on the block, a gravitational force, a static frictional force,
and a normal force. The acceleration of the block is due to the frictional force, as shown in
Figure 12-18b. This force exerts a counterclockwise torque about the center of mass of the
block. The only other force that exerts a torque about the center of mass of the block is the
normal force. If the truck and block are not accelerating, the normal force is distributed
uniformly across the bottom of the block. If the magnitude of the acceleration is small, this
distribution shifts and the effective point of application of the normal force† moves to the
left to provide a balancing torque about the center of mass. The greatest balancing torque
this force can exert is when the effective normal force is at the edge of the base of the block,
as shown.

L.
h,m,

F I G U R E  1 2 - 1 8
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SOLVE

1. Draw a free-body diagram of the block (Figure 12-19). L

fsff
Fn

h

h/2

acm

x

y

F I G U R E  1 2 - 1 9

2. Apply to the block, and then solve for
the normal force:

©Fy � macmy so Fn � mgFn � mg � 0

3. Apply to the block:©Fx � macmx fs � ma

4. Apply ©tcm � 0: where d � 1
2Lfs

h
2

� Fnd � 0,

5. If then the acceleration is maximum.
Substitute for for and for and
solve for amax:

Fn,mgfs,mamaxd,1
2L

d � 1
2L, so L

h
gamax �mamax

h
2

� mg
L
2

� 0

CG

CG

CG
Arc

(a) (b)

(c)

F I G U R E  1 2 - 2 0 If slight rotation raises the center of gravity, as in (a), the equilibrium is
stable. If a slight rotation lowers the center of gravity, as in (b), the equilibrium is unstable. If a
slight rotation neither raises nor lowers the center of gravity, as in (c), the equilibrium is neutral.

CHECK One would expect to be larger for a short wide block (small and large ) than
for a tall narrow block (large and small ). Our step-5 result meets this expectation.

12-5 STABILITY OF ROTATIONAL EQUILIBRIUM

There are three categories of rotational equilibrium for an object: stable, unstable,
or neutral. Stable rotational equilibrium occurs when the torques that arise from
a small angular displacement of the object from equilibrium tend to rotate the ob-
ject back toward its equilibrium orientation. Stable equilibrium is illustrated in
Figure 12-20a. When the cone is tipped slightly as shown, the resulting gravita-
tional torque about the pivot point tends to restore the cone to its original orienta-
tion. Note that this slight tipping lifts the center of gravity, increasing the gravita-
tional potential energy.

Unstable rotational equilibrium, illustrated in Figure 12-20b, occurs when the
torques that arise from a small angular displacement of the object tends to rotate
the object even farther away from its equilibrium orientation. A slight tipping of
the cone causes it to fall over because the torque due to the gravitational force
tends to rotate it away from its original orientation. Here the rotation lowers the
center of gravity and decreases the gravitational potential energy.

The cone resting on a horizontal surface in Figure 12-20c illustrates neutral
rotational equilibrium. If the cone is rolled slightly, there is no torque that tends

Lh
Lhamax
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to rotate it either back toward, or away from, its original orientation. As the cone
rotates, the height of its center of gravity remains unchanged, so the gravitational
potential energy does not change.

In summary, if a system is rotated slightly from an equilibrium orientation, the
equilibrium position is stable if the system returns to its original orientation, un-
stable if it rotates farther away, and neutral if there are no torques tending to rotate
it in either direction.

Because “rotated slightly” is a relative term, stability is also relative. One exam-
ple of equilibrium may be more or less stable than another. A rod is balanced on
one end, as in Figure 12-21a. Here, if the disturbance is very small (Figure 12-21b),
the rod will move back toward its original position, but if the disturbance is great
enough so that the center of gravity no longer lies over the base of support
(Figure 12-21c), the rod will fall.

We can improve the stability of a system by either lowering the center of
gravity or widening the base of support. Figure 12-22 shows a nonuniform rod
that is loaded so that its center of gravity is near one end. If it stands on its
heavy end so that the center of gravity is low (Figure 12-22a), it is much more
stable than if it stands on the other end so that the center of gravity is high
(Figure 12-22b).

In Figure 12-23, the system is stable for any angular displacement because the
resulting torque always rotates the system back toward its equilibrium position.

Standing or walking upright is difficult for a human because the center of grav-
ity is high, and must be kept over a relatively small base of support, the feet.
Human infants take about a year to learn to walk. A four-footed creature has a
much easier time, in part because its base of support is wider and its center of grav-
ity is lower. Newborn kittens can walk almost immediately.

The toddler is relatively unstable (in
comparison to a kitten). (Photodisk.)

Pivot
point

Center of
gravity

Fg
Fg

F I G U R E  1 2 - 2 3

Center of
gravity

More stable

Fg

(a)

Center of
gravity

Less stable

Fg

(b)

F I G U R E  1 2 - 2 2 When a nonuniform rod
rests on its heavy end (so its center of gravity is
low), as in (a), the equilibrium is more stable
than when its center of gravity is high, as in (b).

Fg Fg Fg

F I G U R E  1 2 - 2 1 Stability of equilibrium
is relative. If the rod in (a) is rotated slightly, as
in (b), it returns to its original equilibrium
position as long as the center of gravity lies
over the base of support. (c) If the rotation is
too great, the center of gravity is no longer
over the base of support, and the rod
falls over.

12-6 INDETERMINATE PROBLEMS

When objects are not rigid, but are deformable, we need more information to de-
termine the forces required for equilibrium. Consider a pickup truck resting on a
frictionless horizontal surface. Suppose there is a very heavy object on one side
of the trunk bed, and suppose we wish to calculate the normal force exerted by
the road on each of the four truck tires. Consider the truck plus the heavy object
as the system and assume we know the location of each tire, the system’s weight,
and the location of the center of gravity. Is this knowledge sufficient to allow us
to calculate the magnitudes of the four normal forces? The answer to this ques-
tion is no. The magnitude of each normal force is unknown, so we need four in-
dependent equations to solve for the four unknowns. Because the system is in
equilibrium, the conditions for equilibrium can only supply us with three inde-
pendent equations. Let the road surface be in the plane. The first condition for
equilibrium is that the sum of the external forces is equal to zero. This provides

xy
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only one equation because all the forces are vertical. The second con-
dition for equilibrium is that the sum of the external torques about any point is
equal to zero. This provides two additional equations, and The
reason there are no vertical torque components is because torque vectors are
cross products ( ), and the direction of a cross product is perpendicu-
lar to each vector in the product. Because the forces on the truck are all vertical,
all the torque vectors are horizontal.

There are two external forces acting on the truck: the force of gravity and the
normal forces by the road on the tires. Let the road surface be in the plane. If
we choose the contact point of one of the tires with the road as our origin, the
torque exerted by all the forces about that point has both and components.
All the forces are vertical, so all the torque vectors must be horizontal. There are
no components because there are no horizontal forces. We thus obtain two
equations by setting the net torque equal to zero, and a third equation by setting
the net vertical force equal to zero. We need another equation to find the force ex-
erted by the road on each of the four tires. Because we do not have another equa-
tion at our disposal, the forces cannot be determined. If we let air out of one of
the tires and pump up another tire to a greater pressure, the car remains in equi-
librium, but the force exerted on each tire changes. Clearly, the forces on the tires
in this problem are not determined by the information given. The tires are not
rigid bodies. To some extent, every object is deformable.

12-7 STRESS AND STRAIN

If a solid object is subjected to forces that tend to stretch, shear, or compress the ob-
ject, its shape changes. If the object returns to its original shape when the forces are
removed, it is said to be elastic. Most objects are elastic for forces up to a certain
maximum, called the elastic limit. If the forces exceed the elastic limit, the object
does not return to its original shape but is permanently deformed.

Figure 12-24 shows a solid bar subjected to a stretching or tensile force F acting
equally to the right and to the left. The bar is in equilibrium, but the forces acting
on it tend to increase its length. The fractional change in the length of a seg-
ment of the bar is called the strain:

12-7

The ratio of the force to the cross-sectional area is called the tensile stress:

12-8

Figure 12-25 shows a graph of stress versus strain for a typical solid bar. The
graph is linear until point A. Up to this point, known as the proportional limit, the
strain is proportional to the stress. The result that strain varies linearly with stress
is known as Hooke’s law. Point B in Figure 12-25 is the elastic limit of the material.
If the bar is stretched beyond this point, it is permanently deformed. If an even
greater stress is applied, the material eventually breaks, shown happening at point
C. The ratio of stress to strain in the linear region of the graph is a constant called
Young’s modulus

12-9

YOUNG’S MODULUS DEFINED

Y �
Stress
Strain

�
F>A
¢L>L
Y:

Stress �
F
A

AF

Strain �
¢L
L

¢L>L

z

yx

xy

T
S

� rS � F
S

©ty � 0.©tx � 0

(©Fz � 0)

F F

F F

(a)

(b)
A

L

L

F I G U R E  1 2 - 2 4 (a) A solid bar subjected
to stretching forces of magnitude acting on
each other. (b) A small section of the bar of
length The elements of the bar to the left
and right of this section exert forces on the
section. These forces are distributed equally
over the cross-sectional area. The force per
unit area is the stress.

L.

F

A

B
C

Stress

Strain

Proportional limit

Elastic limit

Fracture
point

F I G U R E  1 2 - 2 5 A graph of stress versus
strain. Up to point A, the strain is proportional
to the stress. Beyond the elastic limit at point
B, the bar will not return to its original length
when the stress is removed. At point the
bar fractures.

C,



To measure the tensile strength, the rod is
stretched until it breaks. (Vince Streano/CORBIS.)
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Table 12-1 Young’s Modulus Y and Strengths of Various Materials†

Tensile strength, Compressive strength, 
Material Y, GN m2‡ MN m2 MN m2

Aluminum 70 90

Bone

Tensile 16 200

Compressive 9 270

Brass 90 370

Concrete 23 2 17

Copper 110 230

Iron (wrought) 190 390

Lead 16 12

Steel 200 520 520

† These values are representative. Actual values for particular samples may differ.
‡ 1 GN � 103 MN � 1 � 109 N.

>>>

The dimensions of Young’s modulus are those of force divided by area. Approximate
values of Young’s modulus for various materials are listed in Table 12-1.

PRACTICE PROBLEM 12-3

Suppose that the biceps muscle of your right arm has a maximum cross-sectional area of
What is the stress in the muscle if it exerts a force of 300 N? 

If a bar is subjected to forces that tend to compress it rather than stretch it, the
stress is called compressive stress. For many materials, Young’s modulus for com-
pressive stress is the same as that for tensile stress. Note that for compressive
strain, in Equation 12-7 is then taken to be the decrease in the length of the bar.
If the tensile or compressive stress is too great, the bar breaks. The stress at which
breakage occurs is called the tensile strength, or in the case of compression, the
compressive strength. Approximate values of the tensile and compressive
strengths of various materials are listed in Table 12-1. Note from the table that the
compressive strength of bone is greater than the tensile strength. Also note that, for
bone, Young’s modulus is significantly larger for tensile stress than for compres-
sive stress. These differences have biological significance, because the major job of
bone is to resist the compressive load exerted by contracting muscles.

¢L,

12 cm2 � 1.2 � 10�3 m2.

Context-RichExample 12-9 Elevator Safety

While working with an engineering company during the summer, you are assigned to check
the safety of an elevator system in a new office building. The elevator has a maximum load
of 1000 kg, including its own mass, and is supported by a steel cable 3.0 cm in diameter and
300 m long at full extension. There will be safety concerns if the steel stretches more than 3.0
cm. Your job is to determine whether or not the elevator is safe as planned, given a maxi-
mum acceleration of the system of 

PICTURE is the length of the unstressed cable, is the magnitude of the force acting on
it, and is its cross-sectional area. The stretch in the cable is related to Young’s modulus
by From Table 12-1, we find the numerical value of Young’s modulus for
steel, Y � 2.0 � 1011 N>m2.
Y � (F>A)>(¢L>L).

¢LA
FL

1.5 m>s2.

See

Math Tutorial for more

information on 

Direct and Inverse
Proportions
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SOLVE

1. The amount the cable is stretched, is related to Young’s
modulus:

¢L, so ¢L �
FL
AY

Y �
F>A
¢L>L

2. To find the force acting on the cable, we apply Newton’s
second law to the elevator. There are two forces on the
elevator, the force of the cable and the gravitational force:F

so

� 1.13 � 104 N

� (1000 kg)(9.81 N>kg � 1.5 N>kg)Fmax � m(g � aymax)

F � mg � may

3. Substitute into the step-1 result and obtain the maximum
amount of stretch:

� 2.40 cm

¢L �
FmaxL

AY
�
FmaxL

pr2Y
�

(1.13 � 104 N)(300 m)
p(0.015 m)2(2.0 � 1011 N>m2)

4. Report your results to your boss: According to my calculations, the most the cable will stretch is 2.4 cm,
only 20 percent less than the 3.0-cm limit. However, in reading the
footnote to the table, I note that the values given for Young’s modulus
are representative values, and that actual values vary from sample to
sample. I recommend that you consult an engineer and get a
professional evaluation.

CHECK Is the step-3 expression for dimensionally correct? Young’s modulus has the di-
mensions of force per unit area, so has the dimensions of force. Thus, the dimension of

in the numerator cancels the dimension of in the denominator. The expression has
the dimensions of length and is dimensionally correct.

PRACTICE PROBLEM 12-4 A 1.5-m-long wire has a cross-sectional area of 2.4 mm2. It is
hung vertically and stretches 0.32 mm when a 10-kg block is attached to it. Find (a) the stress,
(b) the strain, and (c) Young’s modulus for the wire.

In Figure 12-26, a force is applied tangentially to the top of a block of Jello.
Such a force is called a shear force. The ratio of the shear force to the area is
called the shear stress:

12-10

A shear stress tends to deform an object, as shown in Figure 12-26. The ratio
is called the shear strain:

12-11

where is the shear angle shown in the figure. The ratio of the shear stress to the
shear strain is called the shear modulus

12-12

DEFINITION—SHEAR MODULUS

The shear modulus is also known as the torsion modulus. The torsion modulus
is approximately constant for small stresses, which implies that the shear strain
varies linearly with the shear stress. This observation is known as Hooke’s law for
torsional stress. In a torsion balance, such as that used in Cavendish’s apparatus
for measuring the universal gravitational constant the torque (which is related
to the stress) is proportional to the angle of twist (which equals the strain for small
angles). Approximate values of the shear modulus for various materials are listed
in Table 12-2.

G,

Ms �
Shear stress
Shear strain

�
Fs>A
¢X>L �

Fs>A
tan u

Ms:
u

Shear strain �
¢X
L

� tan u

¢X>L
Shear stress �

Fs

A

AFs

Fs

AYFmax

AY
¢L

A

ΔX

L

u

F I G U R E  1 2 - 2 6 The application of the
horizontal force to the Jello causes a shear
stress defined as the force per unit area. The
ratio is the shear strain and is
the horizontal cross-sectional area of the Jello.

A¢X>L � tan u

F
S

s

Table 12-2 Approximate Values 

of the Shear Modulus M
s

of Various Materials

Material Ms, GN m2

Aluminum 30

Brass 36

Copper 42

Iron 70

Lead 5.6

Steel 84

Tungsten 150

>
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Physics Spotlight

Carbon Nanotubes: Small and Mighty

The most common form of pure carbon is graphite—slippery, strong sheets one atom
thick. The lattice of carbon atoms in graphite is arranged in a hexagonal pattern,
much like the hexagonal pattern of chicken wire. Carbon-atom lattices can also form
tubes that are a few nanometers in diameter, and a few micrometers long. Because of
their small size, they have been dubbed nanotubes. Nanotube walls can contain a sin-
gle layer of atoms, or they can consist of many nested tubes, in a multiwalled tube.

Nanotubes can have different properties, depending on the orientation of the lat-
tice, and the diameter of the tube. More than 300 different types of carbon nanotubes
have been identified. Each production method* makes between 10 and 50 different
types of nanotubes at once.† Isolating a large pure group of nanotubes is a difficult
process.‡,# Most nanotubes are sold in batches containing between 65 and 95 percent
nanotubes. The cost is per gram, and purer types are more expensive. (The remaining
impurities are different forms of carbon.) Nanotubes differ dramatically° from carbon fibers currently used in composites.
Carbon fibers are a specialized type of manufactured graphite, but they are not hollow tubes.

Because nanotubes are so small, new methods of measuring their tensile strength and Young’s modulus were created.§,¶ Young’s
modulus for single-walled nanotubes was measured** at an average of with a range†† of 0.32 to These
values are more than five times stronger than steel by volume, and many more times stronger by weight. Multiwalled carbon nan-
otubes have a greater variation in Young’s modulus,‡‡ from to and their tensile strength ranges from

to Carbon nanotubes have higher tensile strength and a much higher Young’s modulus than Kevlar™
fibers,## at an equivalent weight. Nanotubes are the stiffest materials known, and have the highest tensile strength known.

Carbon nanotubes can not only take stress with a low rate of strain, but can also exert strong stresses. Carbon nanotubes
have recently been shown to exert pressures of on metal crystals trapped within them, when the tubes are radi-
ated and treated with heat.°° (This is about one-tenth the pressure at Earth’s core!) As the tubes shrink, they squeeze the metal
into very fine hairs.

Although nanotubes themselves are extremely strong, threads,§§ fibers,¶¶ and ribbons*** spun from them are not as strong.
But these products still have high tensile strengths and high Young’s moduli. Much of the strength of nanotubes comes from
the regular lattice of carbon atoms. If defects exist in that lattice, the nanotube is weakened.††† (This also explains the wide
variation in tested strengths of carbon nanotubes.) Because billions of nanotubes are required for even medium-scale appli-
cations, statistically these larger applications cannot have the same strength per unit volume (or per unit mass) as individual
nanotubes.‡‡‡ Still, even a small amount of relatively pure nanotubes can add strength and stiffness to existing materials. By
weight, 5 percent nanotubes in a composite can more than double the tensile strength and stiffness of the composite.###

Wherever strong, lightweight materials are needed, carbon nanotubes have a bright future.

* Guice, C., “Dynamics of Nanotube Synthesis,” Penn State McNair Journal 2003, 115–119.
† Kumar, Satish, in Goho, Alexandra, “Nice Threads: The Golden Secret Behind Spinning Carbon-Nanotube Fibers,” Science News, June 5, 2004, p. 
‡ Benavides, J. M., “Method for Manufacturing of High Quality Carbon Nanotubes,.” U.S. Patent 7,008,605, Mar. 7, 2006.
# Harutyunyan et al., “Method of Purifying Nanotubes and Nanofibers Using Electromagnetic Radiation,” U. S. Patent 7,014,737, Mar 21, 2006.
° Ajayan, P. M., Charlier, J.-C., and Rinzle, A. G., “Carbon Nanotubes: From Macromolecules to Nanotechnology,” Proceedings of the National Academy of Sciences, Dec. 7, 1999,

14199–14200.
§ Pasquali et al., “Method for Determining the Length of Single-Walled Carbon Nanotubes,” U.S. Patent 6,962,092, Nov. 8, 2005.
¶ Yu, M.-F., Lourie, O., Dyer, M., Motini, K, Kelly, T., and Ruoff, R., “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Jan. 28, 2000,

637–640.
** Krishan, A., Dujardin, E., Ebbesen, T. W., Treacy, M. M. J., and Yianilos, P. N., “Young’s Modulus of Single-Walled Nanotubes,” Physical Review Letters B, Nov. 15, 1998, 14013–1409.
†† Yu, M.-F., Files, B., Arepalli, S., and Ruoff, R., “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties,” Physical Review Letters, June 12, 2000,

5552–5555.
‡‡ Yu et al., op. cit.
## Tang, Benjamin, “Fiber Reinforced Polymer Composites Applications in USA DOT - Federal Highway Administration,” First Korea/USA Road Workshop Proceedings, Jan. 28–29, 1997

http://www.fhwa.dot.gov/bridge/frp/frp197.htm
°° Sun, L., Bahhart, F., Krasheninnikov, A. V., Rodriguez-Manzo, J. A., Terrones, M., and Ajayan, P. M., “Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders,” Science,

May 26, 2006, 1199–1202.
§§ Ericson et al., “Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers,” Science, Sept. 3, 2004, 1447–1450.
¶¶ Li, Y.-L., Kinloch, I. A., and Windle, A. H., “Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis,” Science, Apr. 9, 2004, 276–278.
*** Zhang et al., “Strong, Transparent, Multifunctional Carbon Nanotube Sheets,” Science, Aug. 19, 2005, 1215–1219.
††† Mielke, S., Diego, T., Zhang, S., Li, J.-L., Xiao, S., Car, R., Ruoff, R., Schatz, G., and Belytschko, T., “The Role of Vacancy Defects and Holes in the Fracture of Carbon Nanotubes,”

Chemical Physical Letters, Apr. 16, 2004, 413–420.
‡‡‡ Pugno, N., “On the Strength of the Carbon Nanotube-Based Space Elevator Cable: From Nano- to Mega-Mechanics,” Journal of Physics: Condensed Matter, Special Issue: Nanoscience

and Nanotechnology, (Prepublication), July 2006.
### Andrews, D., Jacques, D., Rao, A. M., Rantell, T., Derbyshire, F., Chen, Y., Chen, J., and Haddon, R. C., “Nanotube Composite Carbon Fibers,” Applied Physics Letters, Aug. 30, 1999, 1329–1331.

363�.

40.53 GN>m2

63 GN>m2.11 GN>M2
950 GN>m2,270 GN>m2

1.47 TN>m2.1.25 TN>m2,

Carbon nanotubes are produced in large
numbers. (Courtesy of Prof. Zhong Lin Wang,
Georgia Tech.)

http://www.fhwa.dot.gov/bridge/frp/frp197.htm
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Equilibrium of a Rigid Object

Conditions 1. The net external force acting on the object must be zero:

12-1

2. The net external torque about any point must be zero:

12-2

(The sum of the torques about any axis also equals zero.)

Stability The equilibrium of an object can be classified as stable, unstable, or neutral. An object rest-
ing on some surface will be in equilibrium if its center of gravity lies over its base of support.
Stability can be improved by lowering the center of gravity or by increasing the width of
the base.

2. Center of Gravity The force of gravity exerted on the various parts of an object can be replaced by a single
force, the total gravitational force, acting at the center of gravity:

12-3

For an object in a uniform gravitational field, the center of gravity coincides with the center
of mass.

3. Couples A pair of equal and opposite forces constitutes a couple. The torque produced by a couple is
the same about any point in space.

so 12-5, 12-6

where is the distance between the lines of action of the forces.

4. Accelerated Reference Frame The conditions for static equilibrium in an accelerated reference frame are

1. where is the acceleration of the center of mass, which is also the acceler-
ation of the reference frame.

2.

The sum of the external torques about the center of mass must be zero.

5. Stress and Strain

Young’s modulus 12-9

Shear modulus 12-12Ms �
Shear stress
Shear strain

�
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Answer to Concept Check

12-1 A horizontal axis along the lowest edge of the block
on the side opposite the side that is being pushed
(Figure 12-17). (The torques about this axis due to the
normal and frictional forces are both equal to zero.)

Answers to Practice Problems

12-1 Forces and act on the object. The object is in
equilibrium, so the torques due to these forces about
any point must sum to zero. Let be the point of
intersection of the lines of action of forces and 
Then the torques about due to and 
each must equal zero, so the torque about due to 
must also equal zero. It follows that the line of action of

must pass through point 

12-2 The angle between and is (Figure 12-15),
so Because

ƒTS ƒ � FD.D � ƒ rS1 � rS2 ƒ  sinb,
ƒTS ƒ � ƒ(rS1 � rS2) � F

S

1 ƒ � ƒ rS1 � rS2 ƒF sinb.
bF
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12-3 The maximum stress
that can be exerted is approximately the same for all
human muscles. Greater forces can be exerted by
muscles with greater cross-sectional areas.

12-4 (a) (b) (c) 190 GN>m22.1 � 10�4,4.1 � 107 N>m2,

Stress � F>A � 2.5 � 105 N>m2.

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

For all problems, use for the free-fall acceleration
and neglect friction and air resistance unless instructed to
do otherwise.

9.81 m>s2

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • True or false:

(a) is sufficient for static equilibrium to exist.

(b) is necessary for static equilibrium to exist.

(c) In static equilibrium, the net torque about any point is zero.
(d) An object in equilibrium cannot be moving.

2 • True or false:

(a) The center of gravity is always at the geometric center of a body.
(b) The center of gravity must be located inside an object.
(c) The center of gravity of a baton is located between the two ends.
(d) The torque produced by the force of gravity about the center of

gravity is always zero.

3 • The horizontal bar in Figure 12-27 will remain horizontal
if (a) and (b) (c)
(d) (e) R1L1 � R2L2.L1M1 � L2M2,

M2R1 �M1R2M1R1 �M2R2,R1 � R2,L1 � L2

a
i

F
S

i � 0

a
i

F
S

i � 0

SSM

4 • Sit in a chair with your back straight. Now try to stand
up without leaning forward. Explain why you cannot do it.

5 • ENGINEERING APPLICATION You have a job digging holes
for posts to support signs for a Louisiana restaurant (called
Mosca’s). Explain why the higher above the ground a sign is
mounted, the farther the posts should extend into the ground.

R1 R2

L1

L2
M1

M2

F I G U R E  1 2 - 2 7 Problem 3

6 • A father (mass ) and his son (mass ) begin walking
out toward opposite ends of a balanced see-saw. As they walk, 
the see-saw stays exactly horizontal. What can be said about 
the relationship between the father’s speed and the son’s 
speed ?

7 • Travel mugs that people might set on the dashboards 
of their cars are often made with broad bases and relatively 
narrow mouths. Why would travel mugs be designed with this
shape, rather than have the roughly cylindrical shape that mugs
normally have?

8 •• ENGINEERING APPLICATION The sailors in the photo are
using a technique called “hiking out.” What purpose does posi-
tioning themselves in this way serve? If the wind were stronger,
what would they need to do to keep their craft stable? 

v
V

mM

Sailors who are hiking out. (Peter Andrews/Reuters/Corbis.)

9 •• An aluminum wire and a steel wire of the same length 
and diameter are joined end-to-end to form a wire of length 
One end of wire is then fastened to the ceiling and an object of mass 
is attached to the other end. Neglecting the mass of the wires, which
of the following statements is true? (a) The aluminum portion will
stretch by the same amount as the steel portion. (b) The tensions in
the aluminum portion and the steel portion are equal. (c) The ten-
sion in the aluminum portion is greater than that in the steel por-
tion. (d) None of the above SSM

M
2L.D
L
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ESTIMATION AND APPROXIMATION

10 •• A large crate weighing 4500 N rests on four 12-cm-high
blocks on a horizontal surface (Figure 12-28). The crate is 2.0 m
long, 1.2 m high, and 1.2 m deep. You are asked to lift one end of
the crate using a long steel pry bar. The fulcrum on the pry bar is
10 cm from the end that lifts the crate. Estimate the length of the bar
you will need to lift the end of the crate.

2.0 m
1.2 m

1.2 m

12 cm

F I G U R E  1 2 - 2 8 Problem 10

11 •• ENGINEERING APPLICATION Consider an atomic model
for Young’s modulus. Assume that a large number of atoms are
arranged in a cubic array, with each atom at a corner of a cube and
each atom a distance a from its six nearest neighbors. Imagine that
each atom is attached to its six nearest neighbors by little springs
each with spring constant (a) Show that this material, if stretched,
will have a Young’s modulus (b) Using Table 12-1 and as-
suming that estimate a typical value for the “atomic
spring constant” in a metal.

12 •• By considering the torques about the centers of the ball
joints in your shoulders, estimate the force your deltoid muscles
(those muscles on top of the shoulder) must exert on your upper
arm to keep your arm held out and extended at shoulder level.
Then, estimate the force they must exert when you hold a 10-lb
weight out to the side at arm’s length.

CONDITIONS FOR EQUILIBRIUM

13 • Your crutch is pressed against the sidewalk with a
force along its own direction, as in Figure 12-29. This force is
balanced by the normal force and a frictional force 
(a) Show that when the force of friction is at its maximum value,
the coefficient of friction is related to the angle by 
(b) Explain how this result applies to the
forces on your foot when you are not using
a crutch. (c) Explain why it is advantageous
to take short steps when walking on slip-
pery surfaces?

ms � tan u.u

f
S

s.F
S

n

F
S

c

SSMk
a � 1.0 nm,

Y � k>a.k.

14 •• A thin uniform rod of mass is suspended horizon-
tally by two vertical wires. One wire is at the left end of the 
rod, and the other wire is of the length of the rod from the left
end. (a) Determine the tension in each wire. (b) An object is now 
hung by a string attached to the right end of the rod. When 
this happens, it is noticed that the rod remains horizontal but 
the tension in the wire on the left vanishes. Determine the mass 
of the object.

THE CENTER OF GRAVITY

15 • An automobile has 58 percent of its weight on the front
wheels. The front and back wheels on each side are separated by 2.0
m. Where is the center of gravity located?

STATIC EQUILIBRIUM

16 • Figure 12-30 shows a lever of negligible mass with a
vertical force being applied to lift a load The mechanical ad-
vantage of the lever is defined as where is the
smallest force necessary to lift the load Show that for 
this simple lever system, where is the moment arm
(distance to the pivot) for the applied force, and is the moment
arm for the load.

X
xM � x>X,
F.

Fapp minM � F>Fapp min,
F.Fapp

2>3 M

θ

Fn

fs

Fc

F I G U R E  1 2 - 2 9

Problem 13

Fapp

x X

F

F I G U R E  1 2 - 3 0 Problem 16

17 • ENGINEERING APPLICATION Figure 12-31 shows a 25-foot
sailboat. The mast is a uniform 120-kg pole that is supported on the
deck and held fore and aft by wires as shown. The tension in the
forestay (wire leading to the bow) is 1000 N. Determine the tension
in the backstay (wire leading aft) and the normal force that the deck
exerts on the mast. (Assume that the frictional force the deck exerts
on the mast to be negligible.) SSM

2.74 m 4.88 m

4.88 m

F I G U R E  1 2 - 3 1 Problem 17
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30°

3.0 m

60 kg

80 cm
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18 •• A uniform 10.0-m beam of mass 300 kg extends over a
ledge as in Figure 12-32. The beam is not attached, but simply rests
on the surface. A 60.0-kg student intends to position the beam so
that he can walk to the end of it. What is the maximum distance the
beam can extend past end of the ledge and still allow him to perform
this feat?

x

F I G U R E  1 2 - 3 2 Problem 18

250 N

2.00 m

F I G U R E  1 2 - 3 3 Problem 19

20 •• A stationary 3.0-m board of mass 5.0 kg is hinged at
one end. A force is applied vertically at the other end, and the
board makes a angle with the horizontal. A 60-kg block rests
on the board 80 cm from the hinge as shown in Figure 12-34.
(a) Find the magnitude of the force . (b) Find the force exerted
by the hinge. (c) Find the magnitude of the force as well as the
force exerted by the hinge, if is exerted, instead, at right an-
gles to the board.

F
S

F
S

F
S

30°
F
S
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21 •• A cylinder of mass is supported by a frictionless
trough formed by a plane inclined at to the horizontal on the left
and one inclined at on the right, as shown in Figure 12-35. Find
the force exerted by each plane on the cylinder.

60°
30°

M

60

M

°
30°
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22 •• A uniform 18-kg door that is 2.0 m high by 0.80 m wide
is hung from two hinges that are 20 cm from the top and 20 cm from
the bottom. If each hinge supports half the weight of the door, find
the magnitude and direction of the horizontal components of the
forces exerted by the two hinges on the door.

23 •• Find the force ex-
erted on the strut by the hinge
at A for the arrangement in
Figure 12-36 if (a) the strut is
weightless, and (b) the strut
weighs 20 N.

24 •• Julie has been hired
to help paint the trim of a
building, but she is not con-
vinced of the safety of the ap-
paratus. A 5.0-m plank is sus-
pended horizontally from the
top of the building by ropes at-
tached at each end. Julie
knows from previous experi-
ence that the ropes being used will break if the tension exceeds
1.0 kN. Her 80-kg boss dismisses Julie’s worries and begins paint-
ing while standing 1.0 m from the end of the plank. If Julie’s mass
is 60 kg and the plank has a mass of 20 kg, over what range of po-
sitions can Julie stand to join her boss without causing the ropes to
break?

45°

45°

60 NA
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19 •• BIOLOGICAL APPLICATION A gravity board is a conve-
nient and quick way to determine the location of the center of
gravity of a person. It consists of a horizontal board supported
by a fulcrum at one end and a scale at the other end. To demon-
strate this in class, your physics professor calls on you to lie hor-
izontally on the board with the top of your head directly above
the fulcrum point as shown in Figure 12-33. The fulcrum is
2.00 m from the scale. In preparation for this experiment, you
had accurately weighed yourself and determined your mass to
be 70.0 kg. When you are at rest on the gravity board, the scale
advances 250 N beyond its reading when the board is there by
itself. Use this data to determine the location of your center of
gravity relative to your feet. SSM

F

R

M

h
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25 •• A cylinder of mass and radius rolls against a step of
height as shown in Figure 12-37. When a horizontal force 
of magnitude is applied to the top of the cylinder, the cylinder
remains at rest. (a) Find an expression for the normal force ex-
erted by the floor on the cylinder. (b) Find an expression for the
horizontal force exerted by the edge of the step on the cylinder.
(c) Find an expression for the vertical component of the force
exerted by the edge of the step on the cylinder. SSM

F
h,

RM
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30°

30°
F = 80 N F = 80 N

b

a
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100 N 50 N

2.5 m2.5 m

1.50 m

0.25 m

0.25 m
3.00 m

1.00 m
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Center of mass

24 cm
110 cm

2 cm

Pommel

12 cm

28 •• A large gate weighing 200 N is supported by hinges at
the top and bottom, and is further supported by a wire, as shown
in Figure 12-39. (a) What must the tension in the wire be for the
force on the upper hinge to have no horizontal component?
(b) What is the horizontal force on the lower hinge? (c) What are the
vertical forces on the hinges?

29 •• CONTEXT-RICH On a camping trip, you moor your boat
at the end of a dock in a river that is rapidly flowing to the 
right. The boat is anchored to the dock by a chain 5.0 m long, as
shown in Figure 12-40. A 100-N weight is suspended from the
center in the chain. This will allow the tension in the chain to
change as the force of the current which pulls the boat away from
the dock and to the right varies. The drag force by the water on the
boat depends on the speed of the water. You decide to apply 
the principles of statics you learned in physics class. (Ignore 
the weight of the chain.) The drag force on the boat is 50 N.
(a) What is the tension in the chain? (b) How far is the boat from
the dock? (c) The maximum tension the chain can sustain is 500 N.
What is the minimum drag force on the boat that would snap 
the chain?

32 •• A uniform cube of side and mass rests on a hori-
zontal surface. A horizontal force is applied to the top of the
cube, as in Figure 12-42. This force is not sufficient to move or tip
the cube. (a) Show that the force of static friction exerted by the
surface and the applied force constitute a couple, and find 
the torque exerted by the couple. (b) The torque exerted by the
couple is balanced by the torque exerted by the couple consist-
ing of the normal force on the cube and the gravitational force
on the cube. Use this fact to find the effective point of applica-
tion of the normal force when (c) Find the greatest
magnitude of for which the cube will not tip. (Assuming the
cube does not slip.)

F
S

F � Mg>3.

F
S

Ma

26 •• For the cylinder in Problem 25, find an expression for
the minimum magnitude of the horizontal force that will roll the
cylinder over the step if the cylinder does not slide on the edge.

27 •• CONTEXT-RICH Figure 12-38 shows a hand holding an
epee, a weapon used in the sport of fencing, which you are taking
as a physical education elective. The center of mass of your epee is
24 cm from the pommel (the end of the epee at the grip). You have
weighed it so you know that the epee’s mass is 0.700 kg and its full
length is 110 cm. (a) At the beginning of a match you hold it
straight out in static equilibrium. Find the total force exerted by
your hand on the epee. (b) Find the torque exerted by your hand
on the epee. (c) Your hand, being an extended object, actually
exerts its force along the length of the epee grip. Model the total
force exerted by your hand as two oppositely directed forces
whose lines of action are separated by the width of your hand
(taken to be 10.0 cm). Find the magnitudes and directions of these
two forces.

F
S
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31 •• Two 80-N forces are applied to opposite corners of a
rectangular plate, as shown in Figure 12-41. (a) Find the torque
produced by this couple using the Equation 12-6. (b) Show that
the result is the same as if you determine the torque about the
lower left-hand corner. SSM

F

fs

Ma

a
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30 •• Romeo takes a uniform 10-m ladder and leans it against
the smooth (frictionless) wall of the Capulet residence. The ladder’s
mass is 22 kg and the bottom rests on the ground 2.8 m from the
wall. When Romeo, whose mass is 70 kg, gets 90 percent of the way
to the top, the ladder begins to slip. What is the coefficient of static
friction between the ground and the ladder?

F I G U R E  1 2 - 4 0 Problem 29
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33 •• A ladder of negligible mass and of length leans
against a slick wall making an angle of with the horizontal
floor. The coefficient of friction between the ladder and the floor
is A man climbs the ladder. What height can he reach be-
fore the ladder slips? 

34 •• A uniform ladder of length and mass leans
against a frictionless vertical wall, making an angle of 
with the horizontal. The coefficient of static friction between the
ladder and the ground is 0.45. If your mass is four times that 
of the ladder, how high can you climb before the ladder begins
to slip?

35 •• A ladder of mass and length leans against a friction-
less vertical wall, so that it makes an angle with the horizontal.
The center of mass of the ladder is a height above the floor. A force

directly away from the wall pulls on the ladder at its midpoint.
Find the minimum coefficient of static friction for which the top
end of the ladder will separate from the wall before the lower end
begins to slip.

36 •• A 900-N man sits on top of a stepladder of negligible
mass that rests on a frictionless floor as in Figure 12-43. There 
is a cross brace halfway up the ladder. The angle at the apex 
is (a) What is the force exerted by the floor on each leg of
the ladder? (b) What is the tension in the cross brace? (c) If the
cross brace is moved down toward the bottom of the ladder
(maintaining the same angle ), will its tension be the same,
greater, or less than when it was at its higher position? Explain
your answer.

u

u � 30°.

ms

F
h
u

Lm

60°
mL

SSM

hms.

u

L

θ

20°

r = 12 cm4.0 m
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θ

a

b
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Problem 39

39 ••• A tall, uniform, rectangular block sits on an inclined plane,
as shown in Figure 12-45. A cord attached to the top of the block pre-
vents it from falling down the incline. What is the maximum angle 
for which the block will not slide on the incline? Assume the block
has a height-to-width ratio, of 4.0 and the coefficient of static fric-
tion between it and the incline is SSMms � 0.80.

b>a, u

θ
25 N

25 N

STRESS AND STRAIN

40 • A 50-kg ball is suspended from a steel wire of length
5.0 m and radius 2.0 mm. By how much does the wire stretch?

41 • Copper has a tensile strength of about 
(a) What is the maximum load that can be hung from a copper wire
of diameter 0.42 mm? (b) If half this maximum load is hung from the
copper wire, by what percentage of its length will it stretch?

42 • A 4.0-kg mass is supported by a steel wire of diameter
0.60 mm and length 1.2 m. How much will the wire stretch under
this load?

43 • As a runner’s foot pushes off on the ground, the shearing
force acting on an 8.0-mm-thick sole is shown in Figure 12-46. If the
force of 25 N is distributed over an area of find the angle of
shear given that the shear modulus of the sole is 

SSM

1.9 � 105 N>m2.u,
15 cm2,

SSM

3.0 � 108 N>m2.
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37 •• A uniform ladder rests against a frictionless vertical wall.
The coefficient of static friction between the ladder and the floor is
0.30. What is the smallest angle between the ladder and the hori-
zontal such that the ladder will not slip?

38 ••• A uniform log with a mass of 100 kg, a length of 4.0 m,
and a radius of 12 cm is held in an inclined position, as shown in
Figure 12-44. The coefficient of static friction between the log and
the horizontal surface is 0.60. The log is on the verge of slipping to
the right. Find the tension in the support wire and the angle the
wire makes with the vertical wall.
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44 •• A steel wire of length 1.50 m and diameter 1.00 mm 
is joined to an aluminum wire of identical dimensions to 
make a composite wire of length 3.00 m. Find the resulting 
change in length of this composite wire if an object with a 
mass of 5.00 kg is hung vertically from one of its ends. (Neglect
any effects the masses of two wires have on the changes in their
lengths.)

45 •• Equal but opposite forces of magnitude are applied
to both ends of a thin wire of length and cross-sectional area

Show that if the wire is modeled as a spring, the force con-
stant is given by and the potential energy stored in
the wire is where is Young’s modulus and is the
amount the wire has stretched.

46 •• The steel E string of a violin is under a tension of
53.0 N. The diameter of the string is 0.200 mm and the length
under tension is 35.0 cm. Find (a) the unstretched length of this
string, and (b) the work needed to stretch the string.

47 •• ENGINEERING APPLICATION, SPREADSHEET During a ma-
terials science experiment on the Young’s modulus of rubber, the
teaching assistant supplies you and your team with a rubber 
strip that is rectangular in cross section. She tells you to first mea-
sure the cross section dimensions, and you find their values are

The lab write-up calls for the rubber strip to be
suspended vertically and various (known) masses attached to its
lower end. Your team obtains the following data for the length of
the strip as a function of the load (mass) suspended from the end of
the strip:

Load, kg 0.0 0.10 0.20 0.30 0.40 0.50

Length, cm 5.0 5.6 6.2 6.9 7.8 8.8

(a) Use a spreadsheet or graphing calculator to find Young’s mod-
ulus for the rubber strip over this range of loads. Hint: It is prob-
ably best to plot versus Why?

(b) Find the energy stored in the strip when the load is 0.15 kg. (See
Problem 45.)

(c) Find the energy stored in the strip when the load is 0.30 kg. Is it
twice as much as your answer to Part (b)? Explain.

48 •• A large mirror is hung from a nail, as shown in 
Figure 12-47. The supporting steel wire has a diameter of 0.20 mm
and an unstretched length of 1.7 m. The distance between the
points of support at the top of the mirror’s frame is 1.5 m. The
mass of the mirror is 2.4 kg. How much will the distance between
the nail and the mirror increase due to the stretching of the wire as
the mirror is hung?

¢L>L.F>A

3.0 mm � 1.5 mm.

SSM

¢LYU � 1
2F¢L,
k � AY>Lk

A.
L

F
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49 •• Two masses, and are supported by wires that
have equal lengths when unstretched. The wire supporting is an
aluminum wire 0.70 mm in diameter, and the one supporting is
a steel wire 0.50 mm in diameter. What is the ratio if the two
wires stretch by the same amount?

50 •• A 0.50-kg ball is attached to one end of an aluminum
wire that has a diameter of 1.6 mm and an unstretched length of
0.70 m. The other end of the wire is fixed to the top of a post. The
ball rotates about the post in a horizontal plane at a rotational speed
such that the angle between the wire and the horizontal is Find
the tension in the wire and the increase in its length due to the ten-
sion in the wire.

51 •• An elevator cable is to be made of a new type of com-
posite developed by Acme Laboratories. In the lab, a sample of 
the cable that is 2.00 m long and has a cross-sectional area of

fails under a load of 1000 N. The actual cable used to
support the elevator will be 20.0 m long and have a cross-sectional
area of It will need to support a load of 20,000 N safely.
Will it?

52 •• If a material’s density remains constant when it is
stretched in one direction, then (because its total volume remains
constant), its length must decrease in one or both of the other di-
rections. Take a rectangular block of length width and depth 
and pull on it so that its new length If 
and show that 

53 •• You are given a wire with a circular cross section of
radius and a length If the wire is made from a material 
whose density remains constant when it is stretched in one
direction, then show that assuming that 
(See Problem 52.)

54 ••• For most materials listed in Table 12-1, the tensile strength
is two to three orders of magnitude lower than Young’s modulus.
Consequently, most of these materials will break before their strain
exceeds 1 percent. Of man-made materials, nylon has about the
greatest extensibility—it can take strains of about 0.2 before breaking.
But spider silk beats anything man-made. Certain forms of spider
silk can take strains on the order of 10 before breaking! (a) If such a
thread has a circular cross-section of radius and unstretched length

find its new radius when stretched to a length 
(Assume that the density of the thread remains constant as it
stretches.) (b) If the Young’s modulus of the spider thread is calcu-
late the tension needed to break the thread in terms of and 

GENERAL PROBLEMS

55 • BIOLOGICAL APPLICATION A standard bowling ball
weighs 16 pounds. You wish to hold a bowling ball in front of
you, with your elbow bent at a right angle. Assume that your bi-
ceps attaches to your forearm at 2.5 cm out from the elbow joint,
and that your biceps muscle pulls vertically upward, that is, it
acts at right angles to the forearm. Also assume that the ball is
held 38 cm out from the elbow joint. Let the mass of your fore-
arm be 5.0 kg and assume its center of gravity is located 19 cm
out from the elbow joint. How much force must your biceps
muscle apply to the forearm in order to hold out the bowling
ball at desired angle?

56 •• BIOLOGICAL APPLICATION, CONTEXT-RICH A biology
laboratory at your university is studying the location of a per-
son’s center of gravity as a function of her or his body weight.
They pay well and you decide to volunteer. The location of your
center of gravity when standing erect is to be determined by hav-
ing you lie on a uniform board (mass of 5.00 kg, length 2.00 m)

SSM

r0.Y
Y,

L � 10L0.rL0,
r0

SSM

¢L V L.¢r>r � � 1
2 ¢L>L,

L.r

¢y>y � � 1
2 ¢x>x.¢y>y � ¢z>z, ¢x V xx� � x � ¢x.

z,y,x,

SSM

1.20 mm2.

0.200 mm2

5.0°.

M1>M2

M2

M1

M2,M1
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400 N445 N

Center of gravity
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2.0 cm 6.0 cm

2.0 cm 4.0 cm

3.0 cm 4.0 cm

m2

2.0 N

m1

m3
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58 •• ENGINEERING APPLICATION, CONTEXT-RICH Steel con-
struction beams, with an industry designation of “ ” have
a weight of 22 pounds per foot. A new business in town has hired
you to place its sign on a 4.0 m long steel beam of this type. The de-
sign calls for the beam to extend outward horizontally from the
front brick wall (Figure 12-50). It is to be held in place by a 5.0-m-
long steel cable. The cable is attached to one end of the beam and to
the wall above the point at
which the beam is in contact
with the wall. During an initial
stage of construction, the beam
is not to be bolted to the wall,
but to be held in place solely
by friction. (a) What is the min-
imum coefficient of friction be-
tween the beam and the wall
for the beam to remain in static
equilibrium? (b) What is the
tension in the cable in this
case?

W12 � 22,

θ

L1–2

L1–2

L1–2

m
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59 ••• Consider a rigid 2.5-m-long beam (Figure 12-51) that 
is supported by a fixed 1.25-m-high post through 
its center and pivots on a frictionless bearing at its center 
atop the vertical 1.25-m-high post. One end of the beam is connected
to the floor by a spring that has a force constant 
When the beam is horizontal, the spring is vertical and un-
stressed. If an object is hung from the opposite end of the beam,
the beam settles into an equilibrium position where it makes 
an angle of with the horizontal. What is the mass of the 
object? SSM

17.5°

k � 1250 N>m.

F

M

L
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60 •• A rope and pulley system, called a block and tackle, is
used to raise an object of mass (Figure 12-52) at constant speed.
When the end of the rope moves downward through a distance L,
the height of the lower pulley is increased by (a) What is the
ratio (b) Assume that the mass of the block and tackle is neg-
ligible and that the pulley bearings are frictionless. Show
that by applying the work–energy principle to the
block–tackle object.

FL � Mgh

L>h? h.

M

supported by two scales, as shown in Figure 12-48. If your height
is 188 cm and the left scale reads 445 N while the right scale reads
400 N, where is your center of gravity relative to your feet?
Assume the scales are both exactly the same distance from the
two ends of the board, are separated by 178 cm, and are set to
each read zero before you get on the platform.

4.0 m

5.0 m
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57 •• Figure 12-49 shows a mobile consisting of four objects
hanging on three rods of negligible mass. Find the values of the un-
known masses of the objects if the mobile is to balance. Hint: Find
the mass first.m1

61 •• A plate of mass in the shape of an equilateral trian-
gle is suspended from one of its corners, and a mass is
suspended from another of its corners. If the base of the triangle
makes an angle of with the horizontal, what is the ratio 
m>M?

6.0°

m
M
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62 •• A standard six-sided pencil is placed on a notebook
(Figure 12-53). Find the minimum coefficient of static friction 
such that, if the upper cover is raised, the pencil rolls down the in-
cline rather than sliding.

ms
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63 •• An 8.0-kg box that has a uniform density and is twice as
tall as it is wide rests on the floor of a truck. What is the maximum
coefficient of static friction between the box and floor so that the
box will slide toward the rear of the truck rather than tip when the
truck accelerates forward on a level road?

64 •• A balance scale has unequal arms. The scale is balanced
with a 1.50-kg block on the left pan and a 1.95 kg block on the right
pan (Figure 12-54). If the 1.95-kg block is removed from the right
pan and the 1.50-kg block is then moved to the right pan, what
mass on the left pan will balance the scale?

65 •• A cube leans against a frictionless wall, making an angle
of with the floor, as shown in Figure 12-55. Find the minimum co-
efficient of static friction between the cube and the floor that is
needed to prevent the cube from slipping. SSM

ms

u

L1 L2
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60°

15 m

5 m

10 m
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Problem 68

20.0 kg

1.50 m

5.00 m
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66 •• Figure 12-56 shows a 5.00-kg
1.00-m-long rod hinged to a vertical wall
and supported by a thin wire. The wire
and rod each make angles of with the
vertical. When a 10.0-kg block is sus-
pended from the midpoint of the rod, 
the tension in the supporting wire is
52.0 N. If the wire will break when the
tension exceeds 75 N, what is the maxi-
mum distance from the hinge at which
the block can be suspended?

T

45°

67 •• Figure 12-57 shows a 20.0-kg ladder leaning against a
frictionless wall and resting on a frictionless horizontal surface. To
keep the ladder from slipping, the bottom of the ladder is tied to the
wall by a thin wire. When no one is on the ladder, the tension in the
wire is 29.4 N. (The wire will break if the tension exceeds 200 N.)
(a) If an 80.0-kg person climbs halfway up the ladder, what force
will be exerted by the ladder against the wall? (b) How far from the
bottom end of the ladder can an 80.0-kg person climb? SSM

68 •• A 360-kg object is supported on a wire attached to a
15-m-long steel bar that is pivoted at a vertical wall and sup-
ported by a cable as shown in Figure 12-58. The mass of the bar
is 85 kg. With the cable attached to the bar 5.0 m from the lower
end, as shown, what are the tension in the cable and the force ex-
erted by the wall on the steel bar?

45°

45

T

°
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69 •• Repeat Problem 63 if the truck accelerates up a hill that
makes an angle of with the horizontal.9.0°
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m

(a)
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70 •• A thin uniform rod 60 cm long is balanced 20 cm from
one end when an object whose mass is is at the
end nearest the pivot and an object of mass is at the opposite
end (Figure 12-59a). Balance is again achieved if the object whose
mass is is replaced by the object of mass and
no object is placed at the other end of the rod (Figure 12-59b).
Determine the mass of the rod.

m(2m � 2.0 grams)

m
(2m � 2.0 grams)

71 ••• SPREADSHEET There are a large number of identical uni-
form bricks, each of length If they are stacked one on top of an-
other lengthwise (see Figure 12-60), the maximum offset that will
allow the top brick to rest on the bottom brick is (a) Show that
if this two-brick stack is placed on top of a third brick, the maxi-
mum offset of the second brick on the third brick is (b) Show
that, in general, if you have a stack of bricks, the maximum off-
set of the brick (counting down from the top) on the th
brick is (c) Write a spreadsheet program to calculate total off-
set (the sum of the individual offsets) for a stack of bricks, and
calculate this for and and 100. (d) Does the
sum of the individual offsets approach a finite limit as If so,
what is that limit? SSM

NS ?
N � 5, 10,L � 20 cm

N
L>n. n(n � 1)th

N
L>4.

L>2.

L.

θ

R
M
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72 •• A uniform sphere of radius and mass is held at rest
on an inclined plane of angle by a horizontal string, as shown in
Figure 12-61. Let and (a) What is
the tension in the string? (b) What is the normal force exerted on the
sphere by the inclined plane? (c) What is the frictional force acting
on the sphere?

u � 30°.R � 20 cm, M � 3.0 kg,
u

MR

73 ••• The legs of a tripod make equal angles of with each
other at the apex, where they join together. A 100-kg block hangs
from the apex. What are the compressional forces in the three legs?

74 ••• Figure 12-62 shows a 20-cm-long uniform beam resting
on a cylinder that has a radius of 4.0-cm. The mass of the beam is
5.0 kg, and that of the cylinder is 8.0 kg. The coefficient of static fric-
tion between beam and cylinder is zero, whereas the coefficients of
static friction between the cylinder and the floor, and between the
beam and the floor, are not zero. Are there any values for these co-
efficients of static friction such that the system is in static equilib-
rium? If so, what are these values? If not, explain why none exist.

90°

30°

15 cm

4.0 cm

20 cm
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75 ••• Two solid smooth (frictionless) spheres of radius are
placed inside a cylinder of radius as in Figure 12-63. The mass of
each sphere is Find the force exerted by the bottom of the cylin-
der on the bottom sphere, the force exerted by the wall of the cylin-
der on each sphere, and the force exerted by one sphere on the
other. Express all forces in terms of and SSMr.m, R,

m.
R,

r

r

r

m

m

R
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76 ••• A solid cube of edge-length balanced atop a cylinder of
diameter is in unstable equilibrium if (Figure 12-64), and is
in stable equilibrium if . The cube does not slip on the
cylinder. Determine the minimum value of the ratio for which
the cube is in stable equilibrium.

d>adW a
d V ad
a

a

a

d << a
d >> a

d d
F I G U R E  1 2 - 6 4

Problem 76
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13-1 Density

13-2 Pressure in a Fluid

13-3 Buoyancy and Archimedes’ Principle

13-4 Fluids in Motion

C
onsider the air that fills our lungs, the blood that flows through our bodies,
and even the rain that falls on us as we hurry to and from class. Air, blood,
and rainwater are all fluids. It may seem odd to think of air as a fluid, but
fluids include both liquids and gases. Liquids flow until they occupy the
lowest possible regions of the space in which they are contained, be it a
plastic bottle, a lock in a canal, or behind a dam. Unlike liquids, gases

expand to fill their containers. To better understand fluid behavior is to better
understand much about our own bodies and our interactions with the world
around us.

Civil engineers employ their knowledge of fluids to design dams, which are
thicker at the bottom than at the top. Automotive and aerospace engineers use
wind tunnels to observe the flow of air around cars and aircraft to help them eval-
uate the aerodynamic aspects of particular vehicles. Blood-pressure gauges are
used by medical professionals to measure the pressure of our blood.

We begin this chapter by studying fluids at rest, taking into account the den-
sity of and the pressure in fluids, as well as buoyancy and Archimedes’ prin-
ciple. Then, we study steady-state flow while emphasizing laminar flow.

13
C H A P T E R

Why does it not require a large

torque and a large amount of energy

to rotate such a massive wheel?

(See Example 13-8.)

?
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CANAL BOATS IN SCOTLAND ARE ABLE
TO TRAVEL BETWEEN THE FORTH &
CLYDE CANAL AND THE UNION CANAL
THANKS TO THE FALKIRK WHEEL. EACH
OF THE TWO GONDOLAS OF THE WHEEL
LIFTS 300 METRIC TONS [ONE METRIC
TON (1 TONNE) IS EQUAL TO 1000 kg] OF
WATER AND MAY ACCOMMODATE UP TO
FOUR 20-m-LONG BOATS AT ANY ONE
TIME. A VERY SMALL TORQUE AND A
VERY SMALL AMOUNT OF ENERGY ARE
REQUIRED TO ROTATE THIS MASSIVE
WHEEL. (Powered by Light/Alan
Spencer/Alamy.)
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13-1 DENSITY

In a gas, the average distance between two molecules is large compared with the
size of a molecule. The molecules have little influence on one another except dur-
ing their brief collisions. In a liquid or solid, the molecules are close together and
exert forces on one another that are comparable to the forces that bind atoms into
molecules. Molecules in a liquid form temporary short-range bonds that are con-
tinually broken and reformed due to the proximity of the molecules as they bump
into each other. These bonds hold the liquid together; if the bonds were not present,
the liquid would immediately evaporate and the molecules would escape as a
vapor. The strength of the bonds in a liquid depends on the type of molecule that
makes up the liquid. For example, the bonds between helium molecules are very
weak and, for this reason, helium does not liquefy at atmospheric pressure unless
the temperature is 4.2 K or lower. The ratio of the mass of an object
to its volume is called its average density:

DEFINITION—AVERAGE DENSITY

If the mass of substance within a small element of volume is 
then the density of the substance at the location of the volume
element is

13-1

DEFINITION—DENSITY

where (the lowercase Greek letter rho) is used to denote density.
Because the gram was originally defined as the mass of one cubic
centimeter of liquid water, the density of liquid water in cgs
(centimeter–gram–second) units is Converting to SI units,
we obtain for the density of water

13-2

Precise measurements of density must take temperature into
account, because the densities of most solids and liquids, including
water, vary with temperature. Equation 13-2 gives the maximum
value for the density of water, which occurs at Table 13-1 lists
the densities of some common substances.

A convenient unit of volume for fluids is the liter (L):

In terms of this unit, the density of water at is
When the average density of a solid object

is greater than that of water, it sinks in water, and when a solid
object’s average density is less than the density of water, it floats.
The ratio of the density of a substance to that of a reference
substance, usually water, is its specific gravity. For example, the
specific gravity of aluminum is 2.7, meaning that a volume of
aluminum has 2.7 times the mass of an equal volume of water. 

1.00 kg>L � 1.00 g>mL.
4°C

1 L � 103 cm3 � 10�3 m3

4°C.

rw �
1 g

cm3 �
kg

103 g
� a100 cm

1 m
b 3

� 1000 kg>m3

1 g>cm3.

r

r �
dm
dV

dm,dV

Average density �
Mass

Volume

Table 13-1 Densities of Selected Substances

The density values exceed five orders of magnitude.

    Cement, 2.7–3.0 ×× 103

1

0.1

kg/m3

    Helium, 0.1786

    Steam, 0.6 (100°C)

    Air, 1.293

10

102

103

104

105

    Mercury, 13.6 x 103

    Seawater, 1.025 × 103

    Water, 1.00 × 103

    Alcohol (ethanol), 0.806 × 103

    Gasoline, 0.68 × 103

Brick, 1.4–2.2 × 103
Bone, 1.7–2.0 ×× 103

    Earth (average), 5.52 × 103
    Iron, 7.96 × 103
    Copper, 8.93 × 103
    Lead, 11.3 × 103

    Hydrogen, 0.08994

    Glass (common), 2.4–2.8 ×× 103

 103

    Aluminum, 2.70 × 103

    Gold, 19.3 × 103

    Ice, 0.92 × 103

    Wood (oak), 0.6–0.9 × 103

    Osmium, 22.5 ×

solid;       liquid;       gas
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The specific gravities of objects that sink when submerged in water range from 1
to about 22.5 (for the densest element, osmium).

Most solids and liquids expand only slightly when heated, and contract only
slightly when subjected to an increase in external pressure. Because these changes
in volume are relatively small, we often treat the densities of solids and liquids as
approximately independent of temperature and pressure. The density of a gas, on
the other hand, depends strongly on the pressure and temperature, so these vari-
ables must be specified when reporting the densities of gases. By convention, the
standard conditions for the measurement of physical properties are atmospheric
pressure at sea level and a temperature of The densities for the substances
listed in Table 13-1 are for these conditions. Note that the densities of liquids and
solids are considerably greater than those of gases. For example, the density of liq-
uid water is about 800 times that of air under standard conditions.

0°C.

Example 13-1 Calculating Density

A flask is filled to the brim with 200-mL of water at When the flask is heated to
of water spill out. What is the density of water at (Assume that the

expansion of the flask is negligible.)

PICTURE The density of water at is where is the
volume of the flask, and is the mass remaining in the flask after 6.0 g spill out. We find

by first finding the mass of water originally in the flask.

SOLVE

m�

m�

V � 0.200 L � 200 cm3r� � m�>V,80°C

80°C?80.0°C, 6.0 g
4.0°C.

1. Let be the density of water at and let be the mass of the
water remaining in the flask of volume Relate to

using the definition of density:m�

r�V � 200 mL.
m�80°Cr� r� �

m�

V

2. Calculate the original mass of water in the flask at using
and the definition of density:r � 1.00 kg>L 4.0°Cm m � rV � (1.00 kg>L)(0.200 L) � 0.200 kg

3. Calculate the mass of water remaining after 6 g spill out: m� � m � 6 g � 0.200 kg � 0.006 kg � 0.194 kg

4. Use this value of to find the density of water at 80°C:m� 0.970 kg>Lr� �
m�

V
�

0.194 kg

0.200 L
�

CHECK The density of water at is The density of water is greatest at 
so we expect the density of water at to be less than Our step-3 result confirms
this expectation.

PRACTICE PROBLEM 13-1 A solid metal cube 8.00 cm on an edge has a mass of 4.08 kg.
(a) What is the average density of the cube? (b) If the cube is made from a single element
listed in Table 13-1, what is the element?

PRACTICE PROBLEM 13-2 A gold brick is What is its mass?

13-2 PRESSURE IN A FLUID

When a fluid such as water is in contact with a solid surface, the fluid exerts a force
normal (perpendicular) to the surface at each point on the surface. The force per
unit area is called the pressure of the fluid:

13-3

DEFINITION—PRESSURE

P �
F
A

P

5.0 cm � 10 cm � 20 cm.

1.00 kg>L.80°C
4.0°C1.00 kg>L.4.0°C



Force is a vector quantity, but
pressure is a scalar quantity.

(Pressure is the magnitude of the force
per unit area.)

!
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A

mg

P

Δ h

P0

F I G U R E  1 3 - 1

The SI unit of pressure is the newton per square meter which is called the
pascal (Pa):

13-4

In the U.S. customary system, pressure is usually given in pounds per square inch
Another common unit of pressure is the atmosphere which approx-

imately equals the air pressure at sea level. One atmosphere is defined as exactly
101.325 kilopascals which is about 

13-5

Other units of pressure in common use are discussed later in this chapter.
If the pressure on an object increases, the ratio of the increase in pressure, to

the fractional decrease in volume, is called the bulk modulus:

13-6

DEFINITION—BULK MODULUS

Like other elastic moduli (Young’s modulus and shear modulus were introduced
in Section 12-7), bulk modulus is a ratio of stress to strain, with the stress 
and the strain. (All stable materials decrease in volume when subjected to
an increase in external pressure. Thus, the negative sign in Equation 13-6 means
that is always positive.)

The more difficult it is to compress a material, the smaller is the fractional vol-
ume decrease for a given pressure increase and hence the greater the
bulk modulus. The compressibility is the reciprocal of the bulk modulus. (The eas-
ier it is to compress a material, the larger the compressibility.) Liquids, gases, and
solids all have a bulk modulus. Because liquids and solids are relatively incom-
pressible, they have large values of and these values are relatively independent
of temperature and pressure. Gases, on the other hand, are easily compressed, and
their values for depend strongly on
pressure and temperature. Table 13-2
charts values for the bulk modulus of
various materials.

As any scuba diver knows, the
pressure in a lake or ocean increases
with depth. Similarly, the pressure of
the atmosphere decreases with alti-
tude. For a liquid, whose density is ap-
proximately constant throughout, the
pressure increases linearly with depth.
We can see this by considering a col-
umn of liquid of cross-sectional area
A, as shown in Figure 13-1. To support
the weight of the liquid in the column
of height the pressure at the bot-
tom of the column must be greater
than the pressure at the top. The
weight of the liquid in the column is

where and are the density and
volume of the liquid. If is the pres-
sure at the top and is the pressure atP

P0

Vr

Fg � mg � (rV)g � rA ¢hg

¢h,

B

B,

¢P,�¢V>VB

�¢V>V ¢P

B � �
¢P

¢V>V
(�¢V>V),

¢P,

1 atm � 101.325 kPa � 14.70 lb>in2

14.70 lb>in2:(kPa),

(atm),(lb>in2).

1 Pa � 1 N>m2

(N>m2),

Table 13-2 Approximate Values for the Bulk

Modulus B of Various Materials

200

150

100

50

0

Tungsten, 200

Steel, 160
Copper, 140

Iron, 100

Aluminum, 70
Brass, 61

Mercury, 27
Lead, 7.7
Water, 2.0

GN/m2

600

650

Diamond, 620



dF'

dsdh

θ
θ
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H

L

h
dh
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Example 13-2 Force on a Dam

A rectangular dam 30 m wide supports a body of water to a depth of 25 m. Find the total
horizontal force on the dam due to both water and air pressure.

PICTURE Because the pressure varies with depth, we cannot merely multiply the pressure
times the area of the dam to find the force exerted by the water. Instead we can consider the
force exerted on a strip of surface of length height and area at a
depth (Figure 13-2), and then integrate from to The water pressure at
depth is where is the atmospheric pressure. Neglect any variation in air
pressure over the 25-m height of the dam.

SOLVE

PatPat � rgh,h
h � H � 25 m.h � 0h

dA � L dhdh,L � 30 m,

1. Express the force of the water on the element of length and
height in terms of the pressure on the dam by the water:Pat �rhgdh

LdF dF � P dA � (Pat � rgh)L dh

2. Integrate from to to find the horizontal component
of the force of the water on the dam:

h � Hh � 0

� PatLH �
1
2
rgLH2

F � �
h�H

h�0
dF � �

H

0
(Pat � rgh)L dh

3. The downstream surface of the dam is not vertical. Sketch an edge-on view (Figure 13-3)
of a horizontal strip across the downstream side of the surface, a strip of length and
width Let be the height of the strip:dhds.

L

4. Relate the force exerted on this strip by the air to the
pressure of the air and the area of the strip:

dF� dF� � Pat dA � PatL ds

5. Express the horizontal component of in terms of dh:dFœ
x dFœ

x � dF cos u � PatL ds cos u � PatL dh

6. Integrate from to to find the horizontal component
of the force of the air on the downstream side of the dam:

h � Hh � 0 F� � �
h�H

h�0
dF� � �

H

0
PatL dh � PatLH

7. The net horizontal force on the dam is F � Fœ
x :

9.2 � 107 N� 9.20 � 107 N �

� 1
2 (1000 kg>m3)(9.81 N>kg))(30 m)(25 m)2

F � Fœ
x � (PatLH � 1

2rgLH2) � PatLH � 1
2rgLH2

CHECK The net horizontal force on the dam is independent of air pressure, as expected.
This is as expected because the pressure of the air on the surface of the water increases the
pressure throughout the water by one atmosphere, and the air presses on the downstream
side of the dam a pressure of one atmosphere.

TAKING IT FURTHER Dams typically are thicker at the bottom than at the top because the
pressure on the dam increases with the depth of the water.

(Corbis.)

the bottom, the net upward force exerted by this pressure difference is 
Setting this net upward force equal to the weight of the column, we obtain

or

13-7

PRACTICE PROBLEM 13-3

How far below the surface of a lake is a scuba diver if the pressure is equal to 
(The pressure at the surface is 1.00 atm.)

2.00 atm?

(r constant)P � P0 � rg ¢h

PA � P0A � (rA ¢hg)

PA � P0A.
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(a) (c)

P3A

mg

A

2

1

3

P1A

Δh

P1

P3AP3AP3A P2A

A2

1

3

(b)

P2 2

P1 1

F I G U R E  1 3 - 4

Small piston Large piston

F1

A1 A2

F2=
F2
A2

F1
A1

F I G U R E  1 3 - 5 Hydraulic lift. A small
force on the small piston produces an
increase in pressure that is transmitted
by the liquid to the large piston. Because the
pressure changes are the same throughout the
fluid, the forces exerted on the pistons are
related by Because the area of
the large piston is much greater than that of
the small piston, the force on the large piston

is much greater than F1.F2 � (A2 >A1)F1

F2 >A2 � F1 >A1.

F1 >A1

F1

The result that the pressure increases linearly with depth holds for a liquid in any
container, independent of the shape of the container. Furthermore, the pressure is the
same at all points at the same depth. We can see this by comparing the pressure at
point 1 in Figure 13-4a with the pressure at point 2, which is inside an underwater
cave. First, we compare the pressure at points 1 and 3, where point 3 is a point directly
below 1 at the same depth as point 2 (Figure 13-4b). Consider the vertical forces on the
vertical column of water of height and cross-sectional area between points 1 and
3. The upward force on the column, balances the two downward forces and

where is the mass of the water in the column is the volume of
the column). That is, Dividing both sides by gives

Next consider the forces on the horizontal cylinder of water, also of cross-sectional
area connecting points 2 and 3 (Figure 13-4c). There are two forces with compo-
nents along the cylinder’s axis, and The fact that these forces balance each
other means that It follows that

If we increase the pressure in a container of water by pressing down on the top
surface with a piston, the increase in pressure is the same throughout the liquid.
This holds for both liquids and gasses and is known as Pascal’s principle, named
after Blaise Pascal (1623–1662):

A pressure change applied to a confined fluid is transmitted undiminished
to every point in the fluid and to the walls of the container.

PASCAL’S PRINCIPLE

A common application of Pascal’s principle is the hydraulic lift shown in Figure 13-5.

P2 � P1 � rg ¢h

P3 � P2.
P2A.P3A

A,

P3 � P1 � rg ¢h

AP3A � P1A � (rA ¢hg).
(A ¢hm � rA ¢hmg,

P1AP3A,
A¢h

Example 13-3 A Hydraulic Lift

The large piston in a hydraulic lift has a radius of 20 cm. What force must be applied to the
small piston of radius 2.0 cm to raise a car of mass 1500 kg?

PICTURE The pressure times the area of the large piston must equal the weight mg of
the car. The force that must be exerted on the small piston is this pressure times the 
area (Figure 13-5).A1

F1

A2P
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SOLVE

1. The force is the pressure times the area A1:PF1 F1 � PA1

2. The pressure times the area equals the weight of the car:A2P PA2 � mg    so P �
mg

A2

3. Substitute this result for into the step-1 result and calculate F1:P

150 N� 147 N �

� (1500 kg)(9.81 N>kg)a2.0 cm
20 cm

b 2

F1 � PA1 �
mg

A2

A1 � mg
A1

A2

� mg
pr21
pr22

CHECK The radii differ by a factor of 10, so the areas differ by a factor of Thus,
the forces also differ by a factor of 100.

Figure 13-6 shows water in a container that has sections of different shapes. At 
first glance, it might seem that the pressure at the bottom of section 3, the section
containing the most water, would be greatest and that water would therefore be
forced to a greater height in section 2, which is the section with the least water. But
that is not observed, a result known as the hydrostatic paradox. The pressure de-
pends only on the depth of the water, not on the shape of the container, so at the
same depth the pressure is the same in all parts of the container, a finding that can
be shown experimentally. Although the water in section 4 of the container weighs
more than that in section 2, the portion of the water in section 4 that is not above
the opening at the bottom is supported by the horizontal shelf of the section. In
fact, the water above the opening at the bottom of section 5 weighs less than the
water above an opening of the same size at the bottom of section 1. However, the
horizontal shelf of section 5 exerts a downward force on the water—exactly com-
pensating for the shortfall of weight.

102 � 100.

2 3 4 51

F I G U R E  1 3 - 6 The hydrostatic paradox. The water level is the same regardless of the
shape of the vessel. The weight of those portions of the water not above an opening is
supported by the sides of the containers.

ρ

h

Pat

P

F I G U R E  1 3 - 7 Open-tube manometer for
measuring an unknown pressure The
difference equals rgh.P � Pat

P.

Pressure depends only on the
depth of the water, not on the

shape of a container. So the pressure is
the same for all parts of the container
that are at the same depth.

!

We can use the fact that the pressure increases linearly with the depth of a liquid
to measure unknown pressures. Figure 13-7 shows a simple pressure gauge, the
open-tube manometer. The top of the tube is open to the atmosphere at pressure 
The other end of the tube is at pressure which is to be measured. The difference

called the gauge pressure is equal to where is the density of
the liquid in the tube. The pressure you measure in your automobile tire is gauge
pressure. When the tire is entirely flat, the gauge pressure is zero, and the absolute
pressure of the air remaining in the tire is atmospheric pressure. The absolute pres-
sure is obtained from the gauge pressure by adding atmospheric pressure to it:

13-8P � Pgauge � Pat

P

rrgh,Pgauge,P � Pat,
P,

Pat.
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Figure 13-8 shows a mercury barometer, which is used to measure atmospheric
pressure. The top end of the tube has been closed off and evacuated so that the pres-
sure there is zero. The other end is submerged in a pool of mercury that is open to the
atmosphere at pressure The pressure is where is the density of mercury.

PRACTICE PROBLEM 13-4

At the density of mercury is What is the height of the mercury
column in a barometer if the pressure is exactly 

In practice, pressure is often measured in millimeters of mercury, a unit called
the torr, after the Italian physicist Evangelista Torricelli, or in inches of mercury
(written inHg). The various units of pressure are related as follows:

13-9

Other units commonly used on weather maps are the bar and the millibar,
which are defined as follows:

13-10

A pressure of is about 1.01 percent greater than a pressure of 1 bar.1 atm

1 bar � 103 millibars � 100 kPa

� 29.9 inHg � 101 kPa � 14.7 lb>in2

 1.00 atm � 760 mmHg � 760 torr

1 atm � 101.325 kPa?P
13.595 � 103 kg>m3.0°C,

rrgh,PatPat.

Pat

P = 0

h

Tire-pressure gauge

Tire-pressure gauge. The piston pushes the rod to the right until the force
of the spring plus the force due to atmospheric pressure balances the
force due to the air pressure in the tire.

Checking the tire pressure. (Vanessa Vick/ Photo
Researchers, Inc.)

Example 13-4 Blood Pressure in the Aorta

The average gauge pressure in the human aorta is about 100 mmHg. Convert this average
blood pressure to kilopascals.

PICTURE Use a conversion factor obtained from Equation 13-9:

SOLVE

We use a conversion factor that can be obtained from Equation 13-9: 13.3 kPa�P � 100 mmHg �
101 kPa

760 mmHg

CHECK We expect the pressure to be a small fraction of A pressure of 
meets this expectation as 

PRACTICE PROBLEM 13-5 Convert a pressure of to (a) millimeters of mercury,
and (b) atmospheres.

The relation between pressure and altitude (or depth) is more complicated for a 
gas than for a liquid. The density of a liquid is essentially constant, whereas the
density of a gas is approximately proportional to the pressure. As you go up from

45.0 kPa

1.00 atm � 101 kPa.
13.3 kPa1.00 atm.

F I G U R E  1 3 - 8 The space at the top of the
mercury column is empty except for mercury
vapor. At room temperature the vapor
pressure of mercury is less than 10�5 atm.
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the surface of Earth, pressure in a column of air decreases, just as the pressure
would decrease as you go up from the bottom in a column of water. But the de-
crease in air pressure is not linear with distance.

y

(P + dP)A

ΔP < 0

PA(dm)g

dm dy

A

F I G U R E  1 3 - 9 The pressure below the
thin disk-shaped element of air is greater
than the pressure above it. This pressure
difference produces an upward force on the
disk that balances the downward force of
gravity on it.

Example 13-5 The Law of Atmospheres

The assumption that the density of air is proportional to the pressure predicts that the pres-
sure decreases exponentially with altitude. Use this assumption to verify this prediction and
calculate the altitude at which the pressure is one-half of its value at sea level.

PICTURE Apply Newton’s second law to an element of air at altitude and vertical thick-
ness to find an expression for the change in pressure over the change in altitude 
Integrate this expression, taking into account that the density is proportional to the pressure.

SOLVE

1. Draw a thin horizontal disk-shaped element of air at altitude vertical thickness 
cross-sectional area and mass Draw and label all the forces on this element
(Figure 13-9):

dm.A,
dy,y,

dy.dy
y

2. Apply Newton’s second law to the disk.
The acceleration is zero so the sum of
the forces equal zero:

PA � (P � dP)A � (dm)g � 0

3. Simplify the equation and substitute
for dm:rA dy so dP � �rg dy

�A dP � rgA dy � 0

4. We are assuming that the density is
proportional to pressure, and we
know the density and pressure 
at sea level (y � 0):

P0r0

r

P
�
r0

P0

5. Substitute for in the step-3 result and
divide both sides by to separate
variables:

P
r

so
dP
P

� �
r0

P0

g dy

dP � �P
r0

P0

g dy

6. Integrate from to Let
be the pressure at altitude yf:P � Pf

y � yf.y � 0

so ln
Pf

P0

� �
r0

P0

gyf

�
Pf

P0

dP
P

� �
r0

P0

g�
yf

0
dy

7. Solve for Then substitute for and
for yf:y

PfPPf. P � P0e
�(r0 >P0)gyPf � P0e

�(r0 >P0)gyf    or

8. Solve for the height at which 
Look up the density of air at 1-atm
pressure in Table 13-1:

P � 1
2P0.h

CHECK An altitude of 5.5 km is about 18,000 ft. We know that many people suffer from the
effects of oxygen deprivation at this altitude. That people would suffer at half the normal air
pressure is not surprising.

TAKING IT FURTHER The step-7 result reveals that air pressure decreases exponentially
with altitude. This conclusion means that air pressure decreases by a constant fraction for a
given increase in height, as shown in Figure 13-10. At a height of about 5.5 km, the air pres-
sure is half its value at sea level. If we go up another 5.5 km to an altitude of 11 km (a typi-
cal altitude for airliners), the pressure is again halved so that it is one-fourth its value at sea
level, and so on. At the high altitudes at which commercial jets fly, the cabins must be pres-
surized. The density of air is approximately proportional to the pressure, so the density of
air decreases with altitude. Less oxygen is available on a mountain top than at normal ele-
vations. As a result, exercising in the Rockies is difficult, and climbing in the Himalayas is
dangerous.

P, atm

0
5.5 11 h, km

1
2

1
4

1

F I G U R E  1 3 - 1 0 Variation in pressure
with height above Earth’s surface. For each
5.5-km increase in height, the pressure
decreases by half.

so 5.5 kmh �
(1.01 � 105 Pa)ln 2

(1.29 kg>m3)(9.81 N>kg)
�

1
2P0 � P0e

�(r0>P0)gh ⇒ h �
P0

r0g
ln 2
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13-3 BUOYANCY AND ARCHIMEDES’ PRINCIPLE

If a dense object submerged in water is weighed by suspending it from a spring
scale (Figure 13-11a), the apparent weight of the object when submerged (the read-
ing on the scale) is less than the weight of the object. This difference exists because
the water exerts an upward force that partially balances the force
of gravity. This upward force is even more evident when we sub-
merge a piece of cork. When completely submerged, the cork ex-
periences an upward force from the water pressure that is
greater than the force of gravity, so when released it accelerates
up toward the surface. The force exerted by a fluid on a body
wholly or partially submerged in it is called the buoyant force.
It is equal to the weight of the fluid displaced by the body. (The
definition of buoyant force is further refined later in this section.)

A body wholly or partially submerged in a fluid is buoyed 
up by a force equal to the weight of the displaced fluid.

ARCHIMEDES’  PRINCIPLE

This result is known as Archimedes’ principle.
We can derive Archimedes’ principle from Newton’s laws by

considering the forces acting on a portion of a fluid and noting
that in static equilibrium the net force must be zero. Figure 13-
11b shows the vertical forces acting on an object being weighed
while submerged. These forces are the force of gravity acting
down, the force of the spring scale acting up, a force acting
down because of the fluid pressure on the top surface of the ob-
ject, and a force acting up because of the fluid pressing on the
bottom surface of the object. Because the spring scale reads a
force less than the weight of the object, the magnitude of force 
must be greater than the magnitude of force The vector sum
of these two forces is equal to the buoyant force (Figure 13-11c). The
buoyant force occurs because the pressure of the fluid on the bottom surface of the
object is greater than the pressure on the top surface of the object.

In Figure 13-12, the spring scale has been eliminated and the submerged object
has been replaced by an equal volume of the fluid (outlined by the dashed lines),
which we will refer to as the sample of fluid. The buoyant force act-
ing on the sample of fluid is identical to the buoyant force that acted on our origi-
nal object. This is so because the fluid surrounding the sample and the fluid sur-
rounding the object are identically configured; there is no reason to suppose the
pressure in the surrounding fluid would not be the same at corresponding points
in the two containers. The sample of fluid is in equilibrium, so we know the net
force acting on it must be zero. The upward buoyant force thus equals the down-
ward weight of the sample of the fluid:

13-11

Note that this result does not depend on the shape of the submerged object. If we
consider any irregularly shaped portion of a static fluid as our sample, there will
be a buoyant force acting on it by the surrounding fluid that exactly supports its
weight. Thus, we have derived Archimedes’ principle.

Archimedes (287–212 B.C.E.) had been given the task of determining whether a
crown (actually a wreath) made for King Hieron II was of pure gold or had been
adulterated with some cheaper metal such as silver, and to do this without de-
stroying the crown. For Archimedes, the problem was to determine if the density
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of the irregularly shaped crown was the same as the density of gold. As the story
goes, he came upon the solution while sinking himself into a bathtub and immedi-
ately rushed home, running naked through the streets of Syracuse shouting
“Eureka!” (“I have found it!”). This flash of insight preceded Newton’s laws, which
we used to derive Archimedes’ principle, by some 1900 years. What Archimedes
had found was a simple and accurate way to compare the density of the crown with
the density of gold by using a balance. He placed the balance over a large basin, sus-
pended the crown from one arm of the balance and an equal mass of pure gold from
the other arm. He then added water to the basin (Figure 13-13a) submerging the
crown and the pure gold. The balance tilted, with the crown rising (Figure 13-13b)
—indicating that the buoyant force on the crown was greater than that on the pure
gold because the volume of water displaced by the crown was greater than that
displaced by the pure gold. The crown was less dense than the pure gold.

The apparent weight of an object submerged in a fluid is the difference
between its weight and the magnitude of the buoyant force 

13-12

PROBLEM-SOLVING STRATEGY

Solving Problems Using Archimedes’ Principle

PICTURE Carefully read the problem statement to determine the situation.
Sketching a picture of the situation is often helpful.

SOLVE

1. Apply Archimedes’ principle to relate the buoyant force to the weight of
the displaced fluid.

2. Apply Newton’s second law to the object and solve for the desired
quantity.

CHECK Verify that your answer is plausible.

Fg app � Fg � B

B:Fg

Fg app

The hot-air balloon and the boat both need
buoyancy to float. (Richard Hamilton Smith/
CORBIS.)

Context-RichExample 13-6 Is It Really Gold?

Your friend is concerned about a gold ring she bought on a recent trip. The ring was expen-
sive, and she would like to know whether it is really made of gold or of something else. You
decide to help her, using your knowledge of physics. You weigh the ring and find that it has
a weight of 0.158 N. Using a string, you suspend the ring from the scale and, with the ring
submerged in water, weigh it again to find a new reading of 0.150 N. Is the ring pure gold?

Crown and gold nugget
have equal weight.

Crown displaces more water than
does the gold nugget.

(a) (b)

F I G U R E  1 3 - 1 3 (a) The crown and the
gold nugget have equal weight. (b) The
balance tips because the wreath displaces
more water than the gold nugget.
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PICTURE If the ring is pure gold, its density (relative to that of water) is 19.3 (see Table 13-1).
Using Archimedes’ principle as a guide, determine the density of the ring relative to the den-
sity of water.

SOLVE

1. The weight of the ring equals its density times its volume
times The buoyant force on the ring (when submerged)

equals the density of water times Vg:rw

Bg.V
rRFg

B � rwVg

Fg � rRVg

2. Divide the first equation by the second to relate the ratio of the
weight to the buoyant force to the ratio of the density to the
density of water:

Fg

B
�
rRVg

rwVg
�
rR

rw

3. In accord with Newton’s second law, equals the weight
minus the apparent weight when submerged:

B Fg app � Fg � B ⇒ B � Fg � Fg app

4. Substitute for in step 2:B
Fg

Fg � Fg app

�
rR

rw

5. Solve for the ratio rR >rw: �
0.158 N

0.158 N � 0.150 N
�

0.158 N
0.008 N

rR

rw

�
Fg

Fg � Fg app

6. The denominator has one significant figure, so the ratio of the
densities is determined to one significant figure:

The 2 in the 20 is a significant digit, but the 0 is not.

rR

rw

�
0.158 N
0.008 N

� 19.3 � 20

7. Compare the ratio of the densities with the ratio of the density
of gold to the density of water, which is 19.3:

According to the measurement, the ratio of the densities is 

The ring may be pure gold, but the measurement 
is not accurate enough to be certain.

2 � 101.

CHECK The uncertainty in the result is large, which is expected. When two numbers that are
almost equal are subtracted there are fewer significant figures in the result than in the
original numbers.

TAKING IT FURTHER A scale capable of much greater accuracy is needed to make a more
certain determination.

PRACTICE PROBLEM 13-6 A block of an unknown material weighs 3.00 N and has an
apparent weight of 1.89 N when submerged in water. What is the material?

PRACTICE PROBLEM 13-7 A piece of lead weighs 80.0 N in 
air. What does it weigh when submerged in water?

REVISITING THE BUOYANT FORCE

The density of the block shown in Figure 13-14 is greater
than the density of the surrounding fluid, and both the block
and the scale pan are completely submerged in the fluid.
The gravitation force on the block is its weight, and the
scale is adjusted, so it reads zero when the block is not being
supported by the pan (Figure 13-14b). If the block is on the
pan (Figure 13-14a), the scale reading is equal to the magni-
tude of the apparent weight of the block. When the
block is on the pan, the fluid is in direct contact with the en-
tire surface of the block—except for those regions of the bot-
tom surface of the block that are in direct contact with the
pan. We assume the pan surface is not perfectly flat, but in-
stead has some high and some low regions, and that the pan
is in direct contact with the bottom surface of the block only

Fg app

F
S

g,

(specific gravity � 11.3)

Ff

FP

Fg

F'f

F'P

F'g

+y

(a) (b)

F I G U R E  1 3 - 1 4
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at the high regions of the pan. (At the low regions of the pan, there is fluid between
the pan and the block.) We now analyze this situation to show that the scale reading
is equal to the weight of the block less the weight of an equal volume of fluid.

While resting on the pan, the net force exerted by the fluid on the block is a com-
bination of the downward force of the fluid on the top surface of the block and the up-
ward force of the fluid on those regions of the bottom surface of the block that are in
direct contact with the fluid. (We have drawn downward. However, if the fluid were
in direct contact with a large enough area of the bottom surface of the block would
be upward.) The two other vertical forces acting on the block are the gravitational force

and the upward force exerted on the block by the pan at the regions of direct con-
tact between the block and the pan.

In Figure 13-14b, the block has been moved off the pan, and in its place is a sam-
ple of fluid of identical size and shape (outlined by the dashed lines). The same re-
gions of the surface of the pan are in direct contact with the bottom surface of this
sample of fluid as were in direct contact with the block before it was moved. The
forces acting on the fluid sample are the forces acting on it by the surrounding fluid

the upward force on it by the pan and the gravitational force The 
forces and are equal because, at every point where the sample and the sur-
rounding fluid are in direct contact, the pressure of the surrounding fluid is the
same as it was at the same point before the block was moved off the pan.

When the submerged block rests on the pan, the block is in equilibrium, so

or

and when the block is moved off the pan, the fluid sample in its place is in equi-
librium, so

Subtracting these equations, exploiting that and rearranging gives

where is the decrease in the scale reading when the block is moved off the
pan. Thus, is the apparent weight of the submerged block. That is,

It is common parlance to refer to as the buoyant force Rearranging gives

This is the same expression for the buoyant force as is in Equation 13-12, which was
established with the fluid in direct contact with 100 percent of the surface of the
submerged object.

B � Fg � Fg app � F œ
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Example 13-7 Measuring the Fat

You decide to enroll in a fitness program. To determine your initial fitness, at the first meet-
ing your percentage of body fat is measured. Your percentage of body fat can be estimated
by measuring your body density (the average density of your body). Fat is less dense than
muscle or bone. Assume the average density of fat is and the average den-
sity of lean tissue (everything except fat) is Measuring your body density
involves measuring your apparent weight while you are submerged in water with the air
completely exhaled from your lungs. (In practice, the amount of air remaining in the lungs
is estimated and corrected for.) Suppose that your apparent weight when submerged in
water is 5 percent of your weight. What percentage of your body mass is fat?

PICTURE For the person, the total volume equals the volume of the fat plus the volume of
the lean, and the total mass equals the mass of the fat plus the mass of the lean. The volume
and average density are related to the mass by The fraction of fat equals the mass
of the fat divided by the total mass and the fraction of lean equals the mass of the lean di-
vided by the total mass. Also, the fraction of fat plus the fraction of lean equals 1.

m � rV.

1.1 � 103 kg>m3.
0.90 � 103 kg>m3

To determine the percentage of fat in this
man’s body, his density is measured by
weighing him while he is submerged in the
water. (David Burnett/ Woodfin Camp and Assoc.)
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SOLVE

1. Using Equations 13-2 and 13-3, find the ratio of your body’s
density to the density of water:

r

rwater

�
Fg

Fg � Fg app

�
Fg

Fg � 0.05Fg

� 1.05

2. Your total body volume equals the volume of fat plus the
volume of lean tissue:

Vtot � Vfat � Vlean

3. Because mass equals density times volume, volume equals
mass divided by density. Substitute the corresponding mass-to-
density ratio for each volume in the step-2 result:

mtot

r
�
mfat

rfat

�
mlean

rlean

4. The mass of fat is where is the fraction of fat, and
the mass of lean is where is the fraction of lean.
Substitute for and in the step-3 result:mleanmfat

fleanfleanmtot,
ffatffatmtot,

mtot

r
�
ffatmtot

rfat

�
fleanmtot

rlean

5. The fraction of fat plus the fraction of lean tissue equals 1: ffat � flean � 1

6. Divide both sides of the step-4 result by and substitute
for flean:1 � ffat

mtot

1
r

�
ffat

rfat

�
(1 � ffat)

rlean

7. Solve the step-6 result for ffat: ffat �
1 � (rlean >r)

1 � (rlean >rfat)

8. Using the step-1 result, substitute for in the step-7 result and
solve for ffat:

r �
1 � (1.1>1.05)

1 � (1.1>0.90)
� 0.21ffat �

1 � (rlean >1.05rwater)

1 � (rlean >rfat)

9. Convert to a percentage: 21%100% � ffat �

CHECK You are an adult male and are not overweight. The charts inform you that for adult
males, a body-fat percentage between 18% and 25% is acceptable. Thus, the step-9 result is a
plausible result.

PRACTICE PROBLEM 13-8 If Ed’s apparent weight when submerged is zero, what is his
body-fat percentage?

Conceptual Example 13-8 Which Weighs the Most?

Consider five identical beakers (Figure 13-15). The water level in each beaker is up to the
point of overflowing. A toy boat is floating on the surface of Beaker A second toy boat,
one that tipped over and sank to the bottom, is in Beaker An ice cube is floating on the
surface of Beaker The block of wood submerged in Beaker is tethered to the bottom by
a thread and dab of superglue. (There is nothing in Beaker except water.) The two boats,
the ice cube, and the block of wood have equal masses. The density of the submerged boat
is twice that of water, and the density of the block of wood is half that of water. Each beaker
rests on a scale. Rank the readings on the scales from most to least.

E
DC.

B.
A.
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PICTURE The reading of each scale is equal to the total weight of the system resting on it.
In each case, the system consists of the beaker, the water in the beaker, and any object sub-
merged in, or floating on, the water. Beaker contains the most water. The buoyant force on
an object is equal to the weight of the fluid it displaces, a submerged object displaces its own
volume of water, and a floating object displaces its own weight of water. The amount of
water in each of the beakers equals the amount of water in Beaker less the amount of water
displaced by a floating or submerged object.

SOLVE

E

E

1. Let be the reading on the scale under Beaker let be the
reading on the scale under Beaker and so on. In addition, let 
be the weight of each of the objects (they have identical weights). A
floating object displaces its own weight of water. Calculate the
weight of the water displaced by each floating object:

Fg objB,
Fg BA,Fg A The weight of the water displaced by the floating boat is

and the weight displaced by the floating ice cube is
also Fg obj.
Fg obj,

2. A submerged object displaces its own volume of water. Calculate
the weight of the water displaced by each submerged object:

The weight of the water displaced by the submerged
wooden block is 2 and the weight displaced by 
the submerged boat is Fg obj.

1
2

Fg obj

3. In each case, the system consists of a beaker, the water in the
beaker, and any object submerged in, or floating on, the water. In
addition, the weight of water in each beaker equals the weight of
water in Beaker less the weight of water displaced by an object.
Calculate the total weight of the system on each scale:

E

Beaker Weight

E Fg sys � (Fg E � 0) � 0 � Fg E

D Fg sys � (Fg E � 2Fg obj) � Fg obj � Fg E � Fg obj

C Fg sys � (Fg E � Fg obj) � Fg obj � Fg E

B Fg sys � (Fg E � 1
2Fg obj) � Fg obj � Fg E � 1

2Fg obj

A  Fg sys � (Fg E � Fg obj) � Fg obj � Fg E

4. The reading on the scale equals the weight of the system Fg sys. The reading on the scale with the sunken boat has the
highest reading, the reading on the scale with the
submerged block has the lowest reading, and the readings
on the other three scales are equal.

CHECK The water pressure at the bottom of each beaker is the same because the water 
has the same depth in all of the beakers. This means that the water pushes down on 
the bottoms of Beakers and with identical forces. Thus, the readings on the 
scales under Beakers and are identical. For Beaker in addition to the water 
pushing down the thread pulls up, so the reading on the scale under Beaker is less 
than the readings on the scales under Beakers and For Beaker the sub-
merged boat pushes down on the bottom of the beaker with a force per unit area that 
exceeds the water pressure there, so the reading on the scale under Beaker is largest of
them all.

TAKING IT FURTHER The Falkirk Wheel is perfectly balanced for the same reason that the
readings on the scales under Beakers and are equal. As long as the depths of the
water in the two gondolas remain equal, and the boats in the gondolas (if any) remain float-
ing, the wheel will remain in perfect balance. Because it remains in balance, only a small ef-
fort is needed to rotate the wheel.

EA, C,

B

B,E.A, C,
D

D,EA, C,
EA, C, D,

Example 13-9 An Iceberg

Find the fraction of the volume of an iceberg that is below sea level.

PICTURE Let be the volume of the iceberg and be the volume that is submerged. The
weight of the iceberg is and the buoyant force due to the seawater is The den-
sities of ice and seawater are found in Table 13-1.

rSWVsubg.rIBVg
VsubV

The tallest iceberg seen in the North Atlantic
extended about 168 m above sea level, about
the same height as the Washington
Monument. This iceberg was sighted in
Melville Bay, Greenland, in 1957. (Courtesy of
the U.S. Coast Guard International Ice Patrol.)



Smoke from a burning cigarette. At first the
smoke rises in a regular stream, but the simple
streamlined flow quickly becomes turbulent
and the smoke begins to swirl irregularly.
(Estate of Harold E. Edgerton.)
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SOLVE

1. Because the iceberg is in equilibrium, the buoyant force equals
its weight: rIBVg � rSWVsubg

Fg � B

2. Solve for Vsub >V: 0.90f �
Vsub

V
�
rIB

rSW

�
0.92 � 103 kg>m3

1.025 � 103 kg>m3 � 0.898 �

CHECK We have all seen an ice cube floating in fresh water. The great majority of the ice
cube is submerged. We expect pretty much the same for an iceberg floating in seawater,
and our step-2 result agrees with our expectation. Because the density of seawater is

more than the density of fresh water, ice floats a bit higher in seawater than in 
fresh water.

If we replace in the preceding calculation with the density of the fluid, we can de-
termine the submerged fraction of an object floating in any fluid. From Example 13-9, the
fraction of a floating object of uniform density that is submerged equals the ratio of its den-
sity to the density of the fluid.

13-13

13-4 FLUIDS IN MOTION

The behavior of a fluid in motion can be complex. Consider, for example, the
rise of smoke from a burning cigarette. At first the smoke rises in a regular
stream of warm gas, but the simple streamlined flow quickly becomes turbulent
and the smoke begins to swirl irregularly. Turbulent flow is very difficult to
describe, even qualitatively. If no turbulence exists, the fluid flows along
streamlines. Sophisticated computer programs that simulate streamlines of the
air flowing around objects are of great value to automotive design engineers.

Figure 13-16 shows a tube full of fluid. The tube contains a tapered section
with decreasing cross-sectional area. The fluid is flowing without turbulence
from left to right, and the shaded portion on the left depicts the fluid that passes
through cross-sectional surface 1 during time If the density and speed of the¢t.

Vsub

V
�
r

rf

r

rf,rSW

2 to 3%

m12

v2 Δt

v2

v1 Δt

Δm1 Δm2

v1

Area A2

2

1

Area A1

1
2ρ

ρ

(a)

(b)
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Streamlined body designs can greatly
reduce the drag forces on moving objects
such as automobiles or airplanes. 
(Takeski Takahara/Photo Researchers, Inc.)
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fluid at this surface are and and the area of this surface is then the mass
flowing through surface 1 is given by

where is the volume of the fluid flowing through surface 1 during
time The quantity is called the mass flow rate. The dimensions of 
are mass divided by time. The mass of fluid that passes through surface 2 dur-
ing the same time and depicted by the shaded portion on the right is given by

where and are, respectively, the density and speed of the fluid at sur-
face 2, and the cross-sectional area of surface 2.

If the mass flow rate through surface 1 is greater than the mass flow rate
through surface 2, then fluid is entering the region between surfaces 1 and 2 faster
than it is leaving the region, so the mass of fluid in the region is increasing. The rate
at which mass enters the region minus the rate at which mass leaves the region is
equal to the rate of change of the accumulated mass in the region. That is,

13-14

CONTINUITY EQUATION

where and are the mass flow rates through surfaces 1 and 2, respectively,
and is the accumulated mass between surfaces 1 and 2. Equation 13-14 is called
the continuity equation. Flow in which the motion of the fluid is constant (does
not change as time increases) at all points is called steady-state flow. If the flow is
steady state, then in Equation 13-14 equals zero. In steady-state flow mass
flow rate is the same through all cross-sectional surfaces. In addition, the mass
flow rate is constant.

The quantity is called the volume flow rate. The dimensions of are
volume divided by time. In the flow of an incompressible fluid, the instantaneous
volume flow rate is the same through any cross-sectional surface perpendicular to
the flow. In addition, if the flow is steady-state flow, the volume flow rate is
constant:

13-15

VOLUME FLOW RATE

In an incompressible fluid, the density is equal to a single fixed value throughout
the fluid. Liquids are almost always considered incompressible because their den-
sities, to an excellent approximation, do not vary.

PRACTICE PROBLEM 13-9

Blood flows in an aorta of radius 1.0 cm at What is the volume flow rate?

PRACTICE PROBLEM 13-10

Blood flows from a large artery of radius 0.30 cm, where its speed is into a re-
gion where the radius has been reduced to 0.20 cm because of thickening of the arterial
walls (arteriosclerosis). What is the speed of the blood in the narrower region?

10 cm>s,

30 cm>s.

IV � Av

IVIV � Av

dm12>dt

m12

IM2IM1

IM1 � IM2 � dm12>dt

A2r2, v2,

¢m2 � r2A2v2 ¢t

¢t
¢m2

IMIM � rAv¢t.
¢V1 � A1v1 ¢t

¢m1 � r1 ¢V1 � r1A1v1 ¢t

¢m1

A1,v1r1

The larger arteries branch out into smaller
arteries, which in turn branch out into smaller
arteries, and so forth. (P. Motta/ Photo
Researchers Inc.)
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THE BERNOULLI EQUATION

The Bernoulli equation relates the pressure, elevation, and speed of an
incompressible inviscid fluid in steady streamlined flow. Inviscid
means without viscosity, which is the property of a fluid that causes it
to resist flowing. During streamlined flow, the particles of the fluid
move along streamlines, which are straight or smoothly curved paths
that do not intersect. The Bernoulli equation can be derived by applying
Newton’s second law to a small parcel of the fluid moving along a
streamline. As a parcel enters a region of reduced pressure the parcel
gains speed because the pressure behind the parcel pushing it forward
exceeds the pressure in front of the parcel opposing its motion.

Applying Newton’s second law to a small parcel of air (Figure 13-17)
of mass moving along a horizontal streamline gives

The fluid has density and the parcel has area and width so the
volume and mass of the parcel are and The force is
due to the pressure behind the parcel and the slightly different
pressure in front of it. This force is given by

The parcel is small, so the pressure difference can be accurately ex-
pressed using the differential approximation

Substituting for and in Newton’s second law, gives

Simplifying this equation, we obtain

Because this becomes

Integrating both sides gives

where the density was factored from the integral on the right. Factoring from
the integral restricts the validity of the results to situations where the density
remains constant. Evaluating the integrals gives

Rearranging gives the Bernoulli equation for flow along a horizontal streamline,

13-16P2 � 1
2rv2

2 � P1 � 1
2rv2

1

P2 � P1 � 1
2rv2

1 � 1
2rv2

2

rr

�
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P1

dP � �r �
v2

v1

v dv

dP � �rv dv
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�A
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�
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    so ¢P �
dP
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¢�
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F I G U R E  1 3 - 1 7 The small parcel moves along a
streamline into a region of reduced pressure.

The streamlines are made visible by using smoke trails. 
In streamlined flow the particles of the fluid follow
smoothly curved lines. (Holger Babinsky. 2003 Phys. 
Educ. 38 497-503.)



The Bernoulli equation relates
pressure and speed between two

points that are on a single streamline of
an inviscid fluid.

!
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Example 13-10 Torricelli’s Law

A large tank of water, open at the top, has a small hole through its side a dis-
tance below the surface of the water. Find the speed of the water as it flows
out the hole.

PICTURE The streamlines begin at the top of the water and continue through the
small hole. We apply the Bernoulli equation to points and in Figure 13-18.
Because the diameter of the hole is much smaller than the diameter of the tank,
we can neglect the speed of the water at the top (point ).

SOLVE

a

ba

h

1. The Bernoulli equation with gives:va � 0 Pa � rgha � 0 � Pb � rghb � 1
2rv2

b

2. The pressure at point and at point is the same, because
both points are open to the atmosphere:

Pat,ba and

so Pat � rgha � 0 � Pat � rghb � 1
2rv2

b

Pb � PatPa � Pat

3. Solve the step-2 result for the speed of the water flowing
from the hole:

vb

so 22g ¢hvb �

v2
b � 2g(ha � hb) � 2g ¢h

CHECK We can solve this directly using conservation of mechanical energy with
the water and Earth as the system. The mass of water that flows out of the hole
in the short time equals the mass of water that has “disappeared” from the top
of the tank. Thus, the decrease in potential energy is while the increase in
kinetic energy is Equating these and solving for gives the step-3 result.

PRACTICE PROBLEM 13-11 If the water flowing out of the hole is directed ver-
tically upward, how high does it rise?

In Example 13-10, the water emerges from the hole with a speed equal to
the speed it would have if it dropped in free-fall a distance This finding
is known as Torricelli’s law.

h.

v1
2 mv2.

mg ¢h,
¢t

m

ha

hb

a

b

Δ h

F I G U R E  1 3 - 1 8

The Bernoulli equation for flow along a streamline that is not horizontal is derived
in Problem 13-63. The result is

13-17a

THE BERNOULLI  EQUATION

where and are the initial and final heights, respectively.
The Bernoulli equation can be restated

13-17b

THE BERNOULLI  EQUATION

A special application of the Bernoulli equation is for a fluid at rest. Then 
and we obtain

This is the same as Equation 13-7.

P1 � P2 � rgh2 � rgh1 � rg ¢h

v1 � v2 � 0,

P � rgh � 1
2rv2 � constant

h2h1

P2 � rgh2 � 1
2rv2

2 � P1 � rgh1 � 1
2rv2

1

In an Olympic swimming pool the water is
continuously cycled through a filter by a
pump. The water reenters the pool through
underwater nozzles. The stream of water
exiting the nozzles extends almost the en-
tire length of the pool before dissipating. As
the water in the stream loses speed, does its
pressure increase as the Bernoulli equation
(Equation 13-16) seems to indicate?

CONCEPT CHECK 13-1✓
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In Figure 13-19, water is shown flowing through a horizontal pipe that has a
constricted section. Because both sections of the pipe are at the same elevation,

in Equation 13-17a. Then the Bernoulli equation becomes

13-18

When the fluid moves into the constriction, the area gets smaller, so the speed 
must get larger because remains constant. But because is constant,
when the speed becomes larger, the pressure must become less. Thus, the pressure
in the constriction is reduced.

As air, or another fluid, passes through a constriction, its speed increases
and its pressure drops.

VENTURI EFFECT

This result is often referred to as the venturi effect and the constriction is referred
to as a venturi. Equation 13-18 is an important result that applies to many situa-
tions in which we can ignore changes in height. Racing cars exploit the venturi
effect to increase the downforce on the car. This reduction
results in an increase in the normal force on the car by the
pavement, and thus allows for the higher static frictional
forces needed to control the speed and direction of the car.

The streamlines in Figure 13-20 are drawn to pictorially
represent the flow of the fluid. The direction of the lines in-
dicates the direction of flow and the distance between lines
indicates the speed of the flow. The smaller the distances
between the lines, the greater the speed of the fluid. For
horizontal flow, where the speed increases, the pressure de-
creases, so a decrease in the distance between streamlines is
accompanied by a decrease in pressure.

P � 1
2rv2Av

vA

P � 1
2rv2 � constant

h2 � h1, v2v1

P2P1

A1 A2

F I G U R E  1 3 - 1 9 Constriction in a pipe
carrying a moving fluid. The pressure is lower
in the narrow section of the pipe where the
fluid is moving faster.

In the atomizer shown in Figure 
13-21, the horizontal tube is con-
stricted at the point where the
vertical tube joins it. Is the constric-
tion functional, or is it there be-
cause the vertical tube is narrower
than the horizontal tube? Explain.

CONCEPT CHECK 13-2

v2

v1

F I G U R E  1 3 - 2 0

The wing on this Formula 1 racing car deflects the air upward, increasing
downforce on the car for better control at high speeds. In addition, an
underbody venturi reduces the pressure under the car body. The
downforce associated with this pressure reduction is called the ground
effect. (Schlegelmilch/Corbis.)

✓F I G U R E  1 3 - 2 1 When the bulb of
an atomizer is squeezed, the air is forced
through the constriction in the horizontal
tube, which reduces the pressure there
below atmospheric pressure. Because of
the resulting pressure difference, the
liquid in the jar, which is open to the
atmosphere is pumped up through the
vertical tube, enters the air stream, and
emerges from the nozzle. A similar effect
occurs in the carburetor of a gasoline
lawnmower engine.
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Δ h

P1 v2v1

P2

A2A1

Lρ

F
ρ

F I G U R E  1 3 - 2 2 A venturi meter.
1. Write the Bernoulli equation for constant elevation for

the two regions.
P1 � 1

2rFv
2
1 � P2 � 1

2rFv
2
2

2. Write the continuity equation for the two regions, and
solve for in terms of and where r � A1 >A2.r,v1v2

so v2 �
A1

A2

v1 � rv1

v2A2 � v1A1

3. Substitute your result for into the equation in step 1
and obtain an equation for P1 � P2.

v2 � 1
2rF(r2 � 1)v2

1P1 � P2 � 1
2rF(v2

2 � v2
1)

CHECK Let us check the dimensions of the expression for in step 5. A ratio of two densi-
ties is dimensionless, as is the ratio of two areas, Therefore, the dimension of the expres-
sion for is the same as the dimension of The dimension of is length divided by
time squared, so the dimension of is length squared divided by time squared. Thus, the
dimension of the square root of is length divided by time—the dimension of speed. The
step-5 result is dimensionally correct.

PRACTICE PROBLEM 13-12 Find if the fluid is air 
and the liquid in the U-tube portion of the venturi meter is water 

Air is a compressible fluid, so the calculation in Practice Problem 13-12 is not as ac-
curate as the calculation in the Example 13-10. Strictly speaking, the Bernoulli
equation and the continuity equation hold only for incompressible fluids.

An airplane wing is an airfoil (Figure 13-23) that in normal circumstances causes
streamlines to curve—following the curve of the airfoil surfaces. (The streamlines fail
to follow the surfaces during an undersirable event occurance a stall.) During our
analysis of how the curved streamlines produce lift (the upward force on the wing),
we will neglect any variations in pressure due to the effects of gravity on the air. In
addition, the analysis will be done in a frame of reference moving with the wing.

A parcel of air in moving along a curved streamline is accelerating in the centripetal
direction—toward the center of curvature of the streamline. For the streamlines above
the wing, the direction of this acceleration is more or less downward. Thus, the net
force on the parcel is downward. This means the air pressure just above the parcel is

(rw � 103 kg>m3).
(rF � 1.29 kg>m3),¢h � 3 cm, r � 4,v1

gh
gh

g12g ¢h .v1

r.
v1

4. Write in terms of the difference in height of the
liquid in the arms of the U-tube. This pressure difference
equals the pressure drop in the column of height of the
liquid, less the pressure drop and that in the column of the
same height of the fluid.

¢h

¢hP1 � P2 � (rL � rF)g ¢hP1 � P2 � rLg ¢h � rFg ¢h

5. Equate the two expressions for and solve for in
terms of ¢h.

v1P1 � P2

so A2(rL � rF)g ¢h

rF(r2 � 1)
v1 �

1
2rF(r2 � 1)v2

1 � (rL � rF)g ¢h

F I G U R E  1 3 - 2 3 The purpose of an airfoil
is to cause the streamlines to curve. Under
normal conditions the streamlines will follow
the curve of the airfoil. The airfoil shown is
very thin, like the wing of a raptor. It is very
efficient in creating lift.

Example 13-11 A Venturi Meter

A venturi meter, used to measure the flow rate of an incompressible inviscid fluid, is shown
in Figure 13-22. The fluid of density passes through a pipe of cross-sectional area that
has a constriction of cross-sectional area Because the fluid gains speed as it enters the
constricted section, the pressure in the constricted section is less than in the other portions
of the pipe. The two parts of the pipe are connected with a U-tube manometer partially filled
with a liquid of density The pressure difference is measured by the difference in the lev-
els of the liquid in the U-tube, Express the velocity in terms of the measured height 
and the known quantities and 

PICTURE The pressures and in the two regions are related to the speeds and by
the Bernoulli equation. The pressure difference is related to the height You can express

in terms of and the areas and by the continuity equation.

SOLVE

A2A1v1v2

¢h.
v2v1P2P1

r � A1 >A2.rL,rF,
¢hv1¢h.

rL.

A2.
A1rF
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v

(P + ΔP)A

PA

r

A

Parcel

Center of curvature

StreamlineΔr
ρ

F I G U R E  1 3 - 2 4 The centripetal force on
a parcel moving along a curved streamline is
due to a pressure difference across the parcel.

F I G U R E  1 3 - 2 5 The ball is moving from
right to left, so in the reference frame of the
ball, the air moves from left to right, as shown.

greater than the air pressure just below the parcel. As a result, the air pressure is
greater at points far above the wing than at points next to the upper surface of the
wing. The pressure far above the wing is the ambient air pressure, so we can conclude
that the pressure at the upper surface of the wing is less than the ambient air pressure.
The parcels in the streamlines that pass below the wing also accelerate downward.
Thus, the pressure far below the wing is less than the pressure at the lower surface of
the wing. The pressure far below the wing is equal to the ambient air pressure, so we
can conclude that the pressure at the lower surface of the wing is greater than the am-
bient air pressure. The lift on the wing is due to the pressure immediately below the
wing being greater than the pressure immediately above the wing.

Applying Newton’s second law to a parcel of air (Figure 13-24) with
area and thickness moving at speed we get

where is the distance of the parcel from the center of curvature of the streamline,
is the density of air, is the pressure of the parcel surface closest to the center of

curvature, and is the pressure at the opposite surface of the parcel.
Simplifying and rearranging this equation gives

As approaches zero this becomes

13-19

The derivative in this equation is a partial derivative because it represents the rate
of change of pressure perpendicular to the streamlines. The pressure also varies
along the direction tangent to the streamlines.

We now show how the pressure varies with position along a streamline. Consider
a small parcel of air moving along a streamline that passes over the wing. When the
parcel is far in front of the wing, it is at ambient pressure. As the parcel moves into the
region above the wing, it moves into a region of lower pressure. The parcel gains speed
as it enters this region because the pressure behind the parcel pushing it forward is
greater than the pressure in front of it pushing it backward. Suppose point 1 is far in
front of the wing and point 2 is directly above the wing and on the same streamline.
The pressures at these two points are then related by the Bernoulli equation:

13-20

(The Bernoulli equation is only approximately valid in this context, because air is
both compressible and viscous.) Point 1 is far in front of the wing, so is equal to
the ambient air pressure and is the speed of the air at point 1. In the previous
paragraph we showed the pressure above the wing to be less than the ambient
air pressure. Equation 13-20 reveals that if then That is, the
Bernoulli equation predicts that the parcels of air gain speed as they enter the low-
pressure region above the wing. In addition, the parcels of air that enter the high-
pressure region below the wing lose speed, as predicted by the Bernoulli equation.

Now we consider a spinning baseball moving through still air. Figure 13-25 shows
this situation from a reference frame moving with the ball. As the ball spins, it tends
to drag air around with it. As a result, the streamlines are curved as shown. Is the air
pressure greater immediately above the ball or immediately below it? (As before, we
are neglecting any changes in air pressure due to the effects of gravity.) The air pres-
sure is greater immediately below the ball, as we shall explain. The surrounding air
exerts pressure forces on the packets of air moving along the streamlines. If the
streamlines are curved, there are resultant pressure forces on the packets in the cen-
tripetal direction. Thus, as with the wing, the pressure immediately above the ball is

v2 	 v1.P2 	 P1,
P2

v1

P1

P1 � 1
2rv2

1 � P2 � 1
2rv2

2

�P
�r

� r
v2

r

¢r

¢P
¢r

� r
v2

r

P � ¢P
Pr

r

(P � ¢P)(A) � PA � (rA ¢r)
v2

r

v,¢r,A
(F � ma)



significantly less than the pressure far above the ball—which is equal to the ambient
air pressure. The streamlines just below the ball are almost straight, so the pressure
just below the ball is almost the same as the pressure far below the ball, which is equal
to the ambient air pressure. Thus, pressure immediately below the ball is greater than
the pressure immediately above the ball. As a result the air exerts an upward force on
the ball. The ball will not fall as fast as it would if gravity alone were acting on it.

Although the Bernoulli equation is very useful for qualitative descriptions of many
features of fluid flow, such descriptions are often grossly inaccurate when compared
with the quantitative results of experiments. Prominent reasons for the discrepan-
cies are that gases like air are hardly incompressible, and liquids like water are
hardly inviscid, which invalidates the assumptions made in deriving the Bernoulli
equation. In addition, it is often difficult to maintain steady, streamlined flow with-
out turbulence, and the introduction of turbulence can greatly affect the results.

VISCOUS FLOW

According to Bernoulli’s equation, when a fluid flows steadily through a long, nar-
row, horizontal pipe of constant cross section, the pressure along the pipe will be
constant. In practice, however, we observe a pressure drop as we move along the di-
rection of the flow. Put another way, a pressure difference is required to push a fluid
through a horizontal pipe. This pressure difference is needed because the fluid
flows in very thin layers, and the thin layer of fluid in contact with the pipe is held
stationary by forces exerted on it by the pipe. As we move away from the surface
of the pipe, the speed of each successive layer is slightly greater than the speed of
the layer next to it on one side, and each layer is held back by forces exerted on it
by the slightly slower-moving layer next to it on one side (just as each lamina is
pulled forward by forces exerted on it by the slightly faster-moving lamina next to
it on the other side). These forces between adjacent layers are called viscous forces.
As a result of viscous forces, the velocity of the fluid is not constant across the di-
ameter of the pipe. Instead, it is greatest near the center of the pipe and approaches
zero where the fluid is in contact with the walls of the pipe (Figure 13-26). Let 
be the pressure at point 1 and be that at point 2, a distance downstream from
point 1. The pressure drop is proportional to the volume flow rate:

13-21

DEFINITION: RESISTANCE

where is the volume flow rate and the proportionality constant is the
resistance to flow, which depends on the length of the pipe the radius and
the viscosity of the fluid.

r,L,
RIV � vA

¢P � P1 � P2 � IVR

¢P � P1 � P2

LP2

P1
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v

1 2
L

P1 P2

F I G U R E  1 3 - 2 6 When a viscous fluid
flows through a pipe, the speed is greatest at
the center of the pipe. At the walls of the pipe,
the speed of the fluid approaches zero.

Example 13-12 Resistance to Blood Flow

Blood flows from the aorta through the major arteries, the small arteries, the capillaries, and
the veins until it reaches the right atrium. During the course of that flow, the (gauge) pres-
sure drops from about 100 torr to zero. If the volume flow rate is find the total re-
sistance of the circulatory system.

PICTURE The resistance is related to the pressure drop and volume flow rate by 
Equation 13-21. We can use Equation 13-9 to convert from torr to 

SOLVE

kPa.

800 mL>s,

Write the resistance in terms of the pressure drop and volume
flow rate, and convert all terms to SI units:

16.6 kPa # s>m3� 16.61 kPa # s>m3 �

R �
¢P
IV

�
100 torr

0.800 L>s �
101 kPa
760 torr

�
1 L

103 cm3 �
1 cm3

10�6 m3

*
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CHECK We could have used to write the result as The dimen-
sions of resistance are the dimensions of pressure divided by the dimensions of volume flow
rate. The dimensions of pressure are the dimensions of force divided by the dimension of
length squared, and the dimensions of volume flow rate are the dimension of length cubed
divided by the dimension of time. Thus, the dimensions of resistance are the dimensions of
pressure times the dimension of time divided by the dimension of length raised to the fifth
power. The units of the result have the correct dimensions, so the result is plausible.

To define the coefficient of viscosity of a fluid, we consider a fluid that is confined
between two rectangular parallel plates, each of area separated by a distance 
as shown in Figure 13-27. The upper plate is pulled at a constant speed by a 
force while the bottom plate is held at rest. A force is needed to pull the 
upper plate because the fluid next to the plate exerts a viscous drag force 
opposing its motion. The fluid flows in thin layers, or lamina, and the motion is
called laminar flow. The speed of the lamina in contact with the upper plate is 
the speed of the lamina in contact with the lower plate approaches zero, and 
the speeds of the laminas increase linearly with distance from the lower plate. The
force on the upper plate is found to be directly proportional to and and
inversely proportional to the plate separation The proportionality constant is the
coefficient of viscosity

13-22

The SI unit of viscosity is the An older cgs unit still in common
use is the poise, named after the French physicist Jean Poiseuille. These units are
related by

13-23

Table 13-3 lists the coefficients of viscosity for several fluids at various
temperatures. Typically, the viscosity of a liquid increases as the tem-
perature decreases. Thus, in cold climates, a less viscous grade of oil is
used to lubricate automobile engines in the winter than in summer. 

Poiseuille’s law The resistance to flow in Equation 13-21 for steady
flow through a circular tube of radius can be shown to be

13-24

Equations 13-21 and 13-24 can be combined to give the pressure drop
over a length of a circular tube of radius 

13-25

POISEUILLE’S LAW

Equation 13-25 is known as Poiseuille’s law. Note the inverse dependence of the
pressure drop. If the radius of the tube is halved, the pressure drop for a given vol-
ume flow rate is increased by a factor of 16; or a pressure 16 times as great is
needed to pump the fluid through the tube at the original volume flow rate. Thus,
for example, if the diameter of a person’s blood vessels or arteries is reduced for
some reason, either the volume flow rate of the blood is greatly reduced, or the
blood pressure must escalate to maintain the volume flow rate. For water flowing
through a long garden hose open at one end and connected to a constant pressure

r4

¢P �
8hL
pr4
IV

r:L

R �
8hL
pr4

r
R

1 Pa # s � 10 poise

N # s>m2 � Pa # s.

F � h
vA
z

h:
z.

AvF
S

v,

F
S

,
v

z,A,

16.6 kN # s>m5.1 Pa � 1 N>m2

F

v

A

z

F I G U R E  1 3 - 2 7 Two plates of equal area
with a viscous fluid between them. When the
upper plate is moved relative to the lower
one, each layer of fluid exerts a drag force on
the adjacent layers. The force needed to pull
the upper plate is directly proportional to 
and the area and inversely proportional
to the separation between the plates.z,

A,
v

Table 13-3 Coefficients of Viscosity 

for Various Fluids

Fluid t, °C

Water 0 1.8

20 1.00

60 0.65

Blood (whole) 37 4.0

Engine oil (SAE 10W) 30 200

Glycerin 0 10,000

20 1,410

60 81

Air 20 0.018

h, mPa # s
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source at the other end, the pressure drop is fixed. It equals the difference in pres-
sure between that at the water source and atmospheric pressure at the open end.
The volume flow rate is then proportional to the fourth power of the radius. Thus,
the volume flow rate increases by a factor of more than 5 when you switch to a
three-quarter-inch-diameter hose from a half-inch-diameter hose. That is so be-
cause

Poiseuille’s law applies only to the laminar flow of a fluid of constant viscosity.
In some fluids, viscosity changes with velocity, violating Poiseuille’s law. Blood,
for example, is a complex fluid consisting of solid particles of various shapes sus-
pended in a liquid. Red blood cells are disk-shaped objects that are randomly ori-
ented at low speeds, but at high speeds tend to become oriented to facilitate the
flow. Thus, the viscosity of blood decreases as the flow speed increases, so
Poiseuille’s law cannot be strictly applied. Nevertheless, Poiseuille’s law is a good
approximation that is very useful for obtaining a qualitative understanding of
blood flow.

In Chapter 25 the flow of electrical current through metal wires is studied. One
of the basic relations in that chapter is Ohm’s law, where is the po-
tential difference and is the electrical resistance of the wire. As we shall see,
Ohm’s law is analogous to Poiseuille’s law, 

TURBULENCE: REYNOLDS NUMBER

When the flow speed of a fluid becomes sufficiently great, laminar flow breaks
down and turbulence sets in. The critical speed above which the flow through a
tube is turbulent depends on the density and viscosity of the fluid and on the ra-
dius of the tube. The flow of a fluid can be characterized by a dimensionless num-
ber called the Reynolds number, which is defined by

13-26

where is the average speed of the fluid. Experiments have shown that the flow
will be laminar if the Reynolds number is less than about 2000 and turbulent if it
is greater than 3000. Between these values, the flow is unstable and may change
from one type to the other.

v

NR �
2rrv
h

NR,

¢P � IVR.
R

¢V¢V � IR,
I

(0.75>0.50)4 � 5.1.

False-color view of turbulence of blood
flowing into and out of the heart as seen by
magnetic resonance imaging (MRI). Systolic
ejection from the left ventricle into the aorta is
seen in red, and diastolic filling of the
ventricles in blue. (Pickler International.)

Example 13-13 Blood Flow in the Aorta

Calculate the Reynolds number for blood flowing at through an aorta of radius
1.0 cm. Assume that blood has a viscosity of and a density of 

PICTURE Because is dimensionless, we can use any system of units as long as we are
consistent.

SOLVE

NR

1060 kg>m3.4.0 mPa # s
30 cm>s

Write Equation 13-26 for the Reynolds
number, expressing each quantity in
SI units: 1.6 � 103� 1590 �

NR �
2rr
h

�
2(0.010 m)(1060 kg>m3)(0.30 m>s)

4.0 � 10�3 Pa # s

CHECK Because the Reynolds number is less than 2000, this flow will be laminar rather than
turbulent. We expect the flow of blood to be nonturbulent, so our result is plausible.
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Physics Spotlight

Automotive Aerodynamics: Ride with the Wind

The shape and finish of a car’s body can reduce drag and increase fuel economy.
As a result, many recent passenger cars have a half-teardrop shape in profile.
However, the curve of the air flow over the top of this type of car creates a region
of low pressure at the top of the car. This low pressure provides lift, which reduces
the normal force upon the road. This makes it harder for the driver to safely ma-
neuver curves. Lift is proportional to the square of the speed. At speeds achieved
during car races, the lift can be significant. The lift results in a loss of traction,
which on curves can determine the outcome of a race.

Automotive engineers call an increase in normal force “downforce,” which is
negative lift. In order to increase speeds on curves, different racing teams use dif-
ferent methods to increase the downforce on their cars. Formula 1 and Indy cars
use large airfoils shaped like upside down airplane wings to create low pressure
underneath the cars that will give increases in downforce. Airfoils were first intro-
duced to Indy cars in 1972. The one-lap record speed increased by 20 mph that
year.* Indy cars also contour the bottoms of their cars, to reduce the pressure un-
derneath their cars. At racing speeds, the downforce-to-weight ratio can exceed
one at racing speeds.†,‡ Some race cars have even used fans to pull air quickly
under the car’s body,# although most racing rules do not allow them today.

The most visible modifications to NASCAR cars are aerodynamic. They have
stiff skirts on the sides, and a very low spoiler in front. A spoiler extends the width
of the car in back, and on some tracks, a roof spoiler is required. The spoilers
increase the drag of the car, so the car does not go faster than safety concerns
demand. In rare cases, aero flaps open on the roof of the car when cars drift rapidly
sideways or backwards. In fact, an entire class of accidents has been prevented
because these flaps were introduced in 1994.°

In 1994, Formula 1 banned the use of bottom contouring in cars, and required
that the car bottoms be flattened. The intent was to reduce the speed of the races,
as two drivers had died in crashes.§ Teams had two weeks to implement these
rules, and figure out how to maintain as much “downforce” as possible.¶ All these
teams use computation fluid dynamics (CFD) modeling programs, as well as scale
wind tunnels for testing ideas before implementing them.

Race teams are not the only groups to use wind tunnels and CFD programs to
test their designs. A group at the Georgia Tech Research Institute modeled the tur-
bulence behind semitrucks, and tested their models in a small-scale wind tunnel.
They found that by adding a system of slits and air compressors, they could
decrease a truck’s drag by up to 35 percent at highway speeds.** In road tests,†† the
system was shown to improve overall fuel economy by 8 to 9 percent.‡‡ Some of
the same technology that has been used to make cars go very quickly may soon be
used to save over a billion gallons of gasoline a year.

* Katz, J., Race Car Aerodynamics: Designing for Speed, 2nd ed. Cambridge, MA: Bentley, 2006, 4.
† Simanaitis, D., “Technology Update: Automotive Aerodynamics,” Road and Track, June 2002, 84+.
‡ Robertson, C., quoted in “Fast Cars,” Nova, PBS. Aug. 19, 1997. http://www.pbs.org/wgbh/nova/transcripts/2208fast.html as of June 2006.
# Fuller, M. J., “A Brief History of Sports Car Racing,” Mulsanne’s Corner, http://www.mulsannescorner.com/history.htm 1996, as of June 2006.
° Katz, J., op. cit., 191.
§ Butler, R., “Not So Fast!” Professional Engineering, Nov. 9, 2005, 37–38.
¶ Zeimelis, K., and Wenz, C., “Science in the Fast Lane,” Nature, Oct. 14, 2004, 736–738.
** Weiss, P., “Aircraft Trick May Give Big Rigs a Gentle Lift,” Science News, Oct. 28, 2000, 279.
†† Toon, John, “Low-Drag Trucks: Aerodynamic Improvements and Flow Control System Boost Fuel Efficiency in Heavy Trucks,” Georgia Institute of Technology Research News, Jan. 5,

2004. http://gtresearchnews.gatech.edu/newsrelease/truckfuel.htm
‡‡ Weiss, P., “Thrifty Trucks Go with the Flow,” Science News, Jan. 29, 2005, 78.

At highway speeds aerodynamic drag is
reduced because of the jets of air along the
back edge of the truck body of this prototype.
(Courtesy of Georgia Institute of Technology.)

http://www.pbs.org/wgbh/nova/transcripts/2208fast.html
http://www.mulsannescorner.com/history.htm
http://gtresearchnews.gatech.edu/newsrelease/truckfuel.htm
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Summary

1. Density, specific gravity, and pressure are defined quantities that are important in fluid
statics and dynamics.

2. Pascal’s principle, Archimedes’ principle and the Bernoulli equation are derived from
Newton’s laws.

*3. The venturi effect is a special case of Bernoulli’s equation.

4. A transverse pressure gradient always accompanies curved streamlines.

*5. Poiseuille’s law accounts for pressure drops due to viscosity; Reynolds number is used to
predict whether flow is laminar or turbulent.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Density The density of a substance is the ratio of its mass to its volume:

13-1

The densities of most solids and liquids are approximately independent of temperature and
pressure, whereas those of gases depend strongly on these quantities.

2. Specific Gravity The specific gravity of a substance is the ratio of its density to that of another substance, usu-
ally water.

3. Pressure 13-3

Units 13-4

13-9

13-10

Gauge pressure Gauge pressure is the difference between the absolute pressure and atmospheric pressure:

In a static liquid 13-7

In a gas In a gas such as air, pressure decreases exponentially with altitude.

Bulk modulus 13-6

4. Pascal’s Principle Pressure changes applied to a confined fluid are transmitted undiminished to every point in
the fluid and to the walls of the container.

5. Archimedes’ Principle A body wholly or partially submerged in a fluid is buoyed up by a force equal to the weight
of the displaced fluid.

6. Fluid Flow

Mass flow rate and continuity equation Mass flow rate

Continuity equation 13-14

Volume flow rate and continuity Volume flow rate
equation for an incompressible fluid Incompressible fluid

Bernoulli equation Along a streamline of a nonviscous, incompressible fluid undergoing steady flow:

13-17b

Venturi effect As air, or another fluid, passes through a constriction its speed increases and its pressure
drops

P � gh � 1
2rv2 � constant

A1v1 � A2v3

IV � Av

IM1 � IM2 � dm12 >dt

IM � rAv

B � �
¢P

¢V>V
P � P0 � rg ¢h (r constant)

P � Pgauge � Pat

 1 bar � 103 millibars � 100 kPa

� 101.325 kPa � 14.7 lb>in.21 atm � 760 mmHg � 760 torr � 29.9 inHg

 1 Pa � 1 N>m2

P �
F
A

r �
dm
dV

*
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TOPIC RELEVANT EQUATIONS AND REMARKS

Resistance to fluid flow 13-21

Coefficient of viscosity 13-22

Poiseuille’s law for viscous flow 13-25

Laminar flow, turbulent flow, and  The flow will be laminar if the Reynolds number is less than about 2000 and turbulent 
the Reynolds number if it is greater than 3000, where is given by 

13-26NR �
2rrv
h

NRNR

NR

¢P � RIV �
8hL
pr4
IV

h �
F>A
v>z

¢P2 � IVR

Answers to Concept Checks

13-1 No. The water packets are not slowing because they are
entering a region of higher pressure. Instead they are
slowing because of viscous drag forces on them. The
Bernoulli equation is valid only if viscous forces are
negligible.

13-2 The constriction is functional. The narrow region is a
venturi. When the bulb is vigorously squeezed, the
pressure in the constricted region drops below
atmospheric pressure due to the venturi effect. This
reduces the pressure in the vertical tube so the air
pressure on the top of the liquid in the reservoir is able
to push the liquid up the vertical tube and into the
horizontal air stream.

Answers to Practice Problems

13-1 (a) (b) iron

13-2 19 kg

13-3 With 
and we have

The pressure at a depth of 
10.3 m is twice that at the surface.

13-4

13-5 (a) (b)

13-6 The specific gravity of the material is 2.7, which is the
specific gravity of aluminum. The material is
aluminum.

13-7 72.9 N

13-8 45 percent

13-9 It is customary to give the
pumping rate of the heart in liters per minute. Using

and we have

13-10 If and are the initial and final speeds and and
are the initial and final areas, Equation 13-15 gives

13-11 The water shoots upward a distance that is, to the
same level as the surface of the water in the tank.

13-12 5.51 m>s
h;

v2 �
A1

A2

v1 �
p(0.30 cm)2

p(0.20 cm)2 (10 cm>s) � 23 cm>sA2

A1v2v1

IV � 5.7 L>min.
1 min � 60 s,1 m3 � 1000 L

IV � vA � 9.4 � 10�5 m3>s.

0.444 atm338 mmHg,

h � P>rg � 0.760 m � 760 mm

¢h � ¢P>rg � 10.3 m.
g � 9.81 N>kg,r � 1000 kg>m3,

P � 2.00 atm,P0 � 1.00 atm � 101 kPa,

 7.97 kg>L,

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM
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CONCEPTUAL PROBLEMS

1 • If the gauge pressure is doubled, the absolute pressure
will be (a) halved, (b) doubled, (c) unchanged, (d) increased by a
factor greater than 2, (e) increased by a factor less than 2.
2 • Two spherical objects differ in size and mass. Object A
has a mass that is eight times the mass of object B. The radius of ob-
ject A is twice the radius of object B. How do their densities com-
pare? (a) (b) (c) (d) Not enough informa-
tion is given to compare their densities.
3 • Two objects differ in density and mass. Object A has a
mass that is eight times the mass of object B. The density of object
A is four times the density of object B. How do their volumes com-
pare? (a) (b) (c) (d) Not enough infor-
mation is given to compare their volumes.
4 • A sphere is constructed by gluing together two hemi-
spheres. The density of each hemisphere is uniform, but the density
of one is greater than the density of the other. True or false: The
average density of the sphere is the numerical average of the two
different densities. Clearly explain your reasoning.
5 • BIOLOGICAL APPLICATION, CONTEXT-RICH In several jun-
gle adventure movies, the hero and heroine escape the bad guys by
hiding underwater for extended periods of time. To do this, they
breathe through long vertical hollow reeds. Imagine that in one
movie, the water is so clear that to be safely hidden, the two are at
a depth of 15 m. As a science consultant to the movie producers,
you tell them that this depth is not realistic and the knowledgeable
viewer will laugh during this scene. Explain why this is so.
6 •• Two objects are balanced as in Figure 13-28. The objects
have identical volumes but different masses. Assume all the objects
in the figure are denser than water and thus none will float. Will the
equilibrium be disturbed if the entire system is completely im-
mersed in water? Explain your reasoning.

SSM

VA � 2VB,VA � VB,VA � 1
2VB,

rA � rB,rA 	 rB,rA 
 rB,

F I G U R E  1 3 - 2 8 Problem 6

7 •• A solid 200-g block of lead and a solid 200-g block of
copper are completely submerged in a aquarium filled with
water. Each block is suspended just above the bottom of the
aquarium by a thread. Which of the following is true?
(a) The buoyant force on the lead block is greater than the

buoyant force on the copper block.
(b) The buoyant force on the copper block is greater than the

buoyant force on the lead block.
(c) The buoyant force is the same on both blocks.
(d) More information is needed to choose the correct answer.
8 •• A block of lead and a block of copper
are completely submerged in an aquarium filled with water.
Each is suspended just above the bottom of the aquarium by a
thread. Which of the following is true?
(a) The buoyant force on the lead block is greater than the

buoyant force on the copper block.
(b) The buoyant force on the copper block is greater than the

buoyant force on the lead block.
(c) The buoyant force is the same on both blocks.
(d) More information is needed to choose the correct answer.

20-cm320-cm3

SSM

Trapped
air

Trapped air

Water

WaterSmall
test tube
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9 •• Two bricks are completely submerged in water. Brick 1 is
made of lead and has rectangular dimensions of Brick
2 is made of wood and has rectangular dimensions of 
True or false: The buoyant force on brick 2 is larger than the buoyant
force on brick 1.

10 •• Figure 13-29 shows an object called a “Cartesian diver.”
The diver consists of a small tube, open at the bottom, with an 
air bubble at the top, inside a closed plastic soda bottle that is 
partly filled with water. The diver normally floats, but sinks 
when the bottle is squeezed hard. (a) Explain why this happens.
(b) Explain the physics behind how a submarine can “silently” 
sink vertically simply by allowing water to flow into empty tanks
near its keel. (c) Explain why a person floating in water will oscil-
late up and down on the water’s surface as he or she breathes in
and out.

1� � 8� � 8�.
2� � 4� � 8�.

11 •• A certain object has a density just slightly less than that
of water so that it floats almost completely submerged. However,
the object is more compressible than water. What happens if the
floating object is given a slight downward push? Explain.

12 •• In Example 13-11, the fluid is accelerated to a greater
speed as it enters the narrow part of the pipe. Identify the forces
that act on the fluid at the entrance to the narrow region to produce
this acceleration.

13 •• An upright glass of water is accelerating to the right
along a flat, horizontal surface. What is the origin of the force that
produces the acceleration on a small element of water in the middle
of the glass? Explain by using a diagram. Hint: The water surface will
not remain level as long as the glass of water is accelerating. Draw a free-
body diagram of the small element of water.

14 •• You are sitting in a boat floating on a very small pond.
You take the anchor out of the boat and drop it into the water. Does
the water level in the pond rise, fall, or remain the same? Explain
your answer.

15 •• A horizontal pipe narrows from a diameter of 10 cm at
location A to 5.0 cm at location B. For a nonviscous incompressible
fluid flowing without turbulence from location A to location B, how
do the flow speeds compare at the two locations?
(a) (b) (c) (d) (e)

16 •• A horizontal pipe narrows from a diameter of 10 cm at lo-
cation A to 5.0 cm at location B. For a nonviscous incompressible
fluid flowing without turbulence from location A to location B, how
do the pressures compare at the two locations? (a)
(b) (c) (d) (e) (f) There is not
enough information to compare the pressures quantitatively.

PA � 4PB,PA � 2PB,PA � 1
4PB,PA � 1

2PB,
PA � PB,P

vA � 4vBvA � 2vB,vA � 1
4 vB,vA � 1

2 vB,vA � vB,
v (in m>s)

SSM
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17 •• BIOLOGICAL APPLICATION Figure 13-30 is a diagram of a
prairie dog tunnel. The geometry of the two entrances are such that
entrance 1 is surrounded by a mound and entrance 2 is surrounded
by flat ground. Explain how the tunnel remains ventilated, and
indicate in which direction air will flow through the tunnel. SSM

1 2

F I G U R E  1 3 - 3 0 Problem 17

ESTIMATION AND APPROXIMATION

18 •• Your undergraduate research project involves atmos-
pheric sampling. The sampling device has a mass of 25.0 kg.
Estimate the diameter of a helium-filled balloon required to lift the
device off the ground. Neglect the mass of the balloon “skin” and
the small buoyancy force on the device itself.

19 ••• CONTEXT-RICH Your friend wants to start a business
giving hot-air balloon rides. The empty balloon, the basket and the
occupants have a total maximum mass of 1000 kg. If the balloon has
a diameter of 22.0 m when fully inflated with hot air, estimate the
required density of the hot air. Neglect the buoyancy force on the
basket and people.

DENSITY

20 • Find the mass of a solid lead sphere with a radius equal
to 2.00 cm.

21 • Consider a room measuring 
Under normal atmospheric conditions at Earth’s surface, what
would be the mass of the air in the room?

22 • An average neutron star has approximately the same
mass as the Sun, but is compressed into a sphere of radius
roughly 10 km. What would be the approximate mass of a tea-
spoonful of matter that dense?

23 •• A 50.0-g ball consists of a plastic spherical shell and a
water-filled core. The shell has an outside diameter equal to 
50.0 mm and an inside diameter equal to 20.0 mm. What is the
density of the plastic?

24 •• A 60.0-mL flask is filled with mercury at 
(Figure 13-31). When the temperature increases to of
mercury spills out of the
flask. Assuming that the
volume of the flask stays
constant, find the change
in the density of mercury
at if its density at

is 13645 kg>m3.0°C
80°C

80°C, 1.47 g
0°C

SSM

4.0 m � 5.0 m � 4.0 m.

25 •• One sphere is made of gold and has a radius and an-
other sphere is made of copper and has a radius If the spheres
have equal mass, what is the ratio of the radii, 

26 ••• Since 1983, the U.S. Mint has coined pennies that are
made out of zinc with a copper cladding. The mass of this type of
penny is 2.50 g. Model the penny as a uniform cylinder of height
1.23 mm and radius 9.50 mm. Assume the copper cladding is uni-
formly thick on all surfaces. If the density of zinc is and
that of copper is what is the thickness of the copper
cladding?

PRESSURE

27 • Barometer readings are commonly given in inches of
mercury (inHg). Find the pressure in inches of mercury equal to

28 • The pressure on the surface of a lake is 
(a) At what depth is the pressure (b) If the pressure at the 
top of a deep pool of mercury is at what depth is the pres-
sure 

29 • BIOLOGICAL APPLICATION When at cruising altitude, a
typical airplane cabin will have an air pressure equivalent to an al-
titude of about 2400 m. During the flight, ears often equilibrate, so
that the air pressure inside the inner ear equalizes with the air pres-
sure outside the plane. The Eustachian tubes allow for this equal-
ization, but can become clogged. If an Eustachian tube is clogged,
pressure equalization may not occur on descent and the air pres-
sure inside an inner ear may remain equal to the pressure at 2400 m.
In that case, by the time the plane lands and the cabin is repressur-
ized to sea-level air pressure, what is the net force on one ear drum
due to this pressure difference, assuming the ear drum has an area
of

30 • The axis of a cylindrical container is vertical. The con-
tainer is filled with equal masses of water and oil. The oil floats on
top of the water, and the open surface of the oil is at a height 
above the bottom of the container. What is the height, if the pres-
sure at the bottom of the water is greater than the pressure
at the top of the oil? Assume the oil density is 

31 • ENGINEERING APPLICATION A hydraulic lift is used to
raise a 1500-kg automobile. The radius of the shaft of the lift is
8.00 cm and the radius of the compressor’s piston is 1.00 cm.
How much force must be applied to the piston to raise the auto-
mobile? Hint: The shaft of the lift is the other piston.

32 • ENGINEERING APPLICATION A 1500-kg car rests on
four tires, each of which is inflated to a gauge pressure of

If the four tires support the car’s weight equally, what
is the area of contact of each tire with the road?

33 •• What pressure increase is required to compress the vol-
ume of 1.00 kg of water from to Could this compres-
sion occur in the ocean, where the maximum depth is about 11 km?
Explain.

34 •• When a woman in high-heeled shoes takes a step, she
momentarily places her entire weight on one heel of her shoe. If her
mass is 56.0 kg and if the area of the heel is what is the
pressure exerted on the floor by the heel? Compare your answer to
the pressure exerted by one foot of an elephant on a flat floor.
Assume the elephant’s mass is 5000 kg, that he has all four feet
equally distributed on the floor, and that each foot has an area of
400 cm2.

1.00 cm2,

0.99 L?1.00 L

200 kPa.

SSM

875 kg>m3.
10 kPa

h,
h

0.50 cm2?

2Pat?
Pat,
2Pat?

Pat � 101 kPa.

101 kPa.

8930 kg>m3,
7140 kg>m3

rAu >rCu?
rCu.

rAu

0° C
80° C
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35 •• In the seventeenth century, Blaise
Pascal performed the experiment shown in
Figure 13-32. A wine barrel filled with water
was coupled to a long tube. Water was added
to the tube until the barrel burst. The radius of
the barrel’s lid was 20 cm and the height of
the water in the tube was 12 m. (a) Calculate
the force exerted on the lid due to the pressure
increase. (b) If the tube had an inner radius of
3.0 mm, what mass of water in the tube
caused the pressure that burst the barrel?

F I G U R E  1 3 - 3 2

Problem 35

36 •• BIOLOGICAL APPLICATION Blood plasma flows from a bag
through a tube into a patient’s vein, where the blood pressure is 12
mmHg. The specific gravity of blood plasma at is 1.03. What is the
minimum elevation of the bag so that the plasma flows into the vein?

37 •• BIOLOGICAL APPLICATION Many people have imagined
that if they were to float the top of a flexible snorkel tube out of the
water, they would be able to
breathe through it while walk-
ing underwater (Figure 13-33).
However, they generally do
not take into account just how
much water pressure opposes
the expansion of the chest and
the inflation of the lungs.
Suppose you can just breathe
while lying on the floor with a
400-N (90-lb) weight on your
chest. How far below the sur-
face of the water could your
chest be for you still to be able
to breathe, assuming your
chest has a frontal area of
0.090 m2?

37°C

38 •• ENGINEERING APPLICATION In Example 13-3, a 150-N
force is applied to a small piston to lift a car that weighs 15 000 N.
Demonstrate that this does not violate the law of conservation of
energy by showing that, when the car is lifted some distance the
work done by the 150-N force acting on the small piston equals the
work done on the car by the large piston.

39 •• A 5.00-kg lead sinker is accidentally dropped overboard
by fishermen in a boat directly above the deepest portion of the
Marianas trench, near the Philippines. By what percentage does the
volume of the sinker change, by the time it settles on the trench bot-
tom, which is 10.9 km below the surface?

40 ••• The volume of a cone of height and base radius is
A jar in the shape of a cone of height 25 cm has a base

with a radius equal to 15 cm. The jar is filled with water. Then its
lid (the base of the cone) is screwed on and the jar is turned over
so its lid is horizontal. (a) Find the volume and weight of the water
in the jar. (b) Assuming the pressure inside the jar at the top of the
cone is equal to 1 atm, find the excess force exerted by the water
on the base of the jar, where by excess force we mean the force
minus the force exerted by air pressure on the outside of the base
of the jar. Explain how this force can be greater than the weight of
the water in the jar.

V � pr2 h>3.
rh

h,

BUOYANCY

41 • A 500-g piece of cop-
per, with specific gravity of
8.96, is suspended from a
spring scale and is submerged
in water (Figure 13-34). What
force does the spring scale
read?

42 • When a certain rock is suspended from a spring scale, the
scale-display reads 60 N. However, when the suspended stone is
submerged in water, the display reads 40 N. What is the density of
the rock?

43 • A block of an unknown material weighs 5.00 N in air
and 4.55 N when submerged in water. (a) What is the density of
the material? (b) From what material is the block likely to have
been made?

44 • A solid piece of metal weighs 90.0 N in air and 56.6 N
when submerged in water. What is the density of this metal?

45 •• A homogeneous solid object floats on water, with 80.0
percent of its volume below the surface. When placed in a second
liquid, the same object floats on that liquid with 72.0 percent of its
volume below the surface. Determine the density of the object and
the specific gravity of the liquid.

46 •• A 5.00-kg iron block is suspended from a spring scale
and is submerged in a fluid of unknown density. The spring scale
reads 6.16 N. What is the density of the fluid?

47 •• A large piece of cork
weighs 0.285 N in air. When
held submerged underwater by
a spring scale, as shown in
Figure 13-35, the spring scale
reads 0.855 N. Find the density
of the cork.

SSM
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Problem 37
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Problem 47
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Problem 41

48 •• A helium balloon lifts a basket and cargo with a total
weight of 2000 N under standard conditions, at which the density
of air is and the density of helium is What
is the minimum volume of the balloon?

49 •• An object has “neutral buoyancy” when its density
equals that of the liquid in which it is submerged, which means that
it neither floats nor sinks. If the average density of an 85-kg diver is

what mass of lead should the dive master suggest be
added to give the diver neutral buoyancy? SSM

0.96 kg>L,

0.178 kg>m3.1.29 kg>m3
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50 •• A 1.00-kg beaker con-
taining 2.00 kg of water rests on a
scale. A 2.00-kg block of alu-
minum
suspended from a spring scale is
submerged in the water, as in
Figure 13-36. Find the readings of
both scales.

2.70 � 103 kg>m3)(density

Aluminum

57 •• BIOLOGICAL APPLICATION Blood flows at in an
aorta of radius 9.0 mm. (a) Calculate the volume flow rate in liters
per minute. (b) Although the cross-sectional area of a capillary is
much smaller than that of the aorta, there are many capillaries, so
their total cross-sectional area is much larger. If all the blood from
the aorta flows into the capillaries and the speed of flow through the
capillaries is calculate the total cross-sectional area of 
the capillaries. Assume laminar nonviscous steady-state flow.

58 •• Water flows through a 1.0-m-long conical section of pipe
that joins a cylindrical pipe of radius 0.45 m, on the left, to a cylin-
drical pipe of radius 0.25 m, on the right. If the water flows into the
0.45-m pipe with a speed of and if we assume laminar
nonviscous steady-state flow, (a) what is the speed of flow in the
0.25-m pipe? (b) What is the speed of flow at a position in the con-
ical section, if is the distance measured from the left-hand end of
the conical section of pipe?

59 •• ENGINEERING APPLICATION The $8-billion, 800-mile-long
Alaskan Pipeline has a maximum volume flow rate of of
oil per day. Most of the pipeline has a radius of 60.0 cm. Find the pres-
sure at a point where the pipe has a 30.0-cm radius. Take the pres-
sure in the 60.0-cm-radius sections to be and the density
of oil to be Assume laminar nonviscous steady-state flow.

60 •• Water flows through a Venturi meter like that in 
Example 13-11 with a pipe diameter of 9.50 cm and a constriction
diameter of 5.60 cm. The U-tube manometer is partially filled with
mercury. Find the volume flow rate of the water if the difference in
the mercury level in the U-tube is 2.40 cm.

61 •• ENGINEERING APPLICATION, CONTEXT-RICH Horizontal
flexible tubing for carrying cooling water extends through a large
electromagnet used in your physics experiment at Fermi National
Accelerator Laboratory. A minimum volume flow rate of 
through the tubing is necessary to keep your magnet cool. Within
the magnet volume, the tubing has a circular cross section of radius
0.500 cm. In regions outside the magnet, the tubing widens to a ra-
dius of 1.25 cm. You have attached pressure sensors to measure dif-
ferences in pressure between the 0.500- and 1.25-cm sections. The
lab technicians tell you that if the flow rate in the system drops
below the magnet is in danger of overheating and that
you should install an alarm to sound a warning when the flow rate
drops below that level. What is the critical pressure difference at
which you should program the sensors to send the alarm signal
(and is this a minimum, or maximum, pressure difference)?
Assume laminar nonviscous steady-state flow.

62 •• Figure 13-37 shows a Pitot-static tube, a device used for
measuring the speed of a gas. The inner pipe faces the incoming
fluid, while the ring of holes in the outer tube is parallel to the gas
flow. Show that the speed of the gas is given by 
where is the density of the liquid used in the manometer and 
is the density of the gas.

rgrL

v2 � 2gh(rL � rg)>rg,

SSM

0.050 L>s,

0.0500 L>s

800 kg>m3.
P � 180 kPa

P�

240,000 m3

x
x

1.50 m>s,

SSM

1.0 mm>s,

30 cm>s

h
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51 •• ENGINEERING APPLICATION When cracks form at the
base of a dam, the water seeping into the cracks exerts a buoyant
force that tends to lift the dam. As a result, the dam can topple.
Estimate the buoyant force exerted on a 2.0-m-thick by 5.0-m-long
dam wall by water seeping into cracks at its base. The water level
in the lake is 5.0 m above the cracks.

52 •• ENGINEERING APPLICATION, CONTEXT-RICH Your team is
in charge of launching a large helium weather balloon that is spher-
ical in shape, and whose radius is 2.5 m and total mass is 15 kg (bal-
loon plus helium plus equipment). (a) What is the initial upward ac-
celeration of the balloon when it is released from sea level? (b) If the
drag force on the balloon is given by where is the
balloon radius, is the density of air, and the balloon’s ascension
speed, calculate the terminal velocity of the ascending balloon.

53 ••• ENGINEERING APPLICATION A ship sails from seawater
(specific gravity 1.025) into freshwater, and therefore sinks slightly.
When its 600,000-kg load is removed, it returns to its original level.
Assuming that the sides of the ship are vertical at the water line,
find the mass of the ship before it was unloaded.

CONTINUITY AND 
BERNOULLI’S EQUATION

Note: For the problems in this section, assume laminar
nonviscous steady-state flow in all cases unless otherwise
indicated.

54 • Water flows at through a 3.0-cm-diameter hose
that terminates in a 0.30-cm-diameter nozzle. Assume laminar non-
viscous steady-state flow. (a) At what speed does the water pass
through the nozzle? (b) If the pump at one end of the hose and the
nozzle at the other end are at the same height, and if the pressure at
the nozzle is what is the pressure at the pump outlet?

55 • Water is flowing at in a horizontal pipe
under a pressure of The pipe narrows to half its origi-
nal diameter. (a) What is the speed of flow in the narrow section?
(b) What is the pressure in the narrow section? (c) How do the
volume flow rates in the two sections compare?

56 •• The pressure in a section of horizontal pipe with a di-
ameter of 2.00 cm is Water flows through the pipe at

If the pressure at a certain point is to be reduced to
by constricting a section of the pipe, what should the di-

ameter of the constricted section be?
101 kPa
2.80 L>s.

142 kPa.

SSM

200 kPa.
3.00 m>s1.0 atm,

0.65 m>s

SSM

vr

rFD � 1
2pr2 rv2,

F I G U R E  1 3 - 3 6

Problem 50
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63 ••• Derive the Bernoulli equation in more generality than
is done in the text, that is, allow for the fluid to change elevation
during its movement. Using the work-energy theorem, show that
when changes in elevation are allowed, Equation 13-16 becomes

(Equation 13-17).

64 ••• A large keg of height and cross-sectional area is
filled with root beer. The top is open to the atmosphere. There is
a spigot opening of area which is much smaller than 
at the bottom of the keg. (a) Show that when the height of 
the root beer is the speed of the root beer leaving the 
spigot is approximately (b) Show that if the
rate of change of the height of the root beer is given by

(c) Find as a function of time if
at (d) Find the total time needed to drain the keg if

and Assume
laminar nonviscous flow.

A2 � 1.00 � 10�4A1.H � 2.00 m, A1 � 0.800 m2,
t � 0.h � H

hdh>dt � �(A2>A1)(2gh)1>2. h
A2 V A1,12gh .

h,

A1,A2,

A1H

SSMP1 � rgh1 � 1
2rv2

1 �P2 � rgh2 � 1
2rv2

2

H

h
x

a

b

F I G U R E  1 3 - 3 9

Problem 69

65 •• A siphon is a device for transferring a liquid from one
container to another. The tube shown in Figure 13-38 must be filled
to start the siphon, but once this has been done, fluid will flow
through the tube until the liquid surfaces in the containers are at the
same level. (a) Using Bernoulli’s equation, show that the speed of
water in the tube is (b) What is the pressure at the high-
est part of the tube?

v � 12gd .

Flow

h

d

F I G U R E  1 3 - 3 8 Problem 65

(whose average value is ), both of which give the same dis-
tance (c) Show that for a given value of is a maximum when

Find the maximum value for as a function of H.xh � 1
2H.

xH,x.

1
2H

*

66 •• A fountain designed to spray a column of water 12 m into
the air has a 1.0-cm-diameter nozzle at ground level. The water
pump is 3.0 m below the ground. The pipe to the nozzle has a diam-
eter of 2.0 cm. Find the pump pressure necessary if the fountain is to
operate as designed. (Assume laminar nonviscous steady-state flow.)
67 •• Water at exits a circular tap moving straight down
with a flow rate of (a) If the diameter of the tap is 1.20 cm,
what is the speed of the water? (b) As the fluid falls from the tap, the
stream of water narrows. What is the new diameter of the stream at
a point 7.50 cm below the tap? Assume that the stream still has a cir-
cular cross section and neglect any effects of drag forces acting on
the water. (c) If turbulent flows are characterized by Reynolds num-
bers above 2300 or so, how far does the water have to fall before it
becomes turbulent? Does this match your everyday observations?
68 •• ENGINEERING APPLICATION, CONTEXT-RICH To better
fight fires in your seaside community, the local fire brigade has
asked you to construct a pump system to draw seawater from the
ocean to the top of the steep cliff adjacent to the water where most
of the homes are. If the cliff is 12.0 m high, and the pump is capable
of producing a gauge pressure of how much water 
can be pumped using a hose with a radius of 4.00 cm?
69 ••• MULTISTEP In Figure 13-39, is the depth of the liquid
and is the distance from the surface of the liquid to the pipe in-
serted in the tank’s side. (a) Find the distance at which the water
strikes the ground after exiting the pipe as a function of and 
(b) Show that, for a given value of there are two values of hH,

H.h
x

h
H

(in L>s)150 kPa,

10.5 cm3>s.
20°C

VISCOUS FLOW

70 • Water flows through a horizontal 25.0-cm-long tube with
an inside diameter of 1.20 mm at Find the pressure dif-
ference required to drive this flow if the viscosity of water is

Assume laminar flow.

71 • Find the diameter of a tube that would give double the
flow rate for the pressure difference in Problem 70.

72 • BIOLOGICAL APPLICATION Blood takes about 1.00 s to
pass through a 1.00-mm-long capillary in the human circulatory
system. If the diameter of the capillary is 7.00 and the pressure
drop is find the viscosity of blood. Assume laminar flow.

73 • An abrupt transition occurs at Reynolds numbers of
about where the drag on a sphere moving through a fluid
abruptly decreases. Estimate the speed at which this transition
occurs for a baseball, and comment on whether it should play a role
in the physics of the game.

74 •• A horizontal pipe of radius 1.5 cm and length 25 m is
connected to the output that can sustain an output gauge pressure
of . What is the speed of water flowing through the
pipe? If the temperature of the water is what is the speed of
the water in the pipe.

75 •• A very large tank is filled to a depth of 250 cm with oil
that has a density of and a viscosity of If the
container walls are 5.00 cm thick, and a cylindrical hole of radius
0.750 cm is bored through the base of the container, what is the
initial volume flow rate (in ) of the oil through the hole?

76 ••• The drag force on a moving sphere at a very low Reynolds
number is given by where is the viscosity of the sur-
rounding fluid and is the radius of the sphere. (This relation is called
Stokes’ law.) Using this information, find the terminal speed of ascent
for a spherical 1.0-mm-diameter carbon dioxide bubble rising in a car-
bonated beverage ( and ). How long
should it take for this bubble to rise 20 cm (the height of the drinking
glass)? Is this length of time consistent with your observations?

GENERAL PROBLEMS

77 • Several teenagers swim toward a rectangular,
wooden raft that is 3.00 m wide and 2.00 m long. If the raft is
9.00 cm thick, how many 75.0-kg teenage boys can stand on top
of the raft without the raft becoming submerged? Assume the
wood density is 

78 • A thread attaches a 2.7-g Ping-Pong ball to the bottom
of a beaker. When the beaker is filled with water so that the ball
is totally submerged, the tension in the thread is 
Determine the diameter of the ball.

7.0 mN.

SSM650 kg>m3.

h � 1.8 mPa # sr � 1.1 kg>L
a

hFD � 6phav,

L>s
180 mPa # s.860 kg>m3

60°C,
20°C10 kPa

SSM

3 � 105,

2.60 kPa,
mm

1.00 mPa # s.

0.300 mL>s.
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79 • Seawater has a bulk modulus of Find the
difference in density of seawater at a depth where the pressure is

as compared to the density at the surface which is 
Neglect any effects due to changes in either temperature or salinity.

80 • A solid cube with 0.60-m edge length is suspended from
a spring balance. When the cube is submerged in water, the spring
balance reads 80 percent of the reading for when the cube is in air.
Determine the density of the cube.

81 •• A 1.5-kg block of wood floats on water with 68 percent
of its volume submerged. A lead block is placed on the wood,
fully submerging the wood to a depth where the lead remains
entirely out of the water. Find the mass of the lead block.

82 •• A Styrofoam cube, 25 cm on an edge, is placed on one
pan of a balance. The balance is in equilibrium when a 20-g mass
of brass is placed on the other pan. Find the mass of the Styrofoam
cube. Neglect the buoyant force of the brass mass, but do not ne-
glect the buoyant force of the air on the Styrofoam cube.

83 •• A spherical shell of copper with an outer diameter of
12.0 cm floats on water with half its volume above the water’s sur-
face. Determine the inner diameter of the shell. The cavity inside
the spherical shell is empty.

84 •• A 200-mL beaker that is half-filled with water is on the left
pan of a balance, and a sufficient amount of sand is placed on the
right pan to bring the balance to equilibrium. A cube 4.0 cm on an
edge that is attached to a string is then lowered into the water until
the cube is completely submerged, but not touching the bottom of 
the beaker. A piece of brass of mass is then added to the right pan
to restore equilibrium. What is 

85 •• ENGINEERING APPLICATION, CONTEXT-RICH Crude oil
has a viscosity of about 0.800 Pa s at normal temperature. You
are the chief design engineer in charge of constructing a 50.0-km
horizontal pipeline that connects an oil field to a tanker termi-
nal. The pipeline is to deliver oil at the terminal at a rate of

and the flow through the pipeline is to be laminar.
Assuming that the density of crude oil is estimate the
diameter of the pipeline that should be used.

86 •• Water flows through the pipe in Figure 13-40 and
exits to the atmosphere at the right end of section C. The diam-
eter of the pipe is 2.00 cm at A, 1.00 cm at B, and 0.800 cm at C.
The gauge pressure in the pipe at the center of section A is

and the flow rate is The vertical pipes are
open to the air. Find the level (above the flow midline as shown)
of the liquid-air interfaces in the two vertical pipes. Assume
laminar nonviscous flow.

0.800 L>s.1.22 atm

SSM

700 kg>m3,
500 L>s,

#

m?
m

SSM

1025 kg>m3.800 atm

2.30 � 109 N>m2.

A
B

C

v

hA

hB

87 •• ENGINEERING APPLICATION, CONTEXT-RICH You are em-
ployed as a tanker truck driver for the summer. Heating oil is de-
livered to customers for winter usage by your large tanker truck.
The delivery hose has a 1.00-cm radius. The specific gravity of the
oil is 0.875, and its coefficient of viscosity is What is the
minimum time it will take you to fill a customer’s 55-gal oil drum,
if laminar flow through the hose must be maintained?
88 •• A U-tube is filled with water until the liquid level reaches
28 cm above the bottom of the tube (Figure 13-41a). Oil, which has
a specific gravity of 0.78, is now poured into one arm of the U-tube
until the level of the water in the other arm of the tube reaches 34
cm above the bottom of the tube (Figure 13-41b). Find the levels of
the oil–water and oil–air interfaces in the other arm of the tube.

SSM

200 mPa # s.

28 cm
Water

34 cm

Oil

(b)(a)

F I G U R E  1 3 - 4 1 Problem 88

89 •• A helium balloon can just lift a load that weighs 750 N
and has a negligible volume. The skin of the balloon has a mass of
1.5 kg. (a) What is the volume of the balloon? (b) If the volume of
the balloon were twice that found in Part (a), what would be the ini-
tial acceleration of the balloon when released at sea level carrying a
load weighing 900 N?
90 •• A hollow sphere has an inner radius and an outer ra-
dius It is made of material of density and is floating in a liq-
uid of density The interior is now completely filled with mate-
rial of density such that the sphere just floats completely sub-
merged. Find 
91 •• According to the law of atmospheres, the fractional de-
crease in atmospheric pressure is proportional to the change in alti-
tude. This law can be expressed as the differential equation

where is a positive constant. (a) Show that
where is the pressure at is a solution of the

differential equation. (b) Given that the pressure above sea
level is half that at sea level, find the constant
92 •• ENGINEERING APPLICATION A submarine has a total mass
of including crew and equipment. The vessel consists
of two parts, the pressure hull, which has a volume of 
and the ballast tanks, which have a volume of When
the boat cruises on the surface, the ballast tanks are filled with air at
atmospheric pressure; to cruise below the surface, seawater must be
admitted into the tanks. (a) What fraction of the submarine’s volume
is above the water surface when the tanks are filled with air?
(b) How much water must be admitted into the tanks to give the
submarine neutral buoyancy? Neglect the mass of any air in the
tanks and use 1.025 as the specific gravity of seawater.
93 ••• BIOLOGICAL APPLICATION Most species of fish have ex-
pandable sacs, commonly known as “swim bladders,” that enable
fish to rise in the water by filling the bladders with oxygen collected
by their gills and to sink by emptying the bladders into the sur-
rounding water. A freshwater fish has an average density equal to

when its swim bladder is empty. How large must the vol-
ume of oxygen in the fish’s swim bladder be if the fish is to have
neutral buoyancy? The fish has a mass of 0.825 kg. Assume the den-
sity of oxygen in the bladder is equal to air density at standard tem-
perature and pressure.

1.05 kg>L

4.00 � 102 m3.
2.00 � 103 m3,

2.40 � 106 kg,

C.
5.5 km

h � 0,P0P(h) � P0e
�Ch,

CdP>P � �Cdh,

r�.
r�

2r0.
r02R.

R
SSM

F I G U R E  1 3 - 4 0
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Oscillations

14-1 Simple Harmonic Motion

14-2 Energy in Simple Harmonic Motion

14-3 Some Oscillating Systems

14-4 Damped Oscillations

14-5 Driven Oscillations and Resonance

W
e discuss oscillatory motion in this chapter. The kinematics of motion
with constant acceleration is presented in Chapters 2 and 3. In this
chapter, the kinematics and dynamics of motion with acceleration 
that is proportional to displacement from equilibrium is presented. The
word “oscillate” means to swing back and forth. Oscillation occurs
when a system is disturbed from a position of stable equilibrium. Many

familiar examples exist: surfers bob up and down waiting for the right wave, clock
pendulums swing back and forth, and the strings and reeds of musical instruments
vibrate.

Other, less familiar examples are the oscillations of air molecules in a sound
wave and the oscillations of electric currents in radios, television sets, and metal
detectors. In addition, many other devices rely on oscillatory motion to function.

In this chapter, we deal mostly with the most fundamental type of oscillatory
motion—simple harmonic motion. We also consider both damped and
driven oscillations.

14
C H A P T E R

How does a mechanic installing

monster truck shock absorbers

determine which size shock

absorber to use? (See Example 14-13.)

?

457

P A R T  I I OSCILLATIONS AND WAVES

MONSTER TRUCKS CAN POWER OVER
JUST ABOUT ANYTHING, BUT WHAT
KEEPS THESE GIANT TRUCKS FROM
THROWING THEIR DRIVERS RIGHT OUT
OF THEIR SEATS? MONSTER TRUCKS
HAVE MONSTER-SIZE SHOCK
ABSORBERS. THESE GIANT SHOCK
ABSORBERS HELP DAMPEN THE
OSCILLATION OF THE VEHICLE,
PROVIDING A SMOOTHER RIDE AS THE
OPERATOR DRIVES OVER TOUGH
TERRAIN OR EVEN OTHER TRUCKS.
(Jeff Greenberg/Photoedit.)
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Equilibrium

m

x

F I G U R E  1 4 - 1 An object and spring on a
frictionless surface. The displacement 
measured from the equilibrium position, is
positive if the spring is stretched and negative
if the spring is compressed.

x,

A

t

x

F I G U R E  1 4 - 2 A marking pen is attached
to a mass on a spring, and the paper is pulled
to the left. As the paper moves with constant
speed, the pen traces out the displacement 
as a function of time (Here, we have chosen 
to be positive when the spring is compressed.)

xt.
x

* Hooke’s law is introduced in Chapter 4, Section 5.

14-1 SIMPLE HARMONIC MOTION

A common, very important, and very basic kind of oscillatory motion is simple har-
monic motion such as the motion of a solid object attached to a spring (Figure 14-1).
In equilibrium, the spring exerts no force on the object. When the object is displaced
an amount from its equilibrium position, the spring exerts a force as given by
Hooke’s law:*

14-1

LINEAR RESTORING FORCE

where is the force constant of the spring, a measure of the spring’s stiffness. The
minus sign indicates that the force is a restoring force; that is, it is opposite 
to the direction of the displacement from the equilibrium position. Combining
Equation 14-1 with Newton’s second law we have

or

14-2

The acceleration is proportional to the displacement and the minus sign indicates
that the acceleration and the displacement are oppositely directed. This relation is
the defining characteristic of simple harmonic motion and can be used to identify
systems that will exhibit it:

In simple harmonic motion, the acceleration, and thus the net force, are
both proportional to, and oppositely directed from, the displacement from
the equilibrium position.

CONDITIONS FOR SIMPLE HARMONIC MOTION

The time it takes for a displaced object to execute a complete cycle of oscillatory
motion—from one extreme to the other extreme and back—is called the period
The reciprocal of the period is the frequency which is the number of cycles per
unit of time:

14-3

The unit of frequency is the cycle per second which is called a hertz (Hz).
For example, if the time for one complete cycle of oscillation is the frequency
is 4.0 Hz.

Figure 14-2 shows how we can experimentally obtain versus for a mass on a
spring. The general equation for such a curve is

14-4

POSITION IN SIMPLE HARMONIC MOTION

where and are constants. The maximum displacement from equilib-
rium is called the amplitude The argument of the cosine function, isvt � d,A.

xmaxdA, v,

x � A cos(vt � d)

tx

0.25 s,
(cy>s),

f �
1
T

f,
T.

ax � �
k
m
x aor

d2x
dt2 � �

k
m
xb

�kx � max

(Fx � max),

k

Fx � �kx

�kx,x
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The swaying of the Citicorp Building in New
York City during high winds is reduced by
this tuned-mass damper mounted on an
upper floor. It consists of a 400-ton sliding
block connected to the building by a spring.
The force constant is chosen so that the
natural frequency of the spring-block system
is the same as the natural sway frequency of
the building. Set into motion by winds, the
building and damper oscillate out of
phase with each other, thereby significantly
reducing the swaying. (Citibank.)

180°

called the phase of the motion, and the constant is called the phase constant,
which equals the phase at [Note that 
thus, whether the equation is expressed as a cosine function or a sine function sim-
ply depends on the phase of the oscillation at If we have just one oscillating
system, we can always choose so that If we have two systems oscillat-
ing with the same frequency but with different phases, we can choose for one
of them. The equations for the two systems are then

and

If the phase difference is 0 or an integer times then the systems are said to be
in phase. If the phase difference is or an odd integer times then the systems
are said to be out of phase.

We can show that Equation 14-4 is a solution of Equation 14-2 by differentiating
twice with respect to time. The first derivative of gives the velocity 

14-5

VELOCITY IN SIMPLE HARMONIC MOTION

Differentiating velocity with respect to time gives the acceleration:

14-6

Substituting for (see Equation 14-4) gives

14-7

ACCELERATION IN SIMPLE HARMONIC MOTION

Comparing (Equation 14-7) with (Equation 14-2), we see
that is a solution of (Equation 14-2) if

14-8

The amplitude and the phase constant can be determined from the initial po-
sition and the initial velocity of the system. Setting in 
gives

14-9

Similarly, setting in gives

14-10

By using these equations, we can determine and in terms of and 
The period is the shortest time interval satisfying the relation

for all Substituting into this relation using (Equation 14-4)
gives

� A cos(vt � d � vT)
A cos(vt � d) � A cos[v(t � T) � d]

x(t) � A cos(vt � d)t.

x(t) � x(t � T)

T
v.v0x ,x0 ,dA

v0x � �Av sind

vx � dx>dt � �Av sin(vt � d)t � 0

x0 � A cosd

x � A cos(vt � d)t � 0v0xx0

dA

v � A km
d2x>dt2 � �(k>m)xx � A cos(vt � d)

ax � �(k>m)xax � �v2x

ax � �v2x

A cos(vt � d)x

ax �
dvx
dt

�
d2x
dt2 � �v2A cos(vt � d)

vx �
dx
dt

� �vA sin(vt � d)

vx:xx

180°
p,pd

2p,d

x2 � A2 cos(vt � d)

x1 � A1 cos(vt)

d � 0
d � 0.t � 0
t � 0.]

cos(vt � d) � sin(vt � d � [p>2]);t � 0.
d

See

Math Tutorial for more

information on 

Trigonometry



At just off resonance, the
amplitude drops by a factor of 20.

This is not surprising, because the
width of the resonance is only
0.0957 rad>s.

¢v

1 rad>s
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Astronaut Alan L. Bean measures his body
mass during the second Skylab mission by
sitting in a seat attached to a spring and
oscillating back and forth. The total mass 
of the astronaut plus the seat is related to 
his frequency of vibration by Equation 14-12.
(NASA.)

The cosine (and sine) function repeats in value when the phase increases by 
so

The constant is called the angular frequency. It has units of radians per second
and dimensions of inverse time, the same as angular speed, which is also designated
by Substituting for in Equation 14-4 gives

We can see by inspection that each time increases by the ratio increases by
1, the phase increases by and one cycle of the motion is completed.

The frequency is related to the angular frequency by

14-11

Because the frequency and period of an object on a spring are related
to the force constant and the mass by

14-12

The frequency increases with increasing (spring stiffness) and decreases with
increasing mass. Equation 14-12 provides a way to measure the inertial mass of an
astronaut in a “weightless” environment.

k

f �
1
T

�
1

2pA km

mk
v � 2k>m ,

v � 2p
1
T

� 2pf

2p,
t>TT,t

x � A cosa2p
t
T

� db
v2p>Tv.

v

vT � 2p or v � 2p a 1
T
b

2p,

!

PRACTICE PROBLEM 14-1

A 0.80-kg object is attached to a spring that has a force constant (a) Find the
frequency and period of motion of the object when it is displaced from equilibrium and
then released. (b) Repeat Part (a) except with a 1.6-kg object attached to the spring in place
of the 0.80-kg object. Hint: Review Example 14-4 first.

k � 400 N>m.

PROBLEM-SOLVING STRATEGY

Solving Simple Harmonic Motion Problems

PICTURE Choose the origin of the axis at the equilibrium position. 
For a spring, choose the direction so that is positive if the spring is
extended.

SOLVE Do not use the kinematic equations for constant acceleration. Instead,
use the equations developed for simple-harmonic motion.

CHECK Make sure your calculator is in the appropriate mode 
(degrees or radians) when evaluating trigonometric functions and their
arguments.

x�x
x
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Surfers waiting. (David Pu’u/CORBIS.)

Example 14-1 Riding the Waves

You are sitting on a surfboard that is riding up and down on some swells. The board’s
vertical displacement is given by

(a) Find the amplitude, angular frequency, phase constant, frequency, and period of the
motion. (b) Where is the surfboard at (c) Find the velocity and acceleration as
functions of time (d) Find the initial values of the position, velocity, and acceleration of the
surfboard.

PICTURE We find the quantities asked for in (a) by comparing the equation of motion

with the standard equation for simple harmonic motion, Equation 14-4. The velocity and
acceleration are found by differentiating 

SOLVE

y(t).

y � (1.2 m)cosa 1
2.0 s

t �
p

6
b

t.
t � 1.0 s?

y � (1.2 m)cosa 1
2.0 s

t �
p

6
by

(a) 1. Compare this equation with 
(Equation 14-4) to get and d:A, v,

y � A cos(vt � d)

p>6 radd �0.50 rad>sv �1.2 mA �

y � (1.2 m)cosa 1
2.0 s

t �
p

6
b

2. The frequency and period are found from v:

13 sT �
1
f

�
1

0.0796 Hz
� 12.6 s �

0.080 Hzf �
v

2p
�

0.50 rad>s
2p

� 0.0796 Hz �

(b) Set to find the surfboard’s position above
mean sea level:
t � 1.0 s 0.62 my � (1.2 m)cos c (0.50 rad>s)(1.0 s) �

p

6
d �

(c) The velocity and acceleration are obtained from the
position by differentiation with respect to time:

�(0.30 m>s2) cos c(0.50 rad>s)t �
p

6
d�

� �(0.50 rad>s)2(1.2 m)cos c (0.50 rad>s)t �
p

6
d

ay �
dvy
dt

�
d
dt

[�vA sin(vt � d)] � �v2 A cos(vt � d)

�(0.60 m>s) sin c(0.50 rad>s)t �
p

6
d�

� �(0.50 rad>s)(1.2 m)sin c(0.50 rad>s)t �
p

6
d

vy �
dy

dt
�
d
dt

[A cos(vt � d)] � �vA sin(vt � d)

(d) Set to find and a0y:y0 , v0y ,t � 0

�0.26 m>s2a0y � �(0.30 m>s2) cos
p

6
�

�0.30 m>sv0y � �(0.60 m>s) sin
p

6
�

1.0 my0 � (1.2 m)cos
p

6
� 1.04 �

CHECK We can check the plausibility of the Part (d) results using (Equation 14-7)
at with and Substituting into Equation 14-7 gives

the same as the third Part (d) result.a0y � �v2y0 � �(0.50 rad>s)2(1.04 m) � �0.26 m>s2,
v � 0.50 rad>s.y � 1.04 mt � 0,

ay � �v2y
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† For many musical instruments, there is a slight dependence of frequency on amplitude. The vibration of an oboe reed,
for example, is not exactly simple harmonic; thus its pitch depends slightly on how hard it is blown. This effect can be
corrected for by a skilled musician.

Figure 14-3 shows two identical masses attached to identi-
cal springs and resting on a horizontal frictionless surface. The
spring attached to object 2 is stretched 10 cm and the spring at-
tached to object 1 is stretched 5 cm. If they are released at the
same time, which object reaches the equilibrium position first?

According to Equation 14-12, the period depends only on
and and not on the amplitude. Because and are the

same for both systems, the periods are the same. Thus, the
objects reach the equilibrium position at the same time. The
second object has twice as far to go to reach equilibrium, but
it will also have twice the speed at any given instant. Figure
14-4 shows a sketch of the position functions for the two ob-
jects. This sketch illustrates an important general property of
simple harmonic motion:

The frequency (and thus the period) of simple har-
monic motion is independent of the amplitude.

The fact that the frequency in simple harmonic motion is
independent of the amplitude has important consequences in
many fields. In music, for example, it means that when a note
is struck on the piano, the pitch (which corresponds to the
frequency) does not depend on how loudly the note is played
(which corresponds to the amplitude).† If changes in ampli-
tude had a large effect on the frequency, then musical instru-
ments would be unplayable.

mkmk Equilibrium 5 cm

10 cm

2

1

F I G U R E  1 4 - 3 Two identical mass-spring systems.

10

5

–10

–5

x, cm

t, s

Object 2

Object 1

F I G U R E  1 4 - 4 Plots of versus for the systems in Figure 14-3.
Both reach their equilibrium positions at the same time.

tx

Example 14-2 An Oscillating Object

An object oscillates with angular frequency At the object is at
with an initial velocity (a) Find the amplitude and phase constant

for the motion. (b) Write as a function of time.

PICTURE The initial position and velocity give us two equations from which to determine
the amplitude and the phase constant 

SOLVE

d.A

x
vx � �25 cm>s.x � 4.0 cm

t � 0,v � 8.0 rad>s.

and

vx �
dx
dt

� �vA sin(vt � d)

x � A cos(vt � d)(a) 1. The initial position and velocity are related to the
amplitude and phase constant. The position is given by
Equation 14-4. The velocity is found by taking the
derivative with respect to time:

2. At the position and velocity are:t � 0 and v0x � �vA sindx0 � A cos d

3. Divide these equations to eliminate A:
v0x

x0

�
�vA sind
A cosd

� �v tand

4. Substituting numerical values yields d: so

0.66 rad� 0.663 rad �

d � tan�1a�
v0x

vx0

b � tan�1 c� �25 cm>s
(8.0 rad>s)(4.0 cm)

d
tand � �

v0x

vx0



Try It Yourself

T
4

T
2

3T
4 T

x

t

vx

t

ax

t

A

A

2A-◊

◊

F I G U R E  1 4 - 5 Plots of and as functions of time for
At the displacement is maximum, the velocity is

zero, and the acceleration is negative and equal to The
velocity becomes negative as the object moves back toward its
equilibrium position. After one quarter-period the
object is at equilibrium, and the velocity has its
minimum value of At the displacement is the
velocity is again zero, and the acceleration is At

and vx � �vA.t � 3T>4, x � 0, ax � 0,
�v2A.

�A,t � T>2,�vA.
x � 0, ax � 0,

(t � T>4),

�v2A.
t � 0,d � 0.

taxx, vx
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If the phase constant is Equations 14-4, 14-5, and 14-6 then become

14-13a
14-13b

and

14-13c

These functions are plotted in Figure 14-5.

ax � �v2A cos vt

vx � �vA sin vt
x � A cos vt

0,d

5. The amplitude can be found using either the or 
equation. Here we use x0:

v0xx0 5.1 cmA �
x0

cos d
�

4.0 cm
cos 0.663

�

(b) Comparing with Equation 14-4 yields x: (5.1 cm)cos[(8.0 s�1)t � 0.66]x �

CHECK To see if the Part-(b) result is plausible, we set 
equal to zero and see if That is, Thus, the
Part-(b) result is plausible.

x � (5.1 cm) cos[(0) � 0.66] � 4.0 cm.x � 4.0 cm.
t(x � (5.1 cm) cos[(8.0 s�1)t � 0.66])

Example 14-3 A Block on a Spring

A 2.00-kg block is attached to a spring as in Figure 14-1. The force constant of the spring is
The block is held a distance 5.00 cm from the equilibrium position and is re-

leased at (a) Find the angular frequency the frequency and the period (b) Write
as a function of time.

PICTURE For Part (a) use Equations 14-8 and 14-12 For Part (b) use Equation 14-4.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

x
T.fv,t � 0.

k � 196 N>m.

Steps Answers

2. Use your result to find and T.f 0.635 sT �1.58 Hzf �

(a) 1. Calculate from v � 2k>m .v 9.90 rad>sv �

3. Find and from the initial conditions.dA d � 0.00A � 5.00 cm

(b) Write using your results for and d.A, v,x(t) (5.00 cm)cos[(9.90 s�1)t]x �

CHECK The block was released from rest, so we expect the velocity at to be zero.
To verify that our Part-(b) result is correct, we take the derivative of the expression

and evaluate it at That is, 
Evaluating this at gives as

expected.
vx(0) � �(4.95 cm>s) sin(0) � 0,t � 0�(4.95 cm>s) sin[(9.90 s�1)t].

�vx(t) � dx>dtt � 0.x � (5.00 cm)cos[(9.90 s�1)t]

t � 0



O

A

y

x

◊t

v

δ

◊ = v/A

t = 0θ

(a)

O

A

y

x

◊

v

θ

θ

θv sinθ

θx = A cos

v = ◊A

(b)

F I G U R E  1 4 - 6 A particle moves in a
circular path with constant speed. (a) Its 
component of position describes simple
harmonic motion, and (b) its component of
velocity describes the velocity of the simple
harmonic motion.

x

x
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Example 14-4 Speed and Acceleration of an Object on a Spring

Consider an object on a spring whose position is given by 
(a) What is the maximum speed of the object? (b) When does this maximum speed first occur
after (c) What is the maximum of the acceleration of the object? (d) When does the
maximum of the magnitude of the acceleration first occur after 

PICTURE Because the object is released from rest, and the position, velocity, and
acceleration are given by Equations 14-13a, b, and c.

SOLVE

d � 0,

t � 0?
t � 0?

x � (5.00 cm)cos(9.90 s�1t).

(a) 1. Equation 14-13a, with gives the position. We get
the velocity by taking the derivative with respect to time:

d � 0,

so vx �
dx
dt

� �vA sin vt

x � A cos vt

2. Maximum speed occurs when ƒsin vt ƒ � 1:v

so

49.5 cm>s�

vmax � vA � (9.90 rad>s)(5.00 cm)
v � vA ƒsin vt ƒ

(b) 1. first occurs when vt � p>2:ƒsin vt ƒ � 1 ƒsin vt ƒ � 1 ⇒ vt �
p

2
,

3p
2

,
5p
2

, Á

2. Solve for when vt � p>2:t 0.159 st �
p

2v
�

p

2(9.90 s�1)
�

(c) 1. We find the acceleration by taking the derivative of the
velocity, obtained in step 1 of Part (a):

ax �
dvx
dt

� �v2A cos vt

2. Maximum acceleration corresponds to cos vt � �1. 490 cm>s2 � 1
2 g�amax � v2A � (9.90 rad>s)2(5.00 cm)

(d) The magnitude of the acceleration is maximum when
which is when vt � 0, p, 2p, Á :ƒcos vt ƒ � 1,

0.317 st �
p

v
�

p

9.90 s�1 �

CHECK We expect to first be maximum after when reaches its first minimum,
and we expect to reach its first minimum one-half cycle after release. That is, we expect 
to be maximum when where is the period. The period and the angular frequency
are related by (Equation 14-11). Substituting for in our Part (d)
result gives as expected.

SIMPLE HARMONIC MOTION AND CIRCULAR MOTION

A relation exists between simple harmonic motion and circular motion with con-
stant speed. Imagine a particle moving with constant speed in a circle of radius 
(Figure 14-6a). Its angular displacement relative to the direction is given by

14-14u � vt � d

�x
Av

t � p>(2p>T) � 1
2T,

v2p>Tv � 2pf � 2p>T Tt � 1
2T,

ƒax ƒx
xt � 0ƒax ƒ



Bubbles foaming off the edge of a rotating
propeller that is moving through water
produce a sinusoidal pattern. (Institute for
Marine Dynamics.)
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where is the angular displacement at time and is the angular
speed of the particle. The component of the particle’s position (Figure 14-6b) is

which is the same as Equation 14-4 for simple harmonic motion.

When a particle moves with constant speed in a circle, its projection onto a
diameter of the circle moves with simple harmonic motion (see Figure 14-6).

The speed of a particle moving in a circle is where is the radius. For the
particle in Figure 14-6b, so its speed is The projection of the velocity
vector onto the axis gives Substituting for and gives

which is the same as Equation 14-5 for simple harmonic motion. The relation
between circular motion and simple harmonic motion is nicely demonstrated by
the image of the bubble trail produced by a rotating boat propeller.

14-2 ENERGY IN SIMPLE HARMONIC MOTION

When an object on a spring undergoes simple harmonic motion, the system’s po-
tential energy and kinetic energy vary with time. Their sum, the total mechanical
energy is constant. Consider an object a distance from equilibrium,
acted on by a restoring force The system’s potential energy is

This is Equation 7-4. For simple harmonic motion, Substituting
gives

14-15

POTENTIAL ENERGY IN SIMPLE HARMONIC MOTION

The kinetic energy of the system is

where is the object’s mass and is its speed. For simple harmonic motion,
Substituting gives

Then using 

14-16

KINETIC ENERGY IN SIMPLE HARMONIC MOTION

The total mechanical energy is the sum of the potential and kinetic energies:

� 1
2 kA2[cos2(vt � d) � sin2(vt � d)]

E � U � K � 1
2 kA2 cos2(vt � d) � 1

2 k A sin2(vt � d)

E

K � 1
2 kA2 sin2(vt � d)

v2 � k>m,

K � 1
2mv2A2 sin2(vt � d)

vx � �vA sin(vt � d).
vm

K � 1
2mv2

U � 1
2 kA2 cos2(vt � d)

x � A cos(vt � d).

U � 1
2 kx2

�kx.
xE � K � U,

vx � �v sinu � �vA sin(vt � d)

uvvx � �v sin u.x
Av.r � A,

rrv,

x � A cosu � A cos(vt � d)

x
v � v>At � 0d



U

U

K

–A A0 x

U =    kx2

Etotal =    kA21
2

1
2

F I G U R E  1 4 - 8 The potential-energy
function for an object of mechanical
mass m on a (massless) spring of force constant

The horizontal blue line represents the total
mechanical energy for an amplitude of 
The kinetic energy is represented by the
vertical distance so
the motion is restricted to �A � x � �A.

K � Etotal � U. Etotal � U,
K

A.Etotal

k.

U � 1
2 kx2
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Because

14-17

TOTAL MECHANICAL ENERGY IN SIMPLE HARMONIC MOTION

This equation reveals an important general property of simple harmonic motion:

The total mechanical energy in simple harmonic motion is proportional to
the square of the amplitude.

For an object at its maximum displacement, the total energy
is all potential energy. As the object moves toward its equi-
librium position, the kinetic energy of the system increases
and its potential energy decreases. As the object moves
through its equilibrium position, the kinetic energy of the ob-
ject is maximum, the potential energy of the system is zero,
and the total energy is kinetic.

As the object moves past the equilibrium point, its kinetic
energy begins to decrease, and the potential energy of the
system increases until the object again stops momentarily at
its maximum displacement (now in the other direction). At
all times, the sum of the potential and kinetic energies is con-
stant. Figure 14-7b and show plots of and versus time.
These curves have the same shape except that one is zero
when the other is maximum. Their average values over one
or more cycles are equal, and because their aver-
age values are given by

14-18

In Figure 14-8, the potential energy is graphed as a function
of The total energy is constant and is therefore plotted as
a horizontal line. This line intersects the potential-energy
curve at and At these two points, called the
turning points, oscillating objects reverse direction and head
back toward the equilibrium position. Because the
motion is restricted to �A � x � �A.

U � E,

x � �A.x � A

Ex.
U

Uav � Kav � 1
2E

U � K � E,

KUc

E � U � K � 1
2 kA2

sin2(vt � d) � cos2(vt � d) � 1,

U

0

0

t

x

t

K

0
t

0

0

(a)

(b)

(c)

−A

0

A

Etotal

Etotal

Kav =    Etotal
1
2

Uav =   Etotal
1
2

F I G U R E  1 4 - 7 Plots of and versus t.Kx, U,
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Example 14-5 Energy and Speed of an Oscillating Object

A 3.0-kg object attached to a spring oscillates with an amplitude of 4.0 cm and a period of 
2.0 s. (a) What is the total energy? (b) What is the maximum speed of the object? (c) At what
position is the speed equal to half its maximum value?

PICTURE (a) The total energy can be found from the amplitude and the force constant, and
the force constant can be found from the mass and period. (b) The maximum speed occurs
when the kinetic energy equals the total energy. (c) We can relate the position to the speed
by using conservation of energy.

SOLVE

x1

(a) 1. Write the total energy in terms of the force constant 
and amplitude A:

kE E � 1
2 kA2

2. The force constant is related to the period and mass: k � mv2 � ma2p
T
b 2

3. Substitute the given values to find E:

2.4 � 10�2 J� 2.37 � 10�2 J �

�
1
2

(3.0 kg)a 2p
2.0 s

b 2

(0.040 m)2E �
1
2
kA2 �

1
2
ma2p
T
b 2

A2

(b) To find set the kinetic energy equal to the total
energy and solve for v:

vmax ,

so 0.13 m>s� 0.126 m>s �vmax � A2E
m

� B
2(2.37 � 10�2 J)

3.0 kg

1
2mv2

max � E

(c) 1. Conservation of energy relates the position to
the speed v:

x E � 1
2mv2 � 1

2 kx2

2. Substitute and solve for It is convenient
to find in terms of and then write to
obtain an expression for in terms of A:x

E � 1
2 kA2Ex

x1.v � 1
2 vmax

so

and

�3.5 cm� �
23
2

(4.0 cm) �

x1 � �A3E
2k

� �A 3
2k
a1

2
kA2b � �

23
2
A

1
2 kx2

1 � E � 1
4E � 3

4E

� 1
4 (1

2mv2
max) � 1

2 kx2
1 � 1

4E � 1
2 kx2

1E � 1
2m(1

2 vmax)
2 � 1

2 kx2
1

CHECK As expected, the result for Part (c), step 2 has two values, one with the spring
extended, the other with the spring compressed. In addition, we expected these values to 
be equal, except for the sign. Further, the positive result is less than 4.0 cm (the amplitude is
4.0 cm), as expected.

PRACTICE PROBLEM 14-2 Calculate for this example and find from 

PRACTICE PROBLEM 14-3 An object of mass 2.00 kg is attached to a spring that has a force
constant The object is moving at when it is at its equilibrium position.
(a) What is the total energy of the object? (b) What is the amplitude of the motion?

GENERAL MOTION NEAR EQUILIBRIUM

Simple harmonic motion typically occurs when a particle is displaced slightly from
a position of stable equilibrium. Figure 14-9 is a graph of the potential energy 
versus for a force that has a position of stable equilibrium and a position of un-
stable equilibrium. As discussed in Chapter 7, the potential-energy maximum at 
on Figure 14-9 corresponds to unstable equilibrium, whereas the minimum at 
corresponds to stable equilibrium. Many smooth curves with a minimum as in
Figure 14-9 can be closely approximated near the minimum by a parabola. The
dashed curve in this figure is a parabolic curve that approximately fits near theU

x1

x2

x
U

25.0 cm>s40.0 N>m.

vmax � vA.vmaxv

*

Parabola approximating U near
point of stable equilibrium

U

x1 x2

F I G U R E  1 4 - 9 Plot of versus for a force
that has a position of stable equilibrium and
a position of unstable equilibrium (x2).

(x1)
xU



y y’

mg
k

Position with
spring
unstretched.

Equilibrium position
with mass m attached.
Spring stretches an
amount y0 = mg/k.

Object oscillates
around the equilibrium
position with a dis-
placement y’= y − y0.

Fs Fs

y0 = 

mg

m

y0y0

mg

m

F I G U R E  1 4 - 1 1 The Newton’s second
law equation for the motion of a mass on a
vertical spring is greatly simplified if the
displacement is measured from the
equilibrium position of the spring with the
mass attached.

(y�)
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stable equilibrium point. The general equation for a parabola that has a minimum
at point can be written

14-19

where and are constants. The constant is the value of at the equilibrium
position The force is related to the potential energy curve by 
Then

If we set this equation reduces to

14-20

According to Equation 14-20, the force is proportional to the displacement from
equilibrium and oppositely directed, so the motion will be simple harmonic.
Figure 14-9 shows a graph of this system’s potential energy function which
has a position of stable equilibrium at Figure 14-10 shows a potential-
energy function that has a position of stable equilibrium at The system for
this function is a small particle of mass oscillating back and forth at the bottom
of a frictionless spherical bowl.

14-3 SOME OSCILLATING SYSTEMS

OBJECT ON A VERTICAL SPRING

When an object hangs from a vertical spring, there is a downward
force in addition to the force of the spring (Figure 14-11). If we
choose downward as the positive direction, then the spring’s force
on the object is where is the extension of the spring. The net
force on the object is then

14-21

We can simplify this equation by changing to a new variable
where is the amount the spring is stretched

when the object is in equilibrium. Substituting for gives

But so
14-22

Newton’s second law gives

However, where is a constant. Thus so

Rearranging gives

which is the same as Equation 14-2 with replacing It has the now familiar
solution

where v � 2k>m .

y� � A cos(vt � d)

x.y�

d2y�

dt2 � �
k
m
y�

�ky� � m
d2y�

dt2

d2y>dt2 � d2y�>dt2,y0 � mg>ky � y� � y0,

�ky� � m
d2y

dt2

(©Fy � may)

©Fy � �ky�
ky0 � mg,

©Fy � �k(y� � y0) � mg

yy� � y0

y0 � mg>ky� � y � y0,

©Fy � �ky � mg

y�ky,
y

mg

m
x � 0.

x � x1.
U(x),

Fx � �
dU
dx

� �k(x � x1)

2B � k,

Fx � �
dU
dx

� �2B(x � x1)

Fx � �dU>dx.x � x1.
UABA

U � A � B(x � x1)
2

x1

Actual potential
energy function

Matching
parabola

U(x)

x

F I G U R E  1 4 - 1 0 Plot of versus for a
small particle oscillating back and forth at the
bottom of a spherical bowl.

xU



Context-Rich

A paper spring (under construction).
(Rhoda Peacher.)
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Thus, the effect of the gravitational force is merely to shift the equilibrium
position from to When the object is displaced from this equilibrium
position by the amount the net force is The object oscillates about this
equilibrium position with an angular frequency the same angular fre-
quency as that for an object on a horizontal spring.

A force is conservative if the work done by it is independent of the path. Both
the force of the spring and the force of gravity are conservative, and the sum of
these forces (Equations 14-21 and 14-22) also is conservative. The potential energy
function associated with the sum of these forces is the negative of the work done
plus an arbitrary integration constant. That is,

where the integration constant is the value of at the equilibrium position
Thus,

14-23

Example 14-6 Paper Springs

You are showing your nieces how to make paper party decorations using paper springs. One
niece makes a paper spring. The spring is stretched 8 cm and has a single sheet of colored
paper suspended from it. You want the decorations to bounce at approximately 
How many sheets of colored paper should be used for the decoration on that spring if it is
to bounce at 

PICTURE The frequency depends on the ratio of the force constant to the suspended mass
(Equation 14-12), and you do not know either the force constant or the mass. However,
Hooke’s law (Equation 14-1) can be used to find the required ratio from the information given.

SOLVE

1.0 cy>s?

1.0 cy>s.

U � 1
2 ky�2 � U0

(y� � 0).
UU0

U � ���ky�dy� � 1
2 ky�2 � U0

U

v � 1k>m ,
�ky�.y�,

y� � 0.y � 0
mg

1. Write the frequency in terms of the force constant 
and the mass (Equation 14-12), where is the
mass of sheets. We need to find N:N

MM
k f �

v

2p
�

1
2pA kM

2. The spring stretches a distance of 
when a single sheet of mass is suspended:m

y0 � 8.0 cm so
k
m

�
g

y0

ky0 � mg

3. The mass of sheets equals times the mass of
a single sheet:

NN M � Nm

4. Using the step-2 and step-3 results, solve for k>M: k
M

�
k
Nm

�
1
N

g

y0

5. Substitute the step-4 result into the step-1 result
and solve for N:

so

Three sheets are needed.

N �
g

(2pf)2y0

�
9.81 m>s2

4p2(1.0 Hz)2(0.080 m)
� 3.1

f �
1

2pA kM �
1

2pA 1
N

g

y0

CHECK Three or more sheets of construction paper seems plausible. Fifty or one-hundred
sheets would likely wreck a paper spring.

TAKING IT FURTHER Note that we did not need to use the value of or in this example
because the frequency depends on the ratio which equals In addition, we have ne-
glected the mass of the spring itself. Its mass is probably not negligible compared to the mass
of a few sheets of construction paper, so our step-5 result is an approximate result.

PRACTICE PROBLEM 14-4 How much is the paper spring stretched when a decoration
made from three sheets of paper is suspended from it and the paper is in equilibrium?

g>y0.k>m,
km
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Example 14-7 A Bead on a Block

A block securely attached to a spring oscillates vertically with a frequency of 4.00 Hz and an
amplitude of 7.00 cm. A tiny bead is placed on top of the oscillating block just as it reaches
its lowest point. Assume that the bead’s mass is so small that its effect on the motion of the
block is negligible. At what displacement from the equilibrium position does the bead lose
contact with the block?

PICTURE The forces on the bead are its weight downward and the upward normal force
exerted by the block. The magnitude of this normal force changes as the acceleration
changes. As the block moves upward from equilibrium, its acceleration and the acceleration of
the bead are downward and increasing in magnitude. When the acceleration reaches down-
ward, the normal force will be zero. If the block’s downward acceleration becomes even
slightly larger, the bead will leave the block.

SOLVE

1. Draw a sketch of the system (Figure 14-12). Include a coordinate axis with its origin at
the equilibrium position and with down as the positive direction:

y

g

mg

y

0

F I G U R E  1 4 - 1 22. We are looking for the value of when the
acceleration is downward. Use Equation 14-7:g

y

g � �v2y

ay � �v2y

3. Substitute for and solve for y:v2pf

so �1.55 cm� �0.0155 m �y � �
g

(2pf)2 � �
9.81 m>s2

[2p(4.00 Hz)]2

g � �(2pf)2y

CHECK The bead leaves the block when is negative, which is when the bead is above the
equilibrium position because down was chosen as the positive direction. This is as
expected.

THE SIMPLE PENDULUM

A simple pendulum consists of a string of length and a bob of mass When the
bob is released from an initial angle with the vertical, it swings back and forth
with some period The units of length, mass, and are m, kg, and respec-
tively. If we divide by the meters cancel and we are left with seconds squared,
suggesting the form If the formula for the period contains the mass, then the
unit kg must be canceled by some other quantity. But there is no combination of 
and that can cancel mass units. So the period cannot depend on the mass of the
bob. Because the initial angle is dimensionless, we cannot tell whether or not it
is a factor in the period. We will see below that for small the period is given by
T � 2p1L>g .

f0 ,
f0

g
L

1L>g .
g,L

m>s2,g,T.
f0

m.L

y
y

We might expect the period of a
simple pendulum to depend on
the mass of a pendulum bob,
the length of the pendulum, the
acceleration due to gravity and
the initial angle Find a simple
combination of some or all of
these quantities that gives the cor-
rect dimensions for the period.

f0.
g,

L
m

CONCEPT CHECK 14-1✓

A Foucault pendulum at the University of Louisville. In
1851, Leon Foucault suspended a 67-m-long pendulum
from the ceiling of the Pantheon in Paris. Because of the
rotation of Earth about its axis, the Pantheon rotates
about the pendulum. (If the Pantheon were at the North
Pole, it would rotate once every 24 hours.) The
observation of the building rotating about the plane of the
pendulum captured the imagination of the world.
(Courtesy of John Kielkopf/University of Louisville.)
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The forces on the bob are its weight and the string tension (Figure 14-13).
At an angle with the vertical, the weight has components along the
string and tangential to the circular arc in the direction of decreasing 
Using tangential components, Newton’s second law gives

14-24

where the arc length is related to the angle by Repeatedly differentiating
both sides of gives

Substituting into Equation 14-24 for and rearranging gives

14-25

Note that the mass does not appear in Equation 14-25—the motion of a pendulum
does not depend on its mass. For small and

14-26

Equation 14-26 is of the same form as Equation 14-2 for an object on a spring. Thus,
the motion of a pendulum approximates simple harmonic motion for small angular
displacements.

Equation 14-26 can be written

14-27

The period of the motion is thus

(for small oscillations) 14-28

PERIOD OF A SIMPLE PENDULUM

The solution of Equation 14-27 is

where is the maximum angular displacement.
According to Equation 14-28, the greater the length of a pendulum, the greater

the period, which is consistent with experimental observation. The period and
therefore the frequency are independent of the amplitude of oscillation (as long as
the amplitude is small). This statement is a general feature of simple harmonic
motion.

PRACTICE PROBLEM 14-5

Find the period of a simple pendulum of length 1.00 m undergoing small oscillations.

The acceleration due to gravity can be measured using a simple pendulum under-
going small oscillations.We need only measure the length and period of the pen-
dulum, and using Equation 14-28, solve for (To measure we usually measure the
time for oscillations and then divide by which minimizes measurement error.)n,n

T,g.
TL

f0

f � f0 cos(vt � d)

T �
2p
v

� 2pALg

d2f

dt2 � �v2f,  where v2 �
g

L

f V 1
d2f

dt2 � �
g

L
f

f, sin f � f,
m

d2f

dt2 � �
g

L
 sinf

d2s>dt2Ld2f>dt2

d2s
dt2 � L

d2f

dt2

s � Lf
s � Lf.fs

�mg sin f � m
d2s
dt2

(©Ft � mat)
f.mg sin f

mg cos ff

T
S

mgS

T

mg

mg cos

mg sin

s
m

L

φ

φ

φ

φ

F I G U R E  1 4 - 1 3 Forces on a pendulum
bob.

is the angular frequency—not
the angular speed—of the motion

of the pendulum.

v!
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Conceptual Example 14-8 Timing the Run

In a physics lab on one-dimensional kinematics, Liz and Bob are tasked with measuring the
time it takes for a glider released from rest on an inclined 2.00-m-long air track to travel var-
ious distances. (An air track is a virtually frictionless track.) They tilt the track by putting a
2.0-cm-thick notebook under the legs at one end of the track. They release the glider from 
the middle of the track and find the time for it to accelerate half the length of the track to be
4.8 s. They then release the glider from the high end of the track and find that the time it
takes for the glider to accelerate the entire length of the track is 4.8 s—the same time it took
to accelerate half the length of the track. Thinking that the times for the two distances can-
not be equal, they repeat both measurements, only to obtain the same results. Confused, they
ask the instructor for an explanation. Can you think of a plausible explanation?

PICTURE If the track were perfectly straight, the acceleration would be the same every-
where along the track and the time for the glider to accelerate the entire length of the track,
starting from rest, would be greater than the time for it to accelerate only half the length of
the track. If the track sagged slightly, however, then the acceleration would be greatest at the
high end of the track where the slope is steepest. What would the assumption that the track
is sagging predict?

SOLVE

1. Suppose the track sags slightly, in such a way that the track
forms a circular arc whose center of curvature is directly above
the low end of the track:

If the track sags as supposed, then the glider would move like the
bob of a simple pendulum of length where is the radius
of curvature of the track.

RL � R,

2. The period of a pendulum is independent of amplitude for
small amplitudes:

T The times measured by Liz and Bob would equal the period of
the pendulum, given by Equation 14-28. Because the period of a
pendulum is independent of amplitude (for small amplitudes), the
times measured by Liz and Bob would be expected to be equal.

T1
4

CHECK Is the amplitude of the pendulum sufficiently small when the glider is released
from the high end of the track? It is if the is much greater than 2.00 m. Equation 14-28 tells
us that the length of the pendulum is given by Substituting for 
gives justifying the supposition that the amplitudes were small.

Pendulum in an accelerated reference frame Figure 14-14a shows a simple
pendulum suspended from the ceiling of a boxcar that has acceleration relative
to the ground, to the right, and is the acceleration of the bob relative to the
ground. Applying Newton’s second law to the bob gives

14-29

If the bob remains at rest relative to the boxcar, then and

where is the equilibrium angle. Thus, is given by If the bob istan u0 � a0>g.u0u0

©Fy � T cos u0 � mg � 0
©Fx � T sin u0 � ma0

aS � aS0

©F
S

� T
S

� mgS � maS

aS
aS0 ,

R � L � 92 m,
T4 � (4.8 s)L � gT2>(4p2).

R

mg

T θ

mg ’

–ma0

(b)

mg

T
Ty

Tx

θ
a0

(a)

F I G U R E  1 4 - 1 4 (a) Simple
pendulum in apparent equilibrium
in an accelerating boxcar. Forces
are those as seen from a separate
stationary frame. (b) Forces on the
bob as seen in the accelerated
frame. Adding the pseudoforce

is equivalent to replacing 
by gS�.

gS�maS0

This clock keeps time by using a torsional
oscillator. (Courtesy of Bill Master/Alibaba.
http://yuning.en.alibaba.com.)

http://yuning.en.alibaba.com
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Try It Yourself
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moving relative to the boxcar, then where is the acceleration of the
bob relative to the boxcar. Substituting for in Equation 14-29 gives

Subtracting from both sides of this equation and rearranging terms gives

where Thus, by replacing by and by in Equation 14-29 we
can solve for the motion of the bob relative to the boxcar. The vectors and 
are shown in Figure 14-14b. If the string breaks so that then our equation
gives which means that is the free-fall acceleration in the reference
frame of the boxcar. If the bob is displaced slightly from equilibrium, it will oscil-
late with a period given by Equation 14-28 with replaced by 

PRACTICE PROBLEM 14-6

A simple pendulum of length 1.00 m is in a boxcar that is accelerating horizontally with
acceleration Find and the period 

Large-Amplitude oscillations When the amplitude of a pendulum’s os-
cillation becomes large, its motion continues to be periodic, but it is no longer
a simple harmonic. For an angular amplitude the period can be shown to
be given by

14-30

PERIOD FOR LARGE-AMPLITUDE OSCILLATIONS

where is the period for very small amplitudes. Figure 14-15 shows
as a function of amplitude 

Example 14-9 A Pendulum Clock

Asimple pendulum clock is calibrated to keep accurate time at an amplitude of When
the amplitude has decreased to the point where it is very small, does the clock gain or lose time?
About how much time will the clock gain or lose in one day if the amplitude remains very small.

PICTURE To calculate the period when the angular amplitude is retain only the first
correction term to Equation 14-30. That is, use

This equation provides sufficient accuracy because is a fairly small amplitude. The
amplitude of the pendulum slowly decreases due to the effects of air drag.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

10°

T � T0 c1 �
1
22 sin2 1

2
f0 d

10°,

f0 � 10.0°.

f0.T>T0

T0 � 2p2L>g
T � T0 c1 �

1
22 sin2 1

2
f0 �

1
22 a3

4
b 2

 sin4 1
2
f0 � Á d
f0 ,

T.g�a0 � 3.00 m>s2.

g�.gT

gS�aS� � gS�,
T
S

� 0,
mgS�T

S
aS�aSgS�gSgS� � gS � aS0.

T
S

� mgS� � maS�

maS0

©F
S

� T
S

� mgS � m(aS� � aS0)

aS
aS�aS� � aS � aS0,

Steps Answers

1. Use Equation 14-30 to determine if is greater or less than T.T0 T decreases as decreases, so the clock gains time.f0

2. Use Equation 14-30 to find the percentage change 
for Use only the first correction term.f � 10°.

[(T � T0)>T] � 100% 0.190%

3. Find the number of minutes in a day. There are 1440 minutes in a day.

4. Combine steps 2 and 3 to find the change in the number of
minutes in a day.

The gain is 2.73 min>d

F I G U R E  1 4 - 1 5 Note that the values on
the vertical axis range from 1 to 1.06. Over a
range of from 0 to 0.8 rad (46°), the period
varies by about 5 percent.

f



φ

F I G U R E  1 4 - 1 6 This torsional pendulum
consists of a solid disk suspended by a steel wire.
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CHECK The first correction term in Equation 14-30 is so
and This value agrees

with our step-2 result.

TAKING IT FURTHER To avoid this gain, pendulum-clock mechanisms are designed to
keep the amplitude fairly constant.

THE TORSIONAL OSCILLATOR

A system that undergoes rotational oscillations in a variation of simple-harmonic
motion is called a torsional oscillator. Figure 14-16 shows a torsional oscillator
consisting of a solid disk suspended from a steel wire. If the angular displacement
of the disk from the equilibrium position is then the wire exerts a linear restor-
ing torque on the disk given by

14-31

where is the torsional constant of the wire. Substituting for in the equa-
tion (Newton’s second law for rotational motion) gives

where the angular acceleration Substituting for and rear-
ranging gives

14-32

which is identical to Equation 14-2, except with in place of in place of 
and in place of Thus, the solution to Equation 14-32 can be written by directly
substituting into Equation 14-4. Doing so gives

14-33

where is the angular frequency—and not the angular speed—of the
motion. The period is therefore

14-34

PERIOD OF A TORSIONAL OSCILLATOR

THE PHYSICAL PENDULUM

A rigid object free to rotate about a horizontal axis that is not through its center of
mass will oscillate when displaced from equilibrium. Such a system is called a
physical pendulum. Consider a plane figure with a rotation axis a distance 
from the figure’s center of mass and displaced from equilibrium by the angle 
(Figure 14-17). The torque about the axis has a magnitude For suffi-
ciently small values of we can simplify our expression for the torque using the
small-angle approximation Thus, for small angles the torque is a linear
restoring torque given by

14-35

Comparing this with (Equation 14-31), we can see that for small angular
displacements the physical pendulum is a torsional oscillator with a torsional
constant given by

k �MgD

t � �kf

t � �MgDf.

(sin f � f).
f,

MgD sin f.
f

D

T �
2p
v

� 2pA Ik

v � 2k>I f � f0 cos(vt � d)

x.f

k,m, kI

d2f

dt2 � �
k

I
f

ad2f>dt2a � d2f>dt2.

�kf � Ia

t � Ia
t�kfk

t � �kf

t

f

(T � T0)>T � (1.00190T0 � T0)>1.00190T0 � 0.00190.T � 1.00190T0

1
4 sin2(10.0°>2) � 1.90 � 10�3,

*

*

Mg

φ
D

Axis

cm
D sin φ

F I G U R E  1 4 - 1 7 A physical pendulum.

All mechanical clocks keep time because the
period of the oscillating part of the
mechanism remains constant. The period of
any pendulum changes with changes in
amplitude. However, the driving mechanism
of a pendulum clock maintains the amplitude
at a constant value. (Richard Menga/
Fundamental Photographers.)
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Thus, the motion of the pendulum is described by Equation 14-33 with 
The period is therefore

14-36

PERIOD OF A PHYSICAL PENDULUM

For large amplitudes, the period is given by Equation 14-30, with given by
Equation 14-36. For a simple pendulum of length the moment of inertia is

and Then, Equation 14-36 gives 
the same as Equation 14-28.

Example 14-10 A Comfortable Pace

You claim that the pace of a comfortable walk can be predicted if we model each leg as a
physical pendulum. Your teacher is skeptical about this claim and asks you to back it up. Is
your claim correct?

PICTURE A simple model of each leg is that of a uniform rod pivoted at one end. Each leg
swings back and forth once every two steps, so the time required to walk 10 steps is 
where is the period of the “pendulum.” How long will it take you to complete 10 steps at
a leisurely pace if your prediction is correct? Model your leg as a 0.90-m-long uniform rod
pivoted about an axis through one end.

SOLVE

1. Draw and label a uniform thin rod pivoted 
about one end (Figure 14-18):

T
5T,

T � 2p2ML2>(MgL) � 2p2L>g ,D � L.I �ML2
L,

T0

T �
2p
v

� 2pA I
MgD

k �MgD.

The period of a physical pendulum
depends on the distribution of the

mass, but not on the total mass The
moment of inertia I is proportional to

so the ratio is independent
ofM.

I>MM,

M.

cm

Axis
P

L/2

L/2

F I G U R E  1 4 - 1 8 The distance between
the rotation axis and the center of mass is L>2.

!

2. The period of a physical pendulum is given by
(Equation 14-36):T� 2p2I>MgD T � 2pA I

MgD

3. about the end is found in Table 9-1 and is
half the length of the rod:

DI and D � 1
2LI � 1

3ML2

4. Substitute the expressions for and to find T:DI T � 2pC
1
3ML2

Mg(1
2L)

� 2pA2L
3g

5. The length and the time for 
10 steps is 5T:

L � 0.90 m 5T � 5 # 2pA2L
3g

� 10pB
2(0.90 m)

3(9.81 m>s2)
� 7.8 s

6.

CHECK Long-legged animals, like elephants and giraffes, seem to walk at a slow, lumber-
ing pace, and short-legged animals, like mice and sandpipers, walk at a fast pace. This
conclusion is predicted by this model, because the period of a long pendulum is greater than
that of a short pendulum.

My hypothesis has merit. My hip joint is about 90 cm above 
the floor and it took me almost 6.7 s to complete 10 leisurely
steps. The upper half of my leg is more massive than the lower
half, so modeling my leg as a uniform rod is not completely
appropriate. In addition, what is a leisurely pace is subject to
interpretation.



Try It Yourself

0

1

2

3

1 20
x, m

T, s

F I G U R E  1 4 - 2 0 Plot of the period versus
the distance from the pivot to the center of
mass. For the pivot point is beyond
the end of the rod.

x 
 0.5 m
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P

L/2
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x

F I G U R E  1 4 - 1 9 The distance between
the rotation axis and the center of mass is x.
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Example 14-11 A Swinging Rod

A uniform rod of mass and length is free to swing about a horizontal axis perpendicular
to the rod and a distance from the rod’s center. Find the period of oscillation for small
angular displacements of the rod.

PICTURE The period is given by Equation 14-36. The center of mass is at the center of the
rod, so the distance from the center of mass to the rotation axis is (Figure 14-19). The mo-
ment of inertia of a uniform rod can be found from the parallel-axis theorem 
(Equation 9-13), where can be found in Table 9-1.

SOLVE

1. The period is given by Equation 14-36:

Icm

I � Icm �MD2
x

x
LM

T � 2pA I
MgD

2. and the moment of inertia is given by
the parallel-axis theorem. The moment of
inertia about a parallel axis through the center
of mass is found in Table 9-1:

D � x,

I � Icm �MD2 � 1
12ML2 �Mx2

D � x

3. Substitute these values to find T:

2pD
( 1

12L2 � x2)
gx

�

T � 2pA I
MgD

� 2pD
( 1

12ML2 � Mx2)
Mgx

CHECK As as expected. (If the rotation axis of the rod passes through its cen-
ter of mass, we do not expect gravity to exert a restoring torque.) Also, if we get

the same result as found in step 4 of Example 14-10. In addition, if 
the expression for the period approaches which is the expression for the pe-
riod of a simple pendulum of length (Equation 14-28).

TAKING IT FURTHER The period versus distance from the center of mass for a rod of
length 1.00 m is shown in Figure 14-20.

PRACTICE PROBLEM 14-7 Show that the step-3 expression for the period gives the same
period for as for 

Example 14-12 The Swinging Rod Revisited

Find the value of in Example 14-11 for which the period is a minimum.

PICTURE At the value of for which is a minimum, 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

dT>dx � 0.Tx

x

x � L>2.x � L>6
xT

x
T � 2p2x>g ,

xW LT � 2p22L>3g ,
x � L>2xS 0, TS 

Steps Answers

1. The period, given by the Example 14-11 result, is
where Find the period both

as approaches zero and as approaches infinity.xx
Z � ( 1

12L2 � x2)>x.T � 2p1Z>g ,

where 

As and 

As and TS .xS , ZS ,

TS .xS 0, ZS ,

Z � ( 1
12L2 � x2)>xT � 2pC( 1

12L2 � x2)
gx

� 2pAZg
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CHECK We expect an answer between 0 and 0.5L. The step-2 result of meets that
expectation.

14-4 DAMPED OSCILLATIONS

Left to itself, a spring or a pendulum eventually stops oscillating because the me-
chanical energy is dissipated by frictional forces. Such motion is said to be damped.
If the damping is large enough, as, for example, a pendulum submerged in
molasses, the oscillator fails to complete even one cycle of oscillation. Instead, it just
moves toward the equilibrium position with a speed that approaches zero as the
object approaches the equilibrium position. This type of motion is referred to as
overdamped. If the damping is small enough that the system oscillates with an am-
plitude that decreases slowly with time—like a child on a playground swing when
a parent stops providing a push each cycle—the motion is said to be underdamped.
Motion with the minimum damping for nonoscillatory motion is said to be
critically damped. (With any less damping, the motion would be underdamped.)

Underdamped motion The damping force exerted on an oscillator such as the
one shown in Figure 14-21a can be represented by the empirical expression

where is a constant. Such a system is said to be linearly damped. The discussion
here is for linearly damped motion. Because the damping force is opposite to
the direction of motion, it does negative work and causes the mechanical energy of

b

F
S

d � �bvS

x � 0.289L

2. The period goes to infinity as approaches zero and as 
approaches infinity. Somewhere in the range the
period is a minimum. To find the minimum, evaluate 
set it equal to zero, and solve for x.

dT>dx,
0 	 x 	 

xx

throughout the range so

L

212
� 0.289L

dZ
dx

� 0 ⇒ x �

dT
dx

� 0 ⇒
dZ
dx

� 0.

0 	 x 	 ,Z 
 0

dT
dx

�
dT
dZ

dZ
dx

�
p

2gZ�1>2 dZ
dx

m

(a) (b)

t

A0

x

F I G U R E  1 4 - 2 1 (a) A damped oscillator suspended in a viscous liquid. The motion of
the cylinder is damped by drag forces. (b) Damped oscillation curve.
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the system to decrease. This energy is proportional to the square of the amplitude
(Equation 14-17), and the square of the amplitude decreases exponentially with in-
creasing time. That is,

14-37

DEFINITION—TIME CONSTANT

where is the amplitude, is the amplitude at and is the decay time or
time constant. The time constant is the time for the energy to change by a factor
of

The motion of a damped system can be obtained from Newton’s second law. For
an object of mass on a spring that has a force constant the net force is

Setting the net force equal to the mass times the acceleration
we obtain

which we rearrange to appear as

14-38

DIFFERENTIAL EQUATION FOR A DAMPED OSCILLATOR

The exact solution of this equation can be found using standard methods for solving
differential equations. The solution for the underdamped case is

14-39

where is the initial amplitude. The frequency is related to the natural frequency
(the frequency with no damping) by

14-40

For a mass on a spring For weak damping, and is
nearly equal to The dashed curves in Figure 14-21b correspond to and

where is given by

14-41

By squaring both sides of this equation and comparing the results with 
Equation 14-37, we have

14-42

If the damping constant is gradually increased, the angular frequency decreases
until it becomes zero at the critical value

14-43bc � 2mv0

v�b

t �
m
b

A � A0e
�(b>2m)t

Ax � �A,
x � Av0.

v�b>(2mv0) V 1v0 � 2k>m .

v� � v0A1 � a b
2mv0

b 2

v0

v�A0

x � A0e
�(b>2m)t cos(v�t � d)

m
d2x
dt2 � b

dx
dt

� kx � 0

�kx � b
dx
dt

� m
d2x
dt2

d2x>dt2,
�kx � b(dx>dt).

k,m

e�1.

tt � 0,A0A

A2 � A2
0e

�t>t
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t

Critically damped

Overdamped

F I G U R E  1 4 - 2 2 Plots of displacement
versus time for a critically damped and an
overdamped oscillator, each released from rest.
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When is greater than or equal to the system does not oscillate. If the
system is overdamped. The smaller is, the more rapidly the object returns to equi-
librium. If the system is said to be critically damped and the object returns
to equilibrium (without oscillation) very rapidly. Figure 14-22 shows plots of the
displacement versus time for a critically damped and an overdamped oscillator.
We often use critical damping when we want a system to avoid oscillations and yet
return to equilibrium quickly.

b � bc ,
b

b 
 bc ,bc ,b

Example 14-13 Sprung Mass of a Passenger Car

The sprung mass of an automobile is the mass that is supported by the springs. (It does not
include the mass of the wheels, axles, brakes, and so on.) A passenger car has a sprung mass
of 1100 kg and an unsprung mass of 250 kg. If the four shock absorbers are removed, the car
bounces up and down on its springs with a frequency of 1.0 Hz. What is the damping con-
stant provided by the four shocks if the car, with shocks, is to return to equilibrium as
quickly as possible without passing it after hitting a speed bump?

PICTURE Because the car returns to equilibrium as quickly as possible without passing it,
we know the car is a critically damped oscillator. Use (Equation 14-43) to solve for
the damping constant for critical damping.

SOLVE

bc � 2mv0

1. The damping constant for critical damping is related to the
natural frequency by (Equation 14-43):bc � 2mv0

bc � 2mv0

2. With the tires in contact with the pavement, only the inertia of
the sprung mass enters the picture:

m � 1100 kg

3. The natural frequency is given in the problem statement:v0 v0 � 1.0 Hz

4. Calculate the damping constant: 2.2 � 103 kg>sb � bc � 2(1100 kg)>(1.0 Hz) �

CHECK The damping force is given by so has SI units of newtons. Our step-4
value for has units of so has units of which are the SI units
for mass times acceleration. Thus, are appropriate units for 

TAKING IT FURTHER The optimal shock absorber for any vehicle is a shock absorber that
has a damping constant such that the oscillations are critically damped. Thus, the optimal
choice for the critical damping constant is determined by the sprung mass of the vehicle
and the force constant of the suspension springs.)

Because the energy of an oscillator is proportional to the square of its amplitude,
the energy of an underdamped oscillator (averaged over a cycle) also decreases
exponentially with time:

14-44

where and 
A damped oscillator is often described by its factor (for quality factor),

14-45

DEFINITION— FACTORQ

Q � v0t

Q
t � m>b.E0 � 1

2mv2A2
0

E � 1
2mv2A2 � 1

2mv2(A0e
�(b>2m)t)2 � 1

2mv2A2
0e

�(b>m)t � E0e
�t>t

k
bc

b.kg>s (kg>s)(m>s) � kg # m>s2,bvkg>s,b
bvF

S
� �bvS,

Weights are placed in automobile wheels
when the wheels are “balanced.” The purpose
of balancing the wheels is to prevent
vibrations that will drive oscillations of the
wheel assembly. (David Wrobel/ Visuals
Unlimited.)
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The factor is dimensionless. (Because has dimensions of reciprocal time, 
is without dimension.) We can relate to the fractional energy loss per cycle.
Differentiating Equation 14-44 gives

or

If the damping is weak so that the energy loss per cycle is a small fraction of the
energy E, we can replace by and by the period Then in one cycle
(one period) is given by

14-46

so

14-47

PHYSICAL INTERPRETATION OF Q FOR WEAK DAMPING

is thus inversely proportional to the fractional energy loss per cycle.Q

Q �
2p

( ƒ¢E ƒ>E)cycle

  
ƒ¢E ƒ
E

V 1

a ƒ¢E ƒ
E
b

cycle

�
T
t

�
2p
v0t

�
2p
Q

ƒ¢E ƒ>ET.dt¢EdE

dE
E

� �
dt
t

dE
dt

� �(1>t)E0e
�t>t � �(1>t)E

Q
v0tv0Q

Example 14-14 Making Music

When middle C on a piano (frequency 262 Hz) is struck, it loses half its energy after 4.00 s.
(a) What is the decay time (b) What is the factor for this piano wire? (c) What is the frac-
tional energy loss per cycle?

PICTURE (a) We use and set equal to (b) The value can then be found
from the decay time and the frequency.

SOLVE

Q1
2E0.EE � E0e

�t>t
Qt?

(a) 1. Set the energy at time equal to half the original
energy:

t � 4.00 s so
1
2 � e�(4.00 s>t) 1

2E0 � E0e
�(4.00 s>t)E � E0e

�t>t
2. Solve for the time by taking the natural log of both sides:t

so 5.77 st �
4.00 s

ln2
� 5.771 �

ln
1
2

� �
4.00 s
t

(b) Calculate from and v0:tQ

9.50 � 103� 2p(262 Hz)(5.771 s) � 9.500 � 103 �

Q � v0t � 2pft

(c) The fractional energy loss in a cycle is given by Equation 14-46
and the frequency f � 1>T:

6.61 � 10�46.614 � 10�4 ��

a ƒ¢E ƒ
E
b

cycle

�
T
t

�
2p
v0t

�
1
ft

�
1

(262 Hz)(5.771 s)

CHECK can also be calculated from 
Note that the fractional energy loss after 4.00 s is not just the number of cycles 
times the fractional energy loss per cycle, because the energy decreases exponentially, not
linearly.

TAKING IT FURTHER Figure 14-23 shows the relative amplitude versus time and the
relative energy versus time for the oscillation of a piano string after middle C is struck.
After 4.00 s, the amplitude has decreased to about 0.7 times its initial value, and the energy,
which is proportional to the amplitude squared, drops to about half its initial value.

E>E0

A>A0

(4.00 � 262)
Q � 2p>(¢E>E)cycle � 2p>(6.61 � 10�4) � 9.50 � 103.Q
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Note that the value of in Example 14-4 is relatively large. You can estimate 
and for various oscillating systems. Tap a crystal wine glass and see how long it
rings. The longer it rings, the greater the value of and and the lower the
damping. Glass beakers from the laboratory may also have a high Try tapping
a plastic cup. How does the damping compare to that of the glass beaker?

In terms of the exact frequency of an underdamped oscillator is

14-48

Because is quite small (and is quite large) for a weakly damped oscillator
(Example 14-14), we see that is nearly equal to 

We can understand much of the behavior of a weakly damped oscillator by
considering its energy. The power dissipated by the damping force equals the
instantaneous rate of change of the total mechanical energy

14-49

For a weakly damped oscillator with linear damping, the total mechanical energy
decreases slowly with time. The average kinetic energy per cycle equals half the
total energy

If we substitute for in Equation 14-49, we have

14-50

Rearranging Equation 14-50 gives

which upon integration gives

which is Equation 14-44.

14-5 DRIVEN OSCILLATIONS AND RESONANCE

To keep a damped system going indefinitely, mechanical energy must be put into
the system. When this is done, the oscillator is said to be driven or forced. When
Mom (or Dad) kept your swing going by pushing on it once each cycle, she was
driving an oscillator. Likewise, when you keep a swing going by “pumping,” you
are driving an oscillator. If the driving mechanism
puts energy into the system at a greater rate than it
is dissipated, the system’s mechanical energy in-
creases with time, and the amplitude increases. If the
driving mechanism puts energy in at the same rate it
is being dissipated, the amplitude remains constant
over time. The motion of the oscillator is then said to
be steady-state motion.

Figure 14-24 shows a system consisting of an ob-
ject on a spring that is being driven by moving the
point of support up and down with simple harmonic
motion of frequency At first the motion is com-
plicated, but eventually steady-state motion is
reached in which the system oscillates with the same

v.

E � E0e
�(b>m)t � E0e

�t>t
dE
E

� �
b
m

dt

dE
dt

� �bv2 � �b(v2)av � �
b
m
E

v2(v2)av � E>ma
1
2
mv2b

av

�
1
2
E    or (v2)av �

E
m

P �
dE
dt

� F
S

d
# vS � �bvS # vS � �bv2

v0.v�

Qb

v� � v0A1 � a b
2mv0

b 2

� v0A1 �
1

4Q2

Q,

Q.
Qt

Q
tQ

m
F I G U R E  1 4 - 2 4 An object on a vertical
spring can be driven by moving the support
up and down.

By pumping the swing, the young woman is
transferring her internal energy into the
mechanical energy of the oscillator. 
(Eye Wire/ Getty.)
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frequency as that of the driver and with a constant amplitude and, therefore, at
constant energy. In the steady state, the energy put into the system per cycle by the
driving force equals the energy dissipated per cycle due to the damping.

The amplitude, and therefore the energy, of a system in the steady state depends
not only on the amplitude of the driving force, but also on its frequency. The
natural frequency of an oscillator, is its frequency when no driving or damping
forces are present. (In the case of a spring, for example, If the driving
frequency is sufficiently close to the natural frequency of the system, the system
will oscillate with a relatively large amplitude. For example, if the support in
Figure 14-24 oscillates at a frequency close to the natural frequency of the mass-
spring system, the mass will oscillate with a much greater amplitude than it would
if the support oscillates at significantly higher or lower frequencies. This phenom-
enon is called resonance. When the driving frequency equals the natural frequency
of the oscillator, the energy per cycle transferred to the oscillator is maximum. The
natural frequency of the system is thus called the resonance frequency.
(Mathematically, the angular frequency is more convenient to use than the
frequency Because and are proportional, most statements
concerning angular frequency also hold for frequency. In verbal descriptions, 
we usually omit the word angular when the omission will not cause confusion.)
Figure 14-25 shows plots of the average power delivered to an oscillator as a
function of the driving frequency for two different values of damping. These
curves are called resonance curves. When the damping is weak (large ), the
width of the peak of the resonance curve is correspondingly narrow, and we speak
of the resonance as being sharp. For strong damping, the resonance curve is broad.
The width of each resonance curve indicated in the figure, is the width at half
the maximum height. For weak damping, the ratio of the width of the resonance 
to the resonant frequency can be shown to equal the reciprocal of the factor 
(see Problem 106):

14-51

RESONANCE WIDTH FOR WEAK DAMPING

Thus, the factor is a direct measure of the sharpness of resonance.
You can do a simple experiment to demonstrate resonance. Hold a meterstick at

one end between two fingers so that it acts like a pendulum. (If a meterstick is not
available, use whatever is convenient. A golf club works fine.) Release the stick
from some initial angular displacement and observe the natural frequency of its
motion. Then, move your hand back and forth horizontally, driving it at its natural
frequency. Even if the amplitude of the motion of your hand is small, the stick will
oscillate with a substantial amplitude. Now move your hand back and forth at a
frequency two or three times the natural frequency and note the decrease in am-
plitude of the oscillating stick.

There are many familiar examples of resonance. When you sit on a swing, you
learn intuitively to pump with the same frequency as the natural frequency of the
swing. Many machines vibrate because they have rotating parts that are not in per-
fect balance. (Observe a washing machine in the spin cycle, for example.) If such a
machine is attached to a structure that can vibrate, the structure becomes a driven
oscillatory system that is set in motion by the machine. Engineers pay great atten-
tion to balancing the rotary parts of such machines, damping their vibrations, and
isolating them from building supports.

A crystal goblet with weak damping can be broken by an intense sound wave
at a frequency equal to or very nearly equal to the natural frequency of vibration
of the goblet. The breaking of the goblet is often done in physics demonstrations
using an audio oscillator, a loudspeaker and an amplifier.

Q

¢v
v0

�
1
Q

Q

¢v,

Q

fvf(f � v>2p).
v

v0 � 1k>m .)
v0 ,
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MATHEMATICAL TREATMENT OF RESONANCE

We can treat a driven oscillator mathematically by assuming that, in addition to the
restoring force and a damping force, the oscillator is subject to an external driving
force that varies harmonically with time:

14-52

where and are the amplitude and angular frequency of the driving force. This
frequency is generally not related to the natural angular frequency of the system 

Newton’s second law applied to an object that has a mass attached to a spring
that has a force constant and subject to a damping force and an external
force gives

where we have used Substituting for (Equation 14-8) and
rearranging gives

14-53

DIFFERENTIAL EQUATION FOR A DRIVEN OSCILLATOR

m
d2x
dt2 � b

dx
dt

� mv2
0x � F0 cosvt

kmv2
0ax � d2x>dt2.

�kx � bvx � F0 cosvt � m
d2x
dt2

©Fx � max

f0 cos vt
�bvxk
m

v0.
vF0

Fext � F0 cosvt

*

Extended objects have more than one
resonance frequency. When plucked, a guitar
string transmits its energy to the body of the
guitar. The body’s oscillations, coupled to
those of the air mass it encloses, produce the
resonance patterns shown. (Royal Swedish
Academy of Music.)
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We now discuss the general solution of Equation 14-53 qualitatively. It con-
sists of two parts, the transient solution and the steady-state solution. The
transient part of the solution is identical to that for a damped oscillator given in
Equation 14-39. The constants in this part of the solution depend on the initial
conditions. Over time, this part of the solution becomes negligible because of the
exponential decrease of the amplitude. We are then left with the steady-state
solution, which can be written as

14-54

POSITION FOR A DRIVEN OSCILLATOR

where the angular frequency is the same as that of the driving force. The
amplitude is given by

14-55

AMPLITUDE FOR A DRIVEN OSCILLATOR

and the phase constant is given by

14-56

PHASE CONSTANT FOR A DRIVEN OSCILLATOR

Comparing Equations 14-52 and 14-54, we can see that the displacement and the
driving force oscillate with the same frequency, but they differ in phase by When
the driving frequency approaches zero, approaches zero, as can be seen from
Equation 14-56. At resonance, equals and equals and when is much
greater than approaches At the beginning of this chapter, the
displacement of a particle undergoing simple harmonic motion is written

(Equation 14-4). This equation is identical to Equation 14-54
except for the sign preceding the phase constant The phase of a driven oscilla-
tor always lags behind the phase of the driving force. The negative sign in
Equation 14-54 ensures that is always positive (rather than always negative).

In your simple experiment to drive a meterstick by moving your hand back and
forth (see discussion immediately following Equation 14-51), you should note that
at resonance the oscillation of your hand is neither in phase nor out of phase
with the oscillation of the stick. If you move your hand back and forth at a
frequency several times the natural frequency of the pendulum, the stick’s steady-
state motion will be almost out of phase with your hand.

The velocity of the object in the steady state is obtained by differentiating with
respect to 

At resonance, and the velocity is in phase with the driving force:

Thus, at resonance, the object is always moving in the direction of the driving
force, as would be expected for maximum power input. The velocity amplitude 
is maximum at v � v0.

vA

vx � �vA sinavt �
p

2
b � �vA cosvt

d � p>2,

vx �
dx
dt

� �vA sin(vt � d)

t:
x

180°

180°

d

d.
x � A cos(vt � d)

180°.v0, d
v90°,dv0v

dv

d.

tan d �
bv

m(v2
0 � v2)

d

A �
F0

2m2(v2
0 � v2)2 � b2v2

A
v

x � A cos(vt � d)
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CHECK At a frequency just below the resonance frequency, the amplitude
drops by a factor of 20. This is not surprising, because the width of the resonance is only

TAKING IT FURTHER Off resonance the term is negligible
compared with the other term in the denominator of the expres-
sion for When is more than several times the width 
as it was in this example, we can neglect the term and calcu-
late from Figure 14-26 shows the ampli-
tude versus driving frequency Note that the horizontal scale is
over a small range of v.

v.
A � F0 >[m(v2

0 � v2)].A
b2v2

¢v,v � v0A.

b2v2

0.096 rad>s.
¢v

20 rad>s1 rad>s

Steps Answers

(a) The damping is weak. Relate to the fractional energy loss
using (Equation 14-47):Q � 2p>(¢E>E)cycle

Q 210Q �
2p

( ƒ¢E ƒ>E)cycle

�
2p

0.030
�

(b) The resonance frequency is the natural frequency of the system: 20 rad>sv0 � A km �

(c) Relate the width of the resonance to using 
(Equation 14-51):

¢v>v0 � 1>QQ¢v 0.096 rad>s¢v �
v0

Q
�

(d) 1. Write an expression for the amplitude for any driving
frequency (Equation 14-55):v

A A(v) �
F0

4m2(v2
0 � v2)2 � b2v2

2. Set equal to to calculate at resonance:Av0v A(v0) �
F0

bv0

3. Use (Equation 14-45) and (Equation 14-42)
to relate the damping constant to Q:b

t � m>bQ � v0t b �
mv0

Q
� 0.144 kg>s

4. Use the results of the previous two steps to calculate the
amplitude at resonance:

17 cmA(v0) �
F0

bv0

�

(e) Calculate the amplitude for (We omit the units to
simplify the equation. Because all quantities are in SI units, 

will be in meters.)A

v � 19 rad>s. 0.85 cm�A(19) �
0.5

21.52(202 � 192)2 � 0.1442(19)2

ω

ω

18 18.5 19 19.5 20

0

20.5

Δ

21 21.5
0

0.06

0.12

0.18

, rad/s

A, m

ω
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Example 14-15 An Object on a Spring

An object of mass 1.5 kg on a spring that has a force constant equal to loses 3.0% of
its energy in each cycle. The same system is driven by a sinusoidal force with a maximum
value of (a) What is for this system? (b) What is the resonance (angular) fre-
quency? (c) If the driving frequency is slowly varied through resonance, what is the width

of the resonance? (d) What is the amplitude at resonance? (e) What is the amplitude if the
driving frequency 

PICTURE The energy loss per cycle is only 3.0%, so the damping is weak. We can find 
from (Equation 14-47) and then use this result and 
(Equation 14-51) to find the width of the resonance. The resonance frequency is the nat-
ural frequency. The amplitude both at resonance and off resonance can be found from
Equation 14-55, with the damping constant calculated from using (Equation 14-45)
and (Equation 14-42).

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

t � m>b Q � v0tQ

¢v
¢v>v0 � 1>QQ � 2p>(¢E>E)cycle

Q

v � 19 rad>s?
¢v

QF0 � 0.50 N.

600 N>m
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Physics Spotlight

Moving to the Beat: Millennium Bridge

The three-span London Millennium footbridge opened in June of 2000. Between
80,000 and 100,000 people crossed the suspension bridge during the course of the
day. As the bridge became crowded with up to 2000 people on it at any one time,*
it began to sway from side to side. Soon the lateral swaying was so strong that
many people had to hold onto the handrails.† The “Wobbly Bridge”‡ was closed
three days after its opening and did not reopen until February 2002. The footbridge
was designed to withstand extremely strong winds, as well as hits from heavy
barges on both piers. However, the lateral motion was a shock to the designers and
engineers. After several months of study, researchers concluded that walking has a
lateral component of force, as well as vertical and forward/backward components.

The typical cadence of a walking person is such that his or her left foot strikes
the walkway at approximately one-second intervals. The same is true, of course, for
the right foot. When someone steps forward onto his or her left foot, nearly 25 N of
force is directed to the left; the force is directed to the right for the right foot.# At
each step, a left or right lateral force is exerted on the walkway, so the lateral forces
shake the walkway with a frequency of 1 Hz. Unfortunately, the two lowest natural
frequencies of sideways motion for the 144-meter-long center span were 0.5 Hz and
1.0 Hz,° and the 100-meter-long southern span had a natural vibration mode at 0.8
Hz. The footsteps of the crowd drove the motion of the bridge. When the crowd
was small, the combined force of the footsteps was not enough to cause motion. But after more than 200 people were on the
bridge,§ the natural damping of the bridge was not high enough to resist the combined force of the crowd’s footsteps push-
ing the bridge sideways.

The swaying increased because of human reaction to the sideways motion. Calculations show that the maximum lateral ac-
celeration was between 0.2g and 0.3g,¶ enough to cause people to lose their balance. An instinctive method of regaining bal-
ance on a moving surface is to walk so that the timing of footsteps matches the motion of the surface. This resonant walking
increased the amplitude of the motion.

Measurements were made of test crowds on the bridge, which led to the solution of a series of dampers. Eight tuned-mass
dampers and 37 viscous dampers were installed to reduce the lateral swaying. The tuned-mass dampers are 2.5-ton steel
blocks suspended on pendulums. They reduce lateral sway by vibrating out of phase with the bridge.** The viscous
dampers are similar to the shock absorbers used to dampen vertical oscillations in automobiles; they work by moving a pis-
ton back and forth through a viscous fluid. The main lateral damping is performed by 37 viscous dampers.†† Additional mass
dampers were installed to dampen any vertical oscillations. During the final tests before reopening, the peak measured ac-
celerations on the bridge dropped by 97%, from 0.25g to 0.006g.‡‡ The bridge has had no swaying problems since reopening.

Any## bridge with a lateral vibration mode below 1.3 Hz is susceptible to oscillation caused by the footsteps of a crowd.°°
Several different types of bridges had exhibited lateral swaying under pedestrian loads, including a cable-stayed bridge in
Japan§§ and footbridges in Paris and Ottawa. Even highway bridges have shown the same behavior.¶¶ Because of the London
Millennium footbridge, engineers have been motivated to look at vibration in a new manner.

* Dallard, P., et al., “The London Millennium Footbridge,” The Structural Engineer, Nov. 20, 2001, Vol. 79, No. 22, 17–33.
† Smith, Michael, “Bouncing Bridge May Be Closed ‘for Weeks,’” The Telegraph, Jun. 13, 2000. http://www.telegraph.co.uk/news/main.jhtml?xml=/news/2000/06/13/nsway13.xml

as of July 2006.
‡ Binney, Magnus, “Throwing a Wobbly,” The Times, Oct. 31, 2000, Features, 16.
# “Oscillation,” The Millennium Bridge – Challenge. Arup Engineering. http://www.arup.com/MillenniumBridge/challenge/oscillation.html as of July 2006.
° Fitzpatrick, T., Linking London: The Millennium Bridge. London: The Royal Academy of Engineering, June 2001.
§ Roberts, T. M., “Lateral Pedestrian Excitation of Footbridge,” Journal of Bridge Engineering, Jan./Feb. 2005, Vol. 10, No. 1, 107–112s.
¶ Dallard et al., op. cit.
** “Elegant, Filigran, and Not Moving,” GERB Vibration Control Systems. http://gerb.com/images/both/projektbeispiele/pdf/millenium_bridge_en.pdf as of July 2006.
†† Taylor, D. P., “Damper Retrofit of the London Millenium Footbridge—A Case Study in Biodynamic Design,” Taylor Devices. http://www.taylordevices.com/papers/damper/

damper.pdf as of July 2006.
‡‡ Ibid.
## Structural Safety 2000-2001: Thirteenth Report of SCOSS—The Standing Committee on Structural Safety. London: Standing Committee on Structural Safety. May 2001, 24–26.

http://www.scoss.org.uk/publications/rtf/13Report.pdf as of July 2006.
°° “Designing Footbridges with Eurocodes,” Eurocode News, Mar. 2004, No. 2, 6.
§§ Nakamura, S.-I., “Model for Lateral Excitation of Footbridges by Synchronous Walking,” Journal of Structural Engineering, Jan. 2004, 32–37.
¶¶ Fitzpatrick, op. cit.

180°

Massive damped oscillators were attached
under the walkway shortly after this
suspension bridge opened. The oscillators were
put there to prevent the excessive swaying that
was driven by lateral forces exerted by the
footsteps of the walkers. (Alamy.)

http://www.telegraph.co.uk/news/main.jhtml?xml=/news/2000/06/13/nsway13.xml
http://www.arup.com/MillenniumBridge/challenge/oscillation.html
http://gerb.com/images/both/projektbeispiele/pdf/millenium_bridge_en.pdf
http://www.taylordevices.com/papers/damper/damper.pdf
http://www.taylordevices.com/papers/damper/damper.pdf
http://www.scoss.org.uk/publications/rtf/13Report.pdf
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Summary

1. Simple harmonic motion occurs whenever the restoring force is proportional to the
displacement from equilibrium. It has wide application in the study of oscillations, waves,
electrical circuits, and molecular dynamics.

2. Resonance is an important phenomenon in many areas of physics. It occurs when 
the frequency of the driving force is close to the natural frequency of the oscillating 
system.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Simple Harmonic Motion In simple harmonic motion, the acceleration (and thus the net force) is both proportional to,
and oppositely directed from, the displacement from the equilibrium position.

14-1

Position function 14-4

Angular frequency 14-11

Mechanical energy 14-17

Circular motion If a particle moves in a circle with constant speed, the projection of the particle onto a
diameter of the circle moves in simple harmonic motion.

General motion near equilibrium If an object is given a small displacement from a position of stable equilibrium, it typically
oscillates about this position with simple harmonic motion.

2. Natural Frequencies for Various Systems

Mass on a spring 14-8

Simple pendulum 14-27

Torsional oscillator 14-33

where I is the moment of inertia and is the torsional constant. For small oscillations of a
physical pendulum, where D is the distance of the center of mass from the
rotation axis.

3. Damped Oscillations In the oscillations of real systems, the motion is damped because of dissipative forces. 
If the damping is greater than some critical value, the system does not oscillate when
disturbed, but merely returns to its equilibrium position. The motion of a weakly damped
system is nearly simple harmonic with an amplitude that decreases exponentially with 
time.

Frequency 14-48

Energy 14-44

Amplitude 14-41

Decay time 14-42

factor defined 14-45

factor for weak damping 14-47

4. Driven Oscillations When an underdamped system is driven by an external sinusoidal force
the system oscillates with a frequency equal to the driving frequency and

an amplitude that depends on the driving frequency.A

vFext � F0 cos vt,
(b 	 bc)

Q �
2p

( ƒ¢E ƒ>E)cycle

  a ƒ¢E ƒ
E
b

cycle

V 1Q

Q � v0tQ

t �
m
b

A � A0e
�(1>2)t>tE � E0e

�t>t
v� � v0A1 �

1
4Q2

k �MgD,
k

v � AkI

v � A
g

L

v � A km

E � K � U � 1
2 kA2

v � 2pf �
2p
T

x � A cos(vt � d)

Fx � �kx � max
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TOPIC RELEVANT EQUATIONS AND REMARKS

Resonance frequency

Resonance width for weak damping 14-51

*Position function 14-54

*Amplitude 14-55

*Phase constant 14-56tand �
bv

m(v2
0 � v2)

A �
F0

4m2(v2
0 � v2)2 � b2v2

x � A cos(vt � d)

¢v
v0

�
1
Q

v � v0

Answer to Concept Check

14-1

Answers to Practice Problems

14-1 (a) (b)

14-2 v � 3.1 rad>s, vmax � 0.13 m>sf � 2.5 Hz, T � 0.40 sf � 3.6 Hz, T � 0.28 s,

2L>g 14-3 (a) (b)

14-4 24 cm

14-5 2.01 s

14-6

14-7 for and for x � L>2x � L>6T � A2L
3g

g� � 10.3 m>s2, T � 1.96 s

A � 22Etotal >k � 5.59 cmE � 1
2mv2

max � 0.0625 J

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • True or false:
(a) For a simple harmonic oscillator, the period is proportional to

the square of the amplitude.
(b) For a simple harmonic oscillator, the frequency does not depend

on the amplitude.
(c) If the net force on a particle undergoing one-dimensional motion

is proportional to, and oppositely directed from, the displace-
ment from equilibrium, the motion is simple harmonic.

2 • If the amplitude of a simple harmonic oscillator is tripled,
by what factor is the energy changed?

3 •• An object attached to a spring exhibits simple harmonic
motion with an amplitude of 4.0 cm. When the object is 2.0 cm
from the equilibrium position, what percentage of its total me-
chanical energy is in the form of potential energy? (a) one-quarter,
(b) one-third, (c) one-half, (d) two-thirds, (e) three-quarters

4 •• An object attached to a spring exhibits simple har-
monic motion with an amplitude of 10.0 cm. How far from equi-
librium will the object be when the system’s potential energy is
equal to its kinetic energy? (a) 5.00 cm, (b) 7.07 cm, (c) 9.00 cm,
(d) The distance cannot be determined from the data given.

5 •• Two identical systems each consist of a spring with one
end attached to a block and the other end attached to a wall. The
springs are horizontal, and the blocks are supported from below by
a frictionless horizontal table. The blocks are oscillating in simple
harmonic motions such that the amplitude of the motion of block A

SSM

is four times as large as the amplitude of the motion of block B.
How do their maximum speeds compare? (a)
(b) (c) (d) This comparison cannot
be done by using the data given.

6 •• Two systems each consist of a spring with one end attached
to a block and the other end attached to a wall. The springs are hori-
zontal, and the blocks are supported from below by a frictionless hor-
izontal table. The identical blocks are oscillating in simple harmonic
motions with equal amplitudes. However, the force constant of spring
A is four times as large as the force constant of spring B. How do their
maximum speeds compare? (a) (b)
(c) (d) This comparison cannot be done by using
the data given.

7 •• Two systems each consist of a spring with one end
attached to a block and the other end attached to a wall. The
identical springs are horizontal, and the blocks are supported
from below by a frictionless horizontal table. The blocks are
oscillating in simple harmonic motions with equal amplitudes.
However, the mass of block A is four times as large as the 
mass of block B. How do their maximum speeds compare?
(a) (b) (c) (d) This
comparison cannot be done by using the data given.

8 •• Two systems each consist of a spring with one end
attached to a block and the other end attached to a wall. The
identical springs are horizontal, and the blocks are supported
from below by a frictionless horizontal table. The blocks are
oscillating in simple harmonic motions with equal amplitudes.
However, the mass of block A is four times as large as the 

SSM

vAmax � 1
2 vBmax,vAmax � 2vBmax,vAmax � vBmax,

vAmax � 4vBmax,
vAmax � 2vBmax,vAmax � vBmax,

vAmax � 4vBmax,vAmax � 2vBmax,
vAmax � vBmax,
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19 •• True or false:
(a) The mechanical energy of a damped, undriven oscillator de-

creases exponentially with time.
(b) Resonance for a damped, driven oscillator occurs when the dri-

ving frequency exactly equals the natural frequency.
(c) If the factor of a damped oscillator is high, then its resonance

curve will be narrow.
(d) The decay time for a spring-mass oscillator with linear damp-

ing is independent of its mass.
(e) The factor for a driven spring-mass oscillator with linear

damping is independent of its mass.

20 •• Two damped spring-mass oscillating systems have iden-
tical spring and damping constants. However, system A’s mass 
is four times system B’s mass . How do their decay times com-
pare? (a) (b) (c) (d) Their decay times
cannot be compared, given the information provided.

21 •• Two damped spring-mass oscillating systems have iden-
tical spring constants and decay times. However, system A’s mass

is twice system B’s mass How do their damping constants,
compare? (a) (b) (c) (d)

(e) Their decay times cannot be compared, given the information
provided.

22 •• Two damped, driven spring-mass oscillating systems
have identical driving forces as well as identical spring and damp-
ing constants. However, the mass of system A is four times the mass
of system B. Assume both systems are very weakly damped. How
do their resonant frequencies compare? (a) (b)
(c) (d) (e) Their resonant frequencies cannot be
compared, given the information provided.

23 •• Two damped, driven spring-mass oscillating sys-
tems have identical masses, driving forces, and damping con-
stants. However, system A’s force constant is four times sys-
tem B’s force constant Assume they are both very weakly
damped. How do their resonant frequencies compare?
(a) (b) (c) (d) (e) Their
resonant frequencies cannot be compared, given the informa-
tion provided.

24 •• Two damped, driven simple-pendulum systems have
identical masses, driving forces, and damping constants. However,
system A’s length is four times system B’s length. Assume they are
both very weakly damped. How do their resonant frequencies
compare? (a) (b) (c) (d)
(e) Their resonant frequencies cannot be compared, given the infor-
mation provided.

ESTIMATION AND APPROXIMATION

25 • Estimate the width of a typical grandfather clock’s cabi-
net relative to the width of the pendulum bob, presuming the
desired motion of the pendulum is simple harmonic.

26 • A small punching bag for boxing workouts is approxi-
mately the size and weight of a person’s head and is suspended
from a very short rope or chain. Estimate the natural frequency of
oscillations of such a punching bag.

27 •• For a child on a swing, the amplitude drops by a factor of
in about eight periods if no additional mechanical energy is

given to the system. Estimate the factor for this system.

28 •• (a) Estimate the natural period of oscillation for swinging
your arms as you walk, when your hands are empty. (b) Now esti-
mate the natural period of oscillation when you are carrying a
heavy briefcase. (c) Observe other people while they walk. Do your
estimates seem reasonable?

Q
1>e
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vA � 1
4vB ,vA � 1

2vB ,vA � 2vB ,vA � vB ,
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vA � 1
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bA � 1
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Q
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mass of block B. How do the magnitudes of their maximum
accelerations compare? (a) (b)
(c) (d) (e) This comparison cannot
be done by using the data given.

9 •• In general physics courses, the mass of the spring in sim-
ple harmonic motion is usually neglected because its mass is usu-
ally much smaller than the mass of the object attached to it.
However, this is not always the case. If you neglect the mass of the
spring when it is not negligible, how will your calculation of the
system’s period, frequency, and total energy compare to the actual
values of these parameters? Explain.
10 •• Two mass–spring systems oscillate with periods and 
If and the systems’ springs have identical force constants, it
follows that the systems’ masses are related by (a)
(b) (c) (d)
11 •• Two mass–spring systems oscillate at frequencies and 
If and the systems’ springs have identical force constants, it
follows that the systems’ masses are related by (a)
(b) (c) (d)
12 •• Two mass–spring systems and oscillate so that their
total mechanical energies are equal. If which expression
best relates their amplitudes? (a) (b)
(c) (d) Not enough information is given to determine the
ratio of the amplitudes.
13 •• Two mass–spring systems and oscillate so that their
total mechanical energies are equal. If the force constant of spring A
is two times as large as the force constant of spring B, then which
expression best relates their amplitudes? (a)
(b) (c) (d) Not enough information is given
to determine the ratio of the amplitudes.
14 •• The length of the string or wire supporting a pendulum
bob increases slightly when the temperature of the string or wire in-
creases. How does this affect a clock operated by a simple pendulum?
15 •• A lamp hanging from the ceiling of the club car in a train
oscillates with period when the train is at rest. The period will be
(match left and right columns)
1. greater than when A. The train moves horizontally at 

constant velocity.
2. less than when B. The train rounds a curve at constant

speed.
3. equal to when C. The train climbs a hill at constant

speed.
D. The train goes over the crest of a

hill at constant speed.
16 •• Two simple pendulums are related as follows. Pendulum A
has a length and a bob of mass pendulum B has a length 
and a bob of mass If the period of A is twice that of B, 
then (a) and (b) and 
(c) whatever the ratio (d) whatever
the ratio 

17 •• Two simple pendulums are related as follows.
Pendulum A has a length and a bob of mass pendulum B
has a length and a bob of mass If the frequency of A is
one-third the frequency of B, then (a) and 
(b) and (c) regardless of the 
ratio (d) regardless of the ratio 

18 •• Two simple pendulums are related as follows.
Pendulum A has a length and a bob of mass pendulum B
has a length and a bob of mass They have the same period.
If the only difference between their motions is that the amplitude of
A’s motion is twice the amplitude of B’s motion, then (a)
and (b) and (c) whatever
the ratio (d) whatever the ratio mA>mB.LA � 1

2LB.mA>mB,
LA � LBmA � mB,LA � 2LBmA � mB,

LA � LB

mB .L B

mA;LA

SSMmA>mB.LA � 13LBmA>mB,
LA � 9LB,mA � mB,LA � 9LB

mA � 3mB,LA � 3LB

mB .LB

mA;LA

mA >mB .
LA � 12LB,mA>mB,LA � 4LB,

mA � mB,LA � 4LBmA � 2mB,LA � 2LB

mB .
LBmA;LA

T0

T0

T0

T0
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AA � AB ,AA � AB >12,
AA � AB >4,

BA

AA � AB,
AA � AB >12,AA � AB >4,
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mA � mB >4.mA � mB >2,mA � mB >12,
mA � 4mB ,

fA � 2fB
fB.fA

mA � mB >4.mA � mB >2,mA � mB >12,
mA � 4mB ,

TA � 2TB

TB .TA
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SIMPLE HARMONIC MOTION

Note: Unless otherwise specified, assume that all objects in
this section are in simple harmonic motion.

29 • The position of a particle is given by 
where is in seconds. What are (a) the frequency, (b) the period, and
(c) the amplitude of the particle’s motion? (d) What is the first time
after that the particle is at its equilibrium position? In what di-
rection is it moving at that time?

30 • What is the phase constant in 
(Equation 14.4) if the position of the oscillating particle at time 
is (a) 0, (b) (c) and (d)

31 • A particle of mass begins at rest from and
oscillates about its equilibrium position at with a period of 
1.5 s. Write expressions for (a) the position as a function of 
(b) the velocity as a function of and (c) the acceleration as a
function of 

32 •• Find (a) the maximum speed, and (b) the maximum ac-
celeration of the particle in Problem 29. (c) What is the first time that
the particle is at and moving to the right?

33 •• Work Problem 31 for when the particle is initially at
and moving with velocity 

34 •• The period of a particle that is oscillating in simple har-
monic motion is 8.0 s and its amplitude is 12 cm. At it is at its
equilibrium position. Find the distance the particle travels during
the intervals (a) to (b) to (c)
to and (d) to 

35 •• The period of a particle oscillating in simple harmonic
motion is 8.0 s. At the particle is at rest at 
(a) Sketch as a function of (b) Find the distance traveled in the
first, second, third, and fourth second after 

36 •• ENGINEERING APPLICATION, CONTEXT-RICH Military
specifications often call for electronic devices to be able to with-
stand accelerations of up to To make sure
that your company’s products meet this specification, your man-
ager has told you to use a “shaking table,” which can vibrate a de-
vice at controlled and adjustable frequencies and amplitudes. If a
device is placed on the table and made to oscillate at an amplitude
of 1.5 cm, what should you adjust the frequency to in order to test
for compliance with the military specification?

37 •• The position of a particle is given by 
where is in meters and is in seconds. (a) Find the maximum
speed and maximum acceleration of the particle. (b) Find the speed
and acceleration of the particle when 

38 ••• (a) Show that can be written as
and determine and in terms of 

and (b) Relate and to the initial position and velocity of a
particle undergoing simple harmonic motion.

SIMPLE HARMONIC MOTION 
AS RELATED TO CIRCULAR MOTION

39 • A particle moves at a constant speed of in a
circle of radius 40 cm centered at the origin. (a) Find the fre-
quency and period of the component of its position. (b) Write
an expression for the component of the particle’s position as a
function of time assuming that the particle is located on the 
axis at time 
40 • A particle moves in a 15-cm-radius circle centered at
the origin and completes 1.0 rev every 3.0 s. (a) Find the speed
of the particle. (b) Find its angular speed (c) Write an equation
for the component of the particle’s position as a function of
time assuming that the particle is on the axis at time t � 0.�xt,

x
v.

SSMt � 0.
�yt,

x
x

80 cm>s

AsAcd.
A0AcAsAs sin(vt) � Ac cos(vt),

A0 cos(vt � d)

SSMx � 1.5 m.

tx
x � 2.5 cos pt,

10g

10g (10g � 98.1 m>s2).

t � 0.
t.x

x � A � 10 cm.t � 0,

t � 2.0 s.t � 1.0 st � 1.0 s,
t � 0t � 4.0 s,t � 2.0 st � 2.0 s,t � 0

t � 0,

v0 � �50 cm>s.x � 25 cm

x � 0

SSMt.
axt,vx

t,x
x � 0

x � �25 cmm

A>2?A,�A,
t � 0

x � A cos (vt � d)d

t � 0

t
x � (7.0 cm)cos6pt,

ENERGY IN SIMPLE 
HARMONIC MOTION

41 • A 2.4-kg object on a frictionless hoizontal surface is at-
tached to one end of a horizontal spring of force constant

The other end of the spring is held stationary. The
spring is stretched 10 cm from equilibrium and released. Find the
system’s total mechanical energy.
42 • Find the total energy of a system consisting of a 3.0-kg
object on a frictionless horizontal surface oscillating with an amplitude
of 10 cm and a frequency of 2.4 Hz at the end of a horizontal spring.

43 • A 1.50-kg object on a frictionless horizontal surface os-
cillates at the end of a spring (force constant ). The ob-
ject’s maximum speed is (a) What is the system’s total
mechanical energy? (b) What is the amplitude of the motion?

44 • A 3.0-kg object on a frictionless horizontal surface os-
cillating at the end of a spring that has a force constant equal to

has a total mechanical energy of 0.90 J. (a) What is the
amplitude of the motion? (b) What is the maximum speed?

45 • An object on a frictionless horizontal surface oscillates at the
end of a spring with an amplitude of 4.5 cm. Its total mechanical en-
ergy is 1.4 J. What is the force constant of the spring?
46 •• A 3.0-kg object on a frictionless horizontal surface oscil-
lates at the end of a spring with an amplitude of 8.0 cm. Its maxi-
mum acceleration is Find the total mechanical energy.

SIMPLE HARMONIC MOTION
AND SPRINGS

47 • A 2.4-kg object on a frictionless horizontal surface is at-
tached to the end of a horizontal spring that has a force constant

The spring is stretched 10 cm from equilibrium and
released. What are (a) the frequency of the motion, (b) the period,
(c) the amplitude, (d) the maximum speed, and (e) the maximum ac-
celeration? (f) When does the object first reach its equilibrium posi-
tion? What is its acceleration at this time?
48 • A 5.00-kg object on a frictionless horizontal surface is at-
tached to one end of a horizontal spring that has a force constant

. The spring is stretched 8.00 cm from equilibrium and
released. What are (a) the frequency of the motion, (b) the period, (c)
the amplitude, (d) the maximum speed, and (e) the maximum ac-
celeration? (f) When does the object first reach its equilibrium posi-
tion? What is its acceleration at this time?
49 • A 3.0-kg object on a frictionless horizonal surface is at-
tached to one end of a horizontal spring and oscillates with an am-
plitude and a frequency (a) What is the force
constant of the spring? (b) What is the period of the motion?
(c) What is the maximum speed of the object? (d) What is the max-
imum acceleration of the object?
50 • An 85.0-kg person steps into a car of mass 2400 kg, caus-
ing it to sink 2.35 cm on its springs. If started into vertical oscilla-
tion, and assuming no damping, at what frequency will the car and
passenger vibrate on these springs?
51 • A 4.50-kg object oscillates on a horizontal spring with an
amplitude of 3.80 cm. The object’s maximum acceleration is 
Find (a) the force constant of the spring, (b) the frequency of the object,
and (c) the period of the motion of the object.
52 •• An object of mass is suspended from a vertical spring
of force constant When the object is pulled down 2.50 cm
from equilibrium and released from rest, the object oscillates at 
5.50 Hz. (a) Find (b) Find the amount the spring is stretched from
its unstressed length when the object is in equilibrium. (c) Write
expressions for the displacement the velocity and the acceler-
ation as functions of time t.ax

vxx,

m.

1800 N>m.
m

26.0 m>s2.
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f � 2.4 Hz.A � 10 cm

k � 700 N>m

k � 4.5 kN>m.

3.5 m>s2.

2.0 kN>m
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k � 500 N>m

k � 4.5 kN>m.



53 •• An object is hung on the end of a vertical spring and is
released from rest with the spring unstressed. If the object falls
3.42 cm before first coming to rest, find the period of the resulting
oscillatory motion.

54 •• A suitcase of mass 
20 kg is hung from two bungee
cords, as shown in Figure 14-27.
Each cord is stretched 5.0 cm when
the suitcase is in equilibrium. If the
suitcase is pulled down a little and
released, what will be its oscillation
frequency?

55 •• A 0.120-kg block is sus-
pended from a spring. When a
small pebble of mass 30 g is placed
on the block, the spring stretches an
additional 5.0 cm. With the pebble
on the block, the block oscillates
with an amplitude of 12 cm. (a) What is the frequency of the motion?
(b) How long does the block take to travel from its lowest point to its
highest point? (c) What is the net force on the pebble when it is at the
point of maximum upward displacement?

56 •• Referring to Problem 55, find the maximum amplitude of
oscillation at which the pebble will remain in contact with the block.

57 •• An object of mass 2.0 kg is attached to the top of a verti-
cal spring that is anchored to the floor. The unstressed length of the
spring is 8.0 cm and the length of the spring when the object is in
equilibrium is 5.0 cm. When the object is resting at its equilibrium
position, it is given a sharp downward blow with a hammer so that
its initial speed is (a) To what maximum height above
the floor does the object eventually rise? (b) How long does it take
for the object to reach its maximum height for the first time?
(c) Does the spring ever become unstressed? What minimum initial
velocity must be given to the object for the spring to be unstressed
at some time?

58 ••• ENGINEERING APPLICATION A winch cable has a cross-
sectional area of and a length of 2.5 m. Young’s modulus for
the cable is A 950-kg engine block is hung from the end
of the cable. (a) By what length does the cable stretch? (b) If we treat
the cable as a simple spring, what is the oscillation frequency of the
engine block at the end of the cable?

SIMPLE PENDULUM SYSTEMS

59 • Find the length of a simple pendulum if its frequency
for small amplitudes is 0.75 Hz.

60 • Find the length of a simple pendulum if its period for
small amplitudes is 5.0 s.

61 • What would the period of the pendulum in Problem 60
be if the pendulum were on the moon, where the acceleration due
to gravity is one-sixth that on Earth?

62 • If the period of a 70.0-cm-long simple pendulum is 1.68 s,
what is the value of at the location of the pendulum?

63 • A simple pendulum that is set up in the stairwell of a 10-
story building consists of a heavy weight suspended on a 34.0-m-
long wire. What is the period of oscillation?

64 •• Show that the total energy of a simple pendulum under-
going oscillations of small amplitude (in radians) is 
Hint: Use the approximation for small

65 ••• A simple pendulum of length is attached to a massive
cart that slides without friction down a plane inclined at angle 
with the horizontal, as shown in Figure 14-28. Find the period of
oscillation for small oscillations of this pendulum. SSM

u

L

f.cos f � 1 � 1
2f

2
E � 1

2mgLf2
0.f0

g
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150 GN>m2.
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0.30 m>s.
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Problem 54

66 ••• The bob at the end of a simple pendulum of length is
released from rest from an angle (a) Model the pendulum’s
motion as simple harmonic motion, and find its speed as it passes
through by using the small angle approximation. (b) Using
the conservation of energy, find this speed exactly for any angle
(not just small angles). (c) Show that your result from Part (b)
agrees with the approximate answer in Part (a) when is small.
(d) Find the difference between the approximate and exact results
for and (e) Find the difference between
the approximate and exact results for and

PHYSICAL PENDULUMS

67 • A thin 5.0-kg uniform disk with a 20-cm radius is free to
rotate about a fixed horizontal axis perpendicular to the disk and
passing through its rim. The disk is displaced slightly from equilib-
rium and released. Find the period of the subsequent simple har-
monic motion.

68 • A circular hoop that has a 50-cm radius is hung on a narrow
horizontal rod and allowed to swing in the plane of the hoop. What is
the period of its oscillation, assuming that the amplitude is small?

69 • A 3.0-kg plane figure is suspended at a point 10 cm
from its center of mass. When it is oscillating with small ampli-
tude, the period of oscillation is 2.6 s. Find the moment of inertia
I about an axis perpendicular to the plane of the figure through
the pivot point.

70 •• ENGINEERING APPLICATION, CONTEXT-RICH, CONCEPTUAL

You have designed a cat door that consists of a square piece of ply-
wood that is 1.0 in. thick and 6.0 in. on a side, and is hinged at its
top. To make sure the cat has enough time to get through it safely,
the door should have a natural period of at least 1.0 s. Will your de-
sign work? If not, explain qualitatively what you would need to do
to make it meet your requirements.

71 •• You are given a meterstick and asked to drill a small di-
ameter hole through it so that, when the stick is pivoted about a
horizontal axis through the hole, the period of the pendulum will
be a minimum. Where should you drill the hole?

72 •• Figure 14-29 shows a uniform
disk that has a radius a mass
of 6.00 kg, and a small hole a distance 
from the disk’s center that can serve as 
a pivot point. (a) What should be the
distance so that the period of this
physical pendulum is 2.50 s? (b) What
should be the distance so that this
physical pendulum will have the shortest
possible period? What is this shortest pos-
sible period?

d

d

d
R � 0.80 m,
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73 ••• Points and on a plane
object (Figure 14-30), are distances 
and respectively, from the center of
mass. The object oscillates with the
same period when it is free to rotate
about an axis through and when it is
free to rotate about an axis through 
Both of these axes are perpendicular to
the plane of the object. Show that

where

74 ••• A physical pendulum con-
sists of a spherical bob of radius and
mass suspended from a rigid rod of
negligible mass, as in Figure 14-31. The
distance from the center of the sphere
to the point of support is When is
much less than such a pendulum
is often treated as a simple pendu-
lum of length (a) Show that the
period for small oscillations is given
by where

is the period of a simple
pendulum of length (b) Show that
when is smaller than the
period can be approximated by

(c) If 
and find the error in the
calculated value when the approxima-
tion is used for this period.
How large must the radius of the bob
be for the error to be 1.00 percent?
75 ••• Figure 14-32 shows the pendulum of a clock in your grand-
mother’s house. The uniform rod of length has a mass

Attached to the rod is a uniform disk of mass
and radius 0.150 m. The clock is constructed to keep per-

fect time if the period of the pendulum is exactly 3.50 s. (a) What
should the distance be so that the period of this pendulum is 2.50 s?
(b) Suppose that the pendulum clock loses To make sure
your grandmother will not be late for her quilting parties, you decide
to adjust the clock back to its proper period. How far and in what di-
rection should you move the disk to ensure that the clock will keep
perfect time?

5.00 min>d.
d

M � 1.20 kg
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T � T0
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11 � (2r2>5L2) ,

L.

L,
rL.

m
r

SSM

h1 � h2 .h1 � h2 � gT2>(4p2) ,

P2 .
P1

T

h2

h1

P2P1
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77 •• Show that the ratio of the amplitudes for two succes-
sive oscillations is constant for a linearly damped oscillator.
78 •• An oscillator has a period of 3.00 s. Its amplitude de-
creases by 5.00 percent during each cycle. (a) By how much does
its mechanical energy decrease during each cycle? (b) What is
the time constant (c) What is the factor?

79 •• A linearly damped oscillator has a factor of 20. (a) By
what fraction does the energy decrease during each cycle? (b) Use
Equation 14-40 to find the percentage difference between and 
Hint: Use the approximation for small

80 •• A linearly damped mass-spring system oscillates at 
200 Hz. The time constant of the system is 2.0 s. At the am-
plitude of oscillation is 6.0 cm and the energy of the oscillating sys-
tem is 60 J. (a) What are the amplitudes of oscillation at 
and (b) How much energy is dissipated in the first 2-s in-
terval and in the second 2-s interval?

81 •• ENGINEERING APPLICATION Seismologists and geophysi-
cists have determined that the vibrating Earth has a resonance pe-
riod of 54 min and a factor of about 400. After a large earthquake,
Earth will “ring” (continue to vibrate) for up to 2 months. (a) Find
the percentage of the energy of vibration lost to damping forces
during each cycle. (b) Show that after periods the vibrational en-
ergy is given by where is the original energy.
(c) If the original energy of vibration of an earthquake is what is
the energy after 2.0 d?

82 ••• A pendulum that is used in your physics laboratory ex-
periment has a length of 75 cm and a compact bob with a mass
equal to 15 g. To start the bob oscillating, you place a fan next to it
that blows a horizontal stream of air on the bob. While the fan is on,
the bob is in equilibrium when the pendulum is displaced by an
angle of from the vertical. The speed of the air from the fan is

You turn the fan off, and allow the pendulum to oscillate.
(a) Assuming that the drag force due to the air is of the form 
predict the decay time constant for this pendulum. (b) How long
will it take for the pendulum’s amplitude to reach 

83 ••• ENGINEERING APPLICATION, CONTEXT-RICH You are in
charge of monitoring the viscosity of oils at a manufacturing
plant and you determine the viscosity of an oil by using the fol-
lowing method: The viscosity of a fluid can be measured by de-
termining the decay time of oscillations for an oscillator that has
known properties and operates while immersed in the fluid. As
long as the speed of the oscillator through the fluid is relatively
small, so that turbulence is not a factor, the drag force of the fluid
on a sphere is proportional to the sphere’s speed relative to the
fluid: where is the viscosity of the fluid and is the
sphere’s radius. Thus, the constant is given by Suppose
your apparatus consists of a stiff spring that has a force constant
equal to and a gold sphere (radius 6.00 cm) hanging on
the spring. (a) What viscosity of an oil do you measure if the
decay time for this system is 2.80 s? (b) What is the factor for
your system?

DRIVEN OSCILLATIONS 
AND RESONANCE

84 • A linearly damped oscillator loses 2.00 percent of its en-
ergy during each cycle. (a) What is its factor? (b) If its resonance
frequency is 300 Hz, what is the width of the resonance curve 
when the oscillator is driven?

85 • Find the resonance frequency for each of the three systems
shown in Figure 14-33.

¢v
Q

SSM

Q

350 N>cm

6pah.b
ahFd � 6pahv,

v

1.0°?
t

�bv,
7.0 m>s.

5.0°

SSM

E0,
E0,En � (0.984)n E0,

n

Q

t � 4.0 s?
t � 2.0 s

t � 0,

x.(1 � x)1>2 � 1 � 1
2 x

v0.v�

Q

Qt?

SSM

d

L

M

m
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DAMPED OSCILLATIONS

76 • A 2.00-kg object oscillates on a spring with an initial
amplitude of 3.00 cm. The force constant of the spring is 
Find (a) the period, and (b) the total initial energy. (c) If the energy
decreases by 1.00 percent per period, find the linear damping con-
stant and the factor.Qb

400 N>m.
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86 •• A damped oscillator loses 3.50 percent of its energy dur-
ing each cycle. (a) How many cycles elapse before half of its origi-
nal energy is dissipated? (b) What is its factor? (c) If the natural
frequency is 100 Hz, what is the width of the resonance curve when
the oscillator is driven by a sinusoidal force?

87 •• A 2.00-kg object oscillates on a spring that has a force
constant equal to The linear damping constant has a
value of The system is driven by a sinusoidal
force of maximum value 10.0 N and angular frequency

(a) What is the amplitude of the oscillations?
(b) If the driving frequency is varied, at what frequency will res-
onance occur? (c) What is the amplitude of oscillation at reso-
nance? (d) What is the width of the resonance curve 

88 •• ENGINEERING APPLICATION, CONTEXT-RICH Suppose
you have the same apparatus that is described in Problem 83 and
the same gold sphere hanging from a weaker spring that has a
force constant of only You have studied the viscosity
of ethylene glycol with this device, and found that ethylene glycol
has a viscosity value of Now you decide to drive this
system with an external oscillating force. (a) If the magnitude of
the driving force for the device is 0.110 N and the device is driven
at resonance, how large would be the amplitude of the resulting
oscillation? (b) If the system were not driven, but were allowed to
oscillate, what percentage of its energy would it lose per cycle?

GENERAL PROBLEMS

89 • MULTISTEP A particle’s displacement from equilibrium
is given by where is in meters and is
in seconds. (a) Find the frequency and period of its motion.
(b) Find an expression for the velocity of the particle as a function
of time. (c) What is its maximum speed?
90 • ENGINEERING APPLICATION An astronaut arrives at a
new planet, and gets out his simple device to determine the gravi-
tational acceleration there. Prior to his arrival, he noted that the ra-
dius of the planet was 7550 km. If his 0.500-m-long simple pendu-
lum has a period of 1.0 s, what is the mass of the planet?
91 •• A pendulum clock keeps perfect time on Earth’s surface.
In which case will the error be greater: if the clock is placed in a
mine of depth or if the clock is elevated to a height Prove your
answer and assume that 
92 •• Figure 14-34 shows a pendulum of length with a bob of
mass The bob is attached to a spring that has a force constant 
as shown. When the bob is directly below the pendulum support,
the spring is unstressed. (a) Derive an expression for the period of

k,M.
L

h V RE.
h?h,

Tf
txx(t) � 0.40 cos(3.0t � p>4),

19.9 mPa # s.

35.0 N>cm.

SSM¢v?

v � 10.0 rad>s.

b � 2.00 kg>s.
400 N>m.

Q

θ

θ

L = 2.0 m

V 1
k = 800.0 N/mk = 400.0 N/m

(a) (b) (c)

m = 4.0 kg

L
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this oscillating system for small-
amplitude vibrations. (b) Suppose
that and is such
that in the absence of the spring
the period is 2.00 s. What is the
force constant if the period of the
oscillating system is 1.00 s?
93 •• A block that has a mass
equal to is supported from
below by a frictionless horizontal
surface. The block, which is at-
tached to the end of a horizontal
spring that has a force constant 
oscillates with an amplitude 
When the spring is at its greatest
extension and the block is instantaneously at rest, a second block of
mass is placed on top of it. (a) What is the smallest value for the
coefficient of static friction such that the second object does not
slip on the first? (b) Explain how the total mechanical energy the
amplitude the angular frequency and the period of the
system are affected by the placing of on assuming that the co-
efficient of friction is great enough to prevent slippage.
94 •• A 100-kg box hangs from the ceiling of a room—
suspended from a spring with a force constant of The un-
stressed length of the spring is 0.500 m. (a) Find the equilibrium po-
sition of the box. (b) An identical spring is stretched and attached to
the ceiling and the box, and is parallel with the first spring. Find the
frequency of the oscillations when the box is released. (c) What is
the new equilibrium position of the box once it comes to rest?
95 •• ENGINEERING APPLICATION The acceleration due to
gravity varies with geographical location because of Earth’s
rotation and because Earth is not exactly spherical. This was first
discovered in the seventeenth century, when it was noted that a
pendulum clock carefully adjusted to keep correct time in Paris lost
about near the equator. (a) Show by using the differential ap-
proximation that a small change in the acceleration of gravity 
produces a small change in the period of a pendulum given by

(b) How large a change in is needed to account
for a change in the period?
96 •• A small block that has a mass equal to rests on a pis-
ton that is vibrating vertically with simple harmonic motion de-
scribed by the formula (a) Show that the block will
leave the piston if (b) If and at what
time will the block leave the piston?
97 •• Show that for the situations in Figure 14-35a and 14-35b,
the object oscillates with a frequency where 
is given by (a) and (b) Hint: Find
the magnitude of the net force on the object for a small displacement 
and write Note that in Part(b) the springs stretch by differ-
ent amounts, the sum of which is SSMx.

F � �keff x.
xF

1>keff � 1>k1 � 1>k2.keff � k1 � k2,
kefff � (1>2p)1keff >m ,

A � 15 cm,v2A � 3gv2A 
 g.
y � A sin vt.

m1

90-s>d g¢T>T � �1
2 ¢g>g. ¢T

¢g
90 s>d
g

500 N>m.

SSM

m1,m2

Tv,A,
E,

ms

m2

A.
k,

m1

k

LM � 1.00 kg

L

k
M
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k1 k2

m

k1 k2

(a)
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98 •• CONTEXT-RICH During an earthquake, a horizontal floor
oscillates horizontally in approximately simple harmonic motion.
Assume it oscillates at a single frequency with a period of 0.80 s.
(a) After the earthquake, you are in charge of examining the video of
the floor motion and discover that a box on the floor started to slip
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when the amplitude reached 10 cm. From your data, determine the
coefficient of static friction between the box and the floor (b) If the co-
efficient of friction between the box and floor were 0.40, what would
be the maximum amplitude of vibration before the box would slip?
99 •• If we attach two blocks that have masses and to
either end of a spring that has a force constant and set them into
oscillation by releasing them from rest with the spring stretched,
show that the oscillation frequency is given by where

is the reduced mass of the system.
100 •• In one of your chemistry labs, you determine that one
of the vibrational modes of the HCl molecule has a frequency of

Using the result of Problem 99, find the “effective
spring constant” between the H atom and the Cl atom in the HCl
molecule.
101 •• If a hydrogen atom in HCl were replaced by a deuterium
atom (forming DCl) in Problem 100, what would be the new
vibration frequency of the molecule? Deuterium consists of 1 proton
and 1 neutron.
102 ••• SP R E A D S H E E T A
block of mass resting on a
horizontal table is attached
to a spring that has a force
constant as shown in
Figure 14-36. The coefficient
of kinetic friction between the block and the table is The spring is
unstressed if the block is at the origin and the direction is
to the right. The spring is stretched a distance where 
and the block is released. (a) Apply Newton’s second law to the block
to obtain an equation for its acceleration for the first half-
cycle, during which the block is moving to the left. Show that the re-
sulting equation can be written as where

and with (b) Repeat
Part (a) for the second half-cycle as the block moves to the right, and
show that where and has the same
value. (c) Use a spreadsheet program to graph the first five half-cy-
cles for Describe the motion, if any, after the fifth half-cycle.
103 ••• Figure 14-37 shows a uni-
form solid half-cylinder of mass and
radius resting on a horizontal surface.
If one side of this cylinder is pushed
down slightly and then released, the
half-cylinder will oscillate about its
equilibrium position. Determine the pe-
riod of this oscillation.
104 ••• A straight tunnel is
dug through Earth, as shown
in Figure 14-38. Assume that
the walls of the tunnel are fric-
tionless. (a) The gravitational
force exerted by Earth on a par-
ticle of mass at a distance 
from the center of Earth when

is
where is the mass of Earth
and is its radius. Show that
the net force on a particle of
mass at a distance from
the middle of the tunnel is
given by and that the motion of the particle is
therefore simple harmonic motion. (b) Show that the period of the
motion is independent of the length of the tunnel and is given by

(c) Find its numerical value in minutes.

105 ••• MULTISTEP In this problem, derive the expression for
the average power delivered by a driving force to a driven os-
cillator (Figure 14-39).

T � 2p1RE >g
Fx � �(GmME >R3

E)x

xm
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ME

Fr � �(GmME >R3
E)r,r	 RE

rm

SSM

R
M

A � 10x0.

x0x� � x � x0d2x�>dt2 � �v2x�,

x0 � mkmg>k � mkg>v2.x� � x � x0,v � 1k>m d2x�>dt2 � �v2x�,

d2x>dt2

kA 
 mkmg,A,
�x(x � 0),
mk .

k,

m

8.969 � 1013 Hz.

m � m1m2 >(m1 � m2)
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(a) Show that the instantaneous power input of the driving
force is given by 

(b) Use the identity sin to
show that the equation in Part (a) can be written as

(c) Show that the average value of the second term in your re-
sult for Part (b) over one or more periods is zero, and that
therefore 

(d) From Equation 14-56 for construct a right triangle in
which the side opposite the angle is b and the side adjacent
is and use this triangle to show that

(e) Use your result for Part (d) to eliminate from your result
for Part (c), so that the average power input can be written as

106 ••• MULTISTEP In this problem, you are to use the result
of Problem 105 to derive Equation 14-51. At resonance, the de-
nominator of the fraction in brackets in Problem 105(e) is 
and has its maximum value. For a sharp resonance, the vari-
ation in in the numerator in this equation can be neglected.
Then, the power input will be half its maximum value at the val-
ues of for which the denominator is 
(a) Show that then satisfies 
(b) Using the approximation show that

(c) Express in terms of 
(d) Combine the results of Part (b) and Part (c) to show that there

are two values of for which the power input is half that at
resonance and that they are given by

Therefore, which is equivalent to
Equation 14-51.

107 ••• SPREADSHEET The Morse potential, which is often used
to model interatomic forces, can be written in the form

where is the distance between the two
atomic nuclei. (a) Using a spreadsheet program or graphing
calculator, make a graph of the Morse potential using

and (b) Determine the
equilibrium separation and “force constant” for small displace-
ments from equilibrium for the Morse potential. (c) Determine an
expression for the oscillation frequency for a homonuclear diatomic
molecule (that is, two of the same atoms), where the atoms each
have mass m.

r0 � 0.750 nm.D � 5.00 eV, b � 0.20 nm�1,

rU(r) � D(1 � e�b(r�r0))2,

v2 � v1 � ¢v � v0 >Q,

v1 � v0 �
v0
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  and  v2 � v0 �
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v
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Traveling Waves

15-1 Simple Wave Motion

15-2 Periodic Waves

15-3 Waves in Three Dimensions

15-4 Waves Encountering Barriers

15-5 The Doppler Effect

I
n Chapter 14, we looked at oscillatory motion and things that move with re-
peating patterns. In this chapter, we are still concerned with oscillation, but we
explore the physics of waves. Waves travel through various media, such as
water, air, and land, and travel through space where there is no medium in
which to travel. Think of ocean waves, music, earthquakes, and sunlight.
Waves do transport energy and momentum, but do not transport matter.

The study of wave motion has resulted in many fascinating inventions. Police
radar guns and garage door openers both employ electromagnetic waves to
achieve very different goals—determining the speed of motorists and opening
doors from several meters away. Sonographic equipment, which uses ultrasonic
waves, allows medical professionals to obtain remarkable images such as a fetus in
its mother’s uterus. An understanding of how waves act when confronted with ob-
stacles helps performance-hall architects to create the best acoustic setting for con-
certs and symphonies.

In this chapter, we discuss simple wave motion. We examine periodic
waves, particularly harmonic waves. We also discuss how waves move in
three dimensions and explore what happens when waves encounter obsta-
cles. Finally, we look at the Doppler effect and discuss its relevance to the
world around us.

15
C H A P T E R
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THE CREW OF AN NOAA (NATIONAL
OCEANIC AND ATMOSPHERIC
ADMINISTRATION) VESSEL DEPLOYS A
DART (DEEP-OCEAN ASSESSMENT AND
REPORTING OF TSUNAMIS) BUOY IN THE
NORTH PACIFIC. THE DECEMBER 2004
INDIAN OCEAN EARTHQUAKE (ALSO
KNOWN AS THE SUMATRA-ANDAMAN
EARTHQUAKE) AND THE RESULTING
TSUNAMI CAUSED THE LOSS OF
HUNDREDS OF THOUSANDS OF LIVES.
TSUNAMI DETECTION DEVICES SUCH AS
THE DART CAN HELP PREVENT THIS TYPE
OF CATASTROPHIC LOSS BY PREDICTING
WHEN THE GIANT WAVES WILL HIT
LAND. (Courtesy of NOAA and the Harbor
Branch Oceanographic Institution.)

Why do tsunami waves travel so

much faster than ocean surface

waves? (See Example 15-2.)
?
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F I G U R E  1 5 - 1 (a) Transverse wave pulse on 
a spring. The motion of the propagating medium 
is perpendicular to the direction of motion
disturbance. (b) Three successive drawings of a
transverse wave on a string traveling to the right. An
element of the string (the black dot) moves up and
down as the wave crests and troughs travel to the right.
(Richard Menga/Fundamental Photographs.)

O
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y
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x
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15-1 SIMPLE WAVE MOTION

TRANSVERSE AND LONGITUDINAL WAVES

A mechanical wave is caused by a disturbance in a medium. For example, when a
taut string is plucked, the disturbance produced travels along the string as a wave.
The disturbance in this case is the change in shape of the string from its equilib-
rium shape. Its propagation arises from the interaction of each string segment with
the adjacent segments. The segments of the string move in the direction transverse
to (perpendicular to) the string as the pulses propagate back and forth along the
string. Waves such as these, in which the motion of the medium (the string) per-
pendicular to the direction of propagation of the disturbance, are called transverse
waves (Figure 15-1). Waves in which the motion of the medium is along (parallel
to) the direction of propagation of the disturbance are called longitudinal waves
(Figure 15-2). Sound waves are examples of longitudinal waves. When sound trav-
els through a medium (a gas, a liquid, or a solid) the molecules of the medium os-
cillate (move back and forth) along the line of propagation, alternately compress-
ing and rarefying (expanding) the medium.

F I G U R E  1 5 - 2 Longitudinal wave
pulse on a spring. The disturbance is
parallel with the direction of the motion of
the wave. (Richard Menga/Fundamental
Photographs.)

WAVE PULSES

Figure 15-3a shows a pulse on a string at time The shape of the string at
this instant can be represented by some function At some later time
(Figure 15-3b), the pulse is farther down the string. In a new coordinate system
with origin that moves to the right with the same speed as the pulse, the pulse
is stationary. The string is described in this frame by for all times. The co-
ordinates of the two reference frames are related by

so Thus, the shape of the string in the original frame is

15-1

The same line of reasoning for a pulse moving to the left leads to

wave moving in the direction 15-2�xy � f(x � vt)

y � f(x � vt)  wave moving in the �x direction

f(x�) � f(x � vt).

x� � x � vt

xf(x�)
O�

y � f(x).
t � 0.
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In both expressions, is the speed of propagation of the wave. (Because is a
speed and not a velocity, it is always a positive quantity.) The function 
is called a wave function. For waves on a string, the wave function represents the
transverse displacement of the string. For sound waves in air, the wave function can
be the longitudinal displacement of the air molecules, or the pressure of the air.
These wave functions are solutions of a differential equation called the wave equation,
which can be derived using Newton’s laws.

SPEED OF WAVES

A general property of waves is that their speed relative to the medium depends on
the properties of the medium, but is independent of the motion of the source of the
waves. For example, the speed of a sound from a car horn depends only on the
properties of air and not on the motion of the car.

For wave pulses on a rope, we can demonstrate that the greater the tension, the
faster the propagation of the waves. Furthermore, waves propagate faster in a light
rope than in a heavy rope under the same tension. If is the tension (we use 
rather than for tension because we use for the period) and is the linear mass
density (mass per unit length), then the wave speed is

15-3

SPEED OF WAVES ON A STRING

v � B
FT

m

mTT
FTFT

y � f(x � vt)
vv

Example 15-1 Inchy Runs for His Life

Inchy, an inchworm, is inching along 
a cotton clothesline (Figure 15-4). The 
25-m-long clothesline has a mass of 1.0 kg
and is kept taut by a hanging object of
mass 10 kg, as shown. Vivian is hanging
up her swimsuit 5.0 m from one end
when she sees Inchy 2.5 cm from the op-
posite end. She plucks the line sending a
terrifying 3.0-cm-high pulse toward
Inchy. If Inchy crawls at will he
get to the end of the clothesline before
the pulse reaches him?

1.0 in>s,

PICTURE We need to know how fast the wave travels. To find the wave speed we use
the formula Let be the mass of the string and let be the
mass of the hanging object.

SOLVE

m � 10 kgms � 0.25 kgv � 2FT>m .

1. The speed of the pulse is related to the tension and mass density m:FT v � B
FT

m

2. Express the mass density and tension in terms of the given parameters: m �
ms

L
  and  FT � mg

25 m
2.5 cm 5 m

3. Substitute these values to calculate the speed:

� 49.5 m>sv � B
FT

m
� AmgLms

� A (10 kg)(9.81 m>s2)(25 m)

1.0 kg

4. Use this speed to find the time for the pulse to travel the 20 m to the far end: ¢t �
¢x
v

�
20 m
49.5 s

� 0.40 s



While the wave pulse in 
Example 15-1 moves to the left at

the particles that make up the
string do not. Instead, they move first
up and then down as the pulse passes
by them.

49 m>s,
!
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CHECK The pulse travels at and Inchy travels at The pulse
travels almost 2000 times faster than the inchworm. No wonder Inchy does not beat the
pulse.

PRACTICE PROBLEM 15-1 Show that the units of are when is in newtons
and is in kg>m.m

FTm>s2FT>m
1.0 in>s � 0.025 m>s.49 m>s

5. Find the time it takes Inchy to travel the 2.5 cm to the end traveling at
1.0 in>s:

Inchy does not beat the pulse.¢t� 
 ¢t

¢t� �
¢x�

v�
�

2.5 cm
1 in>s �

1 in
2.54 cm

� 0.98 s

Example 15-2 The Speed of a Shallow Gravity Wave

Surface ocean waves are possible because of gravity and are called gravity waves. Gravity
waves are called shallow waves if the water depth is less than half a wavelength. The wave
speed for gravity waves depends on the depth and is given by where is the depth.
A gravity wave in the open ocean, where the depth is 5.0 km, has a wavelength of 100 km.
(a) What is the wave speed of the wave? (b) Is the wave a shallow wave?

PICTURE Use to calculate the wave speed. Check to see if the depth is greater
than half the specified wavelength.

SOLVE

v � 2gh

hv � 2gh ,

(a) Using calculate the wave speed:v � 2gh , 221 m>s � 797 km>h�v � 2gh �4(9.81 m>s2)(5000 m)

(b) The wave is a shallow wave if the depth is less
than half the specified wavelength:

The depth is equal to one-twentieth of the wavelength, so the wave is

definitely a shallow wave.

h
l

�
5 km

100 km
�

1
20

CHECK Tsunamis are known to travel at speeds of in the open ocean,
so our result is plausible.

TAKING IT FURTHER Suppose a tsunami is caused by an earthquake lifting a region of the
ocean floor that is 50-km wide by a height of a meter or so. Such a tsunami would have a
wavelength of and the height of the wave would be only a meter or so in the open
ocean. Tsunamis travel so fast in the open ocean because they have wavelengths that are
longer than the depth of the ocean. Typical ocean waves have wavelengths of a 100 m or less,
which is much less then the depth of the open ocean. These waves are deep-water waves,
and deep-water waves travel much more slowly than do shallow-water waves. In really
shallow water, like the water very near the shore, other factors must be considered when
calculating the speed of the waves.

For sound waves in a fluid such as air or water, the speed is given by

15-4

where is the equilibrium density of the medium and is the bulk modulus*
(Equation 13-6). Comparing Equations 15-3 and 15-4, we can see that, in general,
the speed of waves depends on an elastic property of the medium (the tension for
string waves and the bulk modulus for sound waves) and on an inertial property
of the medium (the linear mass density or the volume mass density).

Br

v � ABr
v

�100 km,

800 km>h (�500 mi>h)

* The bulk modulus is the negative ratio of the pressure change in volume (Chapter 13):

B � �
¢P

¢V>V
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* The isothermal bulk modulus, which describes changes that occur at constant temperature, differs from the adiabatic
bulk modulus, which describes changes that have no heat transfer. For sound waves at audible frequencies, the
changes in the pressure occur too rapidly for appreciable heat transfer, so the appropriate bulk modulus is the adia-
batic bulk modulus.

For sound waves in a gas such as air, the bulk modulus* is proportional to the
pressure, which in turn is proportional to the density and to the absolute tem-
perature of the gas. The ratio is thus independent of density and is merely
proportional to the absolute temperature In Chapter 17, we show that, in this
case, Equation 15-4 is equivalent to

15-5

SPEED OF SOUND IN A GAS

In this equation, is the absolute temperature measured in kelvins (K), which is
related to the Celsius temperature by

15-6

The dimensionless constant depends on the kind of gas. For diatomic molecules,
such as and has the value Because and comprise 98 percent of
the atmosphere, is also the value for air. (For gases composed of monatomic
molecules such as He, has the value )† The constant is the universal gas
constant

15-7

and is the molar mass of the gas (that is, the mass of one mole of the gas), which
for air is

M � 29.0 � 10�3 kg>mol

M

R � 8.3145 J>(mol # K)

R5>3.g

g7>5 N2O27>5.gN2,O2

g

T � tC � 273.15

tC

T

v � BgRTM

T.
B>rT

r

Try It YourselfExample 15-3 Speed of Sound in Air

The spring track season at a school in the Northeast starts in early April when air tempera-
tures are around By the end of the season, the weather has warmed and tempera-
tures are then around Calculate the speed of sound as it leaves the starter’s pistol in
air at (a) and (b) Of course, runners should always leave the blocks at the sight
of smoke from the pistol, instead of waiting for the sound of the shot to reach them.

PICTURE The speeds at the specified temperatures can be obtained using Equation 15-5,
using for the value of (for a diatomic gas), and using for 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

M.29.0 � 10�3 kg>molg7>5
33.0°C.13.0°C

33.0°C.
13.0°C.

Steps Answers

(a) 1. Use Equation 15-5 and given values to solve for the speed at
(Be sure to convert the temperature to kelvins.)13.0°C.

(v � 2gRT>M) 339 m>sva � B
gRTa
M

�

(b) 1. From Equation 15-5, we can see that is proportional to Use this
proportionality to express the ratio of the speed at to the speed at 13.0°C:33.0°C

2T .v
vb
va

� B
Tb
Ta

2. Calculate at 33.0°C:v 351 m>svb �

CHECK The Part (b) result is larger than the Part (a) result. This is what is expected because
the speed of sound increases with increasing temperature.

TAKING IT FURTHER We see from this example that the speed of sound in air is about
at (This temperature is commonly referred to as room temperature.)

PRACTICE PROBLEM 15-2 For helium, and What is the
speed of sound waves in helium gas at 20.0°C?

g � 5>3.M � 4.00 � 10�3 kg>mol

20°C.343 m>s

† These values of for monatomic and diatomic gases are established in Section 9 of Chapter 18.g
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Derivation of v for waves on a string Equation 15-3 
can be obtained by applying the impulse-momentum theorem to
the motion of a string. Suppose you are holding one end of a long
taut string with tension and uniform mass per unit length 
(The other end of the string is attached to a distant wall.) Suddenly,
you begin to move your hand upward at a constant speed After
a short time, the string appears as shown in Figure 15-5, with
the rightmost point of the inclined segment of the string moving
to the right at the wave speed and the entire inclined segment
moving upward at speed By applying the impulse-momentum
theorem to the string, we obtain

15-8

where is the upward component of the force of your hand on the string, is the
mass of the inclined segment, and is the time that your hand has been moving
upward. The two triangles in the figure are similar, so

Substituting for in Equation 15-8 gives

where has been substituted for Solving for gives

which is the expression for the wave speed that is given in Equation 15-3.
In the following discussion we show that this result is true not only for a wave

pulse shaped like that shown in Figure 15-5, but for pulses with a wide variety of
shapes.

THE WAVE EQUATION

We can apply Newton’s second law to a segment of the string to
derive a differential equation known as the wave equation, which
relates the spatial derivatives of to its time derivatives.
Figure 15-6 shows one segment of a string. We consider only small
angles and Then the length of the segment is approximately

and its mass is where is the string’s mass per unit
length. First, we show that, for small vertical displacements, the
net horizontal force on a segment is zero and the tension is
uniform and constant. The net force in the horizontal direction 
is zero. That is,

where and are the angles shown and is the tension in the string. Because
the angles are assumed to be small, we may approximate by 1 for each angle.
Then, the net horizontal force on the segment can be written

Thus,

The segment moves vertically, and the net force in this direction is

©Fy � FT sinu2 � FT sinu1

FT2 � FT1 � FT

©Fx � FT2 � FT1 � 0

cosu
FTu1u2

©Fx � FT2 cosu2 � FT1 cosu1 � 0

mm � m ¢x,¢x
u2.u1

y(x,t)

v � B
FT

m

vm.mv ¢t

u
v
FT ¢t � (mv ¢t)u

Fy

Fy

FT

�
u ¢t
v ¢t

  or  Fy �
u
v
FT

¢t
mFy

Fy ¢t � mu � 0

(F
S

av ¢t � ¢pS)
u.

v

u.

m.FT

(v�2FT>m) F
Fy

uΔt

vΔt

m
FT

u
u

u
u

u
FT

F I G U R E  1 5 - 5 As the end of the string moves upward at
constant speed the point where the string changes from
horizontal to inclined moves to the right at the wave speed .v

u,

Δy

x

θ2

θ 1

Δx

FT1

FT2

F I G U R E  1 5 - 6 Segment of a stretched string used for the
derivation of the wave equation. The net vertical force on the
segment is where is the tension in the
string. The wave equation is derived by applying Newton’s
second law to the segment.

FFT2 sinu2 � FT1 sinu1,

*
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Because the angles are assumed to be small, we may approximate by for
each angle. Then the net vertical force on the string segment can be written

The tangent of the angle made by the string with the horizontal is the slope of the
line tangent to the string. The slope is the first derivative of with respect to

for constant A derivative of a function of two variables with respect to one of
the variables with the other held constant is called a partial derivative. The partial
derivative of with respect to is written Thus, we have

Then

where and are the slopes of either end of the string segment and is the
change in the slope. Setting this net force equal to the mass times the acceler-
ation gives

15-9

In the limit as we have

Thus, in the limit as Equation 15-9 becomes

15-10a

Equation 15-10a is the wave equation for a taut string.
We now show that the wave equation is satisfied by any function Let

and consider any wave function

We use for the derivative of with respect to Then, by the chain rule for
derivatives,

Because

we have

Taking the second derivatives, we obtain

Thus,

15-10b

WAVE EQUATION

�2y

�x2 �
1
v2

�2y

�t2

�2y

�x2 � y�  and  
�2y

�t2
� �v

�y�

�t
� �v

dy�

da
�a

�t
� �v2y�

�y

�x
� y�  and  

�y

�t
� �vy�

�a

�x
�

�(x � vt)
�x

� 1  and  
�a

�t
�

�(x � vt)
�t

� �v

�y

�x
�

dy

da
�a

�x
� y�

�a

�x
  and  

�y

�t
�

dy

da
�a

�t
� y�

�a

�t

a.yy�

y � y(x � vt) � y(a)

a � x � vt
x � vt.

�2y

�x2 �
m

FT

�2y

�t2

¢x S 0,

lim
¢xS0

¢S
¢x

�
�S
�x

�
�

�x

�y

�x
�

�2y

�x2

¢x S 0,

FT ¢S � m¢x
�2y

�t2
  or  FT

¢S
¢x

� m
�2y

�t2

�2y>�t2 m ¢x
¢SS2S1

aFy � FT(S2 � S1) � FT ¢S

S � tanu �
�y

�x

�y>�x.xy

t.x
y(x,t)S

aFy � FT(sinu2 � sinu1) � FT(tanu2 � tanu1)

tanusinu
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The same result (Equation 15-10b) can be obtained for any function of as
well. Comparing Equations 15-10a and 15-10b, we see that the speed of propaga-
tion of the wave is which is Equation 15-3.v � 2FT>m ,

x � vt

Example 15-4 Harmonic Wave Function

In the following section, harmonic waves are defined by the wave function 
where Show that this wave function satisfies Equation 15-10b by explicitly calculating
the second derivatives.

PICTURE We can show this by explicitly calculating and where
and substituting into Equation 15-10b.

SOLVE

y � A sin(kx � vt),
�2y>�t2,�2y>�x2

v � v>k. y(x,t)�A sin(kx�vt),

1. Calculate the second partial derivative of with
respect to x:

y

� �k2A sin(kx � vt)

� �kA sin(kx � vt)
�(kx � vt)

�x

�2y

�x2 �
�

�x

�y

�x
�

�

�x
kA cos(kx � vt)

� kA cos(kx � vt)
�y

�x
�

�

�x
[A sin(kx � vt)] � A cos(kx � vt)

�(kx � vt)
�x

2. Similarly, calculate the second partial derivative
of with respect to t:y

�2y

�t2
� vA sin(kx � vt)

�y(kx � vt)

�t
� �v2A sin(kx � vt)

� �vA cos(kx � vt)
�y

�t
�

�

�t
[A sin(kx � vt)] � A cos(kx � vt)

�(kx � vt)
�t

3. Substituting these results in Equation 15-10b
gives:

or A sin(kx � vt) �
v2>k2

v2 A sin(kx � vt)

�k2A sin(kx � vt) �
1
v2 [�v2A sin(kx � vt)]

4. The two sides of the step-3 result are equal to
each other, provided (v2>k2)>v2 � 1:

A sin(kx � vt) is a solution to the wave equation (Equation 15-9b),
provided (v2>k2)>v2 � 1. That is, provided v � v>k.

CHECK Any function of the form satisfies the wave equation (Equation 15-10b).
The function is of the form provided To show that this
function is in the proper form, we substitute for to obtain

which is of the form 

PRACTICE PROBLEM 15-3 Show that any function satisfies Equation 15-10b,
provided 

Derivation of v for sound waves The speed of sound is given by 
(Equation 15-4), where and are the bulk modulus and density of the medium,
respectively. This equation can be obtained by applying the impulse-momentum
theorem to the motion of the air in a long cylinder (Figure 15-7) with a piston at one
end and with the other end open to the atmosphere. Suddenly, you begin to move
the piston to the right at constant speed After a short time, the piston
has moved a distance and all the air within distance from the initial po-
sition of the piston is moving to the right with speed By applying the impulse-
momentum theorem ) to the air in the cylinder we obtain

15-11

where is the mass of the air moving with speed and is the net force on the
air in the cylinder. The air was initially at rest. The net force is related to theF

Fum

F ¢t � mu � 0

(F
S

av ¢t � ¢pS
u.
v ¢tu ¢t

¢t,u.

rB
v � 2B>r

v � v>k. y(kx � v(t)

y(x � vt).

y � A sin(kx � vt) � A sin(kx � kvt) � A sin(k[x � vt])

vkv
v � v>k.y(x � vt)y � A sin(kx � vt)

y(x � vt)
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pressure increase of the air near the moving piston by

where is the cross-sectional area of the cylinder.
The bulk modulus of the air is given by

where is the volume swept out by the piston and is
the initial volume of the air that is now moving with speed 
Substituting for in Equation 15-11 gives

where has been substituted for Solving for gives

which is the same as the expression for in Equation 15-4.
A wave equation for sound waves can be derived using Newton’s laws. In one

dimension, this equation is

where is the displacement of the medium in the direction and is the speed of
sound in the medium.

15-2 PERIODIC WAVES

If one end of a long taut string is shaken back and forth in periodic motion, then a
periodic wave is generated. If a periodic wave is traveling along a taut string or
any other medium, each point along the medium oscillates with the same period.

HARMONIC WAVES

Harmonic waves are the most basic type of periodic waves. All waves, whether
they are periodic or not, can be modeled as a superposition of harmonic waves.
Consequently, an understanding of harmonic wave motion can be generalized to
form an understanding of any type of wave motion. If a harmonic wave is travel-
ing through a medium, each point of the medium oscillates in simple harmonic
motion.

If one end of a string is attached to a vibrating tuning fork that is moving up and
down with simple harmonic motion, a sinusoidal wave train propagates along the
string. This wave train is a harmonic wave. As shown in Figure 15-8, the shape of
the string is that of a sinusoidal function. The minimum distance after which the
wave repeats (the distance between crests, for example) in this figure is called the
wavelength

As the wave propagates along the string, each point on the string moves up and
down—perpendicular to the direction of propagation—in simple harmonic motion
with the frequency of the tuning fork. During one period T of this motion the
wave moves a distance of one wavelength, so its speed is given by

15-12

where we have used the relation T � 1>f.v �
l

T
� fl

f

l.

vsxs

�2s
�x2 �

1
v2

s

�2s
�t2

v

v � ABr
vm.rAv ¢t

A¢P¢t � mu  or  AB
u
v

¢t � (rAv¢t)u

F
u.

Av¢tAu¢t

B � �
¢P

¢V>V  so  ¢P � �B
¢V
V

� �B
�Au ¢t
Av ¢t

� B
u
v

A

F � A ¢P

¢P uΔt

m

vΔt

P + ΔP P

u u u u

u u u

u u u

v

F I G U R E  1 5 - 7 The air near the piston is moving to the right at
the same constant speed as the piston. The right edge of this
pressure pulse moves to the right with the wave speed . The
pressure in the pulse is higher than the pressure in the rest of the
cylinder by .¢P

v
u

λ

y

v

A
x

F I G U R E  1 5 - 8 Harmonic wave at some
instant in time. is the amplitude and is the
wavelength. For a wave on a string, this figure
can be obtained by taking a high-speed
photographic snapshot of the string.

lA
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Because the relation arises only from the definitions of wavelength and
frequency, it applies to all periodic waves.

The sine function that describes the displacements in Figure 15-8 is

where is the amplitude, is the wavelength, and is a phase constant that
depends on the choice of the origin This equation is expressed more
simply as

15-13

where called the wave number, is given by

15-14

Note that has dimensions of (Because the angle must be in radians, we
sometimes write the units of as When dealing with a single harmonic
wave we usually choose the location of the origin so that 

For a wave traveling in the direction of increasing with speed replace in
Equation 15-13 with (see “Wave Pulses” in Section 15-1). With equal to
zero, this gives

or

15-15

HARMONIC WAVE FUNCTION

where

15-16

is the angular frequency, and the argument of the sine function, 
is called the phase. The angular frequency is related to the frequency and
period by

15-17

Substituting into Equation 15-16 and using we obtain

or which is Equation 15-12.
If a harmonic wave traveling along a string is described by 

the velocity of a point on the string at a fixed value of is

15-18

TRANSVERSE VELOCITY

The acceleration of this point is given by �2y>�t2.
vy �

�y

�t
�

�

�t
[A sin(kx � vt)] � �vA cos(kx � vt)

xA sin(kx � vt),
�y(x,t)

v � fl,

2pf � kv �
2p
l
v

k � 2p>l,v � 2pf

v � 2pf �
2p
T

T
f

(kx � vt),

v � kv

y(x,t) � A sin(kx � vt)

y(x,t) � A sink(x � vt) � A sin(kx � kvt)

dx � vt
xv,x

d � 0.
rad>m.)k

m�1.k

k �
2p
l

k,

y(x) � A sin(kx � d)

(where x � 0).
dlA

y(x) � A sina2p
x
l

� db
v � fl
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Example 15-5 A Harmonic Wave on a String

The wave function is for a harmonic wave on
a string. (a) In what direction does this wave travel and what is its speed? (b) Find the wave-
length, frequency, and period of this wave. (c) What is the maximum displacement of any
point on the string? (d) What is the maximum speed of any point on the string?

PICTURE (a) To find the direction of travel, express as either a function of or
as a function of and use Equations 15-1 and 15-2. To find the wave speed, use 
(Equation 15-16). (b) The wavelength, frequency, and period can be found from the wave
number and the angular frequency (c) The maximum displacement of a point on the
string is the amplitude (d) The velocity of a point on the string is 

SOLVE

�y>�t.A.
v.k

v � kv(x � vt)
(x � vt)y(x,t)

(3.5 s�1)t]�sin[(2.2 m�1)x�(0.030 m)�y(x,t)

(a) 1. The given wave function is of the form 
Using (Equation 15-16), write the wave function as a
function of Then, use Equations 15-1 and 15-2 to find
the direction of travel:

x � vt.
v � kv

y(x,t) � A sin(kx � vt). and

so

The wave travels in the �x direction.

y(x,t) � A sin(kx � kvt) � A sin[k(x � vt)]

v � kvy(x,t) � A sin(kx � vt)

2. Because the form is we know as well as
both and Use these to calculate the speed:k.v

Ay � A sin(kx � vt),

1.6 m>s�

v �
l

T
�
l

2p
2p
T

�
v

k
�

3.5 s�1

2.2 m�1 � 1.59 m>s
(b) The wavelength is related to the wave number and the period

and frequency are related to v:fT
k,l

0.56 Hzf �
1
T

�
1

1.80 s
� 0.557 Hz �

1.8 sT �
2p
v

�
2p

3.5 s�1 � 1.80 s �

2.9 ml �
2p
k

�
2p

2.2 m�1 � 2.86 m �

(c) The maximum displacement of a string segment is the
amplitude A:

0.030 mA �

(d) 1. Compute to find the velocity of a point on the string:�y>�t

� �(0.105 m>s) cos(2.2 m�1x � 3.5 s�1t)

� (0.030 m)(�3.5 s�1) cos(2.2 m�1x � 3.5 s�1t)

vy �
�y

�t
� (0.030 m)

�[sin(2.2 m�1x � 3.5 s�1t)]
�t

2. The maximum transverse speed occurs when the cosine
function has the value of �1:

0.11 m>svy,max � 0.105 m>s �

CHECK We have included the units explicitly to show how they work out. They serve as a
plausibility check. Often we will omit the units for brevity.

Energy transfer via waves on a string Consider again a string attached to a
tuning fork. As the fork vibrates, it transfers energy to the segment of the string at-
tached to it. For example, as the fork moves upward from its equilibrium position
it stretches the adjacent string segment slightly—increasing its elastic potential en-
ergy. In addition, the fork slows as it moves upward from it equilibrium, so it slows
the string segment closest to it. This decreases the kinetic energy of the segment.
As a wave moves along the string, energy is transferred from one segment to the
next in a similar manner.

Power is the rate of energy transfer. We can calculate the power by considering
work done by the force that one segment of the string exerts on a neighboring seg-
ment. The rate of work done by this force is the power. Figure 15-9 shows a har-
monic wave moving to the right along a string segment. That is, we assume a wave
function of the form

15-19y(x,t) � A sin(kx � vt)

y

v

x
FT vtr

θ

F I G U R E  1 5 - 9 The tension force has
a component in the direction of the transverse
velocity so at this instant the force is doing
work on the end of the string that has a
positive value.

vStr ,

F
S

T
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The tension force on the left end of the segment is directed tangent to the string,
as shown. To calculate the power transferred by this force, we use the formula

(Equation 6-16), where is the tension and the transverse velocity,
is the velocity of the end of the segment. To obtain an expression for the power, we
first express the vectors in component form. That is, and

Taking the scalar product gives We obtain by differentiating
Equation 15-18. From the figure, we see that where we
have used the small angle approximation Because is the slope of
line tangent to the string, we have Thus

15-20

Applying Equation 15-20 to a harmonic wave (by taking derivatives of 
Equation 15-19) gives

Using (Equation 15-3) and (Equation 15-16), we substitute for
and the leading to obtain

15-21

where is the wave speed. The average power at any location is then

15-22

because the average value of is . This average is
taken over an entire period of the motion with held constant.

The energy travels along a taut string at an average speed
equal to the wave speed so the average energy flowing
past point during time (Figure 15-10a and Figure 15-10b) is

This energy is distributed over a length so the aver-
age energy in length is

15-23

Note that like the average power, the average energy per unit
length is proportional to the square of the amplitude of the wave.

(¢E)av � 1
2mv

2A2 ¢x

¢x
¢x � v ¢t,

(¢E)av � Pav ¢t � 1
2mvv2A2¢t

¢tP1

(¢E)avv,

xT

1
2cos2(kx � vt)

Pav � 1
2mvv2A2

xv

P � mvv2A2 cos2(kx � vt)

kFT

v � v>kv � 2FT>mP � �FT[�vA cos(kx � vt)][kA cos(kx � vt)] � FTvkA
2 cos2(kx � vt)

P � FTyvy � �FTvy tanu � �FT

�y

�t

�y

�x

tanu � �y>�x.
tanusin � tanu.

FTy � �FT sinu � �FT tanu,
vyP � FTyvy.vStr � vy j

n.
F
S

T � FTx i
n � FTy j

n

vStr,FTP � F
S

T
# vStr

F
S

T

(a)

P

t1

vΔt

t1 + Δt

P

x

x

(b)

F I G U R E  1 5 - 1 0 The wave has reached point at time During
time the wave advanced past point a distance v ¢t.P¢t,

t1.P

(a) 1. The speed is related to the tension and mass density: v � B
FT

m
  and  m �

m
L

2. Calculate the wave speed: 47 m>sv � B
FTL

m
� B

(12 N)(60 m)
(0.32 kg)

� 47.4 m>s �

Example 15-6 Average Total Energy of a Wave on a String

A harmonic wave of wavelength 25 cm and amplitude 1.2 cm moves along a 15-m-long seg-
ment of a 60-m-long string that has a mass of 320 g and a tension of 12 N. (a) What is the
speed and angular frequency of the wave? (b) What is the average total energy of the wave?

PICTURE The wave speed is where is given and We find from
where The energy is found using (Equation 15-23).

SOLVE

(¢E)av � 1
2mv

2A2 ¢xf � v>l.v � 2pf,
vm � m>L.FTv � 2FT>m ,
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3. The angular frequency is found from the frequency,
which is found from the speed and wavelength:

so

1200 rad>s�

v � 2p
v
l

� 2p
47.4 m>s
0.25 m

� 1190 rad>sv � 2pf  and  v � fl,

(b) The average total energy of a harmonic wave on the string is
given by (Equation 15-23):(¢E)av � 1

2mv
2A2¢x

8.2 J� 8.19 J �

�
1
2

0.32 kg

60 m
(1190 s�1)2(0.012 m)2(15 m)

 (¢E)av �
1
2
mv2A2 ¢x �

1
2
m
L
v2A2 ¢x

CHECK The units for the average energy in the Part-(b) result are given by

where we have used that The units work out, so the Part-(b) result is
plausible.

PRACTICE PROBLEM 15-4 Calculate the average rate at which energy is transmitted along
the string.

HARMONIC SOUND WAVES

Harmonic sound waves can be generated by a tuning fork or loudspeaker that is
vibrating with simple harmonic motion. The vibrating source causes the air mole-
cules next to it to oscillate with simple harmonic motion about their equilibrium
positions. These molecules collide with neighboring molecules, causing them to
oscillate, which in turn collide with their neighboring molecules, causing them to
oscillate, and so forth, thereby propagating the sound wave. Equation 15-15 de-
scribes a harmonic sound wave if the wave function is replaced by 
which represents the displacements of the molecules from their equi-
librium positions. Thus,

15-24

These displacements are along the direction of propagation of the 
wave, and lead to variations in the density and pressure of the air.
Figure 15-11 shows the displacement of air molecules and the density
changes caused by a sound wave at some fixed time. Because the pres-
sure in a gas is proportional to its density, the pressure is maximum

s(x,t) � s0 sin(kx � vt)

s(x,t),y(x,t)

1 N � 1 kg # m>s2.

1
kg # s�2 m3

m
� 1

kg # m2

s2
� 1 N # m � 1 J

x

x(a)

(b)

(c)

(d)

(e)

x3x2x1

s

p

F I G U R E  1 5 - 1 1 (a) Displacement from equilibrium of air molecules in a
harmonic sound wave versus position at some instant. Points and are points
of zero displacement. (b) Some representative molecules equally spaced at their
equilibrium positions cycle earlier. The arrows indicate the directions of their
velocities at that instant. (c) Molecules near points and after the sound
wave arrives. Just to the left of the displacement is negative, indicating that the
gas molecules are displaced to the left, away from point at this time. Just to the
right of the displacement is positive, indicating that the molecules are displaced
to the right, which is again away from point So at point the density is a
minimum because the gas molecules on both sides are displaced away from that
point. At point the density is a maximum because the molecules on both sides of
that point are displaced toward point At point the density does not change
because the gas molecules on both sides of that point have equal displacements in
the same direction. (d) Density of the air at this instant. The density is maximum at

and minimum at which are both points of zero displacement. It is equal to the
equilibrium value at point which is a maximum in displacement. (e) Pressure
change, which is proportional to the density change, versus position. The pressure
change and displacement (position change) are out of phase.90°

x2,
x1,x3

x2,x3.
x3,

x1,x1.
x1,

x1,
x1,

x3x1, x2,
1>4 x3x1
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where the density is maximum. We see from this figure that the density wave,
and thus the pressure wave, is out of phase with the displacement wave. (In
the arguments of sine or cosine functions, we will always express phase angles
in radians. However, in verbal descriptions, we usually say that “two waves are

out of phase” rather than “two waves are out of phase by ”) Where
the displacement is zero, the density, and thus the pressure, is either maximum
or minimum, and where the displacement is a maximum or a minimum, the den-
sity, and thus the pressure, is zero. A displacement wave given by Equation 15-
24 thus implies a pressure wave given by

15-25

where stands for the pressure minus the local equilibrium pressure, and the
maximum value of is called the pressure amplitude. It can be shown that the
pressure amplitude is related to the displacement amplitude by

15-26

where is the speed of propagation and is the equilibrium density of the gas.
Thus, as a harmonic sound wave travels through air, the displacement of air mol-
ecules, the pressure, and the density all vary sinusoidally with the frequency of the
vibrating source.

PRACTICE PROBLEM 15-5

Sound of frequencies from about 20 Hz to about 20,000 Hz are audible to humans (al-
though many people have rather limited hearing above 15,000 Hz). If the speed of sound
in air is what are the wavelengths that correspond to the highest and lowest au-
dible frequencies?

Energy of sound waves The average energy of a harmonic sound wave in a vol-
ume element is given by Equation 15-23 with replaced by and re-
placed by where is the equilibrium density of the medium.

15-27

The energy per unit volume is the average energy density 

15-28

where is the lowercase Greek letter eta.

ELECTROMAGNETIC WAVES

Electromagnetic waves include light, radio waves, X rays, gamma rays, and mi-
crowaves, among others. The various types of electromagnetic waves differ only in
wavelength and frequency. Unlike mechanical waves, electromagnetic waves do
not require a medium for propagation. They travel through a vacuum with
speed which is a universal constant, The wave function for
electromagnetic waves is an electric field associated with the wave. (Electric
fields are introduced in Chapter 21. A wave equation, similar to those for string
waves and sound waves, is derived from the laws of electricity and magnetism in
Chapter 30.) The electric field is perpendicular to the direction of propagation, so
electromagnetic waves are transverse waves.

Electromagnetic waves are produced when free electric charges accelerate or
when electrons bound to atoms and molecules make transitions to lower energy
states. Radio waves, which have frequencies of about 1 MHz for AM and 100 MHz
for FM, are produced by macroscopic electric currents oscillating in radio anten-
nas. The frequency of the emitted waves equals the frequency of oscillation of the

E
S

(x,t)
c � 3.00 � 108 m>s.c,

h

hav �
¢Eav

¢V
�

1
2
rv2s20

hav:

(¢E)av � 1
2rv

2s20 ¢V

rr ¢V,
m ¢x,s0A¢V

343 m>s,

rv

p0 � rvvs0

s0p0

p,
p0,p

p � p0 sinakx � vt �
p

2
b � �p0 cos(kx � vt)

s
p>2 rad.90°

90°



The motion of any set of wavefronts can be indicated by rays, which
are directed lines perpendicular to the wavefronts (Figure 15-13). For
circular or spherical waves, the rays are radial lines.

In a homogeneous medium, such as air at constant density, the
wavefronts travels in straight lines in the direction of the rays, much
like a beam of particles. At a great distance from a point source, a suf-
ficiently small section of the wavefront can be approximated by a flat
surface (a plane), and the rays are approximately parallel lines; such a
wave is called a plane wave (Figure 15-14). The two-dimensional
analog of a plane wave is a line wave, which is a small part of a circu-
lar wavefront at a great distance from the source. Line waves can also
be produced in a ripple tank by a line source, as in Figure 15-15.
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charges. Light waves, which have frequencies of the order of are generally
produced by atomic or molecular transitions involving bound electrons. The spec-
trum of electromagnetic waves is discussed in Chapter 31.

15-3 WAVES IN THREE DIMENSIONS

Figure 15-12 shows two-dimensional circular waves on the surface of water in a
ripple tank. These waves are generated by drops of water striking the surface. The
wave crests form concentric circles called wavefronts. For a point source of sound,
the waves move out in three dimensions, and the wavefronts are concentric spher-
ical surfaces.

1014 Hz,

F I G U R E  1 5 - 1 2

Circular wavefronts
diverging from a point
source in a ripple tank.
(PhotoDisc/Getty Images.)

Source

Wavefronts
Rays

λ

F I G U R E  1 5 - 1 3 The motion of wavefronts can be
represented by rays drawn perpendicular to the
wavefronts. For a point source, the rays are radial lines
diverging from the source.

(David Sacks/ The Image Bank/ Getty.)

F I G U R E  1 5 - 1 4 Plane waves. At great distances from a
point source, the wavefronts are approximately parallel
planes, and the rays are approximately parallel lines
perpendicular to the wavefronts.

F I G U R E  1 5 - 1 5 A two-dimensional analog of a
plane wave can be generated in a ripple tank by a flat
board that oscillates up and down in the water to
produce the wavefronts, which are straight lines.
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r1

Volume of shell =

Δr = v Δt
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A

Δr AΔV

ΔV

= = Δt
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WAVE INTENSITY

If a point source emits waves uniformly in all directions, then the energy at a dis-
tance from the source is distributed uniformly on a spherical surface of radius 
and area If is the average power emitted by the source, then the av-
erage power per unit area at a distance from the source is The average
power per unit area that is incident perpendicular to the direction of propagation
is called the intensity:

15-29

INTENSITY DEFINED

The SI units of intensity are watts per square meter At a distance from a
point source, the intensity is

15-30

INTENSITY DUE TO A POINT SOURCE

The intensity of a three-dimensional wave varies inversely with the square of the
distance from a point source.

There is a simple relation between the intensity of a wave and the energy
density in the medium through which it propagates. Figure 15-16 shows a
spherical wave that has just reached the radius The volume inside the radius 
contains energy because the particles in that region are oscillating. The region
outside contains no energy because the wave has not yet reached it. After a
short time the wave moves out a short distance past The average
energy in the spherical shell of surface area thickness and volume

is

The rate of transfer of energy is the power passing into the shell. The average
incident power is

and the intensity of the wave is

15-31

Thus, the intensity equals the product of the wave speed and the average energy
density Substituting from Equation 15-28 for the energy density
in a harmonic sound wave, we obtain

15-32

where we have used from Equation 15-26. This result—that the
intensity of a sound wave is proportional to the square of the amplitude—is a
general property of harmonic waves.

The human ear can accommodate a large range of sound-wave intensities, from
about (which is usually taken to be the threshold of hearing) to about

(an intensity great enough to stimulate pain in most people). The pressure1 W>m2
10�12 W>m2

s0 � p0>(rvv)
I � havv �

1
2
rv2s20v �

1
2

p2
0

rv

hav � 1
2rv

2s20hav.
v

I �
Pav

A
� havv

Pav �
(¢E)av

¢t
� havAv

(¢E)av � hav ¢V � havAv ¢t

¢V � A ¢r � Av ¢t
v ¢t,A,
r1.¢r � v ¢t¢t,

r1

r1r1.

I �
Pav

4pr2

r(W>m2).

I �
Pav

A

Pav>(4pr2).r
PavA � 4pr2.

rr

Sound waves from a telephone handset
spreading out in the air. The waves have been
made visible by sweeping out the space in
front of the handset with a light source whose
brightness is controlled by a microphone.
(From Winston E. Kock, Lasers and Holography,
1978, Dover Publications, New York.)
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amplitudes that correspond to these extreme intensities are about for
the hearing threshold and for the pain threshold. (Recall that a pascal is a
newton per square meter.) These very small pressure variations add to or subtract
from the normal atmospheric pressure of about 101.3 kPa.

30 Pa
3 � 10�5 Pa

Example 15-7 A Loudspeaker

A loudspeaker diaphragm 30 cm in diameter is vibrating at 1.0 kHz with an amplitude of
0.020 mm. Assuming that the air molecules in the vicinity have the same amplitude of vi-
bration, find (a) the pressure amplitude immediately in front of the diaphragm, (b) the sound
intensity immediately in front of the diaphragm, and (c) the acoustic power being radiated.
(d) If the sound is radiated uniformly into the forward hemisphere, find the intensity at 5.0 m
from the loudspeaker.

PICTURE (a) and (b) The pressure amplitude is calculated directly from 
(Equation 15-26), and the intensity from (Equation 15-32). (c) The power radi-
ated is the intensity times the area of the diaphragm. (d) The area of a hemisphere of radius

is We can use Equation 15-29 with 

SOLVE

A � 2pr2.2pr2.r

I � 1
2rv

2s20v
p0 � rvvs0

(a) Equation 15-26 relates the pressure amplitude to the
displacement amplitude, frequency, wave velocity, and
air density: 56 Pa� 55.6 N>m2 �

p0 � rvvs0 � (1.29 kg>m3)2p(103 Hz)(343 m>s)(2.0 � 10�5 m)

(b) Equation 15-32 relates the intensity to these same known
quantities:

3.5 W>m2� 3.494 W>m2 �

I � 1
2rv

2s20v � 1
2 (1.29 kg>m3)[2p(1.0 kHz)]2(2.0 � 10�5 m)2(343 m>s)

(c) The power is the intensity times the area of the diaphragm: 0.25 W�Pav � IA � (3.494 W>m2)p(0.15 m)2 � 0.247 W

(d) Calculate the intensity at assuming uniform
radiation into the forward hemisphere:

r � 5.0 m, 1.6 mW>m2�I �
Pav

A
�

0.247 W
2p(5.0 m)2 � 1.57 � 10�3 W>m2

CHECK The Part-(d) result is smaller than the Part-(b) result, as expected. (We expect the in-
tensity to be greatest immediately in front of the diaphragm.)

TAKING IT FURTHER The assumption of uniform radiation in the forward hemisphere is
not a very good one because the wavelength in this case 

is not large compared with the speaker diameter. There is also some radiation in the
backward direction, as can be observed if you stand behind a loudspeaker.

Loudspeakers at a rock concert may put out more than 100 times as much
power as the speaker in this example.

Intensity level and loudness Our perception of loudness is not proportional to
the intensity. However, our perception of loudness varies logarithmically with in-
tensity to a good approximation. We therefore use a logarithmic scale to describe
the intensity level of a sound wave, which is measured in decibels (dB) and de-
fined by

15-33

DEFINITION—INTENSITY LEVEL IN dB

where log refers to a base-10 logarithm. The decibel is a dimensionless number, like
the radian. Typically, we write Equation 15-33 without explicitly writing the units.
That is, we write it as Here is the intensity of the sound and isI0Ib � 10 log(I>I0).

b � (10 dB) log 
I
I0

b

34.3 cm]
�[l � v>f � (343 m>s)>(1000 s�1)

*

See

Math Tutorial for more

information on 

Exponents and
Logarithms
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Example 15-8 Soundproofing

A sound absorber attenuates the sound intensity level by 30 dB. By what factor is the intensity
changed?

PICTURE Inspect Table 15-1 to see the change in intensity for every 10-dB change in inten-
sity level. Can you discern the pattern?

SOLVE

1. From Table 15-1, we can see that for every 10-dB decrease in
the intensity level, the intensity changes by a factor of 1>10.

Thus, if the sound level decreases by 30 dB, then the intensity

changes by a factor of 10�3.10�1 � 10�1 � 10�1 �

CHECK We can compare this result with the result gotten by directly using 
Equation 15-33. That is, Solving for 
gives Substituting for gives thus verifying our
previous result.

I2 � 10�3I1,b2 � b1�30I2 � 10(b2�b1)>10I1.
I2b2 � b1 � 10 log(I2 >I0) � 10 log(I1 >I0) � 10 log(I2 >I1).

When his radio breaks, Chuck purchases a new one that produces twice as
much acoustic power as the old one. His expectation is that his new radio will
sound twice as loud as his old radio. Will he be disappointed? Explain.

CONCEPT CHECK 15-1✓

Table 15-1 Intensity and Intensity Level of Some Common Sounds 

Source dB Description

0 Hearing threshold
Normal breathing 10 Barely audible
Rustling leaves 20
Soft whisper (at 5 m) 30 Very quiet
Library 40
Quiet office 50 Quiet
Normal conversation (at 1 m) 60
Busy traffic 70
Noisy office with machines; average factory 80
Heavy truck (at 15 m); Niagara Falls 90 Constant exposure endangers hearing
Old subway train 100
Construction noise (at 3 m) 110
Rock concert with amplifiers (at 2 m); jet takeoff (at 60 m) 120 Pain threshold
Pneumatic riveter; machine gun 130
Jet takeoff (nearby) 150
Large rocket engine (nearby) 1801018

1015

1013

1012

1011

1010

109

108

107

106

105

104

103

102

101

100

I>I0 (I
0

� 10�12 W/m2)

a reference level, which usually is taken to be the threshold of hearing:

15-34

THRESHOLD OF HEARING

On this scale, the threshold of hearing corresponds to an intensity
level of and the pain threshold corre-
sponds to Thus, the range of sound in-
tensities from to corresponds to intensity levels from 0 dB to
120 dB. Table 15-1 lists the intensity levels of some common sounds.

1 W>m210�12 W>m2
b � 10 log(1>10�12) � 10 log 1012 � 120 dB.

(I � 1 W>m2)b � 10 log(10�12>10�12) � 0 dB
(I � 10�12 W>m2)

I0 � 10�12 W>m2
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The sensation of loudness depends on the
frequency as well as the intensity of a sound.
Figure 15-17 is a plot of intensity level versus
frequency for sounds of equal loudness to
the human ear. (In this figure, the frequency
is plotted on a logarithmic scale to display
the wide range of frequencies from 20 Hz to
10 kHz.) We observe from this plot that the
human ear is most sensitive at about 4 kHz
for all intensity levels.
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d
B F I G U R E  1 5 - 1 7 Intensity level

versus frequency for sounds perceived to
be of equal loudness. The lowest curve is
below the threshold for hearing of all but
about one percent of the population. The
second lowest curve is approximately the
hearing threshold for about 50 percent of
the population.

Example 15-9 Barking Dogs

A barking dog delivers about 1.0 mW of acoustic power. (a) If this power is uniformly dis-
tributed in all directions, what is the sound intensity level at a distance of 5.0 m? (b) What
would be the intensity level of two dogs, each 5.0 m away, barking at the same time if each
delivered 1.0 mW of power?

PICTURE The intensity level is found from the intensity, which is found from 
For two dogs, the intensities are added.

SOLVE

I � Pav>(4pr2).
(a) 1. The intensity level is related to the intensity Thus,

we must first calculate the intensity I:
I.b b � 10 log 

I
I0

2. Using calculate the intensity at r � 5.0 m:I � Pav>(4pr2), I1 �
P1 av

4pr2
�

1.0 � 10�3 W
4p(5.0 m)2 � 3.18 � 10�6 W>m2

3. Use your result to find the intensity level at 5 m: 65.0 dBb1 � 10 log 
I1
I0

� 10 log 
3.18 � 10�6

1 � 10�12 �

(b) If is the intensity for one dog barking, the intensity for
two dogs barking is I2 � 2I1:
I1

68.0 dB� 10 log2 � b1 � 3.01 � 65.0 �

b2 � 10 log 
I2
I0

� 10 log 
2I1
I0

� 10a log 2 � log
I1
I0
b

CHECK If the Part-(b) result is correct then whenever the intensity is doubled, the intensity
level increases by dB. To see if this checks out we divide 65 dB by 3 dB to get 21.7, so
doubling the threshold intensity 21.7 times should give an intensity of 
That is, should equal about Multiplying by gives

so our Part-(b) result is plausible.

15-4 WAVES ENCOUNTERING BARRIERS

REFLECTION, TRANSMISSION, AND REFRACTION

When a wave is incident on a boundary that separates two regions of dif-
fering wave speed, part of the wave is reflected and part is transmitted.
Figure 15-18a shows a pulse on a light string that is attached to a heavier
string (one with a slower wave speed). In this case, the pulse reflected at
the boundary is inverted. If the second string is lighter than the first
(Figure 15-18b), then the reflected pulse is upright. (By upright we mean

3.4 � 10�6 W>m2,
221.71 � 10�12 W>m23 � 10�6 W>m2.221.7I0

I1 � 3 � 10�6 W>m2.
�3

hin

hin

hr

hr

ht

ht

v1

v2

v1

v1

v2

v1

v2 > v1

v2 < v1

(a)

(b)

F I G U R E  1 5 - 1 8 The leading edges of the pulses are steeper than the trailing
edges because the end of the string was raised more quickly than it was lowered.
(a) A wave pulse traveling on a string attached to a more massive string in which the
wave speed is half as large. The reflected pulse is inverted, whereas the transmitted
pulse is not. (b) A wave pulse traveling on a string attached to a less massive string in
which the wave speed is twice as large. In this case, the reflected pulse is not inverted.
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it has the same orientation as the incident pulse.) The pulse transmitted to the sec-
ond string is always upright. A string attached to a fixed point is equivalent to a
string being attached to a second string with an extremely large mass per unit length,
so for an incident pulse on a string attached to a fixed point the reflected pulse is in-
verted. Conversely, if the string is tied to a string of negligible mass per unit length,
the reflected pulse is upright. The heights of the incident, transmitted, and reflected
pulses, shown in Figure 15-18, are and respectively. The reflection coeffi-
cient is the height of the reflected pulse divided by the height of the incident pulse,
and the transmission coefficient is the height of the transmitted pulse divided by
the height of the incident pulse. That is, and where heights

and are shown in Figure 15-18. The expressions for and are

and 15-35

REFLECTION AND TRANSMISSION COEFFICIENTS

These expressions for the reflection and transmission coefficients and are
known as the Fresnel relations. They can be derived by requiring that the tension,
the height of the string and the slope of the string all remain continuous at the
point where the mass per unit length is discontinuous. (Newton’s third law
requires that the slope be continuous.) Note that is never negative and that is
negative if This implies the transmitted pulse is never inverted and the
reflected pulse is inverted if v2 	 v1.

v2 	 v1.
rt

tr

t �
2v2

v2 � v1

r �
v2 � v1

v2 � v1

t,rhthi, hin,
t � ht>hin,r � hr>hi

t

r
hr,hin , ht ,

Example 15-10 Two Soldered Wires

Two wires of different linear mass densities are soldered together end-to-end and then
stretched under a tension (the tension is the same in both wires). The wave speed in the
first wire is twice that in the second. A harmonic wave traveling in the first wire is incident
on the junction of the wires. (a) If the amplitude of the incident wave is what are the am-
plitudes of the reflected and transmitted waves? (b) What is the ratio of the mass den-
sities of the wires? (c) What fraction of the incident average power is reflected at the junction
and what fraction is transmitted?

PICTURE To calculate the amplitudes of the reflected and transmitted waves, use and
where and are the amplitudes of the reflected and transmitted waves, respec-

tively, and and are the reflection and transmission coefficients given in Equation 15-35. Each
power is expressed using (Equation 15-22). The incident, reflected and trans-
mitted waves all share the same frequency. Because the reflected wave and incident wave are
in the same medium, they have the same wave speed We are given that the wave speed 
in the second wire is (Figure 15-19).

SOLVE

1
2 v1

v2v1.

Pav � 1
2mvv2A2

tr
AtArAt � tA,

Ar � rA

m2 >m1

A,

FT

(a) 1. Express the reflected and transmitted amplitudes in terms of
the incident amplitude and the reflection and transmission
coefficients (Equation 15-35):

Ar � rA  and  At � tA

2. Use the given relation to solve for the reflection and
transmission coefficients:

v1 � 2v2

so and
2
3
AAt ��

1
3
AAr �

t �
2v2

v2 � v1

�
2v2

v2 � 2v2

�
2
3

r �
v2 � v1

v2 � v1

�
v2 � 2v2

v2 � 2v2

� �
1
3

(b) 1. The formula relating the mass density with the wave speed is
(Equation 15-3). is the same on either side of

the junction. Solve for and m1:m2

FTv � 2FT >m
so m1 �

FT

v2
1

  and  m2 �
FT

v2
2

v2
1 �
FT

m1

  and  v2
2 �
FT

m2

vin = v1 vt = v2 = v1

vr = v1

μ1 μ2

1
2

F I G U R E  1 5 - 1 9
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CHECK The fractional power reflected plus the fractional power transmitted equals one, as
one would expect.

TAKING IT FURTHER The reflected wave is inverted relative to the incident wave, so it is
out of phase with it. A negative amplitude corresponds to a phase shift of 

PRACTICE PROBLEM 15-6 Repeat Example 15-10 except with 

Energy conservation gives another relation between the reflection and trans-
mission coefficients. This relation, established in Problem 15-70 is given by

15-36

where is the fraction of the incident power that is reflected and is the
fraction that is transmitted.

PRACTICE PROBLEM 15-7

Show that the values of and for the wires in Example 15-10 satisfy Equation 15-36.

In three dimensions, a boundary between two regions of differing wave speed
is a surface. Figure 15-20 shows a ray incident on such a boundary surface. This ex-
ample could be a sound wave in air striking a solid or liquid surface. The reflected
ray makes an angle with the normal to the surface equal to that of the incident ray,
as shown.

The transmitted ray is bent toward or away from the normal—depending on
whether the wave speed in the second medium is less or greater than that in the
incident medium. The bending of the transmitted ray is called refraction. When
the wave speed in the second medium is greater than that in the incident medium
(as occurs when a light wave in glass or water is refracted into the air), the ray

tr

(v1>v2)t
2r2

1 � r2 �
v1

v2

t2

v2 � 2v1.

180°.180°

2. Divide by and use the given information that v1 � 2v2:m1m2 4
m2

m1

�
v2

1

v2
2

�
(2v2)

2

v2
2

�

(c) 1. Write expressions for the incident, reflected, and transmitted
power using (Equation 15-22):Pav � 1

2mvv2A2

Pt av � 1
2m2v

2A2
tv2

Pr av � 1
2m1v

2A2
rv1

Pin av � 1
2m1v

2A2v1

2. Substitute the Part-(a) results into the expressions for the
reflected and transmitted power:

Pt av � 1
2m2v

2a2
3
Ab 2

v2 �
2
9
m2v

2A2v2

Pr av � 1
2m1v

2a�
1
3
Ab 2

v1 �
1

18
m1v

2A2v1

3. Obtain expressions for and for Pt >Pin:Pr >Pin

Pt av

Pin av

�

2
9m2v

2A2v2
1
2m1v

2A2v1

�
4
9

m2

m1

v2

v1

1
9

Pr av

Pin av

�

1
18m1v

2A2v1
1
2m1v

2A2v1

�

4. Simplify using the Part-(b) result and the given relation
v1 � 2v2:

8
9

Pt av

Pin av

�
4
9

4
v2

2v2

�

Reflected
ray

Refracted
ray

Incident
ray

F I G U R E  1 5 - 2 0 A wave striking a
boundary surface between two media in
which the wave speed differs. Part of the
wave is reflected and part is transmitted. The
change in direction of the transmitted
(refracted) ray is called refraction.
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describing the direction of propagation is bent away from the normal, as shown in
Figure 15-21. As the angle of incidence is increased, the angle of refraction in-
creases, until a critical angle of incidence is reached for which the angle of refrac-
tion is For incident angles greater than the critical angle, there is no refracted
ray, a phenomenon known as total internal reflection.

The amount of energy reflected from a surface depends on the surface. Rigid flat
walls, floors, and ceilings make good reflectors for sound waves, whereas porous
and less rigid materials, such as cloth in draperies and furniture coverings, absorb
much of the incident sound. The reflection of sound waves plays an important role
in the design of a lecture hall, a library, or a music auditorium. If a lecture hall has
many flat reflecting surfaces, speech is difficult to understand because of the many
echoes that simultaneously arrive at the listener’s ear. Absorbent material is often
placed on the walls and ceiling to reduce such reflections. In a concert hall, a re-
flecting shell is placed behind the orchestra, and reflecting panels are hung from
the ceiling to reflect and direct the sound back toward the listeners.

90°.

v

v

2

1

v
1

>

Partially
reflected

Totally
reflected

1θ

2θ
2θ

2θ

1θ 1θ

cθ

Conceptual Example 15-11 Balloon Hearing Aid

A popular physics demonstration uses a weather balloon filled with
carbon dioxide. If you place the balloon between yourself and a
sound source, the sound gets louder. Why is that?

PICTURE The molar mass of carbon dioxide is greater than the
effective molar mass of air. Thus, sound travels faster in air than it
does in carbon dioxide at atmospheric pressure. To “see” why the
sound gets louder when the balloon is between you and the source
of the sound, draw a diagram of the rays of sound as they pass
through the balloon. The rays will refract (bend) when they are trans-
mitted through a surface where the speed of sound changes.

SOLVE

1. Trace a ray from the source of the sound through the top half of
the balloon (Figure 15-22a). The ray will refract toward the
normal as it enters the balloon, and away from the normal as it
exits the balloon:

2. Repeat step 1 for four or five additional rays, including some that
go through the lower half of the balloon (Figure 15-22b).

(Courtesy of Davies Symphony Hall.)

F I G U R E  1 5 - 2 1 Light from a source
in the water is bent away from the
normal when it enters the air. For angles
of incidence above a critical angle 
there is no transmitted ray, a condition
known as total internal reflection.

uC,

3. Use the diagram to explain why the
sound is louder when the balloon is
between you and the source of sound:

The sound is loudest in
the region where the
rays intersect.

Balloon

Source

Air

CO2

(b)

Balloon

Normals

Ray
Air

CO2

(a)

F I G U R E  1 5 - 2 2

CHECK The balloon is to sound as a magnifying glass is to light. In glass, light travels more
slowly than it does in air, just as in sound travels more slowly than it does in air.CO2
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F I G U R E  1 5 - 2 4 Comparison of particles
and waves passing through a narrow opening
in a barrier. (a) Transmitted particles are
confined to a narrow-angle beam.
(b) Transmitted waves spread out (radiate
widely) from the aperture, which acts like a
point source of circular waves.

F I G U R E  1 5 - 2 3 Plane waves in a ripple
tank meeting a barrier with an opening that is
only a few wavelengths wide. Beyond the
barrier are circular waves that are concentric
about the opening, much as if there were a
point source at the opening. (Fundamental
Photographers.)Source

(a)

Although waves passing through an aperture always bend, or diffract, to some
extent, the amount of diffraction depends on whether the wavelength is small or
large relative to the size of the aperture. If the wavelength is large relative to the aper-
ture, as in Figure 15-25, the diffraction effects are large, and the waves spread out as
they pass through the aperture—as if the waves were originating from a point
source. On the other hand, if the wavelength is small relative to the aperture, the ef-
fect of diffraction is small, as shown in Figure 15-23. Near the edges of the aperture
the wavefronts are distorted and the waves appear to bend slightly. For the most
part, however, the wavefronts are not affected and the waves propagate in straight
lines, much like a beam of particles. The approximation that waves propagate in
straight lines in the direction of the rays with no diffraction is known as the ray
approximation. Wavefronts are distorted near the edges of any obstacle blocking part
of the wavefronts. By near we mean within a few wavelengths of the edges.

Because the wavelengths of audible sound (which range from a few centimeters
to several meters) are generally large compared with apertures and obstacles (doors
or windows, and people, for example), diffraction of sound waves is a phenomenon
that is regularly observed. On the other hand, the wavelengths of visible light

to are so small compared with the size of ordinary objects and
apertures that the diffraction of light is not easily noticed; light appears to travel in
straight lines. Nevertheless, the diffraction of light is an important phenomenon,
one we study in detail in Chapter 35.

Diffraction places a limitation on how accurately small objects can be located by
reflecting waves off them and on how well details of the objects can be resolved.
Waves are not reflected appreciably from objects smaller than the wavelength, so
detail cannot be observed on a scale smaller than the wavelength used. If waves of
wavelength are used to locate an object, then its position can be known only to
within an uncertainty of one wavelength.

l

7 � 10�7 m)4 � 10�7

F I G U R E  1 5 - 2 5 Plane waves in a ripple
tank meeting a barrier with an opening width
that is large compared to . The wave
continues in the forward direction, with only a
small amount of spreading into the regions to
either side of the opening. (Fundamental
Photographers.)

l

DIFFRACTION

If a wavefront is partially blocked by an obstacle, the unblocked part of the wave-
front bends behind the obstacle. This bending of the wavefronts is called diffraction.
Almost all of the diffraction occurs for that part of the wavefront that passes within
a few wavelengths of the edge of the obstacle. For the parts of the wavefront that
pass farther than a few wavelengths from the edge, diffraction is negligible and the
wave propagates in straight lines in the direction of the incident rays. When wave-
fronts encounter a barrier with an aperture (hole) only a few wavelengths across, the
part of the wavefronts passing through the aperture all pass within a few wave-
lengths of an edge. Thus, flat wavefronts bend and spread out and become spherical
or circular (Figure 15-23). In contrast, for a beam of particles falling upon a barrier
with an aperture, the part of the beam passing through the aperture does so with no
change in the direction of the particles (Figure 15-24). Diffraction is one of the key
characteristics that distinguish waves from particles. We will discuss how diffraction
arises when we study the interference and diffraction of light in Chapter 35.
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(GE Medical Systems/Photo Researchers, Inc.)

Moving
source

65
vTs vTs

5

us

λb

λb = (v + us) Ts
λf = (v − us) Ts

λ f

usTs

1

1

2

2 3

4

4

5

5 us6
6

Moving
source Stationary

receiver

3

(b)(a) (c)

F I G U R E  1 5 - 2 6 (a) Waves in a ripple
tank produced by a point source moving to
the right. The wavefronts are closer together
in front of the source and farther apart behind
the source. (b) Successive wavefronts emitted
by a point source moving with speed to the
right. The numbers of the wavefronts
correspond to the positions of the source
when the wave was emitted. (c) The source
vibrates one cycle in time During time 
the source moves a distance and the fifth
wavefront travels a distance In front of the
source the wavelength while
behind the source (Educational
Development Center.)

lb � (v � us)Ts.
lf � (v � us)Ts,

vTs.
usTs

TsTs.

us

Sound waves with frequencies above 20,000 Hz are called ultrasonic waves.
Because of their very small wavelengths, narrow beams of ultrasonic waves can be
sent out and reflected from small objects. Bats can emit and detect frequencies up
to about 120 kHz, corresponding to a wavelength of 2.8 mm, which they use to lo-
cate small prey such as moths. Echolocation systems, called sonar (from sound and
navigation ranging), are used to detect the outlines of submerged objects with
sound waves. The frequency used by commercially available fish finders ranges
from about 25 to 200 kHz, and porpoises produce echolocation clicks in the same
frequency range. In medicine, ultrasonic waves are used for diagnostic purposes.
Ultrasonic waves are passed through the human body and information about the
frequency and intensity of the transmitted and reflected waves is processed to con-
struct a three-dimensional picture of the body’s interior, called a sonogram.

15-5 THE DOPPLER EFFECT

If a wave source and a receiver are moving relative to each other, the received fre-
quency is not the same as the frequency of the source. If they are moving closer to-
gether, the received frequency is greater than the source frequency; and if they are
moving farther apart, the received frequency is less than the source frequency. This
is called the Doppler effect. A familiar example is the drop in pitch of the sound
of the horn of an approaching car as the car passes by—and then recedes.

In the following discussion, all motions are relative to the medium. Consider the
source moving with speed shown in Figure 15-26a and b, and a stationary re-
ceiver. The source has frequency (and period The received frequency 
the number of wave crests passing the receiver per unit time, is related to the wave-
length (the distance between successive crests) and wave speed relative by

(stationary receiver) 15-37

A wave crest leaves the source at time (Figure15-26c) and the next wave crest
leaves the source at time The time between these two events is and
during this time the source and the crest leaving the source at time travel dis-
tances and respectively. Consequently, at time the distance between the
source and the crest leaving at time equals the wavelength Behind the source

and in front of the source provided
(If no wavefronts reach the region ahead of the source.) We can ex-

press both and as

15-38

where the minus sign is used if and the plus sign is used if We have
substituted for Substituting for in Equation 15-37 and rearranging gives

(stationary receiver) 15-39fr �
v
l

�
v

v � us

fs

lTs.1>fs l � lb.l � lf

l � (v � us)Ts �
v � us

fs

lflb

us � v,us 	 v.
l � lf � (v � us)Ts,l � lb � (v � us)Ts,

l.t1

t2,vTs,usTs

t1

Ts � t2 � t1,t2.
t1

frl � v

vl

fr ,Ts � 1>fs).fs

us,



The Doppler Effect S E C T I O N  1 5 - 5 | 519

When the receiver moves relative to the medium, the received frequency is differ-
ent simply because the receiver moves past more or fewer wave crests in a given
time. Let denote the time between arrivals of successive crests for a receiver
moving with speed Then, during the time between the arrivals of two succes-
sive crests, each crest will have traveled a distance and during the same time
the receiver will have traveled a distance If the receiver moves in the direction
opposite to that of the wave (Figure 15-27), then during time the distance a crest
moves plus the distance the receiver moves equals the wavelength. That is,

or [If the receiver moves in the same direction as
the wave, then so Because we have

15-40

where, if the receiver moves in the same direction as the wave, the received fre-
quency is lower, so we choose the negative sign. If the receiver moves in the direc-
tion opposite to that of the wave, the frequency is higher, so we choose the positive
sign. Substituting for from Equation 15-38, we obtain

15-41a

The correct choices for the plus or minus signs are most easily determined by re-
membering that the frequency tends to increase both when the source moves to-
ward the receiver and when the receiver moves toward the source. For example, if
the receiver is moving toward the source, the plus sign is selected in the numera-
tor, which tends to increase the received frequency; if the source is moving away
from the receiver, the plus sign is selected in the denominator, which tends to de-
crease the received frequency. Equation 15-41a appears more symmetric, and thus
is easier to remember, if expressed in the form

15-41b

It can be shown (see Problem 83) that if both and are much smaller than the
wave speed then the shift in frequency is given approximately by

15-42

where is the speed of the source relative to the receiver.
In a reference frame in which the medium is moving (for example, the reference

frame of the ground if air is the medium and if there is a wind blowing), the wave speed
is replaced by where is the speed of the wind relative to the ground.

PROBLEM-SOLVING STRATEGY

Solving Problems Involving Doppler Shift

PICTURE Solving problems involving the Doppler shift means using the
equation

(Equation 15-41a).

SOLVE

1. Find the speed of the source and of the receiver in the reference
frame of the propagating medium.

2. Find the directions of the motions of the source and receiver in the same
reference frame.

3. Substitute values into Equation 15-41a. Both the source moving toward
the receiver and the receiver moving toward the source tend to increase
the received frequency. Thus, if the source is moving toward the receiver,

urus

fr �
v � ur

v � us

fs

uwv� � v � uw,v

u � us � ur

¢f
fs

� �
u
v
  (u V v)

¢f � fr � fsv,
urus

fr
v � ur

�
fs

v � us

fr �
v � ur

v � us

fs

l

fr �
1
Tr

�
v � ur

l

fr � l>Tr,Tr � l>(v � ur)].vTr � l � urTr,
Tr � l>(v � ur).vTr � urTr � l,

Tr,
urTr.

vTr,
ur.

Tr

Moving
receiver

vTr

ur

v

urTr

λ

F I G U R E  1 5 - 2 7 The time between
arrivals of wave crests at the receiver is The
wave crests are represented by orange lines
when a wave crest reaches the receiver, and
they are represented by grey lines when the
next crest reaches the receiver. During time 
the receiver travels the distance while the
wave crest travels the distance vTr.

urTr ,
Tr

Tr.

Equations 15-37 through 15-42 are
valid only in the reference frame of

the propagating medium.
!
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choose the minus sign in the denominator, and if the receiver is moving
toward the source, choose the plus sign in the numerator.

4. If the wave bounces off a reflector before reaching the receiver, treat the
reflector first as a receiver and apply Equation 15-41a, then treat the
reflector as a source and apply Equation 15-41a once again.

CHECK If the distance between a source and receiver is decreasing, then the
received frequency is higher than the source frequency If this distance is
increasing, then is lower than fs.fr

fs.fr

Example 15-12 Sounding the Horn

The frequency of a car horn is 400 Hz. If the horn is honked as the car moves with a speed
(about through still air toward a stationary receiver, find (a) the

wavelength of the sound passing the receiver, and (b) the frequency received. Take the speed
of sound in air to be (c) Find the wavelength of the sound passing the receiver and
find the frequency received if the car is stationary as the horn is honked and a receiver moves
with a speed toward the car.

PICTURE (a) The waves in front of the source are compressed, so we use the minus sign
in (Equation 15-38). (b) We calculate the received frequency using

(Equation 15-41a). (c) For a moving receiver, we use the same equa-
tions as in Parts (a) and (b).

SOLVE

fr � [(v � ur)>(v � us)]fs

l � (v � us)>fs
ur � 34 m>s343 m>s.

122 km>h)us � 34 m>s

(a) Using Equation 15-38, calculate the wavelength in
front of the car. In front of the source the wavelength
is shorter, so choose the sign accordingly:

0.76 m�l �
v � us

fs
�

343 m>s � 34 m>s
400 Hz

� 0.758 m

(b) Using Equation 15-41a with solve for the
received frequency:

ur � 0, 450 Hz� a 343
343 � 34

b (400 Hz) � 453 Hz �fr �
v � ur

v � us

fs �
v

v � us

fs

(c) 1. Using Equation 15-38 with calculate
the wavelength in front of the source:

us � 0, 0.86 m�l �
v � us

fs
�

343 m>s
400 Hz

� 0.858 m

2. The received frequency is given by Equation 15-41a
with The source is approaching the receiver,
so the frequency is shifted upward. Choose the sign
accordingly:

us � 0.
440 Hz� a1 �

34
343
b (400 Hz) �fr �

v � ur

v � us

fs �
v � ur

v
fs � a1 �

ur

v
bfs

CHECK The receiver is moving at about 10% of the speed of sound and the frequency
received is about 10% higher than the frequency of the source, which is plausible. (Caution,
though, this works only if the source is at rest.)

TAKING IT FURTHER The frequency can also be obtained using Equation 15-40.

PRACTICE PROBLEM 15-8 As a train moving at is approaching a stationary
listener on a windless day, it sounds its horn, which has a frequency of 630 Hz. (a) What is
the wavelength of the sound waves in front of the train? (b) What frequency is heard by the
listener? (Use for the speed of sound.)343 m>s

90 km>hfr

Context-RichExample 15-13 The Speed of the Wave

You work for an insurance company. An asteroid crashing into the ocean generates a tsunami.
When the waves strikes land a 10-m-high wave does a lot of damage. Your boss wants to know
how fast the big waves were moving. Knowing that you took a physics course, he asks you to
find out. All you have to go on is the audio from a tape recorder that was found in a tree after
the waves receded. The audio on the tape has a siren in the background, and in between blasts
from the local warning siren is a faint echo of the siren. You measure the frequencies of the
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1. Apply the Doppler-effect equation with to relate the
frequency received by the big wave to the speed of the big wave:ufr

us � 0 fr �
v � u
v
fsfr �

v � ur

v � us

fs �
v � u
v
fs

2. Apply the Doppler-effect equation, this time with to relate the
frequency received by the tape recorder to the speed of the big
wave. Use the step-1 result as the frequency of the big wave as a
source of sound:

fr

fœ
r

ur � 0, fœ
r �

v
v � u

frfr
œ �
v � ur

v � us

fœ
s �

v
v � u

fr

3. We now have two equations and two unknowns. Substitute the
step-1 result into the step-2 result and simplify:

fœ
r �
v � u
v � u

fsfœ
r �

v
v � u

fr �
v
v � u

v � u
v
fs

4. Solve for the speed u: 16.3 m>s�
4400 Hz � 4000 Hz
4400 Hz � 4000 Hz

343 m>s �u �
fœ

r � fs
fœ

r � fs
v

CHECK Sixteen meters per second is about twice as fast as a person can sprint under ideal
conditions. Having seen video of tsunamis striking the shore, this seems like a plausible speed.

Another familiar example of the Doppler effect is the radar used by police to
measure the speed of a car. Electromagnetic waves emitted by the radar transmit-
ter strike the moving car. The car acts as both a moving receiver and a moving
source as the waves reflect off it back to the radar receiver. Equation 15-41a is not
valid for electromagnetic waves. Electromagnetic waves require the use of the
relativistic Doppler-effect formula. (The relativistic Doppler effect is discussed
following Example 15-14.) It turns out that if , where c is the speed of light,
Equation 15-42 is valid for electromagnetic waves.

u V c

Try It YourselfExample 15-14 Police Radar

The radar unit in a police car sends out electromagnetic waves that travel at the speed of
light The electric current in the antenna of the radar unit oscillates at frequency The
waves reflect from a speeding car moving away from the police car at speed relative to the
police car. There is a frequency difference of between and the frequency received at
the police car. Find in terms of and 

PICTURE The radar wave strikes the speeding car at frequency This frequency is less
than because the car is moving away from the source. The frequency shift is given by

(Equation 15-42) with The car then acts as a moving source emitting
waves of frequency The police unit detects waves of frequency because the source
(the speeding car) is moving away from the police car. The frequency difference is 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

fœ
x � fs.

fœ
x 	 frfr.

v � c.¢f>f � �u>vfs

fr.

¢f.fsu
fœ
x ,fs¢f

u
fs.c.

sound produced by the siren and its echo and find the siren had a frequency of 4000 Hz, but
the echo had a frequency of 4080 Hz. How fast was the big wave approaching?

PICTURE You check with the weather service and find there was no wind at the time the
tsunami hit. In addition, the reported temperature is so the speed of sound was

First, apply the Doppler-effect equation (Equation 15-41a) to calculate the frequency
of the sound received by the tsunami in terms of the speed of the big wave. Apply the
equation again, this time considering the big wave as the source of the sound and the tape
recorder as the receiver. Assume that the tape recorder was not moving.

SOLVE

u
343 m>s.

20°C,

Steps Answers

1. The radar unit must be able to determine the speed based
only on what it transmits and what it detects.

The radar unit must determine u in terms of and We solve
(Equation 15-42) for u in terms of and ¢f � fœ

r � fs.fs¢f>f � �u>v fœ
r .fs

2. The frequency difference is the frequency difference
plus the frequency difference ¢f2 � f � fr.¢f1 � fr � fs

¢f ¢f � ¢f1 � ¢f2

3. Using Equation 15-42 with , substitute for the
frequency differences in step 2.

v � c ¢f � �
u
c
fs �

u
c
fr � �

u
c

(fs � fr)

4. Again using Equation 15-42, solve for in terms of fs.fr
¢f1
fs

� �
u
c
  so  fr � a1 �

u
c
bfs
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6. Compared to 2, is negligible. Use this to simplify the
step-5 result and solve for in terms of and fs.¢fu

u>c ƒ¢f ƒ
2fs
c¢f � �2

u
c
fs  so  u � �

¢f
2fs
c �

CHECK The step-6 result is a dimensionless ratio times the speed of light, so it has the
correct dimensions for a speed. Thus, the dimensions of the step-6 result are plausible.

TAKING IT FURTHER The difference in frequency between two waves of nearly equal
frequency is easy to detect because the two waves interfere to produce a wave whose
amplitude oscillates with frequency which is called the beat frequency. Interference and
beats are discussed in Chapter 16.

PRACTICE PROBLEM 15-9 Calculate if and

The Doppler shift and relativity We see from Example 15-12 (and Equations 
15-39, 15-40, and 15-41) that the magnitude of the Doppler shift in frequency de-
pends on whether it is the source or the receiver that is moving relative to the
medium. For sound, these two situations are physically different. For example, if
you move relative to still air, you feel air rushing past you. In your reference frame,
there is a wind. For sound waves in air, therefore, we can tell whether the source
or receiver is moving by noting if there is a wind in the reference frame of the
source or the receiver. However, light and other electromagnetic waves propagate
through empty space in which there is no propagating medium. There is no
“wind” to tell us whether the source or receiver is moving. According to Einstein’s
theory of relativity, absolute motion cannot be detected, and all observers measure
the same speed for light, independent of their motion relative to the source. Thus
Equation 15-41 cannot be correct for the Doppler shift for light. Two modifications
must be made in calculating the relativistic Doppler effect for light. First, the speed
of waves passing a receiver is which is independent of the motion of the receiver.
Second, the time interval between the emission of successive wave crests, which is

in the reference frame of the source, is different in the reference frame of
the receiver when the two reference frames are in relative motion, because of rela-
tivistic time dilation and length contraction (Equations R-9 and R-3). (We discuss
the relativistic Doppler effect in Chapter 39.) The result is that the frequency
received depends only on the relative speed of approach (or recession) and is
related to the frequency emitted by

15-43

Choose the signs that give an up-shift in frequency when the source and receiver
are approaching, and vice versa. Again, when as given by
Equation 15-42.

SHOCK WAVES

During our derivations of the Doppler-shift expressions, we assumed that the speed
of the source was less than the wave speed If a source moves with speed greater

than the wave speed, then there will be no waves in front of the source. Instead, the
waves pile up behind the source to form a shock wave. In the case of sound waves,
this shock wave is heard as a sonic boom when it arrives at the receiver.

Figure 15-28 shows a source originally at point moving to the right with
speed After some time the wave emitted from point has traveled a dis-
tance The source has traveled a distance and will be at point The line fromP2.utvt.

P1t,u.
P1

v.u

u V c, ¢f>fs � �u>c,
fr � A c � u

c � u
fs

u,

Ts � 1>fs
c,

c

u � 50.0 m>s.
fs � 1.50 � 109 Hz, c � 3.00 � 108 m>s,¢f

ƒ¢f ƒ ,

(a) Shock waves from a supersonic airplane.
(Sandia National Laboratory.) (b) Shock waves
produced by a bullet traversing a helium
balloon. (Estate of Harold E. Edgerton/
Palm Press Inc.)

(a)

(b)

5. Substitute your step-4 result into your step-3 result and
simplify.

¢f � �
u
c
a2 �

u
c
bfs
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vt

PP
ut

1 2

θ

(a) (b)

F I G U R E  1 5 - 2 8 (a) Source moving with a
speed that is greater than the wave speed .
The envelope of the wavefronts forms a cone
with the source at the apex. (b) Waves in a
ripple tank produced by a source moving with
a speed . (Educational Development Center.)u 
 v

vu

this new position of the source to the wavefront emitted when the source was at 
makes an angle called the Mach angle, with the path of the source, given by

15-44

Thus, the shock wave is confined to a cone that narrows as increases. The ratio
of the source speed to the wave speed is called the Mach number:

15-45

Equation 15-44 also applies to the electromagnetic radiation called Cerenkov
radiation, which is given off when a charged particle moves in a medium with speed

that is greater than the speed of light in that medium. (According to the special
theory of relativity, it is impossible for a particle to move faster than the speed of
light in vacuum. In a medium such as glass however, electrons and other particles
can move faster than the speed of light in that medium.) The blue glow surrounding
the fuel elements of a nuclear reactor is an example of Cerenkov radiation.

c,
vu

Mach number �
u
v

vu
u

sinu �
vt
ut

�
v
u

u,
P1

Try It YourselfExample 15-15 A Sonic Boom

A supersonic plane flying due east at an altitude of 15 km passes directly over
point The sonic boom is heard at point when the plane is 22 km east of
point What is the speed of the supersonic plane?

PICTURE The speed of the plane is related to the sine of the Mach angle
(Equation 15-2). Draw a picture so the sine of the Mach angle can be calculated.

SOLVE

Cover the column to the right and try these on your own before looking at
the answers.

P.
PP.

θ

22 km

uΔt

P

vΔt 15 km

F I G U R E  1 5 - 2 9 In the time that the plane moves
distance the sound moves distance v ¢t.u ¢t,

Steps Answers

1. Sketch the position of the plane (Figure 15-29) both at the
instant the sonic boom is heard at point and at the
instant that sound was produced. Label the distance the
sound travels and the distance the plane travels u ¢t.v ¢t,

P

2. From your sketch and Equation 15-44, calculate u:

so 610 m>su �
v

sinu
� 609 m>s �sinu �

v ¢t
u ¢t

�
v
u

tanu �
15 km
22 km

  so  u � 34.3°

CHECK The speed of sound is so is plausible for a supersonic speed.610 m>s343 m>s,
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Physics Spotlight

All Shook Up: Sediment Basins and Earthquake Resonance

On April 18, 1906, the city of San Francisco was devastated by a powerful
earthquake. All the buildings in the lowest area collapsed. These build-
ings were built on water-logged unconsolidated sediments —loose gravel,
sand, dirt, and clay. Some buildings even sank one or more stories into the
ground as the shaking liquefied the loose sediment. Buildings up on rocky
Nob Hill and Russian Hill fared better.

Cities located on unconsolidated sediments and near major faults are more
vulnerable to earthquake damage than those that are not. If they are partly sur-
rounded by rocky hills or mountains, the danger increases. Vulnerable cities
include Seattle,*, † Istanbul,‡ Rome,# Los Angeles,° San Francisco,§ and Taipei.¶

Unconsolidated sediments are at much greater risk for seismic shaking
than rock. When an earthquake occurs, some of the earthquake’s energy is
sent forth in seismic waves. These waves cause the ground to vibrate over
a wide range of frequencies. In solid rock, the waves vibrate and have rela-
tively small amplitudes. The looser the rock or sediment, the more the prop-
agation speed decreases and the amplitude increases.** In loose gravel, the
waves vibrate more slowly and have greater amplitude. In water-logged sediments, the waves vibrate still more slowly and have
much greater amplitude. If you tap a bowl of gelatin sharply on the side, you can hear the sound of tapping the bowl. If it is a
metal or glass bowl, the sound will have a frequency of hundreds of hertz. But the gelatin attenuates and scatters the higher fre-
quencies, and resonates at lower frequencies. The same principle underlies the vulnerability of many cities to earthquakes.††

Unfortunately, the resonance frequencies of most buildings are closer to the resonance frequencies of the seismic waves in loose
sediments.‡‡ Thus, not only do the sediments vibrate with greater amplitude, but they vibrate most strongly at frequencies that
are closer to the resonance frequencies of buildings. This problem was clearly recognized in the State report on the San Francisco
earthquake of 1906.## Buildings located in areas of unconsolidated sediment were far more damaged than those that were located
on higher, firmer ground.

The situation is worst for those cities that are built on sediments that are partially surrounded by areas of hard rock. There
the waves resonate within the basin of sediments with large amplitudes. This was true in 1906, when the town of Santa Rosa
sustained great damage, even though it was farther from the epicenter of the quake than other, less damaged towns. Santa
Rosa is located within its own sediment basin, surrounded by rock.°° The basin resonance causes the sediments to vibrate with
still greater amplitude. This greater amplitude creates greater damage. Usually, the damage is from the horizontal accelera-
tion caused by the seismic waves. Until the stringent earthquake codes of the 1970s, buildings were not built to withstand hor-
izontal forces. In most cities, well over half the buildings date from before the stringent codes were adopted.

Geophysicists use models of these basins and their sediments to predict areas that are likely to sustain high damage from
earthquakes.§§ These predictions are used to improve codes or to require that bridges,¶¶ breakwaters,*** and buildings††† are
designed and constructed according to current best practices for hazard reduction. The next time you shake a bowl of gelatin,
think of sediment basins and seismic damage.

* Chang, S., et al., “Expected Ground Failure,” Paper presented at the Seattle Fault Earthquake Scenario Conference, 2005. Seattle: Earthquake Engineering Research Institute.
http://seattlescenario.eeri.org/presentations/Ch%202%20Ground%20Failure%20-%20Chang.pdf

† Pierepiekarz, M. et al., “Buildings,” Paper presented at the Seattle Fault Earthquake Scenario Conference, 2005. Seattle: Earthquake Engineering Research Institute. http://seat-
tlescenario.eeri.org/presentations/Ch%205%20Buildings%20-%20Pierepiekarz.pdf

‡ Erdik, M. Earthquake Vulnerability of Buildings and a Mitigation Strategy: Case of Istanbul. World Bank. http://info.worldbank.org/etools/docs/library/114715/istanbul03/docs/is-
tanbul03/06erdik3-n%5B1%5D.pdf as of June 2006.

# Perkins, S. “Rome at Risk: Seismic Shaking Could Be Long and Destructive,” Science News, Feb. 25, 2006, 115.
° Perkins, S., “Portrait of Destruction,” Science News, May 21, 2005, 325.
§ Zoback, M. L., “The 1906 Earthquake—Lessons Learned, Lessons Forgotten, and Future Directions,” Paper presented at the American Geophysical Union Meeting, San Francisco,

Dec. 5–9, 2005. http://www.ucmp.berkeley.edu/museum/events/shortcourse2006/zoback/
¶ Altenburger, E., “Earthquake Hazards in Taiwan—The September 1999 Chichi Earthquake,” FOCUS on Geography, Winter 2004, 1–8.
** O’Connell, D. R.H., “Replications of Apparent Nonlinear Seismic Response with Linear Wave Propagation Models,” Science, Mar. 26, 1999, Vol. 283, No. 5410, p. 2045-2050. 
†† Page, R. A., Blume, J. A., and Joyner, W. B., “Earthquake Shaking and Damage to Buildings.” Science, Aug. 22, 1975, Vol. 189., No. 4203, p. 601-608.
‡‡ Seed, H. B., et al., “Soil Conditions and Building Damage in 1967 Caracas Earthquake,” Journal of Soil Mechanics Division of American Society of Civil Engineers, 1972, Vol. 98, No. 8, 787–806.
## Lawson, A., et al., Report of the State Earthquake Investigation Commission. 1908. Washington, DC: Carnegie Institution.
°° Sloan, D., “Portrait of a Tectonic Landscape,” Bay Nature, Spring 2006, Vol. 6, No. 2, 24–27.
§§ United States Geological Survey, “1906 Ground Motion Simulations,” Earthquake Hazards Program. http://earthquake.usgs.gov/regional/nca/1906/simulations/, as of June 2006.
¶¶ Treyger, S., Jones, M., and Orsolini, G., “Suspending the Big One,” Roads and Bridges, May 2004, 22–25.
*** Banijamali, B., “Rubble Mounds Feel the Rumble,” Dredging and Port Construction, June 2005, 35–41.
††† Gonchar, J., “One Project, but Many Seismic Solutions,” Architectural Record, May 2006, 167–174.

The damage to buildings constructed on water-logged loose
gravel, sand, dirt and clay is greater than the damage to
those constructed on hard rock. (Roger Ressmeyer/CORBIS.)

http://seattlescenario.eeri.org/presentations/Ch%205%20Buildings%20-%20Pierepiekarz.pdf
http://info.worldbank.org/etools/docs/library/114715/istanbul03/docs/istanbul03/06erdik3-n%5B1%5D.pdf
http://info.worldbank.org/etools/docs/library/114715/istanbul03/docs/istanbul03/06erdik3-n%5B1%5D.pdf
http://www.ucmp.berkeley.edu/museum/events/shortcourse2006/zoback/
http://earthquake.usgs.gov/regional/nca/1906/simulations/
http://seattlescenario.eeri.org/presentations/Ch%202%20Ground%20Failure%20-%20Chang.pdf
http://seattlescenario.eeri.org/presentations/Ch%205%20Buildings%20-%20Pierepiekarz.pdf
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Summary

1. In wave motion, energy and momentum are transported from one point in space to an-
other without the transport of matter.

2. The relation holds for all harmonic waves.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Transverse and Longitudinal Waves In transverse waves, such as waves on a string, the disturbance is perpendicular to the di-
rection of propagation. In longitudinal waves, such as sound waves, the disturbance is along
the direction of propagation.

2. Speed of Waves The wave speed is independent of the motion of the wave source. The speed of a wave rel-
ative to the medium depends on the density and elastic properties of the medium.

Waves on a string 15-3

Sound waves 15-4

Sound waves in a gas 15-5

where is the absolute temperature,

15-6

is the universal gas constant,

15-7

is the molar mass of the gas, which for air is and is a constant that
depends on the kind of gas. For a diatomic gas such as air, For a monatomic gas
such as helium, 

Electromagnetic waves The speed of electromagnetic waves in vacuum is a universal constant

3. Wave Equation 15-10b

4. Harmonic Waves

Wave function 15-15

where is the amplitude, is the wave number, and is the angular frequency. Use the
minus sign for a wave traveling in the and the plus sign for a wave traveling
in the 

Wave number 15-14

Angular frequency 15-17

Speed 15-12, 15-16

Energy The energy in a harmonic wave is proportional to the square of the amplitude.

Power for harmonic waves on a string 15-22

5. Harmonic Sound Waves Sound waves can be considered to be either displacement waves or pressure waves. The
human ear is sensitive to sound waves of frequencies from about 20 Hz to 20 kHz. In a har-
monic sound wave, the pressure and displacement are out of phase.

Amplitudes The pressure and displacement amplitudes are related by

15-26

where is the density of the medium.

Energy density 15-28hav �
(¢E)av

¢V
�

1
2
rv2s20

r

p0 � rvvs0

90°

Pav � 1
2mvv2A2

v � fl � v>kv � 2pf �
2p
T

k �
2p
l

�x direction.
�x direction,

vkA

y(x,t) � A sin(kx � vt)

�2y

�x2 �
1
v2

�2y

�t2

c � 3.00 � 108 m>s
g � 5>3.

g � 7>5.
g29.0 � 10�3 kg>mol,M

R � 8.314 J>(mol # K)

R

T � tC � 273.15

T

v � 2gRT>Mv � 2B>rv � 2FT>m
v

v � fl

*
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TOPIC RELEVANT EQUATIONS AND REMARKS

6. Intensity The intensity of a wave is the average power per unit area.

15-29

Average intensity of a sound wave 15-32

*Intensity level in dB Sound intensity levels are measured on a logarithmic scale.

15-33

where is taken as the threshold of hearing.

7. Reflection and Refraction When a wave is incident on a boundary surface that separates two regions of differing wave
speed, part of the wave is reflected and part is transmitted.

The reflection and transmission coefficients are

and 15-35

8. Diffraction If a wavefront is partially blocked by an obstacle, the unblocked part of the wavefront dif-
fracts (bends) into the region behind the obstacle.

Ray approximation If a wavefront is partially blocked by an obstacle, almost all of the diffraction occurs for 
that part of the wavefront that passes within a few wavelengths of the edge. For those 
parts of the wavefront that pass farther from the edge than a few wavelengths, diffraction 
is negligible and the wave propagates in straight lines in the direction of the incident 
rays.

9. Doppler Effect When a sound source and receiver are in relative motion, the received frequency is higher
than the frequency of the source if their separation is decreasing, and lower if their sepa-
ration is increasing.

Moving source 15-38[4]

Moving receiver 15-40[3]

Either source or receiver moving or 15-41[3]

Choose the signs that give an up-shift in frequency for an approaching source or receiver,
and vice versa.

Small speeds of source or receiver 15-42[3]

Relativistic Doppler shift 15-43

Choose the signs that give an up-shift in frequency for an approaching source or receiver,
and vice versa.

10. Shock Waves When the source speed is greater than the wave speed, the waves behind the source are con-
fined to a cone of angle given by

Mach angle 15-44

Mach number 15-45Mach number �
u
v

sinu �
u
v

u

fr � A c � u
c � u

fs

¢f
fs

� �
u
v
  (u V v)

fr
v � ur

�
fs

v � us

fr �
v � ur

v � us

fs

fr �
v � ur

l

l �
v � us

fs

fs

fr

t �
2v2

v2 � v1

r �
v2 � v1

v2 � v1

I0 � 10�12 W>m2

b � (10 dB) log 
I
I0

b

I � havv �
1
2
rv2s20v �

1
2

p2
0

rv
I

I �
Pav

A
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Answer to Concept Check

15-1 Chuck will be disappointed. Twice the acoustic power
will produce twice the intensity a given distance from
the radio, not twice the intensity level.

Answers to Practice Problems

15-1

15-2

15-3 and where Thus 

k2 �
v2

v2 ⇒ v � kv

b � kx � vt.
�2y

�t2
� v2

d2y

d2b
,

�2y

�x2 � k2
d2y

d2b

1.01 km>sB N
kg>m � Ckg # m>s2

kg>m � Ckg # m2>s2

kg
� 3m2>s2 � m>s

Problems

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.
Use as the speed of sound for air, unless otherwise
indicated.
In intensity level problems involving the hearing threshold,
the reference intensity is exactly by conven-
tion. It is assumed to be accurate to an infinite number of
significant figures. Therefore, the number of significant fig-
ures in the answers is determined only by those of the data.

1 � 10�12 W/m2

343 m/s

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • A rope hangs vertically from the ceiling. A pulse is sent
up the rope. Does the pulse travel faster, slower, or at a constant
speed as it moves toward the ceiling? Explain your answer.
2 • A pulse on a horizontal taut string travels to the right. If
the rope’s mass per unit length decreases to the right, what happens
to the speed of the pulse as it travels to the right? (a) It slows down.
(b) It speeds up. (c) Its speed is constant. (d) You cannot tell from the
information given.
3 • As a sinusoidal wave travels past a point on a taut string
the arrival time between successive crests is measured to be 0.20 s.
Which of the following is true? (a) The wavelength of the wave is
5.0 m. (b) The frequency of the wave is 5.0 Hz. (c) The velocity of
propagation of the wave is (d) The wavelength of the wave
is 0.20 m. (e) There is not enough information to justify any of these
statements.
4 • Two harmonic waves on identical strings differ only in
amplitude. Wave A has an amplitude that is twice the amplitude of
wave B. How do the energies of these waves compare? (a)
(b) (c) (d) There is not enough information to
compare their energies.
5 •• ENGINEERING APPLICATION To keep all of the lengths of
the treble strings (unwrapped steel wires) in a piano about the same
order of magnitude, wires of different linear mass densities are
employed. Explain how this allows a piano manufacturer to use
wires with lengths that are the same order of magnitude.
6 • Musical instruments produce sounds of widely varying
frequencies. Which sound waves have the longer wavelengths?
(a) The lower frequencies. (b) The higher frequencies. (c) All frequen-
cies have the same wavelength. (d) There is not enough information
to compare the wavelengths of the different frequency sounds.

SSM

EA � 4EB,EA � 2EB,
EA � EB,

5.0 m>s.

SSM

7 • In Problem 6, which sound waves have the larger
speeds? (a) The lower frequency sounds. (b) The higher frequency
sounds. (c) All frequencies have the same wave speed. (d) There is
not enough information to compare their speeds.

8 • Sound travels at in air and in water. A
sound of 256 Hz is made under water, but you hear the sound while
walking along the side of the pool. In the air, the frequency is (a) the
same, but the wavelength of the sound is shorter, (b) higher, but
the wavelength of the sound stays the same, (c) lower, but the
wavelength of the sound is longer, (d) lower, and the wavelength of
the sound is shorter, (e) the same, and the wavelength of the sound
stays the same.

9 • While out on patrol, the battleship Rodger Young hits a
mine, begins to burn, and ultimately explodes. Sailor Abel jumps
into the water and begins swimming away from the doomed ship,
while Sailor Baker gets into a life raft. Comparing their experiences
later, Abel tells Baker, “I was swimming underwater, and heard a
big explosion from the ship. When I surfaced, I heard a second ex-
plosion. What do you think it could be?” Baker says, “I think it was
your imagination—I only heard one explosion.” Explain why Baker
only heard one explosion, while Abel heard two.

10 • True or false: A 60-dB sound has twice the intensity of a
30-dB sound.

11 • At a given location, two harmonic sound waves have
the same amplitude, but the frequency of sound A is twice the fre-
quency of sound B. How do their average energy densities com-
pare? (a) The average energy density of A is twice the average en-
ergy density of B. (b) The average energy density of A is four times
the average energy density of B. (c) The average energy density of
A is 16 times the average energy density of B. (d) You cannot com-
pare the average energy densities from the data given. SSM

1500 m>s343 m>s

15-4 26 W

15-5 at 20 Hz, 17 mm at 20,000 Hz

15-6 (a) and (b) and

15-7

15-8 (a) (b)

15-9 ¢f � 500 Hz

fr � 680 Hzl � 0.5 m,

1 � a� 1
3
b 2

� 2a2
3
b 2

�
1
9

� 2
4
9

� 1

Pr >Pin � 8>9 Pr >Pin � 1>3Ar � 4
3A,Ar � � 1

3A

l � 17 m



23 •• Make a sketch of the velocity of each string segment ver-
sus position for the pulse shown in Figure 15-30.
24 •• An object of mass hangs on a very light rope that is
connected to the ceiling. You pluck the rope just above the object,
and a wave pulse travels up to the ceiling and back. Compare the
round-trip time for such a wave pulse to the round-trip time of a
wave pulse on the same rope if an object of mass is hung on the
rope instead. (Assume that the rope does not stretch, that is, that
the mass-to-ceiling distance is the same in each case.)
25 •• The explosion of a depth charge beneath the surface of a
body of water is recorded by a helicopter hovering above the
water’s surface, as shown in Figure 15-31. Along which path—A, B,
or C—will the sound wave take the least time to reach the heli-
copter? Explain why you chose the path you did.

9m

m
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26 •• Does a speed of Mach 2 at an altitude 60,000 feet mean
the same as a speed of Mach 2 near ground level? Explain clearly.

ESTIMATION AND APPROXIMATION

27 •• Many years ago, Olympic 100-m dashes were started by
the sound from a starter’s pistol, with the starter positioned several
meters down the track, just on the inside of the track. (Today, the pis-
tol that is used is often only a trigger, which is used to electronically
activate speakers behind each
sprinter’s starting blocks. This
method avoids the problem of
one runner hearing the sound
before the other runners.)
Estimate the time advantage
the runner at the inside lane
(relative to the runner at the
outside lane of 8 runners)
would have if all runners
started when they heard the
sound from the starter’s pistol.

28 •• Estimate the speed
of the bullet as it passes
through the helium balloon in
Figure 15-32. Hint: A protractor
would be beneficial.

Helicopter

Depth chargeC

B A

F I G U R E  1 5 - 3 1 Problem 25

v = 2 cm/s

x, cm1 2 3 4 5 6 7 8 9 10

y

F I G U R E  1 5 - 3 0 Problems 22, 23

12 • At a given location, two harmonic sound waves have
the same frequency, but the amplitude of sound A is twice the
amplitude of sound B. How do their average energy densities
compare? (a) The average energy density of A is twice the average
energy density of B. (b) The average energy density of A is four
times the average energy density of B. (c) The average energy
density of A is 16 times the average energy density of B. (d) You
cannot compare the average energy densities from the data given.

13 • What is the ratio of the intensity of normal conversation
to the sound intensity of a soft whisper (at a distance of 5.0 m)?
(a) (b) 2, (c) (d) Hint: See Table 15-1.
14 • What is the ratio of the intensity level of normal conver-
sation to the sound intensity level of a soft whisper (at a distance of
5.0 m)? (a) (b) 2, (c) (d) Hint: See Table 15-1.
15 • To increase the sound intensity level by 20 dB requires
the sound intensity to increase by what factor? (a) 10, (b) 100,
(c) 1000, (d) 2
16 • You are using a hand-held sound level meter to measure
the intensity level of the roars produced by a lion prowling in the
high grass. To decrease the measured sound intensity level by 20 dB
requires the lion move away from you until its distance from you
has increased by what factor? (a) 10, (b) 100, (c) 1000, (d) You cannot
tell the required distance from the data given.
17 • One end of a very light (but strong) thread is attached to
an end of a thicker and denser cord. The other end of the thread is
fastened to a sturdy post and you pull the other end of the cord so
the thread and cord are taut. A pulse is sent down the thicker,
denser cord. True or false:
(a) The pulse that is reflected back from the thread-cord attachment

point is inverted compared to the initial incoming pulse.
(b) The pulse that continues past the thread-cord attachment point

is not inverted compared to the initial incoming pulse.
(c) The pulse that continues past the thread-cord attachment point

has an amplitude that is smaller than the pulse that is reflected.
18 • Light traveling in air strikes a glass surface at a inci-
dent angle. True or false:
(a) The angle between the reflected light ray and the incident ray is
(b) The angle between the reflected light ray and the refracted light

ray is less than 

19 • Sound waves in air encounter an open 1.0-m-wide
door into a classroom. Due to the effects of diffraction, the sound
of which frequency is least likely to be heard by all the students
in the room–assuming the room is full? (a) 600 Hz, (b) 300 Hz,
(c) 100 Hz, (d) All of the sounds are equally likely to be heard in
the room. (e) Diffraction depends on wavelength not frequency, so
you cannot tell from the data given.

20 • Microwave radiation in modern microwave ovens has a
wavelength on the order of centimeters. Would you expect signifi-
cant diffraction if this radiation was aimed at a 1.0-m-wide door?
Explain.

21 •• Stars often occur in pairs revolving around their com-
mon center of mass. If one of the stars is a black hole, it is invisible.
Explain how the existence of such a black hole might be inferred by
measuring the Doppler frequency shift of the light observed from
the other, visible star.
22 •• Figure 15-30 shows a wave pulse at time moving to
the right. (a) At this particular time, which segments of the string
are moving up? (b) Which segments are moving down? (c) Is there
any segment of the string at the pulse that is instantaneously at
rest? Answer these questions by sketching the pulse at a slightly
later time and a slightly earlier time to see how the segments of the
string are moving.

t � 0
SSM

SSM

90°.

90°.

45°

1>210�3,103,

1>210�3,103,

F I G U R E  1 5 - 3 2 Problem 28
(Estate of Harold E. Edgerton ⁄ Palm
Press Inc.)
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29 •• The new student townhouses at a local college are in the
form of a semicircle half-enclosing the track field. To estimate
the speed of sound in air, an ambitious physics student stood at the
center of the semicircle and clapped his hands rhythmically at a fre-
quency at which he could not hear the echo of the clap, because the
echo reached him at the same time as his next clap. This frequency
was about Once he established this frequency, he paced
off the distance to the townhouses, which was 30 double strides.
Assuming that the length of each stride is equal to half his height (5 ft
11 in.), estimate the speed of sound in air using these data. How far off
is your estimation from the commonly accepted value of ?

SPEED OF WAVES

30 • (a) The bulk modulus of water is Use
this value to find the speed of sound in water. (b) The speed of
sound in mercury is What is the bulk modulus of mer-
cury

31 • Calculate the speed of sound waves in hydrogen gas
( and at 

32 • A 7.00-m-long guitar string has a mass of 100 g and is
under a tension of 900 N. What is the speed of a transverse wave
pulse on this string?

33 •• (a) Compute the derivative of the speed of a wave on
a string with respect to the tension and show that the dif-
ferentials and obey (b) A wave moves
with a speed of on a string that is under a tension of
500 N. Using the differential approximation, estimate how much
the tension must be changed to increase the speed to 
(c) Calculate exactly and compare it to the differential
approximation result in Part (b). Assume that the string does not
stretch with the increase in tension.

34 •• (a) Compute the derivative of the speed of sound in
air with respect to the absolute temperature, and show that the
differentials and obey (b) Use this result to
estimate the percentage change in the speed of sound when the
temperature changes from to (c) If the speed of sound
is at estimate its value at using the differential
approximation. (d) How does this approximation compare with
the result of an exact calculation?

35 ••• Derive a convenient formula for the speed of sound in air
at temperature t in degrees Celsius. Begin by writing the tempera-
ture as where and corresponds to and

which is the Celsius temperature. The speed of sound is a
function of To a first-order approximation, you can write

where is the derivative eval-
uated at Compute this derivative, and show that the result
leads to

THE WAVE EQUATION

36 • Show explicitly that the following functions satisfy the
wave equations : (a)
(b) where and are constants and 
and (c)

37 • Show that the function satisfies the
wave equation.

HARMONIC WAVES ON A STRING

38 • One end of a 6.0-m-long string is moved up and down
with simple harmonic motion at a frequency of 60 Hz. If the wave
crests travel the length of the string in 0.50 s, find the wavelength of
the waves on the string.

y � A sinkx cosvt

y(x,t) � ln[k(x � vt)].
i � 1�1,kAy(x,t) � Aeik(x�vt),

y(x,t) � k(x � vt)3,�2y>�x2 � (1>v2) �2y>�t2
v � (331 m>s)(1 � (t>2T0)) � (331 � 0.606t) m>sT � T0.

(dv>dT)T0
v(T) � v(T0) � (dv>dT)T0

¢T,
T, v(T).

¢T � t,
0°CT0 � 273 KT � T0 � ¢T,

27°C0°C,331 m>s 27°C.0°C

dv>v � 1
2 dT>T.dTdv

SSM

¢FT

312 m>s.

300 m>s dv>v � 1
2 dFT>FT.dFTdv

dv>dFT

T � 300 K.g � 1.40)M � 2.00 g>mol

(r � 13.6 � 103 kg>m3)?
1410 m>s.

2.00 � 109 N>m2.

343 m>s
2.5 claps>s.

39 • A harmonic wave on a string that has a mass per unit
length of and a tension of 80 N has an amplitude of
5.0 cm. Each point on the string moves with simple harmonic
motion at a frequency of 10 Hz. What is the power carried by the
wave propagating along the string?

40 • A 2.00-m-long rope has a mass of 0.100 kg. The ten-
sion is 60.0 N. An oscillator at one end sends a harmonic wave
with an amplitude of 1.00 cm down the rope. The other end of
the rope is terminated so all of the energy of the wave is
absorbed and none is reflected. What is the frequency of the
oscillator if the power transmitted is 100 W?

41 •• The wave function for a harmonic wave on a string is
(a) In what direction

does this wave travel, and what is the wave’s speed? (b) Find the
wavelength, frequency, and period of this wave. (c) What is the
maximum speed of any point on the string?

42 •• A harmonic wave on a string with a frequency of 80 Hz
and an amplitude of 0.025 m travels in the direction with a
speed of (a) Write a suitable wave function for this wave.
(b) Find the maximum speed of a point on the string. (c) Find the
maximum acceleration of a point on the string.

43 •• A 200-Hz harmonic wave with an amplitude equal to 
1.2 cm moves along a 40-m-long string that has a mass of 0.120 kg
and a tension of 50 N. (a) What is the average total energy of the
waves on a 20-m-long segment of string? (b) What is the power
transmitted past a given point on the string?

44 •• On a real string, some of the energy of a wave dissipates
as the wave travels down the string. Such a situation can be
described by a wave function whose amplitude depends on

where What is the power
transported by the wave as a function of where 

45 •• Power is to be transmitted along a taut string by means of
transverse harmonic waves. The wave speed is and the linear
mass density of the string is The power source oscillates
with an amplitude of 0.50 mm. (a) What average power is transmitted
along the string if the frequency is 400 Hz? (b) The power transmitted
can be increased by increasing the tension in the string, the frequency
of the source, or the amplitude of the waves. By how much would
each of these quantities have to increase to cause an increase in power
by a factor of 100 if it is the only quantity changed?

46 ••• Two very long strings are tied together at the point 
In the region the wave speed is while in the region the
speed is A sinusoidal wave is incident on the knot from the left

part of the wave is reflected and part is transmitted. For 
the displacement of the wave is described by 

while for where
and (a) If we assume that both the wave function

and its first spatial derivative must be continuous at 
show that and that 
(b) Show that 

HARMONIC SOUND WAVES

47 • A sound wave in air produces a pressure variation given
by where is in pascals, is in me-
ters, and is in seconds. Find (a) the pressure amplitude, (b) the
wavelength, (c) the frequency, and (d) the wave speed.

48 • (a) Middle C on the musical scale has a frequency of
262 Hz. What is the wavelength of this note in air? (b) The fre-
quency of the C an octave above middle C is twice that of middle C.
What is the wavelength of this note in air?

t
xpp(x,t) � 0.75 cos Cp2 (x � 343t) D ,

B2 � (v1 >v2)C
2 � A2.

B>A � (v1 � v2)>(v1 � v2).C>A � 2v2>(v1 � v2),
x � 0,�y>�xy

v>k2 � v2.v>k1 � v1

x 
 0, y(x,t) � C sin(k2x � vt),B sin(k1x � vt),�
y(x,t) � A sin(k1x � vt)

x 	 0,(x 	 0);
v2.

x 
 0,v1,x 	 0,
x � 0.
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0.010 kg>m.
10 m>s
x 
 0?x,

A(x) � A0e
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�x
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49 • (a) What is the displacement amplitude for a sound
wave with a frequency of 100 Hz and a pressure amplitude of

(b) The displacement amplitude of a sound wave
of frequency 300 Hz is Assuming the density of air
is what is the pressure amplitude of this wave?
50 • (a) What is the displacement amplitude of a sound
wave that has a frequency of 500 Hz at the pain-threshold pres-
sure amplitude of 29.0 Pa? (b) Assuming the density of air is

what is the displacement amplitude of a sound
wave that has the same pressure amplitude as the wave in
Part (a), but has a frequency of 1.00 kHz?

51 • A typical loud sound wave that has a frequency of 1.00 kHz
has a pressure amplitude of about (a) At the
pressure is a maximum at some point What is the displacement at
that point at (b) Assuming the density of air is what
is the maximum value of the displacement at any time and place?
52 • An octave represents a change in frequency by a factor
of 2. Over how many octaves can a typical person hear?
53 •• BIOLOGICAL APPLICATION In the oceans, whales commu-
nicate by sound transmission through the water. A whale emits a
sound of 50.0 Hz to tell a wayward calf to catch up to the pod. The
speed of sound in water is about (a) How long does it take
the sound to reach the calf if he is 1.20 km away? (b) What is the wave-
length of this sound in the water? (c) If the whales are close to the sur-
face, some of the sound energy might refract out into the air. What
would be the frequency and wavelength of the sound in the air?

WAVES IN THREE 
DIMENSIONS: INTENSITY

54 • A spherical sinusoidal source radiates sound uniformly in
all directions. At a distance of 10.0 m, the sound intensity level is

(a) At what distance from the source is the intensity
(b) What power is radiated by this source?

55 • ENGINEERING APPLICATION A loudspeaker at a rock con-
cert generates a sound that has an intensity level equal to

at 20.0 m and has a frequency of 1.00 kHz Assume
that the speaker spreads its energy uniformly in three dimensions.
(a) What is the total acoustic power output of the speaker? (b) At
what distance will the sound intensity be at the pain threshold of

(c) What is the sound intensity at 30.0 m?

56 •• When a pin of mass 0.100 g is dropped from a height of
1.00 m, 0.050 percent of its energy is converted into a sound pulse
that has a duration of 0.100 s. (a) Estimate how far away the
dropped pin can be heard if the minimum audible intensity is

(b) Your result in Part (a) is much too large in
practice, because of background noise. If you assume the intensity
must be at least for the sound to be heard, esti-
mate how far away the dropped pin can be heard. (In both parts,
assume that the intensity is 

INTENSITY LEVEL

57 • What is the intensity level in decibels of a sound wave
that has an intensity equal to (a) and
(b)
58 • What is the intensity of a sound wave if, at a 
particular location, the intensity level is (a) and
(b)

59 • At a certain distance, the sound intensity level of a dog’s
bark is 50 dB. At that same distance, the sound intensity level of a
rock concert is 10,000 times that of the dog’s bark. What is the
sound intensity level of the rock concert?

b � 3.0 dB?
b � 10 dB

SSM1.00 � 10�2 W>m2?
1.00 � 10�10 W>m2

P>4pr2.)1.00 � 10�8 W>m2

1.00 � 10�11 W>m2.

SSM1.00 W>m2?

1.00 � 10�2 W>m2

1.00 � 10�6 W>m2?
1.00 � 10�4 W>m2.

1500 m>s.

1.29 kg>m3,t � 0?
x1.

t � 0,1.00 � 10�4 atm.

1.29 kg>m3,

SSM1.29 kg>m3,
1.00 � 10�7 m.

1.00 � 10�4 atm?

60 • What fraction of the acoustic power of a noise would
have to be eliminated to lower its sound intensity level from 90 to
70 dB?
61 •• A spherical source radiates sound uniformly in all direc-
tions. At a distance of 10 m, the sound intensity level is 80 dB. (a) At
what distance from the source is the intensity level 60 dB? (b) What
power is radiated by this source?
62 •• Harry and Sally are sitting on opposite sides of a circus
tent when an elephant trumpets a loud blast. If Harry experiences
a sound intensity level of 65 dB and Sally experiences only 55 dB,
what is the ratio of the distance between Sally and the elephant to
the distance between Harry and the elephant?
63 •• Three noise sources produce intensity levels of 70 dB,
73 dB, and 80 dB, when acting separately. When the sources act to-
gether, the resultant intensity is the sum of the individual intensi-
ties. (a) Find the sound intensity level in decibels when the three
sources act at the same time. (b) Discuss the effectiveness of elimi-
nating the two less intense sources in reducing the intensity level of
the noise.
64 •• Show that if two people are different distances away
from a sound source, the difference between the intensity levels
reaching the people, in decibels, will always be the same, no matter
the power radiated by the source.
65 ••• Everyone at a party is talking equally loudly. One person
is talking to you and the sound intensity level at your location is
72 dB. Assuming that all 38 people at the party are at the same dis-
tance from you as the person who you are talking to, find the sound
intensity level at your location.
66 ••• When a violinist pulls the bow across a string, the force
with which the bow is pulled is fairly small, about 0.60 N. Suppose
the bow travels across the A string, which vibrates at 440 Hz, at

A listener 35 m from the performer hears a sound of 60-dB
intensity. Assuming that the sound radiates uniformly in all direc-
tions, with what efficiency is the mechanical energy of bowing con-
verted to sound energy?
67 ••• The noise intensity level at some location in an empty
classroom is 40 dB. When 100 students are writing during an exam,
the noise level at that location increases to 60 dB. Assuming that the
noise produced by each student contributes an equal amount of
acoustic power, find the noise intensity level in the room after
50 students have left.

STRING WAVES EXPERIENCING
SPEED CHANGES

68 • A 3.00-m-long piece of string, with a mass of 25.0 g, is
tied to 4.00 m of heavy twine with a mass of 75.0 g, and the combi-
nation is put under a tension of 100 N. If a transverse pulse is sent
down the less dense string, determine the reflection and transmis-
sion coefficients at the junction point.
69 • Consider a taut string, with a mass per unit length 
carrying transverse wave pulses that are incident upon a point
where the string connects to a second string, with a mass per unit
length (a) Show that if then the reflection coefficient 
equals zero and the transmission coefficient equals (b) Show
that if then and (c) Show that if 
then and 
70 •• Verify the validity of (Equation 15-36)
by substituting the expressions for and into it.
71 ••• Consider a taut string that has a mass per unit length 
carrying transverse wave pulses of the form that are
incident upon a point where the string connects to a second string
with mass per unit length Derive by equating
the power incident on point to the power reflected at plus the
power transmitted at P.

PP
1 � r2 � (v1>v2)t

2m2.
P

y � f(x � v1t)
m1

tr
1 � r2 � (v1>v2)t

2

SSMt � �2.r � �1
m2 V m1,t � 0.r � �1m2 W m1,

�1.t

rm2 � m1,m2.

m1,

SSM

0.50 m>s.
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*



Problems | 531

81 •• A police radar unit transmits microwaves of frequency
and their speed in air is Suppose a

car is receding from the stationary police car at a speed of
(a) What is the frequency difference between the trans-

mitted signal and the signal received from the receding car?
(b) Suppose the police car is, instead, moving at a speed of 
in the same direction as the other vehicle. What is the difference in
frequency between the emitted and the reflected signals?

82 •• BIOLOGICAL APPLICATION, CONTEXT-RICH In modern
medicine, the Doppler effect is routinely used to measure the rate
and direction of blood flow in arteries and veins. High-frequency
“ultrasound” (sound at frequencies above the human hearing range)
is typically employed. Suppose you are in charge of measuring the
blood flow in a vein (located in the lower leg of an older patient) that
returns blood upward to the heart. Her varicose veins indicate
that perhaps the one-way valves in the vein are not working properly
and that the blood is “pooling” in the veins and perhaps even that the
blood flow is backward toward her feet. Employing sound that has a
frequency of 50.0 kHz, you point the sound source from above her
thigh region down toward her feet and measure the sound reflected
from that vein area to be lower than 50.0 kHz. (a) Was your diagno-
sis of the valve condition correct? If so, explain. (b) Estimate the in-
strument’s frequency difference capability to enable you to measure
speeds down to Take the speed of sound in flesh to be the
same as that in water, 

83 •• A sound source of frequency moves with speed rel-
ative to still air toward a receiver who is moving away from the
source with speed relative to still air. (a) Write an expression for
the received frequency (b) Use the result that 
to show that if both and are small compared to then the re-
ceived frequency is approximately

where is the velocity of the source relative to the
receiver.

84 •• To study the Doppler shift on your own, you take an
electronic tone generating device that is set to a frequency of mid-
dle C (262 Hz) to a campus wishing well known as “The Abyss.”
When you hold the device at arm’s length (1.0 m), you measure its
intensity level to be 80.0 dB. You then drop the tuner down the hole,
listening to its sound as it falls. (a) After the tuner has fallen for 5.50
s, what frequency do you hear? (b) Estimate the time at which you
can no longer hear the tuner.

85 •• You are in a hot-air balloon carried along by a 
wind and have a sound source with you that emits a sound of
800 Hz as it approaches a tall building. (a) What is the frequency of
the sound heard by an observer at the window of this building?
(b) What is the frequency of the reflected sound heard by you?

86 •• A car is approaching a reflecting wall. A stationary ob-
server behind the car hears a sound of frequency 745 Hz from the
car horn and a sound of frequency 863 Hz from the wall. (a) How
fast is the car traveling? (b) What is the frequency of the car horn?
(c) What frequency does the car driver hear reflected from the wall?

87 •• The driver of a car traveling at toward a verti-
cal wall briefly sounds the horn. Exactly 1.00 s later she hears the
echo and notes that its frequency is 840 Hz. How far from the wall
was the car when the driver sounded the horn and what is the fre-
quency of the horn?

88 •• You are on a transatlantic flight traveling due west at
An experimental plane flying at Mach 1.6 and 3.0 km to

the north of your plane is also on an east-to-west course. What is
the distance between the two planes when you hear the sonic boom
from the experimental plane?

800 km>h.

100 km>h

36-km>h
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THE DOPPLER EFFECT

In Problems 72 through 77, assume that the source emits
sound at a frequency of 200 Hz. Assume also that the sound
travels through still air at 
72 • A sound source is moving at toward a stationary
listener that is standing in still air. (a) Find the wavelength of the
sound in the region between the source and the listener. (b) Find the
frequency heard by the listener.

73 • Consider the situation described in Problem 72 from the
reference frame of the source. In this frame, the listener and the air
are moving toward the source at and the source is at rest.
(a) At what speed, relative to the source, is the sound traveling in
the region between the source and the listener? (b) Find the wave-
length of the sound in the region between the source and the lis-
tener. (c) Find the frequency heard by the listener.

74 • A sound source is moving away from the stationary lis-
tener at (a) Find the wavelength of the sound waves in the
region between the source and the listener. (b) Find the frequency
heard by the listener.

75 • The listener is moving at away from the station-
ary source that is at rest relative to the air. Find the frequency heard
by the listener.
76 •• CONTEXT-RICH You have made the trek to observe a
Space Shuttle landing. Near the end of its descent, the ship is trav-
eling at Mach 2.50 at an altitude of 5000 m. (a) What is the angle that
the shock wave makes with the line of flight of the shuttle? (b) How
far are you from the shuttle by the time you hear its shock wave,
assuming the shuttle maintains both a constant heading and a con-
stant 5000-m altitude after flying directly over your head?
77 •• ENGINEERING APPLICATION The SuperKamiokande neu-
trino detector of Japan is a water tank the size of a 14-story building.
When neutrinos collide with electrons in the water, most of their en-
ergy is transferred to the electrons. As a consequence, the electrons then
fly off at speeds that approach c. The neutrino is counted by detecting
the shock wave, called Cerenkov radiation, that is produced when the
high-speed electrons travel through the water at speeds greater than
the speed of light in water. If the maximum angle of the Cerenkov
shock-wave cone is what is the speed of light in water?
78 •• ENGINEERING APPLICATION, CONTEXT-RICH You are in
charge of calibrating the radar guns for a local police department.
One such device emits microwaves at a frequency of 2.00 GHz.
During the trials, these waves are reflected from a car moving
directly away from the stationary emitter. You detect a frequency
difference (between the received microwaves and the ones sent out)
of 293 Hz. Find the speed of the car.

79 •• ENGINEERING APPLICATION, CONTEXT-RICH The
Doppler effect is routinely used to measure the speed of winds
in storm systems. As the manager of a weather monitoring sta-
tion in the Midwest, you are using a Doppler radar system that
has a frequency of to bounce a radar pulse off of the
raindrops in a swirling thunderstorm system 50 km away. You
measure the reflected radar pulse to be up-shifted in frequency
by 325 Hz. Assuming the wind is headed directly toward you,
how fast are the winds in the storm system moving? Hint: The
radar system can only measure the component of the wind velocity
along its “line of sight.”
80 •• ENGINEERING APPLICATION A stationary destroyer is
equipped with sonar that sends out 40 MHz pulses of sound. The
destroyer receives reflected pulses back from a submarine directly
below with a time delay of 80 ms at a frequency of 39.958 MHz.
If the speed of sound in seawater is (a) what is the
depth of the submarine? (b) What is its vertical speed?

1.54 km>s,
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80 m>s.

80 m>s

80 m>s343 m/s.
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89 ••• The Hubble space telescope has been used to determine
the existence of planets orbiting around distant stars. A planet or-
biting a star will cause the star to “wobble” with the same period as
the planet’s orbit. Because of this wobble, light from the star will be
Doppler-shifted up and down periodically. Estimate the maximum
and minimum wavelengths of light of nominal wavelength 500 nm
emitted by the Sun that is Doppler-shifted by the motion of the Sun
due to the planet Jupiter.

GENERAL PROBLEMS

90 • At time the shape of a wave pulse on a string is
given by the function where is
in meters. (a) Sketch versus (b) Give the wave function

at a general time if the pulse is moving in the 
with a speed of and if the pulse is moving in the

with a speed of 
91 • A whistle that has a frequency of 500 Hz moves in a cir-
cle of radius 1.00 m at What are the maximum and min-
imum frequencies heard by a stationary listener in the plane of the
circle and 5.00 m away from its center?
92 • Ocean waves move toward the beach with a speed of

and a crest-to-crest separation of 15.0 m. You are in a small
boat anchored off shore. (a) At what frequency do the wave crests
reach your boat? (b) You now lift anchor and head out to sea at a
speed of At what frequency do the wave crests reach your
boat now?
93 •• A 12.0-m-long wire that has an 85.0-g mass is under a
tension of 180 N. A pulse is generated at the left end of the wire, and
25.0 ms later a second pulse is generated at the right end of the
wire. Where do the pulses first meet?
94 •• You are parked on the shoulder of a highway. Find the
speed of a car in which the tone of the car’s horn drops by 10 per-
cent as it passes you. (In other words, the total drop in frequency
between the “approach” value and the “recession” value is 10%.)

95 •• A loudspeaker driver 20.0 cm in diameter is vibrating
at 800 Hz with an amplitude of 0.0250 mm. Assuming that the
air molecules in the vicinity have the same amplitude of vibra-
tion, find (a) the pressure amplitude immediately in front of the
driver, (b) the sound intensity, and (c) the acoustic power being
radiated by the front surface of the driver.

96 •• A plane, harmonic, sound wave in air has an ampli-
tude of has an intensity of What is the fre-
quency of the wave?

97 •• Water flows at in a pipe of radius 5.0 cm. A plate
with area equal to the cross-sectional area of the pipe is suddenly in-
serted to stop the flow.
Find the force exerted on the
plate. Take the speed of sound
in water to be Hint:
When the plate is inserted, a pressure
wave propagates through the water at the
speed of sound, The mass of water brought to
a stop in time is the water in a length of pipe
equal to 

98 •• A high-speed flash photography
setup meant to capture a picture of a bullet
exploding a soap bubble is shown in
Figure 15-33. The shock wave from
the bullet is to be detected by a mi-
crophone that will trigger the
flash. The microphone is
placed on a track
that is parallel to
and 0.350 m below
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the path of the bullet. The track is used to adjust the position of the
microphone. If the bullet is traveling at 1.25 times the speed of sound,
and the distance between the lab bench and the track is 0.350 m, how
far back from the soap bubble must the microphone be set to trigger
the flash? (Assume that the flash itself is instantaneous once the mi-
crophone is triggered.)
99 •• A column of precision marchers keeps in step by listen-
ing to the band positioned at the head of the column. The beat of
the music is for A television camera shows that
only the marchers at the front and the rear of the column are actu-
ally in step. The marchers in the middle section are striding forward
with the left foot when those at the front and rear are striding for-
ward with the right foot. The marchers are so well trained, how-
ever, that they are all certain that they are in proper step with the
music. How long is the column?
100 •• BIOLOGICAL APPLICATION A bat flying toward a station-
ary obstacle at emits brief, high-frequency sound pulses at
a repetition frequency of 80.0 Hz. What is the interval between the
arrival times of the reflected pulses heard by the bat?
101 •• Laser ranging to the moon is done routinely to accurately
determine the Earth-moon distance. However, to determine the dis-
tance accurately, corrections must be made for the average speed of
light in Earth’s atmosphere, which is 99.997 percent of the speed of
light in vacuum. Assuming that Earth’s atmosphere is 8.00 km high,
estimate the length of the correction.
102 •• A tuning fork attached to a taut string generates
transverse waves. The vibration of the fork is perpendicular to the
string. Its frequency is 400 Hz and the amplitude of its oscillation
is 0.50 mm. The string has a linear mass density of and
is under a tension of 1.0 kN. Assume that there are no waves
reflected at the far end of the string. (a) What are the period and
frequency of waves on the string? (b) What is the speed of the
waves? (c) What are the wavelength and wave number? (d) What is
a suitable wave function for the waves on the string? (e) What is the
maximum speed and acceleration of a point on the string? (f) At
what minimum average rate must energy be supplied to the fork to
keep it oscillating at a steady amplitude?
103 ••• A long rope with a mass per unit length of is
under a constant tension of 10.0 N. A motor drives one end of the
rope with transverse simple harmonic motion at 5.00 cycles per sec-
ond and an amplitude of 40.0 mm. (a) What is the wave speed?
What is the wavelength? (c) What is the maximum transverse linear
momentum of a 1.00-mm segment of the rope? (d) What is the max-
imum net force on a 1.00-mm segment of the rope?
104 ••• In this problem, you will derive an expression for the
potential energy of a segment of a string carrying a traveling
wave (Figure 15-34). The potential energy of a segment equals the
work done by the tension in stretching the string, which is

where is the tension, is the length of the
stretched segment, and is its original length. (a) Use the bino-
mial expansion to show that and there-
fore (b) Compute from the wave
function (Equation 15-15) and show that 
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Superposition
and Standing Waves

16-1 Superposition of Waves

16-2 Standing Waves

16-3 Additional Topics

T
o get a clear understanding of simple wave motion, in Chapter 15 we ex-
amined the movement of a sequence of disturbances through a medium.
However, if you have been to the ocean, perhaps you have observed what
happens when these disturbances collide and cut across each other. When
two or more waves overlap in space, their individual disturbances super-
impose, adding algebraically, to create a resultant wave. For the case of har-

monic waves, overlapping waves of the same frequency produce sustained wave
patterns in space.

The Walt Disney Concert Hall in Los Angeles, California, which houses the pipe
organ shown here, is an engineering and acoustic marvel. Structural and civil en-
gineers worked to establish structural integrity of the Frank Gehry–designed organ
and to ensure that the organ is strong enough to withstand earthquakes. Acoustical
engineers created models for acoustic testing. One such model, scaled to one-tenth
actual size, even included felt-covered lead figures to represent audience members.
(Sound waves at 10 times the normal frequency—and one-tenth of the normal
wavelength—were used to test the design.)

Our study of waves does not end with this chapter, though. We will continue
our examination of waves in Chapter 34 where the wave nature of electrons and
other material objects are integral to our understanding of quantum physics.

16
C H A P T E R

What is the length of the organ pipe

that produces the 16-Hz note? (See

Example 16-9.)
?

COMPOSED OF OVER 6134 PIPES OF
WIDELY VARYING SIZES, THIS ORGAN IS
CAPABLE OF NOTES RANGING FROM A C
THAT IS BELOW THE LOWEST C ON A
PIANO AND HAS A FREQUENCY OF ONLY
16 Hz TO A NOTE THAT IS A FULL OCTAVE
AND A THIRD HIGHER THAN A PIANO’S
HIGHEST NOTE AND HAS A FREQUENCY
OF 10,548 Hz. (Ted Soqui/Corbis.)

*



After two wave pulses traveling in
opposite directions “collide,” they

each continue moving with the same
speed, size, and shape that they had
before the “collision.”
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In this chapter, we begin with the superposition of wave pulses on a string
and then consider the superposition and interference of harmonic waves.
We examine the phenomenon of beats and study standing waves, which
occur when harmonic waves are confined in space. Finally, we consider the
analysis of complex musical tones.

16-1 SUPERPOSITION OF WAVES

Figure 16-1a shows two small-amplitude wave pulses of different durations moving
in opposite directions on a string. The shape of the string when they overlap can be
found by adding the displacements that would be produced by each pulse sepa-
rately. The principle of superposition is a property of wave motion, which states:

When two or more waves overlap, the resultant wave is the algebraic sum
of the individual waves.

PRINCIPLE OF SUPERPOSITION

That is, when there are two pulses on the string, the total wave function is the alge-
braic sum of the individual wave functions. While the principle of superposition
holds for many waves, it does not hold for all waves. For example, the principle
of superposition does not hold if the sum of two displacements exceeds the
proportional limit* of the medium. Throughout the discussions that follow, we
assume that the principle of superposition holds.

In the special case of two pulses that are identical except that one is inverted rel-
ative to the other, as in Figure 16-1b, there is an instant when the pulses exactly over-
lap and add to zero. At this instant the string is horizontal. A short time later the in-
dividual pulses emerge, each continuing in its original direction. That is, they exit
the overlap region looking exactly as they did prior to entering the overlap region.

(b)

1

2

1 2

2

2

2 1

(a)

1

1

F I G U R E  1 6 - 1 Wave pulses moving in opposite directions on a string. The shape of the string when the pulses overlap
is found by adding the displacements due to each separate pulse. (a) Superposition of two pulses having displacements in
the same direction (upward). The figure shows the shape of the string at equal time intervals of duration Each pulse
travels the length of pulse 2 during time (b) Superposition of two pulses having equal displacements in opposite
directions. Here the algebraic addition of the displacement amounts to the subtraction of the magnitudes.

¢t.
¢t.

!

* The proportional limit of an elastic material is the maximum strain for which stress is proportional to strain. Stress and
strain are discussed in Section 8 of Chapter 12.
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3. Is the velocity zero at all
points on the string at the
instant the string is flat?

In step 1, the velocity profiles of
the string are identical for the
two pulses, so when the two
pulses overlap, the
displacements add to zero, but
the velocities do not add to zero.
The pulses reform after they
overlap because the string is
moving and has inertia. Thus, it
does not stay flat.

SUPERPOSITION AND THE WAVE EQUATION

The principle of superposition follows from the fact that the wave equation
(Equation 15-10b) is linear for small transverse displacements. That is, the function

and its derivatives occur only to the first power. The defining property of a
linear equation is that if and are two solutions of the equation, then the linear
combination

16-1

where and are any constants, is also a solution. The linearity of the wave
equation can be shown by the direct substitution of into the wave equation. The
result is the mathematical statement of the principle of superposition. If any two
waves satisfy a wave equation, then their algebraic sum also satisfies the same
wave equation.

y3

C2C1

y3 � C1y1 � C2y2

y2y1

y(x, t)

*

Conceptual Example 16-1 Colliding Pulses

An upright pulse on a taut string moves to the right, while an in-
verted pulse of the same size and shape moves to the left. When
these pulses overlap there is an instant when the string is flat and
no pulses can be seen. This is all in accord with the principle of su-
perposition. The question is, why do the pulses reappear and con-
tinue on following the collision?

PICTURE The displacement of each point on the string is zero at
the instant the string is flat, but is the velocity of each point
zero at that instant? For an upright pulse, the string in the leading
edge of the pulse is moving upward and the string in the trailing
edge is moving downward. For an inverted pulse the opposite is
true: the string in the leading edge is moving downward and the
string in the trailing edge is moving upward.

SOLVE

1. Plot both the position and the velocity of the string versus the
position along the string before the pulses overlap (Figure 16-2).
For an upright pulse, the string in the leading edge is moving
upward and the string in the trailing edge is moving
downward. For an inverted pulse, the opposite is true; the
string in the leading edge is moving downward and the string
in the trailing edge is moving upward.

2. This time plot both the position and the velocity of the string
versus the position along the string at the instant the pulses
completely overlap (Figure 16-3).

x

x

y

vy

Leading Edges

F I G U R E  1 6 - 3

x

x

y

vy

F I G U R E  1 6 - 2
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* This choice is convenient but not mandatory. If, for example, we chose when the displacement was maximum at
we would write y1 � A cos(kx � vt) � A sin(kx � vt � 1

2p).x � 0,
t � 0

Example 16-2 Superposition and the Wave Equation

Show that if functions and both satisfy wave equation

then the function given by Equation 16-1 also satisfies the wave equation.

PICTURE Substitute into the wave equation, assume that and each satisfy the wave
equation, and show that, as a consequence, the linear combination satisfies the
wave equation.

C1y1 � C2y2

y2y1y3

y3

�2y

�x2 �
1
v2

�2y

�t2
  (Equation 15-10b)

y2y1

SOLVE

1. Substitute the expression for in Equation 16-1 into the left
side of the wave equation, then break it into separate terms for

and y2:y1

y3

�2y3

�x2 �
�2

�x2 (C1y1 � C2y2) � C1

�2y1

�x2 � C2

�2y2

�x2

2. Both and satisfy the wave function. Write the wave
equation for both and y2:y1

y2y1 and
�2y2

�x2 �
1
v2

�2y2

�t2
�2y1

�x2 �
1
v2

�2y1

�t2

3. Substitute the step-2 results into the step-1 result and factor out
any common terms:

�2y3

�x2 � C1

1
v2

�2y1

�t2
� C2

1
v2

�2y2

�t2
�

1
v2 aC1

�2y1

�t2
� C2

�2y2

�t2
b

4. Move the constants inside the arguments of the derivatives and
express the sum of the derivatives as the derivative of the sum:

�2y3

�x2 �
1
v2 a�2C1y1

�t2
�

�2C2y2

�t2
b �

1
v2

�2

�t2
(C1y1 � C2y2)

5. The argument of the time derivative in step 4 is y3:
�2y3

�x2 �
1
v2

�2y3

�t2
‹

CHECK The step-5 result is dimensionally consistent. The term on the left has dimensions
of and the term on the right has dimensions of {[T]2>[L]2}{[L]>[T]2} � [L]�1 .[L]>[L]2 � [L]�1

INTERFERENCE OF HARMONIC WAVES

The result of the superposition of two harmonic waves of the
same frequency depends on the phase difference between the
waves. Let be the wave function for a harmonic wave
traveling to the right with amplitude angular frequency 
and wave number 

16-2

For this wave function, we have chosen the phase constant to be
zero.* If we have another harmonic wave also traveling to the
right with the same amplitude, frequency, and wave number,
then the general equation for its wave function can be written

16-3

where is the phase constant. The two waves described by Equations 16-2 and 16-3
differ in phase by Figure 16-4 shows a plot of the two wave functions versus
position at time The resultant wave is the sum

16-4

We can simplify Equation 16-4 by using the trigonometric identity

16-5sinu1 � sinu2 � 2 cos 1
2 (u1 � u2) sin 1

2 (u1 � u2)

y1 � y2 � A sin(kx � vt) � A sin(kx � vt � d)

t � 0.
d.

d

y2 � A sin(kx � vt � d)

y1 � A sin(kx � vt)

k:
v,A,

y1(x, t)
d

y

A

y1= A sin kx

y2 = A sin(kx +  
δ

  δ 

kx

)

F I G U R E  1 6 - 4 Displacement versus position at (a given
instant) for two harmonic waves having the same amplitude,
frequency, and wavelength, but differing in phase by d.

See

Math Tutorial for more

information on 

Trigonometry
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For this case, and so that

and

Thus, Equation 16-4 becomes

16-6

SUPERPOSITION OF TWO WAVES OF THE SAME AMPLITUDE AND FREQUENCY

where we have used We see that the result of the superposition
of two harmonic waves having the same wave number and frequency is a har-
monic wave having wave number and frequency . The resultant wave has am-
plitude and a phase equal to half the difference between the phases of the
original waves. The phenomenon of two or more waves of the same, or almost the
same, frequency superposing to produce an observable pattern in the intensity is
called interference. In this example, the intensity, which is proportional to
the square of the amplitude, is uniform. If the two waves are in phase, then

and the amplitude of the resultant wave is The interference of
two waves in phase is called constructive interference (Figure 16-5). If the two
waves are out of phase, then and the amplitude of the
resultant wave is zero. The interference of two waves out of phase is called
destructive interference (Figure 16-6).

PRACTICE PROBLEM 16-1

Two waves with the same frequency, wavelength, and amplitude are traveling in the
same direction. (a) If they differ in phase by and each has an amplitude of 4.00 cm,
what is the amplitude of the resultant wave? (b) For what phase difference will the re-
sultant amplitude be equal to 4.0 cm?

Beats The interference of two sound waves with slightly different frequencies
produces the interesting phenomenon known as beats. Consider two sound waves
that have angular frequencies of and and the same pressure amplitude 
What do we hear? At a fixed point, the spatial dependence of the wave merely con-
tributes a phase constant, so we can neglect it. The pressure at the ear due to either
wave acting alone will be a simple harmonic function of the type

and

where we have chosen sine functions, rather than cosine functions for convenience,
and have assumed that the waves are in phase at time Using the trigonom-
etry identity

for the sum of two sine functions, we obtain for the resultant wave

If we write for the average angular frequency and 
for the difference in angular frequencies, the resultant wave function is

16-7

where and fav � vav>(2p).¢f � ¢v>(2p)

p � 2p0 cos(1
2 ¢v t) sinvavt � 2p0 cos(2p 1

2 ¢ f t) sin 2pfavt

¢v � v1 � v2vav � (v1 � v2)>2p � p0 sinv1t � p0 sinv2t � 2p0 cos 1
2 (v1 � v2)t sin 1

2 (v1 � v2)t

sinu1 � sinu2 � 2 cos 1
2 (u1 � u2) sin 1

2 (u1 � u2)

t � 0.

p2 � p0 sinv2t

p1 � p0 sinv1t

p0 .v2v1

d

90.0°

180°
d � p, cos112d2 � 0,180°

2A.d � 0, cos0 � 1,

2A cos 12 d
vk

vk
cos(� 1

2 d) � cos 1
2 d.

y1 � y2 � [2A cos 12 d] sin(kx � vt � 1
2 d)

1
2 (u1 � u2) � kx � vt � 1

2 d

1
2 (u1 � u2) � � 1

2 d

u2 � kx � vt � d,u1 � kx � vt

F I G U R E  1 6 - 5 Constructive interference.
If two harmonic waves of the same frequency
are in phase, the amplitude of the resultant
wave is the sum of the amplitudes of the
individual waves. Waves 1 and 2 are identical,
so they appear as a single harmonic wave.
Wave 1 is shown as a red dashed curve
and Wave 2 is shown as a black dashed curve.

Wave 2

Wave 1

Resultant wave

F I G U R E  1 6 - 6 Destructive interference. If
two harmonic waves of the same frequency
differ in phase by the amplitude of the
resultant wave is the difference between the
amplitudes of the individual waves. If the
original waves have equal amplitudes, they
cancel completely.

180°,

Wave 2 Resultant wave

Wave 1
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* Complete cancellation occurs only when the pressure amplitudes of the two waves are equal.

Figure 16-7 shows a plot of pressure variations as a function of
time. The waves are initially in phase. Thus, they add construc-
tively at time Because their frequencies differ, the waves
gradually become out of phase, and at time they are out of
phase and interfere destructively.* An equal time interval later
(time in the figure), the two waves are again in phase and inter-
fere constructively. The greater the difference in the frequencies of
the two waves, the more rapidly they oscillate in and out of phase.

When two tuning forks vibrate with equal amplitudes and
with almost equal frequencies and the tone that we hear
has a frequency of and an amplitude of

(For some values of the amplitude is nega-
tive. Because a change in the sign of the
amplitude is equivalent to a phase change.) The amplitude
oscillates with the frequency Because the sound intensity
is proportional to the square of the amplitude, the sound is loud
whenever the amplitude function is either a maximum or a
minimum. Thus, the frequency of this variation in intensity,
called the beat frequency, is twice 

16-8
BEAT FREQUENCY

The beat frequency equals the difference in the individual fre-
quencies of the two waves. If we simultaneously strike two tuning forks having the
frequencies 241 Hz and 243 Hz, we will hear a pulsating tone at the average
frequency of 242 Hz that has a maximum intensity at half-second intervals; that is,
the beat frequency is 2 Hz. The ear can detect beats with beat frequencies of up to
about 15 to 20 per second. Above this frequency, the fluctuations in loudness are
too rapid to be distinguished.

The phenomenon of beats is often used to compare an unknown frequency with
a known frequency, as when a tuning fork is used to tune a piano string. Pianos are
tuned by simultaneously ringing the tuning fork and striking a key, while at the
same time adjusting the tension of the piano string until the beats are far apart, in-
dicating that the difference in frequency of the two sound generators is very small.

fbeat � ¢f

1
2 ¢f:

1
2 ¢f.

180°
�cosu � cos(u � p),

t2p0 cos(2p 1
2 ¢f t).

fav � (f1 � f2)>2f2 ,f1

t2

180°t1

t � 0.

t2 t3t1

p
p0

2p0

t

tt 2 t31

p

t

(a)

(b)

Amplitude

The tuning fork has been struck and a string
has been plucked. Listening to the beats the
man is tightening (or loosening) the string in
order to bring the beat frequency to zero. As
the beat frequency approaches zero the string
frequency approaches the tuning-fork
frequency. (Ray Malace Photography.)

SOLVE

1. Because the beat frequency increases
as the tension increases, the initial
frequency must have been 443 Hz:

443 Hzf � fA � fbeat � 440 Hz � 3.00 Hz �

CHECK The answer has the correct number of significant figures.

Example 16-3 Tuning a Guitar

When a 440-Hz (concert A) tuning fork is struck simultaneously with the playing of the A
string of a slightly out-of-tune guitar, 3.00 beats per second are heard. The guitar string is
tightened a little to increase its frequency. As the guitar string is slowly tightened, you hear
the beat frequency slowly increase. What was the initial frequency of the guitar string (the
frequency before it was tightened)?

PICTURE Because 3.00 beats per second were heard initially, the initial frequency of the gui-
tar string was either 437 Hz or 443 Hz. The greater the difference between the frequency of
the string and the frequency of the tuning fork, the greater the beat frequency. The frequency
of the string increases with an increase in the tension.

F I G U R E  1 6 - 7 Beats. (a) Two harmonic waves of different but
nearly equal frequencies that are in phase at are out of
phase at some later time At a still later time, they are back in
phase. (b) The resultant of the two waves shown in (a). The frequency
of the resultant wave is about the same as the frequencies of the
original waves, but the amplitude is modulated as indicated. The
intensity is maximum at times 0 and and zero at times and t3 .t1t2 ,

t2 ,t1 .
180°t � 0
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F I G U R E  1 6 - 8 Waves from two sources 
and are in phase when they meet at a 
point (a) When the path difference is one
wavelength the waves are in phase at 
and therefore interfere constructively. (b) When
the path difference is the waves at are 
out of phase by and therefore interfere
destructively. If the waves are of equal amplitude
at they will cancel completely at this point.P2 ,

180°
P2

1
2l,

P1l,
P1 .
S2

S1

Phase difference due to path difference A common cause of a phase differ-
ence between two waves is different path lengths between the sources of the
waves and the point where the interference occurs. Suppose that two sources os-
cillate in phase (positive crests leave the sources at the same time) and emit
harmonic waves of the same frequency and wavelength. Now consider a point in
space for which the path lengths to the two sources differ. If the path difference is
one wavelength, as is the case in Figure 16-8a, or any other integral number of
wavelengths, the interference is constructive. If the path difference is one-half 
of a wavelength or an odd number of half wavelengths, as in Figure 16-8b,
the maximum of one wave at the same time as the minimum of the other and the
interference is destructive.

The wave functions for waves from two sources oscillating in phase can be
written

and

The phase difference for these two wave functions is

Using we have

16-9

PHASE DIFFERENCE DUE TO PATH DIFFERENCE

d � k ¢x � 2p
¢x
l

k � 2p>l, d � (kx2 � vt) � (kx1 � vt) � k(x2 � x1) � k ¢x

p2 � p0 sin(kx2 � vt)

p1 � p0 sin(kx1 � vt)

S

S

P
1

1

2

P

S1

2

S2

(a)

(b)

Example 16-4 A Resultant Sound Wave

Two identical loudspeakers are driven in phase by a common audio oscillator. At a point
5.00 m from one speaker cone and 5.17 m from the other, the amplitude of the sound from
each is Find the amplitude of the resultant wave at that point if the frequency of the
sound waves is (a) 1000 Hz, (b) 2000 Hz, and (c) 500 Hz. (Use for the speed of sound.)

PICTURE The amplitude of the resultant wave due to superposition of two waves differing
in phase by is given by (Equation 16-6), where is the amplitude of either
wave and (Equation 16-9) is the phase difference. We are given the path differ-
ence, so all that is needed is the wavelength l.¢x � 5.17 m � 5.00 m � 0.17 m,

d � 2p ¢x>l p0A � 2p0 cos 1
2 dd

340 m>sp0 .

SOLVE

(a) 1. The wavelength equals the speed divided by the frequency.
Calculate for f � 1000 Hz:l

l �
v
f

�
340 m>s
1000 Hz

� 0.340 m

2. For the given path difference is
so we expect destructive interference. Use this value of 

and (Equation 16-6), to calculate the phase
difference and then use to calculate the amplitude A:dd,
A � 2p0 cos 1

2 d

l1
2l,

(¢x � 0.17 m)l � 0.340 m,

so 0.0 mA � 2p0 cos
1
2
d � 2p0 cos

p

2
�

d � 2p
¢x
l

� 2p
0.17 m

0.340 m
� p

(b) 1. Calculate for f � 2000 Hz:l l �
v
f

�
340 m>s
2000 Hz

� 0.170 m

2. For the path difference equals so we expect
constructive interference. Calculate the phase difference and
amplitude:

l,l � 0.170 m,

so �2p0A � 2p0 cos 1
2 d � 2p0 cosp �

d � 2p
¢x
l

� 2p
0.170 m
0.17 m

� 2p
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CHECK Each of the three answers is between and so the answers are within the
expected range.

TAKING IT FURTHER In Part (b), is found to be negative. Equation 16-6 can be written 

which can also be written 

A phase shift of is equivalent to multiplying by �1.p � 180°

y1 � y2 � �A� sinakx�vt�
d

2
�pb .y1 � y2 �A� sinakx�vt�

d

2
b ,

A

�2p0 ,�2p0

(c) 1. Calculate for f � 500 Hz:l l �
v
f

�
340 m>s
500 Hz

� 0.680 m

2. Calculate the phase difference and amplitude:

so 12 p0A � 2p0 cos
1
2
d � 2p0 cos

p

4
�

d � 2p
¢x
l

� 2p
0.17 m

0.680 m
�
p

2

Example 16-5 Sound Intensity of Two Loudspeakers

The two identical loudspeakers in Example 16-4 are now turned to face each other
at a distance of 180 cm. In addition, they are now driven at 686 Hz. Locate the
points between the speakers along a line joining them for which the sound inten-
sity is (a) maximum, and (b) minimum. (Neglect the variation in intensity with dis-
tance from either speaker, and use for the speed of sound.)

PICTURE We choose the origin to be at the midpoint between the speakers 
(Figure 16-9). Because the origin is equidistant from the speakers, it is a point
of maximum intensity. When we move a distance from the origin toward one of
the speakers, the path difference between us and the two speakers is The in-
tensity will be maximum at points where and minimum
where 2x � 1

2l,
3
2l,

5
2l, Á .

2x � 0, l, 2l, 3l, Á ,
2x.

x

343 m>s x

0 +90 cm–90 cm

SOLVE

(a) 1. The intensity will be maximum when equals
an integral number of wavelengths:

2x 2x � 0, �l, �2l, �3l, Á

2. Calculate the wavelength: l �
v
f

�
343 m>s
686 Hz

� 0.500 m � 50.0 cm

3. Solve for using the calculated wavelength:x 0, �25.0 cm, �50.0 cm, �75.0 cm�x � 0, � 1
2l, �l, � 3

2l, Á

(b) 1. The intensity will be minimum when equals
an odd number of half wavelengths:

2x 2x � � 1
2l, � 3

2l, � 5
2l, Á

2. Solve for using the calculated wavelength:x �12.5 cm, �37.5 cm, �62.5 cm, �87.5 cm�x � � 1
4l, � 3

4l, � 5
4l, Á

CHECK The answers for Parts (a) and (b) complement each other, with the intensity minima
located halfway between the intensity maxima, as expected.

TAKING IT FURTHER The maxima and minima will be relative maxima and relative min-
ima, because at each maxima (and minima) the amplitude from the nearer speaker will be
slightly greater than that from the farther speaker. Only seven terms were used for the max-
ima and only eight terms for the minima, because any additional terms would not be in the
region between the two speakers.

Figure 16-10a shows the wave pattern in a ripple tank produced by two point
sources that are oscillating in phase. Each source produces waves with circular wave-
fronts. The circular wavefronts shown all have the same phase (they are all crests) and
are separated by one wavelength. We can construct a similar pattern with a compass
by drawing circular arcs representing the wave crests from each source at some par-
ticular instant of time (Figure 16-10b). Where the crests from each source overlap, the
waves interfere constructively. At these points, the path lengths from the two sources

F I G U R E  1 6 - 9 The two loudspeakers are on the 
axis with midway between them.x � 0x
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are either equal or they differ by an integral number of wavelengths.
The dashed lines indicate the points that are both equidistant from
the sources or whose path differences from the sources are one wave-
length, two wavelengths, or three wavelengths. At each point along
any of these lines the interference is constructive, so these are lines of
interference maxima. Between the lines of interference maxima are
lines of interference minima. On a line of interference minima, the
path length from any point on the line to each of the two sources dif-
fers by an odd number of half wavelengths. Throughout the region
where the two waves are superposed, the amplitude of the resultant
wave is given by where is the amplitude of each
wave separately and is related to the path difference by

(Equation 16-9).
Figure 16-11 shows the intensity of the resultant wave from two

sources as a function of path difference At points where the
interference is constructive, the amplitude of the resultant wave is
twice that of either wave alone, and because the intensity is propor-
tional to the square of the amplitude, the intensity is where is
the intensity due to either source alone. At points of destructive
interference, the intensity is zero. The average intensity, shown by
the dashed line at in the figure, is twice the intensity due to either
source alone, a result required by the conservation of energy. The in-
terference of the waves from the two sources thus redistributes the
energy in space. The interference of two sound sources can be
demonstrated by driving two separated speakers with the same am-
plifier (so that they are always in phase) fed by an audio-signal gen-
erator. Moving about the room, one can detect by ear the positions
of constructive and destructive interference.* This demonstration is
best done in a room called an anechoic chamber, where reflections
(echoes) off the walls of the room are minimized.

Coherence Two sources need not be in phase to produce an in-
terference pattern. Consider two sources that are out of
phase. (Two speakers that are in phase can be made to be
out of phase by merely by switching the leads to one
of the speakers.) The intensity pattern is the same as that in
Figure 16-11, except that the locations of the maxima and
minima are interchanged. At points for which the distance
differs by an integral number of wavelengths, the interfer-
ence is destructive because the waves are out of phase.
At points where the path difference is an odd number of
half wavelengths, the waves are now in phase because the

phase difference of the sources is offset by the 
phase difference due to the path difference.

Similar interference patterns will be produced by any two
sources whose phase difference remains constant. Two
sources that remain in phase or maintain a constant phase dif-
ference are said to be coherent. Coherent sources of water waves in a ripple tank are
easy to produce by driving both sources with the same motor. Coherent sound sources
are obtained by driving two speakers with the same signal source and amplifier.

Wave sources whose difference in phase is not constant, but varies randomly,
are said to be incoherent sources. There are many examples of incoherent sources,
such as two speakers driven by different amplifiers or two violins played by

180°180°

180°

180°

180°

2I0

I04I0 ,

¢x.
I

d � 2p ¢r>l ¢rd

p0A � 2p0 cos 1
2 d,

* In this demonstration, the sound intensity will be not quite zero at the points of destructive interference because of
sound reflections from the walls or objects in the room.

F I G U R E  1 6 - 1 1 Intensity versus path
difference for two sources that are in phase. 
is the intensity due to each source
individually.

I0

λ

(b)

(a)

S1 S2

Δr = 3λ Δr = 3λ

Δr = 2λ
Δr = λ Δr =Δr = 0 λ

Δr = 2λ

0 1
2 2

02

λ λ λ Δ x

I

3
2 λ 5

2 λ

I

4 0I

F I G U R E  1 6 - 1 0 (a) Water waves in a ripple tank produced
by two sources oscillating in phase. (b) Drawing of wave crests
for the sources in (a). The dashed lines indicate points for which
the path difference is an integral number of wavelengths. 
(Part (a) Berenice Abbott, 8J 1328/Photo Researchers.)
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different violinists. For incoherent sources, the inter-
ference at a particular point varies rapidly back and
forth from constructive to destructive, and no interfer-
ence pattern is sustained long enough to be observed.
The resultant intensity of waves from two or more in-
coherent sources is simply the sum of the intensities
due to the individual sources.

16-2 STANDING WAVES

If waves are confined in space, like the waves on a
piano string, sound waves in an organ pipe, or light
waves in a laser, reflections at both ends cause the
waves to travel in both directions. These superposing
waves interfere in accordance with the principle of su-
perposition. For a given string or pipe, there are certain
frequencies for which superposition results in a sta-
tionary vibration pattern called a standing wave.
Standing waves have important applications in musi-
cal instruments and in quantum theory.

STANDING WAVES ON STRINGS

String fixed at both ends If we fix one end of a taut flexible
string and move the other end of the string up and down with
simple harmonic motion of small amplitude, we find that at
certain frequencies, standing-wave patterns such as those
shown in Figure 16-12 are produced. The frequencies that pro-
duce these patterns are called the resonance frequencies of the
string system. Each such frequency, with its accompanying
wave function, is called a mode of vibration. The lowest reso-
nance frequency is called the fundamental frequency It pro-
duces the standing-wave pattern shown in Figure 16-12a,
which is called the fundamental mode of vibration or the first
harmonic. The second lowest frequency produces the pattern
shown in Figure 16-12b. This mode of vibration has a frequency
twice that of the fundamental frequency and is called the second
harmonic. The third lowest frequency is three times the fun-
damental frequency, and it produces the third harmonic pattern
shown in Figure 16-12c. The set of all resonant frequencies is
called the resonant frequency spectrum of the string.

Many systems that support standing waves have resonant
frequency spectra in which the resonant frequencies are not in-
tegral multiples of the lowest frequency. In all resonant fre-
quency spectra, the lowest resonant frequency is called the fun-
damental frequency (or just the fundamental), the next lowest
resonant frequency is called the first overtone, the next lowest
the second overtone, and so forth. This terminology has its roots
in music. Only if each resonant frequency is an integral multiple
of the fundamental frequency are they referred to as harmonics.
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Standing waves on a string made to oscillate by a vibrator attached to the
left end of the string. These standing waves occur only at specific frequencies.
(Richard Megna/Fundamental Photographs, New York.)

F I G U R E  1 6 - 1 2 Standing waves on a string that is fixed at both ends.
Antinodes are labeled A and nodes are labeled N. The harmonic has 
antinodes, where n � 1, 2, 3, Á .

nnth
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We note from Figure 16-12 that for each harmonic there are certain points on
the string (the midpoint in Figure 16-12b, for example) that do not move. Such
points are called nodes. Midway between each adjacent pair of nodes is a point of
maximum amplitude of vibration called an antinode. A fixed end of the string is,
of course, a node. (If one end is attached to a tuning fork or other vibrator rather
than being fixed, it will still be approximately a node because the amplitude of
the vibration at that end is so much smaller than the amplitude at the antinodes.)
We note that the first harmonic has one antinode, the second harmonic has two
antinodes, and so on.

We can relate the resonance frequencies to the wave speed in the string and the
length of the string. The distance between a node and the nearest antinode is 
one-fourth of the wavelength. Therefore, the length of the string equals one-half
the wavelength in the fundamental mode of vibration (Figure 16-13) and, as
Figure 16-12 reveals, equals two half-wavelengths for the second harmonic,
three half-wavelengths for the third harmonic, and so forth. In general, if is the
wavelength of the th harmonic, we have

16-10

STANDING-WAVE CONDITION, BOTH ENDS FIXED

This result is known as the standing-wave condition. We can find the frequency
of the th harmonic from the fact that the wave speed equals the frequency 
times the wavelength. Thus,

or

16-11

RESONANCE FREQUENCIES,  BOTH ENDS FIXED

where is the fundamental frequency.
We can understand standing waves in terms of

resonance. Consider a string of length that is at-
tached at one end to a vibrator (Figure 16-14) and is
fixed at the other end. The first wave crest sent out
by the vibrator travels down the string a distance 
to the fixed end, where it is reflected and inverted. It
then travels back a distance and is again reflected
and inverted at the vibrator. The total time for the
round-trip is If this time equals the period of
the vibrator, the twice-reflected wave crest exactly
overlaps the second wave crest produced by the
vibrator, and the two crests interfere constructively,
producing a crest with twice the original amplitude.
The combined wave crest travels down the string
and back and is added to by the third crest produced
by the vibrator, increasing the amplitude threefold,
and so on. Thus, the vibrator is in resonance with the
string. The wavelength is equal to and the frequency is equal to 

Resonance also occurs at other vibrator frequencies. The vibrator is in resonance
with the string if the time it takes for the first wave crest to travel the distance 
is any integer times the period of the vibrator. That is, if where

is the round-trip time for a wave crest. Thus,

fn �
1
Tn

� n
v

2L
  n � 1, 2, 3, Á

2L>v 2L>v � nTn ,Tn
2L

v>(2L).2L

2L>v. L

L

L

f1 � v>(2L)

fn � n
v

2L
� nf1 n � 1, 2, 3, Á

fn �
v
ln

�
v

2L>n n � 1, 2, 3, Á

fnvn

L � n
ln

2
 n � 1, 2, 3, Á

n
ln

L

L
L

λ
λ/2

Not all resonant frequencies are
called harmonics. Only frequencies

that are a part of a resonant frequency
spectrum that is composed of integral
multiples of the fundamental (lowest)
frequency are referred to as harmonics.

F I G U R E  1 6 - 1 3 For the first harmonic of
a taut string fixed at both ends, l � 2L.

!

F I G U R E  1 6 - 1 4 The mechanical driver sends waves down the string. The
waves reflect off the pulley.
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F I G U R E  1 6 - 1 5 Waves on a string
produced by a mechanical wave driver whose
frequency is not in resonance with the natural
frequencies of the string. The wave leaving the
wave driver for the first time (dashed red line)
is not in phase with the waves that have been
reflected two or more times (gray lines), and
these waves are not in phase with each other,
so there is no buildup in amplitude. The
resultant wave (black line) has about the same
amplitude as the individual waves, which is
about the amplitude of the driver.
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is the condition for resonance. This result is the same result we found by fitting an
integral number of half-wavelengths into the distance Various damping effects,
such as the loss of energy during reflection and air drag on the string, put a limit
on the maximum amplitude that can be reached.

The resonance frequencies given by Equation 16-11 are also called the natural fre-
quencies of the string. When the frequency of the vibrator is not one of the natural
frequencies of the vibrating string, standing waves are not produced. After the first
wave travels the distance and is reflected from the fork, it differs in phase from
the wave being generated at the vibrator (Figure 16-15). When this resultant wave
has traveled the distance and is again reflected at the vibrator, it will differ in
phase from the next wave generated. In some cases, the new resultant wave will su-
perpose with the previous wave to produce a wave of greater amplitude, in other
cases the new amplitude will be less. On the average, the amplitude will neither in-
crease nor decrease, but will remain on the order of the amplitude of the first wave
generated, which is the amplitude of the vibrator. This amplitude is very small com-
pared with the amplitudes attained at resonance frequencies.

The resonance of standing waves is analogous to the resonance of a simple
harmonic oscillator with a harmonic driving force. However, a vibrating string
does not have just one natural frequency, but a sequence of natural frequencies that
are integral multiples of the fundamental frequency. This sequence is called a
harmonic series.

2L

2L

L.

PROBLEM-SOLVING STRATEGY

Using the Standing-Wave Condition to Solve Problems

PICTURE You should not bother to memorize Equation 16-11. Just sketch
Figure 16-12 to remind yourself of the standing-wave condition, 
and then use 

SOLVE

1. Reconstruct Figure 16-12 for the first few harmonics (not the expression
on the right of the figure, just the pictures of the string). At each end of
the string there is a node, and the distance between a node and an
adjacent antinode is invariably 

2. Relate the wave speed to the frequency using 

3. Relate the wave speed to the tension using 

CHECK Verify that your results are dimensionally correct.

v � 2FT>m .

v � fl.

1
4l.

v � fnln .
ln � 2L>n,

Standing waves generated by winds generated standing waves in the Tacoma Narrows suspension bridge, leading to its
collapse on November 7, 1940, just four months after it had been opened for traffic. (University of Washington.)

45 mi>h
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Context-Rich

1. The wave speed is related to the frequency and wavelength We
are given the fundamental frequency f1:

2. Use Figure 16-12 to relate the wavelength of the fundamental to
the length of the string:

v � f1l1

l1 � 2L

3. Use this wavelength and the given frequency to find the speed: 616 m>s� 2(440 Hz)(0.700 m) �v � f1l1 � f12L � 2f1L

CHECK To check the plausibility of this answer, we check the units. The unit for frequency
is the hertz, where or just (because a cycle is dimensionless). Thus, 1 Hz
times 1 m equals which are the correct units for speed.

PRACTICE PROBLEM 16-2 The speed of transverse waves on a stretched string is If the
string is 5.0 m long, find the frequencies of the fundamental and the second and third harmonics.

200 m>s.

1 m>s,
1 s�11 Hz � 1 cy>s,

Example 16-6 Give Me an A

A string is stretched between two fixed supports 0.700 m apart and the tension is adjusted
until the fundamental frequency of the string is concert A, 440 Hz. What is the speed of trans-
verse waves on the string?

PICTURE The wave speed equals the frequency times the wavelength. For a string fixed at
both ends, in the fundamental mode there is a single antinode in the middle of the string.
Thus, the length of the string equals one-half wavelength.

SOLVE

Example 16-7 Testing Piano Wire

You have a summer job at a music shop, helping the owner build instruments. He asks you
to test a new wire for possible use in pianos. He tells you that the 3.00-m-long wire has a lin-
ear mass density of and he has found two adjacent resonant frequencies at 252
Hz and at 336 Hz. He wants you to determine the fundamental frequency of the wire and
determine whether or not the wire is a good choice for piano strings. You know that safety
issues start to arise if the tension in the wire gets above 700 N.

PICTURE The tension is found from where the speed can be found from
using any harmonic. The wavelength for the fundamental is twice the length of the

wire. To find the fundamental frequency let 252 Hz be the frequency of the th harmonic. Then
and where We can solve these two equations for 

SOLVE

f1 .fn�1 � 336 Hz.fn�1 � (n � 1)f1 ,fn � nf1

n
v � fl

vv � 2FT >m ,FT

0.00250 kg>m,

1. The tension is related to the wave speed:
2. The wave speed is related to the wavelength and frequency:

3. Use Figure 16-12 to relate the wavelength of the
fundamental to the length of the wire:

4. Use the step-2 and step-3 results to relate the speed 
to the fundamental frequency f1:

v

so FT � mv2v � 2FT >m
v � fl

l1 � 2L

v � f1l1 � f1 � 2L � 2f1L

5. Substitute into the step-1 result to find the tension: FT � mv2 � 4mf2
1L

2

6. The consecutive harmonics and are related to the
fundamental frequency f1:

fn�1fn

7. Dividing these equations eliminates and allows us to
determine n:

f1

8. Solve for f1:

9. Using the step-5 result, solve for FT:

10. Is the tension safe?

CHECK That the tension is the same order of magnitude as the safety limit makes the an-
swer plausible.

(n � 1)f1 � 336 Hz

nf1 � 252 Hz

n
n � 1

�
252 Hz
336 Hz

� 0.750 ⇒ n � 3

so f1 �
fn
n

�
f3
3

�
252 Hz

3
� 84.0 Hzfn � nf1

� 4(0.00250 kg>m)(84.0 Hz)2(3.00 m)2 � 635 NFT � 4mf2
1L

2

The tension is less than the 700-N safety limit. The wire is safe to use.

A technician uses a micrometer to measure the
diameter of a piano wire. (Courtesy of Buck
Rogers/Craftsmen Piano Rebuilders North
Attleboro, MA.)
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String fixed at one end, free at the other Figure 16-16 shows a string that
has one end fixed and one end attached to a ring that is free to slide up and
down on a friction-free pole. The vertical motion of the ring is driven by the
vertical component of the tension force (we are neglecting any effects of grav-
ity). Ideally, we let the mass of the ring approach zero. Then the vertical motion
of the end of the string that is attached to the ring is unconstrained, so it is said
to be a free end. Any finite vertical force by the string on the massless ring
would give the ring an infinite acceleration. However, the acceleration of the
ring will remain finite as long as the tangent to the string at the point where it
attaches to the ring remains parallel to the string’s equilibrium position. For a
string oscillating in a standing wave, the antinodes are the only points where
the tangent to the string remains parallel to the string’s equilibrium position. 
It follows that there is an antinode at the end of the string attached to the ring.

In the fundamental mode of vibration for a string fixed at one end and free at
the other, there is a node at the fixed end and an antinode at the free end, so 
(Figure 16-17). (Recall that distance from a node to an adjacent antinode is equal to
one-quarter wavelength.)

In each mode of vibration shown in Figure 16-18 there is an odd number of
quarter-wavelengths in the length That is, where The
standing-wave condition can thus be written

16-12

STANDING-WAVE CONDITION, ONE END FREE

so The resonance frequencies are therefore
given by

16-13

RESONANCE FREQUENCIES,  ONE END FREE

where

16-14

is the fundamental frequency. The natural frequencies of
this system occur in the ratios which means
that all the even harmonics are missing.

Wave functions for standing waves If a string vi-
brates in its th mode, each point on the string moves
with simple harmonic motion. Its displacement is
given by

where is the angular frequency, is the phase con-
stant, which depends on the initial conditions, and 
is the amplitude, which depends on the position of the point. The function 
is the shape of the string when (the instant that the vibration has
its maximum displacement). The amplitude of a string vibrating in its th mode is
described by

16-15An(x) � An sinknx

n
cos(vnt � dn) � 1

An(x)x
An(x)

dnvn

yn(x, t) � An(x) cos(vnt � dn)

yn(x, t)
n

1:3:5:7: Á ,

f1 �
v

4L

fn �
v
ln

� n
v

4L
� nf1  n � 1, 3, 5, Á

ln � 4L>n.
L � n

ln

4
  n � 1, 3, 5, Á

n � 1, 3, 5, Á .L � n 1
4ln ,L.

L � 1
4l

F I G U R E  1 6 - 1 6 An approximation of a
string fixed at one end and free at the other
end can be produced by connecting the “free”
end of the string to a ring that is free to move
on a post. The end attached to the mechanical
wave driver is approximately fixed because
the amplitude of the driver is very small.
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λ/4

F I G U R E  1 6 - 1 7 For the first harmonic of
a taut string fixed at one end and free at the
other end, l � 4L.
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F I G U R E  1 6 - 1 8 Standing waves on a string fixed at only one end. An
antinode exists at the free end.
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where is the wave number. The wave function for a standing wave in
the th harmonic can thus be written

16-16

It is useful to remember the two conditions necessary for standing-wave motion,
which are as follows:

1. Each point on the string either remains at rest or oscillates in simple har-
monic motion. (Those points remaining at rest are the nodes.)

2. Any two oscillating points on the string oscillate either in phase or 
out of phase.

NECESSARY CONDITIONS FOR A STANDING-WAVE MOTION ON A LENGTH OF STRING

180°

yn(x, t) � An sin(knx) cos(vnt � dn)

n
kn � 2p>ln

Try It YourselfExample 16-8 Standing Waves

(a) The wave functions for two waves that have equal amplitude, frequency, and wavelength, but
that travel in opposite directions, are given by and 
Show that the superposition of these two waves is a standing wave. (b) A standing wave on a
string that is fixed at both ends is given by 
Find the speed of waves on the string and find the distance between adjacent nodes for the
standing waves.

PICTURE To show that the superposition of the two given waves is a standing wave is
to show that the algebraic sum of and can be written in the form of

(Equation 16-16). To find the wave speed and the
wavelength, we compare the given wave function with Equation 16-16 and identify the
wave number and angular frequency. Knowing these, we can determine the wavelength
and wave speed.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

cos(vnt � dn)yn(x, t) � An sin(knx)
y2y1

y(x, t) � (0.024 m) sin(52.3 m�1 x) cos(480 s�1 t).

y2 � y0 sin(kx � vt).y1 � y0 sin(kx � vt)

Steps Answers

(a) 1. Write Equation 16-16. If the sum of and can be written in this
form, then the superposition of the two traveling waves is a
standing wave:

y2y1 y(x, t) � A sinkx cosvt

2. Add the two wave functions and use the trigonometric identity
sinu1 � sinu2 � 2 sin 1

2 (u1 � u2) cos 1
2 (u1 � u2).

This is of the form given by Equation 16-16 (with 

so the superposition is a standing wave.

A � 2y0),

� 2y0 sinkx cosvt

y � y0 sin(kx � vt) � y0 sin(kx � vt)

(b) 1. Identify the wave number and the angular frequency: 480 s�1, v �52.3 m�1k �

2. Calculate the speed from v � v>k: 9.18 m>sv �

3. Find the wavelength and use it to find the distance
between adjacent nodes:

l � 2p>k, 6.01 cm
l

2
�

CHECK Anyone would expect that the superposition of a wave traveling to the right and an
otherwise identical wave traveling to the left would not be a traveling wave. (If it were a
traveling wave, which way would it be traveling?) Thus, we are not surprised that the su-
perposition of the two traveling waves is a standing wave.
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F I G U R E  1 6 - 1 9 Cutaway view of a
section of a flue-type organ pipe. Air is blown
against the edge, causing a swirling motion of
the air near point that excites standing
waves in the pipe. There is a pressure node
near point which is open to the
atmosphere.

A,

A

Try It Yourself

Steps Answers

(a) 1. Using Figure 16-12, determine the wavelength of the fundamental mode: l1 � 2Leff � 2.00 m

2. Use to calculate the fundamental frequency f1:v � fl f1 �
v
l1

� 172 Hz

3. Write expressions for the frequencies and wavelengths of the other
harmonics in terms of n:

lnfn

(2.00 m)>n n � 1, 2, 3, Áln �
2L
n

�

n(172 Hz) n � 1, 2, 3, Áfn � nf1 �

(b) 1. Repeat Part (a) to calculate the resonant frequency spectrum of the
helium-filled organ pipe:

n(488 Hz) n � 1, 2, 3, Á�

fn � nf1 � n
v
l1

� n
v

2L
� n

975 m>s
2.00 m

STANDING SOUND WAVES

An organ pipe is a familiar example of the use of standing waves in air columns. In
the flue-type organ pipe, a stream of air is directed against the sharp edge of an open-
ing (point in Figure 16-19). The complicated swirling motion of the air near the
edge sets up vibrations in the air column. The resonance frequencies of the pipe de-
pend on the length of the pipe and on whether the top is stopped (closed) or open.

In an open organ pipe, the pressure does not vary appreciably near each open
end. (It remains at atmospheric pressure.) Because the pressure just beyond the
ends does not vary appreciably, there is a pressure node near each end. If the sound
wave in the tube is a one-dimensional wave, which is largely correct if the tube di-
ameter is much smaller than the wavelength, then the pressure node is extremely
close to the open end of the tube. In practice, however, the pressure node lies
slightly beyond the open end of the tube. The effective length of the pipe is

where is the end correction, which is somewhat smaller than the
tube diameter. The standing-wave condition for this system is the same as that for
a string fixed at both ends, where is replaced by (the effective length of the
tube), and all the same equations apply.

In a stopped organ pipe (open at one end, closed at the other), there is a pressure
node near the opening (point in Figure 16-19) and a pressure antinode at the closed
end. The standing-wave condition for this system is the same as that for a string with
one end fixed and one end free. The effective length of the tube is equal to an odd in-
teger times That is, the wavelength of the fundamental mode is four times the
effective length of the tube, and only the odd harmonics are present.

As we saw in Chapter 15, a sound wave can be thought of as either a pressure
wave or a displacement wave. The pressure and displacement variations in a
sound wave are out of phase. Thus, in a standing sound wave, the pressure
nodes are displacement antinodes and vice versa. Near the open end of an organ
pipe there is a pressure node and a displacement antinode, whereas at a stopped
end there is a pressure antinode and a displacement node.

90°

l>4.

A

LeffL

¢LLeff � L � ¢L,

A

Example 16-9 Standing Sound Waves in an Air Column: I

An unstopped (open at both ends) organ pipe has an effective length equal to 1.00 m. (a) If
the speed of sound is what are the allowed frequencies and wavelengths for
standing sound waves in this pipe? (b) The speed of sound in helium is What are
the allowed frequencies for standing sound waves in this pipe if it is filled with and
surrounded by helium?

PICTURE There is a displacement antinode (and a pressure node) at each end. Therefore,
the effective length of the pipe is equal to an integral number of half-wavelengths.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

975 m>s.
343 m>s,
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CHECK The product of the two Part-(a) step-3 results does not depend on (The n’s cancel
when you take the product.) This is as expected because the product is equal to the wave
speed, which does not depend on frequency or wavelength.

PRACTICE PROBLEM 16-3 The longest organ pipe is the one with a fundamental fre-
quency that is equal to 16 Hz, the lowest frequency audible to humans. What is the length of
an unstopped organ pipe that has a fundamental frequency of 16.0 Hz?

n .

Why does your voice change pitch
when you speak after inhaling the
contents of a helium-filled balloon?

CONCEPT CHECK 16-1✓

Example 16-10 Standing Sound Waves in an Air Column: II

When a tuning fork of frequency 500 Hz is held above a tube that is partly filled with water, as
in Figure 16-20, resonances are found when the water level is at distances 
and 119.5 cm from the top of the tube. (a) What is the speed of sound in air? (b) How far from
the open end of the tube is the displacement antinode?

PICTURE Standing sound waves of fre-
quency 500 Hz are excited in the air column
whose length can be adjusted (by adjusting
the water level). The air column is stopped at
one end, open at the other. Thus, at resonance,
the number of quarter-wavelengths in the ef-
fective length of the tube is equal to an odd
integer (Figure 16-21). A displacement node
exists at the surface of the water and a
displacement antinode exists a short
distance above the open end of the tube.
Because the frequency is fixed, so is the wave-
length. The speed is then found from 
where is 500 Hz.

SOLVE

f
v � fl,

¢L

Leff

L

L � 16.0, 50.5, 85.0,

F I G U R E  1 6 - 2 0 The length of the air
column in the cylinder on the left is varied
by moving the reservoir on the right up or
down. The two cylinders are connected by a
flexible hose.L4

L3

L2

L1

ΔL

F I G U R E  1 6 - 2 1 A displacement node
exists at the surface of the water and a
displacement antinode exists a distance 
above the top of the cylinder.

¢L

(a) 1. The speed of sound in air is related to the frequency and wavelength: v � fl

2. Resonance occurs each time the water level is at the location of a
displacement node (see Figure 16-21). That is, when the length 
changes by half a wavelength:

L
Ln�1 � Ln �

l

2
  n � 1, 2, 3, 4

3. The distance between successive levels is found from the data
given in the problem: so l � 2(34.5 cm) � 69.0 cm � 0.690 m

� 119.5 cm � 85.0 cm � 34.5 cmLn�1 � Ln � L4 � L3

4. Substitute the values of and to determine v:lf 345 m>sv � fl � (500 Hz)(0.690 m) �

(b) There will be a displacement antinode one-quarter wavelength above
the displacement node at the surface of the water. Thus, the distance
from the highest water level supporting resonance and the displacement
antinode above the opening of the tube is one-quarter wavelength:

so

1.25 cm�

¢L � 1
4l � L1 � 1

4 (69.0 cm) � (16.0 cm)

1
4l � L1 � ¢L

CHECK As expected, the wave speed (step 4) is approximately equal to the speed of sound
in air at room temperature.

Most musical wind instruments are much more complicated than simple cylin-
drical tubes. The conical tube, which is the basis for the oboe, bassoon, English
horn, and saxophone, has a complete harmonic series with its fundamental wave-
length equal to twice the length of the cone. Brass instruments are combinations of
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16-3 ADDITIONAL TOPICS

THE SUPERPOSITION OF STANDING WAVES

As we saw in the preceding section, there is a set of natural resonance frequen-
cies that produce standing waves for sound waves in air columns or vibrating
strings that are fixed at one or both ends. For example, for a string fixed at both
ends, the frequency of the fundamental mode of vibration is where 

is the length of the string and is the wave speed and the wave function is
Equation 16-16:

In general, a vibrating system does not vibrate in a single harmonic mode.
Instead, the motion consists of a superposition of several of the allowed harmonics.
The wave function is a linear combination of the harmonic wave functions:

16-17

where and and are constants. The constants and 
depend on the initial positions and velocities of the points on the string. If a harp
string, for example, is plucked at the center and released, as in Figure 16-22, the

dnAndnAnkn � 2p>ln , vn � 2pfn ,

y(x, t) � a
n

An sin(knx) cos(vnt � dn)

y1(x, t) � A1 sink1x cos(v1t � d1)

vL
f1 � v>(2L),

523 Hz 1569 Hz 2532 Hz 2819 Hz 3104 Hz

3866 Hz 3957 Hz 4709 Hz 5323 Hz 5435 Hz 6137 Hz

6263 Hz 6571 Hz 6892 Hz 7962 Hz 8002 Hz 8639 Hz

Holographic interferograms showing standing
waves in a handbell. The “bull’s eyes” locate
the antinodes. (Professor Thomas D. Rossing,
Northern Illinois University, DeKalb.)

L

F I G U R E  1 6 - 2 2 A string plucked at the
center. When it is released, its vibration is a
linear superposition of standing waves.

*

cones and cylinders. The analysis of these instruments is extremely complex. The
fact that they have nearly harmonic series is a triumph of educated trial and error
rather than mathematical calculation.
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L x

5

1 + 3 + 5

3

1

Stringy

F I G U R E  1 6 - 2 4 Approximating the shape of a string plucked at the center, as in 
Figure 16-22, using harmonics. The green line is an approximation of the original shape of the
string based on the first three odd harmonics. The height of the string is exaggerated in this
drawing to show the relative amplitudes of the harmonics. Most of the energy is associated with
the fundamental, but there is some energy in the third, fifth, and other odd harmonics.
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x =x = 0 x = LL
2

L
2

Symmetric
about

L
2

Symmetric
about

L
2

Antisymmetric
about

L
2

Antisymmetric
about

n = 1

n = 2

n = 3

n = 4

F I G U R E  1 6 - 2 3 The first four harmonics for a string
fixed at both ends. The odd harmonics are symmetrical
about the center of the string, whereas the even
harmonics are not. When a string is plucked at the center,
it vibrates only in its odd harmonics.

initial shape of the string is symmetric about the point and the initial veloc-
ity is zero throughout the length of the string. The motion of the string after it has
been released will remain symmetric about Only the odd harmonics, which
are also symmetric about will be excited. The even harmonics, which are an-
tisymmetric about are not excited; that is, the constant is zero for all even
values of The shapes of the first four harmonics are shown in Figure 16-23. Most
of the energy of the plucked string is associated with the fundamental, but small
amounts of energy are associated with the third, fifth, and other odd harmonic
modes. Figure 16-24 shows an approximation to the initial shape of the string using
the superposition of only the first three odd harmonics.

HARMONIC ANALYSIS AND SYNTHESIS

When a clarinet and an oboe play the same note, say, concert
A, they sound quite different. Both notes have the same
pitch, a physiological sensation of the highness or lowness of
the note that is strongly correlated with frequency. However,
the notes differ in what is called tone quality. The principal
reason for the difference in tone quality is that, although both
the clarinet and oboe are producing vibrations at the same
fundamental frequency, each instrument is also producing
harmonics whose relative intensities depend on the instru-
ment and how it is played. If the sound produced by each in-
strument were entirely at the fundamental frequency of the
instrument, they would sound identical.

Figure 16-25 shows plots of the pressure variations ver-
sus time for the sound from a tuning fork, a clarinet, and
an oboe, each playing the same note. These patterns are
called waveforms. The waveform for the sound from the
tuning fork is nearly a pure sine wave, but those from
the clarinet and the oboe are clearly more complex.

Waveforms can be analyzed in terms of the harmonics
that constitute them by means of harmonic analysis.
(Harmonic analysis is also called Fourier analysis after the
French mathematician J.B.J. Fourier, who developed the

n .
Anx � 1

2L,
x � 1

2L,
x � 1

2L.

x � 1
2L

Tuning fork

Clarinet

Oboe

(a)

(b)

(c)

F I G U R E  1 6 - 2 5 Waveforms of (a) a tuning fork, (b) a clarinet, and
(c) an oboe, each at a fundamental frequency of 440 Hz and at
approximately the same intensity.

(Corbis.)



552 | C H A P T E R  1 6 Superposition and Standing Waves

1 2 3 4 5 6 7 8 9 10

100

R
el

at
iv

e 
am

pl
it

ud
e

Harmonics

Tuning fork

1 2 3 4 5 6 7 8 9 10

100

R
el

at
iv

e 
am

pl
it

ud
e

Harmonics

Clarinet

1 2 3 4 5 6 7 8 9 10

100

R
el

at
iv

e 
am

pl
it

ud
e

Harmonics

Oboe

p

1 + 3 + 5

t

Square waveform

(b)
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5

(a)

F I G U R E  1 6 - 2 7 (a) The first three odd harmonics used to synthesize a square wave. 
(b) The approximation of a square wave that results from summing the first three odd 
harmonics in (a).

2 4 6 8 10 12 14 16 18 20 n

An

F I G U R E  1 6 - 2 8 Relative amplitudes 
of the first 10 harmonics needed to synthesize
a square wave. The more harmonics that are
used, the closer the approximation is to the
square wave.

An

techniques for analyzing periodic functions.) Figure 16-26 shows a plot of the rel-
ative intensities of the harmonics of the waveforms in Figure 16-25. The waveform
of the sound from the tuning fork contains only the fundamental frequency. The
waveform for the sound from the clarinet contains the fundamental, large amounts
of the third, fifth, and seventh harmonics, and lesser amounts of the second, fourth,
and sixth harmonics. For the sound from the oboe, there is more intensity in the
second, third and fourth harmonics than in the fundamental.

The inverse of harmonic analysis is harmonic synthesis, which is the construc-
tion of a periodic wave from harmonic components. Figure 16-27a shows the first
three odd harmonics used to synthesize a square wave, and Figure 16-27b shows
the square wave that results from the sum of the three harmonics. The more har-
monics used in a synthesis, the closer the approximation will be to the actual wave-
form (the gray line in Figure 16-27b). The relative amplitudes of the harmonics
needed to synthesize the square wave are shown in Figure 16-28.

WAVE PACKETS AND DISPERSION

The waveforms previously discussed in this Section 16-3 are periodic in time.
Pulses, which are not periodic, can also be represented by a group of harmonic
waves of different frequencies. However, the synthesis of an isolated pulse requires
a continuous distribution of frequencies rather than a discrete set of harmonics, as
in Figure 16-28. Such a group is called a wave packet. The characteristic feature of

F I G U R E  1 6 - 2 6

Relative intensities of
the harmonics in the
waveforms shown in
Figure 16-25 for
(a) the tuning fork,
(b) the clarinet, and
(c) the oboe.
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a wave pulse is that it has a beginning and an end, whereas a harmonic wave
repeats over and over. If the duration of the pulse is very short, the range of
frequencies needed to describe the pulse is very large. The general relation
between and is

16-18

where the tilde means “of the order of magnitude of.”
The exact value of this product depends on just how the quantities and 

are defined. For any reasonable definitions, and have the same order of
magnitude. A wave pulse produced by a source of short duration like the crack
of a bat on a ball, has a narrow width in space where is the wave
speed. Each harmonic wave of frequency has a wave number A range
of frequencies implies a range of wave numbers Substituting 
for in Equation 16-18 gives or

16-19¢k ¢x � 1

v ¢k ¢t � 1,¢v
v ¢k¢k � ¢v>v.¢v

k � v>v.v

v¢x � v ¢t,
¢t,

1>¢t¢v
¢t¢v

(�)

¢v ¢t � 1

¢v¢t
¢v

¢t

SOLVE

(a) The duration of the pulse is the time it takes to pass a point on the
clothesline:

so 0.0100 s¢t �
L
v

�
1.00 m

100 m>s �L � v ¢t

(b) To find the range of frequencies, we use (Equation 16-18):¢v ¢t � 1 so 100 s�1¢v �
1

¢t
�

1
0.0100 s

�¢v ¢t � 1

(c) To find the range of wave numbers, we use (Equation 16-19):¢k ¢x � 1 so 1.00 m�1¢k �
1

¢x
�

1
1.00 m

�¢k ¢x � 1

Example 16-11 Estimating and 

In Example 15-1 a wave pulse on a long clothesline is moving at (a) If the width of
the pulse is 1.00 m, what is the duration of the pulse? That is, how long does it take for the
pulse to travel past a point on the clothesline? (b) The pulse can be considered as a superpo-
sition of harmonic waves. What is the range of frequencies of these harmonic waves?
(c) What is the range of wave numbers?

PICTURE To find the duration of the pulse, we use distance equals speed times the time. To
find the range of frequencies and the range of wave numbers, we use and

(Equations 16-18 and 16-19).¢k ¢x � 1
¢v ¢t � 1

100 >m.

≤k≤V

CHECK We know that so a range of frequencies implies a range of wave
numbers Dividing our Part-(b) result by the wave speed we obtain 

This value is our Part-(c) result.(100 m>s) � 1 m�1.
(100 s�1)>v,¢k � ¢v>v. ¢vk � v>v,

If a wave packet is to maintain its shape as it travels, all of the component
harmonic waves that make up the packet must travel with the same speed. This
occurs if the speed of the component waves in a given medium is independent of fre-
quency or wavelength. Such a medium is called a nondispersive medium. Air is, to
an excellent approximation, a nondispersive medium for sound waves, but solids
and liquids are not. (Probably the most familiar example of dispersion is the forma-
tion of a rainbow, which is due to the fact that the velocity of light waves in water
depends slightly on the frequency of the light, so the different colors, corresponding
to different frequencies, have slightly different angles of refraction.)

When the wave speed in a dispersive medium depends only slightly on the fre-
quency (or wavelength), a wave packet changes shape very slowly as it travels, and it
covers a considerable distance as a recognizable entity. But the speed of the packet,
called the group velocity, is not the same as the (average) speed of the individual com-
ponent harmonic waves, called the phase velocity. (By the speed of an individual
harmonic wave we mean the speed of its wavefronts. Because wavefronts are lines or
surfaces of constant phase, their speed is called the phase velocity of the wave.)
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Physics Spotlight

Echoes of Silence: Acoustical Architecture

Architectural acoustics deals with the ways that sound
energy reflects, reverberates, and absorbs within a venue.
Computer modeling of spaces has allowed acoustic
engineers to design flexible spaces,*, † while taking into
account the different needs for listening to lectures,
theater, and several types of music. In general, the goal is
to make the sound uniform, audible, and intelligible at
each seat.

There should not be any whole-room standing waves
in the listening room.‡ Whole-room standing waves make
certain frequencies harder to hear for people in the seats
near nodes, and key frequencies too loud for people
seated near the antinodes. Rooms that are designed so
that whole-room standing waves are reduced have long
walls that are not parallel to each other, and ceilings and
floors that are also nonparallel.

If listeners are seated an average of 50 feet from the
main sound source, well under one percent of the sound
energy can go directly into their ears,# and nearly all the
sound energy that reaches listeners will be reflected
sound. The reflections must be clean and energetic enough to give the listener a reasonable total volume. Timing the reflec-
tions is also important. If a reflection up to 15 decibels below the source level reaches a listener’s ear more than 60 millisec-
onds after the source sound, it will be perceived as an echo.°, § If reflections louder than the source occur in the first 30 mil-
liseconds, they may also be perceived as echoes. Echoes detract from the intelligibility of speech, and make music sound fuzzy.
Late reflections arriving 50 ms or more after the source should be avoided.

Reflectors should be closer than 50 feet to each listener. This is a problem for open-air venues surrounded by tall buildings.¶

Many older venues have nonstructural plaster work. These structures provide early reflections to listeners. Newer venues
often use multiple speakers along the walls and ceiling. Chandeliers and panels suspended from high ceilings also reflect
sound. Vaulted and detailed ceilings disperse the sound into many small, unenergetic reflections.

Acoustic absorbers are used to lower the ambient noise energy within a room. The materials for both the reflective struc-
tures and the absorbent structures are carefully tailored to the venue, because most materials have different absorption coeffi-
cients at different frequencies.** The absorption coefficient is a measure of the fraction of the sound energy that is absorbed,
rather than reflected or transmitted. Window glass, for instance, has absorption coefficients of 0.35 at 125 Hz and 0.04 at 4 kHz.
Indoor/outdoor carpet has absorption coefficients of 0.01 at 125 Hz and 0.65 at 4 kHz. Different materials must be used for
both absorption and reflection to give a full-spectrum response at each seat.

Too much absorption gives rooms a dead feeling, and gives people claustrophobia.†† Reverberation, or chaotic sound
energy, gives rooms a warm feeling. Reverberation time, the measure of how quickly chaotic noise dissipates, is used as a
measure of how lively a room sounds. Reverberation times of venues vary according to the purpose of the venue.

* Orfali, and Ahnert, op. cit.
† “Gallagher Bluedorn Performing Arts Center,” Acoustic Dimensions, http://www.acousticdimensions.com/profiles/gb_uni.htm 
‡ Everest, F. Alton, Master Handbook of Acoustics, 4th ed., New York: McGraw-Hill, 2001, 320
# Noxon, A., “Auditorium Acoustics 101,” Church & Worship Technology, April 2002, 
° Everest, op. cit., 356.
§ Noxon, A., “Auditorium Acoustics 102,” Church & Worship Technology, May 2002, 
¶ Orfali, W., and Ahnert, W., “Measurments (sic) and Verification in Two Mosques in Saudi Arabia and Jordan,” paper presented at the 151st Meeting of the Acoustical Society of

America, Providence, RI, June 1–5, 2006, http://scitation.aip.org/confst/ASA/data/5/1aAA9.pdf
** Everest, op. cit., 585–587.
†† Freiheit, R., “Historic Recording Gives Choir ‘Alien’ Feeling: In Anechoic Space, No One Can Hear You Sing,” paper presented at the ASA/Noise Conference 2005 Minneapolis,

http://www.acoustics.org/press/150th/Freiheit.html 

24�.

22�.

The baffles hanging from the ceiling and attached to the walls above the
doorways are there to absorb sound. Their surfaces are made of
acoustically dead material, like felt. (Courtesy of Perdue Acoustics.) 

http://www.acousticdimensions.com/profiles/gb_uni.htm
http://scitation.aip.org/confst/ASA/data/5/1aAA9.pdf
http://www.acoustics.org/press/150th/Freiheit.html
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Summary

1. The principle of superposition, which holds for all electromagnetic waves in empty space,
for waves on a flexible taut string in the small-angle approximation, and for sound waves
of small amplitude, follows from the linearity of the corresponding wave equations.

2. Interference is an important wave phenomenon that applies to all coherent superposing
waves. It follows from the principle of superposition. Diffraction and interference distin-
guish wave motion from particle motion.

3. The standing-wave conditions can be recalled by sketching a string or tube and drawing
waves that have displacement nodes at a fixed or stopped end, and displacement antinodes
at a free or open end.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Superposition and Interference The superposition of two harmonic waves of equal amplitude, wave number, and frequency
but phase difference results in a harmonic wave of the same wave number and frequency,
but differing in phase and amplitude from each of the two waves

16-6

Constructive interference If waves are in phase or differ in phase by an integer times then the amplitudes of the
waves add and the interference is constructive.

Destructive interference If waves differ in phase by or by an odd integer times then the amplitudes subtract and
the interference is destructive.

Beats Beats are the result of the interference of two waves of slightly different frequencies. The beat
frequency equals the difference in the frequencies of the two waves:

16-8

Phase difference due to path difference 16-9

2. Standing Waves Standing waves occur for certain frequencies and wavelengths when waves are confined in
space. If they occur, then each point of the system oscillates in simple harmonic motion and
any two points not at nodes move either in phase or out of phase.

Wavelength The distance between a node and an adjacent antinode is a quarter-wavelength.

String fixed at both ends For a string fixed at both ends, there is a node at each end so that an integral number of half-
wavelengths must fit into the length of the string. The standing-wave condition in this case is

16-10

Standing-wave function for a string The allowed waves form a harmonic series, with the frequencies given by
fixed at both ends

16-18

where is the lowest frequency, called the fundamental.

Organ pipe open at both ends Standing sound waves in the air in a pipe that is open at both ends have a pressure node (and
a displacement antinode) near each end so that the standing-wave condition is the same as
for a string fixed at both ends.

String fixed at one end and free For a string with one end fixed and one end free, there is a node at the fixed end and an 
at the other antinode at the free end, so that an integral number of quarter-wavelengths must fit into the

length of the string. The standing-wave condition in this case is

16-12

Only the odd harmonics are present. Their frequencies are given by

16-13

where f1 � v>4L.

fn �
v
ln

� n
v
l1

� n
v

4L
� nf1  n � 1, 3, 5, Á

L � n
ln

4
  n � 1, 3, 5, Á

f1 � v>2L fn �
v
ln

� n
v
l1

� n
v

2L
� nf1  n � 1, 2, 3, Á

L � n
ln

2
  n � 1, 2, 3, Á

180°

d � k ¢x � 2p
¢x
l

¢xd

fbeat � ¢f

p,p

2p,

� [2y0 cos 1
2 d] sin(kx � vt � 1

2 d)

y � y1 � y2 � y0 sin(kx � vt) � y0 sin(k � vt � d)

d,
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10 cm/s 10 cm/s

15 cm 30 cm
5 cm

F I G U R E  1 6 - 2 9 Problems 1, 2

TOPIC RELEVANT EQUATIONS AND REMARKS

Organ pipe open at one end Standing sound waves in a pipe that is open at one end and stopped at the other end have a 
and stopped at the other displacement antinode at the open end and a displacement node at the stopped end. The

standing wave condition is the same as for a string fixed at one end.

Wave Functions for Standing Waves 16-16

where and 

The necessary conditions for standing waves on a string are
1. Each point on the string either remains at rest or oscillates with simple harmonic motion.

(Those points remaining at rest are nodes.)
2. The motions of any two points on the string that are not nodes oscillate either in phase or

out of phase.

*3. Superposition of Standing Waves A vibrating system typically does not vibrate in a single harmonic mode, but in a superpo-
sition of the allowed harmonic modes.

*4. Harmonic Analysis and Synthesis Sounds of different tone quality contain different mixtures of harmonics. The analysis of a
particular tone in terms of its harmonic content is called harmonic analysis. Harmonic syn-
thesis is the construction of a tone by the addition of harmonics.

*5. Wave Packets A wave pulse can be represented by a continuous distribution of harmonic waves. The range
of frequencies is related to the width in time and the range of wave numbers is
related to the width in space 

Frequency and time ranges 16-18

Wave number and space ranges 16-19

*6. Dispersion In a nondispersive medium, the phase velocity is independent of frequency, and a pulse
(wave packet) travels without change in shape. In a dispersive medium, the phase velocity
varies with frequency, and the pulse changes shape as it moves. The pulse moves with a ve-
locity called the group velocity of the packet.

¢k ¢x � 1

¢v ¢t � 1

¢x.
¢k¢t,¢v

180°

vn � 2pfn .kn � 2p>ln yn(x, t) � An sin(knx) cos(vnt � dn)

Answer to Concept Check

16-1 Your voice changes pitch because the fundamental
frequency of your throat and mouth cavity is increased,
just like the resonant frequency of the organ pipe in
Example 16-9 increased when it was filled with helium.

Answers to Practice Problems

16-1 (a) 5.66 cm, (b) or 

16-2

16-3 About 10.7 m � 35 ft

f1 � 20 Hz, f2 � 40 Hz, f3 � 60 Hz

240°120°

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

Use as the speed of sound for air, unless otherwise
indicated.

343 m/s

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Two rectangular wave pulses are traveling in oppo-
site directions along a string. At the two pulses are as
shown in Figure 16-29. Sketch the wave functions for 

SSMand 3.0 s.
t � 1.0, 2.0,

t � 0,
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F I G U R E  1 6 - 3 0 Problem 16 (Courtesy of Chuck Adler.)

2 • Repeat Problem 1 for the case in which the pulse on
the right is inverted.

3 • Beats are produced by the superposition of two harmonic
waves if (a) their amplitudes and frequencies are equal, (b) their am-
plitudes are the same but their frequencies differ slightly, (c) their
frequencies are equal but their amplitudes differ slightly.

4 • Two tuning forks are struck and the sounds from each
reach your ears at the same time. One sound has a frequency of
256 Hz, and the second sound has a frequency of 258 Hz. The un-
derlying “hum” frequency that you hear is (a) 2 Hz, (b) 256 Hz,
(c) 258 Hz, (d) 257 Hz.

5 • In Problem 4, the beat frequency is (a) 2 Hz, (b) 256 Hz,
(c) 258 Hz, (d) 257 Hz.

6 • CONTEXT-RICH As a graduate student, you are teaching
your first physics lecture while the professor is away. To demonstrate
interference of sound waves, you have set up two speakers that are
driven coherently and in phase by the same frequency generator on
the front desk. Each speaker generates sound with a 2.4-m wave-
length. One student in the front row says she hears a very low
volume (loudness) of the sound from the speakers compared to the
volume of the sound she hears when only one speaker is generating
sound. What could be the difference in the distance between her and
each of the two speakers? (a) 1.2 m, (b) 2.4 m, (c) 4.8 m, (d) You cannot
determine the difference in distances from the data given.

7 • In Problem 6, determine the longest wavelength for
which a student would hear “extra loud” sound due to constructive
interference, assuming this student is located so that one speaker is
3.0 m farther from her than the other speaker.

8 • Consider standing waves in an organ pipe. True or false:
(a) In a pipe open at both ends, the frequency of the third harmonic

is three times that of the first harmonic.
(b) In a pipe open at both ends, the frequency of the fifth harmonic

is five times that of the fundamental.
(c) In a pipe that is open at one end and stopped at the other, the

even harmonics are not excited.

Explain your choices.

9 • Standing waves result from the superposition of two
waves that have (a) the same amplitude, frequency, and direction of
propagation, (b) the same amplitude and frequency and opposite
directions of propagation, (c) the same amplitude, slightly different
frequencies, and the same direction of propagation, (d) the same
amplitude, slightly different frequencies, and opposite directions of
propagation.

10 • If you blow air over the top of a fairly large drinking
straw you can hear a fundamental frequency due to a standing
wave being set up in the straw. What happens to the fundamental
frequency, (a) if while blowing, you cover the bottom of the straw
with your fingertip? (b) if while blowing you cut the straw in half
with a pair of scissors? (c) Explain your answers to Parts (a) and (b).

11 • An organ pipe that is open at both ends has a funda-
mental frequency of 400 Hz. If one end of this pipe is now stopped,
the fundamental frequency is (a) 200 Hz, (b) 400 Hz, (c) 546 Hz,
(d) 800 Hz.

12 •• A string fixed at both ends resonates at a fundamental
frequency of 180 Hz. Which of the following will reduce the funda-
mental frequency to 90 Hz? (a) Double the tension and double the
length. (b) Halve the tension and keep the length and the mass per
unit length fixed. (c) Keep the tension and the mass per unit length
fixed and double the length. (d) Keep the tension and the mass per
unit length fixed and halve the length.

SSM

13 •• ENGINEERING APPLICATION Explain how you might
use the resonance frequencies of an organ pipe to estimate the
temperature of the air in the pipe.

14 •• In the fundamental standing-wave pattern of an
organ pipe stopped at one end, what happens to the wave-
length, frequency, and speed of the sound needed to create the
pattern if the air in the pipe becomes significantly colder?
Explain your reasoning.

15 •• (a) When a guitar string is vibrating in its fundamental
mode, is the wavelength of the sound it produces in air typically the
same as the wavelength of the standing wave on the string?
Explain. (b) When an organ pipe is in any one of its standing-wave
modes, is the wavelength of the traveling sound wave it produces
in air typically the same as the wavelength of the standing sound
wave in the pipe? Explain.

16 •• Figure 16-30 is a photograph of two pieces of very finely
woven silk placed one on top of the other. Where the pieces over-
lap, a series of light and dark lines are seen. This moiré pattern can
also be seen when a scanner is used to copy photos from a book or
newspaper. What causes the moiré pattern, and how is it similar to
the phenomenon of interference?

SSM

SSM

17 •• When a musical instrument consisting of drinking
glasses, each partially filled to a different height with water, is
struck with a small mallet, each glass produces a different fre-
quency of sound wave. Explain how this instrument works.

18 •• ENGINEERING APPLICATION During an organ recital, the
air compressor that drives the organ pipes suddenly fails. An en-
terprising physics student in the audience tries to help by replacing
the compressor with a pressurized tank of nitrogen gas. What ef-
fect, if any, will the nitrogen gas have on the frequency output of the
organ pipes? What effect, if any, would helium gas have on the fre-
quency output of the organ pipes?

19 •• The constant for helium (and all monatomic gases) is
1.67. If a man inhales helium and then speaks, his voice has a high
pitch and becomes cartoon-like. Why?

g
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ESTIMATION AND APPROXIMATION

20 • It is said that a powerful opera singer can hit a high note
with sufficient intensity to shatter an empty wine glass by causing
the air in it to resonate at the frequency of her voice. Estimate the
frequency necessary to obtain a standing wave in an 8.0-cm-high
glass. (The 8.0 cm does not include the height of the stem.)
Approximately how many octaves above middle C (262 Hz) is this?
Hint: To go up one octave means to double the frequency.
21 • Estimate how accurately you can tune a piano string to a
tuning fork of known frequency using only your ears, the tuning
fork, and a wrench. Explain your answer.
22 •• The shortest pipes used in organs are 7.5 cm long.
(a) Estimate the fundamental frequency of a pipe this long that is
open at both ends. (b) For such a pipe, estimate the harmonic number

of the highest-frequency harmonic that is within the audible range.
(The audible range of human hearing is about 20 to 20,000 Hz.)
23 •• BIOLOGICAL APPLICATION Estimate the resonant frequen-
cies that are in the audible range of human hearing of the human ear
canal. Treat the canal as an air column open at one end, stopped at
the other end, and with a length of 1.00 in. How many resonant fre-
quencies lie in this range? Human hearing has been found
experimentally to be the most sensitive at frequencies of about 3, 9,
and 15 kHz. How do these frequencies compare to your calculations?

SUPERPOSITION AND INTERFERENCE

24 • Two harmonic waves traveling on a string in the same di-
rection both have a frequency of 100 Hz, a wavelength of 2.0 cm,
and an amplitude of 0.020 m. In addition, they overlap each other.
What is the amplitude of the resultant wave if the original waves
differ in phase by (a) and (b)
25 • Two harmonic waves having the same frequency, wave
speed, and amplitude are traveling in the same direction and in the
same propagating medium. In addition, they overlap each other. If
they differ in phase by and each has an amplitude of 0.050 m,
what is the amplitude of the resultant wave?
26 • Two audio speakers facing in the same direction oscillate
in phase at the same frequency. They are separated by a distance
equal to one-third of a wavelength. Point is in front of both speak-
ers, on the line that passes through their centers. The amplitude of
the sound at due to either speaker acting alone is What is the
amplitude (in terms of ) of the resultant wave at point 
27 • Two compact sources of sound oscillate in phase with a fre-
quency of 100 Hz. At a point 5.00 m from one source and 5.85 m from
the other, the amplitude of the sound from each source separately is 
(a) What is the phase difference of the two waves at that point? (b) What
is the amplitude (in terms of ) of the resultant wave at that point?
28 • With a drawing program or a compass, draw circular arcs
of radius 1 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, and 7 cm centered at
each of two points a distance apart. Draw
smooth curves through the intersections corresponding to points 
centimeters farther from than from for and

and label each curve with the corresponding value of There
are two additional such curves you can draw, one for 
and one for If identical sources of coherent in-phase 1.0-cm-
wavelength waves were placed at points and the waves would
interfere constructively along each of the smooth curves.

29 • Two speakers separated by some distance emit sound
waves of the same frequency. At some point the intensity due
to each speaker separately is The distance from to one of
the speakers is longer than that from to the other speaker.
What is the intensity at if (a) the speakers are coherent and in
phase, (b) the speakers are incoherent, and (c) the speakers are
coherent and out of phase? SSM180°
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30 • Two speakers separated by some distance emit sound
waves of the same frequency. At some point the intensity due
to each speaker separately is The distance from to one of
the speakers is one wavelength longer than that from to the
other speaker. What is the intensity at if (a) the speakers are
coherent and in phase, (b) the speakers are incoherent, and (c)
the speakers are coherent and out of phase?

31 •• A transverse harmonic wave with a frequency equal to
40.0 Hz propagates along a taut string. Two points 5.00 cm apart are
out of phase by (a) What is the wavelength of the wave? (b) At
a given point on the string, how much does the phase change in
5.00 ms? (c) What is the wave speed?

32 •• BIOLOGICAL APPLICATION It is thought that the brain de-
termines the direction of the source of a sound by sensing the phase
difference between the sound waves striking the eardrums. A dis-
tant source emits sound of frequency 680 Hz. When you are directly
facing a sound source there is no phase difference. Estimate the
phase difference between the sounds received by your ears when
you are facing away from the direction of the source.

33 •• Sound source A is located at and sound
source B is located at The two sources radiate
coherently and in phase. An observer at notes
that as he takes a few steps from in either the or di-
rection, the sound intensity diminishes. What is the lowest
frequency, and the next to lowest frequency of the sources that
can account for that observation?

34 •• Suppose that the observer in Problem 33 finds him-
self at a point of minimum intensity at What is
then the lowest frequency and next to lowest frequency of the
sources that can account for this observation?

35 ••• SPREADSHEET Two harmonic water waves of equal
amplitudes but different frequencies, wave numbers, and speeds
are traveling in the same direction. In addition, they are
superposed on each other. The total displacement of the wave 
can be written as 
where (the speed of the first wave) and 
(the speed of the second wave). (a) Show that can 
be written in the form where

and The factor is called the enve-
lope of the wave. (b) Let 

and Using a spreadsheet pro-
gram or graphing calculator, make a plot of versus at

(c) Using a spreadsheet program or
graphing calculator, make three plots of versus for

on the same graph. Make one plot for
the second for and the third for 

Estimate the speed at which the envelope moves from the three
plots, and compare this estimate with the speed obtained using

36 ••• Two coherent point sources are in phase and are sepa-
rated by a distance An interference pattern is detected along a
line parallel to the line through the sources and a large distance 
from the sources, as shown in Figure 16-31. (a) Show that the path
difference from the two sources to some point on the line at an
angle is given, approximately, by Hint: Assume that

so the lines from the sources to P are approximately parallel
(Figure 16-31b). (b) Show that the two waves interfere construc-
tively at if where (That is, show there is
an interference maximum at if where 
(c) Show that the distance from the central maximum (at )
to the th interference maximum at is given by 
where d sinum � ml.

ym � D tanum ,Pm
y � 0ym

m � 0, 1, 2, Á .)¢s � ml,P
m � 0, 1, 2, Á .¢s � ml,P

DW d,
¢s � d sinu.u

¢s

D
d .

SSMvenvelope � ¢v>¢k.
t � 10.00 s.t � 5.00 s,t � 0.00 s,

�5.00 m 	 x 	 5.00 m
xY(x, t)

t � 0.00 s for 0 	 x 	 5.00 m.
xy(x, t)

k2 � 0.800 m�1.v2 � 0.900 rad>s,
A � 1.00 cm, v1 � 1.00 rad>s, k1 � 1.00 m�1,

Y(x, t)¢k � k1 � k2 .¢v�v1�v2 ,
� 2A cos[(¢k>2)x� (¢v>2)t],vav � (v1�v2)>2, kav � (k1� k2)>2,Y(x, t)

y(x, t) � Y(x, t) cos(kavx � vavt),
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SSM
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Problem 36

37 •• Two sound sources radiating in phase at a frequency of
480 Hz interfere such that maxima are heard at angles of and 
from a line perpendicular to that joining the two sources. The listener
is at a large distance from the line through both sources, and no ad-
ditional maxima are heard at angles in the range Find
the separation between the two sources, and any other angles at
which intensity maxima will be heard. (Use the result of Problem 36.)

38 •• Two loudspeakers are driven in phase by an audio ampli-
fier at a frequency of 600 Hz. The speakers are on the axis, one at

and the other at A listener, starting at
where walks in the direction along

the line (See Problem 36.) (a) At what angle will she first hear
a minimum in the sound intensity? ( is the angle between the posi-
tive axis and the line from the origin to the listener.) (b) At what
angle will she first hear a maximum in the sound intensity (after

(c) How many maxima can she possibly hear if she keeps
walking in the same direction?

39 ••• Two sound sources driven in phase by the same ampli-
fier are 2.00 m apart on the axis, one at and the 
other at At points large distances from the axis,
constructive interference is heard at angles with the axis of

and and at no angles
in between (see Figure 16-31). (a) What is the wavelength of the sound
waves from the sources? (b) What is the frequency of the sources?
(c) At what other angles is constructive interference heard? (d) What
is the smallest angle for which the sound waves cancel?

40 ••• The two sound sources from Problem 39 are now driven
out-of-phase, but at the same frequency as in Problem 39. At

what angles are constructive and destructive interference heard?

41 •• ENGINEERING APPLICATION An astronomical radio tele-
scope consists of two antennas separated by a distance of 200 m. Both
antennas are tuned to the frequency of 20 MHz. The signals from each
antenna are fed into a common amplifier, but one signal first passes
through a phase selector that delays its phase by a chosen amount so
that the telescope can “look” in different directions (Figure 16-32).
When the phase delay is zero, plane radio waves that are incident ver-
tically on the antennas produce signals that add constructively at the
amplifier. What should the phase delay be so that signals coming
from an angle with the vertical (in the plane formed by the
vertical and the line joining the antennas) will add constructively at
the amplifier? Hint: Radio waves travel at .3.00 � 108 m>su � 10°

90°
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Problem 41

BEATS

42 • When two tuning forks are struck simultaneously,
4.0 beats per second are heard. The frequency of one fork is 500 Hz.
(a) What are the possible values for the frequency of the other fork?
(b) A piece of wax is placed on the 500-Hz fork to lower its fre-
quency slightly. Explain how the measurement of the new beat fre-
quency can be used to determine which of your answers to Part (a)
is the correct frequency of the second fork.
43 ••• ENGINEERING APPLICATION A stationary police radar gun
emits microwaves at 5.00 GHz. When the gun is aimed at a car, it su-
perposes the transmitted and reflected waves. Because the frequencies
of these two waves differ, beats are generated, with the speed of the
car proportional to the beat frequency. The speed of the car, 
appears on the display of the radar gun. Assuming the car is moving
along the line-of-sight of the police officer, and using the Doppler-shift
equations, (a) show that, for a fixed radar-gun frequency, the beat fre-
quency is proportional to the speed of the car. Hint: Car speeds are tiny
compared to the speed of light. (b) What is the beat frequency in this case?
(c) What is the calibration factor for this radar gun? That is, what is the
beat frequency generated per of speed?

STANDING WAVES

44 • A string fixed at both ends is 3.00 m long. It resonates in
its second harmonic at a frequency of 60.0 Hz. What is the speed of
transverse waves on the string?
45 • A string 3.00 m long and fixed at both ends is vibrating
in its third harmonic. The maximum displacement of any point on
the string is 4.00 mm. The speed of transverse waves on this string
is (a) What are the wavelength and frequency of this
standing wave? (b) Write the wave function for this standing wave.
46 • Calculate the fundamental frequency for an organ pipe,
with an effective length equal to 10 m, that is (a) open at both ends,
and (b) stopped at one end.

47 • A 5.00-g, 1.40-m-long flexible wire has a tension of 968
N and is fixed at both ends. (a) Find the speed of transverse
waves on the wire. (b) Find the wavelength and frequency of the
fundamental. (c) Find the frequencies of the second and third
harmonics.
48 • A taut, 4.00-m-long rope has one end fixed and the
other end free. (The free end is attached to a long, light string.)
The speed of waves on the rope is (a) Find the fre-
quency of the fundamental. (b) Find the second harmonic.
(c) Find the third harmonic.

20.0 m>s.

SSM

50.0 m>s.

SSMmi>h

83 mi>h,
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49 • A steel piano wire without windings has a fundamental
frequency of 200 Hz. When it is wound with copper wire, its linear
mass density is doubled. What is its new fundamental frequency,
assuming that the tension is unchanged?

50 • What is the greatest length that an organ pipe can have in
order that its fundamental note be in the audible range (20 to 20,000
Hz) if (a) the pipe is stopped at one end, and (b) it is open at both ends?

51 •• The wave function for a certain standing wave
on a string that is fixed at both ends is given by

where and are in cen-
timeters and is in seconds. A standing wave can be considered
as the superposition of two traveling waves. (a) What are the
wavelength and frequency of the two traveling waves that make
up the specified standing wave? (b) What is the speed of these
waves on this string? (c) If the string is vibrating in its fourth
harmonic, how long is it?

52 •• The wave function for a certain standing wave on
a string that is fixed at both ends is given by 

A standing wave can be considered
as the superposition of two traveling waves. (a) What are the speed
and amplitude of the two traveling waves that result in the specified
standing wave? (b) What is the distance between successive nodes
on the string? (c) What is the shortest possible length of the string?

53 •• A 1.20-m-long pipe is stopped at one end. Near the open
end, there is a loudspeaker that is driven by an audio oscillator
whose frequency can be varied from 10.0 to 5000 Hz. (Neglect any
end corrections.) (a) What is the lowest frequency of the oscillator
that will produce resonance within the tube? (b) What is the high-
est frequency of the oscillator that will produce resonance within
the tube? (c) How many different frequencies of the oscillator will
produce resonance within the tube?

54 •• A 460-Hz tuning
fork causes resonance in the
tube depicted in Figure 16-33
when the length L of the air column
above the water is 18.3 and 55.8 cm.
(a) Find the speed of sound in air.
(b) What is the end correction to ad-
just for the fact that the antinode does not
occur exactly at the open end of the tube?

55 •• An organ pipe has a funda-
mental frequency of 440.0 Hz at 
What will the fundamental frequency of
the pipe be if the temperature increases to

(assuming the length of the pipe
remains constant)? Would it be better to
construct organ pipes from a material that
expands substantially as the temperature
increases, or should the pipes be made of
material that maintains the same length
at all normal temperatures?

56 •• According to theory, the end correction for a pipe is ap-
proximately where is the pipe diameter. Find the
actual length of a pipe open at both ends that will produce a mid-
dle C (256 Hz) as its fundamental mode for pipes of diameter

and 30.0 cm.

57 •• Assume a 40.0-cm-long violin string has a mass of 1.20 g
and is vibrating in its fundamental mode* at a frequency of 500 Hz.
(a) What is the wavelength of the standing wave on the string?
(b) What is the tension in the string? (c) Where should you place
your finger to increase the fundamental frequency to 650 Hz?

D � 1.00 cm, 10.0 cm,

D¢L � 0.3186D,

SSM

32.00°C

16.00°C.

sin(2.50 m�1 x) cos(500 s�1 t).
y(x, t) � (0.0500 m)

y(x, t)

SSM

t
xyy(x, t) � 4.20 sin(0.200 x) cos(300t),

y(x, t)

* A bowed string does not vibrate in a single mode. Thus, the conditions described in
this problem statement are not completely accurate.

58 •• The G string on a violin is 30.0 cm long. When played
without fingering, it vibrates in its fundamental mode* at a fre-
quency of 196 Hz. The next higher notes on its C-major scale are A
(220 Hz), B (247 Hz), C (262 Hz), and D (294 Hz). How far from the
end of the string must a finger be placed to play each of these notes?

59 •• A string that has a linear mass density of 
is under a tension of 360 N and is fixed at both ends. One of its reso-
nance frequencies is 375 Hz. The next higher resonance frequency is 450
Hz. (a) What is the fundamental frequency of this string? (b) Which har-
monics have the given frequencies? (c) What is the length of the string?

60 •• A string fixed at both ends has successive resonances
with wavelengths of 0.54 m for the th harmonic and 0.48 m for the

harmonic. (a) Which harmonics are these? (b) What is the
length of the string?

61 •• The strings of a violin are tuned to the tones G, D, A,
and E, which are separated by a fifth from one another. That is,

and
The distance between the bridge at the scroll and the bridge over
the body, the two fixed points on each string, is 30.0 cm. The ten-
sion on the E string is 90.0 N. (a) What is the linear mass density
of the E string? (b) To prevent distortion of the instrument over
time, it is important that the tension on all strings be the same.
Find the linear mass densities of the other strings.

62 •• On a cello, like most other stringed instruments, the
positioning of the fingers by the player determines the funda-
mental frequencies of the strings. Suppose that one of the strings
on a cello is tuned to play a middle C (262 Hz) when played at
its full length. By what fraction must that string be shortened in
order to play a note that is the interval of a third higher (namely,
an E (330 Hz)? How about a fifth higher or a G (392 Hz)?

63 •• To tune your violin, you first tune the A string to the cor-
rect pitch of 440 Hz, and then you bow both it and an adjoining string
simultaneously, all the while listening for beats. While bowing the A
and E strings, you hear a beat frequency of 3.00 Hz and note that the
beat frequency increases as the tension on the E string is increased.
(The E string is to be tuned to 660 Hz.) (a) Why are beats produced
by these two strings when bowed simultaneously? (b) What is the fre-
quency of the E string vibration when the beat frequency is 3.00 Hz?

64 •• A 2.00-m-long string fixed at one end and free at the
other end (the free end is fastened to the end of a long, light thread)
is vibrating in its third harmonic with a maximum amplitude of
3.00 cm and a frequency 100 Hz. (a) Write the wave function for this
vibration. (b) Write a function for the kinetic energy of a segment of
the string of length at a point a distance from the fixed end, as
a function of time At what times is this kinetic energy maximum?
What is the shape of the string at these times? (c) Find the maxi-
mum kinetic energy of the string by integrating your expression for
Part (b) over the total length of the string.

65 •• CONTEXT-RICH A commonly used physics experiment
that examines resonances of transverse waves on a string is shown
in Figure 16-34. A weight is attached to the end of a string draped
over a pulley; the other end of the string is attached to a mechani-
cal oscillator that moves up and down at a frequency that remains
fixed throughout the demonstration. The length between the os-
cillator and the pulley is fixed, and the tension is equal to the grav-
itational force on the weight. For certain values of the tension, the
string resonates. Assume the string does not stretch or shrink as the
tension is varied. You are in charge of setting up this apparatus for
a lecture demonstration. (a) Explain why only certain discrete val-
ues of the tension result in standing waves on the string. (b) Do you
need to increase or decrease the tension to produce a standing wave
with an additional antinode? Explain. (c) Prove your reasoning in
Part (b) by showing that the values for the tension for the nthFTn

L
f

t .
xdx,

SSM

f(E) � 1.5f(A).f(D) � 1.5f(G), f(A) � 1.5f(D) � 440 Hz,

(n � 1)th
n

4.00 � 10�3 kg>m
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69 •• CONTEXT-RICH, ENGINEERING APPLICATION Working for
a small gold mining company, you stumble across an abandoned
mine shaft that, because of decaying wood shoring, looks too dan-
gerous to explore in person. To measure its depth, you employ an
audio oscillator of variable frequency. You determine that succes-
sive resonances are produced at frequencies of 63.58 and 89.25 Hz.
Estimate the depth of the shaft.
70 •• A 5.00-m-long string that is fixed at one end and attached
to a long string of negligible mass at the other end is vibrating in its
fifth harmonic, which has a frequency of 400 Hz. The amplitude of
the motion at each antinode is 3.00 cm. (a) What is the wavelength
of this wave? (b) What is the wave number? (c) What is the angular
frequency? (d) Write the wave function for this standing wave.
71 •• The wave function for a standing wave on a string is de-
scribed by where and are in
meters and is in seconds. Determine the maximum displacement
and maximum speed of a point on the string at (a)
(b) (c) and (d)
72 •• A 2.5-m-long string that has a mass of 0.10 kg is fixed at
both ends and is under a tension of 30 N. When the harmonic is
excited, there is a node 0.50 m from one end. (a) What is (b) What
are the frequencies of the first three harmonics of this string?
73 •• An organ pipe is such that under normal conditions its
fundamental frequency is 220 Hz. It is placed in an atmosphere of
sulfur hexafluoride at the same temperature and pressure. The
molar mass of air is and the molar mass of 
is What is the fundamental frequency of the
organ pipe when it is in an atmosphere of 
74 •• During a lecture demonstration of standing waves, one
end of a string is attached to a device that vibrates at 60 Hz and pro-
duces transverse waves of that frequency on the string. The other
end of the string passes over a pulley, and the tension is varied by
attaching weights to that end. The string has approximate nodes
next to both the vibrating device and the pulley. (a) If the string has
a linear mass density of and is 2.5 m long from the vibrating
device to the pulley, what must be the tension for the string to vi-
brate in its fundamental mode? (b) Find the tension necessary for the
string to vibrate in its second, third, and fourth harmonics.

75 •• Three successive resonance frequencies in an organ
pipe are 1310, 1834, and 2358 Hz. (a) Is the pipe closed at one end
or open at both ends? (b) What is the fundamental frequency?
(c) What is the effective length of the pipe?
76 •• During an experiment studying the speed of sound in
air using an audio oscillator and a tube that is open at one end
and stopped at the other end, a particular resonant frequency is
found to have nodes roughly 6.94 cm apart. The oscillator’s fre-
quency is increased, and the next resonant frequency found has
nodes 5.40 cm apart. (a) What are the two resonant frequencies?
(b) What is the fundamental frequency? (c) Which harmonics are
these two modes? The speed of sound is 

77 •• A standing wave on a rope is represented by the wave
function where and are in
meters and is in seconds. (a) Write wave functions for two travel-
ing waves that, when superimposed, produce this standing-wave
pattern. (b) What is the distance between the nodes of the standing
wave? (c) What is the maximum speed of the rope at 
(d) What is the maximum acceleration of the rope at 

78 •• SPREADSHEET Two traveling-wave pulses on a string are
represented by the wave functions

where is in meters and is in seconds. (a) Using a spreadsheet
program or graphing calculator, make a separate graph of each
wave function as a function of at and again at andt � 1.0 s,t � 0x

tx

y1(x, t) �
0.020

2.0 � (x � 2.0t)2  and  y2(x, t) �
�0.020

2.0 � (x � 2.0t)2

x � 1.0 m?
x � 1.0 m?

t
yxy(x, t) � (0.020) sin(1

2px) cos(40pt),

343 m>s.

SSM

8.0 g>m

SF6?
146 � 10�3 kg>mol.

SF629.0 � 10�3 kg>mol
(SF6)

n?
nth

SSMx � 0.50 m.x � 0.30 m,x � 0.25 m,
x � 0.10 m,

t
xyy(x, t) � (0.020) sin(4px) cos(60pt),
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String
L

Weight
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Δ

F I G U R E  1 6 - 3 5 Problem 67

standing-wave mode are given by and thus the 
is inversely proportional to (d) For your particular setup to fit
onto the lecture table, you chose and

Calculate how much tension is needed to produce
each of the first three modes (standing waves) of the string.

HARMONIC ANALYSIS

66 • A guitar string is given a light pluck at its midpoint. A mi-
crophone on your computer detects the sound and a program on the
computer determines that most of the subsequent sound consists of
a 100-Hz tone accompanied by a bit of sound with a 300-Hz tone.
What are the two dominant standing-wave modes on the string?

WAVE PACKETS

67 •• A tuning fork with natural frequency begins vibrating
at time and is stopped after a time interval, The waveform
of the sound at some later time is shown (Figure 16-35) as a function
of Let be an estimate of the number of cycles in this waveform.
(a) If is the length in space of this wave packet, what is the range
in wave numbers of the packet? (b) Estimate the average value of
the wavelength in terms of and (c) Estimate the average
wave number in terms of and (d) If is the time it takes the
wave packet to pass a point in space, what is the range in angular
frequencies of the packet? (e) Express in terms of and 
( f) The number is uncertain by about cycle. Use Figure 16-35
to explain why. ( g) Show that the uncertainty in the wave number
due to the uncertainty in is SSM2p>¢x.N

�1N
¢t.Nf0¢v

¢t¢x.Nk
¢x.Nl

¢k
¢x
Nx.

¢t.t � 0
f0

SSM

m � 0.750 g>m.
L � 1.00 m, f � 80.0 Hz,

n2.
FTnFTn � 4L2f2m>n2,

*

*

GENERAL PROBLEMS

68 •• A 35-m-long string has a linear mass density of
and is under a tension of 18 N. Find the frequencies of

the lowest four harmonics (a) if the string is fixed at both ends, and
(b) if the string is fixed at one end and free at the other. (That is, if
the free end is attached to a long string of negligible mass.)

0.0085 kg>m
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describe the behavior of each as time increases. For each graph
make your plot for (b) Graph the resultant
wave function at at and at 

79 ••• Three waves that have the same frequency, wavelength,
and amplitude are traveling along the axis. The three waves are
described by the following wave functions: 

and
where is in meters and is in

seconds. The resultant wave function is given by 
What are the values of and 

80 ••• A harmonic pressure wave produced by a distant source
is traveling through your vicinity, and the wavefronts that travel
through your vicinity are vertical planes. Let the direction be to
the east and the direction be toward the north. The wave 
function for the wave is Show
that the direction in which the wave is traveling makes an 
angle with the direction and that the 
wave speed is 

81 •• The speed of sound in air is proportional to the square
root of the absolute temperature (Equation 15-5). (a) Show that if
the air temperature changes by a small amount, the fractional
change in the fundamental frequency of an organ pipe is approxi-
mately equal to half the fractional change in the absolute tempera-
ture. That is, show that where is the frequency at
absolute temperature and is the change in frequency when the
temperature changes by (Ignore any change in the length of the
pipe due to thermal expansion.) (b) Suppose that an organ pipe that
is stopped at one end has a fundamental frequency of 200.0 Hz
when the temperature is Use the approximate result from
Part (a) to determine the pipe’s fundamental frequency when the
temperature is (c) Compare your Part (b) result to what
you would get using exact calculations. (Ignore any change in the
length of the pipe due to thermal expansion.)

82 •• The pipe in Figure 16-36 is kept filled with natural gas
. The pipe is punctured by a line of small holes 

1.00 cm apart down its entire 2.20-m length. A speaker forms the clo-
sure on one end of the pipe, and a solid piece of metal closes the other
end. What frequency is being played in this picture? The speed of
sound in low-pressure methane at room temperature is about 460 m>s.

[methane (CH4)]

SSM

30.00°C.

20.00°C.

¢T.
¢fT

f¢f>f � 1
2 ¢T>T,

T

v � v1k2
x � k2

y .
�xu � tan�1(ky >kx) p(x, y, t) � A cos(kxx � kyy � vt).

�y
�x

d?AA sin (kx � vt � d).
�y3(x, t)

tx(5.00 cm) sin(kx � vt � 1
3p),

y3(x, t) �sin(kx � vt � 1
3p), y2(x, t) � (5.00 cm) sin(kx � vt),

y1(x, t) � (5.00 cm)
x

t � 1.0 s.t � 0.0 s,t � �1.0 s,
�5.0 m 	 x 	 �5.0 m.

plitude is 2.00 cm. (a) Find the maximum kinetic energy of the wire.
(b) What is the kinetic energy of the wire at the instant the trans-
verse displacement is given by where is in me-
ters if is in meters, for (c) For what value of

is the average value of the kinetic energy per unit length the great-
est? (d) For what value of does the elastic potential energy per unit
length have its maximum value?

85 ••• SPREADSHEET In principle, a wave with almost any arbi-
trary shape can be expressed as a sum of harmonic waves of differ-
ent frequencies. (a) Consider the function defined by

Write a spreadsheet program to calculate this series using a finite
number of terms, and make three graphs of the function in the range

to To create the first graph, for each value of that
you plot, approximate the sum from to with the first
term of the sum. To create the second and third graphs, use only the
first five terms and the first ten terms, respectively. This function is
sometimes called the square wave. (b) What is the relation between
this function and Leibnitz’s series for 

86 ••• SPREADSHEET Write a spreadsheet program to calculate
and graph the function

for Use only the first 25 terms in the sum for each value
of that you plot.
87 ••• SPREADSHEET If you clap your hands at the end of a long,
cylindrical tube, the echo you hear back will not sound like the hand-
clap; instead, you will hear what sounds like a whistle, initially at a
very high frequency, but descending rapidly down to almost nothing.
This “culvert whistler” is easily explained if you think of the sound
from the clap as a single compression radiating outward from the
hands. The echoes of the handclap arriving at your ear have traveled
along different paths through the tube, as shown in Figure 16-37. The
first echo to arrive travels straight down and straight back along the
tube, while the second echo reflects once off of the center of the tube
going out, and again going back, the third echo reflects twice at points

and of the distance, and so on. The tone of the sound you hear
reflects the frequency at which these echoes reach your ears. (a) Show
that the time delay between the echo and the echo is

where is the speed of sound, is the length of the tube, and is
the tube’s radius. (b) Using a spreadsheet program or graphing
calculator, graph versus for (These
values are the approximate length and radius of the long tube in the
San Francisco Exploratorium.) Go to at least (c) From your
graph, explain why the frequency decreases over time. What are the
highest and lowest frequencies you will hear in the whistler?

n � 100.

L � 90.0 m, r � 1.00 m.n¢tn

rLv

¢tn �
2
v
A4(2n)2r2 � L2 �4[2(n � 1)]2r2 � L2 B(n � 1)thnth

3>41>4

x
0 � x � 4p.

�
4
p an

(�1)n sin(2n � 1)x
(2n � 1)2

y(x) �
4
p
asinx �

sin3x
9

�
sin5x

25
� Á b

SSM
p

4
� 1 �

1
3

�
1
5

�
1
7

� Á

p,

n � n � 0
xx � 4p.x � 0

�
4
p a

q

n�0

(�1)n
cos[(2n � 1)x]

2n � 1

f(x) �
4
p
a cosx

1
�

cos3x
3

�
cos5x

5
� Á b

x
x

0.00 m � x � 2.00 m?x
yy � 0.0200 sin(p2 x),

Hands
clapping

1

2

3

F I G U R E  1 6 - 3 7 Problem 87

F I G U R E  1 6 - 3 6 Problem 82 (University of Michigan Demonstration
Laboratory.)

83 •• CONTEXT-RICH Assume that your clarinet is entirely
filled with helium and that before you start to play you fill your
lungs with helium. You pick up the clarinet and play it as though
you were trying to play a B-flat, which has a frequency of 277 Hz.
The frequency of 277 Hz is the natural resonance frequency of this
clarinet with all finger holes closed and when filled with air. What
frequency do you actually hear?

84 ••• A 2.00-m-long wire that is fixed at both ends is vibrating
in its fundamental mode. The tension in the wire is 40.0 N and the
mass of the wire is 0.100 kg. At the midpoint of the wire, the am-
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WHEN BEN FRANKLIN WENT TO PARIS,
HE SAW THE FIRST KNOWN MANNED
HOT-AIR BALLOON FLIGHT. PEOPLE HAVE
BEEN FLYING HOT-AIR BALLOONS EVER
SINCE. (Corbis.)

Why does the balloon rise when the

air inside it is heated? 

(See Example 17-7.)
?

P A R T  I I I THERMODYNAMICS

17
Temperature and Kinetic
Theory of Gases

17-1 Thermal Equilibrium and Temperature

17-2 Gas Thermometers and the Absolute Temperature Scale

17-3 The Ideal-Gas Law

17-4 The Kinetic Theory of Gases

E
ven very small children have a basic understanding of hot and cold, but what
is temperature? What is it a measurement of? In Chapter 17, we begin our study
of temperature.

A pilot, a hot air balloonist, and a scuba diver must all have a good working
understanding of air and water temperatures as they plan their flights and
dives. Pilots and balloonists need to be aware of how changes in air temperature

affect air density as well as wind patterns. Scuba divers know that changes in body
temperature affect how much air they will use over the course of a dive. They also un-
derstand the importance of equalizing the pressure on their bodies and the gases
within their bodies. For the diver, the pilot, and the balloonist, the importance of how
gases behave in relation to temperature is vital. Thus, we begin our study of thermo-
dynamics with a discussion of temperature and an examination of the ideal-gas law.

In this chapter, we show that a consistent temperature scale can be defined in
terms of the properties of gases that have low densities, and that temperature
is a measure of the average internal molecular kinetic energy of an object.
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* Mercury is highly toxic. Today, alcohol is commonly used in thermometers.

A B

A B

C

(a)

(b)

F I G U R E  1 7 - 1 The zeroth law of
thermodynamics. (a) Systems A and B are in
thermal contact with system C, but not with
each other. When A and B are each in thermal
equilibrium with C, they are in thermal
equilibrium with each other, which can be
checked by placing them in contact with each
other as in Part (b).

† Water and ice in equilibrium provide a constant-temperature bath. When ice is placed in warm water, the water cools as
some of the ice melts. Thermal equilibrium is eventually reached and no more ice melts. If the water/ice system is heated
slightly, some more of the ice melts, but the temperature of the system does not change as long as some ice remains.

17-1 THERMAL EQUILIBRIUM 
AND TEMPERATURE

Our sense of touch can usually tell us if an object is hot or cold. We know that to
make a cold object warmer, we can place it in contact with a hot object, and to make
a hot object cooler, we can place it in contact with a cold object.

When an object is heated or cooled, some of its physical properties change. If a
solid or liquid is heated, its volume usually increases. If a gas is heated and its pres-
sure is kept constant, its volume increases. However, if a gas is heated and its volume
is kept constant, its pressure increases. If an electrical conductor is heated, its electri-
cal resistance changes. (This property is discussed in Chapter 25.) A physical prop-
erty that changes with temperature is called a thermometric property. A change in a
thermometric property indicates a change in the temperature of the object.

Suppose that we place a warm copper bar in close contact with a cold iron bar so
that the copper bar cools and the iron bar warms. We say that the two bars are in
thermal contact. The copper bar contracts slightly as it cools, and the iron bar ex-
pands slightly as it warms. This process eventually stops and the lengths of the bars
remain constant. The two bars are then in thermal equilibrium with each other.

Suppose instead that we place the warm copper bar in a cool running stream of
water. The bar cools until it stops contracting, at the point at which the bar and the
water are in thermal equilibrium. Next, we place a cold iron bar in the stream, near
but not touching the copper bar. The iron bar will warm until the iron bar and the
water are also in thermal equilibrium. If we remove the bars and place them in
thermal contact with each other, we find that their lengths do not change. They are
in thermal equilibrium with each other. Although it is common sense, there is no
logical way to deduce this fact, which is called the zeroth law of thermodynamics
(Figure 17-1):

If two objects are in thermal equilibrium with a third object, then all three
of the objects are in thermal equilibrium with each other.

ZEROTH LAW OF THERMODYNAMICS

Two objects are defined to have the same temperature if they are in thermal equi-
librium with each other. The zeroth law, as we will see, enables us to define a tem-
perature scale.

THE CENTIGRADE AND 
FAHRENHEIT TEMPERATURE SCALES

Any thermometric property can be used to establish a temperature scale. The com-
mon mercury thermometer consists of a glass bulb and tube containing a fixed
amount of mercury.* When this thermometer is put in contact with a warmer ob-
ject, the mercury expands, increasing the length of the mercury column (the glass
expands too, but by a negligible amount). We can create a scale along the glass tube
by using the following procedure. First, the thermometer is placed in ice and water
in equilibrium† at a pressure of 1 atm. When the thermometer is in thermal equi-
librium with the ice water, the top of the mercury column is marked on the glass
tube. This mark represents the ice-point temperature (also called the normal freez-
ing point of water). Next, the thermometer is placed in boiling water at a pressure
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* When the German physicist Daniel Fahrenheit devised his temperature scale, he wanted all measurable temperatures
to be positive. He originally chose for the coldest temperature he could obtain with a mixture of ice and salt water
and (a convenient number with many factors for subdivision) for the temperature of the human body. He then
modified his scale slightly to make the ice-point and steam-point temperatures whole numbers. This modification re-
sulted in the average temperature of the human body being between and 99°F.98°

96°F
0°F

Example 17-1 Converting Fahrenheit and Celsius Temperatures

Vivian measures her ill six-month old son’s temperature with a Celsius thermometer and finds
it to be She then telephone’s the doctor for advice. When she gives the doctor the
baby’s temperature, the doctor asks, “What is that in Fahrenheit?” She does the conversion
using Equation 17-2 and says “ ” Did she convert from Celsius to Fahrenheit correctly?

PICTURE Solve for by using (Equation 17-2), where 

SOLVE

tC � 40.0°.tC � 5
9 (tF � 32°)tF

102°F.

40.0°C.

tF � 9
5 tC � 32°

2. Substitute tC � 40.0°C:

Vivian’s estimate is off by 2°F.

104°FtF � 9
5 (40.0°) � 32° �

1. Solve (Equation 17-2) for in terms of tC:tFtC � 5
9 (tF � 32°)

of 1 atm. When the thermometer is in thermal equilibrium with the boiling water,
the top of the mercury column is marked. This mark represents the steam-point
temperature (also called the normal boiling point of water).

The centigrade temperature scale defines the ice-point temperature as zero
degrees centigrade and the steam-point temperature as The space
between the 0-degree and 100-degree marks is divided into 100 equal intervals
(degrees). Degree markings are also extended below and above these points. If 
is the length of the mercury column, the centigrade temperature is given by

17-1

where is the length of the mercury column when the thermometer is in an ice
bath and is its length when the thermometer is in a steam bath. The normal
temperature of the human body measured on the centigrade scale is about 

A shortcoming of the centigrade scale is that it depends on the thermometric
property of some material, such as mercury. An improvement is the Celsius scale,
discussed in Section 17-2, which is in close agreement with the centigrade scale. (So
close is the agreement between these two scales that many refer to the Celsius scale
as the centigrade scale.)

Historically, the Fahrenheit temperature scale (which is widely used in the
United States) defines the ice-point temperature as and the steam-point tem-
perature as * To convert temperatures between Fahrenheit and centigrade
scales, we note there are 100 centigrade degrees and 180 Fahrenheit degrees be-
tween the ice and steam points. A temperature change of one centigrade degree
therefore equals a change of Fahrenheit degrees. To convert a tempera-
ture from one scale to the other, we must also take into account the fact that the
zero temperatures of the two scales are not the same. The general relation between
a Fahrenheit temperature and centigrade temperature is

17-2

FAHRENHEIT–CENTIGRADE CONVERSION

Today, we define the Fahrenheit scale using Equation 17-2, with the Celsius
temperature.

tC

tC � 5
9 (tF � 32°)        (or tF � 9

5 tC � 32°)

tCtF

1.8 � 9>5
212°F.

32°F

37°C.
L100

L0

tC �
Lt � L0

L100 � L0

� 100°

tC

Lt

100°C.(0°C)

CHECK The temperature of is 0.4 of the way between and and the temper-
ature of is 0.4 of the way between and Thus, we expect the Fahrenheit tem-
perature to be which verifies our step-2 result.

PRACTICE PROBLEM 17-1 (a) Find the Celsius temperature equivalent to (b) Find the
Fahrenheit temperature equivalent to �40°C.

68°F.

72°F � 32°F � 104°F,
180°F.0°F72°F

100°C,0°C40°C
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Glass Bulb
Mercury switch

Bimetalic
strip coil

Slide
lever

(a) (b)

F I G U R E  1 7 - 3 (a) A thermometer using a bimetallic strip in the form of a coil. (The red pointer is attached to one end of
the coil.) When the temperature of the coil increases, the needle rotates clockwise because the outer metal expands more than
the inner metal. (b) A home thermostat controls the central air conditioner. When the air gets warmer, the coil expands, the
glass bulb mounted on it tilts, and mercury in the tube slides to close an electrical switch, turning on the air conditioning. A
slide lever (at the lower right), used to rotate the coil mount, is used to set the desired temperature. The circuit will be broken
when the cooler air causes the bimetallic coil to contract. ((a) Courtesy of Taylor Precision Products. (b) Richard Menga/
Fundamental Photographs.)

F I G U R E  1 7 - 2 A bimetallic
strip. When heated or cooled, the
two metals expand or contract by
different amounts, causing the
strip to bend.

17-2 GAS THERMOMETERS AND 
THE ABSOLUTE TEMPERATURE SCALE

When different types of centigrade thermometers are calibrated in ice water and
steam, they agree (by definition) at and but they give slightly different
readings at points in between. Discrepancies increase markedly above the steam
point and below the ice point. However, in one group of thermometers, gas ther-
mometers, measured temperatures agree closely with each other, even far from the

100°C,0°C

Other thermometric properties can be used to set
up thermometers and construct temperature scales.
Figure 17-2 shows a bimetallic strip consisting of two
different metals bonded together. When the strip is
heated or cooled, it bends to accommodate the differ-
ence in the thermal expansion of the two metals.
Figure 17-3 shows a thermometer consisting of a
bimetallic coil with a pointer attached to indicate the
temperature. When the thermometer is heated, the
coil bends and the pointer moves. Like mercury ther-
mometers, it is calibrated by dividing the interval be-
tween the ice point and the steam point into 100 centi-
grade degrees (or 180 Fahrenheit degrees).
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h

0

B3B2B1

Gas Mercury

Flexible
tube

F I G U R E  1 7 - 4 A constant-volume gas
thermometer. The volume is kept constant by
raising or lowering tube so that the
mercury in tube remains at the zero mark.
The temperature is chosen to be proportional
to the pressure of the gas in tube which is
indicated by the height of the mercury
column in tube B3 .

h
B1,

B2

B3

–273.15 °C

P

t

F I G U R E  1 7 - 6 Plot of pressure versus
temperature for a gas, as measured by a
constant-volume gas thermometer. When
extrapolated to zero pressure, the plot
intersects the temperature axis at the value
�273.15°C.

calibration points. In a constant-volume gas thermometer, the gas volume is kept
constant, and change in gas pressure is used to indicate a change in temperature
(Figure 17-4). An ice-point pressure and steam-point pressure are deter-
mined by placing the thermometer in ice–water and water–steam baths, and the in-
terval between them is divided into 100 equal degrees (for the centigrade scale). If
the pressure is in a bath whose temperature is to be determined, that tempera-
ture in degrees centigrade is defined to be

17-3

CONSTANT-VOLUME CENTIGRADE GAS THERMOMETER

Suppose we measure a specific temperature, say the boiling point of sulfur at
1-atm pressure, using four constant-volume gas thermometers, each containing
one of four gases: air, hydrogen, nitrogen, or oxygen. The thermometers are
calibrated, meaning values for and are determined for each. Each ther-
mometer is then immersed in boiling sulfur, and when it is in thermal equilibrium
with the sulfur, the pressure in the thermometer is measured. Next, the tempera-
ture is calculated using Equation 17-3. Will this process give the same result for
each of the four thermometers? Surprisingly perhaps, the answer is yes. All four
thermometers measure the same temperature as long as the density of the gas in
each is sufficiently low.

One measure of the density of the gas in the thermometer is its pressure at the
steam point, If we vary the amount of gas in a constant-volume gas ther-
mometer, by either adding or removing gas, we change both and As a re-
sult, each time the amount of gas is varied, the thermometer must be recalibrated.
Figure 17-5 shows the results of measurements of the boiling point of sulfur using
four constant-volume gas thermometers, each filled with air, hydrogen, nitrogen,
or oxygen. For each thermometer the measured temperature is plotted as a func-
tion of the steam-point pressure of the thermometer. As the amount of a gas is
reduced, its density and the steam-point pressure both decrease.
We see that when low densities of gas are used (small ), the ther-
mometers are in close agreement. In the limit as gas density ap-
proaches zero, all gas thermometers give the same value for the
temperature of boiling sulfur. This low-density temperature mea-
surement is independent of the properties of any particular gas. Of
course, there is nothing special about the boiling point of sulfur.
Constant-volume gas thermometers that have low densities of gas
are in agreement at any temperature. Thus, constant-volume gas
thermometers that contain low densities of gas can be used to de-
fine temperature.

Now consider a series of temperature measurements using a
constant-volume gas thermometer that has a very small but fixed
amount of gas. According to Equation 17-3, the pressure in the
thermometer varies linearly with the measured temperature 

Figure 17-6 shows a plot of gas pressure versus measuredtC.
Pt

P100

P100

P0 .P100

P100 .

P0P100

tC �
Pt � P0

P100 � P0

� 100°C

Pt

P100P0

t, °C

446.0

445.5

445.0

444.0

444.5

0.5 1.0 1.5 P100, atm

H

N
Air

O2

2

2

F I G U R E  1 7 - 5 Temperature of the boiling point of sulfur
measured with constant-volume gas thermometers filled with
various gases. Increasing or decreasing the amount of gas in the
thermometer varies the pressure at the steam point of
water. As the amount of gas is reduced, the temperature of the
boiling point of sulfur measured by all the thermometers
approaches the value Note that the temperature axis
shows a range of temperatures from to 446°C.444°C

444.60°C.

P100



The ideal-gas temperature scale,
defined by Equation 17-4, has the

advantage that any measured
temperature does not depend on the
properties of the particular gas that is
used, but depends only on the general
properties of gases.

568 | C H A P T E R  1 7 Temperature and Kinetic Theory of Gases

!

Note that the SI temperature unit,
the kelvin, is not a degree and is

not accompanied by a degree symbol.
!

10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104
105
106
107
108
109
1010

Lowest temperature
achieved

Bose-Einstein
condensate

He3 goes superfluid

Liquid helium
Liquid hydrogen
Liquid nitrogen
Water freezes
Copper melts
Surface of the Sun

Solar corona
Interior of the Sun
Hydrogen bomb

Supernova

Temperature (K)

Table 17-1 The Temperatures of 

Various Places and 

Phenomena

* For most purposes, we can round off the temperature of absolute zero to �273°C.

temperature in a constant-volume gas
thermometer. When we extrapolate this
straight line to zero gas pressure, the
temperature approaches 
This limit is the same no matter what
kind of gas is used.

A reference state that is much more
precisely reproducible than either the ice
or steam points is the triple point of
water—the unique temperature and
pressure at which water, water vapor,
and ice coexist in equilibrium (see Figure
17-7). This equilibrium state occurs at
4.58 mmHg and The ideal-gas
temperature scale is defined so that the
temperature of the triple-point state is
273.16 kelvins (K). The temperature of any other state is defined to be propor-
tional to the pressure in a constant-volume gas thermometer:

17-4

CONSTANT-VOLUME IDEAL-GAS–TEMPERATURE THERMOMETER

where is the observed pressure of the gas in the thermometer, is the pressure
when the thermometer is immersed in a water–ice–vapor bath at its triple point,
and (the triple-point temperature). The value of depends on the
amount of gas in the thermometer.

The Celsius degree is a degree unit that is the same size as the kelvin, but the
zero point of the Celsius scale differs from the zero point of the ideal-gas temper-
ature scale. By definition, zero on the Celsius scale corresponds to an ideal-gas
temperature of exactly 273.15 K.

The lowest temperature that can be measured with a constant-volume gas ther-
mometer is about 20 K, and requires helium for the gas. Below this temperature
helium liquefies; all other gases liquefy at higher temperatures (Table 17-1). In
Chapter 19, we see that the second law of thermodynamics can be used to define
the absolute temperature scale independent of the properties of any substance,
and with no limitations on the range of temperatures that can be measured.
Temperatures as low as kelvin have been measured. The absolute scale so
defined is identical to that defined by Equation 17-4 for the range of temperatures
for which gas thermometers can be used. The symbol is used when referring to
absolute temperature.

Because the Celsius degree and the kelvin are the same size, temperature differ-
ences are the same on both the Celsius scale and the absolute temperature scale
(also called the Kelvin scale). That is, a temperature change of 1 K is identical to a
temperature change of The two scales differ only in the choice of zero temper-
ature. To convert from degrees Celsius to kelvins, we merely add 273.15:*

17-5

CELSIUS–ABSOLUTE CONVERSION

Although the Celsius and Fahrenheit scales are convenient for everyday use, the
absolute scale is much more convenient for scientific purposes, partly because
many formulas are more simply expressed using it, and partly because the absolute
temperature can be given a fundamental interpretation.

T � tC � 273.15 K

1°C.

T

10�10

P3T3 � 273.16 K

P3P

T �
P
P3

T3

T

0.01°C.

�273.15°C.

F I G U R E  1 7 - 7 Water at its triple point.
The spherical flask contains liquid water, ice,
and water vapor in thermal equilibrium.
(Richard Menga/Fundamental Photographs.)
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(U.S. Dept. of Energy.)

2. To find the Fahrenheit temperature we
use (Equation 17-2):tC � 5

9 (tF � 32°)

SOLVE

1. Convert from kelvins to degrees Celsius:

so 92 � tC � 273.15 ⇒ tC � �181.15°C

T � tC � 273.15

CHECK A temperature of 92 K is closer to 0 K than it is to 273 K, so we should expect the
Fahrenheit temperature to be considerably less than Our result meets this expectation.32°F.

Sunspots appear on the surface of the Sun
when streams of gases slowly erupt from deep
inside the star. The solar “flower” is 10,000
miles in diameter. The temperature variation,
indicated by computer-enhanced color
changes, is not fully understood. The central
portion of the sunspot is cooler than the outer
regions, as indicated by the dark area. The
temperature at the Sun’s core is of the order of

whereas at the surface the temperature
is only about 6000 K. (NASA.)
107 K,

17-3 THE IDEAL-GAS LAW

The properties of gas samples that have low densities led to the definition of the
ideal-gas temperature scale. If we compress such a gas while keeping its tempera-
ture constant, the pressure increases. Similarly, if a gas expands at constant
temperature, its pressure decreases. To a good approximation, the product of the
pressure and volume of a gas sample that has a low density is constant at a
constant temperature. This result was discovered experimentally by Robert Boyle
(1627–1691), and is known as Boyle’s law:

A more general law exists that reproduces Boyle’s law as a special case. According to
Equation 17-4, the absolute temperature of a gas sample that has a low density is pro-
portional to its pressure at constant volume. In addition, the absolute temperature
of a gas sample that has a low density is proportional to its volume at constant
pressure. This result was discovered experimentally by Jacques Charles (1746–1823)
and Joseph Gay-Lussac (1778–1850). We can combine these two results by stating

17-6

where is a constant that has positive value. We can see that this constant is pro-
portional to the number of molecules of the gas sample by considering the follow-
ing. Suppose that we have two containers that have identical volumes, each hold-
ing the same amount of the same kind of gas at the same temperature and pressure.
If we consider the two containers as one system, we have twice the amount of gas
at twice the volume, but at the same temperature and pressure. We have thus dou-
bled the quantity by doubling the amount of gas. We can therefore write

as a constant times the number of molecules in the gas:

Equation 17-6 then becomes

17-7

The constant is called Boltzmann’s constant. It is found experimentally to have
the same value for any kind of gas:

17-8k � 1.381 � 10�23 J>K � 8.617 � 10�5 eV>K
k

PV � NkT

C � kN

NkC
PV>T � C

C

PV � CT

PV � constant  (constant temperature)

so �294°F�181.15° � 5
9 (tF � 32°) ⇒ tF �

tC � 5
9 (tF � 32°)

Example 17-2 Converting from Kelvin to Fahrenheit

The “high-temperature” superconductor becomes superconducting when the
temperature is decreased to 92 K. Find the superconducting threshold temperature in de-
grees Fahrenheit.

PICTURE First, convert to degrees Celsius, then to kelvins.

YBa2Cu3O7

See

Math Tutorial for more

information on 

Direct and Inverse
Proportions
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An amount of gas is often expressed in moles. A mole (mol) of any substance is
the amount of that substance that contains Avogadro’s number, of particles
(such as atoms or molecules). Avogadro’s number is defined as the number of
carbon atoms in exactly 12 g (1 mol) of 

17-9

AVOGADRO’S NUMBER

If we have moles of a substance, then the number of molecules is

17-10

Equation 17-7 is then

17-11

where is called the universal gas constant. Its value, which is the same
for all gases, is

17-12

Figure 17-8 shows plots of versus the pressure for
several gases. For all gases, is nearly constant over a large
range of pressures. Even oxygen, which varies the most in this
graph, changes by only about 1 percent between 0 and 5 atm. An
ideal gas is defined as a gas for which is constant for all
pressures. The pressure, volume, and temperature of an ideal gas
are related by

17-13

IDEAL-GAS LAW

Equation 17-13, which relates the variables and is
known as the ideal-gas law, and is an example of an equation of
state. It can describe the properties of real gases that have low den-
sities (and therefore low pressures). Corrections must be made to
this equation if higher densities of gases are used. In Chapter 20,
we discuss another equation of state, the van der Waals equation, which includes
such corrections. For any density of gas, there is an equation of state relating 

and for a given amount of gas. Thus, the state of a given amount of gas is
completely specified by knowledge of any two of the three state variables
and

PARTIAL PRESSURES

Dry air is about 21 percent oxygen and 79 percent nitrogen. Scuba divers often use
oxygen-enriched air (called nitrox) because it extends the length of time for a dive.
For very deep dives, a mixture of oxygen and helium (called heliox) is used because
this mixture reduces the chance that a diver will suffer from nitrogen narcosis.

If we have a confined mixture of two or more gases, and if the mixture is suffi-
ciently dilute (so each gas can be modeled as an ideal gas), then we can think of
each gas as occupying the entire volume of the container. This is because the vol-
ume of the individual molecules of the gas is negligible compared to the volume
of the empty space surrounding them. The total pressure exerted by the mixture is
the sum of the individual pressures, called partial pressures, exerted by each of the

T.
P, V,

TV,
P,

T,P, V,

PV � nRT

PV>(nT)

PV>(nT)
PPV>(nT)

R � NAk � 8.314 J>(mol # K) � 0.08206 L # atm>(mol # K)

R � NAk

PV � nNAkT � nRT

N � nNA

n

NA � 6.022 � 1023 mol�1

12C:

NA,

PV
nT ,  / mol •

•

ΚJ

 / mol KJ8.314 = R
H

N
CO

O

2

2

2

P, atm403020105 15 25 35

8.60

8.40

8.20

8.00

7.80

8.314

F I G U R E  1 7 - 8 Plot of versus for real gases. In
these plots, varying the amount of gas varies the pressure. The
ratio approaches the same value, for all
gases as we reduce their densities, and thereby their pressures,
of the gases. This value is the universal gas constant R.

8.314 J>(mol # K),PV>nT PPV>nT
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SOLVE

1. The pressure of the mixture is the sum of the partial pressures
of the two gases:

P � PO2
� PN2

2. The initial and final temperatures of the gases are the same. So, by
using Boyle’s law, we find the partial pressures of the gases:

PiVi � PfVf ⇒ Pf �
Vi

Vf

Pi

3. The final volume of the oxygen is 30 L (as is the final volume of
the nitrogen):

PN2
�
Vi

Vf

Pi �
30 L
30 L

0.60Pat � 0.60Pat

PO2
�
Vi

Vf

Pi �
20 L
30 L

0.30Pat � 0.20Pat

4. The pressure is the sum of the partial pressures: 0.80PatP � PO2
� PN2

� 0.20Pat � 0.60Pat �

Example 17-3 Mixing the Gases

A 20-L tank of oxygen is at a pressure of and a 30-L tank of nitrogen is at a pres-
sure of The temperature of each gas is 300 K. The oxygen is then transferred into
the 30-L tank containing the nitrogen, where the two mix. What is the pressure of the
mixture if its temperature is 300 K?

PICTURE The final volume of both gases is 30 L. The initial temperatures of both gases are
equal. Thus, we can use Boyle’s law to find the partial pressure of each gas in
the mixture. Then, we use the law of partial pressures to find the pressure of the mixture.

(PiVi � PfVf)

0.60Pat .
0.30Pat ,

CHECK We expect an increase in pressure in the 30-L tank when the oxygen is transferred
into it. This expectation is met with our final result (0.80 represents an increase in pressure
of 0.20Pat).

Pat

individual gases in the mixture. Furthermore, the partial pressure of each gas in 
the mixture is the pressure it would exert if it alone occupied the container. This
result—the total pressure is the sum of the partial pressures—is called the law of
partial pressures.

PROBLEM-SOLVING STRATEGY

Dilute Gases

PICTURE A dilute gas is one for which the ideal-gas model gives sufficiently
accurate results. The variables are pressure, volume, temperature, mass, and or
the amount of substance (number of moles).

SOLVE

1. Apply the ideal-gas law, to each dilute gas. Be sure to use the
absolute temperature and the absolute pressure.

2. For a mixture of dilute gases, the ideal-gas law applies to each gas in the
mixture, the volume of each gas in the mixture is the volume of the
container, and the pressure of each gas is the partial pressure of that gas.
The pressure of the mixture is the sum of the partial pressures of the
constituent gases.

3. Additional useful relations are and where 
is the Boltzmann constant, is the number of molecules, is the mass of
the gas, and is the molar mass.

4. Solve for the desired quantity.

CHECK The pressure, volume, and temperature can never be negative.

M
mN

km � nM,R � NAk,N � nNA,

PV � nRT,

>
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CHECK Heating a gas and compressing a gas each tend to increase the pressure. Thus, we
expect the pressure to exceed the starting pressure of 1.00 atm. Our result of 1.47 atm meets
this expectation.

PRACTICE PROBLEM 17-3 How many moles of gas are in the system described in this
example?

SOLVE

We can find the volume using the ideal-gas law,
with T � 273 K:

22.4 L�V �
nRT
P

�
(1.00 mol)[0.0821 L # atm>(mol # K)](273.15 K)

1.00 atm

CHECK Note that by writing in we can write in atmospheres to get 
in liters.

PRACTICE PROBLEM 17-2 Find (a) the number of moles and (b) the number of mole-
cules in of a gas at and 1.00 atm.0.00°C1.00 cm3N

n,

VPL # atm>(mol # K),R

Two identically sized dorm rooms
in a suite, Toni’s and Keisha’s, are
connected by an open door. Toni’s
room, which is air-conditioned, is

cooler than Keisha’s room.
Whose room has more air in it?
5.0°C

CONCEPT CHECK 17-1✓

P

PV nRT

T
T

T

V

=

3
2

1

F I G U R E  1 7 - 9 Isotherms on the 
diagram for a gas. For an ideal gas, these
curves are hyperbolas given by 
(The generic equation for a hyperbola that
asymptotically approaches the coordinate axes
is xy � constant.)

PV � nRT.

PV

Example 17-4 Volume of an Ideal Gas

What volume is occupied by 1.00 mol of an ideal gas at a temperature of and a pres-
sure of 1.00 atm?

PICTURE Use the ideal-gas law to determine the volume occupied by the ideal gas.

0.00°C

The temperature of and the pressure of 1 atm are often referred
to as standard temperature and pressure (STP), or just standard conditions. We
see from Example 17-4 that under standard conditions, 1 mol of an ideal gas occu-
pies a volume of 22.4 L.

Figure 17-9 shows plots of versus at several constant temperatures These
curves are called isotherms. The isotherms for an ideal gas are hyperbolas. For a
fixed amount of gas, we can see from the ideal-gas law (Equation 17-13) that the
quantity is constant. Using the subscripts 1 for the initial values and 2 for
the final values, we have

17-14

IDEAL-GAS LAW FOR FIXED AMOUNT OF GAS

P2V2

T2

�
P1V1

T1

PV>T
T.VP

0°C � 273.15 K

Example 17-5 Heating and Compressing a Gas

A gas has a volume of 2.00 L, a temperature of and a pressure of 1.00 atm. When the
gas is heated to and compressed to a volume of 1.50 L, what is its new pressure?

PICTURE Because the amount of gas is fixed, the pressure can be found using Equation 17-14.
Let subscripts 1 and 2 refer to the initial and final states, respectively.

60.0°C
30.0°C,

SOLVE

1. Express the pressure in terms of and the initial and final
volumes and temperatures:

P1P2

P2 �
T2V1

T1V2

P1

P1V1

T1

�
P2V2

T2

2. Calculate the initial and final absolute temperatures:

T2 � 273.15 � 60.0 � 333.15 K

T1 � 273.15 � 30.0 � 303.15 K

3. Substitute numerical values in step 1 to find P2: 1.47 atm�P2 �
(333.15 K)(2.00 L)
(303.15 K)(1.50 L)

(1.00 atm)
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The mass per mole of a substance is called its molar mass, (The terms molecular
weight or molecular mass are also sometimes used.) The molar mass of is, by defi-
nition, or Molar masses of the elements are given in
Appendix C. The molar mass of an element represents the average of the molar
masses of the isotopes of that element—with the average weighted by the relative
abundance of those isotopes on Earth. The molar mass of a compound such as 
is the sum of the molar masses of the elements in the molecule. The molar mass of
carbon is and the molar mass of oxygen is Thus, the
molar mass of is 12.011 g>mol � 2 � 15.999 g>mol � 44.009 g>mol.CO2

15.999 g>mol.12.011 g>mol

CO2

0.012 kg>mol.12 g>mol

12C
M.

If the temperature is decreased at
constant pressure, what happens
to the volume?

CONCEPT CHECK 17-2✓

Example 17-6 The Mass of a Hydrogen Atom

The molar mass of hydrogen is What is the average mass of a hydrogen atom
in a glass of (water)?

PICTURE Let be the mass of a hydrogen atom. Because there are hydrogen atoms in a
mole of hydrogen, the molar mass is given by We can use this to solve for m.M � mNA.M

NAm

H2O
1.008 g>mol.

SOLVE

The average mass of a hydrogen atom is the molar mass divided
by Avogadro’s number:

1.674 � 10�24 g>atom�m �
M
NA

�
1.008 g>mol

6.022 � 1023 atoms>mol

CHECK The calculated mass of the hydrogen atom is, as expected, many many orders of
magnitude less than the molar mass of about 

TAKING IT FURTHER The three isotopes of hydrogen are protium deuterium and
tritium The relative abundance of in naturally occurring hydrogen is 99.985%.1H3H.

2H,1H,

1 g>atom.

Example 17-7 Floating a Hot-Air Balloon

A small hot-air balloon has a volume of and is open at the bottom. The air inside the
balloon is at an average temperature of while the air next to the balloon has a temper-
ature of and a pressure, on average, of 1.00 atm. The balloon is tethered to prevent it
from rising, and the tension in the tether is 10.0 N. Use for the molar mass
of air. (Neglect the gravitational force on the fabric of the balloon.) What is the pressure, on
average, inside the balloon?

PICTURE Three forces act on the balloon and its contents, the buoyant force of the sur-
rounding air, the tension force of the tether, and the gravitational force of Earth. The net force
is the sum of these three forces. The buoyant force is equal to the weight of the displaced air
(Archimedes’ principle). The pressure, temperature, and volume of the gas are related by

The mass of the air is equal to the number of moles times the molar mass 
of air.

MnmPV � nRT.

0.0290 kg>mol
24°C,

75°C,
15.0 m3

SOLVE

(a) 1. The net force on the system (the balloon and air inside it) is
zero. Sketch a free-body diagram (Figure 17-10) of the system:

2. Apply Newton’s second law to the system.
F
S

T � F
S

B � F
S

g � 0 ⇒ FB � FT � Fg

©F
S

� maS

FB

Fg

FT

m

F I G U R E  1 7 - 1 0

3. The buoyant force is equal to the weight of a volume V of
the air next to the balloon, where V is the volume of the air
inside the balloon. Let be the average density of the air
next to the balloon, and let be the average density of the
air within the balloon:

r2

r1

Fg � r2Vg

FB � r1Vg

4. Substitute from step 2 into the step-1 result:

FT � r1Vg � r2Vg � (r1 � r2)Vg

FT � FB � Fg
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CHECK To produce a net upward force on the fabric of the balloon, the air inside the bal-
loon must be at a higher pressure than the air outside the balloon. Thus, our result of
1.10 atm for the average pressure inside the balloon is plausible.

TAKING IT FURTHER The pressure at the opening at the bottom of the balloon is the same
as the pressure in the surrounding air at that altitude. In a static fluid, the pressure decreases
with increasing altitude, and the greater the density of the fluid, the greater the rate of decrease
in pressure with altitude. The air inside the balloon is less dense than the outside air. Thus,
inside the balloon the pressure decrease from the opening to the top of the balloon is less in the
air inside the balloon than it is in the air adjacent to the balloon.

5. The mass of a sample of air in the balloon is the number of
moles times the molar mass of air:Mn

r2 �
m2

V
�
n2M

V

r1 �
m1

V
�
n1M

V

6. Substitute from step 4 into the step-3 result: FT � an1M

V
�
n2M

V
bVg ⇒ FT

Mg
� n1 � n2

7. Using the ideal-gas law substitute for 
and n2:

n1(PV � nRT),
FT

Mg
�
P1V

RT1

�
P2V

RT2

8. Solve for P2: P2 � aP1

T1

�
FTR

MgV
bT2

9. Solve for the value of The temperature in kelvins equals
273 plus the temperature in degrees Celsius,

and R � 8.314 J>(mol # K):1 atm � 101.3 kPa

P2 .

1.10 atm�1.12 � 105 Pa�

P2 � a1.013 � 105

297
�

10.0 � 8.314
0.0290 � 9.81 � 15.0

b348

17-4 THE KINETIC THEORY OF GASES

The description of the behavior of a gas in terms of the macroscopic state variables
and can be related to simple averages of microscopic quantities, such as the

mass and speed of the molecules in the gas. The resulting theory, called the kinetic
theory of gases, provides a detailed model of dilute gases.

From the point of view of kinetic theory, a confined gas consists of a large num-
ber of rapidly moving particles. In a monatomic gas, like helium and neon, these
particles are single atoms, but in polyatomic gases, like oxygen and carbon diox-
ide, the particles are molecules. In kinetic theory, it is common practice to refer to
the constituent particles of a gas as molecules. (This is the practice, even though
referring to a single atom as a molecule is something of a misnomer.) We shall fol-
low this practice in the discussions that follow.

In a gas at room temperature, a very large number of molecules are moving at
speeds of hundreds of meters per second. These molecules are making elastic col-
lisions, both with each other and with the walls of a container. In the context of
kinetic theory, we may neglect any effects due to gravity, so there are no preferred
positions for the molecules in the container,* and no preferred directions for their
velocity vectors either. The molecules are separated, on average, by distances that
are large compared with their diameters. They also exert no forces on each other
except when they collide. (This assumption is equivalent to assuming a very low
gas density, which, as we saw in the last section, is the same as assuming that the
gas is an ideal gas. Because momentum is conserved, the collisions that the mole-
cules make with each other have no effect on the total momentum in any direction.
Thus, such collisions can be neglected.)

TP, V,

* Because of gravity, the density of molecules at the bottom of the container is slightly greater than at the top. As dis-
cussed in Chapter 13, the density of air decreases by half at a height of about 5.5 km, so the variation over a normal
sized container is negligible.
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CALCULATING THE PRESSURE EXERTED BY A GAS

The pressure that a gas exerts on its container is due to collisions between gas mol-
ecules and the container walls. This pressure is a force per unit area and, by
Newton’s second law, this force is the rate of change of momentum of the gas mol-
ecules colliding with the wall.

Consider a rectangular container of volume containing gas molecules, each
of mass moving with a speed Let us calculate the force exerted by these mol-
ecules on the right-hand wall, which is perpendicular to the axis and has area 
The molecules hitting this wall in a time interval are those that are within dis-
tance of the wall (Figure 17-11) and are moving to the right. Thus, the num-
ber of molecules hitting the wall during time is the number per unit volume

multiplied by the volume multiplied by because, on average, only
half the molecules are moving to the right. That is, during time 

The component of momentum of a molecule is before it hits the wall,
and after an elastic collision with the wall. The change in momentum has the
magnitude The magnitude of the total change in momentum of all mol-
ecules during a time interval is multiplied by the number of molecules
that hit the wall during this interval:

17-15

The magnitude of the force exerted by the wall on the molecules, and the magni-
tude of the force exerted by the molecules on the wall, is the ratio The pres-
sure is the magnitude of this force divided by the area 

or
17-16

To allow for the fact that all the molecules in a container do not have the 
same speed, we merely replace with its average value Then, writing 
Equation 17-16 in terms of the kinetic energy associated with motion along
the axis, we have

17-17

THE MOLECULAR INTERPRETATION OF TEMPERATURE

Comparing Equation 17-17 with (Equation 17-7), which was obtained
experimentally for any gas that has a low density, we can see that

17-18

Thus, the average kinetic energy associated with motion along the axis is But
there is nothing special about the direction. Consequently,

Writing and for the average translational kinetic energy of
the molecules, Equation 17-18 becomes

17-19

AVERAGE TRANSLATIONAL KINETIC ENERGY OF A MOLECULE

Ktrans av � A 12mv2 B av � 3
2 kT

Ktrans av(v2
x)av � 1

3 (v2)av

1v2
x2av � 1v2

y2av � 1v2
z2av and 1v22av � 1v2

x2av � 1v2
y2av � 1v2

z2av � 31v2
x2av

x

1
2 kT.x

NkT � 2N A 12mv2
x B av or A 12mv2

x B av � 1
2 kT

PV � NkT

PV � 2N A 12mv2
x B av

x

1
2mv2

x

(v2
x)av .v2

x

PV � Nmv2
x

P �
F
A

�
1
A

ƒ¢pS ƒ
¢t

�
N
V
mv2

x

A:
ƒ¢pS ƒ>¢t.

ƒ¢pS ƒ � (2m ƒvx ƒ) � a1
2
N
V

ƒvx ƒ ¢t Ab �
N
V
mv2

xA ¢t

2m ƒvx ƒ¢t
ƒ¢pS ƒ2mvx .

�mvx

�mvxx

Number of molecules that hit the wall �
1
2
N
V

ƒvx ƒ ¢t A

¢t

1
2A ƒvx ƒ ¢tN>V ¢t

ƒvx ƒ ¢t
¢t

A.x
v.m

NV

vxΔt
y

x

z

F I G U R E  1 7 - 1 1 Gas molecules in a
rectangular container. The molecules that both
are moving to the right and are closer than

to the right wall will hit the right wall
during time ¢t.
vx¢t
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In addition to translational kinetic energy, the molecules may also have rotational or
vibrational kinetic energy. However, only the translational kinetic energy is relevant
to the calculation of the pressure exerted by a gas on the walls of its container.

The absolute temperature is thus a measure of the average translational kinetic
energy of the molecules. The total translational kinetic energy of moles of a gas
containing molecules is

17-20

where we have used Thus, the translational kinetic energy is 
per molecule and per mole.

We can use these results to estimate the order of magnitude of the speeds of the
molecules in a gas. The average value of is, by Equation 17-19,

where is the molar mass. The square root of is referred to as the
root-mean-square (rms) speed:

17-21

ROOT-MEAN-SQUARE SPEED OF A MOLECULE

Note that Equation 17-21 is similar to Equation 15-5 for the speed of sound in a gas:

17-22

where for air. This is not surprising because a sound wave in air is a pres-
sure disturbance propagated by collisions between air molecules.

g � 1.4

vsound � AgRT
M

vrms �4(v2)av � A3kT
m

� A3RT
M

(v2)avM � NAm

(v2)av �
3kT
m

�
3NAkT

NAm
�

3RT
M

v2

3
2RT

3
2 kTNk � nNAk � nR.

Ktrans � N A 12mv2 B av � 3
2NkT � 3

2nRT

N
n

CHECK Because is inversely proportional to (Equation 17-21), and the molar mass
of hydrogen is one-sixteenth that of oxygen, the rms speed of hydrogen is four times that of
oxygen. Our calculations are consistent with the mass ratio because 

TAKING IT FURTHER The rms speed of oxygen molecules is about
1.4 times the speed of sound in air, which at 300 K is about 

PRACTICE PROBLEM 17-4 Find the rms speed of nitrogen molecules at
300 K.

(M � 28 g>mol)

343 m>s.
484 m>s � 1080 mi>h,

1930>484 � 4.00.

1Mvrms

(b) 1. Repeat the calculation with M � 0.00200 kg>mol:

1.93 � 103 m>s� 1934 m>s �

vrms � A3 RT
M

� A3(8.314 J>mol # K)(300 K)

0.00200 kg>mol

Example 17-8 The rms Speed of Gas Molecules

Oxygen gas has a molar mass of about and hydrogen gas has a molar
mass of about Calculate (a) the rms speed of an oxygen molecule when the tem-
perature is 300 K, and (b) the rms speed of a hydrogen molecule at the same temperature.

PICTURE We find using Equation 17-21. For the units to work out right, we use
and we express the molecular masses of and in kg>mol.H2O2R � 8.314 J>(mol # K),
vrms

2.00 g>mol.
(H2)32.0 g>mol,(O2)

SOLVE

(a) 1. Substitute the given values into Equation 17-21:

484 m>s� 483.56 m>s �

vrms � A3 RT
M

� A3(8.314 J>mol # K)(300 K)
0.0320 kg>mol
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THE EQUIPARTITION THEOREM

We have seen that the average kinetic energy associated with translational motion
in any direction is per molecule (Equation 17-19) or, equivalently, per mole,
where is the Boltzmann constant and is the universal gas constant. If the 
energy of a molecule associated with its motion in one direction is momentarily in-
creased, say, by a collision between the molecule and a moving piston during a
compression of the gas, collisions between that molecule and other molecules will
quickly redistribute the added energy. When the gas is again in equilibrium, en-
ergy will be equally partitioned among the translational kinetic energies associated
with motion in the and directions. This sharing of the energy equally among
the three terms in the translational kinetic energy is a special case of the
equipartition theorem, a result that follows from classic statistical mechanics. Each
component of position and momentum (including angular position and angular
momentum) that appears as a squared term in the expression for the energy of the
system is called a degree of freedom. Typical degrees of freedom are associated
with the kinetic energy of translation, rotation, and vibration, and with the poten-
tial energy of vibration. The equipartition theorem states that:

When a substance is in equilibrium, there is an average energy of per
molecule or per mole associated with each degree of freedom.

EQUIPARTITION THEOREM

In Chapter 18, we use the equipartition theorem to relate the measured heat ca-
pacities of gases to their molecular structure.

1
2RT

1
2 kT

zx, y,

Rk

1
2 RT1

2 kT

Conceptual Example 17-9 Mixing the Gases

A thermally insulated tank is divided into two 20-L sections by a partition. One 20-L section
contains a mole of nitrogen at 300 K and the other 20-L section contains a mole of helium at
320 K. The partition is removed and the gases are allowed to mix. For the mixture, is the par-
tial pressure of the nitrogen gas less than, equal to, or greater than the partial pressure of the
helium gas? Is the final temperature of the mixture less than, equal to, or greater than 310 K?

PICTURE The tank is insulated, so the energy of its contents remains fixed. Any energy
gained by the molecules of nitrogen is lost by the molecules of helium. After mixing, the tem-
perature of each gas is equal to the temperature of the mixture, and the temperature of each
gas is proportional to its translational kinetic energy. Helium is monatomic and nitrogen is
diatomic. Thus, we should expect the energy gained by the nitrogen molecules to end up as
rotational kinetic energy as well as translational kinetic energy.

SOLVE

1. After mixing, the volume, temperature, and number of moles are
the same for both gases. The ideal-gas law relates the volume,
temperature, partial pressure, and number of moles of each gas.

2. The tank is insulated, so the total energy of the two gases
remains constant during the mixing.

The tank is thermally insulated, so any energy gained by the
nitrogen molecules is lost by the helium atoms. That is, the
average increase in energy of a nitrogen molecule is equal to the
average decrease in energy of a helium atom.

3. The final temperature of both gases is the same as the
temperature of the mixture.

After mixing, the temperature is the same for each gas, so the
average translational kinetic energy is the same for the
molecules of each gas.

The ideal-gas law implies that, for each gas, the partial pressure is
completely specified by the volume, temperature, and number
of moles. The volume, temperature, and number of moles are

the same for both gases, so as
well.

the partial pressures are the same



578 | C H A P T E R  1 7 Temperature and Kinetic Theory of Gases

r1

r2

d = r1 + r2

F I G U R E  1 7 - 1 2 Model of a molecule
(center sphere) moving in a gas. The molecule
of radius will collide with any molecule of
radius if their centers are a distance

apart, which is any molecule
whose center is on a sphere of radius

centered about the molecule.d � r1 � r2

d � r1 � r2

r2

r1

MEAN FREE PATH

The average speed of molecules in a gas at normal pressures is several hundred
meters per second, yet if somebody across the room from you opens a perfume bot-
tle, you do not detect the odor for several minutes. The reason for the time delay is
that the perfume molecules do not travel directly toward you, but instead travel a
zigzag path due to collisions with the air molecules. The average distance trav-
eled by a molecule between collisions is called its mean free path. (The reason you
smell the perfume at all is due to air currents (convection). The time for a perfume
molecule to diffuse across a room is of the order of weeks.)

The mean free path of a gas molecule is related to its size, to the size of the sur-
rounding gas molecules, and to the density of the gas. Consider one gas molecule
of radius moving with speed through a region of stationary molecules (Fig-
ure 17-12). The moving molecule will collide with another molecule of radius 
if the centers of the two molecules come within a distance from each
other. (If all the molecules are the same type, then is the molecular diameter.)
As the molecule moves, it will collide with any molecule whose center is in a
circle of radius (Figure 17-13). In some time the molecule moves a distance 
and collides with every molecule in the cylindrical volume The number of
molecules in this volume is where the number density is the
number of molecules per unit volume. (After each collision, the direction of the
molecule changes, so the path actually zigs and zags.) The total path length
divided by the number of collisions is the mean free path:

This calculation of the mean free path assumes that all but one of the gas molecules
are stationary, which is not a realistic situation. When the motion of all the
molecules is taken into account, the correct expression for the mean free path is
given by

17-23

MEAN FREE PATH OF A MOLECULE

The average time between collisions is called the collision time The reciprocal
of the collision time, is equal to the average number of collisions per second,
or the collision frequency. If is the average speed, then the average distance
traveled between collisions is

17-24l � vavt

vav

1>t, t.

l �
1

22 nVpd
2

l �
vt

nVpd
2vt

�
1

nVpd
2

nV � N>VnVpd
2vt,

pd2vt.
vtt,d

d
d � r1 � r2

r2

vr1

l

Diameter d

Area =   d2π

F I G U R E  1 7 - 1 3 Model of a molecule
moving with speed in a gas of similar
molecules. The motion is shown during
time The molecule of diameter d will collide
with any similar molecule whose center is in a
cylinder of volume In this picture, all
collisions are assumed to be elastic and all but
one of the molecules are assumed to be at rest.

pd2vt.

t .

v

CHECK If the two gases had both been monatomic gases, the final temperature would have
been equal to 310 K. This is so even if the atomic masses of the two substances were very
different.

4. Nitrogen is a diatomic gas and helium is a monatomic gas, so
the nitrogen has more degrees of freedom than does helium.
Some of the energy gained by the nitrogen will end up as an
increase in rotational kinetic energy.

The decrease in translational kinetic energy of the helium atoms is
equal to the increase in translational kinetic energy PLUS the
increase of rotational kinetic energy of the nitrogen molecules.

5. The change in temperature in each gas is proportional to the
change in translational kinetic energy of each gas.

The decrease in temperature of the helium gas is greater than the
increase in temperature of the nitrogen gas. The final temperature is 

.less than 310 K
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Context-RichExample 17-10 Mean Free Path of a CO Molecule in Air

The local poison control center wants to know more about carbon monoxide and how it
spreads through a room. You are asked (a) to calculate the mean free path of a carbon monox-
ide molecule, and (b) to estimate the mean time between collisions. The molar mass of carbon
monoxide is Assume that the CO molecule is traveling in air at 300 K and
1.00 atm, and that the diameters of both CO molecules and air molecules are 

PICTURE (a) Because is given, we can find from using the ideal-gas
law to find (b) We can estimate the collision time by using for
the average speed.

vrmsnV � N>V.(PV � NkT)
l � 1> A22 nVpd

2 Bld

3.75 � 10�10 m.
28.0 g>mol.

SOLVE

(a) 1. Write in terms of the number density and
the molecular diameter d:

nVl l �
1

22 nVpd
2

2. Use the ideal-gas law to
calculate nV � N>V:

(PV � NkT) � 2.446 � 1025 molecules>m3nV �
N
V

�
P
kT

�
101.3 � 103 Pa

(1.381 � 10�23 J>K)(300 K)

3. Substitute this value of and the given value of
to calculate l:d

nV

6.54 � 10�8 m� 6.5428 � 10�8 m �

l �
1

22 nVpd
2

�
1

2212.451 � 1025>m32p13.75 � 10�10 m222
(b) 1. Write in terms of the mean free path l:t t �

l

vav

2. Estimate by calculating vrms:vav � 517.0 m>svrms � A3 RT
M

� A3(8.3145 J>[mol # K])(300 K)

0.0280 kg>mol

3. Use to estimate t:vav � vrms 1.27 � 10�10 st �
l

vav

�
l

vrms

�
6.530 � 10�8 m

517.0 m>s �

CHECK The mean free path [the Part-(a) step-3 result] is 174 times the molecular diameter
If the calculated value of the mean free path were less than the

molecular diameter, then we would look for a mistake in our calculation.

TAKING IT FURTHER The collision frequency is about collisions per second.
(That is a lot of collisions for one second.)

THE DISTRIBUTION OF MOLECULAR SPEEDS

We would not expect all of the molecules in a gas to have the same speed. The cal-
culation of the temperature of a gas allows us to calculate the mean square speed
(the square of the rms speed), and therefore the average translational kinetic energy
of molecules in a gas, but it does not yield any details about the distribution of mol-
ecular speeds. Before we consider this problem, we discuss the idea of distribution
functions in general with some elementary examples from common experience.

Distribution functions Suppose that a teacher gave a 25-point quiz to a large
number of students. To describe the results, the teacher might give the average
score, but this would not be a complete description. If all the students received a
score of 12.5, for example, that would be quite different from half the students
receiving 25 and the other half zero, but the average score would be the same in both
cases. A complete description of the results would be to give the number of students

who received a score for all the scores received. Alternatively, one could give the
fraction of the students who received the score Both and which are
functions of the variable are called distribution functions. The fractional distrib-
ution is somewhat more convenient to use. The probability that one of the 
students selected at random received the score equals the total number of studentssi

N
s ,

fi ,nisi .fi � ni >Nsini

N

1>t � 8 � 109

d � 3.75 � 10�10 m.

*
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Example 17-11 Making the Grade

Fifteen students took a 25-point quiz. Their scores are 25, 22, 22, 20, 20, 20, 18, 18, 18, 18, 18,
15, 15, 15, and 10. Find the average score and the rms score.

PICTURE The distribution function for this problem is 
and To find the average score, we use 

(Equation 17-26). To find the rms score, we use (Equation 17-28) and then take
the square root.

(s2)av � N�1©si2ni
sav � N�1©nisin10 � 1.n18 � 5, n15 � 3,

n25 � 1, n22 � 2, n20 � 3,

SOLVE

1. By definition, issav 18.3�
1

15
(274) � 18.27 �sav �

1
N ai nisi �

1
15

[1(25) � 2(22) � 3(20) � 5(18) � 3(15) � 1(10)]

2. To calculate first find the
average of s2:

srms , �
1

15
(5188) � 345.9(s2)av �

1
N a1 nis

2
i �

1
15

[1(25)2 � 2(22)2 � 3(20)2 � 5(18)2 � 3(15)2 � 1(10)2]

3. Take the square root of (s2)av: 18.6srms �4(s2)av �

CHECK The average and rms scores differ by only 1 or 2 percent. In addition, the rms value
is greater than the average value. The fact that the rms value is always greater than (or equal
to) the mean is explained in the discussion following Equation 17-34b.

who received that score divided by that is, the probability equals Note that

and because 

17-25

DEFINITION: NORMALIZATION CONDITION

Equation 17-25 is called the normalization condition for fractional distributions.
To find the average score, we add all the scores and divide by Because each

score was obtained by students, this is equivalent to

17-26

Similarly, the average of any function is defined by

17-27

AVERAGE OF 

In particular, the average of the square of the scores is

17-28

where is called the mean square score and the square root of
is called the root-mean-square score

17-29

DEFINITION: ROOT MEAN SQUARE OF s

A possible distribution function is shown in Figure 17-14. For
this distribution, the most probable score (obtained by the most
students) is 16, the average score is 14.2, and the rms score is 14.9.

srms �4(s2)av

srms:(s2)av

(s2)av

(s2)av �
1
N ai s

2
i ni � a

i

s2i fi

g(s)

g(s)av �
1
N ai g(si)ni � a

i

g(si)fi

g(s)

sav �
1
N ai nisi � a

i

sifi

ni � Nfisi

N.

a
i

fi � 1

©ni � N,

a
i

fi � a
i

ni
N

�
1
N ai ni

fi .N,ni

5 10 15 20 25

0.02

0.04

0.06

0.08

0.10

2
4
6
8

10
12
14
16
18
20
22
ni if

sav = 14.2
srms = 14.9

Score

F I G U R E  1 7 - 1 4 Grade distribution for a 25-point quiz given
to 200 students. is the number of students receiving grade and

is the fraction of students receiving grade The most
probable score is 16.

si .fi � ni >N sini
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Now consider the case of a continuous distribution, for exam-
ple, the distribution of heights in a population. For any finite num-
ber the number of people who are exactly 2-m tall is zero. If we
assume that height can be determined to any desired accuracy,
there are an infinite number of possible heights, so the probability
is zero that anybody has any one particular (exact) height.
Therefore, we divide the heights into intervals (for example, 

might be 1 cm or 0.5 cm) and ask what fraction of people has
heights that fall in any particular interval. For very large this
number is proportional to the size of the interval, provided the in-
terval is sufficiently small. We define the distribution function 
as the fraction of the number of people with heights in the inter-
val between and Then for people, is the
number of people whose height is between and 
Figure 17-15 shows a possible height distribution.

The fraction of people who have heights in a given interval is the area
If is very large, we can choose to be very small, and the histogram

will approximate a continuous curve. We can therefore consider the distribution
function to be a continuous function, write the interval as and replace the
sums in Equations 17-25 through 17-28 by integrals:

17-30

NORMALIZATION CONDITION

17-31

17-32

AVERAGE VALUE OF 

where is an arbitrary function of Thus,

17-33

The probability of a person selected at random having a height between and
is A useful quantity characterizing a distribution is the standard

deviation defined by

17-34a

STANDARD DEVIATION 
Expanding we obtain

or

17-34b

The standard deviation is a measure of the spread of the values about the average
value. For most distributions there will be few values that differ from by more
than a few multiples of For the familiar bell-shaped distribution (called a nor-
mal distribution), 68.3 percent of the values are expected to fall within of 
(i.e., between and 

In Example 17-11, we found that the rms value was greater than the average
value. This is a general feature for any distribution (unless all the values are
identical, in which case and From the definition of rmsxrms � xav).s � 0

xav � s).xav � s

xav1s
s.

xav

s2 � (x2)av � x2
av

s2 � [x2 � 2xxav � x2
av]av � (x2)av � 2xavxav � x2

av � (x2)av � x2
av

(x � xav)2,
s

s2 � [(x � xav)2]av

s,
f(h) dh.h � dh

h

(h2)av � � h2f(h) dh

h.g(h)

g(h)

[g(h)]av � � g(h)f(h) dh

hav � � hf(h) dh

� f(h) dh � 1

dh,f(h)

¢hNf(h) ¢h.
¢h

h � ¢h.h
Nf(h) ¢hNh � ¢h.h

f(h)

N,
¢h

¢h

N,

People walking down a city street. Consider 
the various heights of the people you see. 
(Getty Images/PhotoAlto.)

f (h)

h h h h+ Δ

f(h)

F I G U R E  1 7 - 1 5 A possible height distribution function. The
fraction of the number of heights between and equals
the shaded area The histogram can be approximated by
a continuous curve as shown.

f(h) ¢h.
h � ¢hh
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Example 17-12 Using the Maxwell–Boltzmann Distribution

Calculate the mean square speed (the average value of ) for the molecules in a gas using
the Maxwell–Boltzmann distribution function.

PICTURE The average value of is calculated from (Equation 17-33),
with replacing and given by Equation 17-36.f(v)hv

(h2)av � � h2f(h) dhv2

v2

(Equation 17-29), we have By substituting
for in Equation 17-34b, we obtain

Because and are always positive, must always
be greater than 

For the familiar bell-shaped distribution (called a nor-
mal distribution), 68.3 percent of the values fall within

95.5 percent fall within and 99.7 per-
cent fall within (This is known as the
68–95–99.7 rule.)

The Maxwell–Boltzmann distribution The distribu-
tion of the molecular speeds of a gas can be measured di-
rectly using the apparatus illustrated in Figure 17-16. In
Figure 17-17, these speeds are shown for two different
temperatures. The quantity in Figure 17-17 is called
the Maxwell–Boltzmann speed distribution function.
In a gas of molecules, the number with speeds in the
range between and is given by

17-35

The fraction in a particular range is illustrated by
the shaded region in the figure. The Maxwell–Boltzmann speed distrib-
ution function can be derived using statistical mechanics. The result is

17-36

MAXWELL–BOLTZMANN SPEED DISTRIBUTION FUNCTION

The most probable speed that speed for which is maximum, is
given by

17-37

MOST PROBABLE SPEED

The rms speed is given by (Equation 17–21). Comparing
Equation 17-37 with Equation 17-21, we see that the most probable speed
is slightly less than the rms speed.

vrms � 23RT>M
vmax � A2 kT

m
� A2 RT

M

f(v)vmax ,

f(v) �
4

2p a m2kT b 3>2
v2e�mv

2>(2kT)

dvdN>N � f(v) dv

dN � Nf(v) dv

dN,v � dvv
N

f(v)

xav � 3s.
xav � 2s,xav � s,

ƒ xav ƒ .
xrmsxrmss2

s2 � x2
rms � x2

av

(x2)avx2
rms

x2
rms � (x2)av . Oven source

Detector

φ
ω

F I G U R E  1 7 - 1 6 Schematic diagram of the apparatus for determining
the speed distribution of the molecules of a gas. A substance is vaporized in
an oven and the vapor molecules are allowed to escape through a hole in the
oven wall into a vacuum chamber. The molecules are collimated into a
narrow beam by a series of slits (not shown). The beam is aimed at a detector
that counts the number of molecules that are incident on it in a given period
of time. A rotating cylinder stops most of the beam. Small slits in the cylinder
(only one of which is depicted here) allow the passage of molecules that have
a narrow range of speeds that is determined by the angular speed of the
rotating cylinder. Counting the number of molecules that reach the detector
for each of a large number of angular speeds, gives a measure of the number
of molecules in each range of speeds.

f (v)

T1

T1T2 >

dv v vv vmax av rms

T2

F I G U R E  1 7 - 1 7 Distributions of molecular speeds in
a gas at two temperatures, and The shaded area

equals the fraction of the number of molecules
having a particular speed in a narrow range of speeds 
The mean speed and the rms speed are both
slightly greater than the most probable speed vmax .

vrmsvav

dv.
f(v) dv

T2 
 T1 .T1
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SOLVE

1. By definition, is(v2)av (v2)av � �
q

0
v2f(v) dv

2. Use Equation 17-36 for f(v): �
4

2p a m2kT b 3>2
�

q

0
v4e�mv

2>(2kT) dv(v2)av � �
q

0
v2 4

2p a m2kT b 3>2
v2e�mv

2>(2kT) dv

3. The integral in step 2 can be found in
standard integral tables:

�
q

0
v4e�mv

2>(2kT) dv �
3
8
1pa2kT

m
b 5>2

4. Use this result to calculate (v2)av:
3kT
m

(v2)av �
4
1p a m2kT b 3>2 3

8
1pa2kT

m
b 5>2

�

CHECK Our result agrees with from Equation 17-21.vrms � 23kT>m

As any low-temperature physicist
knows, liquid nitrogen is much
cheaper than liquid helium. One
reason for this is that while nitro-
gen is the most common con-
stituent of the atmosphere, only
minute amounts of helium are
found in the atmosphere. (Helium
is found in natural gas deposits.)
Why are only minute amounts of
helium found in the atmosphere?

CONCEPT CHECK 17-3✓

See

Math Tutorial for more

information on 

Differential Calculus

In Example 17-8 we found that the rms speed of hydrogen molecules is about
This is about 17 percent of the escape speed at the surface of Earth, which

we found to be in Section 11-3. So why is there no free hydrogen in Earth’s
atmosphere? As we can see from Figure 17-17, a considerable fraction of the mole-
cules of a gas in equilibrium have speeds greater than the rms speed. When the rms
speed of the molecules of a particular gas is as great as 15 to 20 percent of the escape
speed for a planet, enough of the molecules have speeds greater than the escape
speed so that most of the gas does not remain in the atmosphere of that planet very
long before escaping. Thus, there is virtually no hydrogen gas in Earth’s atmosphere.
The rms speed of oxygen molecules, on the other hand, is about one-fourth that of
hydrogen molecules, which makes it only about 4 percent of the escape speed at the
surface of Earth. Therefore, only a negligible fraction of the oxygen molecules have
speeds greater than the escape speed, and oxygen remains in Earth’s atmosphere.

The energy distribution The Maxwell–Boltzmann speed distribution as given
by Equation 17-36 can also be written as a translational-kinetic-energy distribution.
We write the number of molecules with translation kinetic energy in the range
between and as

where is the energy distribution function. This will be the same number as given
by Equation 17-36, with the energy related to the speed by Then

and

We can write

where (from Equation 17-36). The translational-kinetic-
energy distribution function is thus given by

Simplifying, we obtain the Maxwell–Boltzmann energy distribution function:

17-38

MAXWELL–BOLTZMANN ENERGY DISTRIBUTION FUNCTION

In the language of statistical mechanics, the energy distribution is considered to be
the product of two factors: one factor is called the density of states and is propor-
tional to the other factor is the probability of a state being occupied, which is

and is called the Boltzmann factor.e�E>(kT),
1E ,

F(E) �
2

2p a 1
kT
b 3>2
E1>2e�E>(kT)

F(E) �
41p a m2kT b 3>2a 2

m
b 1>2 1
m
E1>2e�E>(kT)

F(E)
C � (4>1p)[m>(2kT)]3>2
f(v) dv � Cv2e�mv

2>(2kT) dv � Cve�E>(kT)v dv � Ca2E
m
b 1>2
e�E>(kT) dE

m

Nf(v) dv � NF(E) dE

dE � mv dv

E � 1
2mv2.vE

F(E)

dN � NF(E) dE
E � dEE

E

11.2 km>s1.93 km>s.
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Physics Spotlight

Molecular Thermometers

Molecular thermometers show changes in temperature by changes
in the molecules themselves. Molecular thermometers can be sim-
ple and inexpensive and are targets of recent intensive research.

Mood rings feature liquid crystals* that show changes in the
wearer’s finger temperature by changing color. Many liquid crys-
tals have thermochromic properties—they change color with tem-
perature. These liquid crystals are made up of twisted molecules.
As the temperature changes, the twist of each molecule tightens or
loosens, which changes how the liquid crystal absorbs and reflects
light. Some liquid crystals are sensitive to changes as small as

† Any particular liquid crystal will show color changes
over a small temperature range, usually less than However,
different liquid crystals can be encased in different compartments
within strips to allow sensing of a range of temperatures from

to These strip thermometers are used as aquarium
thermometers, as well as fever thermometers.‡ Liquid crystal ther-
mometers provide real-time monitoring,# and are an inexpensive
option when cost is a concern.°

Fluorescent thermometers can be useful in monitoring tempera-
ture changes of very small computer chips during manufacturing
processes as well as monitoring temperature changes in automobiles during manufacturing and aerodynamic testing.§ When
these thermometers are bathed in ultraviolet light, most respond by fluorescing (emitting light) in two wavelengths. The ratio
of these two wavelengths is related to the temperature. A recently developed fluorescent thermometer is accurate to and
indicates temperatures ranging from to ¶ by changes in the ratio of wavelengths of emitted light. As the ratio
changes, the visible color changes with the temperature.

But there are times that molecular thermometers must measure temperatures that are higher than In that case,
objects that need to be measured can be coated with a powder that phosphoresces, or briefly shines, when excited with light.
The length of time the phosphors shine depends upon the temperature of the coated object. Phosphorescence time duration
has been used by the steel industry to determine whether steel is at the right temperature for the formation of desired alloys.
Phosphor thermometry allows measurement of steel within ** Conventional thermometry had errors of as much
as The accuracy could save the steel industry up to $70 million per year.

Real-time thermometers cannot tell what has happened in the past. The highest, or endpoint, cooking temperature that meat
reaches is an important measurement for food safety. The endpoint cooking temperature (EPT) determines whether food-re-
lated illness is likely to occur. Unfortunately, it is not possible to measure the EPT once the meat has cooled. But the ratio of
three large molecules in beef allows determination of the EPT within †† even if the beef has been frozen and thawed since
cooking. It may soon be possible to tell whether precooked meats delivered to nursing homes and schools have reached a safe
temperature before cooling.

Because of the wide number of applications, from inexpensive temperature monitoring to detection of past temperatures
and real-time industrial monitoring, molecular thermometry has a glowing future.

* James, B. G., “Heat Sensitive Novelty Device,” U.S. Patent 3,802,945, Apr. 9, 1974.
† White, M. A., and LeBlanc, M., “Thermochromism in Commercial Products,” Journal of Chemical Education, Sept. 1999, Vol. 76, 1201–1205.
‡ Krause, B. F., “Accuracy and Response Time Comparisons of Four Skin Temperature-Monitoring Devices,” Nurse Anesthesia, June 1993, Vol. 4, 55–61.
# Dart, R. C., et al., “Liquid Crystal Thermometry for Continuous Temperature Measurement in Emergency Department Patients,” Annals of Emergency Medicine, Dec. 1985, Vol. 14,

1188–1190.
° Manandhar, N., et al., “Liquid Crystal Thermometry for the Detection of Neonatal Hypothermia in Nepal,” Journal of Tropical Pediatrics, Feb. 1998, Vol. 55, 
§ Chandrasekharan, N., and Kelly, L., “Fluorescent Molecular Thermometers Based on Monomer/Exciplex Interconversion,” The Spectrum, Sept. 2002, Vol. 15, No. 3, 1–7.
¶ Hanson, T., “Laboratory Scientists Develop Novel Fluorescent Thermometer,” Los Alamos National Laboratory News, Sept. 4, 2004. http://www.lanl.gov/news/

index.php?fuseaction=nb.story&story_id=5007&nb_date=2004-04-15 as of July 2006.
** “Thermometry for the Steel Industry,” Thermographic Phosphor Sensing Applications, Oak Ridge National Laboratory. http://www.ornl.gov/sci/phosphors/galv.htm as of July 2006.
†† Miller, D. R., and Keeton, J. T., “Verification of Safe Cooking Endpoints in Beef by Multiple Antigen Elisa,” 2004 Beef Cattle Research In Texas Publication. http://

animalscience.tamu.edu/ANSC/beef/bcrt/2004/miller_3.pdf as of July 2006.
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A scientist views a sample that is fluorescing in two
wavelengths. It is fluorescing because it is being illuminated
from below by ultraviolet light. The ratio of the two 
wavelengths is a sensitive thermometric property of the
material. (LeRoy N. Sanchez/ Los Alamos National Laboratory.)

http://www.lanl.gov/news/index.php?fuseaction=nb.story&story_id=5007&nb_date=2004-04-15
http://www.lanl.gov/news/index.php?fuseaction=nb.story&story_id=5007&nb_date=2004-04-15
http://www.ornl.gov/sci/phosphors/galv.htm
http://animalscience.tamu.edu/ANSC/beef/bcrt/2004/miller_3.pdf
http://animalscience.tamu.edu/ANSC/beef/bcrt/2004/miller_3.pdf
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Centigrade and Fahrenheit Scale On the centigrade scale, the ice point is defined to be and the steam point is On
the Fahrenheit scale, the ice point is and the steam point is Temperatures on the
Fahrenheit and centigrade scales are related by

17-2

2. Gas Thermometers Gas thermometers have the property that they all agree with each other in the measurement
of any temperature as long as the density of the gas is very low. The ideal-gas temperature

(in kelvins) is defined by

17-4

where is the observed pressure of the gas in the thermometer, is the pressure when the
thermometer is immersed in a water–ice–vapor bath at its triple point, and 
(the triple-point temperature).

3. Celsius Scale The Celsius temperature is related to the ideal-gas temperature in kelvins by

17-5

4. Ideal Gas At low densities, all gases obey the ideal-gas law.

Equation of state 17-13

Universal gas constant
17-12

Boltzmann’s constant 17-8

Avogadro’s number 17-9

Equation for a fixed amount of gas A form of the ideal-gas law that is useful for solving problems involving a fixed amount of
gas is

17-14

5. Kinetic Theory of Gases

Molecular interpretation of temperature The absolute temperature is a measure of the average molecular translational kinetic
energy.

Equipartition theorem When a system is in equilibrium, there is an average energy of per molecule ( per
mole) associated with each degree of freedom.

Average kinetic energy For an ideal gas, the average translational kinetic energy of the molecules is

17-19

Total translational kinetic energy The total translational kinetic energy of moles of a gas containing molecules is given by

17-20

rms speed of molecules The rms speed of a molecule of a gas is related to the absolute temperature by

17-21

where is the mass of the molecule and is the molar mass.

Mean free path The mean free path of a molecule is related to its diameter and the number of molecules
per unit volume by

17-23l �
1

22 nVpd
2

nV

dl

Mm

vrms �4(v2)av � A3kT
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� A3RT
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Answers to Concept Checks

17-1 Toni’s room has more air in it.

17-2 It decreases.

17-3 The rms speed of helium is about 12 percent of the
escape speed from Earth’s surface. Thus there are
enough helium molecules with speeds above escape
speed for the helium to slowly escape Earth.

Answers to Practice Problems

17-1 (a) (b)

17-2 (a) (b)

17-3

17-4 5.2 � 102 m>sn � 0.0804 mol

N � 2.69 � 1019 moleculesn � 4.47 � 10�5 mol,

�40°F20°C,

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired
problems.

SSM

P

A

B

T

V

A
B

T
F I G U R E  1 7 - 1 8

Problem 5

5 • Figure 17-18 shows a plot of volume versus ab-
solute temperature for a process that takes a fixed amount of
an ideal gas from point A to point B. What happens to the pres-
sure of the gas during this process? SSM

T
V

6 • Figure 17-19 shows a plot of pressure versus ab-
solute temperature for a process that takes a sample of an ideal
gas from point A to point B. What happens to the volume of the
gas during this process?

T
P

F I G U R E  1 7 - 1 9

Problem 6

TOPIC RELEVANT EQUATIONS AND REMARKS

6. Maxwell–Boltzmann Speed Distribution 17-36

Maxwell–Boltzmann Energy Distribution 17-38F(E) �
2

2p a 1
kT
b 3>2
E1>2e�E>(kT)

f(v) �
4

2p a m2kT b 3>2
v2e�mv

2>(2kT)*

CONCEPTUAL PROBLEMS

1 • True or false:
(a) The zeroth law of thermodynamics states that two objects in

thermal equilibrium with each other must be in thermal equi-
librium with a third object.

(b) The Fahrenheit and Celsius temperature scales differ only in the
choice of the ice-point temperature.

(c) The Celsius degree and the kelvin are the same size.

2 • How can you determine if two objects are in thermal
equilibrium with each other when putting them into physical con-
tact with each other would have undesirable effects? (For example,
if you put a piece of sodium in contact with water there would be a
violent chemical reaction.)

3 • “Yesterday I woke up and it was in my bedroom,”
said Mert to his old friend Mort. “That’s nothing,” replied Mort.
“My room was ” Who had the colder room, Mert or
Mort?

4 • Two identical vessels contain different ideal gases at the
same pressure and temperature. It follows that (a) the number of gas
molecules is the same in both vessels, (b) the total mass of gas is the
same in both vessels, (c) the average speed of the gas molecules is
the same in both vessels, (d) None of the above.

SSM

�5.0°C.

20°F
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(e) equal average speeds, but the oxygen molecules have a smaller
average translational kinetic energy than the nitrogen mole-
cules have.

(f) None of the above.
21 •• Liquid nitrogen is relatively cheap, while liquid helium
is relatively expensive. One reason for the difference in price is that
while nitrogen is the most common constituent of the atmosphere,
only small traces of helium can be found in the atmosphere. Use
ideas from this chapter to explain why it is that only small traces of
helium can be found in the atmosphere.

ESTIMATION AND APPROXIMATION

22 • Estimate the total number of air molecules in your
classroom.
23 •• Estimate the density of dry air at sea level on a warm
summer day.
24 •• A stoppered test tube that has a volume of 10.0 mL has
1.00 mL of water at its bottom. The water has a temperature of

and is initially at a pressure of 1.00 atm. The test tube is held
over a flame until the water has completely boiled away. Estimate
the final pressure inside the test tube.

25 •• In Chapter 11, we found that the escape speed at the
surface of a planet of radius is where is the accel-
eration due to gravity at the surface of the planet. If the rms speed
of a gas is greater than about 15 to 20 percent of the escape speed of
a planet, virtually all of the molecules of that gas will escape the
atmosphere of the planet.
(a) At what temperature is for equal to 15 percent of the

escape speed for Earth?
(b) At what temperature is for equal to 15 percent of the

escape speed for Earth?
(c) Temperatures in the upper atmosphere reach 1000 K. How

does this help account for the low abundance of hydrogen in
Earth’s atmosphere?

(d) Compute the temperatures for which the rms speeds of and
are equal to 15 percent of the escape speed at the surface of

the moon, where is about one-sixth of its value on Earth
and How does this account for the absence of
an atmosphere on the moon?

26 •• The escape speed for gas molecules in the atmosphere
of Mars is and the surface temperature of Mars is typi-
cally Calculate the rms speeds for (a) (b) and (c)
at this temperature. (d) Are and likely to be found
in the atmosphere of Mars?

27 •• The escape speed for gas molecules in the atmosphere of
Jupiter is and the surface temperature of Jupiter is typically

Calculate the rms speeds for (a) (b) and (c) at
this temperature. (d) Are and likely to be found in the
atmosphere of Jupiter? SSM

CO2H2, O2,
CO2O2,H2,�150°C.

60 km>s
CO2H2, O2,

CO2O2,H2,0°C.
5.0 km>s SSM

R � 1738 km.
g

H2

O2

H2vrms

O2vrms

gve � 22gR ,R

100°C

SSM

7 • If a vessel contains equal amounts, by mass, of helium
and argon, which of the following are true?
(a) The partial pressure exerted by each of the two gases on the

walls of the container is the same.
(b) The average speed of a helium atom is the same as that of an

argon atom.
(c) The number of helium atoms and argon atoms in the vessel are

equal.
(d) None of the above.

8 • By what factor must the absolute temperature of a gas be
increased to double the rms speed of its molecules?

9 • Two different gases are at the same temperature. What can
be said about the average translational kinetic energies of the mole-
cules? What can be said about the rms speeds of the gas molecules?

10 • A vessel holds a mixture of helium (He) and methane
The ratio of the rms speed of the He atoms to that of the 

molecules is (a) 1, (b) 2, (c) 4, (d) 16.

11 • True or false: If the pressure of a fixed amount of gas in-
creases, the temperature of the gas must increase.

12 • Why might the Celsius and Fahrenheit scales be more
convenient than the absolute scale for ordinary, nonscientific
purposes?

13 • An astronomer claims that the temperature at the center
of the Sun is about degrees. Do you think that this temperature
is in kelvins, degrees Celsius, or does it not matter?

14 • Imagine that you have a fixed amount of ideal gas in a
container that expands to maintain constant pressure. If you double
the absolute temperature of the gas, the average speed of the mole-
cules (a) remains constant, (b) doubles, (c) quadruples, (d) increases
by a factor of 

15 • Suppose that you compress an ideal gas to half its origi-
nal volume, while also halving its absolute temperature. During
this process, the pressure of the gas (a) halves, (b) remains constant,
(c) doubles, (d) quadruples.

16 • The average translational kinetic energy of the molecules
of a gas depends on (a) the number of moles and the temperature,
(b) the pressure and the temperature, (c) the pressure only, (d) the
temperature only.

17 •• Which speed is greater, the speed of sound in a gas or the
rms speed of the molecules of the gas? Justify your answer, using
the appropriate formulas, and explain why your answer is intu-
itively plausible.

18 •• Imagine that you increase the temperature of a gas while
holding its volume fixed. Explain in terms of molecular motion
why the pressure of the gas on the walls of its container increases.

19 •• Imagine that you compress a gas while holding it at a
fixed temperature (perhaps by immersing the container in cool
water). Explain in terms of molecular motion why the pressure of
the gas on the walls of its container increases.

20 •• Oxygen has a molar mass of and nitrogen has
a molar mass of The oxygen and nitrogen molecules in a
room have:
(a) equal average translational kinetic energies, but the oxygen

molecules have a larger average speed than the nitrogen mole-
cules have.

(b) equal average translational kinetic energies, but the oxygen
molecules have a smaller average speed than the nitrogen mol-
ecules have.

(c) equal average translational kinetic energies and equal average
speeds.

(d) equal average speeds, but the oxygen molecules have a larger
average translational kinetic energy than the nitrogen mole-
cules have.

28 g>mol.
32 g>mol,

SSM

SSM

22.

107

CH4(CH4).

Jupiter as seen from about
twelve million miles. Because
the escape speed at the
surface of Jupiter is about

Jupiter easily
retains hydrogen in its
atmosphere. (Jet Propulsion
Laboratory/ NASA.)

600 km>s,
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28 •• Estimate the average pressure on the front wall of a rac-
quetball court, due to the collisions of the ball with the wall during
a game. Use any reasonable numbers for the mass of the ball, its
typical speed, and the dimensions of the court. Is the average pres-
sure from the ball significant compared to that from the air?

29 •• To a first approximation, the Sun consists of a gas of
equal numbers of protons and electrons. (The masses of these par-
ticles can be found in Appendix B.) The temperature at the center of
the Sun is about and the density of the Sun is about

Because the temperature is so high, the protons and
electrons are separate particles (rather than being joined together to
form hydrogen atoms). (a) Estimate the pressure at the center of the
Sun. (b) Estimate the rms speeds of the protons and the electrons at
the center of the Sun.

30 •• CONTEXT-RICH, ENGINEERING APPLICATION You are de-
signing a vacuum chamber for fabricating reflective coatings.
Inside this chamber, a small sample of metal will be vaporized so
that its atoms travel in straight lines (the effects of gravity are neg-
ligible during the brief time of flight) to a surface where they land
to form a very thin film. The sample of metal is 30 cm from the sur-
face to which the metal atoms will adhere. How low must the pres-
sure in the chamber be so that the metal atoms only rarely collide
with air molecules before they land on the surface?

31 ••• BIOLOGICAL APPLICATION In normal breathing condi-
tions, approximately 5 percent of each exhaled breath is carbon
dioxide. Given this information, and neglecting any difference in
water-vapor content, estimate the typical difference in mass be-
tween an inhaled breath and an exhaled breath.

TEMPERATURE SCALES

32 • A certain ski wax is rated for use between and
What is this temperature range on the Fahrenheit scale?

33 • The melting point of gold is Express this
temperature in degrees Celsius.

34 • A weather report indicates that the temperature is ex-
pected to drop by over the next four hours. By how many
degrees on the Fahrenheit scale will the temperature drop?

35 • The length of the column of mercury in a thermometer is
4.00 cm when the thermometer is immersed in ice water at 1 atm of
pressure, and 24.0 cm when the thermometer is immersed in boil-
ing water at 1 atm of pressure. Assume that the length of the mer-
cury column varies linearly with temperature. (a) Sketch a graph of
the length of the mercury column versus temperature (in degrees
Celsius). (b) What is the length of the column at room temperature

(c) If the mercury column is 25.4 cm long when the ther-
mometer is immersed in a chemical solution, what is the tempera-
ture of the solution?

36 • The temperature of the interior of the Sun is about
What is this temperature in (a) Celsius degrees,

(b) Fahrenheit degrees?

37 • The boiling point of nitrogen, is 77.35 K. Express this
temperature in degrees Fahrenheit.

38 • The pressure of a constant-volume gas thermometer is
0.400 atm at the ice point and 0.546 atm at the steam point.
(a) Sketch a graph of pressure versus Celsius temperature for this
thermometer. (b) When the pressure is 0.100 atm, what is the tem-
perature? (c) What is the pressure at (the boiling point of
sulfur)?

444.6°C

N2,

1.0 � 107 K.

(22.0°C)?

15.0°C

SSM

1945.4°F.

�7.0°C.
�12

SSM

1 � 105 kg>m3.
1 � 107 K,

39 • A constant-volume gas thermometer reads 50.0 torr at
the triple point of water. (a) Sketch a graph of pressure versus
absolute temperature for this thermometer. (b) What will be the
pressure when the thermometer measures a temperature of 300 K?
(c) What ideal-gas temperature corresponds to a pressure of
678 torr?

40 • A constant-volume gas thermometer has a pressure of
30.0 torr when it reads a temperature of 373 K. (a) Sketch a graph
of pressure versus absolute temperature for this thermometer.
(b) What is its triple-point pressure (c) What temperature cor-
responds to a pressure of 0.175 torr?

41 • At what temperature do the Fahrenheit and Celsius tem-
perature scales give the same reading?

42 • Sodium melts at 371 K. What is the melting point of
sodium on the Celsius and Fahrenheit temperature scales?

43 • The boiling point of oxygen at 1.00 atm is 90.2 K. What
is the boiling point of oxygen at 1.00 atm on the Celsius and
Fahrenheit scales?

44 •• On the Réaumur temperature scale, the melting point of
ice is and the boiling point of water is Derive expressions
for converting temperatures on the Réaumur scale to the Celsius
and Fahrenheit scales.

45 ••• ENGINEERING APPLICATION A thermistor is a solid-state
device widely used in a variety of engineering applications. Its pri-
mary characteristic is that its electrical resistance varies greatly with
temperature. Its temperature dependence is given approximately
by where is in ohms is in kelvins, and and
B are constants that can be determined by measuring at calibra-
tion points such as the ice point and the steam point. (a) If

at the ice point and at the steam point, find 
and B. (b) What is the resistance of the thermistor at 
(c) What is the rate of change of the resistance with temperature

at the ice point and the steam point? (d) At which temper-
ature is the thermistor most sensitive?

THE IDEAL-GAS LAW

46 • An ideal gas in a cylinder fitted with a piston (Figure 17-20)
is held at fixed pressure. If the temperature of the gas increases
from to by what factor does the volume change?100°C,50°

SSM

(dR>dT)

t � 98.6°F?
R0153ÆR � 7360Æ

R
R0(Æ) , TRR � R0e

B>T,

80°R.0°R

P3?

SSM
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47 • A 10.0-L vessel contains gas at a temperature of 
and a pressure of 4.00 atm. How many moles of gas are in the ves-
sel? How many molecules?

48 •• A pressure as low as can be achieved
using an oil diffusion pump. How many molecules are there in

of a gas at this pressure if its temperature is 300 K?

49 •• You copy the following paragraph from a Martian
physics textbook: “1 snorf of an ideal gas occupies a volume of
1.35 zaks. At a temperature of 22 glips, the gas has a pressure
of 12.5 klads. At a temperature of glips, the same gas now has a
pressure of 8.7 klads.” Determine the temperature of absolute zero
in glips.

�10

1.00 cm3

1.00 � 10�8 torr

SSM

0.00°C
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50 •• A motorist inflates the tires of her car to a gauge pressure
of 180 kPa on a day when the temperature is –8. When she ar-
rives at her destination, the tire pressure has increased to 245 kPa.
What is the temperature of the tires if we assume that (a) the tires
do not expand, or (b) that the tires expand so the volume of the en-
closed air increases by 7 percent?
51 •• A room is 6.0 m by 5.0 m by 3.0 m. (a) If the air pressure
in the room is 1.0 atm and the temperature is 300 K, find the num-
ber of moles of air in the room. (b) If the temperature increases by
5.0 K and the pressure remains constant, how many moles of air
leave the room?
52 •• Imagine that 10.0 g of liquid helium, initially at 4.20 K,
evaporate into an empty balloon that is kept at 1.00-atm pressure.
What is the volume of the balloon at (a) 25.0 K, and (b) 293 K?
53 •• A closed container with a volume of 6.00 L holds 10.0 g
of liquid helium at 25.0 K and enough air to fill the rest of its vol-
ume at a pressure of 1.00 atm. The helium then evaporates and the
container warms to room temperature (293 K). What is the final
pressure inside the container?
54 •• An automobile tire is filled to a gauge pressure of 
200 kPa when its temperature is (Gauge pressure is the
difference between the actual pressure and atmospheric pressure.)
After the car has been driven at high speeds, the tire temperature
increases to (a) Assuming that the volume of the tire does not
change and that air behaves as an ideal gas, find the gauge pressure
of the air in the tire. (b) Calculate the gauge pressure if the tire ex-
pands so the volume of the enclosed air increases by 10 percent.
55 •• After nitrogen and oxygen the most abundant
molecule in Earth’s atmosphere is water, However, the fraction
of molecules in a given volume of air varies dramatically, from
practically zero percent under the driest conditions to a high of 4 per-
cent where it is very humid. (a) At a given temperature and pressure,
would air be denser when its water vapor content is large or small?
(b) What is the difference in mass, at room temperature and atmos-
pheric pressure, between a cubic meter of air with no water vapor
molecules and a cubic meter of air in which 4 percent of the molecules
are water vapor molecules?
56 •• A scuba diver is 40 m below the surface of a lake, where
the temperature is He releases an air bubble that has a vol-
ume of The bubble rises to the surface, where the tempera-
ture is Assume that the air in the bubble is always in thermal
equilibrium with the surrounding water, and assume that there is
no exchange of molecules between the bubble and the surrounding
water. What is the volume of the bubble right before it breaks the
surface? Hint: Remember that the pressure also changes.

57 •• ENGINEERING APPLICATION A hot-air balloon is open
at the bottom. The balloon, which has a volume of is
filled with air that has an average temperature of The air
outside the balloon has a temperature of and a pressure
of 1.00 atm. How large a payload (including the envelope of the
balloon itself) can the balloon lift? Use for the molar
mass of air. (Neglect the volume of both the payload and the en-
velope of the balloon.) 
58 ••• A helium balloon is used to lift a load of 110 N. The
weight of the envelope of the balloon is 50.0 N and the volume
of the helium when the balloon is fully inflated is The
temperature of the air is and the atmospheric pressure is
1.00 atm. The balloon is inflated with a sufficient amount of he-
lium gas that the net upward force on the balloon and its load is
30.0 N. Neglect any effects due to the changes of temperature as
the altitude changes. (a) How many moles of helium gas are con-
tained in the balloon? (b) At what altitude will the balloon be
fully inflated? (c) Does the balloon ever reach the altitude at
which it is fully inflated? (d) If the answer to Part (c) is “Yes,”
what is the maximum altitude attained by the balloon?

0°C
32.0 m3.

SSM

29.0 g>mol

20.0°C
100°C.

446 m3,

25°C.
15 cm3.

5.0°C.
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H2O
H2O.
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20°C.
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KINETIC THEORY OF GASES

59 • (a) One mole of argon gas is confined to a 1.0-liter con-
tainer at a pressure of 10 atm. What is the rms speed of the argon
atoms? (b) Compare your answer to the rms speed for helium atoms
under the same conditions.
60 • Find the total translational kinetic energy of the mole-
cules of 1.0 L of oxygen gas at a temperature of and a pressure
of 1.0 atm.
61 • Estimate the rms speed and the average kinetic energy of
a hydrogen atom in a gas at a temperature of (At this
temperature, which is approximately the temperature in the inte-
rior of a star, hydrogen atoms are ionized and become protons.)
62 • Liquid helium has a temperature of only 4.20 K and is in
equilibrium with its vapor at atmospheric pressure. Calculate the
rms speed of a helium atom in the vapor at this temperature, and
comment on the result.
63 • Show that the mean free path for a molecule in an ideal
gas at temperature and pressure is given by 
64 •• ENGINEERING APPLICATION State-of-the-art vacuum
equipment can attain pressures as low as Suppose
that a chamber contains helium at this pressure and at room tem-
perature (300 K). Estimate the mean free path and the collision time
for helium in the chamber. Assume the diameter of a helium atom
is
65 •• Oxygen is confined to a cube-shaped container 15 cm
on an edge at a temperature of 300 K. Compare the average kinetic
energy of a molecule of the gas to the change in its gravitational po-
tential energy if it falls 15 cm (the height of the container).

THE DISTRIBUTION 
OF MOLECULAR SPEEDS

66 •• Use calculus to show that given by Equation 17-36,
has its maximum value at a speed 

67 •• The fractional distribution function is defined in
Equation 17-36. Because gives the fraction of molecules
that have speeds in the range between and the integral
of over all the possible ranges of speeds must equal 1. 

Given that the integral show that 

where is given by Equation 17-36.

68 •• Given that the integral calcu-

late the average speed of molecules in a gas using the
Maxwell–Boltzmann distribution function.

69 •• MULTISTEP The translational kinetic energies of the mole-
cules of a gas are distributed according to the Maxwell–Boltzmann
energy distribution, Equation 17-38. (a) Determine the most probable
value of the translational kinetic energy (in terms of the temperature

) and compare this value to the average value. (b) Sketch a graph of
the translational kinetic energy distribution and label
the most probable energy and the average energy. (Do not worry
about calibrating the vertical scale of the graph.) (c) Your teacher says,
“Just looking at the graph allows you to see that the av-
erage translational kinetic energy is considerably greater than the
most probable translational kinetic energy.” What feature(s) of the
graph support her claim?

GENERAL PROBLEMS

70 • Find the temperature at which the rms speed of a mole-
cule of hydrogen gas equals 343 m>s.

f(E) versus E

[f(E) versus E]
T

vav

�
q

0
v3e�av

2
dv � (1>2a2),

SSMf(v)�
q

0
f(v) dv � 1,

�
q

0
v2e�av

2
dv � 1(p>4)a�3>2,

f(v) dv
v � dv,v

f(v) dv
f(v)

v � 12kT>m .
f(v),

SSM

(O2)
1.0 � 10�10 m.

7.0 � 10�11 Pa.

l � kT>(12 Ppd2).PT

1.0 � 107 K.

0.0°C

SSM

*
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71 •• (a) If 1.0 mol of a gas in a cylindrical container occupies a
volume of 10 L at a pressure of 1.0 atm, what is the temperature of
the gas in kelvins? (b) The cylinder is fitted with a piston so that the
volume of the gas (Figure 17-20) can vary. When the gas is heated
at constant pressure, it expands to a volume of 20 L. What is the
temperature of the gas in kelvins? (c) Next, the volume is fixed at
20 L, and the gas’s temperature is increased to 350 K. What is the
pressure of the gas now?
72 •• MULTISTEP (a) The volume per molecule of a gas is the
reciprocal of the number density (the number of molecules per unit
volume). Find the average volume per molecule for dry air at room
temperature and atmospheric pressure. (b) Take the cube root of
your answer to Part (a) to obtain a rough estimate of the average dis-
tance d between air molecules. (c) Find or estimate the average di-
ameter of an air molecule, and compare it to your answer to Part
(b). (d) Sketch the molecules in a cube-shaped volume of air, with the
edge length of the cube equal to 3d. Make your figure to scale and
place the molecules in what you think is a typical configuration.
(e) Use your picture to explain why the mean free path of an air mol-
ecule is much greater than the average distance between molecules.
73 •• CONCEPTUAL The Maxwell–Boltzmann distribution ap-
plies not just to gases, but also to the molecular motions within liq-
uids. The fact that not all molecules have the same speed helps us
understand the process of evaporation. (a) Explain in terms of mol-
ecular motion why a drop of water becomes cooler as molecules
evaporate from the drop’s surface. (Evaporative cooling is an im-
portant mechanism for regulating our body temperatures, and is
also used to cool buildings in hot, dry locations.) (b) Use the
Maxwell–Boltzmann distribution to explain why even a slight in-
crease in temperature can greatly increase the rate at which a drop
of water evaporates.
74 •• A cubic metal box that has 20-cm-long edges contains air
at a pressure of 1.0 atm and a temperature of 300 K. The box is
sealed so that the enclosed volume remains constant, and it is
heated to a temperature of 400 K. Find the force due to the internal
air pressure on each wall of the box.
75 •• ENGINEERING APPLICATION In attempting to create liquid
hydrogen for fuel, one of the proposals is to convert plain old water

into and gases by electrolysis. How many moles of each
of these gases result from the electrolysis of 2.0 L of water?
76 •• A 40-cm-long hollow cylinder of negligible mass rests on
its side on a horizontal frictionless table. The cylinder is divided into
two equal sections by a vertical nonporous membrane. One section
contains nitrogen and the other contains oxygen. The pressure of the
nitrogen is twice that of the oxygen. How far will the cylinder move
if the membrane breaks?
77 •• A cylinder of fixed volume contains a mixture of helium
gas (He) and hydrogen gas at a temperature and pressure

If the temperature is doubled to the pressure would
also double, except for the fact that at this temperature the is es-
sentially 100 percent dissociated into In reality, at pressure

the temperature is If the mass of the hydrogen in
the cylinder is what is the mass of the helium in the cylinder?
78 •• The mean free path for molecules at a temperature of
300 K and at 1.00-atm pressure is Use these data to
estimate the size of an molecule.
79 •• ENGINEERING APPLICATION Current experiments in
atomic trapping and cooling can create low-density gases of
rubidium and other atoms with temperatures in the nanokelvin

range. These atoms are trapped and cooled using magnetic
fields and lasers in ultrahigh vacuum chambers. One method that is
used to measure the temperature of a trapped gas is to turn the trap
off and measure the time it takes for molecules of the gas to fall a
given distance. Consider a gas of rubidium atoms at a temperature of
120 nK. Calculate how long it would take an atom traveling at the
rms speed of the gas to fall a distance of 10.0 cm if (a) it were initially

(10�9 K)

O2

7.10 � 10�8 m.
O2

m,
T2 � 3T1 .P2 � 2P1

H1.
H2

T2 � 2T1 ,P1 .
T1(H2)

SSM

O2H2(H2O)

SSM

D

81 ••• SPREADSHEET, MULTISTEP To solve this problem, you
will use a spreadsheet to study the distribution of molecular
speeds in a gas. Figure 17-22 should help you get started. (a) Enter
the values for constants and as shown. Then in column A,
enter values of speeds ranging from in increments of

(This spreadsheet will be long.) In cell B7, enter the formula
for the Maxwell–Boltzmann fractional speed distribution. This for-
mula contains parameters v, R, M and T. Substitute A7 for v, B$1
for R, B$2 for M and B$3 for T. Then use the FILL DOWN com-
mand to enter the formula in the cells below B7. Create a graph of

versus using the data in columns A and B. (b) Explore how
the graph changes as you increase and decrease the temperature,
and describe the results. (c) Add a third column in which each cell
contains the cumulative sum of all values, multiplied by the
interval size (which equals 1), in the rows above and including
the row in question. What is the physical interpretation of the
numbers in this column? (d) For nitrogen gas at 300 K, what per-
centage of the molecules has speeds less than (e) For ni-
trogen gas at 300 K, what percentage of the molecules has speeds
greater than 700 m>s?

200 m>s?

dv
f(v)

vf(v)

1 m>s.
0 to 1200 m>s,
T,R,M,

1.4 kg
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Problem 80

1

2

3

4

5

6

7

8

9

10

11

12

A B C

R = 

M = 

T =

8.31

0.028

300

J/mol-K

kg/mol

K

v

(m/s)

f(v)

(s/m)

0

sum f(v)dv

(unitless)

00

1

2

3

4

5

3.0032E-08

1.2013E-07

2.7028E-07

4.8048E-07

7.5071E-07

3.00325E-08

1.5016E-07

4.20441E-07

9.0092E-07

1.65163E-06

F I G U R E  1 7 - 2 2 Problem 81 (Only the first few rows of the
spreadsheet are shown.)

moving directly downward, and (b) if it were initially moving di-
rectly upward. Assume that the atom does not collide with any other
atoms along its trajectory.

80 ••• A cylinder is filled with 0.10 mol of an ideal gas at stan-
dard temperature and pressure, and a 1.4-kg piston seals the gas in
the cylinder (Figure 17-21) with a frictionless seal. The trapped col-
umn of gas is 2.4 m high. The piston and cylinder are surrounded by
air, also at standard temperature and pressure. The piston is released
from rest and starts to fall. The motion of the piston ceases after the
oscillations stop with the piston and the trapped air in thermal equi-
librium with the surrounding air. (a) Find the height of the gas col-
umn. (b) Suppose that the piston is pushed down below its equilib-
rium position by a small amount and then released. Assuming that
the temperature of the gas remains constant, find the frequency of
vibration of the piston.

SSM
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T
he relation between heating a system, doing work on the system, and the
change in the internal energy of the system is the basis of the first law of ther-
modynamics. In Part I of this book, we discussed motion; now, we consider
the role that heat plays in the generation of motion—whether it is the move-
ment of people hurrying to catch a bus, the cyclic motion of pistons in a car
engine, or even the drips of water sliding down a glass of cold lemonade on

a hot day.
For years, the power generated by heating has been harnessed. From early steam

engines to internal combustion automobile engines to jet engines, engineers have

18

Pumping up a bicycle tire requires

how much work on the air in order to

compress it? (See Example 18-13.)
?
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THE MEN’S LITTLE 500 BICYCLE RACE
HAS BEEN HELD AT INDIANA
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BY ALPHA TAU OMEGA). (AJ Mast/
Icon SMI/Corbis.)
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been finding ways to improve the performance of their machines to get the most
energy out of them. Even athletes today train and eat to optimize their perfor-
mance on the field, essentially treating their bodies like other mechanical engines.

In this chapter, we define heat capacity, and examine how heating a sample
can cause either an increase in its temperature or a change in its phase
(from solid to liquid, for example). We then examine the relationship be-
tween changes in the internal energy of a system, the energy transferred
to the system via heat and work, and express the law of conservation of
energy for systems as the first law of thermodynamics. Finally, we shall see
how the heat capacity of a system is related to its molecular structure.

18-1 HEAT CAPACITY AND SPECIFIC HEAT

Heat is the transfer of energy due to a difference in temperature. During
the seventeenth century, Galileo, Newton, and other scientists generally
supported the theory of the ancient Greek atomists who considered
thermal energy to be a manifestation of molecular motion. During the
next century, methods were developed for making quantitative mea-
surements of the amount of energy transferred because of differences in
temperature, and it was found that if objects are in thermal contact, the
amount of energy that is released by one object equals the amount that
is absorbed by the other object. This discovery led to a theory of in
which heat was modeled as a conserved material substance. In this the-
ory, an invisible fluid called “caloric” flowed out of one object and into
another, and this caloric could be neither created nor destroyed.

The caloric theory reigned until the nineteenth century, when it was
observed that kinetic friction between objects could produce an unlim-
ited transfer of energy between objects, deposing of the idea that caloric
was a substance present in a fixed amount. The modern theory of heat
did not emerge until the 1840s, when James Joule (1818–1889) demon-
strated that when a viscous liquid is stirred with a paddle, the increase
or decrease of a given amount of thermal energy was always accompa-
nied by the decrease or increase of an equivalent quantity of mechanical
energy. Thermal energy, therefore, is not itself conserved. Instead, ther-
mal energy is a form of internal energy, and it is energy that is conserved.

When a warmer object is in thermal contact with a cooler object, the
energy being transferred from the warmer object to the cooler object
due to the difference in the temperatures of the two objects is called
heat. The energy is no longer identified as heat once it has been trans-
ferred to the cooler object. Instead, it is identified as part of the internal energy of
the cooler object. The internal energy of an object is its total energy in the center-of-
mass reference frame of the object. In this book is the symbol for heat and is
the symbol for internal energy.

When energy is transferred to a substance by heating it, the temperature of the
substance usually increases.* The amount of heat needed to increase the temper-
ature of a sample of the substance is proportional to both the temperature change
and the mass of the sample:

18-1

DEFINITION: HEAT CAPACITY

Q � ¢Eint � C ¢T � mc ¢T

Q

EintQ

* An exception occurs during a change in phase, as when water freezes or evaporates. Changes of phase are discussed
in Section 18-2.

Steel ingots in a twin-tube tunnel furnace. The three 53-cm-
diameter carbon-steel ingots seen here have been heated for
about 7 hours to approximately Each 3200-kg ingot
sits on a furnace car that transports it through the 81-m-long
furnace, which is divided into 12 separate heating zones so
that the temperature of the ingot is increased gradually to
prevent cracking. The ingots, glowing a yellow-whitish color,
exit the furnace to be milled into large, heavy-walled pipes.
(Phoenix Pipe & Tube/ Lana Berkovich.)

1340°C.
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The term heat capacity does not
mean that a body contains a certain

amount of heat.

where is the heat capacity, which is defined as the change in internal energy
required to increase the temperature of a sample by one degree. The specific heat
capacity is the heat capacity per unit mass:

18-2

DEFINITION: SPECIFIC HEAT

The term specific heat is short for specific heat capacity. The historical unit of heat,
the calorie, was originally defined to be the amount of heat needed to increase the
temperature of one gram of water one Celsius degree.* Because we now recognize
that heat is a measure of energy transfer, we can define the calorie in terms of the
SI unit of energy, the joule:

18-3

The U.S. customary unit of heat is the Btu (for British thermal unit), which was
originally defined to be the amount of energy needed to increase the temperature
of 1 pound of water by The Btu is related to the calorie and to the joule by

18-4

The original definition of the calorie implies that the specific heat of water (in the
liquid state) is†

18-5a

Similarly, from the definition of the Btu, the specific
heat of water in U.S. customary units is

18-5b

The heat capacity per mole is called the molar
specific heat

where is the number of moles. Because the
molar specific heat and specific heat are related by

18-6

MOLAR SPECIFIC HEAT

where is the molar mass. Table 18-1 lists
the specific heats and molar specific heats of some
solids and liquids. Note that the molar heats of all
the metals are about the same. We discuss the signif-
icance of the similar specific-heat values of metals in
Section 18-7.

M � m>n
c� �

C
n

�
mc
n

�Mc

cc�
C � mc,n

c� �
C
n

c�,

cwater � 1 Btu>(lb # °F)

cwater � 1 cal>(g # K) � 1 kcal>(kg # K) � 4.184 kJ>(kg # K)

1 Btu � 252 cal � 1.054 kJ

1°F.

1 cal � 4.184 J

c �
C
m

c

C

!

* The kilocalorie is then the amount of heat needed to increase the temperature of 1 kg of water by The “calorie”
used in measuring the energy equivalent of foods is actually the kilocalorie.

1°C.

† Careful measurement shows that the specific heat of water varies by about 1 percent over the temperature range from
to We will usually neglect this small variation.100°C.0°

1 line short

Table 18-1 Specific Heats and Molar Specific Heats 

of Some Solids and Liquids

Substance or °

Aluminium 0.900 0.215 24.3

Bismuth 0.123 0.0294 25.7

Copper 0.386 0.0923 24.5

Glass 0.840 0.20 —

Gold 0.126 0.0301 25.6

Ice 2.05 0.49 36.9

Lead 0.128 0.0305 26.4

Silver 0.233 0.0558 24.9

Tungsten 0.134 0.0321 24.8

Zinc 0.387 0.0925 25.2

Alcohol (ethyl) 2.4 0.58 111

Mercury 0.140 0.033 28.3

Water 4.18 1.00 75.2

Steam (at 1 atm) 2.02 0.48 36.4

Liquids are in red typeface and gases are in blue typeface.

(�10°C)

c�, J>mol # KBtu>lb # Fc, kJ>kg # K
c, kcal>kg # K
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1. The required heat is given by Equation 18-1, with
from Table 18-1:c � 0.126 kJ>(kg # K) 393 kJ�

Q � mc ¢T � (3.00 kg)(0.126 kJ>(kg # K))(1041 K)

CHECK The problem asks for an amount of energy and the answer came out in joules,
which are energy units.

TAKING IT FURTHER Note that we use 

PRACTICE PROBLEM 18-1 A 2.0-kg aluminum block is originally at If 36 kJ of en-
ergy are added to the block, what is its final temperature?

10°C.

¢T � 1063°C � 22°C � 1041°C � 1041 K.

We see from Table 18-1 that the specific heat of liquid water is
considerably larger than that of other common substances. Thus,
water is an excellent material for storing thermal energy, as in a
solar heating system. It is also an excellent coolant, as in a car en-
gine. (The coolant in automotive engines is a mixture of water
and ethylene glycol.)

CALORIMETRY

To measure the specific heat of an object, we can first heat it to
some known temperature, say the boiling point of water. Then,
we transfer the object to a water bath of known mass and ini-
tial temperature. Finally, we measure the final equilibrium
temperature of the system (the object, the water in the bath,
and the water-bath container). If the system is thermally iso-
lated from its surroundings (by insulating the container, for
example), then the heat released by the object will equal the
heat absorbed by the water and the container. This procedure
is called calorimetry, and the insulated water container is
called a calorimeter.

Let be the mass of the object, let be its specific heat, and let be the initial
temperature of the object. If is the final temperature of both the object, the water
and container, the heat released by the object is

Similarly, if is the initial temperature of the water and container, then the heat
absorbed by the water and container is

where and are the mass and specific heat of the water, and
and are the mass and specific heat of the container. (Note that we have ex-

pressed the temperature differences so that they are both positive quantities. As a
consequence, our expressions for and are both positive.) Setting theseQoutQin

ccmc

cw � 4.18 kJ>(kg # K)mw

Qin � mwcw(Tf � Tiw) � mccc(Tf � Tiw)

Tiw

Qout � mc(Tio � Tf)

Tf

Tiocm

Example 18-1 Increasing the Temperature

A jewelry designer is creating gold charms. To make the charms, he must melt gold to fill
molds. How much heat is needed to increase the temperature of 3.00 kg of gold from 
(room temperature) to the melting point of gold?

PICTURE The amount of heat needed to increase the temperature of the substance (gold)
is proportional to the temperature change and to the mass of the substance.

SOLVE

Q

1063°C,
22°C

Large bodies of water, such as lakes or oceans, tend to moderate
fluctuations of the air temperature nearby because the bodies of water
can absorb or release large quantities of heat while undergoing only
very small changes in temperature. (From Frank Press and Raymond
Siever, Understanding Earth, 3rd ed., W. H. Freeman and Company, 2001.)
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amounts of heat equal yields an equation that can be solved for the specific heat 
of the object:

18-7

Because only temperature differences occur in Equation 18-7, and because the
kelvin and the Celsius degree are the same size, it does not matter whether we use
kelvins or Celsius degrees.

Qout � Qin ⇒ mc(Tio � Tf) � mwcw(Tf � Tiw) � mccc(Tf � Tiw)

c

Example 18-2 Measuring Specific Heat

To measure the specific heat of lead, you heat 600 g of lead shot to and place it in an
aluminum calorimeter of mass 200 g that contains 500 g of water initially at If the
final temperature of the mixture is what is the specific heat of lead? (The specific heat
of the aluminum container is 

PICTURE We set the heat released by the lead equal to the heat absorbed by the water and
container and solve for the specific heat of lead 

SOLVE

1. Write the heat released by the lead in terms of its specific heat:

2. Write the heat absorbed by the water:

3. Write the heat absorbed by the container:

4. Set the heat released equal to the heats absorbed by the water 
and the container:

Qc � mccc ¢Tc

Qw � mwcw ¢Tw

QPb � mPbcPb ƒ¢TPb ƒ

cPb .

0.900 kJ>(kg # K).)
20.0°C,

17.3°C.
100.0°C

where and ƒ¢TPb ƒ � 80.0 K¢Tc � ¢Tw � 2.7 K

mPbcPb ƒ¢TPb ƒ � mwcw ¢Tw � mccc ¢Tc

Qout � Qin ⇒ QPb � Qw � Qc

5. Solve for cPb:

0.13 kJ>(kg # K)� 0.128 kJ>(kg # K) �

�
[(0.50 kg)(4.18 kJ>(kg # K)) � (0.20 kg)(0.90 kJ>(kg # K))](2.7 K)

(0.600 kg)(80.0 K)

cPb �
(mwcw � mccc) ¢Tw

mPb ƒ¢TPb ƒ

CHECK As expected, the specific heat of lead is considerably less than that of water.
(The specific heat of liquid water is 

TAKING IT FURTHER The step-5 result is expressed to two figures because the tem-
perature change of the water is known to only two figures.

PRACTICE PROBLEM 18-2 A solar home contains of concrete
How much heat is released by the concrete when it cools

from to 

18-2 CHANGE OF PHASE AND LATENT HEAT

If heat is absorbed by ice at the temperature of the ice does not change. Instead,
the ice melts. Melting is an example of a phase change or change of state. Common
types of phase changes include fusion (liquid to solid), melting (solid to liquid),
vaporization (liquid to vapor or gas), condensation (gas or vapor to liquid), and
sublimation (solid directly to gas or vapor, such as solid carbon dioxide, or dry ice,
changing to vapor). Other types of phase changes exist as well, such as the change

0°C,

20°C?25°C
� 1.00 kJ>kg # K).(specific heat

1.00 � 105 kg

4.18 kJ>(kg # K).)

(Edward Kinsman/
Photo Researchers, Inc.)
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of a solid from one crystalline form to another. For example, carbon graphite under
intense pressure becomes a diamond.

Molecular theory can help us to understand why temperature remains constant
during a phase change. The molecules in a liquid are close together and exert at-
tractive forces on each other, whereas molecules in a gas are far apart. Because of
this intermolecular attraction, it takes energy to remove molecules from a liquid to
form a gas. Consider a pot of water sitting over a flame on the stove. At first, as the
water is heated, the motions of its molecules increase and the temperature in-
creases. When the temperature reaches the boiling point, the molecules can no
longer increase their kinetic energy and remain in the liquid. As the liquid water
vaporizes, the added energy goes into breaking the intermolecular attractions.
That is, it goes into increasing the potential energy of the molecules rather than
their kinetic energy. Because temperature is a measure of the average translational
kinetic energy of molecules, the temperature does not change.

For a pure substance, a change in phase at a given pressure occurs only at a par-
ticular temperature. For example, pure water at a pressure of 1 atm changes from
solid to liquid at (the normal melting point of water) and from liquid to gas at

(the normal boiling point of water).
The energy required to melt a sample of a substance of mass with no change

in its temperature is proportional to the mass of the sample:

18-8

where is called the latent heat of fusion of the substance. At a pressure of 1 atm,
the latent heat of fusion for water is If the phase change
is from liquid to gas, the heat required is

18-9

where is the latent heat of vaporization. For water at a pressure of 1 atm, the la-
tent heat of vaporization is Table 18-2 gives the melting
and boiling points and the latent heats of fusion and vaporization, all at 1 atm, for
various substances.

2.26 MJ>kg � 540 kcal>kg.
Lv

Qv � mLv

333.5 kJ>kg � 79.7 kcal>kg.
Lf

Qf � mLf

m
100°C

0°C

Although melting indicates that the ice has
experienced a change in phase, the
temperature of the ice does not change. (From
Donald Wink, Sharon Gislason, and Sheila
McNicholas, The Practice of Chemistry, W. H.
Freeman and Company, 2002.)

Table 18-2 Melting Point (MP), Latent Heat of Fusion (L
f
),

Boiling Point (BP), and Latent Heat of Vaporization

(L
v
), all at 1 atm, for Various Substances

Substance MP, K BP, K

Alcohol, ethyl 159 109 351 879

Bromine 266 67.4 332 369

Carbon dioxide — — 194.6* 573*

Copper 1356 205 2839 4726

Gold 1336 62.8 3081 1701

Helium — — 4.2 21

Lead 600 24.7 2023 858

Mercury 234 11.3 630 296

Nitrogen 63 25.7 77.35 199

Oxygen 54.4 13.8 90.2 213

Silver 1234 105 2436 2323

Sulfur 388 38.5 717.75 287

Water (liquid) 273.15 333.5 373.15 2257

Zinc 692 102 1184 1768

* These values are for sublimation. Carbon dioxide does not have a liquid state at 1 atm.

Lv, kJ>kgLf , kJ>kg
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Example 18-3 Changing Ice into Steam

How much heat is needed to change 1.5 kg of ice at and 1.0 atm into steam?

PICTURE The heat required to change the ice into steam consists of four parts: the heat
needed to increase the temperature of the ice from to the heat needed to melt
the ice; the heat needed to increase the temperature of the water from to and

the heat needed to vaporize the water. In calculating and we assume that the spe-
cific heats are constant, with the values for ice and for water.4.18 kJ>kg # K2.05 kJ>kg # K

Q3 ,Q1Q4 ,
100°C;0°CQ3 ,

Q2 ,0°C;�20°C
Q1 ,

�20°C

SOLVE

1. Use to find the heat needed to increase
the temperature of the ice to 0°C:
Q1 � mc ¢T

� 61.5 kJ � 0.0615 MJ

Q1 � mc ¢T � (1.5 kg)(2.05 kJ>kg # K)(20 K)

2. Use from Table 18-2 to find the heat needed to melt the ice:Q2Lf � 500 kJ � 0.500 MJQ2 � mLf � (1.5 kg)(333.5 kJ>kg)

3. Find the heat needed to increase the temperature of
the water from to 100°C:0°C

Q3

Q3 � 627 kJ � 0.627 MJ

� 627 kJ � 0.627 MJQ3 � mc ¢T � (1.5 kg)(4.18 kJ>kg # K)(100 K)

4. Use from Table 18-2 to find the heat needed to vaporize
the water:

Q4Lv Q4 � mLV � (1.5 kg)(2.26 MJ>kg) � 3.39 MJ

5. Sum your results to find the total heat Q: 4.6 MJQ � Q1 � Q2 � Q3 � Q4 �

CHECK You may have observed that much less time is needed to
bring a kettle full of water to a boil than the time needed to boil the
kettle dry. This observation is consistent with the fact that our step-3
result is less than 20 percent of our step-4 result.

TAKING IT FURTHER Notice that most of the heat was needed to
vaporize the water, and that the amount needed to melt the ice was a
significant fraction of the heat needed to increase the temperature of
the liquid water by A graph of temperature versus time for the
case in which the heat is absorbed at a constant rate of is
shown in Figure 18-1. Note that it takes considerably longer to vapor-
ize the water than it does to melt the ice or to increase the temperature
of the water. When all of the water has vaporized, the temperature
again increases as heat is absorbed.

PRACTICE PROBLEM 18-3 An 830-g piece of lead is heated to its
melting point of 600 K. How much additional energy must be ab-
sorbed by the lead at 600 K to completely melt all 830 g?

1.0 kJ>s100°C.
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3020100

t, °C

F I G U R E  1 8 - 1 A 1.5-kg sample of water is heated from to
at a constant rate of 60 kJ>min.120°C

�20°C

Context-RichExample 18-4 A Cool Drink

A 2.0-liter pitcher of lemonade has been sitting on the picnic table in the sunlight all day at
You pour 0.24 kg into a Styrofoam cup and add 2 ice cubes (each 0.025 kg at ).

(a) Assuming no heat is released to the surroundings, what is the final temperature of the
lemonade? (b) What is the final temperature if you add six, instead of the two, ice cubes?

PICTURE We set the heat released by the lemonade equal to the heat absorbed by the ice
cubes. Let be the final temperature of the lemonade and water. We assume that lemonade
has the same specific heat as water.

Tf

0.0°C33°C.
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SOLVE

(a) 1. Write the heat absorbed by the lemonade in terms of the
final temperature Tf :

Qout � mLc ƒ¢T ƒ � mLc(TLi � Tf)

2. Write the heat absorbed by the ice cubes and resulting water
in terms of the final temperature:

� miceLf � micec(Tf � Twi)Qin � miceLf � micec ¢Tw

3. Set the heat released equal to the heat absorbed and solve
for Tf :

so

14°C� 286.7 K �

�
(0.050 � 273.15 � 0.24 � 306.15)4.18 � 0.050 � 333.5

0.29 � 4.18

Tf �
(miceTwi � mLTLi)c � miceLf

(mL � mice)c

mLc(TLi � Tf) � miceLf � micec(Tf � Twi)

Qout � Qin

(b) 1. For 6 ice cubes, Find the final temperature as
in step 3 of Part (a):

mice � 0.15 kg.

� 262.8 K � �10.4 °C

�
(0.150 � 273.15 � 0.24 � 306.15)4.18 � 0.150 � 333.5

0.39 � 4.18

Tf �
(miceTwi � mLTLi)c � miceLf

(mL � mice)c

2. A final temperature below cannot be correct! No
amount of ice at can decrease the temperature of warm
lemonade to below Our calculation is wrong because
our assumption that all of the ice melts was wrong. Instead,
the heat released by the lemonade as it cools from to

is not enough to melt all of the ice. The final
temperature is thus:
0°C

32°C

0°C.
0°C

0°C

0°C�

CHECK Let us calculate how much ice is melted. For the lemonade to cool from to 
it must release heat in the amount The mass of
ice that this amount of heat will melt is This is
the mass of only 4 ice cubes. Adding more than 4 ice cubes does not decrease the tempera-
ture below It merely increases the amount of ice in the ice–lemonade mixture at .
In problems like this one, we should first find out how much ice must be melted to reduce
the temperature of the liquid to If less than that amount is added, we can proceed as in
Part (a). If more ice is added, the final temperature is 0°C.

0°C.

0°C0°C.

mice � Q>Lf � 33.1 kJ>(333.5 kJ>kg) � 0.10 kg.
Q � (0.24 kg)(4.18 kJ>kg # K)(33 K) � 33.1 kJ.

0°C,33°C

F I G U R E  1 8 - 2 Schematic diagram for
Joule’s experiment. Insulating walls surround
water. As the weights fall at constant speed,
they turn a paddle wheel, which does work on
the water. If friction is negligible, the work
done by the paddle wheel on the water equals
the loss of mechanical energy of the weights,
which is determined by calculating the loss in
the potential energy of the weights.

18-3 JOULE’S EXPERIMENT AND THE FIRST 
LAW OF THERMODYNAMICS

We can increase the temperature of a system by adding energy but we can also in-
crease its temperature by doing work on it. Figure 18-2 is a diagram of the appara-
tus Joule used in a famous experiment in which he determined the amount of work
needed to increase the temperature of one pound of water by one Fahrenheit de-
gree. Here, the system is a thermally insulated container of water. Joule’s appara-
tus converts the potential energy of falling weights into work done on the water by
an attached paddle, as shown in the figure. Joule found that he could increase the
temperature of 1.00 lb of water by by dropping 772 lbs of attached weights
a distance of one foot. Converting to modern units and using current values, Joule
found that it takes about 4.184 J (the energy units adopted by the scientific com-
munity in 1948) to increase the temperature of 1 g of water by The result that
4.184 J of mechanical energy is exactly equivalent to 1 cal of heat is known as the
mechanical equivalence of heat.

There are other ways of doing work on this system. For example, we could let
gravity do the work by dropping the insulated container of water from some

1°C.

1.00°F
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Joule’s experiment establishing
the mechanical equivalence of
heat involved the conversion of
mechanical energy into internal
energy. Give some examples of the
internal energy of a system being
converted into mechanical energy.

CONCEPT CHECK 18-1✓F I G U R E  1 8 - 3 Another method of
doing work on a thermally insulated
container of water. Electrical work is
done on the system by the generator,
which is driven by the falling weight.

height letting the system make an inelastic collision with the ground, or we
could do mechanical work to generate electricity and then use the electricity to
heat the water (Figure 18-3). During all such experiments, the same amount of
work is required to produce a given temperature change. By the conservation of
energy, the work done equals the increase in the internal energy of the system.

h,

Example 18-5 Warming Water by Dropping It

(a) At Niagara Falls, the water drops 50 m. If the decrease in the gravitational potential energy
of the water is equal to the increase in the internal energy of the water, compute the increase
in its temperature. (b) At Yosemite Falls, the water drops 740 m. If the decrease in the gravita-
tional potential energy of the water is equal to the increase in the internal energy of the water,
compute the increase in its temperature. (These temperature increases are not easily observed
because as the water falls its temperature is affected by several other effects. For example it
cools by evaporation and it is warmed as the air does work on it via the viscosity interaction.)

PICTURE The kinetic energy of the water just before it hits the bottom equals its original po-
tential energy During the collision, this energy is converted into internal energy, which
in turn causes an increase in temperature given by mc ¢T.

mgh.

SOLVE

(a) 1. Set the decrease in the potential energy equal to the increase
in the internal energy:

mgh � mc ¢T

2. Solve for the temperature change: 0.12 K� 0.117 K �¢T �
gh

c
�

(9.81 N>kg)(50 m)

4.184 kJ>kg # K

(b) Repeat the calculation with h � 740 m: 1.7 K� 1.74 K �¢T �
gh

c
�

(9.81 N>kg)(740 m)

4.184 kJ>kg # K

CHECK Yosemite Falls is 14.8 times higher than Niagara Falls, so the potential energy
change of the Yosemite Falls water is 14.8 times larger than the potential energy change of
Niagara Falls water. Thus, the change in temperature should be 14.8 times greater for
Yosemite Falls water than for Niagara Falls water. Multiplying 0.117 K by 14.8 gives 1.73 K,
which is very close to our Part-(b) result.

TAKING IT FURTHER These calculations illustrate one of the difficulties with Joule’s
experiment—a large amount of mechanical energy must be dissipated to produce a measur-
able change in the temperature of the water.

Suppose that we perform Joule’s experiment, but replace the insulating walls of
the container with conducting walls. We find that the work needed to produce a
given change in the temperature of the system depends on how much heat is ab-
sorbed or released by the system by conduction through the walls. However, if we
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sum the work done on the system and the net heat absorbed by the system, the re-
sult is always the same for a given temperature change. That is, the sum of the heat
transfer into the system and the work done on the system equals the change in the
internal energy of the system. This result is the first law of thermodynamics,
which is simply a statement of the conservation of energy.

Let stand for the work done by the surroundings on the system. For example,
suppose our system is a gas confined to a cylinder by a piston. If the piston com-
presses the gas, the surroundings do work on the gas and is positive. (However,
if the gas expands against the piston, the gas does work on the surroundings and

is negative.) Also, let stand for the heat transfer into the system. If heat is
transferred into the system, then is positive; if heat is transferred out of the sys-
tem, then is negative (Figure 18-4). Using these conventions, and denoting the
internal energy by * the first law of thermodynamics is written

18-10

The change in the internal energy of the system equals the heat transfer
into the system plus the work done on the system.

FIRST LAW OF THERMODYNAMICS

Equation 18-10 is the same as the work–energy theorem of Chapter 7
(Equation 7-9), except we have added the heat term and called the energy of the
system Eint .

Qin

Wext � ¢Esys

¢Eint � Qin � Won

Eint ,
Qin

Qin

QinWon

Won

Won Heat in

Qin positive Won positive

Work on

Δ

Δ

Eint

Eint

= Qin + Won

F I G U R E  1 8 - 4 Sign convention for the
first law of thermodynamics.

* Another commonly used symbol for internal energy is U.

Example 18-6 Stirring the Water

You do 25 kJ of work on a system consisting of 3.0 kg of water by stirring it with a paddle
wheel. During this time, 15 kcal of heat is released by the system due to poor thermal insu-
lation. What is the change in the internal energy of the system?

PICTURE We express all energies in joules and apply the first law of thermodynamics.

SOLVE

1. is found by using the first law of thermodynamics:¢Eint ¢Eint � Qin � Won

2. Heat is released by the system, thus the term is negative:Qin � �62.7 kJQin � �15 kcal � �(15 kcal)a4.18 kJ
1 kcal

b
3. The work is done on the system, thus term is positive:Won Won � �25 kJ

4. Substitute these quantities and solve for ¢Eint:

�38 kJ� �37.7 kJ �

¢Eint � Qin � Won � (�62.7 kJ) � (�25 kJ)

CHECK The heat loss exceeds the work gain, so the change in internal energy is negative.

It is important to understand that the internal energy is a function of the
state of the system, just as and are functions of the state of the system.
Consider a gas in some initial state The temperature can be determined
by the equation of state. For example, if the gas is ideal, the The in-
ternal energy also depends only on the state of the gas, which is determinedEint i

Ti � PiVi>(nR).
Ti(Pi , Vi).

TP, V,
Eint
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It is correct to say that the internal
energy of a system has increased,

but it is not correct to say either that
the work of a system has increased or
that the heat of a system has increased.

If the gas is then returned to its
original state the

temperature T and the internal energy
must equal their original values.Eint

(Pi , Vi),

!

!
by any two state variables such as and and or and If we slowly heat
the gas or cool the gas, do work on the gas, or let the gas do work, the gas will
move through a sequence of states; that is, it will have different values of the state
functions and 

On the other hand, the heat and the work are not functions of the state of
the system. That is, there are no functions or associated with any particular
state of the gas. We could take the gas through a sequence of states beginning and
ending at state during which the gas did work that has a positive value
and absorbed an equal amount of heat. Or we could take it through a different se-
quence of states such that work was done on the gas and heat was released from the
gas. Heat is not something that is contained in a system. Rather, heat is a measure
of the energy that is transferred from one system to another because of a difference
in temperature. Work is a measure of the energy that is transferred from one system
to another because the point of contact of a force exerted by one system on the other
undergoes a displacement with a component that is parallel to the force.

For very small amounts of heat absorbed, work done, or changes in internal en-
ergy, it is customary to write Equation 18-10 as

18-11

In this equation, is the differential of the internal-energy function. However,
neither nor is a differential of any function. Instead, merely repre-
sents a small amount of energy transferred to or from the system by heating or
cooling, and represents a small amount energy transferred to or from the sys-
tem by work being done on or by the system.

18-4 THE INTERNAL ENERGY OF AN IDEAL GAS

The translational kinetic energy of the molecules in an ideal gas is related to the
absolute temperature by Equation 17-20:

where is the number of moles of gas and is the universal gas constant. If the
internal energy of a gas is just this translational kinetic energy, then and

18-12

Then, the internal energy will depend only on the temperature of the gas, and not
on its volume or pressure. If the molecules have other types of energy in addition
to translational kinetic energy, such as rotational energy, the internal energy will be
greater than that given by Equation 18-12. But according to the equipartition theo-
rem (Chapter 17, Section 4), the average energy associated with any degree of free-
dom will be per mole per molecule), so again, the internal energy will
depend only on the temperature and not on the volume or pressure.

We can imagine that the internal energy of a real gas might include
other kinds of energy, which depend on the pressure and volume of
the gas. Suppose, for example, that nearby gas molecules exert at-
tractive forces on each other. Work is then required to increase the
separation of the molecules. Then, if the average distance between
the molecules is increased, the potential energy associated with the
molecular attraction will increase. The internal energy of the gas will
then depend on the volume of the gas as well as on its temperature.

Joule, using an apparatus like the one shown in Figure 18-5, per-
formed a simple but interesting experiment to determine whether or
not the internal energy of a gas depends on its volume. The com-
partment on the left in Figure 18-5 initially contains a gas and the
compartment on the right has been evacuated. A stopcock that is

(1
2 kT

1
2 RT

Eint � 3
2nRT

Eint � K,
Rn

K � 3
2nRT

T
K

dWon

dQindWondQin

dEint

dEint � dQin � dWon

(Pi , Vi)

WQ
WQ

Eint .P, V, T,

T.VT,V, PP

Gas Vacuum

F I G U R E  1 8 - 5 Free expansion of a gas. When the stopcock
on the gas is opened, the gas expands rapidly into the
evacuated chamber. Because no work is done on the gas and
the whole system is thermally insulated, the initial and final
internal energies of the gas are equal.
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initially closed connects the two compartments. The whole system is
thermally insulated from its surroundings by rigid walls so that no
energy can be transferred into or out of the system by heating or
cooling and no energy can be transferred by work being done on or
by the gas. When the stopcock is opened, the gas rushes into the
evacuated chamber. This process is called a free expansion. The gas
eventually reaches thermal equilibrium with itself. Because no work
has been done on the gas and no heat has been transferred to it, the
final internal energy of the gas must equal its initial internal energy.
If the gas molecules exert attractive forces on one another, the po-
tential energy associated with these forces will increase as the vol-
ume increases. Because energy is conserved, the kinetic energy of
translation will therefore decrease, which will result in a decrease in
the temperature of the gas.

When Joule performed this experiment, he found the final temperature to be
equal to the initial temperature. Subsequent experiments verified this result for
gases at low densities. This result implies that for a gas at low density—that is,
for an ideal gas—the temperature depends only on the internal energy, or as we
usually think of it, the internal energy depends only on the temperature. However,
if the experiment is done with a large amount of gas initially in the left compart-
ment so that the initial density is high, then the temperature after expansion is
slightly cooler than the temperature before the expansion. This result indicates that
a small attraction exists between the gas molecules of a gas.

18-5 WORK AND THE DIAGRAM 
FOR A GAS

In many types of engines, a gas does work expanding against a moving piston.
For example, in a steam engine, water is heated in a boiler to produce steam. The
steam then does work as it expands and drives a piston. In an automobile engine,
a mixture of gasoline vapor and air is ignited, causing it to combust. The resulting
high temperatures and pressures cause the gas to expand rapidly, driving a piston
and doing work. In this section, we see how we can mathematically describe the
work done by an expanding gas.

QUASI-STATIC PROCESSES

Figure 18-6 shows an ideal gas confined in a container that has a tightly fitting pis-
ton that we assume to be frictionless. If the piston moves, the volume of the gas
changes. The temperature or pressure or both must also change because these three
variables are related by the equation of state If we suddenly push in the
piston to compress the gas, the pressure will initially be greater near the piston
than far from it. The gas eventually will settle down to a new equilibrium pressure
and temperature. We cannot determine such macroscopic variables as or 
for the entire gas system until equilibrium is restored in the gas. However, if we

EintT, P,

PV � nRT.

PV

F I G U R E  1 8 - 6 Gas confined in a thermally
insulated cylinder with a movable piston. If the
piston moves a distance the volume of the
gas changes by The work done by
the gas is where is the pressure.PPA dx � P dV,

dV � A dx.
dx,

x

F = PA

GasF

P

A

Gas Vacuum

F I G U R E  1 8 - 5 (repeated)

Free expansion of a gas. When the stopcock on the gas is
opened, the gas expands rapidly into the evacuated chamber.
Because no work is done on the gas and the whole system is
thermally insulated, the initial and final internal energies of
the as are equal.
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move the piston slowly in small steps and allow equilibrium to be reestablished
after each step, we can compress or expand the gas in such a way that the gas is
never far from an equilibrium state. During this kind of process, called a quasi-
static process, the gas moves through a series of equilibrium states. In practice, it
is possible to approximate quasi-static processes fairly well.

Let us begin with a gas at a high pressure, and let it expand quasi-statically. The
magnitude of the force exerted by the gas on the piston is where is the area
of the piston and is the gas pressure. As the piston moves a small distance the
work done by the gas on the piston is

18-13

where is the increase in the volume of the gas. During the expansion the
piston exerts a force of magnitude on the gas, but opposite in direction to the
force of the gas on the piston. Thus, work done by the piston on the gas is just the
negative of the work done by the gas

18-14

Note that for an expansion, is positive, the gas does work on the piston, so
is negative, and for a compression, is negative, work is done on the

gas, so is positive.
The work done on the gas during an expansion or a compression from a volume

of to a volume of is

18-15

WORK DONE ON A GAS

To calculate this work, we need to know how the pressure varies during the ex-
pansion or compression. The various possibilities can be illustrated most easily
using a diagram.

PV DIAGRAMS

We can represent the states of a gas on a diagram of versus Because by speci-
fying both and we specify the state of the gas, each point on the diagram
indicates a particular state of the gas. Figure 18-7 shows a diagram with a
directed horizontal line representing a series of states that all have the same value
of This line represents a compression at constant pressure. Such a process is called
an isobaric compression. For a volume change of ( is negative for a com-
pression), we have

which is equal to the shaded area under the curve (directed line) in the figure. For
a compression, the work done on the gas is equal to the area under the -versus-
curve. (For an expansion the work done on the gas is equal to the negative of the
area under the -versus- curve.) Because pressures are often given in atmos-
pheres and volumes are often given in liters, it is convenient to have a conversion
factor between liter-atmospheres and joules:

18-16

PRACTICE PROBLEM 18-4

If 5.00 L of an ideal gas at a pressure of 2.00 atm is cooled so that it contracts at constant
pressure until its volume is 3.00 L, what is the work done on the gas?

1 L # atm � (10�3 m3)(101.325 � 103 N>m2) � 101.3 J

VP

VP

Won � ��
Vf

Vi

P dV � �P �
Vf

Vi

dV � �P ¢V � ƒP ¢V ƒ

¢V¢V
P.

PV
PVVP

V.P

PV

Won gas � � �
Vf

Vi

P dV

VfVi

dWon gas

dVdWon gas

dV

dWon gas � �dWby gas � �P dV

PA
dV � A dx

dWby gas � Fx dx � PA dx � P dV

dx,P
APA,F

P

(P ,V

V
V

)
0 0

Δ

F I G U R E  1 8 - 7 Each point on a 
diagram, such as represents a
particular state of the gas. The horizontal line
represents states with a constant pressure 
The shaded area, represents the work
done on the gas as it is compressed an 
amount .ƒ¢V ƒ

P0 ƒ¢V ƒ ,
P0 .

(P0 , V0) ,
PV
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Figure 18-8 shows three different possible paths on a diagram for a gas that
is initially in state and is finally in state We assume that the gas is
ideal and have chosen the original and final states to have the same temperature
so that Because the internal energy depends only on the tem-
perature, the initial and final internal energies are the same also.

In Figure 18-8a, the gas is heated isometrically (at constant volume)* until its
pressure is after which it is cooled isobarically (at constant pressure) until its
volume is The work done on the gas along the constant-volume (vertical) part
of path A is zero; along the constant pressure (horizontal) part of the path A, it is

In Figure 18-8b, the gas is first cooled at constant pressure until its volume is 
after which it is heated at constant volume until its pressure is The work done
on the gas along this path is which is much less than that
done along the path shown in Figure 18-8a, as can be seen by comparing the
shaded regions in Figure 18-8a and Figure 18-8b.

In Figure 18-8c, path represents an isothermal compression, meaning that the tem-
perature remains constant. (Keeping the temperature constant during the compression
requires that energy be transferred out of the gas via heat during the compression.) We
can calculate the work done on the gas along path by using Hence, the
work done on the gas as it is compressed from to along path is

Because is constant for an isothermal process, we can factor it from the integral.
We then have

18-17

WORK DONE ON GAS DURING ISOTHERMAL COMPRESSION

We see that the amount of work done on the gas is different for each process il-
lustrated. The change in internal energy of the gas depends on the initial and final
states of the gas, but does not depend on the path taken. The change in internal en-
ergy equals the work done on the gas plus the heat transfer into the gas. Thus, we
can see that because the work done is different for each process illustrated, the
amount of heat transfer also must be different for each process. This discussion
illustrates the fact that both the work done and the amount of heat transfer depend
only on how a system transitions from one state to another, but the change in the
internal energy of the system does not.

Wisothermal � �nRT �
Vf

Vi

dV
V

� �nRT ln 
Vf

Vi

� nRT ln 
Vi

Vf

T

Won � � �
Vf

Vi

P dV � � �
Vf

Vi

nRT
V

dV

CVfVi

P � nRT>V.C

C

Pi ƒVf � Vi ƒ � �Pi(Vf � Vi),
Pf .

Vf ,

Pf ƒVf � Vi ƒ � �Pf (Vf � Vi).

Vf .
Pf ,

PiVi � PfVf � nRT.

(Pf , Vf).(Pi , Vi)
PV

(P

P

, V )f f

(P , V

V

)i i

Path A

(a)

(P

P

, V )f f

(P , V

V

)i i
Path B

(b)

(P

P

, V )f f

(P , V

V

)i i

Path C

(c)

F I G U R E  1 8 - 8 Three paths on diagrams connecting an initial state and a final state The corresponding shaded area
indicates the work done on the gas along each path.

(Pf , Vf).(Pi , Vi)PV

* Constant-volume processes are also called isochoric processes or isovolumetric processes.

See

Math Tutorial for more

information on 

Logarithms
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P, atm

2

1

1 2 3 V, L

A

CD

B

F I G U R E  1 8 - 9

PROBLEM-SOLVING STRATEGY

Calculating Work Done by an Ideal Gas During a Constrained

Quasi-Static Process

PICTURE The increment of work done by a gas is equal to the pressure times 

the increment of volume. That is, It follows that 
The constraint dictates how to evaluate this integral.

SOLVE

1. If the volume is constant, then equals zero and 

2. If the pressure is constant, then 

3. If the temperature is constant, then and

4. If no energy is transferred to or from the gas via heat, then see Section 18-9.

CHECK If the volume increases then the must be positive, and vice versa.Wby

Wby � �
Vf

Vi

nRT
V

dV � nRT �
Vf

Vi

dV
V

� nRT ln 
Vf

Vi

P � nRT>VT

Wby � P �
Vf

Vi

dV � P(Vf � Vi).P

Wby � 0.dVV

Wby � �
Vf

Vi

P dV.dWby � P dV.

Example 18-7 Work Done on an Ideal Gas

An ideal gas undergoes a cyclic process from point to point to point to point and
back to point as shown in Figure 18-9. The gas begins at a volume of 1.00 L and a pres-
sure of 2.00 atm and expands at constant pressure until the volume is 2.50 L, after which it
is cooled at constant volume until its pressure is 1.00 atm. It is then compressed at constant
pressure until its volume is again 1.00 L, after which it is heated at constant volume until it
is back in its original state. Find the total work done on the gas and the total amount of heat
transfer into it during the cycle.

PICTURE We calculate the work done during each step. Because for any complete
cycle, the first law of thermodynamics implies that the total amount of heat transfer into the
gas plus the total work done on the gas equals zero.

¢Eint � 0

A,
DCBA

P, atm

Won= −AREA = −3 L •atm

AREA =
(1.5 L)(2 atm)

= 3 L •atm

2

1

1 2 3 V, L

A B

(a)

(b)

P, atm

Won= AREA = 1.5 L •atm

AREA =
(1.5 L)(1 atm)
= 1.5 L •atm

2

1

1 2 3 V, L

D C

F I G U R E  1 8 - 1 0 (a) The work done on
the gas during the expansion from to is
equal to the negative of the area under the
curve. (b) The work done on the gas during
the compression from to is equal to the
area under the curve.

DC

BA

SOLVE

1. From point to point the process is a
constant pressure expansion, so the
work done on the gas has a negative
value. The work done on the gas equals
the negative of the shaded area under
the curve, shown in Figure 18-10a:AB

BA

� �3.00 L # atm

� �(2.00 atm)(2.50 L � 1.00 L)

WAB � �P ¢V � �P(VB � VA)

2. Convert the units to joules: WAB � �3.00 L # atm �
101.3 J

1 L # atm
� �304 J

3. From point to point (Figure 18-10)
the gas cools at constant volume, so the
work done is zero:

CB WBC � 0

4. As the gas undergoes a constant pressure
compression from point to point the
work done on it has a positive value.
This work equals the area under the 
curve, shown in Figure 18-10b:

CD

D,C

� 1.50 L # atm � 152 J

� �(1.00 atm)(1.00 L � 2.50 L)

WCD � �P ¢V � �P(VD � VC)

5. As the gas is heated back to its original
state the volume is again constant
(Figure 18-10), so no work is done:

A,
WDA � 0
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6. The total work done by the gas is the sum of the work done
along each step: �152 J� (�304 J) � 0 � 152 J � 0 �

Wtotal � WAB � WBC � WCD � WDA

7. Because the gas is back in its original state, the total change in
internal energy is zero:

¢Eint � 0

8. The amount of heat transfer into the gas is found from the first
law of thermodynamics: so 152 JQin � ¢Eint � Won � 0 � (�152 J) �

¢Eint � Qin � Won

CHECK We expect the net energy transferred to the gas to be zero for a cyclic process, which
is the case in this Example because the work done on the gas is and the amount of
heat transfer into the gas is 

TAKING IT FURTHER The work done by the gas equals the negative of the work done on
the gas, so the total work done by the gas during the cycle is During the cycle, the
gas absorbs 152 J of heat from its surroundings and does 152 J of work on its surroundings.
This process leaves the gas in its initial state. The total work done by the gas equals the area
enclosed by the cycle in Figure 18-9. Such cyclic processes have important applications for
heat engines, as we will see in Chapter 19.

18-6 HEAT CAPACITIES OF GASES

The determination of the heat capacity of a substance provides information about
its internal energy, which is related to its molecular structure. For all substances
that expand when heated, the heat capacity at constant pressure is greater than
the heat capacity at constant volume If heat is absorbed by a substance at con-
stant pressure, the substance expands and does positive work on its surroundings
(Figure 18-11). Therefore, it takes more heat to obtain a given temperature change
at constant pressure than to obtain the same temperature change when heated at
constant volume. The expansion is usually negligible for solids and liquids, so for
them But a gas heated at constant pressure readily expands and does a
significant amount of work, so is not negligible.

If heat is absorbed by a gas at constant volume, no work is done (Figure 18-12),
so the amount of heat transfer into the gas equals the increase in the internal en-
ergy of the gas. Writing for the amount of heat transfer into the gas at constant
volume, we have

Because we have from the first law of thermodynamics,

Thus,

Taking the limit as approaches zero, we obtain

18-18a
and

18-18b

The heat capacity at constant volume is the rate of change of the internal energy
with temperature. Because and are both state functions, Equations 18-18a and
18-18b hold for any process.

Now let us calculate the difference for an ideal gas. From the definition
of the amount of heat transfer into the gas at constant pressure is

From the first law of thermodynamics,

¢Eint � QP � Won � QP � P ¢V

QP � CP ¢T

CP ,
CP � CV

TEint

CV �
dEint

dT

dEint � CV dT

¢T

¢Eint � CV ¢T

¢Eint � QV � W � QV

W � 0,

QV � CV ¢T

QV

CP � CV

CP � CV.

CV.
CP

�152 J.

�152 J.
�152 J

Insulator

Gas

Q Conductor

Pin

W

F I G U R E  1 8 - 1 1 Heat is absorbed and the
pressure remains constant. The gas expands,
thus doing work on the piston.

Insulator

Q Conductor

Pin

F I G U R E  1 8 - 1 2 The piston is held in
place by pins. Heat is absorbed at constant
volume, so no work is done and all the heat is
transferred into the internal energy of the gas.
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Table 18-3 Molar Heat Capacities in of Various Gases at 

Gas

Monatomic
He 20.79 12.52 1.51 8.27 0.99
Ne 20.79 12.68 1.52 8.11 0.98
Ar 20.79 12.45 1.50 8.34 1.00
Kr 20.79 12.45 1.50 8.34 1.00
Xe 20.79 12.52 1.51 8.27 0.99

Diatomic
29.12 20.80 2.50 8.32 1.00
28.82 20.44 2.46 8.38 1.01
29.37 20.98 2.52 8.39 1.01
29.04 20.74 2.49 8.30 1.00

Polyatomic
36.62 28.17 3.39 8.45 1.02
36.90 28.39 3.41 8.51 1.02
36.12 27.36 3.29 8.76 1.05H2S

N2O
CO2

CO
O2

H2

N2

(c œ
P � c œ

V)>Rc œ
P � c œ

Vc œ
V>Rc œ

Vc œ
P

25°CJ>mol # K

Then

For infinitesimal changes, this becomes

Using Equation 18-18a for we obtain

18-19

The pressure, volume, and temperature for an ideal gas are related by

Taking the differentials of both sides of the ideal-gas law, we obtain

For a constant-pressure process so

Substituting for in Equation 18-19 gives

Therefore,

18-20

which shows that, for an ideal gas, the heat capacity at constant pressure is greater
than the heat capacity at constant volume by the amount 

Table 18-3 lists measured molar heat capacities and for several gases. Note
from this table that the ideal-gas prediction, holds quite well for all
gases. The table also shows that is approximately for all monatomic gases,

for all diatomic gases, and greater than for gases consisting of more com-
plex molecules. We can understand these results by considering the molecular
model of a gas (Chapter 17). The total translational kinetic energy of moles of a
gas is (Equation 17-20). Thus, if the internal energy of a gas consists
of translational kinetic energy only, we have

18-21Eint � 3
2nRT

Ktrans � 3
2nRT

n

2.5R2.5R
1.5Rc œ

V

c œ
P � c œ

V � R,
c œ

Vc œ
P

nR.

CP � CV � nR

CP dT � CV dT � nR dT � (CV � nR) dT

P dVnR dT

P dV � nR dT

dP � 0,

P dV � V dP � nR dT

PV � nRT

CP dT � CV dT � P dV

dEint ,

CP dT � dEint � P dV

¢Eint � CP ¢T � P ¢V  or  CP ¢T � ¢Eint � P ¢V
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The heat capacities are then

18-22

FOR AN IDEAL MONATOMIC GAS

and

18-23

FOR AN IDEAL MONATOMIC GAS

The results in Table 18-3 agree well with these predictions for monatomic gases,
but for other gases, the heat capacities are greater than those predicted by
Equations 18-22 and 18-23. The internal energy for a gas consisting of diatomic or
more complicated molecules is evidently greater than The reason is that
such molecules can have other types of energy, such as rotational or vibrational en-
ergy, in addition to translational kinetic energy.

3
2nRT.

CP

CP � CV � nR � 5
2nR

CV

CV �
dEint

dT
� 3

2nR

P, atm

2.4

1.2

2.2 4.4 V, L

A

C

B1

2

3

Example 18-8 Heating, Cooling, and Compressing an Ideal Gas

A system consisting of 0.32 mol of a monatomic ideal gas, with occupies a volume
of 2.2 L at a pressure of 2.4 atm, as represented by point in Figure 18-13. The system is car-
ried through a cycle consisting of three processes:

1. The gas is heated at constant pressure until its volume is 4.4 L at point 
2. The gas is cooled at constant volume until the pressure decreases to 1.2 atm (point ).
3. The gas undergoes an isothermal compression back to point 

(a) What is the temperature at points and (b) Find and for each process
and for the entire cycle.

PICTURE You can find the temperatures at all points from the ideal-gas law. You can find the
work for each process by finding the area under the curve, and the heat transferred by using the
given heat capacity and the initial and final temperatures for each process. In process is con-
stant, so and the heat absorbed by the gas plus the work done on the gas equals zero.¢Eint � 0

3, T

¢EintW, Q,C?B,A,

A.
C

B.

A
c œ

V � 3
2 RT,

F I G U R E  1 8 - 1 3 The total work done on
the gas during one cycle is the negative of
the area enclosed by the curves. The total
work done by the gas during one cycle is the
area enclosed by the curves.

SOLVE

(a) Find the temperatures at points and using the
ideal-gas law:

CB,A,

4.0 � 102 K� 402 K �TB �
PBVB
nR

�
PA2VA
nR

� 2
PAVA
nR

� 2TA

2.0 � 102 K� 201 K �

TC � TA �
PAVA
nR

�
(2.4 atm)(2.2 L)

(0.32 mol)(0.08206 L # atm>(mol # K))

(b) 1. For process 1, use to calculate the work,
and to calculate the heat Then use and

to calculate ¢Eint 1:Q1

W1Q1 .CP � 5
2nR

W1 � �Pc ¢V

0.80 kJ� 802 J �¢Eint 1 � Q1 � W1 � 1337 J � 534.9 J

1.3 kJ� 1337 J �

Q1 � CP ¢T � 5
2nR ¢T � 5

2 (0.32 mol)(8.314 J>(mol # K))(201 K)

�0.53 kJ�� �5.28 L # atma 101.3 J
1 L # atm

b � �534.9 J

W1 � �PA ¢V � �PA(VB � VA) � �(2.4 atm)(2.2 L)

2. For process 2, use and from step 1 to
find

Then, because W2 � 0, ¢Eint 2 � Q2:

Q2:
TC � TBCV � 3

2nR

�0.80 kJ¢Eint 2 � W2 � Q2 � 0 � (�802 J) �

�0.80 kJ� �802 J �

Q2 � CV ¢T � 3
2nR ¢T � 3

2 (0.32 mol)[8.314 J>(mol # K)](�201 K)

0W2 �
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3. Calculate from (Equation 18-17)
in the isothermal compression. Then, because
¢Eint 3 � 0, Q3 � �W3:

W � �nRT ln(VA>VC)W3

�0.37 kJQ3 � ¢Eint 3 � W3 � �371 J �

0¢Eint 3 �

0.37 kJ� 371 J �

W3 � nRTA ln 
VA
VC

� (0.32 mol)[8.314 J>(mol # K)](�201 K) ln 2.0

4. Find the total work the total heat and the
total change by summing the quantities
found in steps 2, 3, and 4:

¢Eint

Q,W,

0.00 kJ� 802 J � (�802 J) � 0 �

¢Eint total � ¢Eint 1 � ¢Eint 2 � ¢Eint 3

0.16 kJ�

Qtotal � Q1 � Q2 � Q3 � 1337 J � (�802 J) � (�371 J)

�0.16 kJ� (�535 J) � 0 � 371 J �Wtotal � W1 � W2 � W3

CHECK The total change in internal energy is zero, as it must be for a cyclic process. The
total work done on the gas plus the total heat absorbed by the gas equals zero.

TAKING IT FURTHER The total work done on the gas equals the area under the curve
minus the area under the curve, which equals the negative of the area enclosed by the
three curves in Figure 18-13.

HEAT CAPACITIES AND THE EQUIPARTITION THEOREM
According to the equipartition theorem stated in Section 4 of Chapter 17, the in-
ternal energy of moles of a gas should equal for each degree of freedom of
the gas molecules. The heat capacity at constant volume of a gas should then be

times the number of degrees of freedom of the molecules. From Table 18-2, ni-
trogen, oxygen, hydrogen, and carbon monoxide all have molar heat capacities at
constant volume of about Thus, the molecules in each of these gases have five
degrees of freedom. About 1880, Rudolf Clausius speculated that these gases must
consist of diatomic molecules that can rotate about two axes, giving them two ad-
ditional degrees of freedom (Figure 18-14). The two degrees of freedom besides the
three for translation are now known to be associated with their rotation about each
of the two axes, and perpendicular to the line joining the atoms. The kinetic
energy of a diatomic molecule is therefore

The total internal energy of moles of such a gas is then

18-24

and the heat capacity at constant volume is

18-25

Apparently, diatomic gases do not rotate about the line joining the two atoms—if
they did, there would be six degrees of freedom and would be 
which is contrary to experimental results. Furthermore, monatomic gases do not
rotate at all. We will see in Section 18-8 that these puzzling facts are easily explained
when we take the quantization of angular momentum into account.

6
2nR � 3nR,CV

CV � 5
2nR

Eint � 5 � 1
2nRT � 5

2nRT

n

K � 1
2mv2

x � 1
2mv2

y � 1
2mv2

z � 1
2 Ix�v

2
x� � 1

2 Iy�v
2
y�

y�,x�

5
2R.

1
2nR

1
2nRTn

AB
CA

y ’

x ’y’

x’

z ’ Center
of mass

ω
ω

F I G U R E  1 8 - 1 4 Rigid-dumbbell model
of a diatomic molecule.

Example 18-9 Heating a Diatomic Ideal Gas

A sample consisting of 2.00 mol of oxygen gas at an initial pressure of 1.00 atm is heated from
a temperature of to a temperature of Assume that the sample can be mod-
eled as an ideal gas. (a) What amount of heat transfer into the sample is required if the vol-
ume is kept constant during the heating? (b) What amount of heat transfer into the sample
is required if the pressure is kept constant? (c) How much work does the gas do in Part (b)?

100.0°C.20.0°C
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CHECK Note that the work done by the gas in part (c) has a positive value. This is as
expected because the gas expands when heated at constant pressure.

PRACTICE PROBLEM 18-5 Find the initial and final volumes of this gas from the ideal-gas
law, and use them to calculate the work done by the gas if the heat is added at constant pres-
sure using Wby � P ¢V.

SOLVE

(a) 1. Write the amount of heat transfer needed for constant
volume in terms of and ¢T:CV

QV � CV ¢T

2. Calculate the amount of heat transfer needed for
¢T � 80°C � 80 K:

3.33 kJ�

QV � CV ¢T � 5
2nR ¢T � 5

2 (2.00 mol)[8.314 J>(mol # K)](80.0 K)

(b) 1. Write the amount of heat transfer needed for constant
pressure in terms of and ¢T:CP

QP � CP ¢T

2. Calculate the heat capacity at constant pressure: CP � CV � nR � 5
2nR � nR � 7

2nR

3. Calculate the amount of heat transfer needed at constant
pressure for ¢T � 80 K:

4.66 kJ�QP � CP ¢T � 7
2 (2.00 mol)[8.314 J>(mol # K)](80.0 K)

(c) 1. The work can be found from the first law of
thermodynamics:

Won so Won � ¢Eint � Qin¢Eint � Qin � Won

2. The internal energy change equals the heat transferred at
constant volume, which was calculated in Part (a): and

so

� �1.33 kJ� �(2.00 mol)[8.314 J>(mol # K)](80.0 K)

Won � ¢Eint � Qp � 5
2nR ¢T � 7

2nR ¢T � �nR ¢T

QP � CP ¢T � 7
2nR ¢T

¢Eint � QV � CV ¢T � 5
2nR ¢T

3. The work done by the gas at constant pressure is then: 1.33 kJWby � �Won �

Conceptual Example 18-10 Vibrational Modes of Carbon Dioxide

The carbon dioxide molecule consists of a carbon atom directly be-
tween two oxygen atoms. This molecule has three distinct modes
of vibration. Sketch these modes in a reference frame where the
center of mass of the molecule is at rest.

PICTURE If the molecule were not vibrating, the centers of the
atoms would lie in a straight line. When vibrating the atoms can
move both parallel and perpendicular to the line through their cen-
ters. There are two stretching modes in which the atoms move par-
allel to the line through their centers, and one bending mode where
they move perpendicular to the line through their centers.

SOLVE

1. In the symmetric stretch mode (Figure 18-15a) the carbon atom
remains stationary and the oxygen atoms oscillate out of
phase with each other. Can you see why this mode is
sometimes referred to as the breathing mode?

2. In the asymmetric stretch mode (Figure 18-15b) the two
oxygen atoms vibrate in phase with each other, but out of
phase with the motion of the carbon atom:

3. In the bending mode (Figure 18-15c) the two oxygen atoms
vibrate in phase with each other, but out of phase with
the motion of the carbon atom:

180°

180°

180°

Symmetric stretch mode

Asymmetric stretch mode

(a)

(b)

(c)

Bending mode

F I G U R E  1 8 - 1 5

PICTURE The amount of heat transfer needed for constant-volume heating is 
where (because oxygen is a diatomic gas). For constant-pressure heating,

where Finally, the amount of work done by the gas equals the
negative of the work done on the gas, which can be found from 
(Alternatively, )Wby � P ¢V.

¢Eint � Qin � Won .
CP � CV � nR.QP � CP ¢T,

CV � 5
2nR

QV � CV ¢T,
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18-7 HEAT CAPACITIES OF SOLIDS

In Section 18-1, we noted that all of the metals listed in Table 18-1 have approximately
equal molar specific heats. Most solids have molar heat capacities approximately
equal to 

18-26

This result is known as the Dulong–Petit law. We can understand this law by
applying the equipartition theorem to the simple model for a solid shown in 
Figure 18-16. According to this model, a solid consists of a regular array of atoms
in which each of the atoms has a fixed equilibrium position and is connected by
springs to its neighbors. Each atom can vibrate in the and directions. The
total energy of an atom in a solid is

where is the effective force constant of the hypothetical springs. Each atom thus
has six degrees of freedom. The equipartition theorem states that a substance in
equilibrium has an average energy of per mole for each degree of freedom.
Thus, the internal energy of a mole of a solid is

18-27

which means that is equal to 3R.c�

Eint m � 6 � 1
2 RT � 3RT

1
2 RT

keff

E � 1
2mv2

x � 1
2mv2

y � 1
2mv2

z � 1
2 keffx

2 � 1
2 keffy

2 � 1
2 keffz

2

zx, y,

c� � 3R � 24.9 J>mol # K

3R:

F I G U R E  1 8 - 1 6 Model of a solid in
which the atoms are connected to each other
by springs. The internal energy of the
molecule consists of the kinetic and potential
energies of vibration.

Example 18-11 Using the Dulong–Petit Law

The molar mass of copper is Use the Dulong–Petit law to calculate the specific
heat of copper.

PICTURE The Dulong–Petit law gives the molar specific heat of a solid, The specific heat
is then (Equation 18-6), where is the molar mass.Mc � c�>M c�.

63.5 g>mol.

SOLVE

1. The Dulong–Petit law gives in terms of R:c� c� � 3R

2. Using for copper, the specific heat is:M � 63.5 g>mol

0.392 kJ>(kg # K)� 0.392 J>(g # K) �

c �
c�
M

�
3R
M

�
3(8.314 J>(mol # K))

63.5 g>mol

CHECK This result differs from the measured value of , given in Table 18-1,
by less than 2 percent.

PRACTICE PROBLEM 18-6 The specific heat of a certain metal is measured to be
(a) Calculate the molar mass of this metal, assuming that the metal obeys the

Dulong–Petit law. (b) What is the metal?

18-8 FAILURE OF THE EQUIPARTITION THEOREM

Although the equipartition theorem had spectacular successes in explaining the
heat capacities of gases and solids, it had equally spectacular failures. For example,
if a diatomic gas molecule like the one in Figure 18-14 rotates about the line joining
the atoms, there should be an additional degree of freedom. Similarly, if a diatomic
molecule is not rigid, the two atoms should vibrate along the line joining them. We
would then have two more degrees of freedom corresponding to kinetic and po-
tential energies of vibration. But according to the measured values of the molar

1.02 kJ>kg # K.

0.386 kJ>kg # K



612 | C H A P T E R  1 8 Heat and the First Law of Thermodynamics

E6

E5

E

E4

E3

F I G U R E  1 8 - 1 8 Energy-level diagram.
A bound system can have only certain discrete
energies.

heat capacities in Table 18-3, diatomic gases apparently do not rotate about the line
joining them, nor do they vibrate. The equipartition theorem does not give expla-
nations for this consequence, or for the fact that monatomic atoms do not rotate
about any of the three possible perpendicular axes in space. Furthermore, heat ca-
pacities are found to depend on temperature, contrary to the predictions of the
equipartition theorem. The most spectacular case of the temperature dependence
of heat capacity is that of as shown in Figure 18-17. At temperatures below

for is which is the same as that for a gas of molecules that translate,
but do not rotate or vibrate. At temperatures between 250 K and 
which is that for molecules that translate and rotate but do not vibrate. And at tem-
peratures above 700 K, the molecules begin to vibrate. However, the molecules
dissociate before reaches Finally, the equipartition theorem predicts a
constant value of for the heat capacity of solids. While this result holds for
many, although not all, solids at high temperatures, it does not hold at very low
temperatures.

The equipartition theorem fails because the energy is quantized. That is, a mol-
ecule can have only certain values of internal energy, as illustrated schematically
by the energy-level diagram in Figure 18-18. The molecule can gain or lose energy
only if the gain or loss takes it to another allowed level. For example, the energy
that can be transferred between colliding gas molecules is of the order of the
typical thermal energy of a molecule. The validity of the equipartition theorem de-
pends on the relative size of and the spacing of the allowed energy levels.

If the spacing of the allowed energy levels is large compared with energy
cannot be transferred by collisions and the classic equipartition theorem is
not valid. If the spacing of the levels is much smaller than energy
quantization will not be noticed and the equipartition theorem will hold.

CONDITIONS FOR THE VALIDITY OF THE EQUIPARTITION THEOREM

Consider the rotation of a molecule. The energy of rotation is

18-28

where is the moment of inertia of the molecule, is its angular velocity, and
is its angular momentum. In Section 10-5, we mentioned that angular mo-

mentum is quantized, and its magnitude is restricted to

18-29� � 0, 1, 2, ÁL �4�(� � 1)U

L � Iv
vI

E �
1
2
Iv2 �

(Iv)2

2I
�
L2

2I

kT,

kT,

kT

kT,

3R

7
2R.c œ

v

H2

700 K, c œ
v � 5

2R,

3
2R,H270 K, c œ

v

H2 ,

c ′v
4

3

2

1

0
20 50 100 200 500 1000 2000 5000 10,000

T, K

7/2

5/2

3/2

Oscillation

Rotation

Translation
F I G U R E  1 8 - 1 7 Temperature dependence of the molar heat
capacity of (The curve is qualitative in those regions where

is changing.) Ninety-five percent of molecules are
dissociated into atomic hydrogen at 5000 K.

H2c œ
v

H2.
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y ’

x ’y’

x’

z ’ Center
of mass

ω
ω

F I G U R E  1 8 - 1 9 Rigid-dumbbell model
of a diatomic molecule.

where and is Planck’s constant. The energy of a rotating molecule is
therefore quantized to the values

18-30

where

18-31

is characteristic of the energy gap between levels. If this energy is much less than
we expect classical physics and the equipartition theorem to hold. Let us define

a critical temperature by

18-32

If is much greater than this critical temperature, then will be much greater
than the spacing of the energy levels, which is of the order of and we expect
classical physics and the equipartition theorem to be valid. If is less than or of the
order of then will not be much greater than the energy-level spacing, and we
expect classical physics and the equipartition theorem to break down. Let us esti-
mate for some cases of interest.

1. Rotation of about an axis perpendicular to the line joining the H atoms and through
the center of mass (Figure 18-19): The moment of inertia of about the axis is

where is the mass of an H atom and is the separation distance. For
hydrogen, and The critical tempera-
ture is then

As we see from Figure 18-17, this is approximately the temperature below
which the rotational energy does not contribute to the heat capacity.

2. Because the mass of is about 16 times that of and the separation is
about the same, the critical temperature for should be about 
For all temperatures for which exists as a gas, so is much greater
than the energy level spacing. Consequently, we expect the equipartition theo-
rem of classical physics to apply.

3. Rotation of a monatomic gas: Consider the He atom that has a nucleus that is com-
posed of two protons and two neutrons and has two electrons. The mass of an
electron is about 8000 times smaller than the mass of the He nucleus, but the ra-
dius of the nucleus is about 100,000 times smaller than the distance from the nu-
cleus to an electron. Therefore, the moment of inertia of the He atom is almost
entirely due to its two electrons. The distance from the He nucleus to one of its
electrons is about half the separation distance of the H atoms in and the
electron mass is about 2000 times smaller than that of the H nucleus. Thus,
using and we find the moment of inertia of the two
electrons in He to be roughly

The critical temperature for He is thus about 2000 times that of or about
150,000 K. This is much higher than the dissociation temperature (the temperature
at which electrons are stripped from their nuclei) for helium. So, the gap between

H2

IHe � 2mer
2 � 2

MH

2000
¢ rs

2
≤ 2

�
IH

2000

r � rs>2,me � MH>2000

H2,

kTTW Tc ,O2

(75>16) � 4.6 K.O2

H2,O2O2:

�
(1.05 � 10�34 J # s)2

(1.38 � 10�23 J>K)(1.67 � 10�27 kg)(8 � 10�11 m)2 � 75 K

Tc �
U2

2kI
�

U2

kMHr
2
s

rs � 8 � 10�11 m.MH � 1.67 � 10�27 kg,
rsMH

IH � 2MH¢ rs2 ≤ 2

�
1
2
MHr

2
s

H2

H2

Tc

kTTc ,
T
kTc ,

kTT

kTc � E0r �
U2

2I

Tc

kT,

E0r �
U2

2I

E �
L2

2I
�

�(� � 1)U2

2I
� �(� � 1) E0r

hU � h>(2p),
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allowed energy levels is always much greater than and the He molecules can-
not be induced to rotate by collisions occurring in the gas. Other monatomic gases
have slightly greater moments of inertia because they have more electrons, but
their critical temperatures are still tens of thousands of kelvins. Therefore, their
molecules also cannot be induced to rotate by collisions occurring in the gas.

4. Rotation of a diatomic gas about the axis joining the atoms: We see from our discus-
sion of monatomic gases that the moment of inertia for a diatomic gas molecule
about this axis will also be due mainly to the electrons and will be of the same
order of magnitude as for a monatomic gas. Again, the critical temperature, 
calculated in order for this rotation to occur due to collisions between molecules
in the gas, exceeds the gas’s dissociation temperature, making rotation under
those circumstances impossible.

It is interesting to note that the successes of the equipartition theorem in explain-
ing the measured heat capacities of gases and solids led to the first real understand-
ing of molecular structure in the nineteenth century, whereas its failures played an im-
portant role in the development of quantum mechanics in the twentieth century.

Tc ,

kT,

Example 18-12 Rotational Energy of the Hydrogen Atom

At room temperature (300 K) hydrogen gas is diatomic. However, at higher tem-
peratures, the hydrogen molecules dissociate. At a temperature of 8000 K, hydro-
gen gas is 99.99 percent monatomic. (a) Estimate the lowest (nonzero) rotational
energy for the hydrogen atom and compare it to at room temperature.
(b) Calculate the critical temperature for a gas of atomic hydrogen.

PICTURE From Equation 18-30, the lowest rotational energy is for We use
Equation 18-30 to determine the energy in terms of the moment of inertia. We can neglect the
moment of inertia of the nucleus because its radius is 100,000 times smaller than the radius
of the atom. Therefore, the moment of inertia for the atom is essentially the moment of iner-
tia of the electron about the nucleus. Then where is the distance
from the nucleus to the electron.

r � 5.29 � 10�11 mI � mer
2,

� � 1.

Tc

kT

SOLVE

(a) 1. The lowest energy greater than zero occurs for � � 1:

so E1 �
1(1 � 1)h2

2mer
2 �

h2

mer
2

E� �
�(� � 1)h2

2I
  � � 0, 1, 2, Á

2. The numerical values are:

r � 5.29 � 10�11 m
me � 9.11 � 10�31 kg
U � 1.05 � 10�34 J # s

3. Substitute the numerical values: 4.32 � 10�18 JE1 �
U2

mer
2 �

4. The value of at isT � 300 KkT kT � (1.38 � 10�23 J>K)(300 K) � 4.14 � 10�21 J

5. Compare and kT:E1

E1 is about three orders of magnitude larger than kT.

E1

kT
�

4.32 � 10�18 J
4.14 � 10�21 J

� 103

(b) Set and solve for Tc:kTc � E1

3.13 � 105 KTc �
E1

k
�

4.32 � 10�18 J
1.38 � 10�23 J>K �

kTc � E1

CHECK The critical temperature of a hydrogen atom is so high that the atom
would be ionized well before the critical temperature could be reached. This “explains” why
no rotational degrees of freedom contribute to the heat capacity of hydrogen atoms.

(~3 � 105 K)
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18-9 THE QUASI-STATIC ADIABATIC 
COMPRESSION OF A GAS

A process in which no heat transfers into or out of a system is called an adiabatic
process. Such a process occurs either when the system is extremely well insulated
or when the process happens very quickly. Consider the quasi-static adiabatic com-
pression of a gas in which the gas in a thermally insulated container is slowly
compressed by a piston, which is thereby doing work on the gas. Because no heat
is transferred to or from the gas, the work done on the gas equals the increase in
the internal energy of the gas, and the temperature of the gas increases. The curve
representing this process on a diagram is shown in Figure 18-20.

We can find the equation for the adiabatic curve for an ideal gas by using the
equation of state and the first law of thermodynamics 

The first law of thermodynamics gives

18-33

where we have used (Equation 18-18a), (the process is adi-
abatic), and (Equation 18-15). Then, substituting for using

we obtain

Separating variables by dividing both sides by we obtain

Integration gives

Simplifying,

Thus,
18-34

where the constants in the two preceding equations are not the same constant.
Equation 18-34 can be rewritten by noting that so

18-35
nR
CV

�
CP � CV

CV

�
CP

CV

� 1 � g � 1

CP � CV � nR,

TVnR>CV � constant

lnT �
nR
CV

 ln V � lnT � lnVnR>CV � ln(TVnR>CV) � constant

lnT �
nR
CV

 lnV � constant

dT
T

�
nR
CV

dV
V

� 0

TCV,

CV dT � �nRT
dV
V

P � nRT>V,
PdWon � �P dV

dQm � 0dEint � CV dT

CV dT � 0 � (�P dV)

dQm � dWon).
�(dEint(PV � nRT)

PV

Clouds form if rising moist
air cools due to adiabatic
expansion of the air.
Cooling causes water vapor
to condense into liquid
droplets. (Will and Deni
McIntyre/Photo Researchers.)
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where is the ratio of the heat capacities:

18-36

Therefore,
18-37

We can eliminate from Equation 18-37 using We then have

or

18-38

QUASI-STATIC ADIABATIC PROCESS

Equation 18-38 relates and for adiabatic expansions and compressions. Solving
(the ideal gas equation) for then substituting the resulting expres-

sion for into Equation 18-38, and then simplifying, gives

18-39

PRACTICE PROBLEM 18-7

Show that for quasi-static adiabatic process 

The work done on the gas in an adiabatic compression can be calculated from
the first law of thermodynamics:

Because and we have

Then

18-40

ADIABATIC WORK ON IDEAL GAS

where we have assumed that is constant.* We note that the work done on the
gas depends only on the change in the temperature of the gas. During an adiabatic
compression, work is done on the gas, and its internal energy and temperature
increase. During a quasi-static adiabatic expansion, work is done by the gas, and the
internal energy and temperature decrease.

We can use the ideal-gas law to write Equation 18-40 in terms of the initial and
final values of the pressure and volume. If is the initial temperature and is the
final temperature, we have for the work done

Using we obtain

Using Equation 18-35 to simplify this expression, we have

18-41Wadiabatic �
PfVf � PiVi

g � 1

Wadiabatic � CV¢PfVf

nR
�
PiVi

nR
≤ �

CV

nR
(PfVf � PiVi)

PV � nRT,

Wadiabatic � CV ¢T � CV(Tf � Ti)

TfTi

Cv

Wadiabatic � � dWon � �CV dT � CV ¢T

dWon � CV dT

dQin � 0,dEint � CV dT

dEint � dQin � dWon  or  dWon � dEint � dQin

Tg>Pg�1 � constant.

Tg

Pg�1 � constant

V
V,PV � nRT

VP

PVg � constant

PV
nR
Vg�1 � constant

PV � nRT.T

TVg�1 � constant

g �
CP

CV

g

* For an ideal gas, is proportional to the absolute temperature, and therefore is a constant.Cv � dEint >dTEint
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Example 18-13 Quasi-Static Adiabatic Compression of Air

A hand pump is used to inflate a bicycle tire to a gauge pressure of 482 kPa (about
(a) How much work must be done if each stroke of the pump is a quasi-static

adiabatic process? Atmospheric pressure is 1.00 atm, the outdoor air temperature is and
the volume of the air in the tire remains constant at 1.00 L. (b) What is the pressure in the in-
flated tire after the pump is removed and the temperature of the air in the tire returns to 

PICTURE The work done is found from with For an ideal gas,
(Equation 18-40). Because the process is both quasi-static and adiabatic, we

know that (Equation 18-39). (This relation yields the final temperature.)
Find using and (Equations 18-36, 18-20, and 18-25).
Let subscript 1 refer to initial values, and subscript 2 to final values. Then 

and T1 � 20°C � 293 K.V2 � 1.00 L,
P1 � 1.00 atm,

CV � 5
2nRg � CP>CV, CP � CV � nR,g

Tg>Pg�1 � constant
¢Eint � CV ¢T

Qin � 0.¢Eint � Qin � Won ,

20°C?

20°C,
70.0 lb>in.2).

SOLVE

(a) 1. To find the work done, we apply the first law of thermo-
dynamics. Because the compression is adiabatic, Qin � 0:

¢Eint � Qin � Won � 0 � Won

2. For an ideal gas, the change in internal energy is CV ¢T: W � ¢Eint � CV ¢T

3. For a diatomic gas, CV � 5
2nR: W � CV ¢T � 5

2nR ¢T

4. The final temperature can be determined using
(Equation 18-39):Tg>Pg�1 � constant

Tg1
Pg�1

1

�
Tg2
Pg�1

2

⇒ T2 � ¢P2

P1

≤ (g�1)>g
T1

5. Find for a diatomic gas using Equations 18-36, 18-20
and 18-25:

g g �
CP

CV

�
CV � nR

CV

� 1 �
nR
CV

� 1 �
nR

5
2nR

�
7
5

� 1.4

6. Solve for The given pressure is a gauge pressure, so add
to the given pressure of 482 kPa:1.00 atm � 101.3 kPa

T2 .

2.64 atmP2 � P1¢V1

V2

≤g � (1.00 atm)a4.00 L
2.00 L

b 1.4

�

T2 � ¢P2

P1

≤ (g�1)>g
T1 � a 583 kPa

101.3 kPa
b 0.4>1.4

293 K � 483 K

7. Calculate the work using the step-3 result. Use 
(the ideal-gas law) to express in terms of and T2:P2 , V2 ,nR

PV � nRT

634 J��
5
2

(583 kPa)(1.00 � 10�3 m3)
483 K

(483 K � 293 K)

W �
5
2
nR ¢T �

5
2

P2V2

T2

(T2 � T1)

(b) The air in the tire cools at constant volume. Thus, 
where and are the final pressure and temperature:T3P3

P3 >T3 � P2 >T3 , where

1.22 atmP3 �
T3

T2

P2 �
293 K
634 K

2.64 atm �

T3 � T0 � 293 K
P3

T3

�
P2

T2

,

CHECK For the adiabatic compression the final temperature is higher than the initial tem-
perature, as expected, and the work done on the gas is positive, as expected.

TAKING IT FURTHER (1) The work can also be calculated using 
(Equation 18-41), but using is preferable because it is more di-

rectly connected to a principle (the first law of thermodynamics) and thus is easier to re-
call. (2) A real bicycle pump and tire are not insulated, so the process of pumping up the
tire would not be even approximately adiabatic.

Wadiabatic � CV ¢T(g � 1)
Wadiabatic � (PfVf � PiVi)>
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* The bulk modulus, discussed in Chapter 13, is the negative ratio of the pressure change to the fractional change in vol-
ume, The isothermal bulk modulus, which describes changes that occur at constant temperature,
differs from the adiabatic bulk modulus, which describes changes with no heat transfer. For sound waves at audible
frequencies, the pressure changes occur too rapidly for appreciable heat transfer, so the appropriate bulk modulus is
the adiabatic bulk modulus.

B � �¢P>(¢V>V).

SPEED OF SOUND WAVES

We can use Equation 18-38 to calculate the adiabatic bulk modulus of an ideal gas,
which is related to the speed of sound waves in air. We first compute the differen-
tial of both sides of (Equation 18-38):

or

Then

Referring to Equation 13-6, the adiabatic bulk modulus* is then:

18-42

The speed of sound (Equation 15-4) is given by

where the mass density is related to the number of moles and the molecular
mass by Using the ideal-gas law, we can elimi-
nate from the density

Using this result and for we obtain

which is Equation 15-5, the speed of sound in a gas.

v � B
Badiabatic

r
� B gP

MP>(RT)
� BgRT

M

Badiabatic ,gP

r �
nM
V

�
nM
nRT>P �

MP
RT

V
PV � nRT,r � m>V � nM>V.M

nr

v � B
Badiabatic

r

Badiabatic � �
dP

dV>V � gP

dP � �
gP dV
V

gPVg�1 dV � Vg dP � 0

P d(Vg) � Vg dP � 0

PVg � constant
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Physics Spotlight

Respirometry: Breathing the Heat

Calorimetry, the study and measurement of heat transfer, helps to
determine the full energy budget of systems. Wilber O. Atwater,
the first director of experimental stations for the U.S. Department of
Agriculture,* ambitiously decided to measure the energy budgets
of people. This effort involved measuring and analyzing the food and
water given to participants, measuring, analyzing, and burning the
waste of the participants, and analyzing the temperature, chemistry,
and moisture of a tiny room in which the participants lived.† This
room was thermally insulated, and the interior was a copper box,
which was lined with copper water tubes for careful measurement of
heat released, and electric coils for temperature maintenance. Any
change in temperature of the air in the room was due to energy com-
ing from the people in the room. This energy was measured by the
changes in temperature registered by the sensitive hanging ther-
mometer within the box, and by changes in the temperature of the
water pumped through the tubes lining the walls.‡

But although this copper room excelled at measuring the energy
budgets of people at rest and in action, it was expensive and difficult to use. This led to indirect calorimetry by measuring
respiration —respirometry. Further research showed that better than 95 percent# of human energy expenditure could reliably
be calculated just by measuring the amounts of inhaled oxygen and exhaled carbon dioxide.° One figure that is frequently
used today is of oxygen consumption.§ Depending on the measuring equipment, the volume of oxygen may be
calculated from partial pressure of oxygen in the inhaled air, or it may be based on medically administered oxygen inhaled
by the subject.

Respirometry is extremely useful, because it is the fastest measure of energy use by organisms. With appropriate modifi-
cations, respirometry is used for cattle,¶ poultry,** exotic animals,†† and even sewage sludge.‡‡ Recently, respirometry has
been used to determine whether compost is mature enough to be added to soil. If the gas exchange rate of the compost is
high, then bacterial activity is still high, and the compost is not fully mature.##

In medical care, respirometry is used to tailor nutritional therapy, especially for badly injured or very ill patients.°°, §§

In sports and fitness centers, handheld respirometers give rapid, accurate measurements of energy requirements for athletes
and dieters¶¶ and are used to help patients, dieters, and athletes reach and maintain a healthy weight.

Finally, respirometry is used as a tool to help evaluate public policy and set nutrition standards. A study compared the
calculations from two different nutrition standards to actual respirometry measurements of sedentary and active adults. One
standard called for more energy than the participants actually used.*** As indirect calorimetry becomes less expensive, it is
being used to help study the energy needs of people around the world.

* Swan, P., “100 Years Ago,” Nutrition Notes of the American Society for Nutritional Sciences, June 2004, Vol. 40, No. 2, 4–5. http://www.asns.org/nnjun04a.pdf
† Atwater, W. O., A Respiration Calorimeter with Appliances for the Direct Determination of Oxygen. Washington, D. C.: Carnegie Institution, 1905.
‡ Morrison, P., and Morrison, P., “Laws of Calorie Counting,” Scientific American, Aug. 2000, 
# Ferrannini, E., “The Theoretical Bases of Indirect Calorimetry: A Review,” Metabolism, Mar. 1988, Vol. 37, No. 3, 287–301.
° Mansell, P. I., and MacDonald, I. A., “Reappraisal of the Weir Equation for Calculation of Metabolic Rate,” AJP—Regulatory, Integrative and Comparative Physiology, June 1990, Vol.

258, No. 6, R1347–R1354.
§ Food and Nutrition Board, Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, D. C.: National Academies Press,

2005, 884.
¶ Mcleod, K., et al. “Effects of Brown Midrib Corn Silage on the Energy Balance of Dairy Cattle,” Journal of Dairy Science, April 2000, Vol. 84, 885–895.
** “Animal Calorimetry,” Biomeasurements and Experimental Techniques for Avian Species. http://web.uconn.edu/poultry/NE-127/NewFiles/Home2.html as of July 2006.
†† Schalkwyk, S. J., et al., “Gas Exchange of the Ostrich Embryo During Peak Metabolism in Relation to Incubator Design,” South African Journal of Animal Science, 2002, Vol. 32, 122–129.
‡‡ Rai, C. L., et al., “Influence of Ultrasonic Disintegration on Sludge Growth Reduction and Its Estimation by Respirometry,” Environmental Science and Technology, Nov. 2004, Vol. 38,

No. 21, 5779–5785.
## Seekings, B., “Field Test for Compost Maturity,” Biocycle, July 1996, Vol. 37, No. 8, 72–75.
°° American Association for Respiratory Care, “Metabolic Measurement Using Indirect Calorimetry During Mechanical Ventilation—2004 Revision & Update,” Respiratory Care, Sept.

2004, Vol. 49, No. 9, 1073–1079. http://www.guideline.gov/summary/summary.aspx?ss=15&doc_id=6515 as of July 2006.
§§ Steward, D., and Pridham, K., “Stability of Respiratory Quotient and Growth Outcomes of Very Low Birth Weight Infants,” Biological Research for Nursing, Jan. 2001, Vol. 2, No. 3,

198–205.
¶¶ St-Onge, M., et al., “A New Hand-Held Indirect Calorimeter to Measure Postprandial Energy Expenditure,” Obesity Research, April 2004, Vol. 12, No. 4, 704–709.
*** Alfonzo-González, G., et al., “Estimation of Daily Energy Needs with the FAO/WHO/UNU 1985 Procedures in Adults: Comparison to Whole-Body Indirect Calorimetry

Measurements,” European Journal of Clinical Nurtrition, Aug. 2004, Vol. 58, No. 8, 1125–1131.

93�.

5 kcal>L

About 5 kcal of energy is expended for every 1 L of oxygen
consumed. The oxygen consumption of this man is being
monitored while he walks on a treadmill. (Philippe Psaila /
Photo Researchers, Inc.)

http://www.asns.org/nnjun04a.pdf
http://web.uconn.edu/poultry/NE-127/NewFiles/Home2.html
http://www.guideline.gov/summary/summary.aspx?ss=15&doc_id=6515
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Summary

1. The first law of thermodynamics, which is a statement of the conservation of energy, is a
fundamental law of physics.

2. The equipartition theorem is a fundamental law of classical physics. It breaks down if the
typical thermal energy is small compared to the spacing of quantized energy levels.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Heat If energy is transferred from one system to another due to a temperature difference, the -
energy transferred is called heat.

Calorie The calorie, originally defined as the heat necessary to increase the temperature of 1 g of
water by is now defined to be exactly 4.184 joules.

2. Heat Capacity Heat capacity is the amount of heat needed to increase the temperature of a substance by
one degree.

18-1

At constant volume

At constant pressure

Specific heat (heat capacity per unit mass) 18-2

Molar specific heat (heat capacity per mole) 18-6

Heat capacity–internal energy relation 18-18a

Ideal gas 18-20

Monatomic ideal gas 18-22

Diatomic ideal gas 18-25

3. Fusion and Vaporization Both melting and vaporization occur at a constant temperature.

Latent heat of fusion The heat needed to melt a substance is the product of the mass of the substance and its latent
heat of fusion 

18-8

of water

Latent heat of vaporization The heat needed to vaporize a liquid is the product of the mass of the liquid and its latent
heat of vaporization, 

18-9

of water

4. First Law of Thermodynamics The change in the internal energy of a system equals the energy transferred into the system
via heat plus the energy transferred into the system via work:

18-10

5. Internal Energy The internal energy of a system is a property of the state of the system, as are the pressure,
volume, and temperature. Heat and work are not properties of state.

Ideal gas depends only on the temperature T.Eint

Eint

¢Eint � Qin � Won

Lv � 2257 kJ>kgLv

Qv � mLv

Lv:

Lf � 333.5 kJ>kgLf

Qf � mLf

Lf:

CV � 5
2nR

CV � 3
2nR

CP � CV � nR

CV �
dEint

dT

c� �
C
n

c �
C
m

CP �
QP

¢T

CV �
QV

¢T

C �
Q

¢T

1°C,

kT
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TOPIC RELEVANT EQUATIONS AND REMARKS

Monatomic ideal gas 18-12

Internal energy related to heat capacity 18-18b

6. Quasi-Static Process A quasi-static process is one that occurs slowly so that the system moves through a series of
equilibrium states.

Isometric (isochoric)

Isobaric

Isothermal

Adiabatic

Adiabatic, ideal gas 18-37

18-38

18-39

where

18-36

7. Work Done on a Gas 18-10, 18-15, and 18-18

Isometric

Isobaric

Isothermal 18-17

Adiabatic 18-40

8. Equipartition Theorem The equipartition theorem states that if a system is in equilibrium, there is an average energy
of per molecule or per mole associated with each degree of freedom.

Failure of the equipartition theorem The equipartition theorem fails if the thermal energy that can be transferred in colli-
sions is smaller than the energy gap between quantized energy levels. For example,
monatomic gas molecules cannot rotate, because the first nonzero energy permitted is much
greater than 

9. Dulong–Petit Law The molar specific heat of most solids is This is predicted by the equipartition theorem,
assuming a solid atom has six degrees of freedom.

3R.

kT.

¢E
(~kT)

1
2 RT1

2 kT

Wadiabatic � CV ¢T

Wisothermal � ��
Vf

Vi

P dV � �nRT �
Vf

Vi

dV
V

� nRT ln 
Vi

Vf

Won � ��
Vf

Vi

P dV � �P �
Vf

Vi

dV � �P ¢V

Won � ��
Vf

Vi

P dV � 0 Vf � Vi

Won � ��
Vf

Vi

P dV � CV ¢T � Qin

g � CP>CV

Tg>Pg�1 � constant

PVg � constant

TVg�1 � constant

Q � 0

T � constant

P � constant

V � constant

dEint � CV dT

Eint � 3
2nRT

Answer to Concept Check

18-1 A compressed spring in a dart gun is released, and its
internal energy goes into the dart kinetic energy
acquired by the dart. The compressed air in a tank is
released, and the air is used to raise a car on a lift in a
service station.

Answers to Practice Problems

18-1

18-2 500 kJ

18-3 20.5 kJ

18-4 405 J

18-5

18-6 (a) (b) The metal must be magnesium,
which has a molar mass of 

18-7 For a quasi-static process, Solving the
ideal-gas law for gives Substituting 
into the equation gives 
Rearranging gives Tg>Pg�1 � constant>(nR).

P(nRT>P)g � constant.PVg
nRT>PV � nRT>P.V

PVg � constant.

24.3 g>mol
M � 24.4 g>mol.

Vi � 48.0 L, Vf � 61.1 L, W � 13.1 L # atm � 1.33 kJ

30°C
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Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

Use as the speed of sound unless otherwise
indicated.

343 m/s

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Object A has a mass that is twice the mass of object B,
and object A has a specific heat that is twice the specific heat 
of object B. If equal amounts of heat are transferred to these
objects, how do the subsequent changes in their temperatures
compare? (a) (b) (c)
(d) (e)

2 • Object A has a mass that is twice the mass of object B. The
temperature change of object A is equal to the temperature change
of object B when the objects absorb equal amounts of heat. It follows
that their specific heats are related by (a) (b)
(c) (d) None of the above.

3 • The specific heat of aluminum is more than twice the spe-
cific heat of copper. A block of copper and a block of aluminum have
the same mass and temperature The blocks are simultane-
ously dropped into a single calorimeter containing water at 
Which statement is true when thermal equilibrium is reached?
(a) The aluminum block is at a higher temperature than the copper
block. (b) The aluminum block has absorbed less energy than the cop-
per block. (c) The aluminum block has absorbed more energy than
the copper block. (d) Both (a) and (c) are correct statements.

4 • A block of copper is in a pot of boiling water and has a
temperature of The block is removed from the boiling water
and immediately placed in an insulated container filled with a
quantity of water that has a temperature of and the same mass
as the block of copper. (The heat capacity of the insulated container
is negligible.) The final temperature will be closest to (a)
(b) (c)

5 • You pour both a certain amount of water at and an
equal amount of water at into an insulated container. The final
temperature of the mixture will be (a) (b) less than 
(c) greater than 

6 • You pour some water at and some ice cubes at 
into an insulated container. The final temperature of the mixture
will be (a) (b) less than but larger than (c)
(d) You cannot tell the final temperature from the data given.

7 • You pour some water at and some ice cubes at 
into an insulated container. When thermal equilibrium is reached,
you notice some ice remains and floats in liquid water. The final
temperature of the mixture is (a) above (b) less than (c)
(d) You cannot tell the final temperature from the data given.

8 • Joule’s experiment establishing the mechanical equiva-
lence of heat involved the conversion of mechanical energy into in-
ternal energy. Give some everyday examples in which some of the
internal energy of a system is converted into mechanical energy.

0°C,0°C,0°C,

0°C100°C

0°C,0°C,50°C,50°C,

0°C100°C

60°C.
60°C,60°C,

20°C
100°C

80°C.60°C,
40°C,

20°C

100°C.

SSM

40°C.
(20°C).

cA � cB ,
2cA � cB ,cA � 2cB ,

¢TA � 1
4 ¢TB.¢TA � 1

2 ¢TB ,
¢TA � ¢TB ,¢TA � 2¢TB ,¢TA � 4¢TB ,

9 • Can a gas absorb heat while its internal energy does not
change? If so, give an example. If not, explain why not.

10 • The equation is the formal statement of
the first law of thermodynamics. In this equation, the quantities 
and respectively, represent (a) the heat absorbed by the system
and the work done by the system, (b) the heat absorbed by the sys-
tem and the work done on the system, (c) the heat released by the
system and the work done by the system, (d) the heat released by
the system and the work done on the system.

11 • A real gas cools during a free expansion, while an
ideal gas does not cool during a free expansion. Explain the rea-
son for this difference.

12 • An ideal gas that has a pressure of 1.0 atm and a tem-
perature of 300 K is confined to half of an insulated container by
a thin partition. The other half of the container is a vacuum. The
partition is punctured and equilibrium is quickly reestablished.
Which of the following is correct? (a) The gas pressure is
0.50 atm and the temperature of the gas is 150 K. (b) The gas
pressure is 1.0 atm and the temperature of the gas is 150 K.
(c) The gas pressure is 0.50 atm and the temperature of the gas is
300 K. (d) None of the above

13 • A gas consists of ions that repel each other. The gas
undergoes a free expansion in which no heat is absorbed or
released and no work is done. Does the temperature of the gas
increase, decrease, or remain the same? Explain your answer.

14 • Two gas-filled rubber balloons that have equal volumes
are located at the bottom of a dark, cold lake. The temperature of
the water decreases with increasing depth. One balloon rises
rapidly and expands adiabatically as it rises. The other balloon rises
more slowly and expands isothermally. The pressure in each bal-
loon remains equal to the pressure in the water just next to the bal-
loon. Which balloon has the larger volume when it reaches the sur-
face of the lake? Explain your answer.

15 • A gas changes its state quasi-statically from A to C along
the paths shown in Figure 18-21. The work done by the gas is
(a) greatest for path (b) least for path (c) greatest
for path (d) The same for all three paths.A S D S C,

A S C,A S B S C,

SSM
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16 • When an ideal gas undergoes an adiabatic process, (a) no
work is done by the system, (b) no heat is transferred to the system,
(c) the internal energy of the system remains constant, (d) the
amount of heat transfer into the system equals the amount of work
done by the system.

17 • True or false:
(a) When a system can go from state 1 to state 2 by several differ-

ent processes, the amount of heat absorbed by the system will
be the same for all processes.

(b) When a system can go from state 1 to state 2 by several differ-
ent processes, the amount of work done on the system will be
the same for all processes.

(c) When a system goes from state 1 to state 2 by several different
processes, the change in the internal energy of the system will
be the same for all processes.

(d) The internal energy of a given amount of an ideal gas depends
only on its absolute temperature.

(e) A quasi-static process is one in which the system is never far
from being in equilibrium.

(f) For any substance that expands when heated, its is greater
than its 

18 • The volume of a sample of gas remains constant while its
pressure increases. (a) The internal energy of the system is un-
changed. (b) The system does work. (c) The system absorbs no heat.
(d) The change in internal energy must equal the heat absorbed by
the system. (e) None of the above

19 •• When an ideal gas undergoes an isothermal process,
(a) no work is done by the system, (b) no heat is absorbed by the
system, (c) the heat absorbed by the system equals the change in
the system’s internal energy, (d) the heat absorbed by the system
equals the work done by the system.

20 •• Consider the following series of sequential quasi-static
processes that a system undergoes: (1) an adiabatic expansion,
(2) an isothermal expansion, (3) an adiabatic compression, and
(4) an isothermal compression that brings the system back to its
original state. Sketch the series of processes on a diagram, and
then sketch the series of processes on a diagram (in which vol-
ume is plotted as a function of temperature).

21 • An ideal gas in a cylinder is at pressure and volume 
During a quasi-static adiabatic process, the gas is compressed until
its volume has decreased to Then, in a quasi-static isothermal
process, the gas is allowed to expand until its volume again has a
value of What kind of process will return the system to its origi-
nal state? Sketch the cycle on a graph.

22 •• Metal A is denser than metal B. Which would you expect
to have a higher heat capacity per unit mass—metal A or metal B?
Why?

23 •• An ideal gas undergoes a process during which
and the volume of the gas decreases. Does its tem-

perature increase, decrease, or remain the same during this process?
Explain.

ESTIMATION AND 
APPROXIMATION

24 • ENGINEERING APPLICATION, CONTEXT-RICH During the
early stages of designing a modern electric generating plant, you are
in charge of the team of environmental engineers. The new plant is to
be located on the ocean and will use ocean water for cooling. The
plant will produce electrical power at the rate of 1.00 GW. Because

P1V � constant

SSM

V.

V>2.

V.P

VT
PV

CV.
CP

the plant will have an efficiency of one-third (typical of most modern
plants), heat will be released to the cooling water at the rate of
2.00 GW. If environmental codes require that only water with a tem-
perature increase of or less can be returned to the ocean, esti-
mate the flow rate of cooling water through the plant.

25 •• A typical microwave oven has a power consumption of
about 1200 W. Estimate how long it should take to boil a cup of water
in the microwave, assuming that 50 percent of the electrical power
consumption goes into heating the water. How does this estimate
correspond to everyday experience?

26 •• A demonstration of the heating of a gas under adiabatic
compression involves putting a small strip of paper into a large
glass test tube, which is then sealed with a piston. If the piston com-
presses the trapped air very rapidly, the paper will catch fire.
Assuming that the burning point of paper is estimate the fac-
tor by which the volume of the air trapped by the piston must be
reduced for this demonstration to work.

27 •• A small change in the volume of a liquid occurs when
heating the liquid at constant pressure. Use the following data to
estimate the fractional contribution this change makes to the heat
capacity of water between and The density of water
at and 1.00 atm pressure is The density of liquid
water at and 1.00 atm pressure is 

HEAT CAPACITY, 
SPECIFIC HEAT, LATENT HEAT

28 • ENGINEERING APPLICATION, CONTEXT-RICH You de-
signed a solar home that contains of concrete

How much heat is released by the
concrete at night when it cools from to 

29 • How much heat must be absorbed by 60.0 g of ice at
to transform it into 60.0 g of liquid water at 

30 •• How much heat must be released by 0.100 kg of steam
at to transform it into 0.100 kg of ice at 

31 •• A 50.0-g piece of aluminum at is cooled to 
by placing it in a large container of liquid nitrogen at that tempera-
ture. How much nitrogen is vaporized? (Assume that the specific
heat of aluminum is constant over this temperature range.)

32 •• ENGINEERING APPLICATION, CONTEXT-RICH You are su-
pervising the creation of some lead castings for use in the construc-
tion industry. Each casting involves one of your workers pouring
0.500 kg of molten lead that has a temperature of into a cav-
ity in a large block of ice at How much liquid water should you
plan on draining per hour if there are 100 workers who are able to
each average one casting every 10.0 min?

CALORIMETRY

33 • ENGINEERING APPLICATION, CONTEXT-RICH While
spending the summer on your uncle’s horse farm, you spend a
week apprenticing with his farrier (a person who makes and fits
horseshoes). You observe the way he cools a shoe after pounding
the hot, pliable shoe into the correct size and shape. Suppose a
750-g iron horseshoe is taken from the farrier’s fire, shaped, and at
a temperature of dropped into a 25.0-L bucket of water at

What is the final temperature of the water after the horse-
shoe and water arrive at equilibrium? Neglect any heating of the
bucket and assume the specific heat of iron is SSM460 J>(kg # K).

10.0°C.
650°C,

0°C.
327°C

�196°C20°C

0.00°C?150°C

SSM40.0°C?�10.0°C

20.0°C?25.0°C
(specific heat � 1.00 kJ>kg # K).

1.00 � 105 kg

0.9584 g>cm3.100°C
1.000 g>cm3.4.00°C

100°C.4.00°C

451°F,

SSM

(in kg>s)
15°F
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34 • The specific heat of a certain metal can be determined
by measuring the temperature change that occurs when a piece
of the metal is heated and then placed in an insulated container
that is made of the same material and contains water. Suppose
the piece of metal has a mass of 100 g and is initially at 
The container has a mass of 200 g and contains 500 g of water at
an initial temperature of The final temperature is 
What is the specific heat of the metal?

35 •• BIOLOGICAL APPLICATION During his many appearances
at the Tour de France, champion bicyclist Lance Armstrong typi-
cally expended an average power of 400 W, 5.0 hours a day for
20 days. What quantity of water, initially at could be brought
to a boil if you could harness all of that energy?

36 •• A 25.0-g glass tumbler contains 200 mL of water at 
If two 15.0-g ice cubes, each at a temperature of are
dropped into the tumbler, what is the final temperature of the drink?
Neglect any heat transfer between the tumbler and the room.

37 •• A 200-g piece of ice at is placed in 500 g of water
at This system is in a container of negligible heat capacity
and is insulated from its surroundings. (a) What is the final equi-
librium temperature of the system? (b) How much of the ice
melts?

38 •• A 3.5-kg block of copper at a temperature of is
dropped into a bucket containing a mixture of ice and water
whose total mass is 1.2 kg. When thermal equilibrium is reached,
the temperature of the water is How much ice was in the
bucket before the copper block was placed in it? (Assume that
the heat capacity of the bucket is negligible.)

39 •• A well-insulated bucket of negligible heat capacity con-
tains 150 g of ice at (a) If 20 g of steam at is injected into
the bucket, what is the final equilibrium temperature of the system?
(b) Is any ice left after the system reaches equilibrium?

40 •• A calorimeter of negligible heat capacity contains 1.00 kg
of water at 303 K and 50.0 g of ice at 273 K. (a) Find the final temper-
ature T. (b) Find the final temperature T if the mass of ice is 500 g.

41 •• A 200-g aluminum calorimeter contains 600 g of water at
A 100-g piece of ice cooled to is placed in the

calorimeter. (a) Find the final temperature of the system, assuming
no heat is transferred to or from the system. (b) A 200-g piece of ice
at is added. How much ice remains in the system after the
system reaches equilibrium? (c) Would the answer for Part (b)
change if both pieces of ice were added at the same time?

42 •• The specific heat of a 100-g block of a substance is to be
determined. The block is placed in a 25-g copper calorimeter holding
60 g of water at Then, 120 mL of water at are added to the
calorimeter. When thermal equilibrium is reached, the temperature
of the system is Determine the specific heat of the block.

43 •• A 100-g piece of copper is heated in a furnace to a
temperature The copper is then inserted into a 150-g copper
calorimeter containing 200 g of water. The initial temperature of
the water and calorimeter is and the temperature after
equilibrium is established is When the calorimeter and
its contents are weighed, 1.20 g of water are found to have evap-
orated. What was the temperature SSMtC?

38.0°C.
16.0°C,

tC.

54°C.

80°C20°C.

�20.0°C

�20.0°C20.0°C.

100°C0°C.

8.0°C.

80°C

SSM

20°C.
0°C

�3.00°C,
24.0°C.

24°C,

21.4°C.20.0°C.

100°C.

44 ••• A 200-g aluminum calorimeter contains 500 g of
water at . Aluminum shot with a mass equal to 300 g is
heated to and is then placed in the calorimeter. Find
the final temperature of the system, assuming that there is no
heat transfer to the surroundings.

FIRST LAW OF 
THERMODYNAMICS

45 • A diatomic gas does 300 J of work and also absorbs
2.50 kJ of heat. What is the change in internal energy of the gas?

46 • If a gas absorbs 1.67 MJ of heat while doing 800 kJ of
work, what is the change in the internal energy of the gas?

47 • If a gas absorbs 84 J of heat while doing 30 J of work,
what is the change in the internal energy of the gas?

48 •• A lead bullet initially at just melts upon striking a
target. Assuming that all of the initial kinetic energy of the bullet
goes into the internal energy of the bullet, calculate the impact speed
of the bullet.

49 •• During a cold day, you can warm your hands by
rubbing them together. Assume the coefficient of kinetic friction
between your hands is 0.500, the normal force between your
hands is 35.0 N, and that you rub them together at an average rel-
ative speed of (a) What is the rate at which mechanical
energy is dissipated? (b) Assume further that the mass of each
of your hands is 350 g, the specific heat of your hands is

and that all the dissipated mechanical energy goes
into increasing the temperature of your hands. How long must
you rub your hands together to produce a increase in their
temperature?

WORK AND 
THE PV DIAGRAM FOR A GAS

In Problems 50 through 53, the initial state of 1.00 mol of
a dilute gas is and 
and its final state is and

50 • The gas is allowed to expand at constant pressure until it
reaches its final volume. It is then cooled at constant volume until
it reaches its final pressure. (a) Illustrate this process on a 
diagram and calculate the work done by the gas. (b) Find the heat
absorbed by the gas during this process.

51 • The gas is first cooled at constant volume until it reaches
its final pressure. It is then allowed to expand at constant pressure
until it reaches its final volume. (a) Illustrate this process on a 
diagram and calculate the work done by the gas. (b) Find the heat
absorbed by the gas during this process.

52 •• The gas is allowed to expand isothermally until it reaches
its final volume and its pressure is 1.00 atm. It is then heated at
constant volume until it reaches its final pressure. (a) Illustrate this
process on a diagram and calculate the work done by the gas.
(b) Find the heat absorbed by the gas during this process.

PV

SSM

PV

PV

Eint 2 � 912 J.
P2 � 2.00 atm, V2 � 3.00 L,

Eint 1 � 456 J,P1 � 3.00 atm, V1 � 1.00 L,

5.00°C

4.00 kJ>kg # K,

35.0 cm>s.
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100.0°C
20.0°C
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53 •• The gas is heated and is allowed to expand such that it
follows a single straight-line path on a diagram from its initial
state to its final state. (a) Illustrate this process on a diagram and
calculate the work done by the gas. (b) Find the heat absorbed by
the gas during this process.

54 •• In this problem, 1.00 mol of a dilute gas initially has a
pressure equal to a volume equal to and an internal
energy equal to As the gas is slowly heated, the plot of its
state on a diagram moves in a straight line to the final state. The
gas now has a pressure equal to a volume equal to 
and an internal energy equal to Find the work done and the
heat absorbed by the gas.

55 •• In this problem, 1.00 mol of the ideal gas is heated while
its volume changes, so that where is a constant. The
temperature changes from to Find the work done by the gas.

56 •• ENGINEERING APPLICATION, CONTEXT-RICH A sealed,
almost-empty spray paint can still contains a residual amount of
the propellant: 0.020 mol of nitrogen gas. The can’s warning label
clearly states: “Do Not Dispose by Incineration.” (a) Explain this
warning and draw the diagram for the gas if, in fact, the can is
subject to a high temperature. (b) You are in charge of testing the
can. The manufacturer claims it can withstand an internal gas
pressure of 6.00 atm before it breaks. The can is initially at room-
temperature and standard pressure in your testing laboratory.
You begin to heat it uniformly using a heating element that has a
power output of 200 W. The can and element are in an insulating
oven, and you can assume of the heat released by the heating
element is absorbed by the gas in the can. How long should you
expect the heating element to remain on before the can bursts?

57 •• An ideal gas initially at and 200 kPa has a volume
of 4.00 L. It undergoes a quasi-static, isothermal expansion until its
pressure is reduced to 100 kPa. Find (a) the work done by the gas,
and (b) the heat absorbed by the gas during the expansion.

HEAT CAPACITIES OF GASES 
AND THE EQUIPARTITION THEOREM

58 • The heat capacity at constant volume of a certain amount
of a monatomic gas is (a) Find the number of moles of the
gas. (b) What is the internal energy of the gas at 
(c) What is the heat capacity at constant pressure of the gas?

59 •• The heat capacity at constant pressure of a certain
amount of a diatomic gas is (a) Find the number of moles
of the gas. (b) What is the internal energy of the gas at 
(c) What is the molar heat capacity of this gas at constant volume?
(d) What is the heat capacity of this gas at constant volume?

60 •• (a) Calculate the heat capacity per unit mass of air at con-
stant volume and the heat capacity per unit mass of air at constant
pressure. Assume that air has a temperature of 300 K and a pressure
of Also, assume that air is composed of 74.0 per-
cent molecules (molecular weight and 26.0 percent

molecules (molar mass of and that both components
are ideal gases. (b) Compare your answer for the specific heat at
constant pressure to the value listed in the Handbook of Chemistry
and Physics of

61 •• In this problem, 1.00 mol of an ideal diatomic gas is
heated at constant volume from 300 K to 600 K. (a) Find the increase
in the internal energy of the gas, the work done by the gas, and the

1.032 kJ>kg # K.

32.0 g>mol)O2

28.0 g>mol)N2

1.00 � 105 N>m2.

SSM
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PV
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PV
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heat absorbed by the gas. (b) Find the same quantities if this gas is
heated from 300 K to 600 K at constant pressure. Use the first law of
thermodynamics and your results for Part (a) to calculate the work
done by the gas. (c) Again calculate the work done in Part (b). This
time calculate it by integrating the equation 

62 •• A diatomic gas is confined to a closed container of con-
stant volume and at a pressure The gas is heated until its
pressure triples. What amount of heat had to be absorbed by the gas
in order to triple the pressure?

63 •• In this problem, 1.00 mol of air is confined in a cylinder
with a piston. The confined air is maintained at a constant pressure
of 1.00 atm. The air is initially at and has volume Find the
volume after 13,200 J of heat are absorbed by the trapped air.

64 •• The heat capacity at constant pressure of a sample of a
gas is greater than the heat capacity at constant volume by
(a) How many moles of the gas are present? (b) If the gas is
monatomic, what are and (c) What are the values of and

at normal room temperatures?

65 •• Carbon dioxide at a pressure of 1.00 atm and a
temperature of sublimates directly from a solid to a
gaseous state without going through a liquid phase. What is the
change in the heat capacity at constant pressure per mole of 
when it undergoes sublimation? (Assume that the gas molecules
can rotate but do not vibrate.) Is the change in the heat capacity pos-
itive or negative during sublimation? The molecule is pictured
in Figure 18-22. SSM

CO2

CO2

�78.5°C
(CO2)

CP

CVCP?CV

29.1 J>K.

V0.0°C
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66 •• In this problem, 1.00 mol of a monatomic ideal gas is ini-
tially at 273 K and 1.00 atm. (a) What is the initial internal energy of
the gas? (b) Find the work done by the gas when 500 J of heat are
absorbed by the gas at constant pressure. What is the final internal
energy of the gas? (c) Find the work done by the gas when 500 J of
heat are absorbed by the gas at constant volume. What is the final
internal energy of the gas?

67 •• List all of the degrees of freedom possible for a water
molecule and estimate the heat capacity of water at a temperature
very far above its boiling point. (Ignore the fact the molecule might
dissociate at high temperatures.) Think carefully about all of the
different ways in which a water molecule can vibrate.

HEAT CAPACITIES OF SOLIDS 
AND THE DULONG–PETIT LAW

68 • The Dulong–Petit law was originally used to determine
the molar mass of a substance from its measured heat capacity.
The specific heat of a certain solid substance is measured to be

(a) Find the molar mass of the substance. (b) What
element has this specific-heat value?
0.447 kJ>kg # K.
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QUASI-STATIC ADIABATIC
EXPANSION OF A GAS

69 •• A 0.500-mol sample of an ideal monatomic gas at
400 kPa and 300 K, expands quasi-statically until the pressure
decreases to 160 kPa. Find the final temperature and volume of
the gas, the work done by the gas, and the heat absorbed by the
gas if the expansion is (a) isothermal, and (b) adiabatic.

70 •• A 0.500-mol sample of an ideal diatomic gas at
400 kPa and 300 K expands quasi-statically until the pressure
decreases to 160 kPa. Find the final temperature and volume of
the gas, the work done by the gas, and the heat absorbed by the
gas if the expansion is (a) isothermal, and (b) adiabatic.

71 •• A 0.500-mol sample of helium gas expands adiabatically
and quasi-statically from an initial pressure of 5.00 atm and tem-
perature of 500 K to a final pressure of 1.00 atm. Find (a) the final
temperature of the gas, (b) the final volume of the gas, (c) the work
done by the gas, and (d) the change in the internal energy of the gas.

CYCLIC PROCESSES

72 •• A 1.00-mol sample of gas at and 5.00 atm is al-
lowed to expand adiabatically and quasi-statically until its pressure
equals 1.00 atm. It is then heated at constant pressure until its tem-
perature is again After it reaches a temperature of 
it is heated at constant volume until its pressure is again 5.00 atm.
It is then compressed at constant pressure until it is back to its orig-
inal state. (a) Construct a diagram showing each process in the
cycle. (b) From your graph, determine the work done by the gas
during the complete cycle. (c) How much heat is absorbed (or re-
leased) by the gas during the complete cycle?

73 •• A 1.00-mol sample of an ideal diatomic gas is allowed
to expand. This expansion is represented by the straight line
from 1 to 2 in the diagram (Figure 18-23). The gas is then
compressed isothermally. This compression is represented by
the curved line from 2 to 1 in the diagram. Calculate the
work per cycle done by the gas. SSM
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74 •• A 2.00-mol sample of an ideal monatomic gas has an
initial pressure of and an initial volume of The
gas is taken through the following quasi-static cycle: It is ex-
panded isothermally until it has a volume of Next, it is
heated at constant volume until it has a pressure of It is
then cooled at constant pressure until it is back to its initial state.
(a) Show this cycle on a diagram. (b) Find the temperature at
the end of each part of the cycle. (c) Calculate the heat absorbed
and the work done by the gas during each part of the cycle.
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76 ••• At point D in Figure 18-24, the pressure and tempera-
ture of 2.00 mol of an ideal diatomic gas are 2.00 atm and 360 K,
respectively. The volume of the gas at point B on the diagram
is three times that at point D and its pressure is twice that at
point C. Paths AB and CD represent isothermal processes. The
gas is carried through a complete cycle along the path DABCD.
Determine the total amount of work done by the gas and the
heat absorbed by the gas along each portion of the cycle.

77 ••• A sample consisting of n moles of an ideal gas is initially at
pressure volume and temperature It expands isothermally
until its pressure and volume are and It then expands adiabat-
ically until its temperature is and its pressure and volume are 
and It is then compressed isothermally until it is at a pressure 
and a volume which is related to its initial volume by

The gas is then compressed adiabatically until it is
back in its original state. (a) Assuming that each process is quasi-sta-
tic, plot this cycle on a diagram. (This cycle is known as the
Carnot cycle for an ideal gas.) (b) Show that the heat absorbed dur-
ing the isothermal expansion at is (c) Show
that the heat released by the gas during the isothermal compres-
sion at is (d) Using the result that is con-
stant for a quasi-static adiabatic expansion, show that 
(e) The efficiency of a Carnot cycle is defined as the net work done by
the gas, divided by the heat absorbed by the gas. Using the first
law of thermodynamics, show that the efficiency is 
(f) Using your results from the previous parts of this problem, show
that Qc >Qh � Tc >Th .

1 � Qc >Qh .
Qh

V2 >V1 � V3 >V4 .
TVg�1Qc � nRTc ln(V3 >V4).Tc

Qc

Qh � nRTh ln(V2 >V1).Th

Qh

PV

TcV
g�1
4 � ThV

g�1
1 .

V1V4 ,
P4V3 .
P3Tc

V2 .P2

Th .V1 ,P1 ,

PV

75 ••• At point D in Figure 18-24, the pressure and tempera-
ture of 2.00 mol of an ideal monatomic gas are 2.00 atm and
360 K, respectively. The volume of the gas at point B on the 
diagram is three times that at point D and its pressure is twice
that at point C. Paths AB and CD represent isothermal
processes. The gas is carried through a complete cycle along the
path DABCD. Determine the total amount of work done by
the gas and the heat absorbed by the gas along each portion of
the cycle. SSM

PV
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84 •• ENGINEERING APPLICATION Diesel engines operate with-
out spark plugs, unlike gasoline engines. The cycle that diesel en-
gines undergo involves adiabatically compressing the air in a cylin-
der, and then fuel is injected. When the fuel is injected, if the air tem-
perature inside the cylinder is above the fuel’s flashpoint, the fuel-air
mixture will ignite. Most diesel engines have compression ratios in
the range from 14:1 to 25:1. For this range of compression ratios
(which are the ratio of maximum to minimum volume), what is the
range of maximum temperatures of the air in the cylinder, assuming
the air is taken into the cylinder at Most modern gasoline en-
gines typically have compression ratios on the order of 8:1. Explain
why you expect the diesel engine to require a better (more efficient)
cooling system than its gasoline counterpart.

85 •• At very low temperatures, the specific heat of a metal is
given by For copper, and

(a) What is the specific heat of copper at
4.00 K? (b) How much heat is required to heat copper from 1.00 to
3.00 K?

86 •• How much work must be done on 30.0 g of carbon monox-
ide (CO) at standard temperature and pressure to compress it to one-
fifth of its initial volume if the process is (a) isothermal, (b) adiabatic?

87 •• How much work must be done on 30.0 g of carbon dioxide
at standard temperature and pressure to compress it to one-

fifth of its initial volume if the process is (a) isothermal, (b) adiabatic?

88 •• How much work must be done on 30.0 g of argon (Ar) at
standard temperature and pressure to compress it to one-fifth of its
initial volume if the process is (a) isothermal, (b) adiabatic?

89 •• A thermally insulated system consists of 1.00 mol of a di-
atomic gas at 100 K and 2.00 mol of a solid at 200 K that are sepa-
rated by a rigid insulating wall. Find the equilibrium temperature
of the system after the insulating wall is removed, assuming that
the gas obeys the ideal-gas law and that the solid obeys the
Dulong–Petit law.

90 •• When an ideal gas undergoes a temperature change at
constant volume, its internal energy change is given by the for-
mula However, this formula correctly gives the
change in internal energy whether the volume remains constant or
not. (a) Explain why this formula gives correct results for an ideal
gas even when the volume changes. (b) Using this formula, along
with the first law of thermodynamics, show that for an ideal gas

91 •• An insulated cylinder is fitted with an insulated movable
piston to maintain constant pressure. The cylinder initially contains
100 g of ice at Heat is transferred to the ice at a constant rate
by a 100-W heater. Make a graph showing the temperature of the

as a function of time starting at when the tem-
perature is and ending at when the temperature is 

92 •• (a) In this problem, 2.00 mol of a diatomic ideal gas ex-
pands adiabatically and quasi-statically. The initial temperature of
the gas is 300 K. The work done by the gas during the expansion is
3.50 kJ. What is the final temperature of the gas? (b) Compare your
result to the result you would get if the gas were monatomic.

93 •• A vertical insulated cylinder is divided into two parts by
a movable piston of mass The piston is initially held at rest. The
top part of the cylinder is evacuated and the bottom part is filled
with 1.00 mol of diatomic ideal gas at temperature 300 K. After the
piston is released and the system comes to equilibrium, the volume
occupied by gas is halved. Find the final temperature of the gas.

m.

110°C.tf�10°C
tiice>water>steam

�10°C.

CP � CV � nR.

¢Eint � CV ¢T.

SSM

(CO2)

b � 7.62 � 10�4 J>kg # K4.
a � 0.0108 J>kg # K2c � aT � bT3.

35°C?

GENERAL PROBLEMS

78 • During the process of quasi-statically compressing an
ideal diatomic gas to one-fifth of its initial volume, 180 kJ of work
are done on the gas. (a) If this compression is accomplished isother-
mally at room temperature (293 K), how much heat is released by
the gas? (b) How many moles of gas are in this sample?

79 • The diagram in Figure 18-25 represents 3.00 mol
of an ideal monatomic gas. The gas is initially at point A. The
paths AD and BC represent isothermal changes. If the system is
brought to point C along the path AEC, find (a) the initial and
final temperatures of the gas, (b) the work done by the gas, and
(c) the heat absorbed by the gas. SSM

PV

P

V

A B

CDE

4.0

1.0

4.01 20.0 , L

, atm
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80 •• The diagram in Figure 18-25 represents 3.00 mol
of an ideal monatomic gas. The gas is initially at point A. The
paths AD and BC represent isothermal changes. If the system is
brought to point C along the path ABC, find (a) the initial and
final temperatures of the gas, (b) the work done by the gas, and
(c) the heat absorbed by the gas.

81 •• The diagram in Figure 18-25 represents 3.00 mol of an
ideal monatomic gas. The gas is initially at point A. The paths AD
and BC represent isothermal changes. If the system is brought to
point C along the path ADC, find (a) the initial and final tempera-
tures of the gas, (b) the work done by the gas, and (c) the heat ab-
sorbed by the gas.

82 •• Suppose that the paths AD and BC in Figure 18-25 repre-
sent adiabatic processes. What are the work done by the gas and the
heat absorbed by the gas in following the path ABC?

83 •• BIOLOGICAL APPLICATION, CONTEXT-RICH As part of a
laboratory experiment, you test the calorie content of various foods.
Assume that when you eat these foods, of the energy released
by the foods is absorbed by your body. Suppose you burn a 2.50-g
potato chip, and the resulting flame warms a small aluminum can of
water. After burning the potato chip, you measure its mass to be 2.20
g. The mass of the can is 25.0 g, and the volume of water contained
in the can is 15.0 mL. If the temperature increase in the water is

how many kilocalories per 150-g
serving of these potato chips would you estimate there are? Assume
the can of water captures 50.0 percent of the heat released during
the burning of the potato chip. Note: Although the joule is the SI unit of
choice in most thermodynamic situations, the food industry in the United
States currently expresses the energy released during metabolism in terms
of the “dietary calorie,” which is our kilocalorie. SSM

(1 kcal � 1 dietary calorie)12.5°C,

100%

PV

PV
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94 ••• According to the Einstein model of a crystalline solid, the
internal energy per mole is given by 
where is a characteristic temperature called the Einstein tempera-
ture, and is the temperature of the solid in kelvins. Use this ex-
pression to show that a crystalline solid’s molar heat capacity at
constant volume is given by

95 ••• (a) Use the results of Problem 94 to show that in the
limit that the Einstein model gives the same expression
for specific heat that the Dulong-Petit law does. (b) For diamond,

is approximately 1060 K. Integrate numerically 
to find the increase in the internal energy if 1.00 mol of diamond
is heated from 300 K to 600 K.

96 ••• Use the results of the Einstein model in Problem 94 to
determine the molar internal energy of diamond 
at 300 K and 600 K, and thereby the increase in internal energy
as diamond is heated from 300 K to 600 K. Compare your result
to that of Problem 95.

(TE � 1060 K)

SSM

dEint � c œ
v dTTE

TW TE,

c œ
V � 3R¢TE

T
≤ 2 eTE>T

(eTE>T � 1)2

T
TE

U � (3NAkTE)>(eTE>T � 1)
97 ••• During an isothermal expansion, an ideal gas at an initial
pressure expands until its volume is twice its initial volume 
(a) Find its pressure after the expansion. (b) The gas is then com-
pressed adiabatically and quasi-statically until its volume is and
its pressure is 1.32 Is the gas monatomic, diatomic, or poly-
atomic? (c) How does the translational kinetic energy of the gas
change in each stage of this process?

98 ••• If a hole is punctured in a tire, the gas inside will gradu-
ally leak out. Assume the following: The area of the hole is the
tire volume is and the time, it takes for most of the air to leak
out of the tire can be expressed in terms of the ratio the tem-
perature the Boltzmann constant and the initial mass m of the
gas inside the tire. (a) Based on these assumptions, use dimensional
analysis to find an estimate for (b) Use the result of Part (a) to es-
timate the time it takes for a car tire with a nail hole punched in it
to go flat.

t.

k,T,
A>V,

t,V;
A;

P0 .
V0

V0 .P0
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The probability that at a given

instant the molecules of air in one 

of the tanks are all in the half of the

tank opposite the hose connection is 

very very small. Just how small is it? 

(See Example 19-13.)

?

DIVERS CARRYTANKS OF AIR TO ALLOW
THEM TO STAY UNDERWATER FOR LONG
PERIODS OF TIME. (Paul Springett/
Alamy.)
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of Thermodynamics

19-1 Heat Engines and the Second Law of Thermodynamics

19-2 Refrigerators and the Second Law of Thermodynamics

19-3 The Carnot Engine

19-4 Heat Pumps

19-5 Irreversibility, Disorder, and Entropy

19-6 Entropy and the Availability of Energy

19-7 Entropy and Probability

W
e are often asked to conserve energy. But according to the first law of ther-
modynamics, energy is always conserved. What then does it mean to con-
serve energy if the total amount of energy in the universe does not change
regardless of what we do? The first law of thermodynamics does not tell
the whole story. Energy is always conserved, but some forms of energy
are more useful than others. The possibility or impossibility of putting en-

ergy to use is the subject of the second law of thermodynamics. Scientists and engi-
neers are constantly trying to improve the efficiency of heat engines (devices that
transform heat into work). In the power industry engineers strive to achieve higher
efficiencies in transforming the thermal energy liberated by the burning of fossil
fuels and the fission of uranium and plutonium into useful work.

In this chapter, we examine the second law of thermodynamics as it relates
directly to heat engines as well as refrigerators. We also discuss an ideal
heat engine—the Carnot engine. Irreversibility and entropy are also covered
as they relate to the availability of energy, disorder, and probability.

*

Solar energy is directed toward the solar 
oven at the center by this circular array of 
reflectors at Barstow, California. (Sandia
National Laboratory.)
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19-1 HEAT ENGINES AND THE SECOND LAW
OF THERMODYNAMICS

No system can absorb heat from a single reservoir and convert it entirely
into work without additional net changes in the system or its surroundings.

SECOND LAW OF THERMODYNAMICS:  KELVIN STATEMENT

A common example of the conversion of work into heat is movement with friction.
For example, suppose you spend two minutes pushing a block this way and that
way along a tabletop in a closed path, leaving the block in its initial position. Also,
suppose that the block–table system is initially in thermal equilibrium with its sur-
roundings. The work you do on the system is converted into internal energy of the
system, and as a result the block–table system becomes warmer. Consequently, the
system is no longer in thermal equilibrium with its surroundings. However, the
system will transfer energy as heat to its surroundings until it returns to thermal
equilibrium with those surroundings. Because the final and initial states of the sys-
tem are the same, the first law of thermodynamics dictates that the energy trans-
ferred to the environment as heat equals the work done by you on the system. The
reverse process never occurs—a block and table that are warm will never sponta-
neously cool by converting their internal energy into work that causes the block to
push your hand around the table! Yet such an amazing occurrence would not vio-
late the first law of thermodynamics or any other physical laws we have encoun-
tered so far. It does, however, violate the second law of thermodynamics. Thus,
there is a lack of symmetry in the roles played by heat and work that is not evident
from the first law. This lack of symmetry is related to the fact that some processes
are irreversible.

Many other irreversible processes exist, seemingly quite different from one
another, but all related to the second law. For example, heat transfer is an irreversible
process. If we place a hot body in contact with a cold body, heat will transfer from
the hot body to the cold body until they are at the same temperature. However, the
reverse does not occur. Two bodies in contact at the same temperature remain at
the same temperature; heat is not transferred from one to the other leaving one
colder and the other warmer. This experimental fact gives us an equivalent state-
ment of the second law of thermodynamics.

A process whose only net result is to absorb heat from a cold reservoir and
release the same amount of heat to a hot reservoir is impossible.

SECOND LAW OF THERMODYNAMICS:  CLAUSIUS STATEMENT

We will show in this chapter that the Kelvin and Clausius statements of the second
law are equivalent.

The study of the efficiency of heat engines gave rise to the first clear statements
of the second law. A heat engine is a cyclic device whose purpose is to convert as
much heat into work as possible. Heat engines contain a working substance
(water in a steam engine) that absorbs a quantity of heat from a high temper-
ature reservoir, does work on its surroundings, and releases heat as it re-
turns to its initial state, where and represent magnitudes and are never
negative.

The earliest heat engines were steam engines, invented in the eighteenth cen-
tury for pumping water from coal mines. Today steam engines are used to gener-
ate electricity. In a typical steam engine, liquid water under several hundred
atmospheres of pressure absorbs heat from a high temperature reservoir until it

QcQh ,W,
QcW

Qh and represent
magnitudes and are never

negative.

QcQh ,W,!
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vaporizes at about (Figure 19-1).
This steam expands against a piston
(or turbine blades), doing work, and
then exits at a much lower tempera-
ture. The steam is cooled further in the
condenser where it condenses by re-
leasing heat to a low temperature
reservoir. The water is then pumped
back into the boiler and heated again.

Figure 19-2 is a schematic diagram of
the heat engine used in many
automobiles—the internal-combustion
engine. With the exhaust valve closed, a mixture of gasoline vapor and air enters the
combustion chamber as the piston moves down during the intake stroke. The mixture
is then compressed, after which it is ignited by a spark from the spark plug. The hot
gases then expand, driving the piston down and doing work on it during the power
stroke. The gases are then exhausted through the exhaust valve, and the cycle repeats.

500°C

Heat

Engine

Work

CondenserWater

Steam

Heat

F I G U R E  1 9 - 1 Schematic drawing of a
steam engine. High-pressure steam does work
on the piston.

Intake stroke
(1)

Exhaust
valve

Intake
valve

Intake
valve open

Gas vapor
and air
mixture

A mixture of
gasoline

vapor and air 
enters the 

combustion
chamber as 
the piston 

moves down.

Compression stroke

(2)

Cylinder

Spark plug

Both valves
closed

The piston then 
moves up, 

compressing the 
gas

for ignition.

Crankshaft

Connecting
rod

Piston

Ignition
(3)

Both valves
closed

When the 
gas ignites, 
it expands.

Power stroke
(4)

Both valves
closed

The
expanding gas 

moves the 
piston down, 
a stage called 

the power 
stroke.

Exhaust stroke
(5)

Exhaust valve
open

The piston 
moves up 
again to 

exhaust the 
burned gases.

To exhaust
pipe

F I G U R E  1 9 - 2 Internal-combustion
engine. In some fuel-injected engines, the fuel
is injected directly into the cylinder rather
than into the air stream.



The word cycle in this statement is
important because it is possible to

convert heat completely into work in a
noncyclic process.
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An idealized model of the processes in
the internal combustion engine is called the
Otto cycle and is shown in Figure 19-3.

Figure 19-4 shows a schematic repre-
sentation of a basic heat engine. The heat
absorbed is transferred from a hot heat
reservoir at temperature and the heat
released is transferred into a cold heat
reservoir at a lower temperature A hot
or cold heat reservoir is an idealized body
or system that has a very large heat ca-
pacity so that it can absorb or release heat
with no noticeable change in its tempera-
ture. In practice, burning fossil fuel often
acts as the high-temperature reservoir,
and the surrounding atmosphere or a lake
often acts as the low-temperature reser-
voir. Applying the first law of thermody-
namics to the heat
engine gives

19-1

where is the work done by the engine
during one complete cycle, is the
total heat transferred to the engine during one cycle, and is the change in in-
ternal energy of the engine (including the working substance) during one cycle.
Because the initial and final states of the engine for a complete cycle are the same,
the initial and final internal energies of the engine are equal. Thus, 

The efficiency of a heat engine is defined as the ratio of the work done by the
engine to the heat absorbed from the high temperature reservoir:

19-2

DEFINITION: EFFICIENCY OF A HEAT ENGINE

The heat is usually produced by burning some fuel that must be paid for,
such as coal or oil, so it is desirable to get the most efficient
use of the fuel as possible. The best steam engines operate
near 40 percent efficiency; the best internal-combustion en-
gines operate near 50 percent efficiency. At 100 percent effi-
ciency all the heat absorbed from the hot reservoir
would be converted into work and no heat would be re-
leased to the cold reservoir. However, it is impossible to make
a heat engine with an efficiency of 100 percent. This assertion is
the heat-engine statement of the second law of thermody-
namics. It is another way of expressing the Kelvin statement
given earlier:

It is impossible for a heat engine working in a cycle to
produce only the effect of absorbing heat from a single
reservoir and performing an equivalent amount of work.

SECOND LAW OF THERMODYNAMICS:  
HEAT-ENGINE STATEMENT

(e � 1),

Qh

e �
W
Qh

�
Qh � Qc

Qh

� 1 �
Qc

Qh

e

¢Eint � 0.

¢Eint

Qh � Qc

W

W � Qh � Qc

(¢Eint � Qin � Won)

Tc .

Th ,
Wby

Won

P

b

VV

c

d

a
Q

V

Qh

c
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W

Hot reservoir at temperature  

Cold reservoir at temperature 

Engine

Th

Tc

Q h

Qc

An exhaust manifold feeds the header pipes seen on this top-fuel
dragster in order for the engine to release heat and reduce its
temperature. (© 2002 Robert Briggs.)

!

F I G U R E  1 9 - 4 Schematic
representation of a heat engine. The
engine absorbs heat from a hot
reservoir at a temperature does
work and releases heat to a
cold reservoir at a temperature Tc .

QcW,
Th ,

Qh

F I G U R E  1 9 - 3 Otto cycle, representing the
internal-combustion engine. The fuel–air mixture is
adiabatically compressed from to It is then
heated (by combustion) at constant volume to 
The power stroke is represented by the adiabatic
expansion from to The cooling at constant
volume from to represents the release of heat.
The combustion products are exchanged for a fresh
fuel–air mixture at constant pressure at step 
(not shown). Work is done on the system during
the adiabatic compression, and work is done by the
system during the adiabatic expansion.

a

ad
d.c

c.
b.a
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An ideal gas undergoing an isothermal expansion does just this. But after the
expansion, the gas is not in its original state. To bring the gas back to its original
state, work must be done on the gas, and some heat will be released.

The second law tells us that to do work with energy absorbed from a heat reser-
voir, we must have a colder reservoir available to absorb the energy that is not used
by the engine to do work. If this were not true, we could design a ship that has a
heat engine that is powered by simply extracting energy as heat from the ocean.
Unfortunately, the lack of a colder reservoir, which would absorb heat from the
engine, makes this enormous reservoir of energy unavailable for such use. (It is
theoretically possible to run a heat engine between the warmer surface water of the
ocean and the colder water at greater depths, but no practical scheme for using this
temperature difference has yet emerged.) In order to convert heat at a single tem-
perature into the energy that does work (with no other changes in the source or
object), a separate cold reservoir must be used.

PROBLEM-SOLVING STRATEGY

Calculating the Work Done by a Heat Engine 

Operating in a Cycle

PICTURE A heat engine absorbs heat from a high-temperature heat reservoir,
does work and releases heat to a low-temperature heat reservoir. Conservation
of energy informs us that the heat absorbed by the engine per cycle equals the
heat released by the engine per cycle plus the work done by the engine per
cycle. The efficiency of a heat engine is defined as the ratio of the work done by
the engine per cycle to the heat absorbed by the engine per cycle. The working
substance for the engine is an ideal gas for virtually all calculations in this text.

SOLVE

1. For an integral number of cycles, the change in internal energy 
so

2. The efficiency is given by 

3. The work during a step in a cycle is given by where

4. The heat absorbed by the gas during a step is given by where is
the heat capacity.

CHECK The work done, must be equal to if the engine completes
an integral number of cycles.

Qh � QcW,

CC ¢T,
P � nRT>V.

Wstep � �
Vf

Vi

P dV,

e � W>Qh .
Qh � W � Qc .

¢Eint � 0,

1. The efficiency is the work done divided by the heat absorbed: e �
W
Qh

2. The heat absorbed and the heat released are given: and Qc � 160 JQh � 200 J

3. The work is found from the first law: W � Qh � Qc � 200 J � 160 J � 40 J

4. Substitute the values of and to calculate the efficiency:WQh 20%e �
W
Qh

�
40 J

200 J
� 0.20 �

Example 19-1 Efficiency of a Heat Engine

During each cycle, a heat engine absorbs 200 J of heat from a hot reservoir, does work, and
releases 160 J to a cold reservoir. What is the efficiency of the engine?

PICTURE We use the definition of the efficiency of a heat engine (Equation 19-2).

SOLVE

e � W>Qh
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Example 19-2 The Otto Cycle

(a) Find the efficiency of the Otto cycle shown in Figure 19-3. (b) Express your answer in
terms of the ratio of the volumes 

PICTURE (a) To find you need to find and Heat transfer occurs only during the two
constant-volume processes, to and to You can thus find and and therefore in
terms of the temperatures and (b) The temperatures can be related to the
volumes using for adiabatic processes.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

TVg�1 � constant
Td .Ta , Tb , Tc ,

eQc ,Qha.dcb
Qc .Qhe,

r � Va >Vb .

Steps Answers

(a) 1. Write the efficiency in terms of and Qc:Qh e � 1 �
Qcold

Qhot

� 1 �
Qc

Qh

2. The release of heat occurs at constant volume from to 
Write in terms of and the temperatures and Td:TaCvQc

a.d Qc � ƒQdSa ƒ � Cv ƒTa � Td ƒ � Cv(Td � Ta)

3. The absorption of heat occurs at constant volume from 
to Write in terms of and the temperatures and Tb:TcCvQhc.

b Qh � QbSc � Cv(Tc � Tb)

4. Substitute these expressions and to find the efficiency
in terms of the temperatures and Td:Ta , Tb , Tc ,

QhQc
1 �
Td � Ta
Tc � Tb

e �

(b) 1. Relate to using and Va >Vc � r:TVg�1 � constant,TdTc

Tc � Td
Vg�1
d

Vg�1
c

� Tdr
g�1

TcVc
g�1� TdVd

g�1

2. Relate to as in step 1:TaTb Tb � Tar
g�1

3. Use these relations to eliminate and from in Part (a) so
that is expressed in terms of r:e

eTbTc 1 �
1
rg�1e � 1 �

Td � Ta
Tdr
g�1 � Tar

g�1 �

Try It Yourself

CHECK The Part-(b) result is a dimensionless number, as expected. In addition, the expres-
sion for is between 0 and 1, and approaches 0 as approaches 1, as expected.

TAKING IT FURTHER The ratio (volume before compression/volume after compression)
is called the compression ratio.

r

re

19-2 REFRIGERATORS AND THE SECOND LAW 
OF THERMODYNAMICS

A refrigerator is essentially a heat engine run backward (Figure 19-5a). The refrig-
erator’s engine absorbs heat from the interior of the refrigerator (cold reservoir) and
releases heat to the surroundings (hot reservoir) (Figure 19-5b). Experience shows
that such a transfer always requires that work be done on the refrigerator—a result
known as the refrigerator statement of the second law of thermodynamics, which
is another way of expressing the Clausius statement:

CHECK The efficiency is dimensionless. In this example, both and are both expressed
in joules, so the ratio is dimensionless, as expected.

PRACTICE PROBLEM 19-1 A heat engine has an efficiency of 35 percent. (a) How much
work does it perform in a cycle if it absorbs 150 J of heat per cycle from the high-tempera-
ture reservoir? (b) How much heat is transferred to the low-temperature reservoir per cycle?

QhW
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It is impossible for a refrigerator working in a cycle to produce only the
effect of absorbing heat from a cold object and releasing the same amount of
heat to a hot object.

SECOND LAW OF THERMODYNAMICS:  REFRIGERATOR STATEMENT

Were the preceding statement not true, we could cool our homes in the summer
with refrigerators that released heat to the outdoors without using electricity or
any other energy source.

A measure of a refrigerator’s performance is the ratio of the heat absorbed
from the low-temperature reservoir to the work done on the refrigerator. (This
work equals the electrical energy that comes from the wall outlet.) The ratio 
is called the coefficient of performance (COP):

19-3

DEFINITION: COEFFICIENT OF PERFORMANCE (REFRIGERATOR)

The greater the COP, the better the refrigerator. Typical refrigerators have
coefficients of performance of about 5 or 6. [In the United States, the coefficient of
performance of air conditioners is called the seasonal energy efficiency ratio
(SEER).]* In terms of this ratio, the refrigerator statement of the second law states
that the COP of a refrigerator cannot be infinite.

COP �
Qc
W

Qc>W
Qc>W

W

Hot reservoir at temperature  

Cold reservoir at temperature 

Refrigerator

Th

Tc

Qh

Qc

(a) (b)

Low pressure (liquid) High pressure (liquid)

Condenser coils
(outside
refrigerator)

Qh
(to outside)

High pressure
vapor

Work

Compressor
motor

Compressor
motor

Low pressure
vapor

Expansion valve

Sensor

Cooling coils
(inside refrigerator)

Qc
(from inside
refrigerator
to coils)

F I G U R E  1 9 - 5 (a) Schematic
representation of a refrigerator. Work

is done on the refrigerator and it
absorbs heat from a cold reservoir
and releases heat (b) An actual
refrigerator.

Qh .
Qc

W

(Anderson Ross/PhotoDisk/Getty.)

* The SEER of an air conditioner is equal to the seasonal average of with in BTUs and in watt-hours.WQcQc >W,
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Example 19-3 Making Ice Cubes

You have half an hour before guests start arriving for your party when you suddenly realize
that you forgot to buy ice for drinks. You quickly put 1.00 L of water at into your ice
cube trays and pop them into the freezer. Will you have ice in time for your guests? The label
on your refrigerator states that the appliance has a coefficient of performance of 5.5 and a
power rating of 550 W. You estimate that only 10 percent of the electrical power contributes
to the cooling and freezing of the water.

PICTURE Work equals power times time. We are given the power, so we need to find the
work to determine the time. The work is related to by (Equation 19-3).
To find we calculate how much heat must be released by the water.

SOLVE

Qc

COP � W>QcQcW

10.0°C

1. The time needed is related to the power available and the work
required:

P � W>¢t ⇒ ¢t � W>P
2. The work is related to the coefficient of performance and the

heat absorbed:
COP �

Qc

W

3. The heat absorbed from the inside of the refrigerator equals the
heat to be absorbed from the water to cool the water plus
the heat to be absorbed from the water to freeze the water:Qfreeze

Qcool

Qc Qc � Qcool � Qfreeze

4. The release of heat needed to cool 1.00 L of water (mass 1 kg)
by is:10°C

� 41.8 kJQcool � mc ¢T � (1.00 kg)[4.18 kJ>(kg # K)](10.0 K)

5. The release of heat needed to freeze 1 L of water into ice cubes is: Qfreeze � mLf � (1.00 kg)(333.5 kJ>kg) � 333.5 kJ

6. Add these heats to obtain Qc: Qc � 41.8 kJ � 333.5 kJ � 375 kJ

7. Substitute into step 2 to find the work W:Qc W �
Qc

COP
�

375 kJ
5.5

� 68.2 kJ

8. Use this value of and 55 W for the available power to find
the time t:

W

Your guests will have ice.

¢t �
W
P

�
68.2 kJ
55 J>s � 1.24 ks �

1 min
60 s

� 20.7 min

CHECK Twenty minutes is a short, but feasible, time to freeze one liter of water.

PRACTICE PROBLEM 19-2 A refrigerator has a coefficient of performance of 4.0. How
much heat per cycle is absorbed by the hot reservoir if 200 kJ of heat per cycle are released
by the cold reservoir?

EQUIVALENCE OF THE HEAT-ENGINE 
AND REFRIGERATOR STATEMENTS

The heat-engine and refrigerator statements (that is, the Kelvin and Clausius state-
ments, respectively) of the second law of thermodynamics seem quite different,
but they are actually equivalent. The heat-engine statement is, “It is impossible for
a heat engine working in a cycle to produce only the effect of absorbing heat from a
single reservoir and performing an equivalent amount of work,” whereas the re-
frigerator statement is, “It is impossible for a refrigerator working in a cycle to pro-
duce only the effect of absorbing heat from a cold object and releasing the same
amount of heat to a hot object.” We can prove the equivalence of these statements
by showing that if either statement is assumed to be false, then the other must also
be false. We will use a numerical example to show that if the heat-engine statement
is false, then the refrigerator statement is false.
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Figure 19-6a shows an ordinary refrigerator that uses
50 J of work to absorb 100 J of heat from a cold reservoir
and release 150 J of heat to a hot reservoir. Suppose the
heat-engine statement of the second law were not true.
Then, a “perfect” heat engine could absorb 50 J of heat
from the hot reservoir and do 50 J of work with 100 per-
cent efficiency. We could use this perfect heat engine to
absorb 50 J of heat from the hot reservoir and do 50 J of
work (Figure 19-6b) on the ordinary refrigerator. Then,
the combination of the perfect heat engine and the ordi-
nary refrigerator would be a perfect refrigerator, trans-
ferring 100 J of energy as heat from the cold reservoir to
the hot reservoir without requiring any work, as
illustrated in Figure 19-6c. This violates the refrigerator
statement of the second law. Thus, if the heat-engine
statement is false, the refrigerator statement is also false.
Similarly, if a perfect refrigerator existed, it could be
used in conjunction with an ordinary heat engine to con-
struct a perfect heat engine. Thus, if the refrigerator
statement is false, the heat-engine statement is also false.
It then follows that if one statement is true, the other is
also true. Therefore, the heat-engine statement and the
refrigerator statement are equivalent.

19-3 THE CARNOT ENGINE

According to the second law of thermodynamics, it is impossible for a heat engine
working between two heat reservoirs to be 100 percent efficient. What, then, is the
maximum possible efficiency for such an engine? A young French engineer, Sadi
Carnot answered this question in 1824, before either the first or the second law of
thermodynamics had been established. Carnot found that a reversible engine is the
most efficient engine that can operate between any two given reservoirs. This re-
sult is known as the Carnot theorem:

No engine working between two given heat reservoirs can be more efficient
than a reversible engine working between these two reservoirs.

CARNOT THEOREM

A reversible engine working in a cycle between two heat reservoirs is called a
Carnot engine, and its cycle is called a Carnot cycle. Figure 19-7 illustrates the
Carnot theorem with a numerical example worked out in the figure caption.

150 J

50 J

100 J

Cold reservoir at temperature 

50 J

50 J

Hot reservoir at temperature 

(a) (b) (c)

An ordinary 
refrigerator absorbs 

100 J from a cold 
reservoir, requiring 
the input of 50 J of 

work.

A perfect heat engine 
violates the heat 

engine statement of 
the second law by 

absorbing 50 J from 
the hot reservoir 
and converting it 

completely into work.

Putting the two together 
makes a perfect 

refrigerator that violates 
the refrigerator statement 

of the second law by 
absorbing 100 J from the 

cold reservoir and 
releasing the same amount 
of heat to the hot reservoir 

with no other effect.

100 J100 J
Perfect

refrigeratorPerfect engine
Ordinary

refrigerator

T

T

h

c

F I G U R E  1 9 - 6 Demonstration of the
equivalence of the heat-engine and
refrigerator statements of the second law of
thermodynamics.

100 J

60 J

40 J

100 J

55 J

45 J

100 J

60 J

40 J

Cold reservoir at temperature 

=

5 J

5 J

Hot reservoir at temperature 

(a) (b) (c) (d )

Tc

Th

F I G U R E  1 9 - 7 Illustration of the Carnot
theorem. (a) A reversible heat engine with 40
percent efficiency absorbs 100 J from a hot
reservoir, does 40 J work, and releases 60 J to
the cold reservoir. (b) If the same engine runs
backwards as a refrigerator, 40 J of work are
done to absorb 60 J from the cold reservoir
and release 100 J to the hot reservoir. (c) An
assumed heat engine working between the
same two reservoirs with an efficiency of
45 percent, which is greater than that of the
reversible engine in Part (a). (d) The net effect
of running the engine in Part (c) in
conjunction with the refrigerator in Part (b) is
the same as that of a perfect heat engine that
absorbs 5 J from the cold reservoir and
converts it completely into work with no
other effect, violating the second law of
thermodynamics. Thus, the reversible engine
in Part (a) is the most efficient engine that can
operate between these two reservoirs.
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If no engine can have a greater efficiency than a Carnot engine, it follows that
all Carnot engines working between the same two reservoirs have the same effi-
ciency. This efficiency, called the Carnot efficiency, must be independent of the
working substance of the engine, and thus can depend only on the temperatures of
the reservoirs.

Let us look at what makes a process reversible or irreversible. According to the
second law, heat is transferred from hot objects to cold objects and never the other
way around. Thus, the transfer of heat from a hot object to a cold one is not
reversible. Also, friction can transform work into internal thermal energy, but friction
can never transform internal thermal energy into work. The conversion of work
into thermal energy by friction is not reversible. Friction and other dissipative
forces irreversibly transform mechanical energy into thermal energy. A third type
of irreversibility occurs when a system passes through nonequilibrium states, such
as when there is turbulence in a gas or when a gas explodes. For a system to
undergo a reversible process, the system must be able to go through the same equi-
librium states in the reverse order.

From these considerations and our statements of the second law of thermody-
namics, we can list some conditions that are necessary for a process to be reversible:

1. No mechanical energy is transformed into internal thermal energy by
friction, viscous forces, or other dissipative forces.

2. Energy transfer as heat only occurs between objects with an infinitesimal
difference in temperature.

3. The process must be quasi-static so that the system is always at or
infinitesimally near an equilibrium state.

CONDITIONS FOR REVERSIBILITY

Any process that violates any of the preceding conditions is irreversible. Most
processes we observe in nature are irreversible. To have a reversible process, great
care must be taken to eliminate frictional and other dissipative forces and to make
the process quasi-static. Because this can never be completely accomplished, a
reversible process is an idealization similar to the idealization of motion without
friction in mechanics problems. Reversibility can, nevertheless, be closely approx-
imated in practice.

We can now understand the features of a Carnot cycle, which is a reversible
cycle between two heat reservoirs. Because all heat transfer must be done isother-
mally in order for the process to be reversible, the heat absorbed from the hot reser-
voir must be absorbed isothermally. The next step is a quasi-static, adiabatic ex-
pansion to the lower temperature of the cold reservoir. Next, heat is released
isothermally to the cold reservoir. Finally, there is a quasi-static, adiabatic com-
pression to the higher temperature of the hot reservoir. The Carnot cycle thus con-
sists of four reversible steps:

1. A quasi-static, isothermal absorption of heat from a hot reservoir
2. A quasi-static, adiabatic expansion to a lower temperature
3. A quasi-static, isothermal release of heat to a cold reservoir
4. A quasi-static, adiabatic compression back to the original state

STEPS IN A CARNOT CYCLE

One way to calculate the efficiency of a Carnot engine is to choose as the work-
ing substance a material of which we have some knowledge—an ideal gas—and
then explicitly calculate the work done on it over a Carnot cycle (Figure 19-8a and
Figure 19-8b). Because all Carnot cycles have the same efficiency independent of
the working substance, our result will be valid in general.
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F I G U R E  1 9 - 8 (a) Carnot cycle for an ideal
gas: Step 1: Heat is absorbed from a hot reservoir
at temperature during an isothermal expansion
from state 1 to state 2. Step 2: The gas expands
adiabatically from state 2 to state 3, reducing its
temperature to Step 3: The gas releases heat to
the cold reservoir as it is compressed isothermally
at from state 3 to state 4. Step 4: The gas is
compressed adiabatically until its temperature is
again (b) Work is done by the gas during steps
1 to 2 to 3, and work is done on the gas during
steps 3 to 4 to 1. The net work done during the
cycle is represented by the shaded area. All
processes are reversible. All steps are quasi-static.

Th.

Tc

Tc.

Th

The efficiency of the Carnot cycle (Equation 19-2) is

The heat is absorbed during the isothermal expansion from state 1 to state 2.
The first law of thermodynamics is For an isothermal expansion
of an ideal gas Applying the first law to the isothermal expansion from
state 1 to state 2, we have so equals the work done by the gas:

Similarly, the heat released to the cold reservoir equals the work done on the gas
during the isothermal compression at temperature from state 3 to state 4. This
work has the same magnitude as that done by the gas if it expands from state 4 to
state 3. The heat rejected is thus

The ratio of these heats is

19-4
Qc

Qh

�

Tc ln 
V3

V4

Th ln 
V2

V1

Qc � Won gas � nRTc ln 
V3

V4

Tc

Qh � Wby gas � �
V2

V1

P dV � �
V2

V1

nRTh

V
dV � nRTh�

V2

V1

dV
V

� nRTh ln 
V2

V1

QhQh � Qin ,
¢Eint � 0.

¢Eint � Qin � Won .
Qh

e � 1 �
Qc

Qh
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Power plant at Wairakei, New Zealand, that converts
geothermal energy into electricity. 
(Jean-Pierre Horlin/The Image Bank.)

An experimental wind-powered electric
generator at Sandia National Laboratory. The
propeller is designed for optimum transfer of
wind energy to mechanical energy. (Sandia
National Laboratory.)

Coal-fueled electric generating plant at Four Corners, New Mexico. 
(Michael Collier/Stock, Boston.)

We can relate the ratios and using Equation 18-37 for a quasi-static adi-
abatic expansion. For the expansion from state 2 to state 3, we have

Similarly, for the adiabatic compression from state 4 to state 1, we have

Dividing the first of these two equations by the second, we obtain

Thus, Equation 19-4 gives

19-5

The Carnot efficiency is thus

19-6

CARNOT EFFICIENCY

Equation 19-6 demonstrates that because the Carnot efficiency must be indepen-
dent of the working substance of any particular engine, it depends only on the
temperatures of the two reservoirs.

eC � 1 �
Tc

Th

eC

Qc

Qh

�

Tc ln 
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Th ln 
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Th
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Example 19-4 Efficiency of a Steam Engine

A steam engine works between a hot reservoir at (373 K) and a cold reservoir at 
(273 K). (a) What is the maximum possible efficiency of this engine? (b) If the engine is run
backwards as a refrigerator, what is its maximum coefficient of performance?

PICTURE The maximum efficiency is the Carnot efficiency given by Equation 19-6. To find
the maximum COP, we use the definition of efficiency the definition of COP

and, because it is a reversible cycle, (Equation 19-5).

SOLVE

Qc >Qh � Tc >Th(COP � Qc >W),
(e � W>Qh),

0.0°C100°C

Solar energy is focused and collected individually for these heliostats, which are being tested
at Sandia National Laboratory, to produce electricity. (Sandia National Laboratory.)

Control rods are inserted into this nuclear reactor
at Tihange, Belgium. (Peter Miller/The Image Bank.)

CHECK Solving the Part (a) result for the ratio of temperatures, substituting into the 
Part-(b) step-3 result, and rearranging gives Substituting 0.268 (the 
Part-(a) result) for gives (the Part-(b) result).

TAKING IT FURTHER Even though an efficiency of 26.8 percent seems to be quite low, it is
the greatest efficiency possible for any engine working between these two temperatures.
Real engines operating between these temperatures will have lower efficiencies because of
friction, heat leaks, and other irreversible processes. Real refrigerators will have lower
coefficients of performance than 2.73. It can be shown that the coefficient of performance of
a Carnot refrigerator is where ¢T � Th � Tc .Tc >¢T,

COPmax � 2.73eC

COPmax � e�1
C �1.

(a) The maximum efficiency is the Carnot efficiency: 26.8%� 0.268 �emax � eC � 1 �
Tc

Th

� 1 �
273 K
373 K

(b) 1. Write the expression for the COP if the engine is run in
reverse for a single cycle:

COP �
Qc

W

2. The work is equal to (the heat absorbed from the
high-temperature reservoir minus the heat released to
the low-temperature reservoir):

Qh � Qc COP �
Qc

Qh � Qc

�
1

Qh

Qc

� 1

3. Substitute for using (Equation 19-5)
and solve for the COP:

Qc >Qh � Tc >ThQh >Qc 2.73COPmax �
1

Th

Tc

� 1

�
1

373 K
273 K

� 1
�



Example 19-6 Work Lost Between Heat Reservoirs

If 200 J of heat are released by a reservoir at 373 K and absorbed by a second reservoir at
273 K, how much work capability is “lost” in this process?

PICTURE No work is done during the transfer of the 200 J. Thus, the work lost is 100 per-
cent of the work that would be done by a reversible engine operating between the same two
reservoirs that absorbs 200 J from the high-temperature reservoir.
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1. The work lost is the maximum amount of work that could be
done minus the work actually done:

Wlost � Wmax � W

2. The maximum amount of work that could be done is the work
done using a Carnot engine:

Wmax � eCQh

3. The work lost is then: Wlost � eCQh � W

4. The Carnot efficiency can be expressed in terms of the temperatures: eC � 1 �
Tc

Th

5. Substituting for gives:eC

5.6 J� 53.6 J � 48.0 J �

Wlost � ¢1 �
Tc

Th

≤Qh � W � a1 �
273 K
373 K

b (200 J) � 48 J

CHECK The Carnot efficiency for these two temperatures is 26.8%. The work done by the
engine in this example is given as 48.0 J, and 48.0 J is 24% of 200 J. In addition, the 5.6 J of
work lost is 2.4% of 200 J. Because 24% plus 2.4% equals 26.8%, our answer is plausible.

TAKING IT FURTHER The 5.6 J of energy in the answer is not “lost” to the universe—total
energy is conserved. That 5.6 J of energy transferred to the cold reservoir by the nonideal
engine of the problem is only lost in that it would have been converted into useful work if
an ideal (reversible) engine had been used.

The Carnot efficiency gives us an upper limit on possible efficiencies, and is
therefore useful to know. For example, we calculated in Example 19-4 that the
Carnot efficiency is 26.8 percent. This means that, no matter how much we reduce
friction and other irreversible losses, the best efficiency obtained between reservoirs
at 373 K and 273 K is 26.8 percent. We would know, then, that an engine working be-
tween those two temperatures with an efficiency of 25 percent is a very good engine!

For an actual engine, the work lost is the work done by a reversible engine
operating between the same two temperatures minus the work done by the actual
engine, assuming both engines complete an integral number of cycles and both
absorb the same amount of heat from the high-temperature reservoir. The ratio of
the work done by the actual engine and the work done by a reversible engine
operating between the same two temperatures is called the second law efficiency.

Example 19-5 Work Lost by an Engine

An engine absorbs 200 J from a hot reservoir at 373 K, does 48.0 J of work, and releases 152 J
to a cold reservoir at 273 K. What is the work lost due to irreversible processes in 
this engine?

PICTURE The work lost is the work done by a reversible engine operating between the
same two temperatures minus the 18 J of work done by the engine, assuming both engines
absorb the same amount of heat from the high-temperature reservoir.

SOLVE



SOLVE

1. The work lost is the work done by a reversible engine minus
the work done by the process described here. This process is the
transfer of 200 J of heat from the high-temperature reservoir to
the low-temperature reservoir, so the work done is zero:

Wlost � Wrev � W � Wrev � 0

2. The work done by a reversible engine operating between the
same two reservoirs and the absorption of 200 J from the high-
temperature reservoir is:

� a1 �
273 K
373 K

b (200 J) � 53.6 JWrev � eQh � ¢1 �
Tc
Th
≤Qh

3. Calculate the work lost: 53.6 JWlost � Wrev �

CHECK In Example 19-4, we calculated the efficiency of a reversible engine operating
between 273 K and 373 K to be 26.8%. Our step-3 result is plausible because 53.6 J is 26.8%
of the 200 J absorbed from the reservoir.

PRACTICE PROBLEM 19-3 A reversible engine works between heat reservoirs at 500 K
and 300 K. (a) What is its efficiency? (b) If during each cycle the engine absorbs 200 kJ of heat
from the hot reservoir, how much work does it do during each cycle?

PRACTICE PROBLEM 19-4 A real engine works between heat reservoirs at 500 K and 300 K.
It absorbs 500 kJ of heat from the hot reservoir and does 150 kJ of work during each cycle.
What is its efficiency?
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THE THERMODYNAMIC 
OR ABSOLUTE TEMPERATURE SCALE

In Chapter 17, the ideal-gas temperature scale was defined in terms of the proper-
ties of gases that have low densities. Because the Carnot efficiency depends only
on the temperatures of the two heat reservoirs, it can be used to define the ratio of
the temperatures of the reservoirs independent of the properties of any substance.
We define the ratio of the thermodynamic temperatures of the hot and cold reser-
voirs to be

19-7

DEFINITION OF THERMODYNAMIC TEMPERATURE

where is the energy absorbed from the hot reservoir and is the energy
released to the cold reservoir by a Carnot engine operating in a cycle and working
between the two reservoirs. Thus, to find the ratio of two reservoir temperatures,
we set up a reversible engine operating between them and measure the energy
transferred as heat to or from each reservoir during one cycle. The thermodynamic
temperature is completely specified by Equation 19-7 and the choice of one fixed
point. If the fixed point is defined to be 273.16 K for the triple point of water, then
the thermodynamic temperature scale matches the ideal-gas temperature scale for
the range of temperatures over which a gas thermometer can be used. Any tem-
perature that reads zero at absolute zero is called an absolute-temperature scale.

19-4 HEAT PUMPS

A heat pump is a refrigerator with a different objective. Typically, the objective of a
refrigerator is to cool an object or region of interest. The objective of a heat pump,
however, is to heat an object or region of interest. For example, if you use a heat pump
to heat your house, you transfer heat from the cold air outside the house to the

QcQh

Tc

Th

�
Qc

Qh

*
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warmer air inside it. Your objective is to heat the region inside your house. If work 
is done on a heat pump to absorb heat from the cold reservoir and release heat 
to the hot reservoir, the coefficient of performance for a heat pump is defined as

19-8

DEFINITION: COEFFICIENT OF PERFORMANCE (HEAT PUMP)

This coefficient of performance differs from that for the refrigerator, which is 
(Equation 19-3). Using this can be written

19-9

The maximum coefficient of performance is obtained using a Carnot heat pump.
Then and are related by Equation 19-5. Substituting into
Equation 19-9, we obtain for the maximum coefficient of performance

19-10

where is the difference in temperature between the hot and cold reservoirs.
Real heat pumps have coefficients of performance less than the because
of friction, heat leaks, and other irreversible processes.

The two COPs are related. Using we can relate Equations 19-3
and 19-10:

19-11

where COP is the coefficient of performance of a refrigerator.

COPHP �
Qh

W
�
Qc � W

W
� 1 �

Qc

W
� 1 � COP

Qh � Qc � W,

COPHP max

¢T

COPHP max �
1

1 �
Tc

Th

�
Th

Th � Tc

�
Th

¢T

Qc>Qh � Tc>ThQhQc

COPHP �
Qh

Qh � Qc

�
1

1 �
Qc

Qh

W � Qh � Qc ,
Qc>W

COPHP �
Qh

W

QhQc

W

Example 19-7 An Ideal Heat Pump

An ideal heat pump is used to pump heat from the outside air at to the hot-air supply
for the heating fan in a house, which is at How much work is required to pump 1.0 kJ
of heat into the house?

PICTURE Use Equation 19-11 with calculated from Equation 19-10 for
and ¢T � 45 K.Tc � 25°C � 268 K

COPHP max

40°C.
�5°C

SOLVE

1. Using the definition of relate the work
done to the heat released:

COPHP (COPHP � Qh >W), COPHP �
Qh

W

2. Relate the ideal or maximum to the temperatures
(Equation 19-10):

COPHP COPHP � COPHP max �
Th

¢T

3. Solve for the work:

0.14 kJW �

W �
Qh

COPHP

� Qh

¢T
Th

� (1.0 kJ)
45 K

313 K

CHECK Our step-3 expression for the work ensures the work has the same dimensions as
heat. (The ratio is dimensionless.)

TAKING IT FURTHER The That is, the amount of heat released
inside the house by the heat pump is 7 times larger than the amount of work done on the
heat pump. (Only 0.14 kJ of work is needed to pump 1.0 kJ of heat into the hot-air supply in
the house.)

COPHP max � Th >¢T � 7.0.

¢T>Th
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19-5 IRREVERSIBILITY, DISORDER,
AND ENTROPY

Many irreversible processes exist that cannot be described by the heat-engine or
refrigerator statements of the second law, such as a glass falling to the floor and
breaking or a balloon popping. However, all irreversible processes have one thing
in common—the system plus its surroundings move toward a less ordered state.

Suppose a box of negligible mass that contains a gas of mass at a temperature
is moving along a frictionless table with a velocity (Figure 19-9a). The total

kinetic energy of the gas has two components: that associated with the movement
of its center of mass and the kinetic energy of the motion of its molecules
relative to its center of mass. The center-of-mass energy is ordered me-
chanical energy that could be converted entirely into work. (For example, if a
weight were attached to the moving box by a string passing over a pulley, this en-
ergy could be used to lift the weight.) The relative energy is the internal thermal
energy of the gas, which is related to its temperature It is random, nonordered
energy that cannot be converted entirely into work.

Now, suppose that the box hits a fixed wall and stops (Figure 19-9b). This
inelastic collision is clearly an irreversible process. The ordered mechanical energy
of the gas is transformed into random internal energy, and the temperature
of the gas increases. The gas still has the same total energy, but now all of that
energy is associated with the random motion of the gas molecules relative to the
center of mass, which is now at rest. Thus, the gas has become less ordered (more
disordered), and has lost some of its ability to do work.

There is a thermodynamic function called entropy that is a measure of the
disorder of a system. Entropy like pressure volume temperature and
internal energy is a function of the state of a system. As with potential energy
and internal energy, it is the change in entropy that is important. The change in
entropy of a system as it goes from one state to another is defined as

19-12

DEFINITION: ENTROPY CHANGE

where is the heat absorbed by the system in a reversible process. If is
negative, then the entropy change of the system has a negative value and the
entropy of the system has decreased.

The term does not mean that a reversible heat transfer must take place in
order for the entropy of a system to change. Indeed, there are many situations in
which the entropy of a system changes when there is no transfer of heat whatsoever,
for example, the box of gas colliding with the wall in Figure 19-9. Equation 19-12
simply gives us a method for calculating the entropy difference between two states
of a system. Because entropy is a state function, the change in entropy when the

dQrev

dQrevdQrev

dS �
dQrev

T

dS

Eint,
T,V,P,S,

S

1
2Mv2

cm

T.

1
2Mv2

cm

1
2Mv2

cm,

vcmT
M

vcm

vcm = vbox = 0vcm = vbox

vbox

(a) (b)

F I G U R E  1 9 - 9 (a) A box of negligible
mass contains a gas. The box and the center of
mass of the gas move toward the wall at the
same speed. (b) A short time after the box
undergoes a perfectly inelastic collision with
the wall, both the box and the center of mass
of the gas are at rest, and the gas has a higher
temperature.



646 | C H A P T E R  1 9 The Second Law of Thermodynamics

system moves from an initial state to a final state depends only on the system’s ini-
tial and final states, and not on the process by which the change occurs. That is, if

is the entropy of the system when it is in state 1, and if is the entropy of the sys-
tem when it is in state 2, then we calculate the difference in the entropy S2 � S1 by
evaluating the integral for any reversible path (process) that takes the
system from state 1 to state 2.

ENTROPY OF AN IDEAL GAS

We can illustrate that is in fact the differential of a state function for an
ideal gas (even though is not). Consider an arbitrary reversible quasi-static
process in which a system consisting of an ideal gas absorbs an amount of heat

According to the first law, is related to the change in the internal energy
of the gas and the work done on the gas by

For an ideal gas, we can write in terms of the heat capacity, and
we can substitute for from the equation of state. Then

19-13

Equation 19-13 cannot be integrated directly unless we know how depends
on and how depends on . This is just another way of saying that is not
a differential of a state function But if we divide each term by we obtain

19-14

Because depends only on the term on the left can be integrated, as can the
term on the right.* Thus, is the differential of a function, the entropy
function

19-15

For simplicity, we will assume that is constant. Integrating Equation 19-15 from
state 1 to state 2, we obtain

19-16

ENTROPY CHANGE FOR AN IDEAL GAS

Equation 19-16 gives the entropy change of an ideal gas that goes from an initial state
of volume and temperature to a final state of volume and temperature 

ENTROPY CHANGES FOR VARIOUS PROCESSES

S for an isothermal expansion of an ideal gas If an ideal gas undergoes an
isothermal expansion, then and its entropy change is

19-17

The entropy change of the gas is positive because is greater than During this
process, an amount of heat is released by the reservoir and is absorbed by the
gas. This heat equals the work done by the gas:

19-18Qrev � Wby � �
V2

V1

P dV � nRT �
V2

V1

dV
V

� nRT ln 
V2

V1

Qrev

V1 .V2

¢S � � dQrev

T
� 0 � nR ln 

V2

V1

T2 � T1

≤

T2 .V2T1V1

¢S � � dQrev

T
� Cv ln 

T2

T1

� nR ln 
V2

V1

Cv

dS �
dQrev

T
� Cv

dT
T

� nR
dV
V

S:
dQrev>TT,Cv

Cv

dT
T

�
dQrev

T
� nR

dV
V

T,Qrev .
dQrevTCvV
T

Cv dT � dQrev � nRT
dV
V

PnRT>V dEint � Cv dT,dEint

dEint � dQrev � dWon � dQrev � P dV

(dWon � �P dV)dEint

dQrevdQrev .

dQrev

dQrev>T
�2

1 dQ>T S2S1

* Mathematically, the factor is called an integrating factor for Equation 19-13.1>T

See

Math Tutorial for more

information on 

Integrals
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The entropy change of the gas is Because the same amount of heat is
released by the reservoir at temperature the entropy change of the reservoir is

The net entropy change of the gas plus the reservoir is zero. We will refer
to the system under consideration plus its surroundings as the “universe.” This
example illustrates a general result:

During a reversible process, the entropy change of the universe is zero.

S for a free expansion of an ideal gas During the free expan-
sion of a gas discussed in Section 18-4, the gas is initially confined in
one compartment of a container, which is connected by a stopcock to
another compartment that is evacuated. The whole system has rigid
walls and is thermally insulated from its surroundings so that no heat
can be absorbed by, or released from, the system, and no work can be
done on (or by) the system (Figure 19-10). When the stopcock is
opened, the gas rushes into the evacuated chamber. The gas eventu-
ally reaches thermal equilibrium. Because no work is done on the gas
and no heat is either absorbed or released by the gas, the final internal
energy of the gas must equal its initial internal energy. If we assume
that the gas is ideal, then its internal energy depends only on the tem-
perature , so its final temperature equals its initial temperature.

We might think that there is no entropy change of the gas because
there is no heat transfer. But this process is not reversible, so 
cannot be used to find the change in entropy of the gas. However, the
initial and final states of the gas in the free expansion are the same as those of the
gas in the isothermal expansion just discussed. Because the change in the entropy of a
system for any process depends only on the initial and final states of the system, the en-
tropy change of the gas for the free expansion is the same as that for the isothermal expan-
sion. If is the initial volume of the gas and is its final volume, the entropy
change of the gas is given by Equation 19-17, or

In this case, there is no change in the surroundings, so the entropy change of the
gas is also the entropy change of the universe:

19-19

Note that because is greater than the change in entropy of the universe for
this irreversible process is positive; that is, the entropy of the universe increases.
This is also a general result:

During an irreversible process, the entropy of the universe increases.

If the final volume during the free expansion were less than the initial volume, then
the entropy of the universe would decrease—but this does not happen during free
expansions. That is, a gas does not freely contract by itself into a smaller volume.*
This leads us to yet another statement of the second law of thermodynamics:

For any process, the entropy of the universe never decreases.

V1 ,V2

¢Su � nR ln 
V2

V1

¢Sgas � nR ln 
V2

V1

V2V1

� dQ>TT

≤

�Qrev>T.
T,

�Qrev>T.

Gas Vacuum

F I G U R E  1 9 - 1 0 Adiabatic free expansion of a gas. When
the stopcock is opened, the gas expands rapidly into the
evacuated chamber. The initial and final internal energies of
the gas are equal because no work is done on the gas during
the expansion, because the entire system is insulated from its
surroundings, and because the heat capacities of the chambers
and valve are negligible.

* What is actually the case, is that the probability of a gas freely contracting into a smaller volume is minuscule (except
when the gas contains only an extremely small number of molecules).



S for constant-pressure processes If a substance is heated from temperature
to temperature at constant pressure, the heat absorbed is related to its

temperature change by

We can approximate reversible heat transfer if we have a large number of heat
reservoirs with temperatures ranging from just slightly greater than to in very
small steps. We could place the substance, with initial temperature in contact
with the first reservoir at a temperature just slightly greater than and let the sub-
stance absorb a small amount of heat. Because the heat transfer from each reservoir
is approximately isothermal, the process will be approximately reversible. We then
place the substance in contact with the next reservoir at a slightly higher tempera-
ture, and so on, until the final temperature is reached. If heat is absorbed
reversibly, the entropy change of the substance is

Integrating from to we obtain the total entropy change of the substance:

19-20

This result gives the entropy change of a substance that is heated from to by
any process, reversible or irreversible, as long as the final pressure equals the ini-
tial pressure and is constant. It also gives the entropy change of a substance that
is cooled. In the case of cooling, is less than and is negative, giving
a negative entropy change.

ln(T2>T1)T1 ,T2

CP

T2T1

¢S � Cp �
T2

T1

dT
T

� Cp ln 
T2

T1

T2 ,T1

dS �
dQ
T

� Cp

dT
T

dQT2

T1

T1 ,
T2T1

dQ � Cp dT
dT

dQT2T1

≤
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1. The entropy change is the same as for a reversible isothermal
expansion from to V2:V1

¢S � ¢Sisothermal � �
2

1

dQrev

T
�

1
T �

2

1
dQrev �

Q

T

2. The heat that would be absorbed by the gas during an
isothermal expansion at temperature equals the work done
by the gas during the expansion:

T

Q Q � Wby � nRT ln 
V2

V1

3. Substitute this value of to calculate ¢S:Q

4.3 J>K�

¢S �
Q

T
� nR ln 

V2

V1

� 10.75 mol218.31 J>1mol # K22 ln 2

CHECK The units in step 3 are such that moles cancel leaving joules per kelvin. Joules per
kelvin are the correct units for entropy changes because, by definition, ¢S � � dQ>T.

A living organism consists of
highly organized matter. Does the
growth of a living organism con-
stitute a violation of the second
law of thermodynamics? That is,
during this process does the
entropy of the universe increase
or decrease?

CONCEPT CHECK 19-1✓

Example 19-8 Free Expansion of an Ideal Gas

Find the entropy change for the free expansion of 0.75 mol of an ideal gas from to

PICTURE For a free expansion of an ideal gas the initial and final temperatures are the
same. Thus, the entropy change for a free expansion from to is the same as for
an isothermal process from to For the isothermal process so First,
we calculate then we set 

SOLVE

¢S � Q>T.Q,
Q � Wby .¢Eint � 0,V2 .V1

¢SV2V1¢S

V2 � 3.0 L.
V1 � 1.5 L

PRACTICE PROBLEM 19-5

Find the change in entropy of 1.00 kg of water that is heated at constant pressure from
to

PRACTICE PROBLEM 19-6

Derive Equation 19-20 directly from Equation 19-16.

100°C.0°C
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SOLVE

(a) 1. Calculate by setting the heat released equal to
the heat absorbed:

Tf Tf � 70°C � 343 K

2. Use your result for and Equation 19-20 to
calculate and ¢S2:¢S1

Tf

� �0.474 kJ>K¢S2 � (2.00 kg)(4.184 kJ>kg # K) ln 
343 K
363 K

� 0.519 kJ>K� (1.00 kg)(4.184 kJ>kg # K) ln 
343 K
303 K

� Cp ln 
Tf

T1

� m1cp ln 
Tf

T1

¢S1 � �
f

1

dQrev

T
� �

Tf

T1

Cp dT

T
� Cp �

Tf

T1

dT
T

3. Add and to find the total entropy
change of the system:

¢S2¢S1 �0.045 kJ>K¢Ssystem �

(b) 1. The calorimeter is insulated, so the
surroundings are unchanged:

¢Ssurroundings � 0

2. Add and to find the entropy
change of the universe:

¢Ssurroundings¢Ssystem �0.045 kJ>K¢Su �

CHECK The Part-(b) result is a positive number, as expected. (The process is irreversible and
the entropy change of the universe is never negative.)

S for a perfectly inelastic collision Because mechanical energy is converted
into internal thermal energy during an inelastic collision, such a process is clearly
irreversible. The entropy of the universe must therefore increase. Consider a block
of mass falling from a height and making a perfectly inelastic collision with the
ground. Let the block, ground, and atmosphere all be at the same temperature 
which is not significantly changed by the process. If we consider the block, ground,
and atmosphere as our thermally isolated system, there is no heat absorbed or
released by the system. The state of the system has been changed because its
internal energy has been increased by an amount This change is the same as
if we added heat to the system at constant temperature To calculate
the change in entropy of the system, we thus consider a reversible process in which
heat is absorbed at a constant temperature According to Equation
19-12, the change in entropy of the system is then

This positive entropy change is also the entropy change of the universe.

S for heat transfer from one reservoir to another Heat transfer is also an
irreversible process, and so we expect the entropy of the universe to increase when
this occurs. Consider the simple case of heat transferred from a hot reservoir atQ

≤

¢S �
Qrev

T
�
mgh

T

T.Qrev � mgh

T.Q � mgh
mgh.

T,
hm

≤

Example 19-9 Entropy Changes During Heat Transfer

Suppose a 1.00-kg sample of water at temperature is added to a 2.00-kg sample
of water at in an insulated calorimeter of negligible heat capacity at a constant
pressure of 1.00 atm. (a) Find the change in entropy of the system. (b) Find the change in en-
tropy of the universe.

PICTURE When the two samples of water are combined, they eventually come to a final equi-
librium temperature, that can be found by setting the heat released equal to the heat
absorbed. To calculate the entropy change of each sample of water, we consider a reversible
isobaric (constant pressure) heating of the 1.00-kg sample of water from to and a
reversible isobaric cooling of the 2.00-kg sample from to using Equation 19-20. The en-
tropy change of the system is the sum of the entropy changes of each part. The entropy change
of the universe is the entropy change of the system plus the entropy change of its surroundings.
To find the entropy change of the surroundings, assume a negligible amount of heat is absorbed
or released by the calorimeter during the time it takes the water to reach its final temperature.

Tf90°C
Tf ,30°C

Tf ,

T2 � 90.0°C
T1 � 30.0°C
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a temperature to a cold reservoir at a temperature The state of a heat reser-
voir is determined by its temperature and its internal energy only. The change in
entropy of a heat reservoir due to a heat transfer is the same whether the heat
transfer is reversible or not. If heat is absorbed by a reservoir at temperature 
then the entropy of the reservoir increases by and if the heat is released by
a reservoir at temperature then the entropy of the reservoir changes by 
In the case of heat transfer, the hot reservoir releases heat, so its entropy change is

The cold reservoir absorbs heat, so its entropy change is

The net entropy change of the universe is

19-21

Note that, because heat transfers from a hot reservoir to a cold reservoir, the
change in entropy of the universe is positive.

S for a Carnot cycle Because a Carnot cycle is by definition reversible, the
entropy change of the universe after a cycle must be zero. We demonstrate this by
showing that the entropy change of the reservoirs in a Carnot engine is zero.
(Because a Carnot engine works in a cycle, the entropy change of the engine itself
is zero, so the entropy change of the universe is just the sum of the entropy changes
of the reservoirs.) The entropy change of the hot reservoir is and
the entropy change of the cold reservoir is The heats and are
related to the temperatures and by the definition of thermodynamic
temperature (Equation 19-7)

The entropy change of the universe is thus

The entropy change of the universe is zero as expected.
Notice that we have ignored any entropy change associated with the energy

transferred by work from the Carnot engine to its surroundings. If this work is
used to raise a weight, or some other ordered process, then there is no entropy
change. However, if this work is used to push a block across a tabletop or other
surface where friction is involved, then there is an additional entropy increase
associated with this work.

¢Su � ¢Sengine � ¢Sh � ¢Sc � 0 �
Qh

Th

�
Qc

Tc

� 0

Tc

Th

�
Qc

Qh

 ¢or
Qh

Th

�
Qc

Tc

≤TcTh

QcQh¢Sc � �(Qc>Tc).
¢Sh � �(Qh>Th),

≤

¢Su � ¢Sc � ¢Sh �
Q

Tc

�
Q

Th

¢Sc � �
Q

Tc

¢Sh � �
Q

Th

�Q>T .T,
QQ>T,

T,Q

Tc .Th

Example 19-10 Entropy Changes in a Carnot Cycle

During each cycle, a Carnot engine absorbs 100 J from a reservoir at 400 K, does work, and re-
leases heat to a reservoir at 300 K. Compute the entropy change of each reservoir for each cycle,
and show explicitly that the entropy change of the universe is zero for this reversible process.

PICTURE Because the engine works during a cycle, its entropy change is zero. We therefore
compute the entropy change of each reservoir and add them to obtain the entropy change of
the universe.
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SOLVE

1. The entropy change of the universe equals the sum of the
entropy changes of the reservoirs:

¢Su � ¢S400 � ¢S300

2. Calculate the entropy change of the hot reservoir: �0.250 J>K¢S400 � �
Qh

Th

� �
100 J
400 K

�

3. The entropy change of the cold reservoir is divided by 
where Qc � Qh � W:

Tc ,Qc ¢S300 �
Qc

Tc

�
Qh � W

Tc

4. We use (Equation 19-2) to relate to 
The efficiency is the Carnot efficiency (Equation 19-6):

Qh .WW � eCQh where

so W � ¢1 �
Tc

Th

≤Qh

e � eC � 1 � (Tc >Th),W � eQh ,

5. Calculate the entropy change of the cold reservoir:

0.250 J>K�
100 J
400 K

�

¢S300 �
Qh � W

Tc

�

Qh � Qh¢1 �
Tc

Th

≤
Tc

�
Qh

Th

6. Substitute these results into step 1 to find the entropy change of
the universe: 0.000 J>K¢Su � �0.250 J>K � 0.250 J>K �

¢Su � ¢S400 � ¢S300

CHECK The entropy change of the universe is positive, as the second law of thermodynam-
ics requires.

TAKING IT FURTHER Suppose that an ordinary, nonreversible engine removed 100 J from
the hot reservoir. Because its efficiency must be less than that of a Carnot engine, it would
do less work and release more heat to the cold reservoir. Then, the entropy increase of the
cold reservoir would be greater than the entropy decrease of the hot reservoir, and the en-
tropy change of the universe would be positive.

Example 19-11 The ST Plot

Because entropy is a state function, thermodynamic processes can be represented as 
or diagrams in addition to the diagrams we have used so far. Make a sketch of the
Carnot cycle on an plot.

PICTURE The Carnot cycle consists of first a reversible isothermal ex-
pansion, then a reversible adiabatic expansion, followed by a reversible
isothermal compression and then a reversible adiabatic compression.
During the isothermal processes, heat is absorbed or released reversibly,
so increases or decreases , but remains constant. During the adiabatic
processes, the temperature changes, but because is constant.

SOLVE

1. During the reversible isothermal expansion (1 to 2 in Figure 19-11a),
heat is absorbed reversibly, so increases and remains constant:

2. During the reversible adiabatic expansion (2 to 3 in Figure 19-11b), the
temperature decreases while remains constant as decreases:

3. During the isothermal compression (3 to 4 in Figure 19-11c), heat is
released reversibly, so decreases and remains constat:

4. During the reversible adiabatic compression (4 to 1 in Figure 19-11d),
the temperature increases while is constant as increases:

CHECK The plot of versus is a closed curve, as expected. This is as ex-
pected for a complete cycle, because both and are state functions.

TAKING IT FURTHER The Carnot cycle is a rectangle if plotted on an -versus- diagram.TS
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(d)

F I G U R E  1 9 - 1 1 An -versus- plot of a Carnot cycle
using an ideal gas.

TS



652 | C H A P T E R  1 9 The Second Law of Thermodynamics

19-6 ENTROPY AND THE AVAILABILITY 
OF ENERGY

If an irreversible process occurs, energy is conserved, but some of the energy
becomes unavailable to do work and is “wasted.” Consider a block falling to the
ground. The entropy change of the universe for this process is When the
block was at a height its potential energy could have been used to do useful
work. But after the inelastic collision of the block with the ground, this energy is
no longer fully available for doing useful work because it has become the disor-
dered internal energy of the block and its surroundings.

The energy that has become unavailable (wasted) is equal to This
is a general result:

During an irreversible process, energy equal to becomes unavailable
to do work, where is the temperature of the coldest available reservoir.

For simplicity, we will call the energy that becomes unavailable to do work the
“lost work”:

19-22Wlost � T ¢Su

T
T ¢Su

mgh � T ¢Su .

mghh,
mgh>T.

SOLVE

1. The entropy change of the universe is Q>T:

37 mJ>K¢Su �

¢Su �
Q

T
�

1
2Mv2

T
�

1
2(2.4 kg)(3.0 m>s)2

293 K

CHECK The result is greater than zero, as is always the case for an irreversible process.

TAKING IT FURTHER Energy is conserved, but the energy is no longer
available to do work.

During the free expansion discussed earlier, the ability to do work was also lost.
In that case, the entropy change of the universe was so the work
lost was This is the amount of work that could have been done if
the gas had expanded quasi-statically and isothermally from to as given by 
Equation 19-17.

If all the heat released by a hot reservoir is absorbed by a cold reservoir, the
change in entropy of the universe is given by Equation 19-21, and the work lost is

Wlost � Tc ¢Su � Tc¢QTc

�
Q

Th

≤ � Q¢1 �
Tc

Th

≤Q

V2 ,V1

nRT ln(V2>V1).
nR ln (V2>V1),

T ¢Su � 1
2Mv2

Example 19-12 A Sliding Box Revisited

Suppose that the box shown in Figure 19-9a and Figure 19-9b has a mass of 2.4 kg and slides
with a speed of before crashing into a fixed wall and stopping. The tempera-
ture of the box, table, and surroundings is 293 K and does not change appreciably as the
box comes to rest. Find the entropy change of the universe.

PICTURE The initial mechanical energy of the box is converted to the internal energy
of the box–wall–surroundings system. The entropy change is equivalent to what would
occur if the heat were absorbed by the box-wall system reversibly.Q � 1

2Mv2

1
2Mv2

T
v � 3.0 m>s
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We can see that this is just the work that could have been done by a Carnot engine
running between these reservoirs, transferring heat from the hot reservoir and
doing work where 

19-7 ENTROPY AND PROBABILITY

Entropy, which is a measure of the disorder of a system, is related to probability.
Essentially, a state of high order has a relatively low probability, whereas a state of
low order has a relatively high probability. Thus, during an irreversible process,
the universe moves from a state of relatively low probability to one of relatively
high probability.

Let us consider a free expansion in which a gas expands from an initial volume
to a final volume The entropy change of the universe for this process

is given by Equation 19-19:

Why is this process irreversible? Why can the gas not spontaneously contract
back into its original volume? Such a contraction would not violate the first law of
thermodynamics, as there is no energy change involved. The reason that the gas
does not compress to its original volume is merely that such a contraction is
extremely improbable.

¢S � nR ln 
V2

V1

� nR ln 2

V2 � 2V1 .V1

eC � 1 � Tc>Th .W � eCQ,
Q

Example 19-13 The Probability of a Free Contraction

Suppose a gas consisting of only 10 molecules occupies a cube. What is the probability that
all 10 molecules will be in the left half of the cube at a given instant?

PICTURE The chance that any one particular molecule will be in the left half of the con-
tainer at any given instant is Using this information, we can calculate the probability that
all 10 molecules will be in the left half at a given instant?

SOLVE

1
2 .

1. The chance that any one molecule is in the left half is the same
as the chance that the same molecule is in the right half:

The probability that any one particular molecule will be in the
left half of the container at any given instant is 12 .

2. The chance that molecules 1 and 2 are both in the left half
(at any given time) is the chance that molecule 1 is in the left
half times the chance that molecule 2 is in the left half:

The chance that any particular two molecules are both in the left
half (at any given time) is 

The chances are equal that molecules 1 and 2 are both in the left
half, both in the right half, that molecule 1 is in the left half and
molecule 2 is in the right half, or that molecule 2 is in the left half
and molecule 1 is in the right half. The chance for any one of
these options is 14:

1
2 � 1

2 � 1
4 .

3. The chance that molecules 1, 2, and 3 are all in the left half at any
given time is equal to the chance that molecules 1 and 2 are both
in the left half times the chance that molecule 3 is in the left half:

The chance that any particular three molecules are all in the left
half (at any given instant) is 12 � 1

2 � 1
2 � A 12 B 3 � 1

8 .

4. Continuing this line of reasoning to determine the chance that
all 10 molecules are in the left half gives:

The chance that all 10 molecules are in the left half (at any given

instant) is a1
2
b 10

�
1

1024

CHECK We intuitively know the chance that all 10 molecules are on the left side at a given instant
is pretty small. It is the same as the chance that a tossed coin comes up heads 10 times in a row.
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Although the probability of all 10 molecules in Example 19-13 being on one side
of the container is small, we would not be completely surprised to see it occur. If
we look at the gas once each second, we could expect to see it happen once in every
1024 seconds, or about once every 17 minutes. If we started with the 10 molecules
randomly distributed and then found them all in the left half of the original vol-
ume, the entropy of the universe would have decreased by However, this
decrease is extremely small, because the number of moles corresponding to
10 molecules is only about Still, it would violate the entropy statement of the
second law of thermodynamics, which says that for any process, the entropy of the
universe never decreases. Therefore, if we wish to apply the second law of ther-
modynamics to microscopic systems such as a small number of molecules, we
should consider the second law to be a statement of probability.

We can relate the probability of a gas spontaneously contracting into a smaller
volume to the change in its entropy. If the original volume is the probability 
of finding molecules in a smaller volume is

Taking the natural logarithm of both sides of this equation, we obtain

19-23

where is the number of moles and is Avogadro’s number. The entropy change
of the gas is

19-24

Substituting for ln in Equation 19-24, we see that

19-25

where is Boltzmann’s constant.
It may be disturbing to learn that irreversible processes, such as the sponta-

neous contraction of a gas or the spontaneous transfer of heat from a cold body to
a hot body, are not impossible—they are just improbable. As we have just seen,
there is a reasonable chance that an irreversible process will occur in a system con-
sisting of a very small number of molecules; however, thermodynamics itself is
applicable only to macroscopic systems, that is, to systems that have a very large num-
ber of molecules. Consider trying to measure the pressure of a gas consisting of
only 10 molecules. The pressure would vary wildly depending on whether no mol-
ecule, 2 molecules, or 10 molecules were colliding with the wall of the container at
the time of measurement. The macroscopic variables of pressure and temperature
are not applicable to a microscopic system with only 10 molecules.

As we increase the number of molecules in a system, the chance of a process
occurring in which the entropy of the universe decreases diminishes dramatically.
For example, if we have 50 molecules in a container, the chance that they will all be
in the left half of the container is Thus, if we look at the gas once each
second, we could expect to see all 50 molecules in the left half of the volume
about once in every seconds or once in every 36 million years! For 1 mole

the chance that all will end up in half of the volume is vani-
shingly small, essentially zero. For macroscopic systems, then, the probability of a
process resulting in a decrease in the entropy of the universe is so extremely small
that the distinction between improbable and impossible becomes blurred.

(6 � 1023 molecules),
1015

112250 � 10�15.
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Physics Spotlight

The Perpetual Battle over Perpetual Motion

People dream of getting work done for free. Perpetual motion ma-
chines that do effective work with no energy, or are completely effi-
cient, are a focus of those dreams. Perpetual motion cannot work.
Physicists classify perpetual motion machines into two categories, de-
pending on which law of thermodynamics they violate.

Category one machines violate the first law of thermodynamics—
they claim to create energy out of nothing, or to create more energy
than they use. The earliest known attempts at perpetual motion in-
volved rotary motion and gravity. An overbalanced wheel had hinged
rods that would supposedly cause the wheel to perpetually rotate to-
ward one side. Another design, favored by Leonardo da Vinci, in-
volved a water wheel that powered both a mill and a pump that
pumped the water high enough that it would power the water
wheel.* None of these attempts accounted for the energy needed to
move the hinged rods relative to the larger wheel, or for the energy
lost in turning the water wheel itself.

Later, buoyancy and rotary motion were part of popular attempts
at perpetual motion.† Designs for buoyancy wheels and belts have in-
cluded air pockets, chains, and connected hoses.‡ None of these designs
has taken into account the work needed to fill the air pockets, nor the
work needed to move the inner weights.

Category two machines violate the second law of thermodynamics.
These machines do not claim to create energy. Instead, they are heat- or vapor-dri-
ven machines with impossible efficiency. One of the most famous machines was the
Zeromotor, proposed by John Gamgee in 1880 to power ships’ propellers.# The
Zeromotor was a specially designed ammonia motor. Because ammonia boils at a
temperature close to liquid ammonia would be injected into a cylinder with
a piston. The ammonia would expand and push the piston. The act of pushing the
piston would cool the ammonia enough that it would condense, expand again, and
go through the entire cycle without heat absorbed or released. This directly contra-
dicts Carnot’s work. Gamgee’s Zeromotor, of course, did not work. Neither have
any other engines based on the violation of the second law of thermodynamics. The
vapor never condenses, and the heat engine never completes a single full cycle.

The French Academy of Science claimed that the pursuit of perpetual motion
was a waste of time when it voted in 1775 to not consider patents for perpetual mo-
tion machines.° By 1856, submitting patents for perpetual motion machines to ei-
ther the U.S. or the British Patent Office was not recommended.§ In the end, though,
people still want free work. It is possible to find recent claims of engines that create
more energy than they use.¶ It is also possible to find scientists upset by the latest
unworkable patent** that slipped by the U.S. Patent and Trademark Office.†† The
perpetual battle about perpetual motion rages on, but physicists are now able to
explain why it is not possible.

* Leonardo3, “Pompe Meccaniche e a Moto Perpetuo,” Codex Atlanticus, Milan: Leonardo3 srl, 2005.
† “Austin’s Perpetual Motion,” Scientific American, Mar. 27, 1847, Vol. 2, No. 27, 209.
‡ Diamond, David, “Gravity-Actuated Fluid Displacement Power Generator,” United States Patent 3,934,964, Jan. 27,

1976.
# Park, Robert, Voodoo Science. Oxford: Oxford University Press, 2000, 129–130.
° Ward, James, Naturalism and Agnosticism, Vol I. London: Black, 1906.
§ “Patent Correspondence,” Scientific American, Sep. 1856, Vol. 20, No. 1, 343.
¶ Wine, Byron, “Energy Information.” http://byronw.www1host.com/as of July, 2006.
** Voss, David, “‘New Physics’ Finds a Haven at the Patent Office,” Science, May 21, 1999, Vol. 284, No. 5418, 1252–1254.
†† Collins, G. P., “There’s No Stopping Them,” Scientific American, Oct. 22, 2002, 41.

0°C,

The wheel only appears to be unbalanced. However, note
that there are more balls to the left of the axis than to the
right of it. A calculation of the center of mass will show it is
located directly below the axis. (Reducing the number of
balls to four makes this calculation relatively simple.)

http://byronw.www1host.com/
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Summary

The second law of thermodynamics is a fundamental law of nature.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Efficiency of a Heat Engine If the engine absorbs from a hot reservoir, does work and releases heat to a cold
reservoir, its efficiency is

19-2

2. Coefficient of Performance 
of a Refrigerator 19-3

3. Coefficient of Performance 
of a Heat Pump 19-8

4. Equivalent Statements of 
the Second Law of Thermodynamics

The Kelvin statement No system can absorb heat from a single reservoir and convert it entirely into work without
additional net changes in the system or its surroundings.

The heat-engine statement It is impossible for a heat engine working in a cycle to produce only the effect of absorbing
heat from a single reservoir and performing an equivalent amount of work.

The Clausius statement A process whose only net result is to absorb heat from a cold reservoir and release the same
amount of heat to a hot reservoir is impossible.

The refrigerator statement It is impossible for a refrigerator working in a cycle to produce only the effect of absorbing
heat from a cold object and releasing the same amount of heat to a hot object.

The entropy statement The entropy of the universe (system plus surroundings) can never decrease.

5. Conditions for a Reversible Process 1. No mechanical energy is transformed into internal thermal energy by friction, viscous
forces, or other dissipative forces.

2. Energy transfer as heat can only occur between objects whose temperatures differ by an
infinitesimal amount.

3. The process must be quasi-static so that the system is always in an equilibrium state (or
infinitesimally near an equilibrium state).

6. Carnot Engine A Carnot engine is a reversible engine that works between two heat reservoirs. It operates in
a Carnot cycle, which consists of:

Carnot cycle 1. A quasi-static isothermal absorption of heat from a hot reservoir

2. A quasi-static adiabatic expansion to a lower temperature

3. A quasi-static isothermal release of heat to a cold reservoir at temperature 

4. A quasi-static adiabatic compression back to the original state

Carnot efficiency 19-6

7. Thermodynamic Temperature The ratio of the thermodynamic temperatures of two reservoirs is defined to be the ratio of
the heat released to the heat absorbed by Carnot engine running between the reservoirs:

19-7

In addition, the triple point of water has a thermodynamic temperature of 273.16 K.
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TOPIC RELEVANT EQUATIONS AND REMARKS

8. Entropy Entropy is a measure of the disorder of a system. The difference in entropy between two
nearby states is given by

19-12

where is the heat absorbed during a reversible process taking the system from one state
to the other. The entropy change of a system can be positive or negative.

Entropy and loss of work capability During an irreversible process, the entropy of the universe increases and an amount of
energy

19-22

becomes unavailable for doing work.

Entropy and probability Entropy is related to probability. A highly ordered system is one of low probability and low
entropy. An isolated system moves toward a state of high probability, low order, and high
entropy.

Wlost � T ¢Su

Su

dQrev

dS �
dQrev

T

Answer to Concept Check

19-1 No. The development of a living organism comes at the
expense of a great increase in disorder elsewhere. Much
of this disorder can be traced back to the Sun, where
nuclear reactions generate an increase in disorder, and
thus an increase in entropy.

Answers to Practice Problems

19-1 (a) 52.5 J, (b) 97.5 J

19-2 250 kJ

19-3 (a) 40%, (b) 80 kJ

19-4 30%

19-5 ¢S � 1.31 kJ>K
Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired
problems.

SSM

CONCEPTUAL PROBLEMS

1 • ENGINEERING APPLICATION Modern automobile gasoline
engines have efficiencies of about 25 percent. About what percent-
age of the heat of combustion is not used for work but released as
heat? (a) 25%, (b) 50%, (c) 75%, (d) 100%, (e) You cannot tell from the
data given.

2 • If a heat engine does 100 kJ of work per cycle while re-
leasing 400 kJ of heat, what is its efficiency? (a) 20%, (b) 25%,
(c) 80%, (d) 400%, (e) You cannot tell from the data given.

3 • If the heat absorbed by a heat engine is 600 kJ per cycle,
and it releases 480 kJ of heat each cycle, what is its efficiency?
(a) 20%, (b) 80%, (c) 100%, (d) You cannot tell from the data given.

4 • Explain what distinguishes a refrigerator from a “heat
pump.”

5 • An air conditioner’s COP is mathematically identical to
that of a refrigerator, that is, However a 
heat pump’s COP is defined differently, as Explain
clearly why the two COPs are defined differently. Hint: Think of the
end use of the three different devices.

6 • Explain why you cannot cool your kitchen by leaving
your refrigerator door open on a hot day. (Why does turning on a
room air conditioner cool down the room, but opening a refrigera-
tor door does not?)

7 • ENGINEERING APPLICATION Why do steam-power-plant
designers try to increase the temperature of the steam as much as
possible?

8 • To increase the efficiency of a Carnot engine, you should
(a) decrease the temperature of the hot reservoir, (b) increase the
temperature of the cold reservoir, (c) increase the temperature of
the hot reservoir, (d) change the ratio of maximum volume to min-
imum volume.

SSM

COPhp � Qh>W.
COPAC � COPref � Qc >W.
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20 •• CONTEXT-RICH One afternoon, the mother of one of your
friends walks into his room and finds a mess. She asks your friend
how the room came to be in such a state, and your friend replies,
“Well, it is the natural destiny of any closed system to degenerate
toward greater and greater levels of entropy. That’s all, Mom.” Her
reply is a sharp “Nevertheless, you’d better clean your room.” Your
friend retorts, “But that can’t happen. It would violate the second
law of thermodynamics.” Critique your friend’s response. Is his
mother correct to ground him for not cleaning his room, or is clean-
ing the room really impossible?

ESTIMATION AND APPROXIMATION

21 • Estimate the change in COP of your electric food freezer
when it is removed from your kitchen to its new location in your
basement, which is cooler than your kitchen.

22 •• Estimate the probability that all the molecules in your
bedroom are located in the (open) closet which accounts for about
10 percent of the total volume of the room.

23 •• Estimate the maximum efficiency of an automobile engine
that has a compression ratio of 8.0:1.0. Assume the engine operates
according to the Otto cycle and assume (The Otto cycle is
discussed in Section 19-1.)

24 •• CONTEXT-RICH You are working as an appliance sales-
person during the summer. One day, your physics professor comes
into your store to buy a new refrigerator. Wanting to buy the most
efficient refrigerator possible, she asks you about the efficiencies of
the available models. She decides to return the next day to buy the
most efficient refrigerator. To make the sale, you need to provide
her with the following estimates: (a) the highest COP possible for a
household refrigerator, and (b) the highest rate possible for the heat
to be released by the interior of the refrigerator if the refrigerator
uses 600 W of electrical power.

25 •• The average temperature of the surface of the Sun is
about 5400 K, and the average temperature of the surface of Earth
is about 290 K. The solar constant (the intensity of sunlight reach-
ing Earth’s atmosphere) is about (a) Estimate the total
power of the sunlight hitting Earth. (b) Estimate the net rate at
which Earth’s entropy is increasing due to this solar radiation.

26 ••• A 1.0-L box contains molecules of an ideal gas, and the
positions of the molecules are observed 100 times per second.
Calculate the average time it should take before we observe all 
molecules in the left half of the box if is equal to (a) 10, (b) 100,
(c) 1000, and (d) 1.0 mole. (e) The best vacuums that have been

N
N

N

SSM

1.37 kW>m2.

SSM

g � 1.4.

8°C

9 •• Explain why the following statement is true: To increase
the efficiency of a Carnot engine, you should make the difference
between the two operating temperatures as large as possible; but to
increase the efficiency of a Carnot cycle refrigerator, you should
make the difference between the two operating temperatures as
small as possible.

10 •• A Carnot engine operates between a cold temperature
reservoir of and a high temperature reservoir of Its ef-
ficiency is (a) 21%, (b) 25%, (c) 75%, (d) 79%.

11 •• The Carnot engine in Problem 10 is run in reverse as a re-
frigerator. Its COP is (a) 0.33, (b) 1.3, (c) 3.0, (d) 4.7.

12 •• On a humid day, water vapor condenses on a cold sur-
face. During condensation, the entropy of the water (a) increases,
(b) remains constant, (c) decreases, (d) may decrease or remain un-
changed. Explain your answer.

13 •• An ideal gas is taken reversibly from an initial state
to the final state Two possible paths are (A) an

isothermal expansion followed by an adiabatic compression, and (B)
an adiabatic compression followed by an isothermal expansion. For
these two paths, (a) (b) (c)
(d) None of the above.

14 •• Figure 19-12 shows a thermodynamic cycle for an ideal gas
on an diagram. Identify this cycle and sketch it on a diagram.PVST

¢SA 	 ¢SB ,¢SA 
 ¢SB ,¢Eint A 
 ¢Eint B ,

Pf , Vf , Tf .Pi , Vi , Ti

127°C.27°C

SSM
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A

S

V

B
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F I G U R E  1 9 - 1 3 Problem 15

15 •• Figure 19-13 shows a thermodynamic cycle for an ideal
gas on an diagram. Identify the type of engine represented by
this diagram.

SV

16 •• Sketch an diagram of the Otto cycle. (The Otto cycle is
discussed in Section 19-1.)

17 •• Sketch an diagram of the Carnot cycle for an ideal
gas.

18 •• Sketch an diagram of the Otto cycle. (The Otto
cycle is discussed in Section 19-1.)

SV

SSM

SV

ST

F I G U R E  1 9 - 1 2 Problem 14, Problem 72

19 •• Figure 19-14 shows a thermodynamic cycle for an ideal
gas on an diagram. Make a sketch of this cycle on a diagram.PVSP
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35 •• An ideal diatomic gas follows the cycle shown in
Figure 19-16. The temperature of state 1 is 200 K. Determine (a) the
temperatures of the other three numbered states of the cycle, and
(b) the efficiency of the cycle.

created to date have pressures of about If a vacuum
chamber has the same volume as the box, how long will a physicist
have to wait before all of the gas molecules in the vacuum chamber
occupy only the left half of it? Compare that to the expected lifetime
of the universe, which is about years.

HEAT ENGINES AND
REFRIGERATORS

27 • A heat engine with 20.0 percent efficiency does
0.100 kJ of work during each cycle. (a) How much heat is
absorbed from the hot reservoir during each cycle? (b) How
much heat is released to the cold reservoir during each 
cycle?

28 • A heat engine absorbs 0.400 kJ of heat and does
0.120 kJ of work during each cycle. (a) What is the engine’s
efficiency? (b) How much heat is released to the cold reservoir
during each cycle?

29 • A heat engine absorbs 100 J of heat from the hot reservoir
and releases 60 J of heat to the cold reservoir during each cycle.
(a) What is its efficiency? (b) If each cycle takes 0.50 s, find the power
output of this engine.

30 • A refrigerator absorbs 5.0 kJ of heat from a cold reservoir
and releases 8.0 kJ to a hot reservoir. (a) Find the coefficient of per-
formance of the refrigerator. (b) The refrigerator is reversible. If it is
run backward as a heat engine between the same two reservoirs,
what is its efficiency?

31 •• The working substance of heat an engine is 1.00 mol of a
monatomic ideal gas. The cycle begins at and

The gas is heated at constant volume to 
It then expands at constant pressure until it is The gas is then
cooled at constant volume until its pressure is again 1.00 atm. It is
then compressed at constant pressure to its original state. All the
steps are quasi-static and reversible. (a) Show this cycle on a di-
agram. For each step of the cycle, find the work done by the gas, the
heat absorbed by the gas, and the change in the internal energy of
the gas. (b) Find the efficiency of the cycle.

32 •• The working substance of an engine is 1.00 mol of a di-
atomic ideal gas. The engine operates in a cycle consisting of three
steps: (1) an adiabatic expansion from an initial volume of 10.0 L
to a pressure of 1.00 atm and a volume of 20.0 L, (2) a compression
at constant pressure to its original volume of 10.0 L, and (3) heating
at constant volume to its original pressure. Find the efficiency of
this cycle.

33 •• An engine using 1.00 mol of an ideal gas initially at a vol-
ume of and a temperature of performs a cycle consisting
of four steps: (1) an isothermal expansion at a temperature of 
to twice its initial volume, (2) cooling at constant volume to a tem-
perature of (3) an isothermal compression to its original vol-
ume, and (4) heating at constant volume to its original temperature
of 400 K. Assume that . Sketch the cycle on a dia-
gram and find its efficiency.

34 •• Figure 19-15 shows the cycle followed by 1.00 mol of an
ideal monatomic gas at an initial volume All the
processes are quasi-static. Determine (a) the temperature of each
numbered state of the cycle, (b) the heat transfer for each part of the
cycle, and (c) the efficiency of the cycle.

V1 � 25.0 L.

PVCv � 21.0 J>K300 K,

400 K
400 K24.6 L

SSM

PV

49.2 L.
P2 � 2.00 atm.V1 � 24.6 L.

P1 � 1.00 atm

SSM

1010

10�12 torr.

36 ••• ENGINEERING APPLICATION Recently, an old design for a
heat engine, known as the Stirling engine, has been promoted as
a means of producing power from solar energy. The cycle of a
Stirling engine is as follows: (1) isothermal compression of the
working gas, (2) heating of the gas at constant volume, (3) an
isothermal expansion of the gas, and (4) cooling of the gas at con-
stant volume. (a) Sketch and diagrams for the Stirling
cycle. (b) Find the entropy change of the gas for each step of
the cycle and show that the sum of these entropy changes is equal
to zero.

37 ••• BIOLOGICAL APPLICATION “As far as we know, Nature
has never evolved a heat engine”—Steven Vogel, Life’s Devices
(Princeton University Press, 1988). (a) Calculate the efficiency of a
heat engine operating between body temperature and a
typical outdoor temperature and compare this to the human
body’s efficiency for converting chemical energy into work (ap-
proximately 20 percent). Does this efficiency comparison contradict
the second law of thermodynamics? (b) From the result of Part (a),
and a general knowledge of the conditions under which most
warm-blooded organisms exist, give a reason why no warm-
blooded organisms have evolved heat engines to increase their in-
ternal energies.

38 ••• ENGINEERING APPLICATION The diesel cycle shown in
Figure 19-17 approximates the behavior of a diesel engine. Process

is an adiabatic compression, process is an expansion at con-
stant pressure, process is an adiabatic expansion, and process 
is cooling at constant volume. Find the efficiency of this cycle in
terms of the volumes and Vc.Va , Vb ,

dacd
bcab

(70°F),
(98.6°F)

STPV
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CARNOT CYCLES

41 • A Carnot engine works between two heat reservoirs
at temperatures and (a) What is its effi-
ciency? (b) If it absorbs 100 J of heat from the hot reservoir dur-
ing each cycle, how much work does it do each cycle? (c) How
much heat does it release during each cycle? (d) What is the COP
of this engine when it works as a refrigerator between the same
two reservoirs? SSM

Tc � 200 K.Th � 300 K
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F I G U R E  1 9 - 1 7 Problem 38

SECOND LAW OF
THERMODYNAMICS

39 •• A refrigerator absorbs 500 J of heat from a cold reservoir
and releases 800 J to a hot reservoir. Assume that the heat-engine
statement of the second law of thermodynamics is false, and show
how a perfect engine working with this refrigerator can violate the
refrigerator statement of the second law of thermodynamics.

40 •• If two curves that represent quasi-static adiabatic
processes could intersect on a diagram, a cycle could be com-
pleted by an isothermal path between the two adiabatic curves
shown in Figure 19-18. Show that such a cycle violates the second
law of thermodynamics.

PV

SSM

42 • An engine absorbs 250 J of heat per cycle from a reser-
voir at 300 K and releases 200 J of heat per cycle to a reservoir at
200 K. (a) What is its efficiency? (b) How much additional work
per cycle could be done if the engine were reversible?

43 •• A reversible engine working between two reservoirs at
temperatures and has an efficiency of 30 percent. Working as a
heat engine, it releases 140 J per cycle of heat to the cold reservoir.
A second engine working between the same two reservoirs also re-
leases 140 J per cycle to the cold reservoir. Show that if the second
engine has an efficiency greater than 30 percent, the two engines
working together would violate the heat-engine statement of the
second law.

44 •• A reversible engine working between two reservoirs at
temperatures and has an efficiency of 20 percent. Working as a
heat engine, it does 100 J of work per cycle. A second engine work-
ing between the same two reservoirs also does 100 J of work per
cycle. Show that if the efficiency of the second engine is greater than
20 percent, the two engines working together would violate the re-
frigerator statement of the second law.

45 •• A Carnot engine works between two heat reservoirs as a
refrigerator. During each cycle, 100 J of heat are absorbed from the
cold reservoir and 150 J of heat are released to the hot reservoir.
(a) What is the efficiency of the Carnot engine when it works as a
heat engine between the same two reservoirs? (b) Show that no
other engine working as a refrigerator between the same two reser-
voirs can have a COP greater than 2.00.

46 •• A Carnot engine works between two heat reservoirs at
temperatures and (a) What is its efficiency?
(b) If it absorbs 100 J of heat from the hot reservoir during each
cycle, how much work does it do? (c) How much heat does it re-
lease to the low-temperature reservoir during each cycle? (d) What
is the coefficient of performance of this engine when it works as a
refrigerator between these two reservoirs?

47 •• In the cycle shown in Figure 19-19, 1.00 mol of an ideal
diatomic gas is initially at a pressure of 1.00 atm and a tempera-
ture of The gas is heated at constant volume to 
and is then expanded adiabatically until its pressure is again
1.00 atm. It is then compressed at constant pressure back to its
original state. Find (a) the temperature after the adiabatic expan-
sion, (b) the heat absorbed or released by the system during
each step, (c) the efficiency of this cycle, and (d) the efficiency
of a Carnot cycle operating between the temperature extremes of
this cycle. SSM

T2 � 150°C,0.0°C.

Tc � 77.0 K.Th � 300 K

TcTh

TcTh
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48 •• ENGINEERING APPLICATION, CONTEXT-RICH You are a
part of a team that is completing a mechanical engineering project.
Your team built a steam engine that takes in superheated steam at

and discharges condensed steam from its cylinder at 
Your team has measured the engine’s efficiency to be 30.0 percent.
(a) How does this efficiency compare with the maximum possible
efficiency for your engine? (b) If the useful power output of the en-
gine is known to be 200 kW, how much heat does the engine release
to its surroundings in 1.00 h?

HEAT PUMPS

49 • ENGINEERING APPLICATION, CONTEXT-RICH As an engi-
neer, you are designing a heat pump that is capable of delivering heat
at the rate of 20 kW to a house. The house is located where, in January,
the average outside temperature is The temperature of the air
in the air handler inside the house is to be (a) What is the max-
imum possible COP for a heat pump operating between these tem-
peratures? (b) What must the minimum power of the electric motor
driving the heat pump be? (c) In reality, the COP of the heat pump will
be only 60 percent of the ideal value. What is the minimum power of
the electric motor when the COP is 60 percent of the ideal value?

50 • A refrigerator is rated at 370 W. (a) What is the maximum
amount of heat it can absorb from the food compartment in
1.00 min if the food-compartment temperature of the refrigerator is

and it releases heat into a room at ? (b) If the COP of the
refrigerator is 70 percent of that of a reversible refrigerator, how
much heat can it absorb from the food compartment in 1.00 min
under these conditions?

51 •• A refrigerator is rated at 370 W. (a) What is the maxi-
mum amount of heat it can absorb from the food compartment in
1.00 min if the temperature in the compartment is and it re-
leases heat into a room at ? (b) If the COP of the refrigerator
is 70 percent of that of a reversible pump, how much heat can it
absorb from the food compartment in 1.00 min? Is the COP for the
refrigerator greater when the temperature of the room is or

Explain.

52 ••• CONTEXT-RICH You are installing a heat pump whose
COP is half the COP of a reversible heat pump. You plan to use the
pump on chilly winter nights to increase the air temperature in
your bedroom. Your bedroom’s dimensions are 

The air temperature should increase from to The
outside temperature is and the temperature at the air handler
in the room is If the pump’s electric-power consumption is
750 W, how long will you have to wait for the room’s air to warm if
the specific heat of air is Assume you have good
window draperies and good wall insulation so that you can neglect
the release of heat through windows, walls, ceilings, and floors.
Also assume that the heat capacity of the floor, ceiling, walls, and
furniture are negligible.

ENTROPY CHANGES

53 • You inadvertently leave a pan of water boiling on the
hot stove. You return just in time to see the last drop converted
into steam. The pan originally held 1.00 L of boiling water. What
is the change in entropy of the water associated with its change
of state from liquid to gas? SSM

1.005 kJ>(kg # °C)?

112°F.
35°F,

68°F.63°F2.50 m.
�3.50 m�5.00 m

20°C?
35°C

35°C
0.0°C

20.0°C0.0°C

SSM

40°C.
�10°C.

50.0°C.270°C

*

54 • What is the change in entropy of 1.00 mol of liquid
water at that freezes to ice at 

55 •• Consider the freezing of 50.0 g of water once it is placed
in the freezer compartment of a refrigerator. Assume the walls of
the freezer are maintained at The water, initially liquid at
0. is frozen into ice and cooled to Show that even
though the entropy of the water decreases, the net entropy of the
universe increases.

56 • In this problem, 2.00 mol of an ideal gas at 400 K expand
quasi-statically and isothermally from an initial volume of 40.0 L to
a final volume of 80.0 L. (a) What is the entropy change of the gas?
(b) What is the entropy change of the universe for this process?

57 •• A system completes a cycle consisting of six quasi-static
steps, during which the total work done by the system is 100 J.
During step 1 the system absorbs 300 J of heat from a reservoir at
300 K, during step 3 the system absorbs 200 J of heat from a reser-
voir at 400 K, and during step 5 it absorbs heat from a reservoir at
temperature . (During steps 2, 4 and 6 the system undergoes adi-
abatic processes in which the temperature of the system changes
from one reservoir's temperature to that of the next.) (a) What is the
entropy change of the system for the complete cycle? (b) If the cycle
is reversible, what is the temperature 

58 •• In this problem, 2.00 mol of an ideal gas initially has a tem-
perature of 400 K and a volume of 40.0 L. The gas undergoes a free
adiabatic expansion to twice its initial volume. What are (a) the en-
tropy change of the gas, and (b) the entropy change of the universe?

59 •• A 200-kg block of ice at is placed in a large lake.
The temperature of the lake is just slightly higher than and
the ice melts very slowly. (a) What is the entropy change of the ice?
(b) What is the entropy change of the lake? (c) What is the entropy
change of the universe (the ice plus the lake)?

60 •• A 100-g piece of ice at is placed in an insulated
calorimeter of negligible heat capacity containing 100 g of water at

(a) What is the final temperature of the water once thermal
equilibrium is established? (b) Find the entropy change of the uni-
verse for this process.

61 •• A 1.00-kg block of copper at is placed in an in-
sulated calorimeter of negligible heat capacity containing 4.00 L
of liquid water at Find the entropy change of (a) the cop-
per block, (b) the water, and (c) the universe.

62 •• If a 2.00-kg piece of lead at is dropped into a
lake at find the entropy change of the universe.

ENTROPY AND LOST WORK

63 •• A reservoir at 300 K absorbs 500 J of heat from a second
reservoir at 400 K. (a) What is the change in entropy of the universe,
and (b) how much work is lost during the process?

64 •• In this problem, 1.00 mol of an ideal gas at 300 K under-
goes a free adiabatic expansion from to . It is
then compressed isothermally and reversibly back to its original
state. (a) What is the entropy change of the universe for the com-
plete cycle? (b) How much work is lost in this cycle? (c) Show that
the work lost is T ¢Su .

V2 � 24.6 LV1 � 12.3 L

SSM

10°C,
100°C

SSM

0.0°C.

100°C

100°C.

0.0°C

0.0°C,
0.0°C

SSMT3?

T3

�10 °C.0°C,
�10°C.

0.0°C?0.0°C
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of the environment is 300 K, or (2) A reservoir at 400 K releasing
1.00 kJ of heat to a reservoir at 300 K? Explain your choice. Hint: How
much of the 1.00 kJ of heat could be converted into work by an ideal cyclic
process? (b) What is the change in entropy of the universe for each
process?

74 •• Helium, a monatomic gas, is initially at a pressure of
16 atm, a volume of 1.0 L, and a temperature of 600 K. It is quasi-
statically expanded at constant temperature until its volume is
4.0 L, and is then quasi-statically compressed at constant pressure
until its volume and temperature are such that a quasi-static adia-
batic compression will return the gas to its original state. (a) Sketch
this cycle on a diagram. (b) Find the volume and temperature
after the compression at constant pressure. (c) Find the work done
during each step of the cycle. (d) Find the efficiency of the cycle.

75 •• A heat engine that does the work of blowing up a balloon
at a pressure of 1.00 atm absorbs 4.00 kJ from a reservoir at The
volume of the balloon increases by 4.00 L, and heat is released to a
reservoir at a temperature where If the efficiency of
the heat engine is 50 percent of the efficiency of a Carnot engine work-
ing between the same two reservoirs, find the temperature 

76 •• Show that the coefficient of performance of a Carnot engine
run as a refrigerator is related to the efficiency of a Carnot engine op-
erating between the same two temperatures by 

77 •• A freezer has a temperature The air in the
kitchen has a temperature The freezer is not perfectly in-
sulated, and heat leaks through the walls of the freezer at a rate of
50 W. Find the power of the motor that is needed to maintain the
temperature in the freezer.

78 •• In a heat engine, 2.00 mol of a diatomic gas are taken
through the cycle ABCA, as shown in Figure 19-20. (The dia-
gram is not drawn to scale.) At A the pressure and temperature are
5.00 atm and 600 K. The volume at B is twice the volume at A. The
segment BC is an adiabatic expansion, and the segment CA is an
isothermal compression. (a) What is the volume of the gas at A?
(b) What are the volume and temperature of the gas at B? (c) What
is the temperature of the gas at C? (d) What is the volume of the gas
at C? (e) How much work is done by the gas in each of the three seg-
ments of the cycle? ( f ) How much heat is absorbed or released by
the gas in each segment of this cycle?

PV

Th � 27°C.
Tc � �23°C.

eC � COPC � Tc >Th.

SSMTc .

Tc 	 120°C.Tc ,

120°C.

PV

SSM

GENERAL PROBLEMS

65 • A heat engine with an output of 200 W has an efficiency
of 30 percent. It operates at (a) How much work is
done by the engine during each cycle? (b) How much heat is ab-
sorbed from the hot reservoir and how much is released to the cold
reservoir during each cycle?

66 • During each cycle, a heat engine operating between two
heat reservoirs absorbs 150 J from the reservoir at and re-
leases 125 J to the reservoir at (a) What is the efficiency of this
engine? (b) What is the ratio of its efficiency to that of a Carnot en-
gine working between the same reservoirs? (This ratio is called the
second law efficiency.)

67 • An engine absorbs 200 kJ of heat per cycle from a reser-
voir at 500 K and releases heat to a reservoir at 200 K. The engine’s
efficiency is 85 percent of that of a Carnot engine working between
the same reservoirs. (a) What is the efficiency of this engine?
(b) How much work is done in each cycle? (c) How much heat is
released to the low-temperature reservoir during each cycle?

68 • Estimate the change in entropy of the universe associated
with an Olympic diver diving into the water from the 10-m
platform.

69 • To maintain the temperature inside a house at 
the electric power consumption of the electric baseboard heaters is
30.0 kW on a day when the outside temperature is At what
rate does this house contribute to the increase in the entropy of the
universe?

70 •• ENGINEERING APPLICATION Calvin Cliffs Nuclear Power
Plant, located on the Hobbes River, generates 1.00 GW of power.
In this plant, liquid sodium circulates between the reactor core and
a heat exchanger located in the superheated steam that drives the
turbine. Heat is absorbed by the liquid sodium in the core, and re-
leased by the liquid sodium (and into the superheated steam) in the
heat exchanger. The temperature of the superheated steam is 500 K.
Heat is released into the river, and the water in the river flows by at
a temperature of (a) What is the highest efficiency that this
plant can have? (b) How much heat is released into the river every
second? (c) How much heat must be released by the core to supply
1.00 GW of electrical power? (d) Assume that new environmental
laws have been passed to preserve the unique wildlife of the river.
Because of these laws, the plant is not allowed to heat the river by
more than What is the minimum flow rate that the water in
the Hobbes River must have?

71 •• ENGINEERING APPLICATION, CONTEXT-RICH An inventor
comes to you to explain his new invention. It is a novel heat
engine using water vapor as the working substance. He claims
that the water vapor absorbs heat at does work at the rate
of 125 W, and releases heat to the air at the rate of only 25.0 W,
when the air temperature is (a) Explain to him why he can-
not be correct. (b) After careful analysis of the data in his prospec-
tus folder, you decide he has made an error in the measurement of
his exhausted-heat value. What is the minimum rate of exhausting
heat that would make you consider believing him?

72 •• The cycle represented in Figure 19-12 (next to
Problem 19-14) is for 1.00 mol of an ideal monatomic gas. The tem-
peratures at points A and B are 300 and 750 K, respectively. What is
the efficiency of the cyclic process ABCDA?

73 •• (a) Which of these two processes is more wasteful of avail-
able work? (1) A block moving with 0.50 J of kinetic energy being
slowed to rest by sliding (kinetic) friction when the temperature

25°C.

100°C,

0.50°C.

25°C.

�7°C.

20°C,

SSM

20°C.
100°C

10.0 cycles>s.

79 •• In a heat engine, 2.00 mol of a diatomic gas are carried
through the cycle ABCDA, shown in Figure 19-21. (The dia-
gram is not drawn to scale.) The segment AB represents an isother-
mal expansion, and the segment BC is an adiabatic expansion. The
pressure and temperature at A are 5.00 atm and 600 K. The volume
at B is twice the volume at A. The pressure at D is 1.00 atm.
(a) What is the pressure at B? (b) What is the temperature at C?
(c) Find the total work done by the gas in one cycle. SSM

PV
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80 •• In a heat engine, 2.00 mol of a monatomic gas are
taken through the cycle ABCA, as shown in Figure 19-20. (The

diagram is not drawn to scale.) At A the pressure and tem-
perature are 5.00 atm and 600 K. The volume at B is twice the vol-
ume at A. The segment BC is an adiabatic expansion, and the seg-
ment CA is an isothermal compression. (a) What is the volume of
the gas at A? (b) What are the volume and temperature of the gas
at B? (c) What is the temperature of the gas at C? (d) What is the
volume of the gas at C? (e) How much work is done by the gas in
each of the three segments of the cycle? (f) How much heat is
absorbed by the gas in each segment of the cycle?

81 •• In a heat engine, 2.00 mol of a monatomic gas are carried
through the cycle ABCDA as shown in Figure 19-21. (The dia-
gram is not drawn to scale.) The segment AB represents an isother-
mal expansion, and the segment BC is an adiabatic expansion. The
pressure and temperature at A are 5.00 atm and 600 K. The volume
at B is twice the volume at A. The pressure at D is 1.00 atm. (a) What
is the pressure at B? (b) What is the temperature at C? (c) Find the
total work done by the gas in one cycle.

82 •• Compare the efficiency of the Otto cycle to the efficiency
of the Carnot cycle operating between the same maximum and min-
imum temperatures. (The Otto cycle is discussed in Section 19–1.)

83 ••• ENGINEERING APPLICATION A common practical cycle,
often used in refrigeration, is the Brayton cycle, which involves
(1) an adiabatic compression, (2) an isobaric (constant pressure)
expansion, (3) an adiabatic expansion, and (4) an isobaric com-
pression back to the original state. Assume the system begins the
adiabatic compression at temperature and transitions to
temperatures and after each leg of the cycle. (a) Sketch
this cycle on a diagram. (b) Show that the efficiency of the
overall cycle is given by (c) Show
that this efficiency, can be written as where is
the pressure ratio Phigh/Plow (the ratio of the maximum and mini-
mum pressures in the cycle).

84 ••• ENGINEERING APPLICATION Suppose the Brayton
cycle engine (see Problem 83) is run in reverse as a refrigerator
in your kitchen. In this case, the cycle begins at temperature 
and expands at constant pressure until its temperature is 
Then the gas is adiabatically compressed until its temperature is

And then it is compressed at constant pressure, until its tem-
perature is Finally, it adiabatically expands until it returns
to its initial state at temperature (a) Sketch this cycle on a 
diagram. (b) Show that the coefficient of performance, is

(c) Suppose your “Brayton cycle refrigerator” is run as follows.

COPB �
(T4 � T1)

(T3 � T2 � T4 � T1)

PVT1 .
T2 .

T3 .

T4 .
T1

SSM

re � 1 � r(1�g)>g,e � 1 � (T4 � T1)>(T3 � T2).
PV

T4T2 , T3 ,
T1 ,

PV

PV

The cylinder containing the refrigerant (a monatomic gas) has
an initial volume and pressure of 60 mL and 1.0 atm. After the
expansion at constant pressure, the volume and temperature
are 75 mL and The pressure ratio for the
cycle is 5.0. What is the coefficient of performance for your
refrigerator? (d) In order to absorb heat from the food compart-
ment at the rate of 120 W, what is the rate at which electrical
energy must be supplied to the motor of this refrigerator?
(e) Assuming the refrigerator motor is actually running for only
4.0 h each day, how much does it add to your monthly electric
bill. Assume 15 cents per kWh of electric energy and 30 days in
a month.

85 •• Using (Equation 19-16)
for the entropy change of an ideal gas, show explicitly that the en-
tropy change is zero for a quasi-static adiabatic expansion from
state to state 

86 ••• (a) Show that if the refrigerator statement of the second
law of thermodynamics were not true, then the entropy of the uni-
verse could decrease. (b) Show that if the heat-engine statement of
the second law were not true, then the entropy of the universe
could decrease. (c) A third statement of the second law is that the
entropy of the universe cannot decrease. Have you just proved that
this statement is equivalent to the refrigerator and heat-engine
statements?

87 ••• Suppose that two heat engines are connected in series,
such that the heat released by the first engine is used as the heat ab-
sorbed by the second engine, as shown in Figure 19-22. The effi-
ciencies of the engines are and respectively. Show that the net
efficiency of the combination is given by enet � e1 � e2 � e1e2 .

e2 ,e1

(V2 , T2).(V1 , T1)

¢S � Cv ln(T2 >T1) � nR ln(V2 >V1)

r � Phigh >Plow�25°C.

Th

Tm

Tc

W2

W1

Qh

Q c

Qm

Qm

Engine 1

Engine 2
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88 ••• Suppose that two heat engines are connected in series,
such that the heat released by the first engine is used as the heat ab-
sorbed by the second engine, as shown in Figure 19-22. Suppose
that each engine is an ideal reversible heat engine. Engine 1 oper-
ates between temperatures and and Engine 2 operates be-
tween and where Show that the net efficiency
of the combination is given by (Note that this re-
sult means that two reversible heat engines operating “in series”
are equivalent to one reversible heat engine operating between the
hottest and coldest reservoirs.)

89 ••• The English mathematician and philospher Bertrand
Russell (1872–1970) once said that if a million monkeys were
given a million typewriters and typed away at random for a mil-
lion years, they would produce all of Shakespeare’s works. Let us
limit ourselves to the following fragment of Shakespeare (Julius
Caesar III:ii):

enet � 1 � (Tc>Th).
Th 
 Tm 
 Tc .Tc ,Tm

Tm,Th

Friends, Romans, countrymen Lend me your ears.
I come to bury Caesar, not to praise him.
The evil that men do lives on after them,
The good is oft interred with the bones.
So let it be with Caesar.
The noble Brutus hath told you that Caesar was ambitious,
And, if so, it were a grievous fault,
And grievously hath Caesar answered it...

Even with this small fragment, it will take a lot longer than a
million years! By what factor (roughly speaking) was Russell in
error? Make any reasonable assumptions you want. (You can even
assume that the monkeys are immortal.) SSM



Thermal Properties
and Processes

20-1 Thermal Expansion

20-2 The van der Waals Equation and Liquid–Vapor Isotherms

20-3 Phase Diagrams

20-4 The Transfer of Heat

W
hen an object absorbs heat, various changes may occur in the physical
properties of the object. For example, its temperature may increase,
accompanied by an expansion or contraction of the object, or the object
may melt or vaporize, during which its temperature remains constant.

The changes in objects related to temperature are concerns scientists
and engineers in many industries must deal with. Civil engineers that

design bridges and roads include expansion joints that allow for more subtle
changes in road lengths that arise from changes in temperature. Other engineers
create products to protect objects from extreme temperature changes. Materials are
used to keep thermal energy within hot water heaters, ovens, and ships’ turbines,
as well as to protect automobile bodies and their occupants from heat from the
car’s exhaust system.

In this chapter, we examine some of the thermal properties of matter and
some important processes involving heat.

20
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THE ALASKAN PIPELINE TRANSPORTS
OIL THROUGH 800 MILES OF 48-IN.-
DIAMETER STEEL PIPE. ZIGZAGS ARE
PLACED IN THE PIPELINE TO ALLOW FOR
THERMAL EXPANSION. (THE ZIGZAGS
ALSO ALLOW FOR MOVEMENT DUE TO
SEISMIC ACTIVITY.) THE PIPELINE WAS
DESIGNED TO WITHSTAND TEMPERA-
TURES RANGING FROM �60°F TO 145°F
(THE TEMPERATURE OF THE PIPELINE
WAS �60°F PRIOR TO THE START OF THE
OIL FLOW.) (Karen Kasmauski/CORBIS.)

What was the change in length of a

720-ft-long section of the pipeline

when the temperature changed from

�60°F to 145°F? (See Example 20-2.)

?
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20-1 THERMAL EXPANSION

When the temperature of an object increases, the object typically expands. Suppose
that we have a long rod of length at a temperature When the temperature of a
solid changes by the fractional change in length is proportional to 

20-1

where called the coefficient of linear expansion, is the ratio of the fractional
change in length to the change in temperature:

20-2

The SI units for the coefficient of linear expansion are reciprocal kelvins 
which are the same as reciprocal Celsius degrees The value of can vary
with changes in pressure and temperature. Equation 20-2 gives the average value
over the temperature interval with pressure held constant. The coefficient of
linear expansion at a particular temperature is found by taking the limit as 
approaches zero:

20-3

DEFINITION: COEFFICIENT OF LINEAR EXPANSION

The accuracy obtained by using the average value of over a wide
temperature range is sufficient for most purposes.

For a liquid or a solid, the coefficient of volume expansion is
defined as the ratio of the fractional change in volume to the
change in temperature (at constant pressure):

20-4

DEFINITION: COEFFICIENT OF VOLUME EXPANSION

Both and can vary with both pressure and temperature, but any
variation with pressure is typically negligible. Average values for 
and for various substances are given in Table 20-1.

For a given material, We can show this by considering a
box of dimensions and Its volume at a temperature is

The rate of change of the volume with respect to temperature is

Dividing each side of the equation by the volume, we obtain

We can see that each term on the right side of the preceding equa-
tion equals and so we have

20-5b � 3a
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Table 20-1 Approximate Values of the

Coefficients of Thermal Expansion 

for Various Substances
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In the derivation of Equation 20-5, we have assumed that the coefficient of linear
expansion is independent of direction. (This assumption is approximately true for
many materials, and it will be used for the calculations in this book.) A similar de-
rivation shows that the coefficient of area expansion is twice that of linear
expansion.

Example 20-1 Do Holes Expand?

Suppose we have a steel object with a circular hole through it. If the temperature of the object
increases, the metal expands. Does the diameter of the hole increase or decrease?

PICTURE The increase in size of any part of an object for a given temperature increase is pro-
portional to the original size of that part of the object (in accord with Equation 20-2). For an
object, consider a steel ruler that has a 1-cm-diameter hole in it, centered on the 3.5-cm mark.

SOLVE

1. For an object, we consider a steel ruler that
has a 1-cm-diameter hole in it, centered on
the 3.5-cm mark:

If a steel ruler has a 1-cm-diameter
hole in it that is centered on the 3.5-cm
mark, the edge of the hole will touch
both the 3-cm line and the 4-cm line

2. When the temperature of the ruler increases by
a given amount, the ruler expands uniformly:

The distance between the 3-cm line
and the 4-cm line will increase.

3. The edge of the hole will remain touching the
3-cm and 4-cm marks as the ruler expands.

If the distance between the 3-cm line
and the 4-cm line increases, then 

the diameter of the hole increases.

CHECK If the hole were made by punching out at 1-cm hole, the punched out material
would be a steel disk 1-cm in diameter. If the temperature of this disk were then increased
by the same amount as the temperature of the ruler was increased, then the disk would fit
the hole perfectly.

TAKING IT FURTHER An apparatus for demonstrating that a hole expands when heated is
shown in Figure 20-1.

Most materials expand when heated and contract when cooled. Water, however,
is an important exception. Figure 20-2 shows the volume occupied by 1 g of water
as a function of temperature. The minimum volume, and therefore the maximum
density, is at Thus, when water at is cooled, it expands rather than
contracts. This property of water has important consequences for the ecology of

4.00°C4.00°C.
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F I G U R E  2 0 - 2 Volume of 1 g of water at
atmospheric pressure versus temperature.
The minimum volume, which corresponds to
the maximum density, occurs at At
temperatures below the curve shown is
for supercooled water. (Supercooled water is
water that is cooled below the normal freezing
point without solidifying.)

0.0°C,
4.0°C.

F I G U R E  2 0 - 1 When the ball and
ring are both at room temperature, the
ball is too big to pass through the ring.
The ring expands when heated, and
when it is hot the ball, which remains at
room temperature, is able to pass
through the hole. (Richard
Megna/Fundamental Photographs.)



F I G U R E  2 0 - 3 The zigzagging of the
pipeline allows for thermal expansion of the
pipes. (Paul A. Souders/CORBIS.)
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CHECK The 0.5-mi change in length is slightly more than one-tenth of one percent of the 420-mi
length. That seems feasible for such a large temperature change and for such a great length.

TAKING IT FURTHER The ends of the sections of pipeline that are above ground do not
move with temperature changes because the zigzagging (Figure 20-3) results in lateral move-
ments that “absorb the expansion.”

Example 20-2 An Expanding

A 720-ft-long straight section of the Alaskan pipeline was at a temperature of before
it was filled with oil with a maximum temperature of The pipeline is wrapped with
insulation, so the oil and the steel pipe have the same temperature. (a) How much did the
section expand when the temperature changed from to (b) The sections of the
pipeline that are above ground are 420 mi long. If the temperature of an entire 420-mi-long
section increases from to how much would it expand?

PICTURE Use from Table 20-1 and calculate from Equation 20-1.

SOLVE

¢La � 11 � 10�6 K�1

145°F,�60°F

145°F.�60°F

145°F.
�60°F

(a) 1. The change in length for a given change in temperature is
the product of and ¢T:a, L,

¢L � aL ¢T

2. The change in temperature is Convert this change in
Fahrenheit to a change in kelvins (by multiplying by ):5>9205°F. ¢T �

5 K
9°F

(205°F) � 114 K

3. Calculate the change in length:

0.90 ft � 11 in.�

¢L � aL ¢T � (11 � 10�6 K�1)(720 ft)(114 K)

(b) The change in length is proportional to the length. Use this to
calculate the change in length of the 420-mi section that is
above ground: 0.5 mi� 2800 ft �¢L2 �

(420 mi)(5280 ft>mi)

720 ft
(0.90 ft)

¢L2

L2

�
¢L1

L1

⇒ ¢L2 �
L2

L1

¢L1

lakes. At temperatures above the water in a lake becomes denser as it cools,
and therefore sinks to the bottom. But as the water cools below it becomes
less dense and rises to the surface. This consequence is the reason that ice forms
first on the surface of a lake. Water also expands when it freezes. Because ice is less
dense than liquid water, it remains at the surface and acts as insulation for the
water below. If water behaved like most substances and contracted when it froze,
then ice would sink and expose more water at the surface that would then freeze.
Lakes would fill with ice from the bottom up and would be much more likely to
freeze completely in the winter.

4.00°C,
4.00°C,
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joints, such as this one, allow
bridges to expand with increases in
temperature. (Frank Siteman/Stock
Boston, Inc./PictureQuest.)
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We can calculate the stress that would result in a 1000-m-long steel bridge with-
out expansion joints (Figure 20-4) by using Young’s modulus (Equation 12-1):

Then

For
Then using (from Table 12-1),

This stress is about one-third of the breaking stress for steel under compression.
A compression stress of this magnitude would cause a steel bridge to buckle and
become permanently deformed.

F
A

� Y
¢L
L

� (2.0 � 1011 N>m2)
0.33 m
1000 m

� 6.6 � 107 N>m2

Y � 2.0 � 1011 N>m2
¢T� 30 K, ¢L>L�a¢T� (11 � 10�6 K�1)(30 K) � 3.3 � 10�4 � 0.33 m>1000 m.

F
A

� Y
¢L
L

� Ya ¢T

Y �
Stress
Strain

�
F>A
¢L>L

Example 20-3 A Completely Filled Glass

While working in the laboratory, you fill a 1.000-L Pyrex glass flask to the brim with water
at You heat the flask, increasing the temperature of the water and flask to How
much water spills out of the flask?

PICTURE The water and the glass both expand when heated, but 1.000 L of water expands
more than 1.000 L of glass, so some water spills out. We calculate the amount spilled by finding
the changes in volume for using with for
water (from Table 20-1) and with for Pyrex
glass, where The difference in these volume changes equals the volume spilled.

SOLVE

Vi � 1.000 L.
a � 3.25 � 10�6 K�1¢Vglass � bVi ¢T � 3aV ¢T

b � 0.207 � 10�3 K�1¢Vwater � bVi ¢T¢T � 20 K

30°C.10°C.

1. The volume of water spilled is the difference
in the changes in volume of the water and glass:

Vspill Vspill � ¢Vwater � ¢Vglass

2. Find the increase in the volume of the water: ¢Vwater � bwaterVi ¢T
3. Find the increase in the volume of the glass flask: ¢Vglass � bglassVi ¢T � 3aPyrexVi ¢T
4. Subtract to find the amount of water spilled:

4.0 mL� 3.95 � 10�3 L �

� [0.207 � 10�3 K�1 � 313.25 � 10�6 K�12]11.000 L2120 K2� 1bwater � bglass2Vi ¢T � 1bwater � 3aPyrex2Vi ¢T
Vspill � ¢Vwater � ¢Vglass � bwaterVi ¢T � bglassVi ¢T

CHECK The overflow of 4.0 mL represents only 0.4 percent of the initial volume of 1.000 L.
It is feasible that this small amount would result from a 20 K temperature increase.

TAKING IT FURTHER The flask expands, making the space inside the flask larger, as if the
flask were a piece of solid Pyrex glass.
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Example 20-4 Breaking Copper

During a home plumbing project, you heat a length of copper pipe to Then you clamp
the pipe between two fixed points so that it cannot contract. If the breaking stress of copper
is at what temperature will the bar break as it cools?

PICTURE As the copper pipe cools, the change in length that would occur if it was
allowed to contract is offset by an equal stretching due to tensile stress in the bar. The stress

is related to the stretching by where Young’s modulus for copper
is (from Table 12-1). The maximum allowable stretching occurs when 
equals Thus, we find the temperature change that would produce this maxi-
mum contraction.

SOLVE

230 MN>m2.
F>AY � 110 GN>m2

Y � (F>A)>(¢L>L),¢LF>A ¢L

230 MN>m2,

300°C.

CHECK If you look at copper plumbing you will see that the pipes are not rigidly clamped.
In addition, in household plumbing the hot-water heater is almost always set so the water
temperature does not exceed and the cold water has to be at least or freez-
ing occurs. Thus, changes in temperature greater than do not occur in home plumbing.
It should not be too surprising that pipes designed for home plumbing might not hold up if
expansion or contraction is not allowed for, and if temperature changes much greater than
those expected in homes occur.

20-2 THE VAN DER WAALS EQUATION 
AND LIQUID–VAPOR ISOTHERMS

At ordinary pressures most gases behave like an ideal gas. However, this ideal
behavior breaks down when the pressure is high enough or the temperature is low
enough such that the density of the gas is high and the molecules are, on average,
closer together. An equation of state called the van der Waals equation describes
the behavior of many real gases over a wide range of pressures more accurately
than does the ideal-gas equation of state The van der Waals equation
for moles of gas is

20-6

THE VAN DER WAALS EQUATION OF STATE

¢P �
an2

V2 ≤ (V � bn) � nRT

n
(PV � nRT).

60°C
0°C60°C (140°F),

1. Calculate the change in length that would occur if the pipe
were allowed to contract as it cools:

¢L1 ¢L1 � aL ¢T

2. A tensile stress stretches the pipe by ¢L2:F>A so ¢L2 � L
F>A
Y

Y �
F>A

¢L2 >L
3. Substitute the step-1 and step-2 results into and

solve for with the stress equal to the breaking value:¢T
¢L1 � ¢L2 � 0

so

� �123 K � �123°C

¢T � �
F>A
aY

� �
230 � 106 N>m2

(17 � 10�6 K�1)(110 � 109 N>m2)

aL ¢T � L
F>A
Y

� 0

¢L1 � ¢L2 � 0

4. Add this result to the original temperature to find the final
temperature at which the bar breaks:

180°C� 177°C �tf � t1 � ¢t � 300°C � 123°C
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P

D
C B

A
A′

T

V

c

Critical point

Gas

GasLiquid and
vapor coexist

Liquid

F I G U R E  2 0 - 5 Isotherms on the diagram for a substance. For
temperatures above the critical temperature the substance remains a gas
at all pressures. Except for the region where the liquid and vapor coexist,
these curves are described quite well by the van der Waals equation. The
pressure for the horizontal portions of the curves in the shaded region is
the vapor pressure, which is the pressure at which the vapor and liquid are
in equilibrium. In the region shaded yellow, to the left of the region shaded
pink, the substance is a liquid and is nearly incompressible.

Tc ,
PV

The constant in this equation arises because the gas molecules are not point par-
ticles, but objects that have a finite size; therefore, the volume available to each
molecule is reduced. The magnitude of is the volume of one mole of gas mole-
cules. The term arises from the attraction of the gas molecules to each other.
As a molecule approaches the wall of the container, it is pulled back by the mole-
cules surrounding it with a force that is proportional to the density of those mole-
cules Because the number of molecules that hit the wall in a given time is also
proportional to the density of the molecules, the decrease in pressure due to the
attraction of the molecules is proportional to the square of the density and there-
fore to The constant depends on the gas and is small for inert gases, which
have very weak chemical interactions. The terms and are both negligible
when the volume is large, so at low densities the van der Waals equation ap-
proaches the ideal-gas law. At high densities, the van der Waals equation provides
a much better description of the behavior of real gases than does the ideal-gas law.

Figure 20-5 shows isothermal curves for a substance at various tempera-
tures. Except for the region where the liquid and vapor coexist, these curves are
described quite accurately by the van der Waals equation and can be used to de-
termine the constants and For example, the values of these constants that give
the best fit to the experimental curves for nitrogen are and

This volume of is about 0.2 percent of the volume
of 22.4 L occupied by 1 mol of ideal gas under standard conditions. Because the
molar mass of nitrogen is if 1 mol of nitrogen molecules were packed
into a volume of 38.7 mL, then the density would be

which is almost the same as the density of liquid nitrogen, 
The value of the constant can be used to estimate the size of a

molecule. Because 1 mol of nitrogen has a volume of
the volume of one nitrogen molecule is

If we assume that each molecule occupies a cube of side we obtain

or

which is a plausible estimate for the “diameter” of a nitrogen
molecule.

The values of the constants and that give the best fit to the ex-
perimental curves are listed in Table 20-2.

ba

d � 4.0 � 10�8 cm � 0.4 nm

d3 � 6.43 � 10�23 cm3

d,

� 6.43 � 10�23 cm3>molecule

V �
b
NA

�
38.7 cm3>mol

6.02 � 1023 molecules>mol

38.7 cm3,
(NA molecules)
b

0.80 kg>L.

r �
M
V

�
28.0 g

38.7 mL
� 0.724 g>mL � 0.724 kg>L

28.02 g>mol,

38.7 mL>moleb � 38.7 mL>mol.
a � 1.370 L2 # atm>mol2

b.a

PV

V
an2>V2bn

an2>V2.

n>V.

an2>V2
b

b

Table 20-2 The van der Waals a and b

Coefficients for Several Gasses

a b

He 0.0346 23.80

Ne 0.211 17.1

Ar 1.34 32.2

Kr 2.32 39.8

Xe 4.19 51.0

0.244 26.6

1.370 38.70

1.382 31.86

5.46 30.5

3.59 42.7CO2

H2O

O2

N2

H2

(mL>mol)(L2 # atm>mol2)



CHECK In the van der Waals equation the 2% correction to the pressure term [Part (b)] is
dwarfed by the 36% correction to the volume term [Part (a)]. This is as expected. The correc-
tion to the pressure term is particularly small for helium because the helium atoms attract
each other more weakly than do most other atoms.

(a) Calculate and compare it with 400 atm:an2>V2

(7.785 atm is about 2% of 400 atm)

7.79 atm� 7.785 atm �

an2

V2 �
(0.0346 L2 # atm>mol2)(300 mol)2

(20.0 L)2

(b) Calculate and compare it with 20 L:bn

(7.14 L is about 36% of 20 L)

7.14 Lbn � (0.0238 L>mol)(300 mol) �

(c) 1. The van der Waals equation can be solved for
the temperature:

¢P �
an2

V2 ≤ (V � bn) � nRT

2. Obtain the and coefficients for helium from
Table 20-2:

ba
b � 0.0238 L>mol
a � 0.0346 L2 # atm>mol2

3. Enter the given values and solve for the temperature.
With the pressure in atmospheres and the volume in
liters, we use R � 0.082057 L # atm>(mol # K): 213 K�

T �

¢P �
an2

V2 ≤(V � bn)

nR
�

¢400 �
0.0346 � 3002

20.02 ≤ (20.0 � 0.0238 � 300)

300 � 0.082057
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At temperatures below the van der Waals equation describes those portions
of the isotherms outside the shaded region in Figure 20-5, but not those portions
inside the shaded region. Suppose we have a gas at a temperature below that ini-
tially has a low pressure and a large volume. We begin to compress the gas while
holding the temperature constant (isotherm in the figure). At first the pressureA

Tc

Tc ,

Cloud forming behind an aircraft as it breaks the sound barrier. As the
aircraft moves through the air, an area of low pressure forms behind it.
When the pressure of this air parcel falls below the vapor pressure of
gaseous water, the water in the air condenses to form the cloud. Different
atmospheric conditions cause the phenomenon to occur at different
aircraft speeds. (U.S. Department of Defense/Photo Researchers, Inc.)

Example 20-5 Helium at High Density

A 20.0-L tank contains 300 mol of helium at a pressure of 400 atm. (a) What is the value of
and what fraction of the pressure is it? (b) What is the value of and what fraction

of the volume of the container is it? (c) What is the temperature of the helium?

PICTURE To find the temperature use the van der Waals equation (Equation 20-6). The 
and coefficients for helium are found in Table 20-2.

SOLVE

b
a

bn,an2>V2,
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rises, but when we reach point on the dashed curve, the pressure ceases to rise
and the gas begins to liquefy at constant pressure. Along the horizontal line in
the figure, the gas and liquid are in equilibrium. As we continue to compress the
gas, more and more gas liquefies until point on the dashed curve, at which point
we have only liquid. Then, if we try to compress the substance further, the pressure
rises sharply because a liquid is nearly incompressible.

Now consider injecting a liquid such as water into a sealed evacuated container.
As some of the water evaporates, water-vapor molecules fill the previously empty
space in the container. Some of these molecules will hit the liquid surface and rejoin
the liquid water during a process called condensation. The rate of evaporation will ini-
tially be greater than the rate of condensation, but eventually equilibrium will be
reached. The pressure at which a liquid is in equilibrium with its own vapor is called
the vapor pressure. If we now heat the container slightly, the liquid boils, more liq-
uid evaporates, and a new equilibrium is established at a higher vapor pressure.
Vapor pressure thus depends on the temperature. We can see this from Figure 20-5.
If we had started compressing the gas at a lower temperature, as with isotherm 
in Figure 20-5, the vapor pressure would be lower, as is indicated by the horizontal
constant-pressure line for at a lower value of pressure. The temperature for which
the vapor pressure for a substance equals 1 atm is the normal boiling point of that
substance. For example, the temperature at which the vapor pressure of water
is 1.00 atm is so this temperature is the normal boiling point
of water. At high altitudes, such as on the top of a mountain, the pressure is
less than 1.00 atm, therefore, water boils at a temperature lower than 373 K.
Figure 20-6 gives the vapor pressures of water at various temperatures.

At temperatures greater than the critical temperature a gas will not
condense at any pressure. The critical temperature for water vapor is

The point at which the critical isotherm intersects the dashed
curve in (point ) is called the critical point.

20-3 PHASE DIAGRAMS

Figure 20-7 is a plot of pressure versus temperature at a constant volume for
water. Such a plot is called a phase diagram. The portion of the diagram be-
tween points and shows vapor pressure versus temperature. As we con-
tinue to heat the container, the density of the liquid decreases and the density

CO

C
647 K (374°C).

Tc ,

373 K( � 100°C),

A�
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D
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B
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t , °C

P, atm F I G U R E  2 0 - 6 Boiling
point of water versus pressure.
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C

A

O
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218

1.0
0.0006

T, K

Gas

F I G U R E  2 0 - 7 Phase diagram for water.
The pressure and temperature scales are not linear
but are compressed to show the points of interest.
Curve is the curve of vapor pressure versus
temperature. Curve is the melting curve, and
curve is the sublimation curve.OA
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F I G U R E  2 0 - 5 (repeated)

Isotherms on the diagram for a substance.PV
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Table 20-3 Critical Temperatures 

T
c

for Various 

Substances

0

100

200

300

400

500

600

700

Argon, 150.8
Oxygen, 154.8
Nitric oxide, 180.2

Water, 647.4

Sulfur dioxide, 430.9
Chlorine, 417.12

Carbon dioxide, 304.2

Neon, 44.4
Hydrogen, 33.3
Helium, 5.3

Tc , K

of the vapor increases. At point on the diagram, these densities are equal. Point
is called the critical point. At this point and above it, there is no distinction be-

tween the liquid and the gas. Critical-point temperatures for various substances
are listed in Table 20-3. At temperatures greater than the critical temperature, a gas
will not condense at any pressure.

If we now cool our container, some of the vapor condenses into a liquid as we
move back down the curve in Figure 20-7 until the substance reaches point 
At this point, the liquid begins to solidify. Point is the triple point, that one point
at which the vapor, liquid, and solid phases of a substance can coexist in equilib-
rium. Every substance has a unique triple point at a specific temperature and pres-
sure. The triple-point temperature for water is and the triple-
point pressure is 4.58 mmHg.

At temperatures and pressures below the triple point, the liquid cannot exist.
The curve in the phase diagram of Figure 20-7 is the locus of pressures and
temperatures for which the solid and vapor coexist in equilibrium. The direct
change from a solid to a vapor is called sublimation. You can observe sublimation
by putting a few loose ice cubes in the freezer compartment of a no-frost (self-de-
frosting) refrigerator. Over time, the ice cubes will shrink and eventually disappear
due to sublimation. This happens because the atmospheric pressure is well above
the triple-point pressure of water, and therefore, equilibrium is never established
between the ice and water vapor. The triple-point temperature and pressure of car-
bon dioxide are and 3880 mmHg (5.1 atm), which means that liq-
uid can only exist at pressures above 5.1 atm. Thus, at ordinary atmospheric
pressures, liquid cannot exist at any temperature. When solid “melts,” it
sublimates directly into gaseous without going through the liquid phase,
hence the name “dry ice.”

The curve in Figure 20-7 is the melting curve separating the liquid and solid
phases. For a substance like water for which the melting temperature decreases as
the pressure increases, curve slopes upward to the left from the triple point, as
in this figure. For most other substances, the melting temperature increases as the
pressure increases. For such a substance, curve slopes upward to the right from
the triple point.

For a molecule to escape (evaporate) from a substance in the liquid state, energy
is required to break the intermolecular attractions at the liquid’s surface.
Vaporization cools the liquid left behind. If a pot of water is brought to a boil over
a hot plate, this cooling effect keeps the temperature of the liquid constant at the
boiling point. This is the reason that the boiling point of a substance can be used to
calibrate thermometers. However, water can also be made to boil without adding
heat by evacuating the air above it, thereby lowering the applied pressure. The en-
ergy needed for vaporization is then taken from the water left behind. As a result,
the water will cool down, even to the point that ice forms on top of the boiling water!

20-4 THE TRANSFER OF HEAT

Heat is the transfer of energy due to a temperature difference. This transfer from
one location to another takes place by way of three distinct processes: conduction,
convection, and radiation.

During conduction, the enrgy is transferred by interactions among atoms or mol-
ecules, where the atoms or molecules are not themselves transported. For example,
if one end of a solid bar is heated, the atoms in the heated end vibrate with greater
energy than do those at the cooler end. The interaction of the more energetic atoms
with the less energetic atoms causes this energy to be transported along the bar.*

OB

OB

OB

CO2

CO2CO2

CO2

216.55 K(CO2)

OA

273.16 K (0.01°C)

O
O.OC

Tc

C
C

* If the solid is a metal, the transfer of heat is made easier by delocalized electrons, which can move throughout the metal.
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During convection, heat is transferred by direct transport of matter. For exam-
ple, warm air in a region of a room expands, its density decreases, and the buoy-
ant force on it due to the surrounding air causes it to rise. Energy is thus trans-
ported upward along with the molecules of warm air.

During radiation, the energy is transferred through space in the form of elec-
tromagnetic waves that move at the speed of light. Infrared waves, visible light
waves, radio waves, television waves, and X rays are all forms of electromagnetic
radiation that differ from one another in their wavelengths and frequencies.

During all mechanisms of heat transfer, the rate of cooling of a body is approx-
imately proportional to the temperature difference between the body and its sur-
roundings. This result is known as Newton’s law of cooling.

During many real situations, all three mechanisms for energy transfer occur
simultaneously, though one mechanism may be more dominant than the others.
For example, an ordinary space heater uses both radiation and convection. If the
heating element is quartz, then the main mechanism of transfer is radiation. If
the heating element is metal (which does not radiate as efficiently as quartz), then
convection is the main mechanism by which energy is transferred, with the heated
air rising to be replaced by cooler air. Fans are often included in heaters to speed the
convection process.

CONDUCTION

Figure 20-8a shows an insulated uniform solid bar of cross-sectional area If we
keep one end of the bar at a high temperature and the other end at a low tempera-
ture, energy is conducted down the bar from the hot end to the cold end. In the steady
state, the temperature varies linearly from the hot end to the cold end. The rate of
change of the temperature along the bar is called the temperature gradient.*

Let be the temperature difference across a small segment of length 
(Figure 20-8b). If is the amount of heat conducted through a cross section of the
segment during some time then the rate of conduction of heat is called
the thermal current I. It has experimentally been found that the thermal current is
proportional to the temperature gradient and to the cross-sectional area 

20-7

DEFINITION: THERMAL CURRENT

The proportionality constant called the thermal conductivity, depends on the com-
position of the bar.† The heat is transferred in the direction of decreasing tempera-
ture. That is, if the temperature increases with increasing then the heat transfer
is in the negative direction, and vice versa. In SI units, thermal current isx

x,

k,

I �
dQ
dt

� �kA
dT
dx

A:

dQ>dtdt,
dQ

dxdT
dT>dx

A.

Steam
bath

Ice
bathdQ

dx

dT

dQ
dt

= kA dT

A

dx

dx

(b)(a)

F I G U R E  2 0 - 8 (a) An insulated
conducting bar with its ends at two different
temperatures. (b) A segment of the bar of
length The rate at which heat is conducted
through a cross section of the segment is
proportional to the cross-sectional area of the
bar and the temperature drop across the
segment, and it is inversely proportional to
the length of the segment.

dT

dx.

Heat transports energy from a
higher-temperature region to a

lower-temperature region, so the
thermal current is in the direction of
decreasing temperature.

!

* The temperature gradient is actually a vector. The direction of this vector is the direction in which the temperature is
increasing most rapidly, and the magnitude of this vector is the rate of change of temperature with respect to distance
in this direction.

† Do not confuse the thermal conductivity with Boltzmann’s constant, which is also designated by k.
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expressed in watts, and the thermal conductivity has units of * In prac-
tical calculations in the United States, the thermal current is usually expressed in
Btu per hour, the area is expressed in square feet, the length (or thickness) is
expressed in inches, and the temperature is expressed in degrees Fahrenheit.
The thermal conductivity is then given in Table 20-4 gives the
thermal conductivities of various materials.

If we solve Equation 20-7 for the temperature difference, we obtain

20-8

or

20-9

TEMPERATURE DROP VERSUS CURRENT

where is the temperature drop in the direction of the thermal current and
is the thermal resistance

20-10

DEFINITION: THERMAL RESISTANCE

R �
ƒ¢x ƒ
kA

R:ƒ¢x ƒ>(kA)
¢T

¢T � IR

ƒ¢T ƒ � I
ƒ¢x ƒ
kA

Btu # in>(h # ft2 # °F).

W>(m # K).

10 3

10 2

10 1

10 0

10 –1

10 –2

Air at 27°C

Water at 27 
Ice

Aluminum

Copper

Glass

10 4

10 3

10 2

10 1

10 0

10 –1

Gold

Iron

Silver

Steel

Oak

White Pine

Concrete

(0.026)(0.18)

(4.11)
(4.22)

(1644)

(2780)

(2200)

(558)

(2980)

(319)

(1.02)
(0.78)

(6–9)
(5–6)

(0.592)
(0.609)

(237)

(401)

(318)

(80.4)

(429)

(46)

(0.15)

(0.11)

(0.19–1.3)
(0.7–0.9)

Lead(20.4) (35.3)

°C

k, Btu.in./(h.ft2.F°)    k, W/(m.K)

Table 20-4 Thermal Conductivities k for Various Materials

In a cool room, a metal tabletop
feels much cooler to the touch
than does a wood surface even
though they both have the same
temperature. Why?

CONCEPT CHECK 20-1✓

* In some tables, the energy may be given in calories or kilocalories and the thickness in centimeters.
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T1 T2 T3

F I G U R E  2 0 - 9 Two thermally conducting
slabs of different materials in series. The
equivalent thermal resistance of the slabs in
series is the sum of their individual thermal
resistances. The thermal current is the same
through both slabs.

PRACTICE PROBLEM 20-1

Calculate the thermal resistance of an aluminum slab of cross-sectional area and
thickness 2.00 cm.

PRACTICE PROBLEM 20-2

What thickness of a slab of silver would be required to give the same thermal resistance
as a 1.00-cm-thick layer of dead air of the same area?

In many practical problems, we are interested in the rate of heat transfer through
two or more conductors (or insulators) in series. For example, we may want to
know the effect of adding insulating material of a certain thickness and thermal
conductivity to the space between two layers of wallboard. Figure 20-9 shows two
thermally conducting slabs of the same cross-sectional area, but of different mate-
rials and of different thicknesses. Let be the temperature on the warm side, be
the temperature at the interface between the slabs, and be the temperature on the
cool side. Under the conditions of steady-state heat transfer, the thermal current 
through each of the slabs must be the same. This follows from energy conservation;
for steady-state transfer, the rate at which energy enters any region must equal the
rate at which it exits that region.

If and are the thermal resistances of the two slabs, we have by applying 
Equation 20-9 to each slab

and

Adding these equations gives

or

20-11

where is the equivalent resistance. Thus, for thermal resistances in series, the
equivalent resistance is the sum of the individual resistances:

20-12

THERMAL RESISTANCES IN SERIES

This result can be extended to any number of resistances in series. In Chapter 25,
we will find that the same formula applies to electrical resistances in series.

Req � R1 � R2 � Á

Req

I �
¢T
Req

¢T � T1 � T3 � I(R1 � R2) � IReq

T2 � T3 � IR2

T1 � T2 � IR1

R2R1

I
T3

T2T1

15.0 cm2

This thermogram of a house
shows the heat being radiated
to its surroundings. (Alfred
Pasieka/Photo Researchers, Inc.)
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To calculate the rate at which energy is leaving a room by way of heat conduc-
tion, we need to know how much heat is released through the walls, the win-
dows, the floor, and the ceiling. For this type of problem, in which there are
several paths for heat transfer, the resistances are said to be in parallel. The tem-
perature difference is the same for each path, but the thermal current is different.
The total thermal current is the sum of the thermal currents through each of the
parallel paths:

or

20-13

where the equivalent thermal resistance is given by

20-14

THERMAL RESISTANCES IN PARALLEL

We will encounter this equation again in Chapter 25 when we study electric
conduction through parallel resistances. Note that for both resistors in series
(Equation 20-11) and resistors in parallel (Equation 20-13) is proportional to 
which is in agreement with Newton’s law of cooling.

PROBLEM-SOLVING STRATEGY

Calculating Thermal Current

PICTURE Determine if the group of objects for which you are finding the
total thermal current are in series or in parallel.

SOLVE

1. Using (Equation 20-10), find the thermal resistance of each
object.

2. If any objects are in series, use (Equation 20-12) to
calculate their equivalent resistance.

3. If any objects are in parallel, use (Equation 20-14) to 

find their equivalent resistance.

4. Repeat steps 2 and 3 until you have calculated the equivalent resistance of
the entire system of conducting objects.

5. Using (Equation 20-9), calculate the total thermal current.

CHECK For each parallel combination of objects, make sure the equivalent
resistance is less than the resistance of the object with the least resistance. For
each series combination of objects, make sure the equivalent resistance is
greater than the resistance of the object with the greatest resistance.

¢T � ItotalReq

1
Req

�
1
R1

�
1
R2

� Á

Req � R1 � R2 � Á

R � ƒ¢x ƒ>(kA)

¢T,I

1
Req

�
1
R1

�
1
R2

� Á

Itotal �
¢T
Req

Itotal � I1 � I2 � Á �
¢T
R1

�
¢T
R2

� Á � ¢T¢ 1
R1

�
1
R2

� Á≤
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Pb
100°C

Ag 0°C

F I G U R E  2 0 - 1 0 Two thermally conducting
slabs of different materials in parallel.

Example 20-6 Two Metal Bars in Series

Two insulated metal bars, each of length 5.0 cm and rectangular cross section with sides
2.0 cm and 3.0 cm, are wedged between two walls, one held at and the other at

(Figure 20-10). The bars are lead and silver. Find (a) the total thermal current
through the two-bar combination, and (b) the temperature at the interface.

PICTURE The bars are thermal resistors connected in series. (a) You can find the total
thermal current from where the equivalent resistance is the sum of the in-
dividual resistances. Using Equation 20-10 and the thermal conductivities given in Table
20-4, the individual resistances can be determined. (b) You can find the temperature at the
interface by applying to the lead bar only, and solving for in terms of the
value for found in Part (a).I

¢TI � R1 >¢T,

ReqI � Req >¢T,

0.0°C
100°C

SOLVE

(a) 1. Use (Equation 20-13) to relate the thermal current
to the temperature difference:

¢T � IR I �
¢T
R

2. Using (Equation 20-10), write each thermal
resistance in terms of the individual thermal conductivities
and geometric parameters:

R � ƒ¢x ƒ >(kA)

� 0.194 K>WRAg �
0.050 m

429 W>(m # K) � (0.020 m � 0.030 m)

� 2.36 K>WRPb �
0.050 m

35.3 W>(m # K) � (0.020 m � 0.030 m)

RAg �
ƒ¢xAg ƒ
kAgAAg

RPb �
ƒ¢xPb ƒ
kPbAPb

CHECK We check our Part-(b) result by calculating the temperature drop across the silver
bar. That is, which agrees with our Part-(b) re-
sult. Note that equivalent resistance is greater than either of the individual resis-
tances and 0.194 K>W).(2.36 K>W (2.55 K>W)

¢TAg � IRAg � 232 W � 0.194 K>W � 92°C,

3. Find using the formula for resistors in series:Req Req � RPb � RAg � 2.55 K>W � 0.194 �  K>W
4. Use (Equation 20-13) to find the thermal current.¢T � IR 39.1 WI �

¢T
Req

�
100 K

2.55 K>W �

(b) 1. Calculate the temperature difference across the lead bar
using the current and thermal resistance found in Part (a).

� 92.4 K¢TPb � IRPb � 39.1 W � 2.36 K>W
2. Use your result from the previous step to find the

temperature at the interface.
8°CTif � 100°C � ¢TPb �

Pb

100°C

Ag

0°C

F I G U R E  2 0 - 1 1

Example 20-7 The Metal Bars in Parallel

The metal bars in Example 20-6 are rearranged as shown in Figure 20-11. Find (a) the ther-
mal current in each bar, (b) the total thermal current, and (c) the equivalent thermal resistance
of the two-bar system.

PICTURE The current in each bar is found from where is the thermal resistance
of the bar (found in Example 20-6). The total current is the sum of the currents. The equiva-
lent resistance can be found from Equation 20-14 or from Itotal � ¢T>Req .

RI � ¢T>R,

SOLVE

(a) Calculate the thermal current for each bar:

515 WIAg �
¢T
RAg

�
100 K

0.194 K>W �

42.4 WIPb �
¢T
RPb

�
100 K

2.36 K>W �
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(b) Add your results to find the total thermal current: 557 W� 42.4 W � 515 W �Itotal � IPb � IAg

(c) 1. Use Equation 20-14 to calculate the equivalent
resistance of the two bars in parallel:

so 0.179 K>WReq �

1
Req

�
1
RPb

�
1
RAg

�
1

2.36 K>W �
1

0.194 K>W
2. Check your result using, Itotal � ¢T>Req:

0.179 K>WReq �
¢T
Itotal

�
100 K
557 W

�

Itotal �
¢T
Req

CHECK With the bars in parallel the full temperature difference of 100 K is across each of
them, so the thermal current through each is much higher than the thermal current was in
either bar in Example 20-6, in which the bars were arranged in series so the temperature dif-
ference across either bar is considerably less than 100 K. In addition, in Example 20-7 the
total current equals the sum of the currents in the bars, whereas in Example 20-6 the total
current equals the current in either bar. Thus, that the total current (557 W) with the bars in
parallel is more than 14 times larger than the total current (39.1 W) with the bars in series is
a plausible result.

TAKING IT FURTHER Note that in part (b), the equivalent resistance is less than either of
the individual resistances. This is always the case for resistors connected in parallel.

In the building industry, the thermal resistance of a square foot of cross-sec-
tional area of a material is called its R factor, Consider a sheet of insulat-
ing material with thickness and factor of 7.2. That is, each square foot
(Figure 20-12) has a thermal resistance of The 32 square feet are in
parallel, so the net resistance is calculated using Equation 20-14, giving

Thus, the total thermal resistance in equals the factor divided by the
area in square feet. That is,

Because the net (total) resistance is related to the con-
ductivity by (Equation 20-10), we can
express the factor by

20-15

DEFINITION: R FACTOR

where is the thickness in inches and is the conductiv-
ity in Table 20-5 lists factors for sev-
eral materials. In terms of the factor, Equation 20-9 for the
thermal current is

20-16

For slabs of insulating material of the same area in series, 
is replaced by the equivalent factor

Rf eq � Rf1 � Rf2 � Á
Rf eqR

Rf

¢T � IRnet �
I
A
Rf

R
RBtu # in>(h # ft2 # °F).
kƒ¢x ƒ

Rf � RnetA �
ƒ¢x ƒ
k

R
Rnet � ƒ¢x ƒ>(kA)k

Rnet

Rnet �
Rf

A

A
R°F>(Btu>h)R

1
Rnet

�
1
R1

�
1
R2

� Á �
1
Rf

�
1
Rf

� Á �
32
Rf

     so     Rtotal �
Rf

32

Rnet

7.2°F>(Btu>h).
RfR¢x

32-ft2Rf .

F I G U R E  2 0 - 1 2 For a 1-in. thickness of this material, the 
(Courtesy of Eugene Mosca.)

Rf � 7.2.
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For parallel slabs, we calculate the thermal current through each slab and add all
these currents to obtain the total current.

Table 20-5 R Factors for Various Building Materials

Material Thickness, in. Rf, h ft2 F°/Btu

Building board

Gypsum or plasterboard 0.375 0.32

Plywood (Douglas fir) 0.5 0.62

Plywood or wood panels 0.75 0.93

Particle board, medium density 1.0 1.06

Finish flooring materials

Carpet and fibrous pad 1.0 2.08

Tile 0.5

Wood, hardwood finish 0.75 0.68

Roof insulation 1.0 2.8

Roofing

Asphalt roll roofing 0.15

Asphalt shingles 0.44

Windows

Single-pane 0.9

Double pane 1.8 

##
¢x/k

Context-RichExample 20-8 Heat Loss Through a Roof

You are helping your friend’s family put new asphalt shingles on the roof of their winter
cabin. The roof is made of 1.0-in-thick pine board covered with asphalt shingles.
There is room for 8.0 in of roof insulation, and your friend’s family is wondering how much
of a difference it would make to their energy bill if they were to install two inches of insula-
tion. Knowing that you are studying physics, they ask for your opinion.

PICTURE To assess the situation, you first calculate the factor for each layer of the roof.
Because the layers are in series, the equivalent factor is just the sum of the individual 

factors. The aim is to calculate the equivalent factor of the roof with and without the
insulation. The factors for asphalt shingles and for roof insulation are found in Table 20-5.
The factor for the pine board is calculated from its thermal conductivity, which is found in
Table 20-4. Note that when you shingle a roof you have to overlap the shingles, so there are
two layers of asphalt shingling on the roof.

R
R

RR
R

R

60-ft � 20-ft

SOLVE

1. For a series combination, the equivalent factor is the sum of
the individual factors:R

R Rf eq � Rf pine � Rf asph � Rf insul

2. The factor for the double layer of shingles is twice the 
factor for one layer:R
R � 0.88 h # ft2 # °F>BtuRf asph � 2(0.44 h # ft2 # °F>Btu)

3. The factor for 2.0 in of roof insulation is twice that for 1.0 in:R � 5.6 h # ft2 # °F>BtuRf insul � 2(2.8 h # ft2 # °F>Btu)

4. The factor for 1.0-in-thick pine is obtained from the
conductivity:
R Rf p �

¢xp

kp

�
1.0 in

0.78 Btu # in>(h # ft2 # °F)
� 1.28 h # ft2 # °F>Btu

5. The equivalent factor without the insulation is:R

� 2.16 h # ft2 # °F>Btu � 2.2 h # ft2 # °F>Btu

Rœ
f eq � Rf pine � Rf asph � 1.28 h # ft2 # °F>Btu � 0.88 h # ft2 # °F>Btu



CHECK It should come as no surprise that installing some insulation has a significant
economic payback.

TAKING IT FURTHER These cost estimates do not include the cost of purchasing and
installing the insulation.

PRACTICE PROBLEM 20-3 How much additional savings can possibly be had by adding
even more insulation to the roof?

The thermal conductivity of air is very small compared with that of solid
materials, which makes air a very good insulator. However, when there is a
large air gap—say, between a storm window and the inside window—the insu-
lating efficiency of air is greatly reduced because of convection. Whenever there
is a temperature difference between different parts of the air space, convection
currents act quickly to equalize the temperature, so the effective conductivity is
greatly increased. For storm windows, air gaps of about 1 to 2 cm are optimal.
Wider air gaps actually reduce the thermal resistance of a double-pane window
due to convection.

The insulating properties of air are most effectively used when the air is trapped
in small pockets that prevent convection from taking place. This is the principle un-
derlying the excellent insulating properties of both goose down and Styrofoam.

If you touch the inside surface of a glass window when it is cold outside, you
will observe that the surface is considerably colder than the inside air. The thermal
resistance of windows is mainly due to thin films of insulating air that adhere to
either side of the glass surface. The thickness of the glass has little effect on the
overall thermal resistance. The air film on each side typically adds an factor of
about 0.45 per side. Thus, the factor of a window with separated glass layers
is approximately 0.90 because of the two sides of each layer. Under windy con-
ditions, the outside air film may be greatly decreased, leading to a smaller factor
for the window.

R
N,

NR
R
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7. One comparison of the two equivalent factors is their ratio:R
Rœ

f eq

Rf eq

�
2.16
7.76

� 0.28

8. By adding the insulation, the heat loss rate per square foot is
reduced by 72 percent. Is it 72 percent of a large heat loss or a
small heat loss? Using Equation 20-16 we calculate the thermal
current through the entire roof:I�

� [5.6 � 102 (Btu>h)>°F]¢T

I� �
A
Rœ

f eq

¢T �
(60 ft)(20 ft)

2.16 h # ft2 # °F>Btu
¢T � [556 (Btu>h)>°F]¢T

¢T � IRnet �
I
A
Rf

9. To complete the calculation, we estimate that the temperature
inside the cabin is maintained at and the temperature
outside the cabin during the winter is typically colder:40°F

70°F

and

so the reduction due to the insulation is

� 16 � 103 Btu>hI� � I � 22200 Btu>h � 6200 Btu>h
I � 0.28I� � 0.28(22200 Btu>h) � 6200 Btu>h� [556 (Btu>h)>°F](40°F) � 22200 Btu>hI� � [556 (Btu>h)>°F]¢T

10. Installing 2.0 in. of roof insulation reduces the heat loss through
the roof by The cabin is heated with propane, and
the energy content of propane is Insulating the
roof reduces consumption by approximately 4.2 gal of propane
every 24 h of use.

92,000 Btu>gal.
16,000 Btu>h.

6. The equivalent factor with insulation is:R

� 7.76 h # ft2 # °F>Btu

� 2.16 h # ft2 # °F>Btu � 5.6 h # ft2 # °F>Btu

Rf eq � Rf pine � Rf asph � Rf insul � Rœ
f eq � Rf insul

Propane costs about so this amounts to a
savings of approximately $12.60 per day, or $376 per month
during the heating season. Your friend’s family is
impressed by the potential savings (and by the benefits of
your physics knowledge). They decide to install the 2.0 in
of roofing insulation.

$3.00>gal,
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CONVECTION

Convection is the transfer of heat by the transport of the material medium itself.
This thermal property is responsible for the great ocean currents as well as the
global circulation of the atmosphere. In the simplest case, convection arises when
a fluid (gas or liquid) is heated from below. The warm fluid then expands and rises
as the cooler fluid sinks. The mathematical description of convection is very com-
plex, because the flow depends on the temperature difference in different parts of
the fluid, and this temperature difference is affected by the flow itself.

The heat transferred from an object to its surroundings by convection is approx-
imately proportional to the area of the object and to the difference in temperature
between the object and the surrounding fluid. It is possible to write an equation for
the heat transferred by convection and to define a coefficient of convection, but the
analyses of practical problems involving convection are quite complex and are not
discussed here.

RADIATION

All objects emit and absorb electromagnetic radiation. When an object is in thermal
equilibrium with its surroundings, it emits and absorbs radiation at the same rate.
The rate at which an object radiates energy is proportional to both the surface area
of the object and to the fourth power of its absolute temperature. This result, found
empirically by Josef Stefan in 1879 and derived theoretically by Ludwig Boltzmann
about five years later, is called the Stefan–Boltzmann law:

20-17
STEFAN–BOLTZMANN LAW

where is the power radiated, is the surface area, is a universal constant called
Stefan’s constant, which has the value

20-18

and is the emissivity of the radiating surface, a dimensionless quantity between
0 and 1 that is dependent upon the composition of the surface of the object.

When electromagnetic radiation falls on an opaque object, part of the radiation
is reflected and part is absorbed. Light-colored objects reflect most visible radia-
tion, whereas dark objects absorb most of it. The rate at which an object absorbs
radiation is given by

20-19

where is the temperature of the source of the radiation and is the emissivity of
the surface of the absorbing object.

Suppose an object at temperature is surrounded by objects at temperature .
If the object emits radiant energy at a greater rate than the object absorbs it, then
the object cools, while the object’s surroundings absorb radiation from the object
and becomes warmer. If the object absorbs radiant energy at a greater rate than the
object emits it, then the object warms and its surroundings cool. The net power
radiated by an object at temperature in an environment at temperature is

20-20

When an object is in thermal equilibrium with its surroundings, and the
object emits and absorbs radiation at the same rate.

An object that absorbs all radiation incident upon it and has an emissivity equal
to 1 is called a blackbody. A blackbody is also an ideal radiator. The concept of a
blackbody is important because the characteristics of the radiation emitted by such
an ideal object can be calculated theoretically. Materials such as black velvet come
close to being ideal blackbodies. The best practical approximation of an ideal black-
body is a small hole leading into a cavity, such as a keyhole in a closet door 
(Figure 20-13). Radiation incident on the hole has little chance of being reflected out

T � T0 ,

Pnet � esA(T4 � T4
0)

T0T

T0T

eT0

Pa � es AT4
0

e

s � 5.6703 � 10�8 W>(m2 # K4)

sAPr

Pr � es AT4

F I G U R E  2 0 - 1 3 A hole in a cavity
approximates an ideal blackbody. Radiation
entering the cavity has little chance of leaving
the cavity before it is completely absorbed.
The radiation emitted through the hole (not
shown) is therefore characteristic of the
temperature of the walls of the cavity.
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of the hole before the walls of the cavity absorb it. Thus, the radia-
tion that is emitted out of the hole is characteristic of the tempera-
ture of the walls of the cavity.

The radiation emitted by an object at temperatures below
approximately is not visible to the naked eye. Radiation of
objects at room temperature is concentrated at wavelengths much
longer than those of visible light. As an object is heated, the rate
of energy emission increases, and the energy radiated extends to
higher frequencies (and shorter wavelengths). Between about 600
and enough of the radiated energy is in the visible spec-
trum for the object to glow a dull red. At higher temperatures, it
may become bright red or even “white hot.” Figure 20-14 shows
the power radiated by a blackbody as a function of wavelength 
for three different temperatures. The wavelength at which the
power is a maximum varies inversely with the temperature, a
result known as Wien’s displacement law:

20-21

WIEN’S DISPLACEMENT LAW

This law is used to determine the surface temperatures of stars by
analyzing their radiation. It can also be used to map out the varia-
tion in temperature over different regions of the surface of an ob-
ject. Such a map is called a thermograph. Thermographs can be used to detect can-
cer because cancerous tissue results in increased circulation, which produces a
slight increase in skin temperature.

The spectral-distribution curves shown in Figure 20-14 played an important
role in the history of physics. It was the discrepancy between theoretical calcu-
lations (using classic thermodynamics) that were used to generate blackbody
spectral distributions and the actual experimental measurements of spectral
distributions that led to Max Planck’s first ideas about the quantization of
energy in 1900.

lmax �
2.898 mm # K

T

700°C,

600°C

P

T3 = 1450 K

T2 = 1200 K

T1 = 1000 K

λmax

λ1 max

λ2 max

λ3 max

Wein's
displacement
law

1.00.0 2.0 3.0 4.0 5.0 λ, μ

r

m

F I G U R E  2 0 - 1 4 Radiated power versus wavelength for
radiation emitted by a blackbody. The temperature of the
emitting surface labels each plot on the graph. The wavelength

at which the maximum power is emitted varies inversely
with the absolute temperature of the surface of the blackbody.T
lmax

Example 20-9 Radiation from the Sun

(a) The radiation emitted by the surface of the Sun emits maximum power at a wavelength
of about 500 nm. Assuming the Sun to be a blackbody emitter, what is its surface tempera-
ture? (b) Calculate for a blackbody at room temperature, 

PICTURE The surface temperature and the wavelength at maximum emitted power are
related by (Equation 20-21).lmax � 2.898 mm # K>T

T � 300 K.lmax

SOLVE

(a) We can find given and using Wien’s displacement law:lmaxT,

5800 K�T �
2.898 mm # K
lmax

�
2.898 mm # K

500 nm

lmax �
2.898 mm # K

T
     so

(b) We can find from Wien’s displacement law for T � 300 K:lmax 9.66 mm�lmax �
2.898 mm # K

300 K
� 9.66 � 10�6 m

CHECK The Part-(b) result for is 19 times greater than 500 nm (the value of for the
Sun), and the Part-(a) result of 5800 K for the surface temperature of the Sun is 19 times greater
than 300 K, the surface temperature of the object in Part (b). Wien’s law is that is inversely
proportional to the temperature of the emitter, so the calculated results are as expected.

lmax

lmaxlmax

A thermograph was used to detect this
cancerous tumor. (Science Photo Library/
Photo Researchers, Inc.)
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TAKING IT FURTHER The peak wavelength from the Sun is in the visible spectrum. The
blackbody radiation spectrum describes the Sun’s radiation spectrum fairly well, so the Sun
is indeed a good example of a blackbody.

Try It Yourself

For the spectrum peaks in the infrared at wavelengths much longer
than the wavelengths visible to the eye. Surfaces that are not black to our eyes may
act as blackbodies for infrared radiation and absorption. For example, it has been
found experimentally that the skins of all human beings absorb all infrared radia-
tion; hence, the emissivity of skin is 1.00 for this radiation process.

T � 300 K,

Example 20-10 Radiation from the Human Body

Calculate the net rate of heat loss in radiated energy for a naked person in a room at 
assuming the person to be a blackbody with a surface area of and a surface tempera-
ture of (The surface temperature of the human body is slightly less than the
internal temperature of because of the thermal resistance of the skin.)

PICTURE Use with and to determine
the difference between the emitted and absorbed power.

T0 � 293 K,e � 1, T � 306 K,Pnet � esA1T4 � T4
02,

37°C
33°C (� 306 K).

1.4 m2
20°C,

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answer

Use with and T0 � 293 K.e � 1, T � 306 K,Pnet � esA(T4 � T4
0), 0.11 kWPnet � 111 W �

CHECK A rate of 0.11 kW is equal to This is the correct order of magnitude.

TAKING IT FURTHER This large energy loss is approximately equal to the basal metabolic
rate of about 120 W. We protect ourselves from this great loss of energy by wearing clothing,
which, because of its low thermal conductivity, has a much lower outside temperature and
therefore a much lower rate of thermal radiation.

2300 kcal>day.

When the temperature of an object is not too different from the surrounding
temperature a radiating object obeys Newton’s law of cooling. We can see this
by writing Equation 20-20 as

When is small, we can replace by in the two sums with little change in
the result. Then

The net power radiated is approximately proportional to the temperature
difference, in agreement with Newton’s law of cooling. This result can also be
obtained by using the differential approximation:

where For a small temperature difference we have

¢Pr � esA 4T3 `
T�T0

(T � T0) � 4esAT3
0 ¢T

T � T0 ,Pr � esA1T4 � T4
02.

¢Pr �
dPr

dT
`
T�T0

1T � T02

Pnet � esA1T2
0 � T2

021T0 � T021T � T02 � 4esAT3
0 ¢T

T0TT � T0

� esA1T2 � T2
021T � T021T � T02Pnet � esA1T4 � T4
02 � esA1T2 � T2

021T2 � T2
02

T0 ,
T



Physics Spotlight

Urban Heat Islands:
Hot Nights in the City

In 1820, Luke Howard published records that listed sev-
eral years of temperatures from London and its suburbs
for days and nights. His records showed that London was
warmer than the surrounding suburban and rural areas,
and that this difference was most pronounced at night-
time. He found that London was an average of 
warmer at night than the surrounding rural area.* In 2004,
observations showed that in the summertime Phoenix
could be up to warmer at night than its surrounding
area.† London and Phoenix are urban heat islands (UHIs).
In general, cities with paved streets and many buildings
are warmer than the surrounding countryside.

One important factor in the formation of UHIs is the
lack of trees and other plants. During the day, plants cool
the area around them because of all the water they re-
lease, which has a high latent heat. In rural areas, and
even in green areas within cities, much of the energy is
used to overcome the latent heat of water, rather than in increasing the surface temperature.‡ In addition, plants reflect back
much of the infrared (heat) wavelengths from solar radiation, while asphalt, steel, glass, concrete, and aluminum absorb and
retain these infrared wavelengths. Another factor is the geometry of a city. Urban canyons, formed by tall buildings on either
side of the streets, reflect infrared wavelengths to other absorbent surfaces.# Open areas allow radiation of the heat away from
the ground and nearby structures.

In addition to radiated heat, rainwater runoff in urban areas can be heated by conduction. In August of 2001, a rainstorm
in Cedar Rapids, Iowa, increased the temperature of a stream by in one hour, which killed many fish.° The falling rain
itself was cooler than the stream, but most of the water entering the stream in that first hour ran over hot pavement. Similar
sudden temperature increases have been noted in urban streams in Minnesota, Wisconsin, Oregon,§ and California.¶

In 1996, in order to support the Olympics, an unprecedented weather measurement effort took place near Atlanta,
Georgia.** One interesting revelation from this effort was that the area directly downwind of the city got more precipitation,
as UHI-related convection changed weather patterns.†† It also has been found that Dallas, San Antonio,‡‡ and even Saint
Louis## have more precipitation directly downwind, for up to 64 km from the city center. Convection changes caused by UHIs
are complex, but the precipitation effects are measurable.

Urban planners are implementing ways to cool UHIs.°° In Chicago, city hall now has a “green roof” with plants and re-
flective walkways. The temperature of the rooftop is monitored and compared to the nearby dark asphalt roof of the Cook
County building. The temperature of the planted roof can be over cooler than the asphalt roof.§§ Several cities encour-
age the planting of trees,¶¶ and others encourage the use of reflective surfaces,*** permeable pavement, and the use of green
roofs.††† Urban heat islands are being mediated by cool technologies.

* Howard, Luke, The Climate of London, Deduced from Meteorological Observations Made in the Metropolis and Various Places around It, 2nd ed. London: Harvey and Darton, 1833.
† Fast, J. D, Torcolini, J. C., and Redman, R., “Pseudovertical Temperature Profiles and the Urban Heat Island Measured by a Temperature Dataloger Network in Phoenix, Arizona,”

Journal of Applied Meteorology, Jan. 2005, Vol. 44, No. 1, 3–13.
‡ Souch, C., and Grimmond, S., “Applied Climatology: Urban Climate,” Progress in Physical Geography, Feb. 2006, Vol. 30, No. 2, 270–279.
# Kusaka, H., and Kimura, F., “Thermal Effects of Urban Canyon Structure on the Nocturnal Heat Island: Numerical Experiment Using a Mesoscale Model Coupled with an Urban

Canopy Model,” Journal of Applied Meteorology, Dec. 2004, Vol. 43, No. 12, 1899–1910.
° Boshart, R., “Urban Trout Stream Still in Works—DNR Targeting McLoud Run in C. R., Despite Recent Fish Kill,” The Gazette, Aug. 9, 2001, 
§ Frazer, Lance, “Paving Paradise: The Perils of Impervious Surfaces,” Environmental Health Perspective, Jul. 2005, Vol. 113, No. 7, 456–462.
¶ Fowler, B., and Rasmus, J., “Seaside Solution,” Civil Engineering, Dec. 2005, 44–49.
** Skindrud, Erik, “Georgia on Their Minds,” Science News, Jul. 13, 1996. http://www.sciencenews.org/pages/sn_arch/7_13_96/bob1.htm
†† Dixon, P. G., and Mote, T. L., “Patterns and Causes of Atlanta’s Urban Heat Island-Initiated Precipitation,” Journal of Applied Meteorology, Sept. 2003, Vol. 42, No. 9, 1273–1284.
‡‡ Shepard, J., Pierce, H., and Negri, A., “Rainfall Modification by Major Urban Areas: Observations from Spaceborne Rain Radar on the TRMM Satellite,” Journal of Applied Meteorology,

Jul. 2002, Vol. 41, No. 7, 689–701.
## “Urban-related Weather Anomalies,” Science News, Mar. 5, 1977, Vol. 111, No. 10, 152.
°° Wade, B., “Putting the Freeze on Heat Islands,” American City & County, Feb. 2000, 30–40.
§§ “Monitoring the Rooftop Garden’s Benefits,” City of Chicago Department of Environment. http://chicagorooftops.notlong.com
¶¶ Duncan, H., “Trees, Please: More Cities Enacting Tree Ordinances, but Enforcement Is the Age-Old Problem,” Macon Telegraph, July 6, 2006, A1.
*** “NASA Assesses Strategies to ‘Turn Off the Heat’ in New York City,” Engineered Systems, April 2006, 79–80.
††† Hoffman, L., “Green Roof Storm Water Modeling,” BioCycle, Feb. 2006, 38–40.

B1�.

33°C

10.5°C

10°C

2.1°C

The sides of the buildings facing away from the Sun appear dark blue or
black in this thermogram of Atlanta, Georgia. This is because these sides are
cooler than the sides receiving direct sunlight. Particularly hot temperatures
appear white. (NASA/Goddard Space Flight Center Scientific Visualization Studio.)
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Thermal Expansion

Coefficient of linear expansion 20-2

Coefficient of volume expansion 20-4, 20-5

2. The van der Waals Equation of State The van der Waals equation of state describes the behavior of real gases over a wide range
of temperatures and pressures, taking into account the space occupied by the gas molecules
themselves and the attraction of the molecules to one another.

20-6

3. Vapor Pressure Vapor pressure is the pressure at which the liquid and gas phases of a substance are in equi-
librium at a given temperature. The liquid boils at that temperature for which the external
pressure equals the vapor pressure.

4. The Triple Point The triple point is the unique temperature and pressure at which the gas, liquid, and solid
phases of a substance can coexist in equilibrium. At temperatures and pressures below the
triple point, the liquid phase of a substance cannot exist.

5. Heat Transfer The three mechanisms by which energy is transferred due to a difference in temperature are
radiation, conduction, and convection.

Newton’s law of cooling For all mechanisms of heat transfer, if the temperature difference between the object and its
surroundings is small, the rate of cooling of the object is approximately proportional to the
temperature difference.

6. Heat Conduction

Current The rate of conduction of heat is given by

20-7

where is the thermal current, is the coefficient of thermal conductivity, and is the
temperature gradient.

Thermal resistance 20-9

where is the temperature decrease in the direction of the thermal current and is the
thermal resistance:

20-10

Equivalent resistance:

series 20-12

parallel 20-14

factor The factor is the thermal resistance in units of for a square foot of a slab
of material

20-15

7. Thermal Radiation

Rate of radiated power 20-17

where is Stefan’s constant and is the emissivity, which varies
between 0 and 1 (depending on the composition of the surface of the object). Materials that
are good heat absorbers are also good heat radiators.

es � 5.6703 � 10�8 W>m2 # K4

Pr � es AT4

Rf � RnetA �
ƒ¢x ƒ
k

in # ft2 # °F>(Btu>h)RR

1
Req

�
1
R1

�
1
R2

� Á

Req � R1 � R2 � Á

R �
ƒ¢x ƒ
kA

R¢T

¢T � IR

dT>dxkI

I �
dQ
dt

� �kA
dT
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b �
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¢T
� 3a
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TOPIC RELEVANT EQUATIONS AND REMARKS

Net power radiated by an object 20-20
at to its environment at 

Blackbody A blackbody has an emissivity of 1. It is a perfect radiator, and it absorbs all radiation inci-
dent upon it.

Wien’s law The power spectrum of electromagnetic energy radiated by a blackbody has a maximum at
a wavelength which varies inversely with the absolute temperature of the body:

20-21lmax �
2.898 mm # K

T

lmax ,

T0T

Pnet � es A(T4 � T4
0)

Answer to Concept Check

20-1 Wood is a poor conductor of heat and metal is a good
conductor of heat. When your finger touches metal, the
metal conducts heat away from your finger faster, and
so the finger is cooled at a faster rate than if you
touched wood.

Answers to Practice Problems

20-1

20-2

20-3 The thermal current is with 2.0 in. of
insulation. Thus, the maximum additional savings is

which would save spending an additional
$146 per month during the heating season.
6200 Btu>h,

6200 Btu>h¢x � (1 cm)(429)>(0.026) � 16500 cm � 165 m

0.0563 K>W � 56.3 mK>W

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Why does the mercury level of a thermometer first decrease
slightly when the thermometer is first placed in warm water?

2 • A large sheet of metal has a hole cut in the middle of it.
When the sheet is heated, the area of the hole will (a) not change,
(b) always increase, (c) always decrease, (d) increase if the hole is not
in the exact center of the sheet, (e) decrease only if the hole is in the
exact center of the sheet.

3 • Why is it a bad idea to place a tightly sealed glass bottle
that is completely full of water, into your kitchen freezer in order to
make ice?

4 • The windows of your physics laboratory are left open on
a night when the temperature of the outside drops well below
freezing. A steel ruler and a wooden ruler were left on the window
sill, and when you arrive in the morning they are both very cold.
The coefficient of linear expansion of wood is about 
Which ruler should you use to make the most accurate length mea-
surements? Explain your answer.

5 • ENGINEERING APPLICATION Bimetallic strips are used
both for thermostats and electrical circuit breakers. A bimetallic strip

5 � 106 K�1.

SSM

consists of a pair of thin strips of metal that have different coefficients
of linear expansion and are bonded together to form one doubly thick
strip. Suppose a bimetallic strip is constructed out of one steel strip
and one copper strip, and suppose the bimetallic strip is curled in the
shape of a circular arc with the steel strip on the outside. If the tem-
perature of the strip is decreased, will the strip straighten out or curl
more tightly?

6 • Metal A has a coefficient of linear expansion that is 
three times the coefficient of linear expansion of metal B. How do
their coefficients of volume expansion compare? (a) 
(b) (c) (d) (e) You cannot tell from
the data given.

7 • The summit of Mount Rainier is ft above sea level.
Mountaineers say that you cannot hard boil an egg at the summit.
This statement is true because at the summit of Mount Rainier
(a) the air temperature is too low to boil water, (b) the air pressure
is too low for alcohol fuel to burn, (c) the temperature of boiling
water is not hot enough to hard boil the egg, (d) the oxygen content
of the air is too low to support combustion, (e) eggs always break in
climbers’ backpacks.

8 • Which gases in Table 20-3 cannot be condensed by
applying pressure at Explain your answer.20°C?

14410

bA � 9bB ,bA � 6bB ,bA � 3bB ,
bA � bB ,b
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9 •• The phase diagram in Figure 20-15 can be interpreted to
yield information on how the boiling and melting points of water
change with altitude. (a) Explain how this information can be
obtained. (b) How might this information affect cooking procedures
in the mountains? SSM

ESTIMATION AND APPROXIMATION

17 •• You are using a cooking pot to boil water for a pasta dish.
The recipe calls for at least 4.0 L of water to be used. You fill the pot
with 4.0 L of room temperature water and note that this amount of
water filled the pot to the brim. Knowing some physics, you are
counting on the volume expansion of the steel pot to keep all of
the water in the pot while the water is heated to a boil. Is your
assumption correct? Explain. If your assumption is not correct,
how much water runs over the sides of the pot due to the thermal
expansion of the water?

18 •• Liquid helium is stored in containers fitted with 7.00-cm-
thick “superinsulation,” consisting of numerous layers of very thin
aluminized Mylar sheets. The rate of evaporation of liquid helium
in a 200-L container is about 0.700 L per day when the container is
stored at room temperature The density of liquid helium is

and the latent heat of vaporization is 
Estimate the thermal conductivity of the superinsulation.

19 •• BIOLOGICAL APPLICATION Estimate the thermal conduc-
tivity of human skin.

20 •• You are visiting Finland with a college friend and have
met some Finnish friends. They talk you into taking part in a
traditional Finnish after-sauna exercise, which consists of leaving
the sauna, wearing only a bathing suit, and running out into the
midwinter Finnish air. Estimate the rate at which you initially lose
energy to the cold air. Compare this rate of initial energy loss to the
resting metabolic rate of a typical human under normal tempera-
ture conditions. Explain the difference.

21 •• Estimate the rate of heat conduction through a 2.0-in-
thick wooden door during a cold winter day in Minnesota. Include
the brass doorknob. What is the ratio of the heat that escapes
through the doorknob to the heat that escapes through the whole
door? What is the total overall R-factor for the door, including the
knob? The thermal conductivity of brass is 

22 •• Estimate the effective emissivity of Earth, given the fol-
lowing information. The solar constant, which is the intensity of
radiation incident on Earth from the Sun, is about 
Seventy percent of this energy is absorbed by Earth, and Earth’s
average surface temperature is 288 K. (Assume that the effective
area that is absorbing the light is where is Earth’s radius,
while the blackbody-emission area is )

23 •• Black holes are highly condensed remnants of stars.
Some black holes, together with a normal star, form binary systems.
In such systems the black hole and the normal star orbit about the
center of mass of the system. One way black holes can be detected
from Earth is by observing the frictional heating of the atmospheric
gases from the normal star that fall into the black hole. These gases
can reach temperatures greater than Assuming that the
falling gas can be modeled as a blackbody radiator, estimate 
for use in an astronomical detection of a black hole. (This region is
in the X-ray region of the electromagnetic spectrum.)

24 ••• ENGINEERING APPLICATION, CONTEXT-RICH Your cabin
in northern Michigan has walls that consist of pine logs that have
average thicknesses of about 20 cm. You decide to finish the interior
of the cabin to improve the look and to increase the insulation of
the exterior walls. You choose to buy insulation with an R-factor
of 31 to cover the walls. In addition, you cover the insulation with
1.0-in.-thick gypsum wallboard. Assuming heat transfer is only due
to conduction, estimate the ratio of thermal current through the
walls during a cold winter night before the renovation to the ther-
mal current through the walls following the renovation.

lmax

1.0 � 106 K.

4pR2.
RpR2,

1.37 kW>m2.

85 W>(m # K).

SSM

21.0 kJ>kg.0.125 kg>L (20°C).

SSM

B

A

P

O

T

C

F I G U R E  2 0 - 1 5 Problem 9

10 •• Sketch a phase diagram for carbon dioxide using infor-
mation from Section 20-3.

11 •• Explain why the carbon dioxide on Mars is found in the
solid state in the polar regions, even though the atmospheric pres-
sure at the surface of Mars is only about 1 percent of the atmos-
pheric pressure at the surface of Earth.

12 •• Explain why decreasing the temperature of your house at
night in winter can save money on heating costs. Why does the cost
of the fuel consumed to heat the house back to the daytime temper-
ature in the morning not equal the savings realized by cooling it
down in the evening and keeping it cool throughout the night?

13 •• Two solid cylinders made of materials A and B have
the same lengths; their diameters are related by When
the same temperature difference is maintained between the ends
of the cylinders, they conduct heat at the same rate. Their thermal
conductivities are therefore related by which of the following
equations? (a) (b) (c) (d)
(e)

14 •• Two solid cylinders made of materials A and B have
the same diameter; their lengths are related by When
the same temperature difference is maintained between the ends
of the cylinders, they conduct heat at the same rate. Their thermal
conductivities are therefore related by which of the following
equations? (a) (b) (c) (d)
(e)

15 •• If you feel the inside of a single-pane window during a
very cold day, it is cold, even though the room temperature can be
quite comfortable. Assuming the room temperature is and
the outside temperature is construct a plot of temperature
versus position, starting from a point 5.0 m behind the window
(inside the room) and ending at a point 5.0 m in front of the window.
Explain the heat transfer mechanisms that occur along this path.

16 •• During the thermal retrofitting of many older homes in
California, it was found that the 3.5-in-deep spaces between the
wallboards and the outer sheathing were filled with just air (no in-
sulation). Filling the spaces with insulating material certainly redu-
ces heating and cooling costs; although, the insulating material is a
better conductor of heat than air is. Explain why adding the insula-
tion is a good idea.

5.0°C,
20.0°C

kA � 4kB

kA � 2kB ,kA � kB ,kA � kB >2,kA � kB >4,

LA � 2LB .

SSMkA � 4kB

kA � 2kB ,kA � kB ,kA � kB >2,kA � kB >4,

dA � 2dB .
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25 ••• CONTEXT-RICH You are in charge of transporting a liver
from New York, New York, to Los Angeles, California, for a trans-
plant surgery. The liver is kept cold in a styrofoam ice chest initially
filled with 1.0 kg of ice. It is crucial that the liver temperature is
never warmer than Assuming the trip from the hospital
in New York to the hospital in Los Angeles takes 7.0 h, estimate the

-value the styrofoam walls of the ice chest must have.

THERMAL EXPANSION

26 •• You have inherited your grandfather’s grandfather clock
that was calibrated when the temperature of the room was 
Assume that the pendulum consists of a thin brass rod of negligible
mass with a compact heavy bob at its end. (a) During a hot day,
when the temperature is does the clock run fast or slow?
Explain. (b) How much time does it gain or lose during this day?

27 •• ENGINEERING APPLICATION You need to fit a copper collar
tightly around a steel shaft that has a diameter of 6.0000 cm at 
The inside diameter of the collar at that temperature is 5.9800 cm.
What temperature must the copper collar have so that it will just slip
on the shaft, assuming the shaft itself remains at 

28 •• ENGINEERING APPLICATION You have a copper collar and
a steel shaft. At the collar has an inside diameter of 5.9800 cm
and the steel shaft has diameter of 6.0000 cm. The copper collar was
heated. When its inside diameter exceeded 6.0000 cm it was slipped
on the shaft. The collar fitted tightly on the shaft after they cooled
to room temperature. Now, several years later, you need to remove
the collar from the shaft. To do this you heat them both until you
can just slip the collar off the shaft. What temperature must the col-
lar have so that the collar will just slip off the shaft?

29 •• A container is filled to the brim with 1.4 L of mercury at
As the temperature of the container and mercury is increased

to a total of 7.5 mL of mercury spill over the brim of the con-
tainer. Determine the linear expansion coefficient of the material
that makes up the container.

30 •• A car with a 60.0-L steel gas tank is filled to the brim with
60.0 L of gasoline when the outside temperature is The coefficient
of volume expansion for gasoline at is . How
much gasoline spills out of the tank when the outside temperature
increases to Take the expansion of the steel tank into account.

31 ••• What is the tensile stress in the copper collar of
Problem 27 when its temperature returns to 

THE VAN DER WAALS EQUATION,
LIQUID–VAPOR ISOTHERMS, 
AND PHASE DIAGRAMS

32 • (a) Calculate the volume of 1.00 mol of an ideal gas at a
temperature of and a pressure of 1.00 atm. (b) Calculate the
temperature at which 1.00 mol of steam at a pressure of 1.00 atm
has the volume calculated in part (a). Use 
and

33 •• Using Figure 20-16, find the following quantities. (a) The
temperature at which water boils on a mountain where the atmos-
pheric pressure is 70.0 kPa, (b) the temperature at which water boils
in a container where the pressure inside the container is 0.500 atm,
and (c) the pressure at which water boils at SSM115°C.

cm3>mol.b � 30.0
a � 0.550 Pa # m6>mol2

100°C

20°C?

25°C?

0.950 � 10�3 K�120°C
10°C.

60°C,
20°C.

20°C,

SSM20°C?

20°C.

30°C,

20°C.

SSMR

5.0°C.

34 •• The van der Waals constants for helium are
and Use these data to

find the volume in cubic centimeters occupied by one helium atom.
Then, estimate the radius of the helium atom.

CONDUCTION

35 • A slab of insulation has an factor of 11. At
what rate is heat conducted through the slab if the temperature on
one side is a constant and the temperature on the other side is
a constant 

36 •• A copper cube and an aluminum cube, each with 
3.00-cm-long edges, are arranged as shown in Figure 20-17. Find
(a) the thermal resistance of each cube, (b) the thermal resistance of
the two-cube combination, (c) the thermal current and (d) the
temperature at the interface of the two cubes.

I,

SSM30°F?
68°F

R20-ft � 30-ft

b � 0.0237 L>mol.a � 0.03412 L2 # atm>mol2

20

40

60

80

100

120

130

0 1
(101 kPa)

2
(203 kPa)

3
(304 kPa)

t , °C

P, atm
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Cu100°C Al 20°C

F I G U R E  2 0 - 1 7 Problem 36

37 •• Two metal cubes, one copper and one aluminum, with 
3.00-cm-long edges, are arranged in parallel, as shown in Figure 20-18.
Find (a) the thermal current in each cube, (b) the total thermal cur-
rent, and (c) the thermal resistance of the two-cube combination.
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38 •• ENGINEERING APPLICATION The cost of air conditioning a
house is approximately proportional to the rate at which heat is ab-
sorbed by the house from its surroundings divided by the coeffi-
cient of performance (COP) of the air conditioner. Let us denote
the temperature difference between the inside temperature and the
outside temperature as Assuming that the rate at which heat is
absorbed by a house is proportional to and that the air condi-
tioner is operating ideally, show that the cost of air conditioning is
proportional to divided by the temperature inside the house.

39 •• A spherical shell of thermal conductivity has inside
radius and outside radius (Figure 20-19). The inside of the shell
is held at a temperature and the outside of the shell is held at
temperature with In this problem, you are to show that
the thermal current through the shell is given by

where is positive if heat is transferred in the direction. Here is
a suggested procedure for obtaining this result: (1) obtain an
expression for the thermal current through a thin spherical shell
of radius and thickness when there is a temperature difference

across the thickness of the shell; (2) explain why the thermal cur-
rent is the same through each such thin shell; (3) express the ther-
mal current through such a shell element in terms of the area

the thickness and the temperature difference 
across the element; and (4) separate variables (solve for in terms
of and ) and integrate.drr

dT
dTdr,A � 4pr2,

I

dT
drr

I

�rI

I � �
4pkr1r2
r2 � r1

(T2 � T1)

T1 	 T2 .T2 ,
T1 ,
r2r1

k

(¢T)2

¢T
¢T.

Al

100°C

Cu

20°C

F I G U R E  2 0 - 1 8 Problem 37

RADIATION

40 • BIOLOGICAL APPLICATION Calculate (the wave-
length at which the emitted power is maximum) for a human skin.
Assume the human skin is a blackbody emitter with a temperature
of 33°C.

lmax

T
T

rr
1

1
2

2

F I G U R E  2 0 - 1 9 Problem 39

41 • The universe is filled with radiation that is believed to
be left from the Big Bang. If the entire universe is considered
to be a blackbody with a temperature equal to 2.3 K, what is the

(the wavelength at which the power of the radiation is
maximum) of this radiation?

42 • What is the range of temperatures for star surfaces for
which (the wavelength at which the power of the emitted
radiation is maximum) is in the visible range?

43 • The heating wires of a 1.00-kW electric heater are red hot
at a temperature of Assuming that 100 percent of the heat
released is due to radiation and that the wires act as blackbody
emitters, what is the effective area of the radiating surface?
(Assume a room temperature of )

44 •• A blackened, solid copper sphere that has a radius equal
to 4.0 cm hangs in an evacuated enclosure whose walls have a tem-
perature of If the sphere is initially at find the initial rate
at which its temperature changes, assuming that heat is transferred
by radiation only. (Assume the sphere is a blackbody emitter.)

45 •• The surface temperature of the filament of an incandes-
cent lamp is If the electric power input is doubled, what
will the new temperature be? Hint: Show that you can neglect the
temperature of the surroundings.

46 •• Liquid helium is stored at its boiling point (4.2 K) in a
spherical can that is separated by an evacuated region of space from
a surrounding shield that is maintained at the temperature of liquid
nitrogen (77 K). If the can is 30 cm in diameter and is blackened on
the outside so that it acts as a blackbody emitter, how much helium
boils away per hour?

GENERAL PROBLEMS

47 • A steel tape is placed around Earth at the equator when
the temperature is What will the clearance between the tape
and the ground (assumed to be uniform) be if the temperature of
the tape increases to Neglect the expansion of Earth.

48 •• Show that change in the density of an isotropic material
due to an increase in temperature is given by 

49 •• The solar constant is the power received from the Sun
per unit area perpendicular to the Sun’s rays at the mean distance
of Earth from the Sun. Its value at the upper atmosphere of Earth is
about Calculate the effective temperature of the Sun if
it radiates like a blackbody. (The radius of the Sun is )

50 •• ENGINEERING APPLICATION As part of your summer job
as an engineering intern at an insulation manufacturer, you are
asked to determine the -factor of insulating material. This partic-
ular material comes in sheets. Using this material, you con-
struct a hollow cube that has 12-in-long edges. You place a ther-
mometer and a 100-W heater inside the box. After thermal equi-
librium has been attained, the temperature inside the box is 

when the temperature outside the box is Determine the
-factor of the material.R

20°C.90°C

1
2-in
R

SSM

6.96 � 108 m.
1.37 kW>m2.

¢r � �br ¢T.¢T
r

30°C?

0°C.

1300°C.

0°C,20°C.

20°C.

900°C.

lmax

SSM

lmax
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53 •• On average, the temperature of Earth’s crust increases
for every increase in depth of 30 m. The average thermal

conductivity of Earth’s crust material is What is
the heat loss of Earth per second due to conduction from the
core? How does this heat loss compare with the average power
received from the Sun?

54 •• A copper-bottomed saucepan containing 0.800 L of
boiling water boils dry in 10.0 min. Assuming that all the heat is
transferred through the flat copper bottom, which has a diame-
ter of 15.0 cm and a thickness of 3.00 mm, calculate the temper-
ature of the outside of the copper bottom while some water is
still in the pan.

55 •• ENGINEERING APPLICATION A cylindrical steel hot-water
tank of cylindrical shape has an inside diameter of 0.550 m and inside
height of 1.20 m. The tank is enclosed by a 5.00-cm-thick insulating
layer of glass wool whose thermal conductivity is 
The insulation is covered by a thin sheet-metal skin. The steel tank
and the sheet-metal skin have thermal conductivities that are much
greater than that of the glass wool. How much electrical power must
be supplied to this tank in order to maintain the water temperature
at when the external temperature is 1.0°C?75.0°C

0.0350 W>(m # K).

SSM

0.74 J>(m # s # K).
1.0°C

51 • (a) From the definition of the coefficient of volume ex-
pansion (at constant pressure), show that for an ideal gas.
(b) The experimentally determined value of for gas at is

By what percent does this measured value of differ
from the value obtained by modeling as an ideal gas?

52 •• A rod of length , made from material A, is placed next
to a rod of length , made from material B. The rods remain in
thermal equilibrium with each other. (a) Show that even though the
lengths of each rod will change with changes in the ambient tem-
perature, the difference between the two lengths will remain con-
stant if the lengths and are chosen such that 
where and are the coefficients of linear expansion, respec-
tively. (b) If material B is steel, material A is brass, and 
at what is the value of LB?0°C,

LA � 250 cm
aBaA

LA>LB � aB>aA,LBLA

LB

LA

N2

b0.003673 K�1.
0°CN2b

b � 1>Tb, 56 •• The diameter of a tapered rod of length is given by
where is a constant and is the distance from one

end. If the thermal conductivity of the material is what is the ther-
mal resistance of the rod?

57 ••• A solid disk of radius and mass is spinning about a
frictionless axis through its center and perpendicular to the disk,
with angular velocity at temperature The temperature of the
disk decreases to Express the angular velocity rotational
kinetic energy and angular momentum in terms of their
values at the temperature and the linear expansion coefficient 
of the disk.

58 ••• SPREADSHEET Write a spreadsheet program to graph
the average temperature of the surface of Earth as a function of
emissivity, using the results of Problem 22. How much does the
emissivity have to change in order for the average temperature to
increase by 1 K? This result can be thought of as a model for the
effect of increasing concentrations of greenhouse gases such as
methane and in Earth’s atmosphere.

59 ••• A small pond has a layer of ice 1.00 cm thick floating on
its surface. (a) If the air temperature is on a day when there
is a breeze, find the rate in centimeters per hour at which ice is
added to the bottom of the layer. The density of ice is 
(b) How long do you and your friends have to wait for a 20.0-cm
layer to be built up so you can play hockey?

60 ••• A blackened copper cube that has 1.00-cm-long edges is
heated to a temperature of and then is placed in a vacuum
chamber whose walls are at a temperature of In the vacuum
chamber, the cube cools radiatively. (a) Show that the (absolute)
temperature of the cube follows the differential equation:

where is the heat capacity of the
cube, is its surface area, the emissivity, and the temperature
of the vacuum chamber. (b) Using Euler’s method (Section 5.4 of
Chapter 5), numerically solve the differential equation to find 
and graph it. Assume How long does it take the cube to
cool to a temperature of SSM15°C?

e � 1.00.
T1t2,T0eA

C(dT>dt) � �(es A>C)(T4 � T4
0),

T

0°C.
300°C,

SSM

0.917 g>cm3.

�10°C

CO2

aT1

L2K2 ,
v2 ,T2 .

T1 .v1

mr

k,
xad � d0(1 � ax),

Ld
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W
hile just a century ago we had nothing more than a few electric lights,
we are now extremely dependent on electricity in our daily lives. Yet, al-
though the use of electricity has only recently become widespread, the
study of electricity has a history reaching long before the first electric
lamp glowed. Observations of electrical attraction can be traced back to
the ancient Greeks, who noticed that after amber was rubbed, it at-

tracted small objects such as straw or feathers. Indeed, the word electric comes from
the Greek word for amber, elektron.

C H A P T E R

693

P A R T  I V ELECTRICITY
AND MAGNETISM

COPPER IS A CONDUCTOR, A MATERIAL
THAT HAS SPECIFIC PROPERTIES
WE FIND USEFUL BECAUSE THESE
PROPERTIES MAKE IT POSSIBLE
TOTRANSPORT ELECTRICITY.
(Brooks R. Dillard/www.yuprocks.com.)

21
What is the total charge of all the

electrons in a penny? 

(See Example 21-1.)
?

www.yuprocks.com
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Today, the study and use of electricity continue. Electrical engineers improve ex-
isting electrical technologies, increasing performance and efficiency in devices
such as hybrid cars and electric power plants. Electrostatic paints are used in the
auto industry for engine parts and for car frames and bodies. This painting process
creates a more durable coat than does liquid paint, and is easier on the environ-
ment because no solvents are used.

In this chapter, we begin our study of electricity with electrostatics, the study
of charges at rest. After introducing the concept of charge, we briefly look at
conductors and insulators and how conductors can be given a net charge.
We then study Coulomb’s law, which describes the force exerted by one
charge on another. Next, we introduce the electric field and show how it can
be visualized by electric field lines that indicate the magnitude and direction
of the field, just as we visualized the velocity field of a flowing fluid using
streamlines (Chapter 13). Finally, we discuss the behavior of point charges
and dipoles in electric fields.

21-1 CHARGE

Suppose we rub a hard-rubber rod with fur and then suspend the rod from
a string so that it is free to rotate. Now we bring a second hard-rubber rod
that has been rubbed with fur near it. The rods repel each other (Figure
21-1a). Two glass rods that have been rubbed with silk (Figure 21-1b) also
repel each other. But, when we place a hard-rubber rod rubbed with fur
near a glass rod rubbed with silk (Figure 21-1c) they attract each other.

Rubbing a rod causes the rod to become electrically charged. If we repeat
the experiment with various materials, we find that all charged objects fall
into one of just two groups—those like the hard-rubber rod rubbed with fur
and those like the glass rod rubbed with silk. Objects from the same group
repel each other, while objects from
different groups attract each other.
Benjamin Franklin explained this by
proposing a model in which every object
has a normal amount of electricity that
can be transferred from one object to the
other when two objects are in close con-
tact, as when they are rubbed together.
One object would have an excess charge
and the other object would have a defi-
ciency of charge, and the excess charge
equals the deficiency of charge. Franklin
described the resulting charges as posi-
tive (plus sign) or negative (minus sign).
He also chose positive to be the charge
acquired by a glass rod when it is rubbed
with a piece of silk. The piece of silk then
acquires a negative charge of equal mag-
nitude during the procedure. Based on
Franklin’s convention, if hard rubber
and fur are rubbed together, the hard
rubber acquires a negative charge and
the fur acquires a positive charge.
Two objects that have the same sign

repel each other,
and two objects that have oppositely
(both � or both �)

A cat and a balloon. (Roger Ressmeyer/CORBIS.)

–––– ––
––––––– ++++++

++++ ++ +

++++++
–––––––

hard rubber

hard rubber

hard rubber

glass

glass

glass

(c)

(a) (b)

F I G U R E  2 1 - 1 (a) Two hard-rubber
rods that have been rubbed with fur repel
each other. (b) Two glass rods that have
been rubbed with silk repel each other. 
(c) A hard-rubber rod that has been rubbed
with fur attracts a glass rod that has been
rubbed with silk.
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* In the standard model of elementary particles, protons, neutrons, and some other elementary particles are made up of
more fundamental particles called quarks that have charges of or Only combinations that result in a net
charge of , where is an integer, are observed.

† The ampere (A) is the unit of current used in everyday electrical work.

N�Ne
� 2

3 e.� 1
3 e

signed charges attract each other (Figure 21-1). An object that is neither positively
nor negatively charged is said to be electrically neutral.

Today, we know that when glass is rubbed with silk, electrons are transferred
from the glass to the silk. Because the silk is negatively charged (according to
Franklin’s convention, which we still use) electrons are said to have a negative
charge. Table 21-1 is a short version of the triboelectric series. (In Greek tribos
means “a rubbing.”) The farther down the series a material is, the greater its affin-
ity for electrons. If two of the materials are brought in contact, electrons are trans-
ferred from the material higher in the table to the one farther down the table. For
example, if Teflon is rubbed with nylon, electrons are transferred from the nylon to
the Teflon.

CHARGE QUANTIZATION

Matter consists of atoms that are neutral. Each atom has a tiny but massive nucleus
that is composed of protons and neutrons. Protons are positively charged, whereas
neutrons are neutral. The number of protons that an atom of a particular element
has is the atomic number of that element. Surrounding the nucleus is an equal
number of negatively charged electrons, leaving the atom with zero net charge. An
electron is about 2000 times less massive than a proton, yet the charges of these two
particles are exactly equal in magnitude. The charge of the proton is and that of
the electron is where is called the fundamental unit of charge. The charge of
an electron or proton is an intrinsic property of the particle, just as mass and spin
are intrinsic properties of these particles.

All observable charges occur in integral amounts of the fundamental unit of
charge that is, charge is quantized. Any observable charge occurring in nature
can be written where is an integer.* For ordinary objects, however, 
is usually very large and charge appears to be continuous, just as air appears to be
continuous even though air consists of many discrete particles (molecules, atoms,
and ions). To give an everyday example of charging a plastic rod by rubbing it
with a piece of fur typically transfers or more electrons to the rod.

CHARGE CONSERVATION

When objects are rubbed together, one object is left with an excess of electrons and
is therefore negatively charged; the other object is left with a deficit of electrons
and is therefore positively charged. The net charge of the two objects remains con-
stant; that is, charge is conserved. The law of conservation of charge is a fundamen-
tal law of nature. In certain interactions among elementary particles, charged par-
ticles such as electrons are created or annihilated. However, during these
processes, equal amounts of positive and negative charge are produced or de-
stroyed, so the net charge of the universe is unchanged.

The SI unit of charge is the coulomb, which is defined in terms of the unit of
electric current, the ampere (A).† The coulomb (C) is the amount of charge flowing
through a cross section of wire in one second when the current in the wire is one
ampere. (The cross section of a solid object is the intersection of the object and a
plane. Here we consider a plane that cuts across the wire.) The fundamental unit
of electric charge is related to the coulomb by

21-1

FUNDAMENTAL UNIT OF CHARGE

e � 1.602177 � 10�19 C � 1.60 � 10�19 C

e

1010
N,

NNQ � �Ne,
Qe;

e�e,
e

Z

Table 21-1 The Triboelectric 

Series

� Positive End of Series

Asbestos

Glass

Nylon

Wool

Lead

Silk

Aluminum

Paper

Cotton

Steel

Hard rubber

Nickel and copper

Brass and silver

Synthetic rubber

Orlon

Saran

Polyethylene

Teflon

Silicone rubber

� Negative End of Series  
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Charging by contact. A piece of plastic about
0.02 mm wide was charged by contact with a piece
of nickel. Although the plastic carries a net positive
charge, regions of negative charge (dark blue) as well
as regions of positive charge (yellow) are indicated.
The photograph was taken by sweeping a charged
needle of width over the sample and
recording the electrostatic force on the needle.
(Bruce Terris/IBM Almaden Research Center.)

10�7 m

* The penny was composed of 100 percent copper from 1793 to 1837. In 1982, the composition changed from 95 percent
copper and 5 percent zinc to 2.5 percent copper and 97.5 percent zinc.

Example 21-1 How Many in a Penny?

A copper penny* has a mass of 3.10 grams. What is the total charge of all the elec-
trons in the penny?

PICTURE The electrons have a total charge given by the number of electrons in the penny,
multiplied by the charge of an electron, The number of electrons in a copper atom is

29 (the atomic number of copper). So, the total charge of the electrons is 29 electrons multi-
plied by the number of copper atoms in a penny. To find we use the fact that one mole
of any substance has Avogadro’s number of particles (molecules, atoms,
or ions), and the number of grams in one mole of copper is the molar mass which is

for copper.

SOLVE

63.5 g>mol
M,

(NA � 6.02 � 1023)
Nat ,Nat

�e.Ne ,

(Z � 29)

PRACTICE PROBLEM 21-1

A charge of magnitude can be produced in the laboratory by
simply rubbing two objects together. How many electrons must be transferred to produce
this charge?

50 nC (1.0 nC � 10�9 C)

1. The total charge is the number of electrons multiplied by
the charge:

Q Q � Ne(�e)

2. The number of electrons is multiplied by the number of
copper atoms Nat:

Z Ne � ZNat

3. Compute the number of copper atoms in 3.10 g of copper: � 2.94 � 1022 atomsNat � (3.10 g)
6.02 � 1023 atoms>mol

63.5 g>mol

4. Compute the number of electrons Ne:
� 8.53 � 1023 electrons

Ne � ZNat � (29 electrons>atom)(2.94 � 1022 atoms)

5. Use this value of to find the total charge:Ne

�1.37 � 105 C�

� (8.53 � 1023 electrons)(�1.60 � 10�19 C>electron)Q � Ne � (�e)

CHECK There are electrons in 63.5 g of copper, so in 3.10 g of copper there
are electrons—in agreement with our step-4
result.

PRACTICE PROBLEM 21-2 If one million electrons were given to each person in the United
States (about 300 million people), what percentage of the number of electrons in a penny
would this represent?

(3.10>63.5) � 29 � (6.02 � 1023) � 8.53 � 1023
29 � (6.02 � 1023)
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21-2 CONDUCTORS AND INSULATORS

In many materials, such as copper and other metals, some of the electrons are free
to move about the entire material. Such materials are called conductors. In other
materials, such as wood or glass, all the electrons are bound to nearby atoms and
none can move freely. These materials are called insulators.

In a single atom of copper, 29 electrons are bound to the nucleus by the elec-
trostatic attraction between the negatively charged electrons and the positively
charged nucleus. The outer (valence) electrons are more weakly bound to a nu-
cleus than the inner (core) electrons. When a large number of copper atoms are
combined in a piece of metallic copper, the strength of the attractions of electrons
to a nucleus of an atom is reduced by their interactions with the electrons and nu-
clei of neighboring atoms. One or more of the valence electrons in each atom is no
longer bound to the atom but is free to move about the whole piece of metal,
much as an air molecule is free to move about in a room. The number of these free
electrons depends on the particular metal, but it is typically about one per atom.
(The free electrons are also referred to as conduction electrons or delocalized elec-
trons.) An atom that has an electron removed or added, resulting in a net charge
on the atom, is called an ion. In metallic copper, the copper ions are arranged in
a regular array called a lattice. A conductor is neutral if for each lattice ion hav-
ing a positive charge there is a free electron having a negative charge 
The net charge of the conductor can be changed by adding or removing electrons.
A conductor that has a negative net charge
has a surplus of free electrons, while a con-
ductor that has a positive net charge has a
deficit of free electrons.

CHARGING BY INDUCTION

The conservation of charge is illustrated by a
simple method of charging a conductor called
charging by induction, as shown in Figure
21-3. Two uncharged metal spheres touch each
other. When a positively charged rod (Figure
21-3a) is brought near one of the spheres, con-
duction electrons flow from one sphere to the
other, toward the positively charged rod. The
positively charged rod in Figure 21-3a attracts
the negatively charged electrons, and the
sphere nearest the rod acquires electrons from
the sphere farther away. This leaves the near

�e.�e

–
–

–

–
––

–

F I G U R E  2 1 - 2 An electroscope. Two gold leaves are attached to
a conducting post that has a conducting ball on top. The ball, post,
and leaves are insulated from the container. When uncharged, the
leaves hang together vertically. When the ball is touched by a
negatively charged plastic rod, some of the negative charge from the
rod is transferred to the ball and moves to the gold leaves, which
then spread apart because of electrical repulsion between their
negative charges. (Touching the ball with a positively charged glass
rod would also cause the leaves to spread apart. In this case, the
positively charged glass rod would remove electrons from the metal
ball, leaving a net positive charge on the ball, rod, and leaves.)

+++++
+++

+
–––––

–––
–

+
+

+
+

+
+

+
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+++

+
–––––

–––
–

+
+

+
+

+
+

+

–
–

– ––
–

–
––

++
+ ++

+

+
++

(c)

(a)

(b)

F I G U R E  2 1 - 3 Charging by induction.
(a) Neutral conductors in contact become
oppositely charged when a charged rod
attracts electrons to the left sphere. (b) If the
spheres are separated before the rod is
removed, they will retain their equal and
opposite charges. (c) When the rod is removed
and the spheres are far apart, the distribution
of charge on each sphere approaches
uniformity.

Two identical conducting spheres,
one that has an initial charge 
and the other is initially unchar-
ged, are brought into contact.
(a) What is the new charge on each
sphere? (b) While the spheres are
in contact, a positively charged
rod is moved close to one sphere,
causing a redistribution of the
charges on the two spheres so the
charge on the sphere closest to
the rod has a charge of What
is the charge on the other sphere?

�Q.

�Q

CONCEPT CHECK 21-1✓
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sphere with a net negative charge and the far sphere with an equal net positive
charge. A conductor that has separated equal and opposite charges is said to be po-
larized. If the spheres are separated before the rod is removed, they will be left
with equal amounts of opposite charges (Figure 21-3b). A similar result would be
obtained with a negatively charged rod, which would drive electrons from the near
sphere to the far sphere.

For many purposes, Earth itself can be modeled as an infinitely large conductor
that has an infinite supply of charged particles. If a conductor is electrically con-
nected to Earth it is said to be grounded. Grounding a metal sphere is indicated
schematically in Figure 21-4b by a connecting wire ending in parallel horizontal
lines. Figure 21-4 demonstrates how we can induce a charge in a single conductor
by transferring charge from Earth through a ground wire and then breaking the
connection to the ground. (In practice, a person standing on the floor and touching
the sphere with his hand provides an adequate ground for electrostatic demon-
strations such the one described here.)  

Two identical conducting spheres
are charged by induction and then
separated by a large distance;
sphere 1 has charge and
sphere 2 has charge A third
identical sphere is initially un-
charged. If sphere 3 is touched to
sphere 1 and separated, then
touched to sphere 2 and sepa-
rated, what is the final charge on
each of the three spheres?  

�Q.
�Q

CONCEPT CHECK 21-2✓

These fashionable ladies are wearing hats with
metal chains that drag along the ground,
which were supposed to protect them from
lightning. (Ann Roman Picture Library.)

+++++
+++

+
–––––

–––
–

+
+

+
+

+
+

+

(a)

Symbol for
ground

–––––

–––
–

+
+

+
+

+
+

+

–––––

–––
–

+
+

+
+

+
+

+

–
–

– ––
–

–
––

(b) (c) (d)

F I G U R E  2 1 - 4 Induction via grounding. (a) The free charge
on the single neutral conducting sphere is polarized by the
positively charged rod, which attracts negative charges on the
sphere. (b) When the conductor is grounded by connecting it
with a wire to a very large conductor, such as Earth, electrons

The lightning rod on this building is
grounded so that it can conduct electrons
from the ground to the positively
charged clouds, thus neutralizing them.
(© Grant Heilman.)

from the ground neutralize the positive charge on the far face. The
conductor is then negatively charged. (c) The negative charge
remains if the connection to the ground is broken before the rod is
removed. (d) After the rod is removed, the sphere has a uniform
negative charge.
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* Coulomb’s experimental apparatus was essentially the same as that described for the Cavendish experiment in
Chapter 11, with the masses replaced by small charged spheres. For the magnitudes of charges easily transferred by
rubbing, the gravitational attraction of the spheres is completely negligible compared with their electric attraction or
repulsion.

21-3 COULOMB’S LAW

Charles Coulomb (1736–1806) studied the force exerted by one charge on another
using a torsion balance of his own invention.* In Coulomb’s experiment, the
charged spheres were much smaller than the distance between them so that the
charges could be treated as point charges. Coulomb used the method of charging
by induction to produce equally charged spheres and to vary the amount of charge
on the spheres. For example, beginning with charge on each sphere, he could
reduce the charge to by temporarily grounding one sphere to discharge it, dis-
connecting it from ground, and then placing the two spheres in contact. The results
of the experiments of Coulomb and others are summarized in Coulomb’s law:

The force exerted by one point charge on another acts along the line be-
tween the charges. It varies inversely as the square of the distance separat-
ing the charges and is proportional to the product of the charges. The force
is repulsive if the charges have the same sign and attractive if the charges
have opposite signs.

COULOMB’S LAW

1
2 q0

q0

Ground
conectors

Duplex wall
outlet

Grounding
terminal

Grounding
rod

Ground
F I G U R E  2 1 - 5 The two round ground
connectors of a duplex 120-volt wall outlet are
connected to an 8-ft-long metal grounding rod by
a copper wire. The grounding rod is driven into
the ground.

Coulomb’s torsion balance. (Bundy Library,
Norwalk, CT.)



Equation 21-4 gives the correct
direction for the force, whether or

not the two charges are both positive,
both negative, or one positive and one
negative.

!
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F12 =r12

q1 q2

r12
2

r12ˆ

r12ˆ
kq1q2

r12 =

O

q1 q2
r2 – r1

r1
r2

(a)

(b)

F

q2 = −eq1 = +e

q2q1

r

Proton Electron

F I G U R E  2 1 - 7

The magnitude of the electric force exerted by a point charge on another point
charge a distance away is thus given by

21-2

COULOMB’S LAW FOR THE MAGNITUDE OF THE FORCE EXERTED 
BY ON 

where is an experimentally determined positive constant called the Coulomb
constant, which has the value

21-3

If is at position and is at (Figure 21-6), the force exerted by on is

21-4

COULOMB’S LAW (VECTOR FORM)

where is the vector pointing from to and is a unit
vector in the same direction.

In accord with Newton’s third law, the electrostatic force exerted by on 
is the negative of Note the similarity between Coulomb’s law and Newton’s
law of gravity. (See Equation 11-3.) Both are inverse-square laws. But the gravita-
tional force between two particles is proportional to the masses of the particles and
is always attractive, whereas the electric force is proportional to the charges of the
particles and is repulsive if the charges have the same sign and attractive if they
have opposite signs.

F
S

1 2 .
q1q2F

S

21

rn1 2 � rS1 2>r12q2 ,q1rS1 2 � rS2 � rS1

F
S

12 �
kq1q2
r21 2

rn12

q2q1F
S

12rS2q2rS1q1

k � 8.99 � 109 N # m2>C2

k

q2q1

F �
k ƒq1q2 ƒ
r2

rq2

q1

F I G U R E  2 1 - 6 (a) Charge at position 
and charge at relative to the origin O.
(b) The force exerted by on is in the
direction of the vector if both
charges have the same sign, and in the
opposite direction if they have opposite signs.
The unit vector is in the direction
from to q2 .q1

rn12 � rS12>r12

rS12 � rS2 � rS1

q2q1F
S

12

rS2q2

rS1q1

Example 21-2 Electric Force in Hydrogen

In a hydrogen atom, the electron is separated from the proton by an average distance of
about Calculate the magnitude of the electrostatic force of attraction exerted
by the proton on the electron.

PICTURE Assign the proton as and the electron as Use Coulomb’s law to determine
the magnitude of the electrostatic force of attraction exerted by the proton on the electron.

SOLVE

q2 .q1

5.3 � 10�11 m.

1. Sketch the electron and the proton and label the
sketch with the suitable symbols (Figure 21-7):

2. Use the given information and Equation 21-2
(Coulomb’s law) to calculate the electrostatic force:

8.2 � 10�8 N�

�
(8.99 � 109 N # m2>C2)(1.60 � 10�19 C)2

(5.3 � 10�11 m)2F �
k ƒq1q2 ƒ
r2

�
ke2

r2

CHECK The order of magnitude is plausible. The powers of ten in the numerator combined
are the power of ten in the denominator is and 
In comparison, 8.2 � 10�8 � 10�7.

10�29>10�22 � 10�7.10�22,109 � 10�38 � 10�29,
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TAKING IT FURTHER Compared with macroscopic interactions, this is a very small force.
However, because the mass of the electron is only about this force produces an ac-
celeration of The proton is almost 2000 times more massive than the
electron, so the acceleration of the proton is about To put these accelerations
in perspective, the acceleration due to gravity is a mere 

PRACTICE PROBLEM 21-3 Two point charges of each are separated by 10.0 cm.
Find the magnitude of the force exerted by one point charge on the other.

Because the electrical force and the gravitational force between any two parti-
cles both vary inversely with the square of the distance between the particles, the
ratio of these forces is independent of that distance. We can therefore compare the
relative strengths of the electrical and gravitational forces for elementary particles
such as the electron and proton.

0.0500 mC

101 m>s2.g
4 � 1019 m>s2.

F>m � 9 � 1022 m>s2.
10�30 kg,

Example 21-3 Ratio of Electric and Gravitational Forces

Compute the ratio of the electric force to the gravitational force exerted by a proton on an
electron in a hydrogen atom.

PICTURE Use Coulomb’s law and and to find the electric force. Use
Newton’s law of gravity, the mass of the proton, and the mass of the
electron, to find the gravitational force.

SOLVE

me � 9.11 � 10�31 kg,
mp � 1.67 � 10�27 kg,
q2 � �eq1 � e

1. Express the magnitudes of the electric force and the
gravitational force in terms of the charges, masses, separation
distance and electrical and gravitational constants:r,

Fg

Fe Fe �
ke2

r2
Fg �

Gmpme

r2

2. Determine the ratio. Note that the separation distance cancels:r
Fe

Fg

�
ke2

Gmpme

3. Substitute numerical values:

2.27 � 1039�

Fe

Fg

�
(8.99 � 109 N # m2>C2)(1.60 � 10�19 C)2

(6.67 � 10�11 N # m2>kg2)(1.67 � 10�27 kg)(9.11 � 10�31 kg)

CHECK In the numerator of the fraction in step 3, the coulomb units cancel out. In the de-
nominator of the fraction, the kilogram units cancel out. The result is that both numerator
and denominator have units of The fraction has no units, as expected for a ratio of
two forces.

TAKING IT FURTHER The fact that the ratio (step 3) is so large reveals why the effects of
gravity are not considered when discussing atomic or molecular interactions.

Although the gravitational force is incredibly weak compared with the electric
force and plays essentially no role at the atomic level, it is the dominant force be-
tween large objects such as planets and stars. Because large objects contain almost
equal numbers of positive and negative charges, the attractive and repulsive elec-
trical forces cancel. The net force between astronomical objects is therefore essen-
tially the force of gravitational attraction alone.

N # m2.
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4

y, m

x, m
1 32

q1 = +25 nC q0 = +20 nC

q2 = –10 nC

+ – +

F I G U R E  2 1 - 8 a

FORCE EXERTED BY A SYSTEM OF CHARGES

In a system of charges, each charge exerts a force, given by Equation 21-4, on every
other charge. The net force on any charge is the vector sum of the individual forces
exerted on that charge by all the other charges in the system. This result follows
from the principle of superposition of forces.

Example 21-4 Electric Force on a Charge

Three point charges lie on the axis; is at the origin, is at and is at posi-
tion (a) Find the total electric force on due to and if 

and (b) Find an expression for the total electric force
on due to and throughout the region 

PICTURE The total electric force on is the vector sum of the force exerted by 
and the force exerted by The individual forces are found using Coulomb’s law and
the principle of superposition. Note that because both and are in the

direction.

SOLVE

�x
rn20rn10rn10 � rn20 � in

q2 .F
S

20

q1F
S

10q0

2.0 m 	 x 	 .q2q1q0

x � 3.5 m.q2 � �10 nC, q0 � �20 nC,
q1 � �25 nC,q2q1q0x (x 
 2.0 m).
q0x � 2.0 m,q2q1x

(a) 1. Draw a sketch of the system of charges
(Figure 21-8a). Identify the distances 
and on the graph:r20

r10

(b) 1. Draw a sketch of the system of charges.
Label the distances and (Figure 21-8b):r20r10

2. Find the force exerted by on These
charges have the same sign, so they repel.
The force is in the direction:�x

q0 .q1

� (0.37 � 10�6 N)in

�
(8.99 � 109 N # m2>C2)(25 � 10�9 C)(20 � 10�9 C)

(3.5 m)2 inF
S

10 � �F1 0 in � �
k ƒq1q0 ƒ
r210

in

F10 �
k ƒq1q0 ƒ
r210

3. Find the force exerted by on These
charges have opposite signs, so they
attract. The force is in the direction:�x

q0 .q2

� �(0.80 � 10�6 N)in

� �
(8.99 � 109 N # m2>C2)(10 � 10�9 C)(20 � 10�9 C)

(1.5 m)2 inF
S

20 � �F2 0 in � �
k ƒq2q0 ƒ
r220

in

F20 �
k ƒq2q0 ƒ
r220

4. Combine your results to obtain the net force. �(0.43 � 10�6 N)inF
S

net � F
S

10 � F
S

2 0 �

1 2 3

2.0 m

4
x, m

y, m

+ − +

q1 q2

r10 = x

r20 = x − 2.0 m

q0

F I G U R E  2 1 - 8 b

See

Math Tutorial for more

information on 

Trigonometry



4

y, m

x, m
1 32

q1 = +25 nC, q2 = –15 nC

q0 = +20 nC

1

2

3

F10 + F2 0 = Fnet

F10 

F2 0 

+ –

+

F I G U R E  2 1 - 1 0 a

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

2 5 10 15

Fx, mN

x, m

F I G U R E  2 1 - 9
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CHECK In steps 2, 3, and 4 of Part (b) , both forces approach zero as as expected. In
addition, the magnitude of the step-3 result approaches infinity as also as
expected.

TAKING IT FURTHER The charge is located between charges and so you might
think that the presence of will affect the force exerted by on However, this is
not the case. That is, the presence of does not effect the force exerted by on (That
this is so is called the principle of superposition.) Figure 21-9 shows the component of the
force on as a function of the position of throughout the region Near 
the force due to dominates, and because opposite charges attract the force on is in the
direction. For the force is in the direction. This is because for large the dis-
tance between and is negligible so the force due to the two charges is almost the same
as that for a single charge of 

PRACTICE PROBLEM 21-4 If is at find the total electric force acting on 

For the charges in a system to remain stationary, there must be forces, other than
the electric forces the charges exert on each other, acting on the charges so that the
net force on each charge is zero. In the preceding example, and those that follow
throughout the book, we assume that there are such forces so that all the charges
remain stationary.

q0 .x � 1.0 m,q0

�15 nC.
q2q1

x�xxW 2.0 m
�xq2q2

q22.0 m 	 x 	 .q0xq0

x
q0 .q1F

S

10q2

q0 .q1F
S

10q2

q0 ,q1q2

xS 2.0 m,
xS ,

2. Find an expression for the force on due
to q1 .

q0 F
S

10 �
k ƒq1q0 ƒ
x2 in

3. Find an expression for the force on 
due to q2 .

q0 F
S

20 � �
k ƒq2q0 ƒ

(x � 2.0 m)2 in

4. Combine your results to obtain an
expression for the net force.

a k ƒq1q0 ƒ
x2 �

k ƒq2q0 ƒ
(x � 2.0 m)2 b inF

S

net � F
S

10 � F
S

20 �

Example 21-5 Summing Forces in Two Dimensions

Charge is at the origin, charge is on the axis at and
charge is at the point as shown in Figure 21-10. Find the
magnitude and direction of the resultant electric force on 

PICTURE The resultant electric force is the vector sum of the individual forces exerted by
each charge on We compute each force from Coulomb’s law and write it in terms of its
rectangular components.

SOLVE

q0 .

q0 .
x � 2.0 m, y � 2.0 mq0 � �20 nC

x � 2.0 m,xq2 � �15 nCq1 � �25 nC

1. Draw the coordinate axes showing the positions of the three
charges. Show the resultant electric force on charge as
the vector sum of the forces due to and due to 
(Figure 21-10a):

q2F
S

20q1F
S

10

q0F
S
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2. The resultant force on is the sum of the individual
forces:

q0F
S

y

x

Fy = –2.77 *  10–7 N

Fx = 3.97 *  10–7 N

θ

q0

F

+

F I G U R E  2 1 - 1 0 b

so and ©Fy � F10y � F20y©Fx � F10x � F20x

F
S

� F
S

10 � F
S

20

3. The force is directed away from the origin along the
line from to Use for the distance
between and to calculate its magnitude:q0q1

r1 0 � 2.012 mq0 .q1

F
S

10

� 5.62 � 10�7 N

�
(8.99 � 109 N # m2>C2)(25 � 10�9 C)(20 � 10�9 C)

(2.022 m)2
F10 �

k ƒq1q0 ƒ
r210

4. Because makes an angle of with the and axes,
its and components are equal to each other:yx

yx45°F
S

10

� 3.97 � 10�7 N

F10x � F10y � F10 cos 45° � (5.62 � 10�7N) cos 45°

5. The force exerted by on is attractive and in the
direction as shown in Figure 21-10a:�y

q0q2F
S

20

� �(6.74 � 10�7N)jn

� �
(8.99 � 109 N # m2>C2)(15 � 10�9 C)(20 � 10�9 C)

(2.0 m)2 jnF
S

20 � �
k ƒq2q0 ƒ
r220

jn

6. Calculate the components of the resultant force:

Fy � �2.77 � 10�7 N

Fy � F10y � F20y � (3.97 � 10�7 N) � (�6.74 � 10�7 N)

Fx � F10x � F20x � (3.97 � 10�7 N) � 0 � 3.97 � 10�7 N

7. Draw the resultant force (Figure 21-10b) along with its
two components:

8. The magnitude of the resultant force is found from its
components:

4.8 � 10�7 N� 4.84 � 10�7 N �

F � 3F2
x � F2

y �4(3.97 � 10�7 N)2 � (�2.77 � 10�7 N)2

9. The resultant force points to the right and downward as
shown in Figure 21-10b, making an angle with the axis
given by:

xu

�35°u � tan�1 (�0.698) � �34.9° �

tanu �
Fy

Fx
�

�2.77
3.97

� �0.698

CHECK We expect the two forces to be approximately equal in magnitude because even
though is a bit larger than is a bit closer to than is Comparing the results of
steps 3 and 5 shows agreement with this expectation.

PRACTICE PROBLEM 21-5 Express in Example 21-5 in terms of and 

PRACTICE PROBLEM 21-6 In Example 21-5, is the component of the force
equal to (where is the component of )?

21-4 THE ELECTRIC FIELD

The electric force exerted by one charge on another is an example of an action-at-
a-distance force, similar to the gravitational force exerted by one mass on another.
The idea of action at a distance presents a difficult conceptual challenge. What is

rn10xx10kq1q0 >x2
10F

S

10 � (kq1q0 >r21 0)rn10

x

jn.inrn10

q1 .q0ƒq2 ƒ , q2q1



q1

+

q0

+

q2
–

q3

+

q1

+
q3

+

F30

F03

F10

F01

F20

F

F = F10 + F20 + F30

(a)

q0

+

q2
–

F02

(b)

F I G U R E  2 1 - 1 1 (a) A small test charge 
in the vicinity of a system of charges

, experiences a resultant
electric force that is proportional to 
The ratio is the electric field at that point.
(b) The test charge also exerts a force on
each of the surrounding charges, and each of
these forces is proportional to q0 .

q0

F
S>q0 q0 .F

S
q1 , q2 , q3 , Á

q0
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* This definition is similar to that for the gravitational field of Earth, which was defined in Section 4-3 as the force per
unit mass exerted by Earth on an object.

the mechanism by which one particle can exert a force on another across the empty
space between the particles? Suppose that a charged particle at some point is sud-
denly moved. Does the force exerted on the second particle some distance away
change instantaneously? To address the challenge of action at a distance, the con-
cept of the electric field is introduced. One charge produces an electric field 
everywhere in space, and this field exerts the force on the second charge. Thus, it
is the field at the location of the second charge that exerts the force on it, not the
first charge itself (which is some distance away). Changes in the field propagate
through space at the speed of light, Thus, if a charge is suddenly moved, the
force it exerts on a second charge a distance away does not change until a time

later.
Figure 21-11a shows a set of point charges and arbitrarily arranged in

space. These charges produce an electric field everywhere in space. If 
we place a small positive test charge at some point near the three charges, there
will be a force exerted on due to the other charges. The net force on is the vec-
tor sum of the individual forces exerted on by the other charges in the system.
Because each of these forces is proportional to the net force will be proportional
to The electric field at a point is this force divided by *

( is small) 21-5

DEFINITION–ELECTRIC FIELD

The SI unit of the electric field is the newton per coulomb In addition,
the test charge will exert a force on each of the other point charges (Figure
21-11b). Because these forces on the other charges might cause some of the other
charges to move, the charge must be so small that the forces it exerts on the other
charges are negligible. Thus, the electric field at the location in question is actually
defined by Equation 21-5, but in the limit that approaches zero. Table 21-2 lists
the magnitudes of some of the electric fields found in nature.

The electric field describes the condition in space set up by the system of point
charges. By moving a test charge from point to point, we can find at all points
in space (except at any point occupied by a charge ). The electric field is thus a
vector function of position. The force exerted on a test charge at any point is re-
lated to the electric field at that point by

21-6

PRACTICE PROBLEM 21-7

When a 5.0-nC test charge is placed at a certain point, it experiences a force of
in the direction of increasing What is the electric field at that point?

PRACTICE PROBLEM 21-8

What is the force on an electron placed at a point where the electric field is

The electric field due to a single point charge can be calculated from Coulomb’s
law. Consider a small, positive test charge at some point a distance away
from a charge The force on is

F
S

i0 �
kqiq0
r2iP

rniP

q0qi .
riPPq0

E
S

� (4.0 � 104 N>C)in?

E
S

x.2.0 � 10�4 N

F
S

� q0 E
S

q0

E
S

q
E
S

q0

q0

q0

q0

(N>C).

q0E
S

�
F
S

q0

q0:E
S

q0 .
q0 ,
q0

q0q0

q0

E
S
q3q1 , q2 ,

r>c r
c.

E
S

E
S

r

Table 21-2 Some Electric Fields 

in Nature

E, N/C

In household wires 10�2

In radio waves 10�1

In the atmosphere 102

In sunlight 103

Under a thundercloud 104

In a lightning bolt 104

In an X-ray tube 106

At the electron in a 
hydrogen atom 5 � 1011

At the surface of a 
uranium nucleus 2 � 1021
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The electric field at point due to charge (Figure 21-12) is thus

21-7

COULOMB’S LAW FOR 

where is the unit vector pointing from the source point i to the field point
The resultant electric field at due to a distribution of point charges is found by

summing the fields due to each charge separately:

21-8

ELECTRIC FIELD DUE TO A SYSTEM OF POINT CHARGES

That is, electric fields follow the principle of superposition.

PROBLEM-SOLVING STRATEGY

Calculating the Resultant Electric Field

PICTURE To calculate the resultant electric field at field point due to a
specified distribution of point charges, draw the charge configuration.
Include coordinate axes and the field point on the drawing.

SOLVE

1. On the drawing label the distance from each charge to point Include
an electric field vector for the electric field at due to each point
charge.

2. If the field point and the point charges are not on a single line, then
label the angle each individual electric field vector makes with one of
the coordinate axes.

3. Calculate the component of each individual field vector along each
axis and use these to calculate the components of the resultant electric
field E

S

P.

E
S

iP

E
S

iP

P

PE
S

iP

P.riP

PE
S

P

E
S

E
S

P � a
i

E
S

iP

P
P.rniP

E
S

E
S

iP �
kqi
r2iP

rniP

qiP

Even though the expression for the
electric field (Equation 21-7) does

depend on the location of point it
does not depend on the test charge 
That is, itself does not appear in
Equation 21-7.

q0

q0 .
P,

!

+
qi

riPˆ
riP

Source point i

Field point P

EiP

F I G U R E  2 1 - 1 2 The electric field at a
field point due to charge at a source point i.qiP

E
S

Conceptual Example 21-6 Direction of Electric Field

A positive point charge and a negative point charge of are located on
the axis at and respectively, as shown in Figure 21-13. Consider the fol-
lowing regions on the axis: region I region II and region III

In which region, or regions, is there a point at which the resultant electric field is
equal to zero?

PICTURE Let and be the electric fields due to and , respectively. Because is pos-
itive, points away from everywhere, and because is negative, points toward from

everywhere. The resultant electric field is equal to the sum of the electric fields of the
two charges The resultant field is zero if and are equal in magnitude
and oppositely directed. The magnitude of the electric field due to a point charge approaches
infinity at points close to a point charge. In addition, at points far from the charge configu-
ration, the electric field approaches the electric field of a point charge equal to that is
located at the center of charge. The electric field far from the charge configuration is that of
a negative point charge because is negative.q1 � q2

q1 � q2

E
S

2E
S

1(E
S

� E
S

1 � E
S

2).
E
S

q2

E
S

2q2q1E
S

1

q1q2q1E
S

2E
S

1

(x 
 a).
(�a 	 x 	 �a),(x 	 �a),x

x � �a,x � ax
q2 � �2qq1 � �q



 −a  +a

q2 = −2q q1 = +q

Region II Region IIIRegion I
0

x

E1

PI PII PIII

E2 E2 E2 E1E1

y

F I G U R E  2 1 - 1 3

The Electric Field S E C T I O N  2 1 - 4 | 707

SOLVE

1. Sketch a figure showing the two charges, the axis,
and the electric fields due the charges at points on the

axis in each of regions I, II, and III. Label these
points and respectively (Figure 21-13):PIII ,PI , PII ,
x

x

2. Check to see if the two electric field vectors can be
equal in magnitude and opposite in direction
anywhere in region I:

Throughout region I, the two electric field vectors are oppositely directed.
However, each point in the region is closer to than 
so is greater than at each point in the region. Thus, in region I there
are no points where the electric field is equal to zero.

E1E2

q1 (� �q),q2 (� �2q)

3. Check to see if the two electric field vectors can be
equal in magnitude and opposite in direction
anywhere in region II:

Throughout region II, the two electric field vectors are in the same
direction at each point on the axis. Thus, in region II there are no points
where the electric field is equal to zero.

x

4. Check to see if the two electric field vectors can be
equal in magnitude and opposite in direction
anywhere in region III:

Throughout region III, the two electric field vectors are oppositely
directed. At points very close to is greater than (because at
points close to a point charge the magnitude of the electric field due to
that charge approaches infinity). However, at points where is
greater than (because at large distances from the two charges the field
direction is determined by the sign of ). Thus, there must be a point
somewhere in region III where is equal to At that point the net
electric field is zero.

E2 .E1

q1 � q2

E1

xW a, E2

E2x � a, E1

CHECK The resultant electric field is zero at a point in region III, the region in which and
are oppositely directed AND in which all points are farther from the charge with the

larger magnitude, than from This result is as one would expect.q1 .
q2 ,E

S

2

E
S

1

Example 21-7 Electric Field on a Line through Two Positive Point Charges

A positive point charge is on the axis at and a second pos-
itive point charge is on the axis at Find the net electric field
(a) at point on the axis at and (b) at point on the axis at 

PICTURE Let and be the electric fields due to and , respectively. Because is
positive, points away from everywhere, and because is positive, points away
from everywhere. We calculate the resultant field using 

SOLVE

E
S

� E
S

1 � E
S

2 .q2

E
S

2q2q1E
S

1

q1q2q1E
S

2E
S

1

x � 2.0 m.xBx � 6.0 m,xA
x � x2 � 3.0 m.xq2 � �12 nC

x � x1 � �1.0 m,xq1 � �8.0 nC

(a) 1. Draw the charge configuration and place the
field point on the axis at the appropriate
place. Draw vectors representing the electric
field at due to each point charge. Repeat this
procedure for field point (Figure 21-14):B

A

xA

q1 = +8.0 nC q2 = +12 nC

2 x, m0−2 4 6

B A

q1

+
q2

+
E2 E2E1 E1

F I G U R E  2 1 - 1 4 Because is a positive charge, points away from , at
both point and point Because is a positive charge, points away from at
both point and point B.A

q2E
S

2q2B.A
q1E

S

1q1

2. Calculate at point using

and r2A � ƒxA � x2 ƒ � 6.0 m � (3.0 m) � 3.0 m:

r1A � ƒxA � x1 ƒ � 6.0 m � (�1.0 m) � 7.0 m

A,E
S

(13 N>C)in� (1.47 N>C)in � (12.0 N>C)in �

�
(8.99 � 109 N # m2>C2)(12 � 10�9 C)

(3.0 m)2 in�
(8.99 � 109 N # m2>C2)(8.0 � 10�9 C)

(7.0 m)2 in

E
S

� E
S

1 � E
S

2 �
kq1
r21A

rn1A �
kq2
r22A

rn2A �
kq1

(xA � x1)
2 in �

kq2
(xA � x2)

2 in
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(b) Calculate at point where

and r2B � ƒxB � x2 ƒ � ƒ2.0 m � (3.0 m) ƒ � 1.0 m:

r1B � ƒxB � x1 ƒ � 2.0 m � (�1.0 m) � 3.0 m

B,E
S

F I G U R E  2 1 - 1 5

�(100 N>C)in� (7.99 N>C)in � (108 N>C)in �

�
(8.99 � 109 N # m2>C2)(12 � 10�9 C)

(1.0 m)2 in�
(8.99 � 109 N # m2>C2)(8.0 � 10�9 C)

(3.0 m)2 in

E
S

� E
S

1 � E
S

2 �
kq1
r21B

rn1B �
kq2
r22B

rn2B �
kq1

(xB � x1)
2 in �

kq2
(xB � x2)

2 (�in)

CHECK The Part (b) result is large and in the direction. This result is expected because
point is close to and is a large positive charge that produces electric field

in the direction at 

TAKING IT FURTHER The resultant electric field at source
points close to is dominated by the field 
due to There is one point between and where the re-
sultant electric field is zero. A test charge placed at this
point would experience no electric force. A sketch of ver-
sus for this charge configuration is shown in Figure 21-15.

PRACTICE PROBLEM 21-9 Regarding Example 21-7, find
the point on the axis where the electric field is zero.x

x
Ex

q2q1q1 .
E
S

1q1 � �8.0-nC

B.�xE
S

2

(�12 nC)q2q2 ,B
�x

Try It YourselfExample 21-8 Electric Field Due to Point Charges on the x Axis

A point charge is at the origin and a second point charge is on
the axis at . Find the electric field on the axis at .

PICTURE As in Example 21-7, 
At points on the axis, the electric field due
to charge is directed along the axis, and the
field due to charge is in the second quad-
rant. To find the resultant field we first find
the and components of 

SOLVE

Cover the column to the right and try these
on your own before looking at the answers.

Steps

1. Sketch the two charges and the field
point. Include the coordinate axes. Draw
the electric field due to each charge at the
field point and label distances and angles
appropriately (Figure 21-16a):

E
S

.yx
E
S

,
q2E

S

2

yq1

E
S

1y
E
S

� E
S

1 � E
S

2 .

y � 3.0 myx � 4.0 mx
q2 � �12.0 nCq1 � �8.0 nC

4
x, m

1 32

q2 = +12 nC

5q1 = +8.0 nC

5.0 m

E1

θ

E2
θ

2

P

y, m

1

3

+ +

Answers

Ex N/C,

– 200

– 400

– 600

400

600

200

–3 –2 –1 10 x, m2 3 4 5



x

y

a

x

P

x − a

x + a

a

− +
−q +q

E– E+
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y
E

Ey

Ex

θ

P

1

x
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2. Calculate the magnitude of the field at (0, 3.0 m)
due to Find the and components of E

S

1yxq1 .
E
S

1

F I G U R E  2 1 - 1 6 b

E1x � 0, E1y � E1 � 7.99 N>CE1 � kq1 >y2 � 7.99 N>C
3. Calculate the magnitude of the field at 

due to q2 .
(0, y)E

S

2 E2 � 4.32 N>C
4. Write the and components of in terms of

the angle u.
E
S

2yx E2x � �E2 sinu; E2y � E2 cosu

5. Compute and cosu.sinu sinu � 0.80; cosu � 0.60

6. Calculate and E2y .E2x E2x � �3.46 N>C; E2y � 2.59 N>C
7. Sketch the components of the resultant field.

Include both the vector and the angle makes
with the axis (Figure 21-16b):x

E
S

E
S

8. Find the and components of the resultant
field E

S
.

yx

Ey � E1y � E2y � 10.6 N>CEx � E1x � E2x � �3.46 N>C
9. Calculate the magnitude of from its

components.
E
S

11 N>CE � 2E2
x � E2

y � 11.2 N>C �

10. Find the angle made by with the axis.xE
S

u1 108°u1 � tan�1¢Ey
Ex
≤ �

CHECK As expected, is larger than either or but less than (This result is
expected because the angle between and is less than .)90°E

S

2E
S

1

E1 � E2 .E2 ,E1E

Example 21-9 Electric Field Due to Two Equal and Opposite Charges

A charge is at and a second charge is at (Figure 21-17). (a) Find the elec-
tric field on the axis at an arbitrary point (b) Find the limiting form of the electric
field for 

PICTURE We calculate the electric field at point using the principle of superposition,
For the electric field due to the positive charge is in the di-

rection and the electric field due to the negative charge is in the direction. The dis-
tances are to the positive charge and to the negative charge.

SOLVE

x � (�a) � x � ax � a
�xE

S

�

�xE
S

�
x 
 a,E

S

P � E
S

1P � E
S

2P .
P

xW a.
x 
 a.x

x � �a�qx � a�q

(a) 1. Draw the charge configuration on a coordinate axis
and label the distances from each charge to the field
point (Figure 21-17):
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2. Calculate due to the two charges for (Note: The
equation on the right holds only for x 
 a.

x 
 a:E
S

L

p = q
p

–q +q

L

– +

F I G U R E  2 1 - 1 9 A dipole consists of a
pair of equal and opposite charges. The dipole
moment is where is the 
magnitude of one of the charges and is the
position of the negative charge relative to
the positive charge.

L
S

qpS � qL
S

,

–1
x, cm

–2–3 1 2 3

200

100

–100

–200

Ex, N/C

+–

F I G U R E  2 1 - 1 8 A plot of versus on
the axis for the charge distribution in
Example 21-9.
x

xEx

� kq c 1
(x � a)2 �

1
(x � a)2 d in

E
S

� E
S

�
� E

S

�
�

kq

[x � a]2 in �
kq

[x � (�a)]2 a�inb

3. Put the terms in square brackets under a common
denominator and simplify:

kq
4ax

(x2 � a2)2 in x 
 aE
S

� kq c (x � a)2 � (x � a)2

(x � a)2(x � a)2 d in �

(b) In the limit we can neglect compared with in the
denominator:

x2a2xW a,
4kqa

x3 in xW aE
S

� kq
4ax

(x2 � a2)2 in � kq
4ax
x4 in �

CHECK Both boxed answers approach zero as approaches infinity, which is as expected.

TAKING IT FURTHER Figure 21-18 shows versus for all for and
For (far from the charges), the field is given by

Between the charges, the contribution from each charge is in the negative direction. An
expression for is

where is a unit vector that points away from the point for all values of (except
and is a unit vector that points away from the point for all values of 

(except (Note that and )en
�

�
x � a

ƒx � a ƒ
in.en

�
�
x � a

ƒx � a ƒ
inx � �a).

xx � �aen
�

x � a)
xx � aen

�

E
S

�
kq

(x � a)2 en
�

�
k(�q)

(x � a)2 en
�

�a 	 x 	 a

E
S

E
S

�
4kqa

ƒx ƒ 3
in ƒx ƒ W a

ƒx ƒ W aa � 1.0 m.
q � 1.0 nCx,xEx

x

ELECTRIC DIPOLES

A system of two equal and opposite charges separated by a small distance is
called a dipole. Its strength and orientation are described by the dipole moment
which is a vector that points from the negative charge toward the positive
charge and has the magnitude (Figure 21-19):

21-9

DEFINITION—DIPOLE MOMENT

where is the position of the positive charge relative to the negative charge.
For the system of charges in Figure 21-17, and the dipole moment is

pS � 2aq in
L
S

� 2a in
L
S

pS � qL
S

qL
S

�q
�q

pS,
Lq
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In terms of the dipole moment the electric field on the axis of the dipole at a
point a great distance away is in the same direction as and has magnitude

21-10

(see Example 21-9). At a point far from a dipole in any direction, the magnitude
of the electric field is proportional to the magnitude of the dipole moment and de-
creases with the cube of the distance. If a system has a nonzero net charge, the elec-
tric field decreases as at large distances. In a system that has zero net charge, the
electric field falls off more rapidly with distance. In the case of a dipole, the field falls
off as in all directions.

21-5 ELECTRIC FIELD LINES

We can visualize the electric field by drawing a number of directed curved lines,
called electric field lines, to indicate both the magnitude and the direction of the
field. At any given point, the field vector is tangent to the line through that point.
(Electric field lines are also called lines of force because they show the direction of the
electric force exerted on a positive test charge.) At points very near a positive point
charge, the electric field points directly away from the charge. Consequently,
the electric field lines very near a positive charge also point directly away from the
charge. Similarly, very near a negative point charge the electric field lines point
directly toward the charge.

Figure 21-20 shows the electric field lines of a single positive point charge. The spac-
ing of the lines is related to the strength of the electric field. As we move away from the
charge, the field becomes weaker and the lines become farther apart. Consider an
imaginary spherical surface of radius that has its center at the charge. Its area is 
Thus, as increases, the density of the field lines (the number of lines per unit area
through a surface element normal to the field lines) decreases as the same rate of
decrease as So, we adopt the convention of drawing a fixed number of lines from a
point charge, the number being proportional to the charge and if we draw the lines
equally spaced very near the point charge, the field strength is indicated by the den-
sity of the lines. The more closely spaced the lines, the stronger the electric field. The
magnitude of the electric field is also called the electric field strength.

Figure 21-21 shows the electric field lines for two equal positive point charges 
separated by a small distance. Near each point charge, the field is approximately that
due to that charge alone. This is because the magnitude of the field of a single point
charge is extremely large at points very close to the charge, and because the second
charge is relatively far away. Consequently, the field lines near either charge are radial

q

q,
E.

1>r2,r
4pr2.r

E
S

E
S

1>r3 1>r2
E �

2kp

ƒx ƒ 3

pSƒx ƒ
pS,

+

(a)

(b)

F I G U R E  2 1 - 2 0 (a) Electric field lines of
a single positive point charge. If the charge
were negative, the arrows would be reversed.
(b) The same electric field lines shown by bits
of thread suspended in oil. The electric field of
the charged object in the center induces
opposite charges on the ends of each bit of
thread, causing the threads to align
themselves parallel to the field. (Harold M.
Waage.)

++

(a) (b)

F I G U R E  2 1 - 2 1 (a) Electric
field lines due to two positive
point charges. The arrows
would be reversed if both
charges were negative. (b) The
same electric field lines shown
by bits of thread in oil. (Harold
M. Waage.)



+–

(a)

(b)

F I G U R E  2 1 - 2 3 (a) Electric field lines for
a dipole. (b) The same field lines shown by
bits of thread in oil. (Harold M. Waage.)

712 | C H A P T E R  2 1 The Electric Field I: Discrete Charge Distributions

* Rogue field lines are field lines that do not follow this rule. An example of a rogue field line is a line that leaves one of
the positive charges in Figure 21-22 and is directed toward the other charge. This field line terminates at the point mid-
way between the two charges-as does a corresponding field line emanating from the second positive charge in the fig-
ure. For these two charges there are infinitely many field lines, two of which are rogue field lines.

and equally spaced. Because the charges are of equal magni-
tude, we draw an equal number of lines originating from
each charge. At very large distances, the details of the charge
configuration are not important and the electric field lines are
indistinguishable from those of a point charge of magnitude

a very large distance away. (For example, if the two
charges were 1 mm apart and we look at the field lines near
a point 100 km away, the field lines would look like those of
a single charge of magnitude a distance 100 km away.) So
at a large distance from the charges, the field is approxi-
mately the same as that due to a point charge and the lines
are approximately equally spaced. Looking at Figure 21-21,
we see that the density of field lines in the region between the
two charges is small compared to the density of lines in
the region just to the left and just to the right of the charges.
This indicates that the magnitude of the electric field is
weaker in the region between the charges than it is in the re-
gion just to the right or left of the charges, where the lines are
more closely spaced. This information can also be obtained
by direct calculation of the field at points in these regions.

We can apply this reasoning to sketch the electric field lines for any system of
point charges. Very near each charge, the field lines are equally spaced and em-
anate from or terminate on the charge radially, depending on the sign of the
charge. Very far from all the charges, the detailed configuration of the system of
charges is not important, so the field lines are like those of a single point charge
having the net charge of the system. The rules for drawing electric field lines are
summarized in the following Problem-Solving Strategy.

PROBLEM-SOLVING STRATEGY

Drawing Field Lines

PICTURE Electric field lines emanate from positive charges and terminate on
negative charges.*

SOLVE

1. The lines emanating from (or terminating on) an isolated point charge are
drawn uniformly spaced as they emanate (or terminate).

2. The number of lines emanating from a positive charge (or terminating on
a negative charge) is proportional to the magnitude of the charge.

3. The density of the lines at any point (the number of lines per unit area
through a surface element normal to the lines) is proportional to the
magnitude of the field there.

4. At large distances from a system of charges that has a nonzero net charge,
the field lines are equally spaced and radial, as if they emanated from (or
terminated on) a single point charge equal to the total charge of the system.

CHECK Make sure that the field lines never intersect each other. (If two field
lines intersected, that would indicate two directions for at the point of
intersection.)

Figure 21-23 shows the electric field lines due to a dipole. Very near the positive
charge, the lines are directed radially outward. Very near the negative charge, the

E
S

2q

2q

2q
Rogue
field
lines

+ +

F I G U R E  2 1 - 2 2 There are infinitely many field lines emanating
from the two charges, two of which are rogue field lines. These rogue
field lines terminate at the point midway between the two charges.



lines are directed radially inward. Because the charges
have equal magnitudes, the number of lines that begin at
the positive charge equals the number that end at the neg-
ative charge. In this case, the field is strong in the region
between the charges, as indicated by the high density of
field lines in this region.

Figure 21-24a shows the electric field lines for a negative
charge at a small distance from a positive charge 
Twice as many lines emanate from the positive charge as
terminate on the negative charge. Thus, half the lines ema-
nating from the positive charge terminate on the neg-
ative charge the other half of the lines emanating from
the positive charge continue on indefinitely. Very far from
the charges (Figure 21-24b), the lines are approximately
symmetrically spaced and point radially away from a sin-
gle point, just as they would for a single positive point
charge �q.

�q;
�2q

�2q.�q

+2q −q+ −

+2q –q–+

(a)

(b)
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Conceptual Example 21-10 Field Lines for Two Conducting Spheres

The electric field lines for two conducting spheres are shown in Figure 21-25. What is the
sign of the charge on each sphere, and what are the relative magnitudes of the charges on
the spheres?

PICTURE The charge on an object is positive if more field lines emanate from it than termi-
nate on it, and negative if more terminate on it than emanate from it. The ratio of the mag-
nitudes of the charges equals the ratio of the net number of lines emanating from or termi-
nating on the spheres.

SOLVE

1. By counting field lines, determine
the net number of field lines
emanating from the larger sphere:

Because 11 electric field lines emanate from the
larger sphere and 3 lines terminate on it, the net
number of lines emanating from it is 8.

2. By counting field lines, determine
the net number of field lines
emanating from the smaller sphere:

Because 8 electric field lines emanate from the
smaller sphere and no lines terminate on it, the
net number of lines emanating from it is 8.

3. Determine the sign of the charge
on each sphere:

Because both spheres have more field lines emanating from than terminating on them, 

both spheres are positively charged.

4. Determine the relative magnitudes
of the charges on the two spheres:

Because both spheres have the same net number of lines emanating from them, the 

charges on them are equal in magnitude.

F I G U R E  2 1 - 2 4 (a) Electric field
lines for a point charge and a second
point charge (b) At great distances
from the charges, the field lines approach
those for a single point charge located
at the center of charge.

�q

�q.
�2q
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Schematic drawing of a cathode-ray-tube
display used for color television. The beams
of electrons from the electron gun on the right
activate phosphors on the screen at the left,
giving rise to bright spots whose colors
depend on the relative intensity of each beam.
Electric fields between deflection plates in
the gun (or magnetic fields from coils
surrounding the gun) deflect the beams. The
beams sweep across the screen in a horizontal
line, are deflected downward, then sweep
across again. The entire screen is covered in
this way 30 times per second. (Courtesy of
Hulon Forrester/Video Display Corporation,
Tucker Georgia.)
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The convention relating the electric field strength to the density of the electric
field lines works only because the electric field varies inversely as the square of the
distance from a point charge. Because the gravitational field of a point mass also
varies inversely as the square of the distance, field-line drawings are also useful for
picturing gravitational fields. Near a point mass, the gravitational field lines ter-
minate on the mass just as electric field lines terminate on a negative charge.
However, unlike electric field lines near a positive charge, there are no points in
space from which gravitational field lines emanate. That is because the gravita-
tional force between two masses is never repulsive.

21-6 ACTION OF THE ELECTRIC FIELD 
ON CHARGES

A uniform electric field can exert a force on a single charged particle and can exert
both a torque and a net force on an electric dipole.

MOTION OF POINT CHARGES IN ELECTRIC FIELDS

When a particle that has a charge is placed in an electric field it experiences
a force If the electric force is the only force acting on the particle, the particle
has acceleration

where is the mass of the particle. (If the particle is an electron, its speed in an
electric field is often a significant fraction of the speed of light. In such cases,
Newton’s laws of motion must be modified by Einstein’s special theory of relativ-
ity.) If the electric field is known, the charge-to-mass ratio of the particle can be de-
termined from the measured acceleration. J. J. Thomson used the deflection of elec-
trons in a uniform electric field in 1897 to demonstrate the existence of electrons
and to measure their charge-to-mass ratio. Familiar examples of devices that rely
on the motion of electrons in electric fields are oscilloscopes, computer monitors,
and television sets that use cathode-ray-tube displays.

m

aS �
©F

S

m
�
q

m
E
S

qE
S

.
E
S

,q

Example 21-11 Electron Moving Parallel to a Uniform Electric Field

An electron is projected into a uniform electric field with an initial veloc-
ity in the direction of the field (Figure 21-26). How far does the elec-
tron travel before it is brought momentarily to rest?

PICTURE Because the charge of the electron is negative, the force acting on the
electron is in the direction opposite that of the field. Because is constant, the force is con-
stant and we can use constant acceleration formulas from Chapter 2. We choose the field to
be in the direction.

SOLVE

�x

E
S

F
S

� �eE
S

vS0 � (2.00 � 106 m>s)in
E
S

� (1000 N>C)in

1. The displacement is related to the initial and final
velocities:

¢x v2
x � v2

0x � 2ax¢x

2. The acceleration is obtained from Newton’s second law: ax �
Fx
m

�
�eEx
m

3. When the displacement is:vx � 0,

1.14 cm� 1.14 � 10�2 m �

�
(9.11 � 10�31 kg)(2.00 � 106 m>s)2

2(1.60 � 10�19 C)(1000 N>C)
¢x �

v2
x � v2

0x

2ax
�

0 � v2
0x

2(�eEx>m)
�
mv2

0

2eE

CHECK The displacement is positive, as is expected for something moving in the direction.�x¢x



E
v0

–e
–
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CHECK The step-4 result is positive (upward), as is expected for an object accelerating
upward that was initially moving horizontally.

TAKING IT FURTHER (a) As is usually the case, the electric force is huge compared with
the gravitational force. Thus, it is not necessary to consider gravity when designing a
cathode-ray tube, for example, or when calculating the deflection in the problem above.
In fact, a television picture tube works equally well upside down and right side up, as if
gravity were not even present. (b) The path of an electron moving in a uniform electric
field is a parabola, the same as the path of a neutral particle moving in a uniform gravi-
tational field.

Example 21-12 Electron Moving Perpendicular to a Uniform Electric Field

An electron enters a uniform electric field with an initial velocity
perpendicular to the field (Figure 21-27). (a) Compare the gravita-

tional force acting on the electron to the electric force acting on it. (b) By how much has the
electron been deflected after it has traveled 1.0 cm in the direction?

PICTURE (a) Calculate the ratio of the magnitude of the electric force to that of the
gravitational force mg. (b) Because mg is, by comparison, negligible, the net force on the elec-
tron is equal to the vertically upward electric force. The electron thus moves with constant
horizontal velocity and is deflected upward by an amount where is the time
to travel 1.0 cm in the direction.

SOLVE

x
t¢y � 1

2 at2,vx

ƒq ƒE � eE

x

vS0 � (1.0 � 106 m>s)in
E
S

� (�2.0 kN>C)jn

(a) 1. Calculate the ratio of the magnitude of the electric force,
to the magnitude of the gravitational force, Fg:Fe ,

3.6 � 1013
Fe

Fg

�
eE
mg

�
(1.60 � 10�19 C)(2000 N>C)

(9.11 � 10�31 kg)(9.81 N>kg)
�

(b) 1. Express the vertical deflection in terms of the
acceleration and time t:a

¢y �
1
2
ayt

2

2. Express the time required for the electron to travel a
horizontal distance with constant horizontal
velocity v0:

¢x
t �

¢x
v0

3. Use this result for and for to calculate ¢y:ayeE>mt

1.8 cm�

�
1
2

(1.6 � 10�19 C)(2000 N>C)

9.11 � 10�31 kg
a0.010 m

106 m>s b 2

¢y �
1
2
eE
m
a¢x
v0

b 2

Context-RichExample 21-13 The Electric Field in an Ink-Jet Printer

You have just finished printing out a long essay for your English professor, and you won-
der about how the ink-jet printer knows where to place the ink. You search the Internet
and find a picture (Figure 21-28) showing that the ink drops are given a charge and pass
between a pair of oppositely charged metal plates that provide a uniform electric field in
the region between the plates. Because you have been studying the electric field in
physics class, you wonder if you can determine how large a field is used in this type of
printer. You search further and find that the ink drops have an initial
velocity of and that a drop that has a 2.00-nC charge is deflected upward a dis-
tance of 3.00 mm as the drop travels through the 1.00-cm-long region between the plates.
Find the magnitude of the electric field. (Neglect any effects of gravity on the motion of
the drops.)

40.0 m>s,
40.0-mm-diameter
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Printing
medium

Deflector

Pressurized
ink supply Nozzle

assembly

Charging system

Digital
signal
input

Gutter

Print
head

movement

F I G U R E  2 1 - 2 8 An ink-jet used for
printing. The ink exits the nozzle in discrete
droplets. Any droplet destined to form a dot
on the image is given a charge. The deflector
consists of a pair of oppositely charged plates.
The greater the charge a drop receives, the
higher the drop is deflected as it passes
between the deflector plates. Drops that do
not receive a charge are not deflected upward.
These drops end up in the gutter, and the ink
is returned to the ink reservoir. (Courtesy of
Videojet Systems International.)

PICTURE The electric field exerts a constant electric force on the drop as it passes
between the two plates, where We are looking for We can get the force by de-
termining the mass and acceleration The acceleration can be found from kinemat-
ics and mass can be found using the radius. Assume the density of ink is (the
same as the density of water).

SOLVE

1000 kg>m3r

F
S

� maS.
F
S

E.F
S

� qE
S

.
F
S

E
S

1. The electric field strength equals the force to charge
ratio:

E �
F
q

2. The force, which is in the direction (upward),
equals the mass multiplied by the acceleration:

�y F � may

3. The vertical displacement is obtained using a constant-
acceleration kinematic formula with v0y � 0:

� 0 � 1
2 ayt

2¢y � v0yt � 1
2 ayt

2

4. The time is how long it takes for the drop to travel
the at v0 � 40.0 m>s:¢x � 1.00 cm

so t � ¢x>v0¢x � v0xt � v0t

5. Solving for gives:ay ay �
2¢y

t2
�

2¢y

(¢x>v0)
2 �

2v2
0¢y

(¢x)2

6. The mass equals the density multiplied by
the volume:

m � rV � r 4
3pr3

7. Solve for E:

1.61 kN>C��
8p
3

(1000 kg>m3)(20.0 � 10�6 m)3(40.0 m>s)2(3.00 � 10�3 m)

(2.00 � 10�9 C)(0.0100 m)2

�
8p
3

rr3v2
0¢y

q(¢x)2E �
F
q

�
ma
q

�
r 4

3pr3

q

2v2
0¢y

(¢x)2

CHECK The units in last line of step 7 are The units work out because

TAKING IT FURTHER The ink-jet in this example is called a multiple-deflection continuous
ink-jet. It is used in some industrial printers. The low-cost ink-jet printers sold for home use
do not use charged droplets deflected by an electric field.

1 N � 1 kg # m>s2.
kg # m>(C # s2).
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DIPOLES IN ELECTRIC FIELDS

In Example 21-9 we found the electric field produced by a dipole, a system of two
equal and opposite point charges that are close together. Here we consider the be-
havior of a dipole in an external electric field. Some molecules have permanent di-
pole moments due to a nonuniform distribution of charge within the molecule.
Such molecules are called polar molecules. An example is HCl, which is essentially
a positive hydrogen ion of charge combined with a negative chloride ion of
charge The center of charge of the positive ion does not coincide with the cen-
ter of charge for the negative ion, so the molecule has a permanent dipole moment.
Another example is water (Figure 21-29).

A uniform external electric field exerts no net force on a dipole, but it does exert
a torque that tends to rotate the dipole so as to align it with the direction of the ex-
ternal field. We see in Figure 21-30 that the torque calculated about the position
of either charge has the magnitude * The direction
of the torque vector is into the paper such that it tends to rotate the dipole moment
vector so it aligns with the direction of The torque can be expressed most con-
cisely as the cross product:

21-11

If the dipole rotates through angle the electric field does work:

(The minus sign arises because the torque opposes any increase in ) Setting the
negative of this work value equal to the change in potential energy, we have

Integrating, we obtain

If we choose the potential energy to be zero when then and
the potential energy of the dipole is

21-12

POTENTIAL ENERGY OF A DIPOLE IN AN ELECTRIC FIELD

Microwave ovens take advantage of the dipole moment of water molecules to
cook food. Like other electromagnetic waves, microwaves have oscillating electric
fields that exert torques on dipoles, torques that cause the water molecules to ro-
tate with significant rotational kinetic energy. In this manner, energy is transferred
from the microwave radiation to the water molecules at a high rate, accounting for
the rapid cooking times that make microwave ovens so convenient.

U � �pE cos u � �pS # E
S

U0 � 0u � 90°,U

U � �pE cos u � U0

dU � �dW � �pE sin u du

u.

dW � �tdu � �pE sin u du

du ,

T
S

� pS � E
S

E
S

.pS

F1L sin u � qEL sin u � pE sin u.
T
S

�e.
�e

* The torque produced by two equal and opposite forces (an arrangement called a couple) is the same about any point
in space.

E

–q

+q F1

F2

p
p = qL

θ
L

+

–

F I G U R E  2 1 - 3 0 A dipole in a uniform
electric field experiences equal and opposite
forces that tend to rotate the dipole so that its
dipole moment is aligned with the electric
field E

S
.

pS

pO2

H+

H+

–2

F I G U R E  2 1 - 2 9 An molecule has a
permanent dipole moment that points in the
direction from the center of negative charge to
the center of positive charge.

H2O
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Nonpolar molecules have no permanent dipole moment.
However, all neutral molecules have equal amounts of pos-
itive and negative charge. In the presence of an external elec-
tric field the positive and negative charge centers become
separated in space. The positive charges are pushed in the
direction of and the negative charges are pushed in the op-
posite direction. The molecule thus acquires an induced di-
pole moment parallel to the external electric field and is said
to be polarized.

In a nonuniform electric field, a dipole experiences a net
force because the electric field has different magnitudes at the
positive and negative charge centers. Figure 21-31 shows how
a positive point charge polarizes a nonpolar molecule and
then attracts it. A familiar example is the attraction that holds
an electrostatically charged balloon against a wall. The
nonuniform field produced by the charge on the balloon po-
larizes molecules in the wall and attracts them. An equal and
opposite force is exerted by the wall molecules on the balloon.

The diameter of an atom or molecule is of the order of
(one picometer). A convenient unit for the

dipole moment of atoms and molecules is the fundamental
charge multiplied by the distance 1 pm. For example, the di-
pole moment of in these units has a magnitude of about
40 e # pm.

H2O
e

10�12 m � 1 pm

E
S

E
S

,

CHECK The sign of the potential energy is negative. That is because the reference orienta-
tion of the potential energy function is for For the po-
tential energy is less than zero. The system has more potential energy if than it does
if u � 90°.

u � 20°
u � 20°u � 90°.U � 0U � �pS # E

S

–q

+q

F1

F2

p

p = qL

L

+Q +

–

+

F I G U R E  2 1 - 3 1 A nonpolar molecule in the nonuniform electric
field of a positive point charge The point charge attracts the
negative charges (the electrons) in the molecule and repels the positive
charges (the protons). As a result the center of negative charge is
closer to than is the center of positive charge and the induced
dipole moment is parallel to the field of the point charge. Because

is closer to than is is greater than and the molecule is
attracted to the point charge. In addition, if the point charge were
negative, the induced dipole moment would be reversed, and the
molecule would again be attracted to the point charge.

F2�q, F1�Q�q
pS

�q�Q
�q

�Q.

Example 21-14 Torque and Potential Energy

A polar molecule has a dipole moment of magnitude that makes an angle of 
with a uniform electric field of magnitude (Figure 21-32). Find (a) the mag-
nitude of the torque on the dipole, and (b) the potential energy of the system.

PICTURE The torque is found from and the potential energy is found from

SOLVE

U � �pS # E
S

.
T
S

� pS � E
S

3.0 � 103 N>C 20°20 e # pm

1. Calculate the magnitude
of the torque:

3.3 � 10�27 N # m�

� (0.02)(1.6 � 10�19 C)(10�9 m)(3 � 103 N>C)(sin 20°)

t � ƒpS � E
S

ƒ � pE sinu � (20 e # pm)(3 � 103 N>C)(sin 20°)

2. Calculate the potential
energy:

�9.0 � 10�27 J�

� �(0.02)(1.6 � 10�19 C)(10�9 m)(3 � 103 N>C)cos 20°

U � �pS # E
S

� �pE cosu
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Physics Spotlight

Powder Coating—Industrial Static

Children around the world take advantage of triboelectric
properties. The Ohio Art Company introduced the Etch A
Sketch™ at about 1960.* Styrene beads provide a charge to
very fine aluminum powder when shaken. The charged
powder is attracted to the translucent screen of the toy. A sty-
lus is then used to draw lines in the powder. The toy is based
on the fact that the aluminum and screen attract each other
with opposite charges.

Although charged powder can be a toy, it is serious busi-
ness in many industries. Unprotected metal tends to cor-
rode, so to prevent corrosion, metal parts of automobiles,
metal appliances, and other metal objects are coated. In the
past, coating involved paints, lacquers, varnishes, and
enamels that were put on as liquids and dried. These liquids
have disadvantages.† The solvents take a long time to dry or
release unwanted volatile compounds. Surfaces at different
angles can be coated unevenly. Liquid spray causes waste
and cannot be easily recycled. Electrostatic powder coating
reduces many of these problems.‡ This coating process was
first used in the 1950s and is now popular with manufactur-
ers adhering to environmental regulations by reducing the
use of volatile chemicals.

Powder coating is applied by giving a charge to the item that will be coated.# To do this reliably, it is simplest if the object
to be coated is conductive. Then very small (from to particles° in a powder are given an opposite charge. The
coating particles are strongly attracted to the object to be coated. Loose particles can be recycled and used again. Once the par-
ticles are on the object, the coating is then cured, either by increased temperature or by ultraviolet light. The curing process
locks the molecules of the coating together, and the particles and the object lose their charges.

Coating particles are given a charge by either corona discharge or triboelectric charging.§ Corona discharge blows the par-
ticles through a plasma of electrons, giving them a negative charge. Triboelectric charging blows the particles through a tube
that is made from a material on the opposite end of the triboelectric spectrum, often Teflon. The coating particles are given a
positive charge from this rapid contact. The item to be coated is given a charge that depends on the coating method used.
Depending on the coating and additives, coating charges range from 500 to ¶ The curing process differs accord-
ing to the coating materials and the coated item. The curing time can be anywhere from 1 to 30 minutes.**

Although powder coating is economical and environmentally friendly, it has difficulties. The abilities of the coating parti-
cles to hold a charge†† can vary with humidity, which must be precisely controlled.‡‡ If the electric field for corona discharge
is too strong, the powder sprays too quickly toward the item to be coated, leaving a bare spot in the middle of a built-up ring,
which gives an uneven “orange peel” finish.## Electrostatic powders can be child’s play, but electrostatic powder coating is a
complex, useful, and evolving process.

* Grandjean, A., “Tracing Device.” U.S. Patent No. 3,055,113, Sept. 25, 1962.
† Matheson, R. D. “20th- to 21st-Century Technological Challenges in Soft Coatings.” Science, Aug. 9, 2002, Vol. 297, No. 5583, pp. 976–979.
‡ Hammerton, D., and Buysens, K., “UV-Curable Powder Coatings: Benefits and Performance.” Paint and Coatings Industry, Aug. 2000, p. 58.
# Zeren, S., and Renoux, D., “Powder Coatings Additives.” Paint and Coatings Industry, Oct. 2002, p. 116.
° Hemphill, R., “Deposition of Nanoparticles by Electrostatic Spray Powder Charging.” Paint and Coatings Industry, Apr. 2006, pp. 74–78.
§ Czyzak, S. J., and Williams, D. T., “Static Electrification of Solid Particles by Spraying.” Science, Jul. 20, 1951, Vol 14, pp. 66–68.
¶ Zeren, S., and Renoux, D., op. cit.
** Hammerton, D., and Buysens, K., op. cit.
†† O’Konski, C. T., “The Exponential Decay Law in Spray De-electrification.” Science, Oct. 5, 1951, Vol. 114, p. 368.
‡‡ Sharma, R., et al., “Effect of Ambient Relative Humidity and Surface in Modification on the Charge Decay Properties of Polymer Powders in Powder Coating.” IEEE Transactions on

Industry Applications, Jan./Feb. 2003, Vol. 39, No. 1, pp. 87–95.
## Wostratzky, D., Lord, S., and Sitzmann, E. V., “Power!” Paint and Coatings Industry, Oct. 2000, p. 54.

BaTiO3

1000 mC>kg.

100 mm)1 mm

A fine powder is attracted to the back of the screen by electrostatic.
Turning the knobs results in the power being rubbed off by a small
stylus. (Courtesy of The Ohio Art Company.)
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Summary

1. Quantization and conservation are fundamental properties of electric charge.

2. Coulomb’s law is the fundamental law of interaction between charges at rest.

3. The electric field describes the condition in space set up by a charge distribution.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Charge There are two kinds of charge, positive and negative. Charges of like sign repel, those of
opposite sign attract.

Quantization Charge is quantized—it always occurs in integer multiples of the fundamental charge unit 
The charge of the electron is and that of the proton is 

Magnitude

Conservation Charge is conserved. When charged particles are created or annihilated, the total amount of
charge carried by the created or annihilated particles is zero.

2. Conductors and Insulators In metals, about one electron per atom is delocalized (free to move about the entire mater-
ial). In insulators, all the electrons are bound to nearby atoms.

Ground A very large conductor (such as Earth) that can supply or absorb a virtually unlimited
amount of charge is called a ground.

3. Charging by Induction To charge a conductor by induction: connect a ground to the conductor, hold an external
charge near the conductor (to attract or repel the conduction electrons), then disconnect the
conductor from ground, and finally move the external charge away from the conductor.

4. Coulomb’s Law The force exerted by point charge on point charge a distance away is given by

21-4

where unit vector points from toward 

Coulomb constant 21-3

5. Electric Field The electric field due to a system of charges at a point is defined as the net force exerted
by those charges on a very small positive test charge divided by 

21-5

Due to a point charge 21-7

Due to a system of point charges The electric field at due to several charges is the vector sum of the fields at due to the in-
dividual charges:

21-8

6. Electric Field Lines The electric field can be represented by electric field lines that emanate from positive charges
and terminate on negative charges. The strength of the electric field is indicated by the den-
sity of the electric field lines.

7. Dipole A dipole is a system of two equal but opposite charges separated by a small distance.

Dipole moment 21-9

where is the position of the positive charge relative to the negative charge.

Field due to dipole The electric field strength far from a dipole is proportional to the magnitude of the dipole
moment and decreases with the cube of the distance.

Torque on a dipole In a uniform electric field, the net force on a dipole is zero, but there is a torque that tends to
align the dipole in the direction of the field.

21-11T
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TOPIC RELEVANT EQUATIONS AND REMARKS

Potential energy of a dipole 21-12

where is usually taken to be zero.

8. Polar and Nonpolar Molecules Polar molecules, such as and HCl, have permanent dipole moments because their cen-
ters of positive and negative charge do not coincide. They behave like simple dipoles in an
electric field. Nonpolar molecules do not have permanent dipole moments, but they acquire
induced dipole moments in the presence of an electric field.

H2O

U0

U � �pS # E
S

� U0

Answers to Concept Checks

21-1 (a) Because the spheres are identical, they must
share the total charge equally. (b) which is
necessary to satisfy the conservation of charge

21-2 and Q3 � �Q>4Q1 � �Q>2, Q2 � �Q>4,

�2Q,
� 1

2Q.

Answers to Practice Problems

21-1
Charge quantization cannot be detected in a charge of
this size; even adding or subtracting a million electrons
produces a negligibly small effect.

21-2 About 

21-3

21-4

21-5

21-6 No, but suppose it were. Because the component of 
is less than the magnitude of the denominator of

is less than the denominator of This
would imply that the component of is greater than
the magnitude of an impossibility because the
component of a vector is never greater than the magnitude
of the vector. Therefore, the component of the force

is not necessarily equal to

21-7

21-8

21-9 x � 1.80 m

F
S

� �(6.4 � 10�15 N)in
E
S

� F
S>q0 � (4.0 � 104 N>C)in

F10x � kq1q0 >x2
10 .

F
S

10 � (kq1q0 >r21 0)rn10

x

F
S

10 ,
F
S

10x
kq1q0 >r210 .kq1q0 >x2

10

rS10 ,
rS10x

rn10 � (in � jn)>22

�(6.3 mN)in
2.25 � 10�3 N

3.5 � 10�8 percent

N � Q>e � (50 � 10�9 C)>(1.6 � 10�19 C) � 3.1 � 1011.

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Objects are composed of atoms which are composed of
charged particles (protons and electrons); however, we rarely ob-
serve the effects of the electrostatic force. Explain why we do not
observe these effects.

2 • A carbon atom can become a carbon ion if it has one or
more of its electrons removed during a process called ionization.
What is the net charge on a carbon atom that has had two of its elec-
trons removed? (a) (b) (c) (d)

3 •• You do a simple demonstration for your high school
physics teacher in which you claim to disprove Coulomb’s law. You
first run a rubber comb through your dry hair, then use it to attract
tiny neutral pieces of paper on the desk. You then say, “Coulomb’s

�2e�2e,�e,�e,

law states that for there to be electrostatic forces of attraction between
two objects, both objects need to be charged. However, the paper was
not charged. So according to Coulomb’s law, there should be no elec-
trostatic forces of attraction between them, yet there clearly was.”
You rest your case. (a) What is wrong with your assumptions?
(b) Does attraction between the paper and the comb require that the
net charge on the comb be negative? Explain your answer.
4 •• You have a positively charged insulating rod and two
metal spheres on insulating stands. Give step-by-step directions of
how the rod, without actually touching either sphere, can be used to
give one of the spheres (a) a negative charge and (b) a positive charge.
5 •• (a) Two point particles that have charges of and 
are separated by distance Use field lines to draw a visualization of
the electric field in the neighborhood of this system. (b) Draw the
field lines at distances much greater than from the charges.d

d.
�3q�4q
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6 •• A metal sphere is positively charged. Is it possible for the
sphere to electrically attract another positively charged ball?
Explain your answer.
7 •• A simple demonstration of electrostatic attraction can be
done by dangling a small ball of crumpled aluminum foil on a
string and bringing a charged rod near the ball. The ball initially
will be attracted to the rod, but once they touch, the ball will be
strongly repelled from it. Explain these observations.
8 •• Two positive point charges that are equal in magnitude
are fixed in place, one at and the other at on
the axis. A third positive point charge is placed at an equilibrium
position. (a) Where is this equilibrium position? (b) Is the equilib-
rium position stable if the third particle is constrained to move par-
allel with the axis? (c) What if it is constrained to move parallel
with the axis? Explain your answer.
9 •• Two neutral conducting spheres are in contact and are sup-
ported on a large wooden table by insulated stands. A positively
charged rod is brought up close to the surface of one of the spheres on
the side opposite its point of contact with the other sphere. (a) Describe
the induced charges on the two conducting spheres and sketch the
charge distributions on them. (b) The two spheres are separated and
then the charged rod is removed. The spheres are then separated far
apart. Sketch the charge distributions on the separated spheres.
10 •• Three point charges,

and are placed at
the corners of an equilateral tri-
angle as shown in Figure 21-33.
No other charged objects are
nearby. (a) What is the direc-
tion of the net force on charge

due to the other two
charges? (b) What is the total
electric force on the system of
three charges? Explain.
11 •• A positively charged
particle is free to move in a
region with a nonzero electric
field Which statement(s) must be true?
(a) The particle is accelerating in the direction perpendicular to 
(b) The particle is accelerating in the direction of 
(c) The particle is moving in the direction of 
(d) The particle could be momentarily at rest.
(e) The force on the particle is opposite the direction of 
(f) The particle is moving opposite the direction of 
12 •• Four charges are
fixed in place at the corners
of a square as shown in Figure
21-34. No other charges are
nearby. Which of the following
statements is true?
(a) is zero at the midpoints

of all four sides of the
square.

(b) is zero at the center of
the square.

(c) is zero midway between
the top two charges and midway between the bottom two charges.

13 •• Two point particles that have charges of and are
separated by distance (a) Use field lines to sketch the electric
field in the neighborhood of this system. (b) Draw the field lines at
distances much greater than from the charges.
14 •• Three equal positive point charges (each charge )
are fixed at the vertices of an equilateral triangle that has sides
of length a. The origin is at the midpoint of one side the triangle,

�q
SSMd
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x � 1.00 m,x � 0.00 m

ESTIMATION AND APPROXIMATION

18 •• Estimate the force required to bind the two protons in the
He nucleus together. Hint: Model the protons as point charges. You will
need to have an estimate of the distance between them.
19 •• A popular classroom demonstration consists of rubbing a
plastic rod with fur to give the rod charge, and then placing the rod
near an empty soda can that is on its side (Figure 21-36). Explain
why the can will roll toward the rod.

+q

+Q –Q

+

–+
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+q–q

+q –q+

–

–

+

F I G U R E  2 1 - 3 4 Problem 12

−
−

+

Empty
soda can

+
+

− −
−

the center of the triangle on the axis at and the vertex
opposite the origin is on the axis at . (a) Express and

in terms of a. (b) Write an expression for the electric field on
the axis a distance from the origin on the interval 0 
(c) Show that the expression you obtained in (b) gives the ex-
pected results for and for .

15 •• A molecule has a dipole moment given by The molecule
is momentarily at rest with making an angle with a uniform elec-
tric field Describe the subsequent motion of the dipole moment.
16 •• True or false:
(a) The electric field of a point charge always points away from the

charge.
(b) The electric force on a charged particle in an electric field is al-

ways in the same direction as the field.
(c) Electric field lines never intersect.
(d) All molecules have dipole moments in the presence of an exter-

nal electric field.
17 •• Two mole-
cules have dipole mo-
ments of equal mag-
nitude. The dipole
moments are ori-
ented in various con-
figurations as shown
in Figure 21-35.
Determine the elec-
tric-field direction at
each of the numbered
locations. Explain
your answers. SSM

E
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x � x1x � 0

x 	 x2.xx
x2

x1x � x2x
x � x1,x

(a) (b)

(c) (d)
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Problem 17
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Problem 19

20 •• Sparks in air occur when ions in the air are accelerated to
such a high speed by an electric field that when the ions impact on
neutral gas molecules, the neutral molecules become ions. If the
electric field strength is large enough, the ionized collision products
are themselves accelerated and produce more ions on impact, and so
forth. This avalanche of ions is what we call a spark. (a) Assume that
an ion moves, on average, exactly one mean free path through the air
before hitting a molecule. If the ion needs to acquire approximately
1.0 eV of kinetic energy in order to ionize a molecule, estimate the
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minimum strength of the electric field required at standard room
pressure and temperature. Assume that the cross-sectional area of an
air molecule is about (b) How does the strength of the elec-
tric field in Part (a) depend on temperature? (c) How does the
strength of the electric field in Part (a) depend on pressure?

CHARGE

21 • A plastic rod is rubbed against a wool shirt, thereby ac-
quiring a charge of How many electrons are transferred
from the wool shirt to the plastic rod?
22 • A charge equal to the charge of Avogadro’s number of
protons is called a faraday. Calculate the number
of coulombs in a faraday.

23 • What is the total charge of all of the protons in 1.00 kg
of carbon?
24 •• Suppose a cube of aluminum which is 1.00 cm on a side
accumulates a net charge of (a) What percentage of the
electrons originally in the cube was removed? (b) By what percent-
age has the mass of the cube decreased because of this removal?

25 •• During a process described by the photoelectric effect, ul-
traviolet light can be used to charge a piece of metal. (a) If such light
is incident on a slab of conducting material and electrons are ejected
with enough energy that they escape the surface of the metal, how
long before the metal has a net charge of if 
electrons are ejected per second? (b) If 1.3 eV is needed to eject an
electron from the surface, what is the power rating of the light
beam? (Assume this process is 100% efficient.)

COULOMB’S LAW

26 • A point charge is at the origin and a point
charge is on the axis at (a) Find the electric
force on charge (b) Find the electric force on (c) How would
your answers for Parts (a) and (b) differ if were 

27 • Three point charges are on the axis: is
at is at the origin, and 
is at Find the electric force on 
28 •• A point charge and a point charge are a
distance apart. Where should a third point charge be placed so
that the electric force on that third charge is zero?

29 •• A point charge and a point charge are a
distance apart. Where should a third point charge be placed so
that the electric force on that third charge is zero?
30 •• Three point charges, each of magnitude 3.00 nC, are at
separate corners of a square of edge length 5.00 cm. The two point
charges at opposite corners are positive, and the third point charge
is negative. Find the force exerted by these point charges on a
fourth point charge at the remaining corner.
31 •• A point charge of is on the axis at 
and a second point charge of is on the axis at

Find the electric force on a point charge of 
on the axis at 
32 •• A point particle that has a charge of is located at
the origin. A second point particle that has a charge of is at

A third point particle, an electron, is at a
point that has coordinates Find the values of and such that
the electron is in equilibrium.
33 •• A point particle that has a charge of is located
at the origin; a second point particle that has a charge of is
located at and a third point particle that has ax � 0, y � 0.10 m;

2.0 mC
�1.0 mC

yx(x, y).
x � 1.0 m, y � 0.50 m.

6.0 mC
�2.5 mC

x � 8.00 cm.x
2.00 mCy � �3.00 cm.
y�5.00 mC

y � 3.00 cm,y5.00 mC
q4 � �3.00 nC

L
4.0-mC�2.0-mC

L
4.0-mC2.0-mC

SSMq1 .x � 3.0 m.
q3 � �6.0 mCx � �3.0 m, q2 � 4.0 mC
q1 � �6.0 mCx

�6.0 mC?q2

q1 .q2 .
x � 3.0 m.xq2 � 6.0 mC

q1 � 4.0 mC

1.00 � 106�1.50 nC
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charge of is located at Find the total elec-
tric force on each of the three point charges.

34 •• A point particle that has a charge of is located
at and a point particle that has a charge is located
at The electric force on a point particle at

that has a charge of is 
Determine the charge 

35 ••• Five identical point
charges, each having charge

are equally spaced on a
semicircle of radius as
shown in Figure 21-37.
Find the force (in
terms of and 

) on a charge 
located equidis-
tant from the five
other charges.

SSM

qR
Q,k ,

R
Q,

q.
�(19.7 N)in.2.00 mCx � 8.00 cm, y � 0

x � 4.00 cm, y � 0.
qx � 0, y � 0

5.00 mC

x � 0.20 m, y � 0.4.0 mC

36 ••• The structure of the molecule is approximately that
of an equilateral tetrahedron, with three ions forming the base
and an ion at the apex of the tetrahedron. The length of each side
is Calculate the electric force that acts on each ion.

THE ELECTRIC FIELD

37 • A point charge of is at the origin. What are the
magnitude and direction of the electric field on the axis at (a)

and (b) (c) Sketch the function versus 
for both positive and negative values of (Remember that is
negative when points in the direction.)

38 • Two point charges, each are on the axis;
one point charge is at the origin and the other is at 
Find the electric field on the axis at (a)
(b) (c) and (d) (e) At what point
on the axis is the electric field zero? (f) Sketch versus for

39 • When a 2.0-nC point charge is placed at the origin, it ex-
periences an electric force of in the direction.
(a) What is the electric field at the origin? (b) What would be the elec-
tric force on a point charge placed at the origin? (c) If this
force is due to the electric field of a point charge on the axis at

what is the value of that charge?

40 • The electric field near the surface of Earth points down-
ward and has a magnitude of (a) Compare magnitude of
the upward electric force on an electron with the magnitude of grav-
itational force on the electron. (b) What charge should be placed on a
Ping-Pong ball of mass 2.70 g so that the electric force balances the
weight of the ball near Earth’s surface?

41 •• Two point charges and both have a charge equal to
and are on the axis at and re-

spectively. (a) What are the magnitude and direction of the electric
field on the axis at (b) What is the force exerted on a
third charge when it is placed on the axis at 

42 •• A point charge of is located on the axis at
and a second point charge of is located on

the axis at Where should a third charge of 
be placed so that the electric field at the origin is zero?

�6.0 mCx � �4.0 cm.x
�8.0 mCx � �3.0 cm,

x�5.0 mC
SSM
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x � 10 m.x � 6.0 m,x � 2.0 m,
x � �2.0 m,x
x � 8.0 m.
x�4.0 mC,

SSM�xE
S

Exx.
xExx � �10 m?x � 6.0 m

x
4.0 mC

1.64 � 10�10 m.
N3�

H�

NH3
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Problem 35
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43 •• A point charge is located at 
and a point charge is located at 

(a) Find the magnitude and direction of the electric field
at (b) Calculate the magnitude and direction of
the electric force on an electron that is placed at 
44 •• Two equal positive charges are on the axis; one point
charge is at and the other is at (a) Show that on the

axis the component of the electric field is given by
(b) Show that near the origin, where is

much smaller than (c) Show that for values of 
much larger than Explain why a person might expect
this result even without deriving it by taking the appropriate limit.
45 •• A point charge is located at 
and a point charge is located at 
(a) Find the magnitude and direction of the electric field at

(b) Find the magnitude and direction of the
force on a proton placed at 
46 •• Two positive point charges, each having charge , are on
the axis—one at and the other at . (a) Show that the
electric field strength on the axis is greatest at and

by computing and setting the derivative equal to
zero. (b) Sketch the function versus using your results for Part (a) of
this problem and the facts that is approximately when is
much smaller than and is approximately when is much
larger than 

47 •• Two point particles, each having a charge sit on the
base of an equilateral triangle that has sides of length as shown
in Figure 21-38. A third point particle that has a charge equal to 
sits at the apex of the triangle. Where must a fourth point particle
that has a charge equal to be placed in order that the electric field
at the center of the triangle be zero? (The center is in the plane of
the triangle and equidistant from the three vertices.) SSM

q

2q
L
q,

a.
x2kq>x2Exa

x2kqx>a3Ex

xEx

�Ex >�xx � �a>12
x � a>12x

y � �ay � �ay
Q

x � �3.0 m, y � 1.0 m.
x � �3.0 m, y � 1.0 m.

y � �2.0 m.x � 2.0 m,�4.0-mC
y � 3.0 m,x � 1.0 m,5.0-mC

a, Ex � 2kq>x2.
xa, Ex � 2kqx>a3.

xEx � 2kqx>(x2 � a2)3>2.xx
y � �a.y � �a

yq
x � �1.0 m, y � 0.

x � �1.0 m, y � 0.
y � 2.0 m.

x � 1.0 m,12-mCy � �2.0 m,
x � 4.0 m,�5.0-mC

45°

Ev0

–e

10 cm

2 cm

–
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q q

2q
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Problems 47 and 48

58 •• ENGINEERING APPLICATION An electron that has a ki-
netic energy equal to is moving to the right along
the axis of a cathode-ray tube as shown in Figure 21-40. An elec-
tric field exists in the region between the
deflection plates, and no electric field ( exists outside this
region. (a) How far is the electron from the axis of the tube when

E
S

� 0)
E
S

� (2.00 � 104 N>C)jn

2.00 � 10�16 J

48 •• Two point particles, each having a charge equal to sit
on the base of an equilateral triangle that has sides of length as
shown in Figure 21-38. A third point particle that has a charge
equal to sits at the apex of the triangle. A fourth point particle
that has charge is placed at the midpoint of the baseline mak-
ing the electric field at the center of the triangle equal to zero.
What is the value of (The center is in the plane of the triangle
and equidistant from all three vertices.)

49 •• Two equal positive point charges are on the axis;
one is at and the other is at The electric field at the
origin is zero. A test charge placed at the origin will therefore be
in equilibrium. (a) Discuss the stability of the equilibrium for a pos-
itive test charge by considering small displacements from equilib-
rium along the axis and small displacements along the axis.
(b) Repeat Part (a) for a negative test charge. (c) Find the magnitude
and sign of a charge that when placed at the origin results in a net
force of zero on each of the three charges.
50 ••• Two positive point charges are on the axis at 
and A bead of mass and charge slides without fric-
tion along a taut thread that runs along the axis. Let be the po-
sition of the bead. (a) Show that for the bead experiences a
linear restoring force (a force that is proportional to and directed
toward the equilibrium position at and therefore undergoes
simple harmonic motion. (b) Find the period of the motion.

x � 0)
x

x V a,
xx

�qmy � �a.
y � �ay�q

q0

yx

q0

y � �a.y � �a
y�q

q�?

q�
2q

L
q,

POINT CHARGES IN ELECTRIC FIELDS

51 •• The acceleration of a particle in an electric field depends
on (the charge-to-mass ratio of the particle). (a) Compute 
for an electron. (b) What are the magnitude and direction of the ac-
celeration of an electron in a uniform electric field that has a mag-
nitude of (c) Compute the time it takes for an electron
placed at rest in a uniform electric field that has a magnitude of

to reach a speed (When the speed of an electron ap-
proaches the speed of light relativistic kinematics must be used
to calculate its motion, but at speeds of or less, nonrelativis-
tic kinematics is sufficiently accurate for most purposes.) (d) How
far does the electron travel in that time?
52 • The acceleration of a particle in an electric field depends
on the charge-to-mass ratio of the particle. (a) Compute for a
proton, and find its acceleration in a uniform electric field that has
a magnitude of (b) Find the time it takes for a proton ini-
tially at rest in such a field to reach a speed of (where is the
speed of light). (When the speed of a proton approaches the speed
of light relativistic kinematics must be used to calculate its mo-
tion, but at speeds of or less, nonrelativistic kinematics is suf-
ficiently accurate for most purposes.)

53 • An electron has an initial velocity of in
the direction. It enters a region that has a uniform electric field

(a) Find the acceleration of the electron. (b) How
long does it take for the electron to travel 10.0 cm in the direc-
tion in the region that has the field? (c) Through what angle, and in
what direction, is the electron deflected while traveling the 10.0 cm
in the direction?
54 •• An electron is released from rest in a weak electric field
given by After the electron has traveled
a vertical distance of what is its speed? (Do not neglect the
gravitational force on the electron.)
55 •• A 2.00-g charged particle is released from rest in a region
that has a uniform electric field After traveling a
distance of 0.500 m in this region, the particle has a kinetic energy
of 0.120 J. Determine the charge of the particle.
56 •• A charged particle leaves the origin with a speed of

at an angle of above the axis. A uniform electric
field, given by exists throughout the region. Find such
that the particle will cross the axis at if the particle is
(a) an electron and (b) a proton.

57 •• An electron starts at the position shown in Figure 21-39
with an initial speed at to the axis.
The electric field is in the direction and has a magnitude of

The black lines in the figure are charged metal
plates. On which plate and at what location will the electron
strike? SSM

3.50 � 103 N>C.
�y

x45°v0 � 5.00 � 106 m>s
x � 1.50 cmx

E0E
S

� �E0 jn,
x35°3.00 � 106 m>s

E
S

� (300 N>C)in.

1.0 mm,
E
S

� �1.50 � 10�10 N>Cjn.

x

�x
E
S

� (300 N>C)jn.
�x

2.00 � 106 m>s
0.01c

c ,

c0.01c
100 N>C.

q>mSSM

0.01c
c ,

0.01c.100 N>C 100 N>C?

q>mq>m
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DIPOLES

59 • Two point charges, and are sep-
arated by (a) What is the magnitude of the dipole moment of
this pair of charges? (b) Sketch the pair and show the direction of the
dipole moment.
60 • A dipole of moment is placed in a uniform elec-
tric field that has a magnitude of What is the magni-
tude of the torque on the dipole when (a) the dipole is aligned with the
electric field, (b) the dipole is transverse to (perpendicular to) the elec-
tric field, and (c) the direction of dipole makes an angle of with the
direction of electric field? (d) Defining the potential energy to be zero
when the dipole is transverse to the electric field, find the potential en-
ergy of the dipole for the orientations specified in Parts (a) and (c).

GENERAL PROBLEMS

61 • Show that it is only possible to place one isolated proton
in an ordinary empty coffee cup by considering the following situa-
tion. Assume the first proton is fixed at the bottom of the cup.
Determine the distance directly above this proton where a second
proton would be in equilibrium. Compare this distance to the depth
of an ordinary coffee cup to complete the argument.
62 •• Point charges of and are
located on the axis at and re-
spectively. Calculate the electric field on the axis at 
and at Are there any points on the axis where the
magnitude of the electric field is zero? If so, where are those points?
63 •• Point charges of and are located on
the axis at and respectively.
(a) Calculate the electric field strength at (b) Estimate
the electric field strength at by modeling the two
charges as an electric dipole located at the origin and using

(Equation 21-10). Compare your result with the result
obtained in Part (a), and explain the reason for the difference be-
tween the two results.
64 •• A fixed point charge
of is connected by strings
to point charges of and

as shown in Figure 21-41.
Find the tensions and 
65 •• A positive charge is to be divided into two positive
point charges and Show that, for a given separation the force
exerted by one charge on the other is greatest if 
66 •• A point charge is located on the axis at and a
point charge is located at The electric force on a
point charge of is zero if that charge is placed
at and is 126 N in the direction if placed at

Determine the charge Q.x � 8.00 cm.
�xx � 4.00 cm,

�2.00 mC
x � 12.0 cm.4Q

x � 0,xQ
SSMq1 � q2 � 1

2Q.
D ,q2 .q1

Q

T2 .T1

�4q,
�q

�2q

E � 2kp> ƒx ƒ 3

x � 10.00 cm
x � 10.00 cm.

x � �1.00 cm,x � �1.00 cmx
�5.00 mC�5.00 mC

xx � 15.0 cm.
x � 3.00 cmx

x � �1.00 cm,x � �1.00 cm, x � 0,x
�5.00 mC�5.00 mC, �3.00 mC,

SSM

30°

4.0 � 104 N>C.
0.50 e # nm

4.0 mm.
q2 � �2.0 pC,q1 � 2.0 pC

E
→

Deflection plates

Fluorescent
screen

4 cm 12 cm

67 •• Two point particles separated by 0.60 m have a total
charge of (a) If the two particles repel each other with a
force of 80 N, what is the charge on each of the two particles? (b) If
the two particles attract each other with a force of 80 N, what are the
charges on the two particles?

68 •• A point particle that has charge and unknown mass
is released from rest in a region that has a uniform electric field
that is directed vertically downward. The particle hits the ground

at a speed where is the initial height of the particle.
Find in terms of and 

69 •• A rigid 1.00-m-long rod is pivoted about its center
(Figure 21-42). A charge is placed on one end of
the rod, and a charge is placed a distance 
directly below it. (a) What is the force exerted by on (b) What
is the torque (measured about the rotation axis) due to that force?
(c) To counterbalance the attraction between the two charges, we
hang a block 25.0 cm from the pivot as shown. What value should
we choose for the mass of the block? (d) We now move the block
and hang it a distance of 25.0 cm from the balance point, on the
same side of the balance as the charge. Keeping the same, and 
the same, what value should we choose for to keep this appara-
tus in balance? SSM

q2

dq1

m

q1?q2

d � 10.0 cmq2 � �q1

q1 � 5.00 � 10�7 C

g.q,E,m
hv � 21gh ,

E
S
m

�q

200 mC.

T1 T2

d d
+q +2q +4q
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50 cm 25 cm

10 cm q1

q2
m
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70 •• Two point
charges are located at 

and at 
Two other

point charges, each with
charge are located at

and
at
(Figure 21-43). The electric
field at due to
the presence of the four
charges is 
Determine Q.

(4.0 � 103 N>C)in.

x � 0, y � 0

y � �2.0 mx � 4.0 m,
y � 2.0 mx � 4.0 m,

Q,

y � �2.0 m.
x � 0,y � 2.0 m
x � 0,

3.0-mC

x

y

μ3.0    C

μ3.0    C

Q

Q+

+

F I G U R E  2 1 - 4 3

Problem 70

71 •• Two point charges have a total charge equal to
and are separated by (a) Find the charge of each

particle if the particles repel each other with a force of 120 N.
(b) Find the force on each particle if the charge on each particle
is

72 •• Two point charges have a total charge equal to
and are separated by (a) Find the charge of each

particle if the particles attract each other with a force of 120 N.
(b) Find the force on each particle if the charge on each particle
is

73 •• A point charge of is located at the origin;
a point charge of is located on the axis at 
a third point charge is located on the axis at 
The electric force on the charge is 240 N in the direc-
tion. (a) Determine the charge (b) With this configuration of three
charges, at what location(s) is the electric field zero?

Q.
�x4.00–mC

x � 0.320 m.xQ
x � 0.200 m;x4.00 mC

�3.00 mC

SSM100 mC.

0.600 m.200 mC

SSM100 mC.

0.600 m.200 mC

F I G U R E  2 1 - 4 0

Problem 58

it exits the region between the plates? (b) At what angle is the
electron moving, with respect to the axis, after exiting the region
between the plates? (c) At what distance from the axis will the
electron strike the fluorescent screen?
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74 •• Two point particles, each of mass
and charge are suspended from a com-

mon point by threads of length Each
thread makes an angle with the vertical
as shown in Figure 21-44. (a) Show that 

where is the 
Coulomb constant. (b) Find if 

and
75 •• Suppose that in Problem 74

and (a) What is the
angle that each string makes with the vertical if

? (b) What is the angle that each
string makes with the vertical if one particle has
a charge of and the other has a charge
of
76 •• Four point charges of equal magni-
tude are arranged at the corners of a square of
side as shown in Figure 21-45. (a) Find the magnitude and direction
of the force exerted on the charge in the lower left corner by the other
three charges. (b) Show that the
electric field at the midpoint of
one of the sides of the square is
directed along that side to-
ward the negative charge and
has a magnitude given by

E � k
8q

L2 a1 �
1

525
b .

E

L

1.0 mC?
0.50 mC

q � 0.75 mC

m � 0.010 kg.L � 1.5 m

u � 10.0°.L � 50.0 cm,
m � 10.0 g,q
kq � 2L sinu2(mg>k) tan u

u

L.
q,m

θ θ

m m

L L

q q
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Problem 74

77 •• Figure 21-46 shows a dumbbell consisting of two iden-
tical small particles, each of mass attached to the ends of a
thin (massless) rod of length that is pivoted at its center. The
particles have charges of and and the dumbbell is lo-
cated in a uniform electric field Show that for small values of
the angle between the direction of the dipole and the direction
of the electric field, the system displays a rotational form of sim-
ple harmonic motion, and obtain an expression for the period of
that motion. SSM

u

E
S

.
�q,�q

a
m,

–q

+q

+q

–q

78 •• For the dumbbell in Problem 77, let 
and The dumbbell is initially at

rest and makes an angle of with the axis. The dumbbell is
then released, and when it is momentarily aligned with the elec-
tric field, its kinetic energy is Determine the mag-
nitude of .

79 •• An electron (charge mass ) and a positron (charge
mass ) revolve around their common center of mass under the

influence of their attractive coulomb force. Find the speed of each
particle in terms of and their separation distance 
80 ••• A simple pendulum of length 1.0 m and mass

is placed in a uniform, electric field that is directed
vertically upward. The bob has a charge of The period of
the pendulum is 1.2 s. What are the magnitude and direction of 
81 ••• A point particle of mass and charge is constrained
to move vertically inside a narrow, frictionless cylinder (Figure
21-47). At the bottom of the cylinder is a point charge having the
same sign as (a) Show that the particle whose mass is will be inmq.

Q

qm

E
S

?
�8.0 mC.

E
S

5.0 � 10�3 kg

SSML.e, m, k ,
v

m�e,
m�e,

q
5.00 � 10�3 J.

x60°
E
S

� (600 N>C)in.a � 0.300 m,
m � 0.0200 kg,

E

m

m

–q

+q

a
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Problems 77 and 78

equilibrium at a height 
(b) Show that if the particle is displaced from
its equilibrium position by a small amount
and released, it will exhibit simple harmonic
motion with angular frequency 
82 ••• Two neutral molecules on the axis
attract each other. Each molecule has a dipole
moment and these dipole moments are on
the direction and are separated by a dis-
tance Derive an expression for the force of
attraction in terms of and 
83 ••• Two equal positive point charges 
are on the axis at and 
(a) Obtain an expression for the electric field on the axis as a func-
tion of . (b) A bead of mass which has a charge moves along
the axis on a thin frictionless taut thread. Find the electric force
that acts on the bead as a function of and determine the sign of 
such that this force always points away from the origin. (c) The
bead is initially at rest at the origin. If it is given a slight nudge in
the direction, how fast will the bead be traveling the instant the
net force on it is a maximum? (Assume any effects due to gravity
are negligible.)
84 ••• A gold nucleus is from a proton,
which initially is at rest. When the proton is released, it speeds away
because of the repulsion that it experiences due to the charge on the
gold nucleus. What is the proton’s speed a large distance (assume to
be infinity) from the gold nucleus? (Assume the gold nucleus re-
mains stationary.)
85 ••• During a famous experiment in 1919, Ernest Rutherford
shot doubly ionized helium nuclei (also known as alpha particles) at
a gold foil. He discovered that virtually all of the mass of an atom re-
sides in an extremely compact nucleus. Suppose that during such an
experiment, an alpha particle far from the foil has a kinetic energy of
5.0 MeV. If the alpha particle is aimed directly at the gold nucleus,
and the only force acting on it is the electric force of repulsion ex-
erted on it by the gold nucleus, how close will it approach the gold
nucleus before turning back? That is, what is the minimum center-to-
center separation of the alpha particle and the gold nucleus?
86 ••• During the Millikan experiment used to determine the
charge on the electron, a charged polystyrene microsphere is re-
leased in still air in a known vertical electric field. The charged mi-
crosphere will accelerate in the direction of the net force until it
reaches terminal speed. The charge on the microsphere is deter-
mined by measuring the terminal speed. During one such experi-
ment, the microsphere has radius and the field has
a magnitude The magnitude of the drag force
on the sphere is given by where is the speed of the
sphere and is the viscosity of air 
Polystyrene has density (a) If the electric field is
pointing down and the polystyrene microsphere is rising with a ter-
minal speed of what is the charge on the sphere?
(b) How many excess electrons are on the sphere? (c) If the direction
of the electric field is reversed but its magnitude remains the same,
what is the new terminal speed?
87 ••• In Problem 86, there is a description of the Millikan exper-
iment used to determine the charge on the electron. During the ex-
periment, a switch is used to reverse the direction of the electric field
without changing its magnitude, so that one can measure the termi-
nal speed of the microsphere both as it is moving upward and as it is
moving downward. Let represent the terminal speed when the
particle is moving up and the terminal speed when moving down.
(a) If we let show that where is the mi-
crosphere’s net charge. For the purpose of determining what ad-
vantage does measuring both and have over measuring only
one terminal speed? (b) Because charge is quantized, can only
change by steps of magnitude , where is an integer. Using the
data from Problem 86, calculate SSM¢ .

NN¢
u

vdvu

q,
qq � 3phru>E,u � vu � vd ,

vd

vu

1.16 � 10�4 m>s,

1.05 � 103 kg>m3.
(h � 1.8 � 10�5 N # s>m2).h

vFD � 6phrv,
E � 6.00 � 104 N>C.

r � 5.50 � 107 m,

SSM

100 fm (1 fm � 10�15 m)

�y

qy
y

q,m,y
y

x � � 1
2 a.x � 1

2 ax
Q

d.p
d.

�x
pS,

x
v � (2g>y0)

1>2.

(kqQ>mg)1>2.y0 �

m q

Q

y0
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How would you calculate the

charge on the surface of Earth?

(See Example 22-15.)
?
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LIGHTNING IS AN ELECTRIC
PHENOMENA. DURING A LIGHTNING
STRIKE, CHARGES ARE TRANSFERRED
BETWEEN THE CLOUDS AND THE
GROUND. THE VISIBLE LIGHT GIVEN OFF
COMES FROM AIR MOLECULES
RETURNING TO LOWER ENERGY STATES.
(Photo Disc.)

The Electric Field II:
Continuous Charge
Distributions

22.1 Calculating from Coulomb’s Law

22.2 Gauss’s Law

22.3 Using Symmetry to Calculate with Gauss’s Law

22.4 Discontinuity of En

22.5 Charge and Field at Conductor Surfaces

22.6 The Equivalence of Gauss’s Law and Coulomb’s Law in

Electrostatics

O
n a microscopic scale, charge is quantized. However, there are often situa-
tions in which many charges are so close together that the charge can be
thought of as continuously distributed. We apply the concept of density to
charge similarly to the way we use it to describe matter. 

In addition to continuous charge distributions, we examine the impor-
tance of symmetry within the electric field. The mathematical findings of

Carl Friedrich Gauss show that every electric field maintains symmetric proper-
ties. It is an understanding of charge distribution and symmetry within the electric
field that aids scientists in a vast array of fields.

In this chapter, we show how Coulomb’s law is used to calculate the electric
field produced by various types of continuous charge distributions. We then
introduce Gauss’s law and use it to calculate the electric fields produced by
charge distributions that have certain symmetries.

E
S

E
S

*



The component of is
where is the angle

between and .* The and 
components of are calculated in
like manner.  

rn
zyinrn

urn # in � cosu,
rnx!
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P

r r̂
k dq

r2
dE =

dq =    dVρ

22-1 CALCULATING FROM COULOMB’S LAW

Figure 22-1 shows an element of charge that is small enough to be con-
sidered a point charge. The element of charge is the amount of charge in volume
element and is the charge per unit volume. Coulomb’s law states that the elec-
tric field at a field point due to this element of charge is

22-1a

where is a unit vector directed away from the charge element and toward
point and (the component of in the direction of ) is given by 

The total field at is calculated by integrating this expression over the entire
charge distribution. That is,

22-1b

ELECTRIC FIELD DUE TO A CONTINUOUS CHARGE DISTRIBUTION

The use of a continuous charge density to describe a large number of discrete
charges is similar to the use of a continuous mass density to describe air, which ac-
tually consists of a large number of discrete atoms and molecules. In both cases, it
is usually easy to find a volume element that is large enough to contain a mul-
titude of individual charge carriers and yet is small enough that replacing with
a differential and using calculus introduces negligible error. If the charge is dis-
tributed over a surface or along a line, we use or and inte-
grate over the surface or line. (In these cases and are the charge per unit area
and charge per unit length, respectively.) The integration usually is done by ex-
pressing in terms of its Cartesian components, and then integrating one compo-
nent at a time.

PROBLEM-SOLVING STRATEGY

Calculating Using Equations 22-1a and 22-1b

PICTURE Sketch the charge configuration along with a field point (the
point where is to be calculated). In addition, the sketch should include an
increment of charge at an arbitrary source point 

SOLVE

1. Add coordinate axes to the sketch. The choice of axes should exploit any
symmetry of the charge configuration. For example, if the charge is along
a straight line, then select that line as one of the coordinate axes. Draw a
second axis that passes through the field point In addition, include the
coordinates of both and the distance between and and the unit
vector directed away from toward 

2. To compute the electric field using Equation 22-1b, we express 
in component form. The component of is ,
where is the angle between and (see Figure 22-2), and the component
of is dEy � dEr rn # jn � dEr sinu.dE

S
yinrnu

dEx � dEr rn # in � dEr cosudE
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x
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S
� dEr rnE
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S.dq
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dq � l dLdq � s dA
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¢V
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E
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� � krnr2 dq
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k dq
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PdE
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rdV
dq

dq � r dV

E
S

* The componet of a vector in a given direction is equal to the scalar product of the vector with the unit vector in the
given direction. Scalar products are discussed in Section 6-3.

F I G U R E  2 2 - 1 An element of charge 
produces a field at point

The field at is calculated by integrating
Equation 22-1a over the entire charge
distribution.

PP.
dE

S
� (k dq>r2)rn

dq
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θ1 θ2

dq =   dxsλ

=λ

L = x2 − x1

θ

P

S

dE

y

x
dq

dxs

= −xs

Q

0

yP

x1
xs

x2

r2

r

r1
ĵ

î

r̂

Q
L

F I G U R E  2 2 - 2 Geometry for the
calculation of the electric field at field
point due to a uniformly charged rod.P
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2. Find expressions for and in
terms of and where is the component of

in the direction away from toward :PSdE
S

dEru,dEr

dEydExE
S

� Ex i
n � Ey j

n.

so

dEy � dEr rn # jn � dEr sinu

dEx � dEr rn # in � dEr cosu

dE
S

� dEr rn

3. First we solve for Express using Equation
21-1a, where is the distance from the source
point to the field point We see (Figure 22-2)
that In addition, use
dq � l dxS:

cosu � ƒxS ƒ>r � �xS>r.P.S

r

dErEx . and

so

dEx �
k dq

r2
 cosu �

k cosu l dxS
r2

cosu �
�xS
r

dEr �
k dq

r2

A thin rod of length and charge is uniformly charged, so it has a linear charge 
density Find the electric field at point where is an arbitrarily positioned 
point.

PICTURE Choose the axis so the rod is on the axis between points and and
choose the axis to be through the field point Let be the radial distance of from 
the axis. To calculate the electric field at we separately calculate and 
Using Equations 22-1, first find the field increment at due to an arbitrary increment

of the charge distribution. Then integrate each component of over the entire 
charge distribution. (Because is distributed uniformly, the linear charge density 
equals )

SOLVE

1. Sketch the charge configuration and the field point Include the and axes with
the axis lying along the line of charge and the axis passing through In addition,
sketch an arbitrary increment of the line charge at point (at ) that has a
length and a charge and the electric field at due to . Sketch the electric
field vector as if is positive (Figure 22-2):dqdE

S
dqPdq,dxS

x � xSS
P.yx
yxP.

Q>L.
lQ

dE
S

dq
PdE

S
Ey .ExP,E

S
x

PyPP.y
x2 ,x1xx

PP,l � Q>L.
QL

3. Express in Equation 22-1b in terms of its and components:

4. To calculate express as or or (whichever is
appropriate) and integrate. To calculate follow a procedure similar to
that used for calculating 

5. Symmetry arguments are sometimes used to show that one or more
components of are equal to zero. (For example, a symmetry argument
is used to show in Example 22-5.)

CHECK If the charge distribution is confined to a finite region of space at
points far from the charge distribution, the expression for the electric field
will approach that of a point charge located at the center of charge. (If the
charge configuration is sufficiently symmetric then the location of the center
of charge can be obtained by inspection.)

Ey � 0
E
S

Ex .
Ey ,

l dLs dAr dVdqEx ,

Ey � � dEy � � dEr sinu � � k dq

r2
 sinu

Ex � � dEx � � dEr cosu � � k dq

r2
 cosu

yxE
S

Example 22-1 Electric Field Due to a Line Charge of Finite Length

4. Integrate the step-3 result: dEx � �
x

2

x1

k cosu l dxS
r2

� kl�
x

2

x1

cosu dxS
r2

See

Math Tutorial for more

information on 

Trigonometry
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P
E

z

L

Q

R
r2

ER

Ez

r1

R̂

k̂

ˆ ˆ

Q
L

F I G U R E  2 2 - 3 The electric field due to a
uniformly charged thin rod.
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The electric field at point due to a thin uniformly charged rod (see Figure 22-3)
located on the axis is given by where

and 22-2a

22-2b

These equations are derived in Example 22-1. The expressions for (Equation
22-2a) are undefined at the end points of the thin charged rod and the expressions
for (Equation 22-2b) are undefined at all points on the axis (where ).
However, at all points where R � 0.ER � 0

R � 0zER

Ez

(R � 0)ER � �
kl
R

(cosu2 � cosu1) � �kla cotu2

r2
�

cotu1

r1
b

(r2 � 0)(r1 � 0)Ez �
kl
R

(sinu2 � sinu1) � kla 1
r2

�
1
r1
b

E
S

� Ezk
n � ERRn ,z

P

5. Next change the integration variable from to 
From Figure 22-2, find the relation between and 
and between and u.r

uxS

u.xS so

so r �
yP

sinu
sinu �

yP
r

,

xS � �
yP

tanu
� �yP cotu tanu �

yP

ƒxS ƒ
�
yP

�xS
,

6. Differentiate the step 5 result to obtain an expression
for (the field point remains fixed, so is
constant):

yPPdxS

dxS � �yP
d cotu

du
� yP csc2u du

7. Substitute for and for in the
integral in step 4 and simplify:

ryP>sinudxSyP csc2u du �
1
yP

�
u

2

u1

 cosu du  (yP � 0)�
x2

x1

cosu dxS
r2

� �
u2

u1

cosu yP csc2u du

y2
P>sin2u

8. Evaluate the integral and solve for Ex:

(r1 
 0 and r2 
 0)� kla 1
r2

�
1
r1
b

�
kl
yP
ayP
r2

�
yP
r1
bEx � kl

1
yP

�
u

2

u1

 cosu du �
kl
yP

(sinu2 � sinu1)

9. can be found using a procedure that parallels the
one in steps 3–7 for finding (to find see Problem
22-21):

Ey ,Ex

Ey

and

(yP � 0)Ey � 0

� �kla cotu2

r2
�

cotu1

r1
b (yP � 0)Ey � �

kl
yP

(cosu2 � cosu1)

10. Combine steps 8 and 9 to obtain and expression for
the electric field at P:

Ex i
n � Ey j

nE
S

�

CHECK Consider the plane that is perpendicular to and bisecting the rod. At points on this
plane, symmetry dictates that points directly away from the center of the rod. That is, we
expect that throughout this plane. At all points on this plane The step-8 result
gives if , as expected.

TAKING IT FURTHER The first expression for in the step 9 result is valid everywhere
in the plane but on the axis. The two cotangent functions in the expression for are
given by

and

and neither of these functions is defined on the axis (where ). The second expression
for in the step-9 result is obtained using Equation 22-1a. By recognizing that on the axis

we can see that Equation 22-1a tells us that which implies 

PRACTICE PROBLEM 22-1 Using the expression for in step 8, show that at all
points on the axis in the region x 
 x2 .x

Ex 
 0Ex

Ey � 0.dE
S

� �dEin,rn � �in,
xEy

yP � 0x

cotu2 �
�x2

yP
cotu1 �

�x1

yP

Eyxxy
Ey

r1 � r2Ex � 0
r1 � r2 .Ex � 0

E
S
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F I G U R E  2 2 - 4 Geometry for the
calculation of the electric field on the axis of
a uniform line charge of length charge 
and linear charge density l � Q>L.

Q,L,
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Example 22-2 of a Finite Line Charge and Far from the ChargeE
S

A charge is uniformly distributed along the axis, from to Show that
for large values of the expression for the electric field of the line charge on the axis ap-
proaches the expression for the electric field of a point charge at the origin.

PICTURE Use Equation 22-2a to show that for large values of the expression for the electric
field of the line charge on the axis approaches that of a point charge at the origin.

SOLVE

Qz
z

Q
zz

z � � 1
2L.z � � 1

2LzQ

1. The electric field on the axis has only a 
component, given by Equation 22-2a:

zz Ez � kla 1
r2

�
1
r1
b

2. Sketch the line charge. Include the axis, the field point and and (Figure 22-4):r2r1P,z

3. Substitute with and 
into the step 1 result and simplify:

r2 � z � 1
2Lr1 � z � 1

2L Az 
 1
2L B�

kQ

z2 � A 12L B 2Ez � kla 1

z � 1
2L

�
1

z � 1
2L
b �

kQ

L
L

z2 � A 12L B 2

CHECK The approximate expression (step 4) falls off inversely as the square of the dis-
tance from the origin. This expression is the same as the expression for the electric field of a
point charge located at the origin.

PRACTICE PROBLEM 22-2 The validity of the step 3 result is established for the region
Is the step 3 result also valid in the region Explain

your answer.
�L>2 	 z 	 �L>2 ?L>2 
 z 
  .

Q

z,

4. Find an approximate expression for for
which is done by neglecting in

comparison with in the step 3 result.z2

(1
2L)2zW L,

Ez Ez �
kQ

z2 (zW L)

1. Choose the first expression for
the electric field in each of
Equations 22-2a and 22-2b: ER � �

kl
R

(cosu2 � cosu1)

Ez �
kl
R

(sinu2 � sinu1)

2. Take the limit as both and
as u2 S p.

u1 S 0

ER � �
kl
R

(cosp � cos0) � �
kl
R

(�1 � 1) � 2
kl
R

Ez �
kl
R

(sinp � sin0) �
kl
R

(0 � 0) � 0

3. Express the electric field in
vector form:

2kl
R

RnE
S

� Ezk
n � ERRn � 0kn �

2kl
R

Rn �

CHECK The electric field is in the radial direction as expected. We expected this due to the
symmetry. (The line charge is uniformly distributed and extends to infinity in both directions.)

TAKING IT FURTHER The magnitude of the electric field decreases inversely with the
radial distance from the line charge.

Example 22-3 Due to an Infinite Line Charge

Find the electric field due to a uniformly charged line that extends to infinity in both directions
and has linear charge density 

PICTURE A line charge is considered infinite if the distances between the ends of the line
charge and the field points of interest are much much greater than the distances between any
of the radial distances of the field points from the line charge. To calculate the electric field
due to such a line charge we take the limit (see Figure 22-2) both as and as 
From the figure, we see that taking the limit as both and as is needed.
See Equations 22-2a and 22-2b for expressions for the electric field.

SOLVE

u2 S pu1 S 0
x2 S �.x1 S �

l.

E
S
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Example 22-4 Approximating Equations 22-2a and 22-2b on the Symmetry Plane

A charge is uniformly distributed along the axis, from to (a) Find an
expression for the electric field on the plane as a function of the radial distance of
the field point from the axis. (b) Show that for the expression found in Part (a)
approaches that of a point charge at the origin of charge (c) Show that for the
expression found in Part (a) approaches that of an infinitely long line charge on the axis
with a uniform linear charge density 

PICTURE The charge configuration is the same as that in Example 22-2, and the linear
charge density is Sketch the line charge on the axis and put the field point in the

plane. Then use Equations 22-2a and 22-2b to find the electric field expression for
Part (a). The electric field due to a point charge decreases inversely with the square of the
distance from the charge. Examine the Part (a) result to see how it approaches that of a point
charge at the origin for The electric field due to a uniform line charge of infinite
length decreases inversely with the radial distance from the line (Equation 22-3). Examine
the Part (a) result to see how it approaches the expression for the electric field of a line charge
of infinite length for 

SOLVE

R V L.

RW L.

z � 0
zl � Q>L.

l � Q>L.
z

R V L,Q.
RW L,z

R,z � 0
z � � 1

2L.z � � 1
2LzQ

(a) 1. Choose the first expression for the
electric field in each of 
Equations 22-2a and 22-2b: ER � �

kl
R

(cosu2 � cosu1)

Ez �
kl
R

(sinu2 � sinu1)

The electric field due to a uniformly charged line that extends to infinity in both
directions is given by

22-3

where is the linear charge density, is the radial distance from the line charge to
the field point, and is the unit vector in the radial direction. Equation 22-3 is
derived in Example 22-3.

Rn
Rl

E
S

�
2kl
R

Rn

PRACTICE PROBLEM 22-3

Show that if and are in SI units then Equation 22-3 gives the electric field in
newtons per coulomb.

Rk, l,

It is customary to write the Coulomb constant in terms of another constant, 
called the electric constant (permittivity of free space):

22-4

Using this notation, Coulomb’s law for (Equation 21-7) is written

22-5

and for a uniformly charged infinite line (Equation 22-3) with linear charge
density is written

22-6

The value of in SI units is

22-7P0 �
1

4pk
� 8.85 � 10�12 C2>(N # m2)

P0

E
S

�
1

2pP0

l

R
Rn

l

E
S

E
S

� k
q

r2
rn �

1
4pP0

q

r2
rn

E
S

k �
1

4pP0

P0 ,k
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2. Sketch the charge configuration with the line charge on the axis from to 
Show the field point in the plane a distance from the origin (Figure 22-5):Rz � 0P

z � � 1
2L.z � � 1

2Lz

3. From the figure, we see that so
and

Substitute into
the step 1 results:
cosu2 � cos(p � u1) � �cosu1 .
sinu2 � sin(p � u1) � sinu1

u2 � u1 � p,

ER � �
kl
R

(�cosu1 � cosu1) �
2kl
R

 cosu1

Ez �
kl
R

(sinu1 � sinu1) � 0

4. Express in terms of and and substitute
into the step-3 result:

LRcosu1

so

ER �
2kl
R

1
2L

4R2 � A 12L B 2 �
klL

R4R2 � A 12L B 2
cosu1 �

1
2L

4R2 � A 12L B 2

5. Express the electric field in vector form, and
substitute for :lLQ

so
kQ

R4R2 � A 12L B 2 RnE
S

� ERRn �

E
S

� Ezk
n � ERRn � 0kn � ERRn

CHECK Parts (b) and (c) are themselves plausibility checks for the Part (a) result. They reveal
the validity of the Part (a) result in two limiting cases, and 

TAKING IT FURTHER Figure 22-6 shows
the exact result for a line charge of length

and a linear charge density of
It also shows the limiting

cases of an infinite line charge of the same
charge density and a point charge Q � lL.

l � 4.5 nC>m.
L � 10 cm

R V L.RW L

(b) 1. Examine the step-5 result. If then
Substitute for R2 � (1

2L)2:R2R2 � (1
2L)2 � R2.

RW L (RW L)E
S

�
kQ

R3R2
Rn �

kQ

R2 Rn

2. This (approximate) expression for the electric
field decreases inversely with the square of the
distance from the origin, just as it would for a
point charge at the origin.Q

(c) 1. Examine the Part (a) , step-5 result. If 
then Substitute for

This (approximate) expression for
the electric field falls off inversely with the
radial distance from the line charge, just as the
exact expression for an infinite line charge
(Equation 22-3) would.

R2 � (1
2L)2.

(1
2L)2R2 � (1

2L)2 � (1
2L)2.

R V L

kQ

R2 Rn (RW L)E
S

�

(R V L)
2kl
R

RnE
S

�
klL

R4 A 12L B 2 Rn �

0 40

3

2

1

0
10 20 30

Line segment

For small R, the field of
the line segment approaches 
that of infinite line.

For large R, the field of
the line segment approaches 
that of the point charge.

Point charge

Infinite line charge

R, cm

/CE, kN

F I G U R E  2 2 - 6 The magnitude of the electric field is plotted versus distance for a 10-cm-long
line charge, a point charge, and an infinite line charge.
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Example 22-5 on the Axis of a Charged Ring

A thin ring (a circle) of radius a is uniformly charged
with total charge Find the electric field due to this
charge at all points on the axis perpendicular to the
plane and through the center of the ring.

PICTURE Starting with (Equation
22-1a), calculate the electric field at an arbitrarily po-
sitioned field point on the axis. Sketch the charged
ring. Choose the axis to coincide with the axis of the
ring with the ring in the plane. Label a field
point somewhere on the axis, and place a source
point on the ring.

SOLVE

S
�zP
z � 0

z

dE
S

� (k dq>r2)rn

Q.

E
S

1. Write the equation (Equation 22-1a)
giving the electric field due to an
element of charge :dq

2. Sketch the ring (Figure 22-7a) and the
axis (the axis), and show the electric
field vector at field point due to an
increment of charge at source point:dq

P
z

4. Express the component of the electric
field from the step-1 result:

z dEz �
k dq

r2
 cosu �

k dq

r2
z
r

�
k dqz

r3

θ

θz

r

P

dE
r

dEz

dER⊥

a

dq

z

Source point

Field point

dE1

dE2

a

a

dE1R⊥

dq2

dq1

dE2R⊥

P dE2z

dE1z
z

(b)

(a)

5. Integrate both sides of the step-4 result.
Factor constant terms from the integral:

Ez � � kz dq

r3
�
kz
r3 � dq �

kz
r3
Q

6. Using the Pythagorean theorem gives

r � 2z2 � a2:

kQz

(z2 � a2)3>2 knE
S

� Ezk
n � ERRn � Ezk

n � 0 �

CHECK We expect the direction of the electric field at points on the axis to be directed
away from the origin for The step-6 result meets this expectation as is positive on
the axis and negative on the axis. In addition, for we expect to decrease in-
versely as the square of the distance from the
origin. The step-6 result meets this expectation,
giving if is negligibly small rela-
tive to 

PRACTICE PROBLEM 22-4 A plot of versus
along the axis using the step-6 result is shown

in Figure 22-8. Find the point on the axis of
the ring where is maximum. Hint:
where is maximum.Ez

dEz>dz � 0Ez

z
Ez

z2.
a2Ez � kQ>z2

EzW a�z�z
zQ 
 0.

z

dE
S

�
k dq

r2 rn

3. Sketch the ring (Figure 22-7b) and show
the axial and radial components of 
for identical charge elements on
opposite sides of the ring. The radial
components cancel in pairs, as can be
seen, so the resultant field is axial:

E
S

ER � 0

F I G U R E  2 2 - 7 (a) A ring charge of
radius The electric field at point on the 
axis due to the charge element shown has
one component along the axis and one
perpendicular to the axis. (b) For any
charge element there is an equal charge
element opposite it, and the electric field
components perpendicular to the axis sum
to zero.

z
dq2

dq1

z
z

dq
zPa.

−1−2−3−4 0 1 2 3 4

Ez

z/a

F I G U R E  2 2 - 8
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ConceptualExample 22-6 on the Axis of a Charged Ring

For the charged ring in Example 22-5, why is the magnitude of the electric field small near
the origin, even though the origin is closer to the ring than any other points on the axis (see
Figure 22-9)?

PICTURE The key to solving this problem can be found in Figure 22-7b. Redraw this figure
with the field point on the axis, but near the origin.zP

z

E
S

dE1

dE2

a

a

dq2

dq1

dE1R

dE2R

P dE2z

dE1z
z

F I G U R E  2 2 - 9

SOLVE

1. Redraw Figure 22-7b with the field
point near the origin:P

2. The electric fields near the origin due to
the two elements of charge (shown in
Figure 22-9) are large but are of equal
magnitude and nearly oppositely
directed, so they nearly sum to zero.

Near the origin the resultant electric field
is axial and small.

CHECK At the origin, the two electric fields are large, but are oppositely directed and so add
to zero. Far from the origin the two electric fields (Figure 22-7b) are in almost the
same direction so they do not add to zero.

( ƒz ƒ W a),

Example 22-7 on the Axis of a Charged Disk

Consider a uniformly charged thin disk of radius b and surface charge density (a) Find the
electric field at all points on the axis of the disk. (b) Show that for points on the axis and far
from the disk, the electric field approaches that of a point charge at the origin with the same
charge as the disk. (c) Show that for a uniformly charged disk of infinite radius, the electric
field is uniform throughout the region on either side of the disk.

PICTURE We can calculate the field on the axis of the disk by treating the disk as a set of
concentric, uniformly charged rings.

SOLVE

s.

E
S

da

b

a

z
dE

F I G U R E  2 2 - 1 0 A uniform disk of
charge can be treated as a set of ring
charges, each of radius a.

(a) 1. Calculate the field on the axis of the
disk by treating the disk as a set of
concentric rings of charge. The field
of a single uniformly charged ring
that has a charge and a radius a is
shown in Equation 22-8:

Q

where Ez �
kQz

(z2 � a2)3>2E
S

� Ezk
n,

2. Sketch the disk (Figure 22-10) and
illustrate the electric field on its
axis due to a single ring of charge

radius and width :daa,dq,

dE
S

so Ez � � kzdq

(z2 � a2)3>2 � kz� dq

(z2 � a2)3>2
dEz �

kzdq

(z2 � a2)3>23. Substitute for and for in
the step-1 result. Then integrate
both sides to calculate the resultant
field for the entire disk. The field
point remains fixed, so is constant:z

EzdEzQdq

The electric field on the axis of a uniformly charged circular ring of radius and
charge is given by where

22-8

Equation 22-8 is derived in Example 22-5.

Ez �
kQz

(z2 � a2)3>2
E
S

� Ezk
n,Q

a

See

Math Tutorial for more

information on

Binomial Expansion 
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* Both Excel and Mathematica use the definition of the sign function given here. Texas Instruments, however, uses a definition in which sign(0) returns instead of 0.�1

where By definition*:

sign(z) � c �1 z 
 0
0 z � 0

�1 z 	 0

sign(z) � z> ƒz ƒ .
sign(z) # 2pks§1 �

1

B1 �
b2

z2

¥�

Ez � pkzs
u�1>2
� 1

2

` z2�b2

z
2

� �2pkzsa 1

3z2 � b2
�

1

3z2
b

(b) 1. For (on the axis far from the disk) we expect
the electric field to decrease inversely with like that
of a point charge. To show this we use the binomial
expansion:

z2,
�zzW b The binomial expansion (to first order) is

for ƒx ƒ V 1.(1 � x)n � 1 � nx

5. Evaluate the integral and simplify the result:

4. To evaluate this integral we change integration variables
from to The charge where is
the area of a ring of radius and width da:a

dA � 2pa dadq � s dA,a.q
so

where so du � 2ada.u � z2 � a2,

Ez � pkzs �
b

0

2ada
(z2 � a2)3>2 � pkzs �

z2�b2

z
2

�02
u�3>2 du

dq � s dA � s2pada

2. Apply the binomial expansion to the rightmost term in
the step-5 result:

z2 W b21

B1 �
b2

z2

� a1 �
b2

z2 b�1>2
� 1 �

1
2
b2

z2

3. Substitute into the step-5 result and simplify. [For 
sign .] Thus, the approximate expression
for the field for is the same as that of a point
charge at the origin:Q � spb2

zW b
(z) � 1

zW b,

where Q � spb2.

zW b
kQ

z2� 2pks
1
2
b2

z2 �Ez � 2pksa1 � c1 �
1
2
b2

z2 d b
(c) 1. Take the limit of the Part (a) , step-5 result as 

This result is an expression for that is uniform, both
in the region and in the region z 	 0:z 
 0

Ez

bS .

CHECK We expect the electric field be in opposite directions on opposite sides of
the disk. The Part (a) , step-5 result meets this expectation.

TAKING IT FURTHER According to the Part (c) result the electric field is discon-
tinuous at (Figure 22-11) where the field jumps from to as
we cross the plane. There is thus a discontinuity in in the amount

PRACTICE PROBLEM 22-5 The electric field due to a uniform surface charge on
the entire plane is given by the Part (c) result. What fraction of the field on
the axis at is due to the surface charge within a circle that has a radius

centered at the origin? Hint: Divide the Part (a), step 5 result by the Part (c) re-
sult after substituting 5a for b and a for z.
r � 5a

z � az
z � 0

4pks � s>P0 .
Ezz � 0

�2pksin�2pksinz � 0

sign(z) # 2pks�Ez � sign(z) # 2pksa1 �
1

21 � 
b

z

Ez

2    kπ σ

–2    kπ σ

F I G U R E  2 2 - 1 1 Graph showing the discontinuity
of at a plane charge. Can you see the similarity
between this graph and the one in Figure 22-8?

E
S



The answer to Practice Problem 22-5 depends not on but on the ratio 
Eighty percent of the field at any distance from a uniformly charged plane
surface is due to the charge within a circle whose radius is equal to multiplied
by that distance.

The formula for the electric field on the axis of a uniformly charged circular
disk, established in Example 22-7, is

22-9

ELECTRIC FIELD ON AXIS OF 
A UNIFORM DISK OF CHARGE

where sign( ) is defined in Part (a), step 5 of Example
22-7 and is the radius of the disk. The field of a uni-
formly charged electric plane of charge can be obtained
from Equation 22-9 by letting the ratio go to infinity.
Then

22-10

ELECTRIC FIELD OF 
A UNIFORM PLANE OF CHARGE

Figure 22-12 shows the electric fields of a point charge, a uniform disk of charge,
and an infinite plane of charge as a function of position.

As we move along the axis, the electric field jumps from 
to when we pass through the plane (Figure 22-11). Thus, at 
there is a discontinuity in in the amount 4pks.Ez

z � 0z � 0�2pksin
�2pksinz

Ez � sign(z) # 2pks � sign(z) # s
2P0

R>zR
z

Ez � sign(z) # 2pks§1 �
1

A1 �
R2

z2

¥
5a

a
r>a � 5.a,
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S

0 0

200

100

0

Ez, kN/C

z, cm
2 4 8

Disk charge
Infinite plane

150

50

6

Point charge

F I G U R E  2 2 - 1 2 A disk and a point have equal charges, and an infinite
plane and the disk have equal uniform surface-charge densities. Note
that the field of the disk charge converges with the field of the point charge
as approaches infinity, and equals the field of the infinite plane charge as 
approaches zero.

zz

Example 22-8 Electric Field Due to Two Infinite Planes

In Figure 22-13, an infinite plane of surface charge density 
lies in the plane, and a second infinite plane of surface charge
density lies in the plane. Find the electric field
at (a) and (b)

PICTURE Each charged plane produces a uniform electric field of magni-
tude We use superposition to find the resultant field. Between
the planes the fields add, producing a net field of magnitude in the 
direction. For x > 2.00 m and for the two fields point in opposite di-
rections and thus sum to zero.

SOLVE

x 	 0,
�xs>P0

E � s>(2P0).

x � 5.00 m.x � 1.80 m
x � 2.00 ms � �4.50 nC>m2

x � 0.00 m
s � �4.5 nC>m2

21O 3 x, m

y

z

+

+
+

+

+

+
+

– –

–

–
–

–

–
–

+
+ –

F I G U R E  2 2 - 1 3

(a) 1. Calculate the magnitude
of the field produced by
each plane:

E

� 254 N>C� (4.50 � 10�9 N>C)>(2 # 8.85 � 10�12)

E � ƒs ƒ>(2P0)

2. At between
the planes, the field due
to each plane points in the

direction:�x

x � 1.80 m,

508 N>C�

Exnet � E1 � E2 � 254 N>C � 254 N>C
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CHECK Because the two planes have equal and opposite charge densities, electric field lines
originate on the positive plane and terminate on the negative plane. is equal to zero except
between the planes.

TAKING IT FURTHER Note that not just at but at any point in
the region between the charged planes. The charge configuration described in this example
is that of a parallel-plate capacitor. Capacitors are discussed in Chapter 24.

x � 1.8 mEx net � 508 N>C
E
S

+–

F I G U R E  2 2 - 1 4 A surface of arbitrary shape enclosing an
electric dipole. As long as the surface encloses both charges,
the number of lines penetrating the surface from the inside is
exactly equal to the number of lines penetrating the surface
from the outside no matter where the surface is drawn.

+2q+2q –q–+

(b) At the fields due to the two
planes are oppositely directed:
x � 5.00 m, 0.00 N>CExnet � E1 � E2 �

22-2 GAUSS’S LAW

In Chapter 21, the electric field is described visually by using electric field lines.
Here that description is put in rigorous mathematical language called Gauss’s law.
Gauss’s law is one of Maxwell’s equations—the fundamental equations of electro-
magnetism—which are the topic of Chapter 30. In electrostatics, Gauss’s law and
Coulomb’s law are equivalent. Electric fields arising from some symmetrical
charge distributions, such as a uniformly charged spherical shell or uniformly
charged infinite line, can be easily calculated using Gauss’s law. In this section, we
give an argument for the validity of Gauss’s law based on the properties of electric
field lines. A more rigorous derivation of Gauss’s law is presented in Section 22-6.

A closed surface—like the surface of a soap bubble—is one that divides the uni-
verse into two distinct regions, the region enclosed by surface and the region out-
side the surface. Figure 22-14 shows a closed surface of arbitrary shape enclosing a
dipole. The number of electric field lines beginning on the positive charge and pen-
etrating the surface from the inside depends on where the surface is drawn, but any
line penetrating the surface from the inside also penetrates it from the outside. To
count the net number of lines out of any closed surface, count any penetration from
the inside as and any penetration from the outside as Thus, for the surface
shown (Figure 22-14), the net number of lines out of the surface is zero. For surfaces
enclosing other types of charge distributions, such as that shown in Figure 22-15, the
net number of lines out of any surface enclosing the charges is proportional to the net charge
enclosed by the surface. This rule is a statement of Gauss’s law.

�1.�1,

F I G U R E  2 2 - 1 5 A surface of arbitrary shape enclosing the charges
and Either the field lines that end on do not pass through the

surface or they penetrate it from the inside the same number of times as
from the outside. The net number that exit, the same as that for a single
charge of is equal to the net charge enclosed by the surface.�q,

�q�q.�2q
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ELECTRIC FLUX

The mathematical quantity that corresponds to the number of field lines pene-
trating a surface is called the electric flux For a surface perpendicular to 
(Figure 22-16), the electric flux is the product of the magnitude of the field and
the area 

The units of electric flux are Because is proportional to the number
of field lines per unit area, the flux is proportional to the number of field lines pen-
etrating the surface.

In Figure 22-17, the surface of area is not perpendicular to the electric field
However, the number of lines that penetrate the surface of area is the same

as the number that penetrate the surface of area which is normal (perpendicu-
lar) to These areas are related by

22-11

where is the angle between and the unit vector that is normal to the surface
as shown in the figure. The electric flux through a surface is defined to be

22-12

where is the component of normal to the surface.
Figure 22-18 shows a curved surface over which may vary. If the area of

the surface element that we choose is small enough, it can be modeled as a plane,
and the variation of the electric field across the element can be neglected. The flux
of the electric field through this element is

where is the unit vector perpendicular to the surface element and is the
electric field on the surface element. If the surface is curved, the unit vectors for the
different small surface elements will have different directions. The total flux
through the surface is the sum of over all the elements making up the surface.
In the limit, as the number of elements approaches infinity and the area of each el-
ement approaches zero, this sum becomes an integral. The general definition of
electric flux is thus

22-13

DEFINITION—ELECTRIC FLUX

where the stands for the surface we are integrating over.* The sign of the flux
depends on the choice for the direction of the unit normal By choosing to be
out of one side of a surface we are determining the sign of and thus the sign
of the flux through the surface.

On a closed surface we are interested in the electric flux through the surface, and
by convention, we always choose the unit vector to be out of the surface at each
point. The integral over a closed surface is indicated by the symbol The total or
net flux through a closed surface is therefore written

22-14fnet � CS E
S # nn dA � CS En dA

S
A .

nn

E
S # nn,

nnnn.
S

f � lim
¢AiS0ai E

S

i
# nn i ¢Ai � �

S

E
S # nn dA

¢fi

E
S

inni

¢fi � Eni ¢Ai � E
S

i
# nn i ¢Ai

¢AiE
S

E
S

En � E
S # nn

f � E
S # nnA � EA cosu � EnA

A2 ,
nnE

S
u

A2 cosu � A1

E
S

.
A1 ,

A2E
S

.
A2

EN # m2>C.

f � EA

A:
E

E
S

f.

E
A

F I G U R E  2 2 - 1 6 Electric field lines of a
uniform field penetrating a surface of area 
that is oriented perpendicular to the field. The
product is the electric flux through the
surface.

EA

A

Eθ
n̂

A1
A2

A2 cos    = A1θ

F I G U R E  2 2 - 1 7 Electric field lines of a
uniform electric field that is perpendicular 
to the surface of area but makes an 
angle with the unit vector that is 
normal to the surface of area Where is 
not perpendicular to the surface, the flux is

where is the component of 
that is perpendicular to the surface. The flux
through the surface of area is the same as
that through the surface of area A1 .

A2

E
S

En � E cosuEnA,

E
S

A2 .
nnu

A1

* The flux of a vector field through a surface is a mathematical operation used to describe the flow rates of fluids and
rates of heat transfers. In addition, it is used to relate electric fields with the charges that produce them.

E
ni

i

ΔAi

F I G U R E  2 2 - 1 8 If varies from place to
place on a surface, either because the
magnitude varies or because the angle
between and varies, the area of the
surface is divided into small elements of area

The flux through the surface is computed
by summing over all the area
elements.

E
S

i
# nn i ¢Ai

¢Ai .

nnE
S
E

En
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The net flux through the closed surface is positive or negative, depending
on whether is predominantly outward or inward at the surface. At points on the
surface where is inward, is negative.

QUANTITATIVE STATEMENT OF GAUSS’S LAW

Figure 22-19 shows a spherical surface of radius that has a point charge at its
center. The electric field everywhere on this surface is normal to the surface and
has the magnitude

The net flux of out of this spherical surface is

where we have taken out of the integral because it is constant everywhere on the
surface. The integral of over the surface is just the total area of the surface,
which for a sphere of radius is Using this and substituting for 
we obtain

22-15

Thus, the net flux out of a spherical surface that has a point charge at its cen-
ter is independent of the radius of the sphere and is equal to divided by 
This is consistent with our previous observation that the net number of lines through
a closed surface is proportional to the net charge inside the surface. This number of lines
is the same for all closed surfaces surrounding the charge, independent of the shape of the sur-
face. Thus, the net flux out of any surface surrounding a point charge equals 

We can extend this result to systems containing multiple charges. In Figure 22-20,
the surface encloses two point charges, and and there is a third point charge

outside the surface. Because the electric field at any point on the surface is the
vector sum of the electric fields produced by each of the three charges, the net flux

out of the surface is just the sum of the fluxes 
( where ) due to the individual charges. The flux 
(due to charge which is outside the surface) is zero because every field line from

that enters the region bounded by the surface at one point leaves the region sur-
face at some other point. The flux out of the surface due to charge is 
and the flux due to charge is The net flux out of the surface therefore
equals which may be positive, negative, or zero depending on
the signs and magnitudes of and 

The net outward flux through any closed surface equals the net charge in-
side the surface divided by 

22-16

GAUSS’S LAW

This is Gauss’s law. It reflects the fact that the electric field due to a single point
charge varies inversely with the square of the distance from the charge. It was this
property of the electric field that made it possible to draw a fixed number of elec-
tric field lines from a charge and have the density of lines be proportional to the
field strength.

fnet � CS

E
S # nn dA � CS

En dA �
Qinside

P0

P0:

q2 .q1

fnet � (q1 � q2)>P0 ,
f2 � q2>P0 .q2

f1 � q1>P0q1

q3

q3

f3fi � AS E
S

i
# nn dAfnet � ©fi ,

fnet � AS (E
S

1 � E
S

2 � E
S

3) # nn dA

q3

q2 ,q1

Q>P0 .Q

P0 .QR
Q

fnet �
kQ

R2 4pR2 � 4pkQ � Q>P0

En ,kQ>R24pR2.R
dA

En

fnet � CS En dA � EnCS dA

E
S

En �
kQ

R2

QR

EnE
S

E
S
fnet

kQ
R2En =

dA

R

Q+

F I G U R E  2 2 - 1 9 A spherical surface
enclosing a point charge The net flux
is easily calculated for a spherical surface.
It equals multiplied by the surface area,
or En4pR

2.
En

Q.

q1

q2

q3

+

+

+

E3

E1

E2

n̂

F I G U R E  2 2 - 2 0 A surface enclosing
point charges and but not The net flux
out of this surface is 4pk(q1 � q2).

q3 .q2,q1
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Gauss’s law is valid for all surfaces and all charge distributions. For charge dis-
tributions that have high degrees of symmetry, it can be used to calculate the elec-
tric field, as we illustrate in the next section. For static charge distributions, Gauss’s
law and Coulomb’s law are equivalent. However, Gauss’s law is more general in
that it is always valid whereas the validity of Coulomb’s law is restricted to static
charge distributions.

Example 22-9 Flux through a Piecewise-Continuous Closed Surface

An electric field is given by throughout the region and by
throughout the region An imaginary soup-can-shaped surface that

has a length equal to 20 cm and a radius equal to has its center at the origin and
its axis along the axis, so that one end is at and the other is at 
(Figure 22-21). (a) What is the net outward flux through the closed surface? (b) What is the
net charge inside the closed surface?

PICTURE The closed surface described, which is piecewise continuous, consists of three
pieces—two flat ends and a curved side. Separately calculate the flux of out of each
piece of this surface. To calculate the flux out of a piece draw the outward normal at an
arbitrarily chosen point on the piece and draw the vector at the same point. If 
is the same everywhere on the piece, then the outward flux through the piece is , where

is the area of the piece. The net outward flux through the entire closed surface is ob-
tained by summing the fluxes through the individual pieces. The net outward flux is re-
lated to the charge inside by Gauss’s law (Equation 22-16).

A
EnA

En � E
S # nnE

S
nn

E
S

z � �10 cmz � �10 cmz
5.00 cmR

z 	 0.E
S

� �(200 N>C)kn
z 
 0E

S
� �(200 N>C)kn

SOLVE

(a) 1. Sketch the soup-can-shaped surface. On each piece of the surface draw the outward
normal and the vector (Figure 22-21):E

S
nn

2. Calculate the outward flux through the right end of the
“can” (the piece of the surface at 
On this piece nn � kn:

z � �10 cm).

E

n̂

y

z

E

n̂

dA

dA

E
n̂

F I G U R E  2 2 - 2 1

� 1.57 N # m2>C � �(200 N>C)kn # kn(p)(0.0500 m)2fright � E
S

right
# nnrightA � E

S

right
# knpR2

3. Calculate the outward flux through the left end of the
“can” (the piece of the surface at where
nn � �kn:

z � �10 cm),

� 1.57 N # m2>C� �(200 N>C)kn # (�kn)(p)(0.0500 m)2

fleft � E
S

left
# nn leftA � E

S

left
# (�kn)pR2

4. Calculate the outward flux through the curved surface.
On the curved surface is in the radial direction,
perpendicular to the axis:z

nn
because everywhere on the curved piece.)E

S # nn � 0 (fcurved � 0

fcurved � E
S

curved
# nncurvedA � 0

5. The net outward flux is the sum through all the
individual surfaces:

3.14 N # m2>C�

� 1.57 N # m2>C � 1.57 N # m2>C � 0fnet � fright � fleft � fcurved

(b) Gauss’s law relates the charge inside to the net flux:

2.78 � 10�11 C � 27.8 pC�

� (8.85 � 10�12 C2>N # m2)(3.14 N # m2>C)Qinside � P0fnet

CHECK The flux through either end of the can does not depend on the length of the can.
This result is expected for an electric field that does not vary with distance from the 
plane.

TAKING IT FURTHER The net flux does not depend on the length of the can. Thus, the
charge inside resides entirely on the plane.z � 0

z � 0
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22-3 USING SYMMETRY TO CALCULATE 
WITH GAUSS’S LAW

Given a highly symmetrical charge distribution, the electric field can often be calcu-
lated more easily by using Gauss’s law than it can by using Coulomb’s law. There are
three classes of symmetry to consider. A charge configuration has cylindrical (or line)
symmetry if the charge density depends only on the distance from a line, plane sym-
metry if the charge density depends only on the distance from a plane, and spherical
(or point) symmetry if the charge density depends only on the distance from a point.

PROBLEM-SOLVING STRATEGY

Calculating Using Gauss’s Law

PICTURE Determine if the charge configuration belongs to one of the three
symmetry classes. If it does not, then try another method to calculate the
electric field. If is does, then sketch the charge configuration and establish the
magnitude and direction of the electric field using symmetry considerations.

SOLVE

1. On the sketch draw an imaginary closed surface, called a Gaussian surface
(for example, the soup can in Example 22-9). This surface is chosen so that
on each piece of the surface is either zero, normal to the surface with 
the same everywhere on the piece, or parallel to the surface 
everywhere on the piece. For a configuration that has cylindrical (line)
symmetry, the Gaussian surface is a cylinder coaxial with the symmetry
line. For a configuration that has plane symmetry, the Gaussian surface is
a cylinder bisected by the symmetry plane and with its symmetry axis
normal to the symmetry plane. For a configuration that has spherical
(point) symmetry, the Gaussian surface is a sphere centered on the
symmetry point. On each piece of the Gaussian surface sketch an area
element an outward normal and the electric field 

2. Closed cylindrical surfaces are piecewise continuous, with the surface
divided into three pieces. Spherical surfaces consist of a single piece.
The flux through each piece of a properly chosen Gaussian surface
equals where is the component of normal to the piece and is
the area of the piece. Add the fluxes to obtain the total outward flux
through the closed surface.

3. Calculate the total charge inside the Gaussian surface.
4. Apply Gauss’s law to relate to the charges inside the closed surface and

solve for .En

En

AE
S

EnEnA,

E
S

.nn,dA,

(En � 0)
EnE

S

E
S

E
S

E
S

Example 22-10 Due to a Uniformly Charged Slab

A very large (infinite), uniformly charged slab of plastic of thickness 2a occupies the region
between the plane and the plane. Find the electric field everywhere due this
charge configuration. The charge per unit volume of the plastic is 

PICTURE The charge configuration has plane symmetry, with the plane as the sym-
metry plane. Use symmetry arguments to determine the direction of the electric field every-
where. Then, apply Gauss’s law and solve for the electric field.

z � 0

r.
z � �az � �a

E
S

Is the electric field in Gauss’s
law only that part of the electric
field due to the charges inside a
surface, or is it the total electric
field due to all the charges both
inside and outside the surface?

E
S

CONCEPT CHECK 22-1✓

SOLVE

1. Use symmetry considerations to determine the direction of 
Because the sheet is infinite, there is no preferred direction
parallel to the sheet:

E
S

. For points directly away from the plane, and for
points directly toward the plane. On the 

plane E
S

� 0.
z � 0z � 0r 	 0, E

S
z � 0r 
 0, E

S



Using Symmetry to Calculate with Gauss’s Law S E C T I O N  2 2 - 3 | 743E
S

E

n̂

dA

E

n̂

z

y

+z−z

E
n̂

x

dA

+a−a

F I G U R E  2 2 - 2 2 Gaussian surface for
the calculation of due to an infinite plane
of charge. (Only the part of the plane that is
inside the Gaussian surface is shown.) On the
flat faces of this soup-can-shaped surface, 
is perpendicular to the surface and constant
in magnitude. On the curved surface is
parallel with the surface.

E
S

E
S

E
S

2. Sketch the charge configuration that has a
suitable Gaussian surface—a cylinder bisected
by the symmetry plane (the plane with
its axis normal to the plane). The
cylinder extends from to (Figure 22-22):�z�z

z � 0
z � 0

3. Write down Gauss’s law 
(Equation 22-16):

fnet � CS E
S # nn dA �

Qinside

P0

4. The outward flux through the surface is
equal to the sum of the fluxes through each
piece of the surface. Draw both and at 
an area element on each piece of the surface
(Figure 22-22):

E
S

nn

E
S

where

fcurved side � �
curved side

E
S # nn dA

fright end � �
right end

E
S # nn dA

fleft end � �
left end

E
S # nndA

fnet � fleft end � fright end � fcurved side

5. Because is zero everywhere on the
curved piece of the surface, the flux through
the curved piece is zero:

E
S # nn fcurved side � 0

6. is uniform on the right end of the surface,
so can be factored from the
integral. Let be the area of the end of right
end of the surface:

A
E
S # nn � En

E
S

� En�
right end

dA � EnA

fright end � �
right end

E
S # nn dA ��

right end
EndA

7. The two ends of the surface are the same
distance from the symmetry plane (the 
plane), so on the left end is equal and
opposite to on the right end. The normals
on the two ends are equal and opposite as
well. Thus, is the same on both
ends. It follows that the flux out of both ends
is the same as well:

E
S # nn � En

E
S

E
S

z � 0
is the same on the two ends,

‹ fleft end � fright end � EnA

E
S # nn � En

8. Add the individual fluxes to get the net flux
out of the surface:

� EnA � EnA � 0 � 2EnAfnet � fleft end � fright end � fcurved side

9. Solve for the charge inside the Gaussian
surface. The volume of a cylinder is the
cross-sectional area multiplied by the length.
The cylinder has a length of 2z.

(z � a)Qinside � rA2z
(z � a)Qinside � rA2a

10. Substitute the step-8 and step-9 results into
(the step-3 result) and solve

for on the right end of the surface:En

fnet � Qinside>P0

For so 
For so
En � r ƒz ƒ>P0 .

2EnA � rA2 ƒz ƒ>P0 ,�a � z � a,
En � ra>P0 .2EnA � rA2a>P0 ,ƒz ƒ � a,

11. Solve for as a function of In the region
so this means is

in the direction so is negative:Ez�z
E
S

Ez � �En ;nn � �kn,z 	 0,
z.E

S

or b sign(z) # (ra>P0)k
n ( ƒz ƒ � a)

sign(z) # (r ƒz ƒ>P0)k
n ( ƒz ƒ � a)E

S
� Ezk

n �

c �(ra>P0)k
n (z � �a)

(rz>P0)k
n (�a � z � a)

�(ra>P0)k
n (z � �a)

E
S

� Ezk
n �

CHECK The electric field has units of According to our step 11 results, should
have the same units. It does, as has units of and has
units of m.

TAKING IT FURTHER Outside the slab the electric field is the same as that of the uniformly
charged plane of Equation 22-10, with Figure 22-23 shows a graph of versus for the
charged slab. Compare this graph with that of Figure 22-11 which shows a graph of versus 
for the charged plane. These graphs are readily compared if you recognize that 2pk � 1>(2P0).

zEz

zEzs � 2ra.

aC>m3,P0 � 8.85 � 10�12 C2>(N # m2), r
ra>P0N>C.

Ez

z+a−a

+4 kρaπ 

− 4 kρaπ 

F I G U R E  2 2 - 2 3 A graph of 
versus for a uniformly charged infinite
slab of thickness 2 and charge density r.a

z
Ez
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We can use Gauss’s law to derive Coulomb’s law. This is accomplished by ap-
plying Gauss’s law to find the electric field a distance r from a point charge 
Place the origin at the location of the point charge and choose a spherical
Gaussian surface of radius centered on the point charge. The outward normal

to this surface is equal to the unit vector By symmetry, is directed either
radially outward or radially inward, so It follows that the compo-
nent of normal to the surface, equals the radial component That is,

Also, the magnitude of can depend on the distance
from the charge but not on the direction from the charge. It follows that has
the same value everywhere on the surface. The net flux of through the spher-
ical surface of radius is thus

where (the area of the spherical surface). Because the total charge

inside the surface is just the point charge Gauss’s law gives

Solving for gives

which is Coulomb’s law. We have thus derived Coulomb’s law from Gauss’s law.
Because for static charges Gauss’s law can also be derived from Coulomb’s law
(see Section 22-6), we have shown that the two laws are equivalent (for static
charges).

Er �
1

4pP0

q

r2

Er

Er4pr
2 �
q

P0

q,
CS dA � 4pr2

fnet � CS E
S # nn dA � CS En dA � EnCS dA � Er4pr

2

r
E
S

En

E
S

En � E
S # nn � E

S # rn � Er .
E
S

.E
S

En ,E
S

� Errn.
E
S

rn.nn
r

q.

Example 22-11 Due to a Thin Spherical Shell of Charge

Find the electric field due to a uniformly charged thin spherical shell of radius and total
charge 

PICTURE This charge configuration depends only on the distance from a single point—the
center of the spherical shell. Thus, the configuration has spherical (point) symmetry. This
symmetry dictates that must be radial and have a magnitude that depends only on the
distance from the center of the spherical shell. A spherical Gaussian surface that has an
arbitrary radius and is concentric with the charge configuration is needed.

SOLVE

r
r

E
S

Q.
R

E
S

1. Sketch the charge configuration and a spherical Gaussian surface
of radius Include an area element the normal and

the electric field on the area element (Figure 22-24):E
S

nn,dA,r 
 R.S

R

S

r

+
+
+

E

n̂
r̂

F I G U R E  2 2 - 2 4 Spherical Gaussian
surface of radius for the calculation of
the electric field outside a uniformly charged
thin spherical shell of radius R.

r 
 R

2. Express Gauss’s law (Equation 22-16): fnet � CS En dA �
Qinside

P0

3. The value of is the same everywhere on Thus we can
factor it from the integral:

S.En EnCS dA �
Qinside

P0
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CHECK Outside the charged shell, the electric field is the same as that of a point charge 
at the shell’s center. This result is expected for 

TAKING IT FURTHER The step-6 result can also be obtained by direct integration of
Coulomb’s law, but that calculation is much more challenging. 

rW R.
Q

4. The integral of the area element over the surface is just the
area of the sphere. The area of the sphere is 4pr2:

S
En4pr

2 �
Qinside

P0

5. Due to the symmetry, Substitute for and solve 
for :Er

EnErEn � Er . Er �
1

4pP0

Qinside

r2

6. For For r 	 R, Qinside � 0:r 
 R, Qinside � Q. whereE
S

� Errn,

Figure 22-25 shows versus for a spherical-shell charge distribution. Again,
note that the electric field is discontinuous at where the surface charge
density is Just outside the shell, the electric field is

because Because the field just inside the
shell is zero, the electric field is discontinuous at by the amount 

The electric field of a uniformly charged thin spherical shell is given by 
where

22-17a

22-17bEr � 0 r 	 R

Er �
1

4pP0

Q

r2
r 
 R

E
S

� Errn,
s/P0 .r � R

s � Q>4pR2.Er � Q>(4pP0R
2) � s>P0 ,
s � Q>(4pR2).

r � R,
rEr

Er

r

R

R
O

Er = 0

Er =
1

4
Q
r2πe0

+

+

+

(a) (b)

F I G U R E  2 2 - 2 5 (a) A plot of versus for a thin spherical shell charge distribution.
The electric field is discontinuous at where there is a surface charge of density 
(b) The decrease in over distance due to a charged spherical shell is evident by the effect
of the field on the flames of two candles. The spherical shell at the left (part of a Van de
Graaff generator, a device that is discussed in Chapter 23) has a large negative charge that
attracts the positive ions in the nearby candle flame. The flame at right, which is much
farther away, is not noticeably affected. (Runk/Schoenberger from Grant Heilmann.)

Er

s.r � R,
rEr

Er � 0 r 	 R

Er �
1

4pP0

Q

r2
r 
 R
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(a) 1. Inside the shell, is due only to the point charge:E
S

1 E
S

1 �
kq

r21
rn1

2. Calculate the square of the distance :r1 r21 � (2.00 m)2 � (2.00 m)2 � 8.00 m2

3. Use to calculate the magnitude of the field:r1 � 281 N>CE1 �
kq

r21
�

(8.99 � 109 N # m2>C2)(250 � 10�9 C)

8.00 m2

E

r1

45°

q

y, m

x, m

1

1

r2

Es

Ep

θ

q

y, m

x, m

E2 = Es + Ep

2

(a) (b)

F I G U R E  2 2 - 2 6

4. From Figure 22-26a, we can see that the field makes an angle
of with the axis:x45°

u1 � 45.0°

5. Express in terms of its components:E
S

1

(199in � 199jn) N>C�

� (281 N>C) cos45.0° in � (281 N>C) sin45.0° jn

E
S

1 � E1x i
n � E1y j

n � E1 cos45.0° in � E1 sin45.0° jn

(b) 1. Outside of its perimeter, the field of the shell can be
calculated as if the shell were a point charge at the origin,
and the field due to the shell is therefore along the axis:xE

S

S

E
S

S �
kQ

x2
2

in

2. Calculate the total charge on the shell:Q Q � s4pR2 � (3.00 nC>m2)4p(3.00 m)2 � 339 nC

3. Use to calculate the field due to the shell:Q � 190 N>CES �
kQ

x2
2

�
(8.99 � 109 N # m2 >C2)(339 � 10�9C)

(4.00 m)2

4. The field due to the point charge is: E
S

P �
kq

r22
rn2

SOLVE

Example 22-12 Electric Field Due to a Point Charge and a Charged Spherical Shell

A spherical shell of radius has its center at the origin and has a surface charge
density of A point charge is on the axis at Find
the electric field on the axis at (a) and (b)

PICTURE We separately find the field due to the point charge and that due to the spherical
shell and sum the field vectors in accord with the principle of superposition. For Part (a), the
field point is inside the shell, so the field is due only to the point charge (Figure 22-26a). For
Part (b) , the field point is outside the shell, so the field due to the shell can be calculated as
if the charge were a point charge at the origin. We then add the fields due to the two point
charges (Figure 22-26b).

x � 4.00 m.x � 2.00 mx
y � 2.00 m.yq � 250 nCs � 3.00 nC/m2.

R � 3.00 m
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CHECK The Part (b), step 8 result is qualitatively in agreement with Figure 22-26b. That is,
is positive, is negative, and 

TAKING IT FURTHER Specifying the and components of a vector completely speci-
fies the vector. In these cases, the component is zero.z

zx, y,

ƒEy ƒ 	 Ex .EyEx

5. Calculate the square of the distance from the point charge 
on the axis to the field point at x � 4.00 m:y

q r22 � (2.00 m)2 � (4.00 m)2 � 20.0 m2

6. Calculate the magnitude of the field due to the point charge: � 112 N>CEP �
kq

r22
�

(8.99 � 109 N # m2>C2)(250 � 10�9 C)

20.0 m2

7. This field makes an angle with the axis, where:xu tanu �
2.00 m
4.00 m

� 0.500⇒ u � tan�1 0.500 � 26.6°

8. The and components of the net electric field are thus:yx

(290in � 50.0jn) N>CE
S

2 �

� �(112 N>C) sin26.6° � �50.0 N>CEy � EPy � ESy � �Ep sinu � 0

� (112 N>C) cos26.6° � 190 N>C � 290 N>CEx � EPx � ESx � EPcosu � ES

Example 22-13 Due to a Uniformly Charged Solid Sphere

Find the electric field everywhere for a uniformly charged solid sphere that has a radius 
and a total charge that is uniformly distributed throughout the volume of the sphere that
has a charge density where is the volume of the sphere.

PICTURE The charge configuration has spherical symmetry. By symmetry, the electric field
must be radial. We choose a spherical Gaussian surface of radius (Figure 22-27a and Figure
22-27b). On the Gaussian surface, is the same everywhere, and Gauss’s law thus
relates to the total charge inside the Gaussian surface.

SOLVE

Er

En � Er .En

r

V � 4
3pR3r � Q>V,

Q
R

E
S

DUE TO A UNIFORMLY CHARGED SPHEREE
S

E

+

+

+

R

r

dA

n̂

r̂

(b)

(a)

+

++

R

r
dA

Er

n̂
r̂

F I G U R E  2 2 - 2 7

1. Draw a charged sphere of radius and draw a
spherical Gaussian surface with radius (Figure
22-27a for and Figure 22-27b for ):r 	 Rr 
 R

r
R

2. Relate the flux through the Gaussian surface to the
electric field on it. At every point on this surface

and has the same value:Ernn � rn
Er (The surface area of a sphere of

radius is 4pr2.)r

fnet � E
S # nnA � E

S # rnA � Er4pr
2

3. Apply Gauss’s law to relate the field to the total
charge inside the surface:

Er4pr
2 �
Qinside

P0

4. Find for all values of The charge density
where :V � 4

3pR3r � Q>V,
r.Qinside For

For

where 

so

Qinside �
Q

V
V� �

Q
4
3pR3

4
3pr3 � Q

r3

R3

V� � 4
3pr3

r � R, Qinside � rV�,

r � R, Qinside � Q
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We see from Example 22-13 that the electric field a distance from the center of
a uniformly charged sphere of radius is given by where

22-18a

22-18b

and is the total charge of the sphere.Q

Er �
1

4pP0

Q

R3r r � R

Er �
1

4pP0

Q

r2
r � R

E
S

� Errn,R
r

Example 22-14 Electric Field Due to Infinite Line Charge

Use Gauss’s law to find the electric field everywhere due to an infinitely long line charge of
uniform charge density (This problem was already solved in Example 22-3 using
Coulomb’s law.)

PICTURE Because of the symmetry, we know the electric field is directed away from the line
if is positive (directly toward it if is negative), and we know the magnitude of the field
depends only on the radial distance from the line charge. We therefore choose a cylindrical
Gaussian surface coaxial with the line charge. We calculate the outward flux of through
each piece of the surface, and, using Gauss’s law, relate the net outward flux of to the
charge inside the cylinder.

E
S

E
S

ll

l.

CHECK At the center of the charged sphere the electric
field is zero, as symmetry suggests. For the field is
identical to the field of a point charge at the center of the
sphere, also as expected.

TAKING IT FURTHER Figure 22-28 shows versus 
for the charge distribution in this example. Inside the
sphere of charge, increases with Note that is
continuous at A uniformly charged sphere is
sometimes used as a model to describe the electric field of
an atomic nucleus.

r � R.
Err.Er

rEr

Q
r 
 R,

5. Substitute into the step 3 result and solve for E
S

: where

Er �
1

4pP0

Q

r2
r3

R3 �
1

4pP0

Q

R3 r r � R

Er �
1

4pP0

Q

r2
  r � R

E
S

� Errn,

Er

r

R

R

Er =
1

4
Q
R3pP0

r,  r ≤ R

Er =
1

4
Q
r2 ,  r ≥ R

pP0

F I G U R E  2 2 - 2 8
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1. Sketch the wire and a coaxial cylindrical Gaussian surface
(Figure 22-29) that has a length and a radius The closed 
surface consists of three pieces: the two flat ends and the
curved side. At a randomly chosen point on each piece,
draw an area element and the vectors and Because of
the symmetry, we know that the direction of is radial
(either toward or away from the line charge), and we know
that the magnitude depends only on the distance from the
line charge.

E

E
S
nn.E

S

R.L

L

RR

E

n̂

E
n̂

n̂

E
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2. Calculate the outward flux through the curved piece of the
Gaussian surface. At each point on the curved piece 
where is the unit vector in the radial direction.Rn

Rn � nn,
� ER2pRLfcurved � E

S # nnAcurved � E
S # RnAcurved

3. Calculate the outward flux through each of the flat ends of the
Gaussian surface. On these pieces the direction of is parallel
with the line charge (and thus perpendicular to ):E

S
nn

fright � E
S # nnAright � 0

fleft � E
S # nnAleft � 0

4. Apply Gauss’s law to relate the field to the total charge inside
the surface The net flux out of the Gaussian surface is
the sum of the fluxes out of the three pieces of the surface, and

is the charge on a length of the line charge:LQinside

Qinside .

so where
1

2pP0

l

R
ER �E

S
� ERRn ,ER2pRL �

lL
P0

fnet �
Qinside

P0

CHECK Because the step-4 result can also be written This is the same
expression for that was obtained by using Coulomb’s law (see Example 22-3).ER

2kl>R.1>(2pP0) � 2k,

SOLVE

In the calculation of for a line charge (Example 22-14), we needed to assume
that the field point was very far from the ends of the line charge so that would
be constant everywhere on the cylindrical Gaussian surface. If we are near the end
of a finite line charge, we cannot assume that is perpendicular to the curved sur-
face of the cylinder, or that is constant everywhere on it, so we cannot use
Gauss’s law to calculate the electric field.

It is important to realize that although Gauss’s law holds for any closed surface
and any charge distribution, it is particularly useful for calculating the electric
fields of charge distributions that have cylindrical, spherical, or plane symmetry. It
is also particularly useful doing calculations involving conductors in electrostatic
equilibrium, as we shall see in Section 22-5.

22-4 DISCONTINUITY OF 

We have seen that the electric field for an infinite plane of charge and a thin spher-
ical shell of charge is discontinuous by the amount at a surface having charge
density We now show that this is a general result for the component of the elec-
tric field that is perpendicular to a surface having a charge density of 

Figure 22-30 shows an arbitrary surface having a surface charge density The
surface is arbitrary in that it is arbitrarily curved, although it does not have any
sharp folds where the normal direction is ambiguous, and may vary continu-
ously on the surface from place to place. We consider electric field in the vicin-
ity of a point on the surface as the superposition of electric field due just to
the charge on a small disk centered at point and the electric field due to 
all other charges in the universe. Thus,

22-19E
S

� E
S

disk � E
S

�

E
S

�P,
E
S

disk ,P
E
S

s

s.
s.

s.
s/P0

E
n

En

E
S

En

E
S

Edisk +

Edisk −

E'

P

P axis
+−

(b)

(a)

F I G U R E  2 2 - 3 0 (a) A surface having
surface charge. (b) The electric field due to
the charge on a circular disk, plus the electric 
field due to all other charges.E

S
�

E
S

disk



The disk is small enough that it may be considered both flat and uniformly
charged. On the axis of the disk, the electric field is given by Equation 22-9.
At points on the axis very close to the disk, the magnitude of this field is given by

The direction of is away from the disk if is positive, and to-
ward it if is negative. The magnitude and direction of the electric field are un-
known. In the vicinity of point however, this field is continuous. Thus, at points
on the axis of the disk and very close to it, is essentially uniform.

The axis of the disk is normal to the surface, so vector components along this
axis can be referred to as normal components. The normal components of the vectors
in Equation 22-19 are related by If we refer to one side of the surface

as the and the other side as the then and 

Thus, changes discontinuously from one side of the surface to the 

other. That is,

22-20

DISCONTINUITY OF AT A SURFACE CHARGE

where we have made use of the fact that near the disk (because is
continuous and uniform).

Note that the discontinuity of occurs at a finite disk of charge, an infinite
plane of charge (see Figure 22-12), and a thin spherical shell of charge (see Figure
22-25). However, it does not occur at the perimeter of a solid sphere of charge
(see Figure 22-28). The electric field is discontinuous at any location with an in-
finite volume charge density. These include locations that each have a finite point
charge, locations that each have a finite line charge density, and locations that
each have a finite surface charge density. At all locations with a finite surface
charge density, the normal component of the electric field is discontinuous—in
accord with Equation 22-20.

CHARGE AND FIELD AT 22-5
CONDUCTOR SURFACES

A conductor contains an enormous amount of charge that can move freely within the
conductor. If there is an electric field within a conductor, there will be a net force on
this free charge causing a momentary electric current (electric currents are discussed
in Chapter 25). However, unless there is a source of energy to maintain this current,
the free charge in a conductor will merely redistribute itself to create an electric field
that cancels the external field within the conductor. The conductor is then said to be
in electrostatic equilibrium. Thus, in electrostatic equilibrium, the electric field in-
side a conductor is zero everywhere. The time taken to reach equilibrium depends
on the conductor. For copper and other metal conductors, the time is so small that in
most cases electrostatic equilibrium is reached in a few nanoseconds.*

We can use Gauss’s law to show that for a conductor in electrostatic equilibrium,
any net electric charge on the conductor resides entirely on the surface of the con-
ductor. Consider a Gaussian surface completely inside the material of a conductor
in electrostatic equilibrium (Figure 22-31). The size and shape of the Gaussian sur-
face do not matter, as long as the entire surface is embedded within the material of
the conductor. The electric field is zero everywhere on the Gaussian surface because
the surface is completely within the conductor, where the field is everywhere zero.
The net flux of the electric field through the surface must therefore be zero, and, by
Gauss’s law, the net charge inside the surface must be zero. Thus, there can be no

En

E
S

�Eœ
n� � Eœ

n�

En

¢En � En� � En� �
s

2P0

� a� s

2P0

b �
s

P0

En�
s

2P0

� Eœ
n�.

En� �En� �
s

2P0

� Eœ
n�� side,� side,

En � Ediskn � Eœ
n .

E
S

�

P,
E
S

�s

sE
S

diskEdisk � ƒs ƒ>(2P0).

E
S

disk
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* At very low temperatures some metals become superconducting. In a superconductor, a current is sustained for a much
longer time, even without an energy source. Superconducting metals are discussed in Chapters 27 and 38.
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+ +
+

+ ++ + ++++
+ +

E

F I G U R E  2 2 - 3 1 A Gaussian surface
completely within the material of a conductor.
Because the electric field is zero inside the
material a conductor in electrostatic
equilibrium, the net flux through this surface
must also be zero. Therefore, the net charge
density must be zero everywhere within the
material of a conductor.

r
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Pσ

σ

E1 =   /2e0

�
�

�
�

PσE2 =   /2e0

�
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�
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�
�

E = E1 + E2 = 0

E = E1 + E2 = s

�
�

�
���

� �

�

�
�

s

n̂

n̂

e0

P

(b) (c)(a)

F I G U R E  2 2 - 3 2 An arbitrarily shaped
conductor having a charge on its surface.
(a) The charge in the vicinity of point near
the surface looks like a small uniformly
charged circular disk centered at giving an
electric field of magnitude pointing
away from the surface both inside and outside
the surface. Inside the conductor, this field
points away from point in the opposite
direction. (b) Because the net field inside the
conductor is zero, the rest of the charges in
the universe must produce a field of
magnitude in the outward direction.
The field due to these charges is the same just
inside the surface as it is just outside the
surface. (c) Inside the surface, the fields shown
in (a) and (b) cancel, but outside they add
to give En � s>P0 .

s>(2P0)

P

s>(2P0)
P,

P

net charge inside any surface lying completely within the material of the conductor.
Therefore, if a conductor has a net charge, it must reside on the conductor’s surface.
At the surface of a conductor in electrostatic equilibrium, must be perpendicular
to the surface. (If the electric field did have a tangential component at the surface,
the free charge would be accelerated tangential to the surface until electrostatic
equilibrium was reestablished.)

Because is discontinuous at any charged surface by the amount and be-
cause is zero inside the material of a conductor, the field just outside the surface
of a conductor is given by

22-21

JUST OUTSIDE THE SURFACE OF A CONDUCTOR

This result is exactly twice the field produced by a uniform disk of surface
charge density We can understand this result from Figure 22-32. The charge on
the conductor consists of two parts: (1) the charge near point and (2) all the rest
of the charge. The charge near point looks like a small, uniformly charged circu-
lar disk centered at that produces a field near of magnitude just inside
and just outside the conductor. The rest of the charges in the universe must pro-
duce a field of magnitude that exactly cancels the field inside the conduc-
tor. This field due to the rest of the charge in the universe adds to the field due to
the small charged disk just outside the conductor to give a total field of s>P0 .

s>(2P0)

s>(2P0)PP
P

P
s.

En

En �
s

P0

E
S

s>P0 ,En

E
S

Example 22-15 The Charge of Earth

While watching a science show on the atmosphere, you find out that on average the electric
field of Earth is about directed vertically downward. Given that you have been
studying electric fields in your physics class, you wonder if you can determine what the total
charge on Earth’s surface is.

PICTURE Earth is a conductor, so any charge it has resides on the surface of Earth. The sur-
face charge density is related to the normal component of the electric field by Equation
22-21. The total charge equals the charge density multiplied by the surface area 

SOLVE

A.sQ
Ens

100 N>C
Context-Rich

1. The surface charge density is related to the normal component of the
electric field by Equation 22-21:En

s En �
s

P0

2. On the surface of Earth, is upward and is downward so is negative:EnE
S

nn En � E
S # nn � E cos180° � �E � �100 N>C

3. The charge is the charge per unit area multiplied by the area. Combine
this with the step 1 and 2 results to obtain an expression for :Q

Q Q � sA � P0EnA � �P0EA



Figure 22-33 shows a positive point charge at the center of a spherical cavity in-
side a spherical conductor. Because the net charge must be zero within any Gaussian
surface drawn within the material of the conductor, there must be a negative charge 
induced on the surface of the cavity. In Figure 22-34, the point charge has been moved
so that it is no longer at the center of the cavity. The field lines in the cavity are altered,
and the surface charge density of the induced negative charge on the inner surface is
no longer uniform. However, the positive surface charge density on the outside sur-
face is not disturbed—it is still uniform—because it is electrically shielded from the
cavity by the conducting material. The electric field of the point charge and that
of the surface charge on the inner surface of the cavity superpose to produce an
electric field that is exactly zero everywhere outside the cavity. This is obviously true
if the point charge is at the center of the cavity, but it is true even if the point charge
is somewhere else in the cavity. In addition, the surface charge on the outer surface of
the conductor produces an electric field that is exactly zero everywhere inside the
outer surface of the conductor. Furthermore, these statements are valid even if both
the outer surface and the inner surface of the conductor are nonspherical.

�q
q

�q

q

Electric field lines for an oppositely charged
cylinder and plate, shown by bits of fine
thread suspended in oil. Note that the field
lines are normal to the surfaces of the
conductors and that there are no lines inside
the cylinder. The region inside the cylinder is
electrically shielded from the region outside
the cylinder. (Harold M. Waage.)
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4. The surface area of a sphere of radius is given by A � 4pr2:r Q � �P0EA � �P0E4pR2
E � �4pP0ER

2
E

5. The radius of Earth is 6.37 � 106 m:

�4.51 � 105 C�

� �4p(8.85 � 10�12 C2>N # m2)(100 N>C)(6.37 � 106 m)2

Q � �4pP0ER
2
E

CHECK We will check to see if units in the step 5 calculation are correct. In multiplying
the three quantities, both the newtons and the meters cancel out, leaving only coulombs
as expected.

TAKING IT FURTHER Is a large amount of charge? In Example 21-1 we cal-
culated that the total charge of all the electrons in a copper penny amounts to 
so the total charge on the surface of Earth is only 3.3 times larger than the total charge of all
the electrons in a single copper penny.

�1.37 � 105 C,
�4.53 � 105 C
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F I G U R E  2 2 - 3 3 A point charge in the cavity at the center of a
thick spherical conducting shell. Because the net charge within the
Gaussian surface (indicated in blue) must be zero, we know a surface
charge is induced on the inner surface of the shell, and because
the conductor is neutral, an equal but opposite charge is induced
on the outer surface. Electric field lines begin on the point charge and
end on the inner surface. Field lines begin again on the outer surface.
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F I G U R E  2 2 - 3 4 The same conductor as in
Figure 22-33 with the point charge moved away from
the center of the sphere. The charge on the outer
surface and the electric field lines outside the sphere
are not affected.



The Equivalence of Gauss’s Law and Coulomb’s Law in Electrostatics S E C T I O N  2 2 - 6 | 753

THE EQUIVALENCE OF GAUSS’S LAW 22-6
AND COULOMB’S LAW IN ELECTROSTATICS

Gauss’s law can be derived mathematically from Coulomb’s law for the electro-
static case using the concept of the solid angle. Consider an area element on a
spherical surface. The solid angle subtended by at the center of the sphere
is defined to be

where is the radius of the sphere. Because and both have dimensions of
length squared, the solid angle is dimensionless. The SI unit of the solid angle is
the steradian (sr). Because the total area of a sphere is the total solid angle
subtended by a spherical surface is

There is a close analogy between the solid angle and the ordinary plane
angle which is defined to be the ratio of an element of arc length of a
circle to the radius of the circle:

The total plane angle subtended by a circle is 
In Figure 22-35, the area element is not perpendicular to the radial

lines from point The unit vector normal to the area element makes
an angle with the radial unit vector In this case, the solid angle sub-
tended by at point is

22-22

The solid angle is the same as that subtended by the corresponding area
element of a spherical surface of any radius.

Figure 22-36 shows a point charge surrounded by a surface of arbitrary shape.
To calculate the flux of through this surface, we want to find for each el-
ement of area on the surface and sum over the entire surface. The electric field at
the area element shown is given by

so the flux through the element is

The sum of the fluxes through the entire surface is multiplied by the total
solid angle subtended by the closed surface, which is steradians:

22-23

which is Gauss’s law.
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F I G U R E  2 2 - 3 6 A point charge enclosed
by an arbitrary surface. The flux through an
area element is proportional to the solid
angle subtended by the area element at the
charge. The net flux through the surface,
found by summing over all the area elements,
is proportional to the total solid angle at
the charge, which is independent of the shape
of the surface.
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F I G U R E  2 2 - 3 5 An area element whose
normal is not parallel to the radial line from to the
center of the element. The solid angle subtended by
this element at is defined to be (¢A cosu)>r2.O

O
¢A

*
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Physics Spotlight

Charge Distribution—Hot and Cold

Electrical dipole moment, or polarity, affects the solubility of sub-
stances. Because water has such a strong electric dipole moment, it
works very well as a solvent for other molecules that have both
weak and strong dipole moments and ions. On the other hand,
molecules without dipole moments, or molecules that are so big
that they have large regions without dipole moments, do not dis-
solve well in water. Some oils, for example, do not have dipole
moments and are immiscible with water.

Charge distributions that molecules can have also control
whether substances that are not strictly classified as oils dissolve
well in water. Anyone who has ever bitten into a very spicy-hot
pepper and then taken a large drink of water can testify that water
does not wash away the sensation of pain. Capsaicin, the active
chemical in spicy-hot peppers such as habañeros, serranos, and
piquins, does not dissolve well in cold water because of its charge
distribution.* However, capsaicin’s solubility in water is increased
with the addition of ethyl alcohol, as demonstrated by people who
cool their mouths with beer after spicy-hot peppers. Alcohol mol-
ecules have weak dipole moments, and mix well with both water
and capsaicin. Capsaicin also mixes well with oils, some starches,
and proteins. In many cultures, rice or meat, rather than alcohol, is
used to dissolve capsaicin.

The sensation of pain that people who eat peppers feel is also due to the charge
distributions in molecules. The protein TRPV1 is a neuron receptor in humans that
signals how hot—temperature wise—something is. This protein has a charge dis-
tribution that is changed by a temperature above Proteins change their
shapes (fold and unfold) as the charge distribution changes across the molecule.†

Many protein functions are determined by folding and unfolding caused by
changes in charge distributions.‡ A change in charge distribution on a TRPV1 pro-
tein folds the protein and passes information about how hot a human’s surround-
ings are to neurons. Capsaicin creates the same changes as heat does in the charge
distributions of TRPV1 proteins,# which is why people perceive peppers as hot.
Ginger, a “warm” spice, contains gingerols, which trigger similar receptors by
means of changing charge distributions.° Menthol causes similar charge distribu-
tion changes in proteins that are neuron receptors in humans and signal how cold
surroundings are.§ This is why people perceive mint as cool.

Changes in charge distributions of proteins can cause textural changes in pro-
teins. The salting of caviar, for example, changes the charge distribution of proteins
inside the fish eggs. As the proteins unfold, they thicken the formerly thin fluid
inside the egg to a creamy texture.¶

* Turgut, C., Newby, B., and Cutright, T., “Determination of Optimal Water Solubility of Capsaicin for Its Usage as a
Non-Toxic Antifoulant.” Environmental Science Pollution Research International, Jan.-Feb. 2004, Vol. 11, No. 1, pp. 7–10.

† Suydam, I. T., et al., “Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory.”
Science, Jul. 14, 2006, Vol. 313, No. 5784, pp. 200–204.

‡ Honig, B., and Nicholls, A., “Classical Electrostatics in Biology and Chemisty.” Science, May 26, 1995, Vol. 268, p. 1144.
# Montell, C., “Thermosensation: Hot Findings Make TRPNs Very Cool.” Current Biology, Jun. 17, 2003, Vol. 13, No. 12,

pp. R476–R478.
° Dedov, V. N., et al., “Gingerols: A Novel Class of Vanilloid Receptor (VR1) Agonists.” British Journal of Pharmacology,

2002, Vol. 137, pp. 793–798.
§ Montell, C., op. cit.
¶ Sternin, V., and Dorè, I, Caviar: The Resource Book. Moscow: Cultura, 1993, in McGee, H., On Food and Cooking: The

Science and Lore of the Kitchen. New York: Scribner, 2004.

43°C.

The molecules of the active ingredient in these spicy hot peppers
do not dissolve in water because they do not have electric dipole
moments. (Stockbyte Platinum/Getty Images.)
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Summary

1. Gauss’s law is a fundamental law of physics that is equivalent to Coulomb’s law for static
charges.

2. For highly symmetric charge distributions, Gauss’s law can be used to calculate the
electric field.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Electric Field for a Continuous (Coulomb’s law) 22-1b
Charge Distribution

where for a charge distributed throughout a volume, for a charge
distributed on a surface, and for a charge distributed along a line.

2. Electric Flux 22-13

3. Gauss’s Law 22-16

The net outward electric flux through a closed surface equals the net charge within the sur-
face divided by 

4. Coulomb Constant and Electric 
Constant (Permittivity of Free Space)

22-7

5. Coulomb’s Law and Gauss’s Law 22-5

22-16

6. Discontinuity of At a surface having a surface charge density the component of the electric field normal to
the surface is discontinuous by 

22-20

7. Charge on a Conductor In electrostatic equilibrium, the charge density is zero throughout the material of the con-
ductor. All excess or deficit charge resides on the surfaces of the conductor.

8. Just Outside a Conductor The resultant electric field just outside the surface of a conductor is normal to the surface and
has the magnitude where is the local surface charge density on the conductor:

22-21

9. Electric Fields for Selected Uniform 
Charge Distributions

Of a line charge of infinite length 22-6

On the axis of a charged ring 22-8

On the axis of a charged disk 22-9Ez � sign(z) # s
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TOPIC RELEVANT EQUATIONS AND REMARKS

Of a charged infinite plane 22-10

Of a charged thin spherical shell 22-17a

22-17bEr � 0 r 	 R

Er �
1

4pP0

Q

r2
r 
 R

Ez � sign(z) # s
2P0

Answers to Concept Checks

22-1 The in Gauss’s law is the electric field due to all
charges. However, the flux of the electric field due to all
the charges outside the surface equals zero, so the flux
of the electric field due to all charges equals the flux of
the field due to the charges inside the surface alone.

E
S

Answers to Practice Problems

22-1 For so which

means

22-2 No. Symmetry dictates that is zero at whereas
the equation in step 3 gives a negative value for at

These contradictory results cannot both be valid.

22-3 The SI units for and are and m,
respectively. It follows that has units of

22-4

22-5 80%

z � a>22

(N # m2>C2)(C>m)(1>m) � N>C.
kl>RN # m2>C2, C>m,Rk, l,

z � 0.
Ez

z � 0Ez

Ex 
 0.

1
r2
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Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Figure 22-37 shows an L-shaped object that has sides
which are equal in length. Positive charge is distributed uni-
formly along the length of the
object. What is the direction of
the electric field along the
dashed line? Explain your
answer. SSM

45°

+++++++

F I G U R E  2 2 - 3 7

Problem 1

3 • True or false:
(a) The electric field due to a hollow uniformly charged thin spher-

ical shell is zero at all points inside the shell.
(b) In electrostatic equilibrium, the electric field everywhere inside

the material of a conductor must be zero.
(c) If the net charge on a conductor is zero, the charge density must

be zero at every point on the surface of the conductor.

4 • If the electric flux through a closed surface is zero, must
the electric field be zero everywhere on that surface? If not, give a
specific example. From the given information can the net charge in-
side the surface be determined? If so, what is it?

5 • True or false:
(a) Gauss’s law holds only for symmetric charge distributions.
(b) The result that everywhere inside the material of a con-

ductor under electrostatic conditions can be derived from
Gauss’s law.

6 •• A single point charge is located at the center of both an
imaginary cube and an imaginary sphere. How does the electric
flux through the surface of the cube compare to that through the
surface of the sphere? Explain your answer.

q

E � 0

2 • Positive charge is distributed uniformly along the en-
tire length of the axis, and negative charge is distributed uni-
formly along the entire length of the axis. The charge per unit
length on the two axes is identical, except for the sign.
Determine the direction of the electric field at points on the lines
defined by and Explain your answer. y � �x.y � x

y
x
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7 •• An electric dipole is completely inside a closed imagi-
nary surface and there are no other charges. True or false:
(a) The electric field is zero everywhere on the surface.
(b) The electric field is normal to the surface everywhere on the

surface.
(c) The electric flux through the surface is zero.
(d) The electric flux through the surface could be positive or negative.
(e) The electric flux through a portion of the surface might not 

be zero.

8 •• Explain why the electric field strength increases lin-
early with , rather than decreases inversely with , between the
center and the surface of a uniformly charged solid sphere.

r2r

SSM

9 •• Suppose that the total charge on the conducting
spherical shell in Figure 22-38 is zero. The negative point charge
at the center has a magnitude given by What is the direction
of the electric field in the following regions? (a)
(b) (c) and Explain your answer.

10 •• The conducting shell in Figure 22-38 is grounded, and
the negative point charge at the center has a magnitude given by

Which of the following statements is correct?
(a) The charge on the inner surface of the shell is and the

charge on the outer surface is 
(b) The charge on the inner surface of the shell is and the

charge on the outer surface is zero.
(c) The charge on both surfaces of the shell is 
(d) The charge on both surfaces of the shell is zero.

�Q.

�Q
�Q.

�Q

Q.

SSMr 
 R2 .R2 
 r 
 R1 ,
r 	 R1,

Q.

11 •• The conducting shell in
Figure 22-38 is grounded, and the
negative point charge at the center
has a magnitude given by What is
the direction of the electric field in
the following regions? (a)
(b) (c) and 
Explain your answers.

ESTIMATION AND 
APPROXIMATION

12 •• In the chapter, the expression for the electric field due
to a uniformly charged disk (on its axis), was derived. At any
location on the axis, the field magnitude is given by 

At large distances it was

shown that this equation approaches Very near the
disk the field strength is approximately that of an infi-
nite plane of charge or Suppose you have a disk of ra-
dius 2.5 cm that has a uniform surface charge density of

Use both the exact and approximate expression from
those given above to find the electric field strength on the axis at
distances of (a) 0.010 cm, (b) 0.040 cm, and (c) 5.0 m. Compare the
two values in each case and comment on how well the approxi-
mations work in their region of validity.

CALCULATING FROM
COULOMB’S LAW

13 • A uniform line charge that has a linear charge density 
equal to is on the axis between and x � 5.0 m.x � 0x3.5 nC>m l

E
S

3.6 mC>m2.

ƒE ƒ � 2pks.
( ƒz ƒ V R),

E � kQ>z2.
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 r 
 R1 ,
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Q.

(a) What is its total charge? Find the electric field on the axis
at (b) (c) and (d) (e) Estimate
the electric field at using the approximation that the
charge is a point charge on the axis at and compare
your result with the result calculated in Part (d). (To do this, you
will need to assume that the values given in this problem state-
ment are valid to more than two significant figures.) Is your ap-
proximate result greater or smaller than the exact result? Explain
your answer.

14 • Two infinite nonconducting sheets of charge are parallel
to each other, with sheet A in the plane and sheet B in
the plane. Find the electric field in the region

in the region and between the sheets for
the following situations. (a) When each sheet has a uniform surface
charge density equal to and (b) when sheet A has a uni-
form surface charge density equal to and sheet B has a
uniform surface charge density equal to (c) Sketch the
electric field line pattern for each case.

15 • A charge of is uniformly distributed on a ring of
radius 8.5 cm. Find the electric field strength on the axis at distances
of (a) 1.2 cm, (b) 3.6 cm, and (c) 4.0 m from the center of the ring.
(d) Find the field strength at 4.0 m using the approximation that the
ring is a point charge at the origin, and compare your results for
Parts (c) and (d). Is your approximate result a good one? Explain
your answer.

16 • A nonconducting disk of radius lies in the plane
with its center at the origin. The disk has a uniform surface charge
density Find the value of for which Note that at
this distance, the magnitude of the electric field strength is half the
electric field strength at points on the axis that are very close to
the disk.

17 • A ring that has radius a lies in the plane with its
center at the origin. The ring is uniformly charged and has a
total charge Find on the axis at (a) (b)
(c) (d) and (e) (f) Use your results to plot

versus for both positive and negative values of (Assume
that these distances are exact.)

18 • A nonconducting disk of radius a lies in the 
plane with its center at the origin. The disk is uniformly charged
and has a total charge Find on the axis at (a)
(b) (c) (d) and (e) (f) Use your re-
sults to plot versus for both positive and negative values of

(Assume that these distances are exact.)

19 •• SPREADSHEET (a) Using a spreadsheet program or
graphing calculator, make a graph of the electric field strength on
the axis of a disk that has a radius and a surface charge
density (b) Compare your results to the results
based on the approximation (the formula for the electric
field strength of a uniformly charged infinite sheet). At what dis-
tance does the solution based on approximation differ from the
exact solution by 10.0 percent?

20 •• (a) Show that the electric field strength on the axis of a
ring charge of radius a has maximum values at 
(b) Sketch the field strength versus for both positive and nega-
tive values of (c) Determine the maximum value of 

21 •• A line charge that has a uniform linear charge density 
lies along the axis from to where Show that
the component of the electric field at a point on the axis is given 

by where 

and y � 0.
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F I G U R E  2 2 - 3 8 Problems 9, 10, and 11
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22 •• A ring of radius a has a charge distribution on it that
varies as as shown in Figure 22-39. (a) What is the di-
rection of the electric field at the center of the ring? (b) What is the
magnitude of the field at the center of the ring?

l(u) � l0 sinu,
and the other is at (a) What is the elec-

tric flux through each end? (b) What is the electric flux through
the curved surface of the cylinder? (c) What is the electric flux
through the entire closed surface? (d) What is the net charge
inside the cylinder?

30 • Careful measurement of the electric field at the
surface of a black box indicates that the net outward electric 
flux through the surface of the box is (a) What is
the net charge inside the box? (b) If the net outward electric 
flux through the surface of the box were zero, could you con-
clude that there were no charges inside the box? Explain your
answer.

31 • A point charge is at the center of an
imaginary sphere that has a radius equal to 0.500 m. (a) Find the
surface area of the sphere. (b) Find the magnitude of the electric
field at all points on the surface of the sphere. (c) What is the flux
of the electric field through the surface of the sphere? (d) Would
your answer to Part (c) change if the point charge were moved so
that it was inside the sphere but not at its center? (e) What is the flux
of the electric field through the surface of an imaginary cube that
has 1.00-m-long edges and encloses the sphere?

32 • What is the electric flux through one side of a cube that
has a single point charge of placed at its center? Hint: You
do not need to integrate any equations to get the answer.

33 • A single point charge is placed at the center of an ima-
ginary cube that has 20-cm-long edges. The electric flux out of one
of the cube’s sides is How much charge is at the
center?

34 •• Because the formulas for Newton’s law of gravity and for
Coulomb’s law have the same inverse-square dependence on dis-
tance, a formula analogous to the formula for Gauss’s law can be
found for gravity. The gravitational field at a location is the force
per unit mass on a test mass placed at that location. (Then, for a
point mass at the origin, the gravitational field at some position 
is Compute the flux of the gravitational field
through a spherical surface of radius centered at the origin, and ver-
ify that the gravitational analog of Gauss’s law is 

35 •• An imaginary right circular cone (Figure 22-40) that has a
base angle and a base radius is in charge free region that has
a uniform electric field (field lines are vertical and parallel to the
cone’s axis). What is the ratio of the number of field lines per unit
area penetrating the base to the number of field lines per unit area
penetrating the conical surface of the cone? Use Gauss’s law in your
answer. (The field lines in the
figure are only a representa-
tive sample.)

36 •• In the atmosphere
and at an altitude of 250 m,
you measure the electric field
to be directed down-
ward, and you measure the
electric field to be 
directed downward at an alti-
tude of 400 m. Calculate the
volume charge density of
the atmosphere in the region
between altitudes of 250 m
and 400 m, assuming it to be
uniform. (You may neglet the
curvature of Earth. Why?)
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23 •• A line of charge that has uniform linear charge 
density lies on the axis from to Show that the 
component of the electric field at a point on the axis is given by

24 ••• Calculate the electric field a distance from a uniformly
charged infinite flat nonconducting sheet by modeling the sheet as
a continuum of infinite straight lines of charge.

25 •• Calculate the electric field a distance from a uniformly
charged infinite flat nonconducting sheet by modeling the sheet as
a continuum of infinite circular rings of charge.

26 ••• A thin hemispherical shell of radius has a uniform sur-
face charge Find the electric field at the center of the base of the
hemispherical shell.

GAUSS’S LAW

27 • A square that has 10-cm-long edges is centered on the 
axis in a region where there exists a uniform electric field given by

(a) What is the electric flux of this electric field
through the surface of a square if the normal to the surface is in the
+ direction? (b) What is the electric flux through the same square
surface if the normal to the surface makes a angle with the 
axis and an angle of with the axis?

28 • A single point charge is fixed at the ori-
gin. An imaginary spherical surface of radius 3.00 m is centered on
the axis at (a) Sketch electric field lines for this charge
(in two dimensions) assuming twelve equally spaced field lines in
the plane leave the charge location, with one of the lines in
the direction. Do any lines enter the spherical surface? If so,
how many? (b) Do any lines leave the spherical surface? If so, how
many? (c) Counting the lines that enter as negative and the ones
that leave as positive, what is the net number of field lines that pen-
etrate the spherical surface? (d) What is the net electric flux through
this spherical surface?

29 • An electric field is given by 
where sign equals if if and if 
A cylinder of length 20 cm and radius 4.0 cm has its center at the
origin and its axis along the axis such that one end is atx
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Problem 35
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θ

λ

x

y
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GAUSS’S LAW APPLICATIONS IN
SPHERICAL SYMMETRY SITUATIONS

37 • A thin nonconducting spherical shell of radius has a
total charge that is uniformly distributed on its surface. A second,
larger thin nonconducting spherical shell of radius that is coax-
ial with the first has a charge that is uniformly distributed on its
surface. (a) Use Gauss’s law to obtain expressions for the electric
field in each of the three regions: and 
(b) What should the ratio of the charges and the relative signs
for and be for the electric field to be zero throughout the region

(c) Sketch the electric field lines for the situation in Part
(b) when is positive.

38 • A nonconducting thin spherical shell of radius 6.00 cm
has a uniform surface charge density of (a) What is the
total charge on the shell? Find the electric field at the following dis-
tances from the sphere’s center: (b) 2.00 cm, (c) 5.90 cm, (d) 6.10 cm,
and (e) 10.0 cm.

39 •• A nonconducting sphere of radius 6.00 cm has a
uniform volume charge density of (a) What is the 
total charge on the sphere? Find the electric field at the following
distances from the sphere’s center: (b) 2.00 cm, (c) 5.90 cm, 
(d) 6.10 cm, and (e) 10.0 cm.

40 •• Consider the solid conducting sphere and the concentric
conducting spherical shell in Figure 22-41. The spherical shell has
a charge The solid sphere has a charge . (a) How much
charge is on the outer surface and how much charge is on the inner
surface of the spherical shell? (b) Suppose a metal wire is now con-
nected between the solid sphere and the shell. After electrostatic
equilibrium is reestablished, how much charge is on the solid
sphere and on each surface of the spherical shell? Does the electric
field at the surface of the solid sphere change when the wire is con-
nected? If so, in what way? (c) Suppose we return to the conditions
in Part (a) , with on the solid sphere and on the spheri-
cal shell. We next connect the solid sphere to ground with a metal
wire, and then disconnect it. Then how much total charge is on the
solid sphere and on each surface of the spherical shell?

�7Q�2Q

�2Q�7Q.

SSM

450 nC>m3.

9.00 nC>m2.

q1

r 
 R2?
q2q1

q1>q2 r 
 R2 .r 	 R1 , R1 	 r 	 R2 ,

q2

R2

q1

R1

–7Q

+2Q
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Problem 40

41 •• A nonconducting solid sphere of radius 10.0 cm has a
uniform volume charge density. The magnitude of the electric field
at 20.0 cm from the sphere’s center is (a) What is
the sphere’s volume charge density? (b) Find the magnitude of the
electric field at a distance of 5.00 cm from the sphere’s center.

42 •• A nonconducting solid sphere of radius has a volume
charge density that is proportional to the distance from the center.
That is, for where is a constant. (a) Find the total
charge on the sphere. (b) Find the expressions for the electric field
inside the sphere and outside the sphere . (c) Sketch
the magnitude of the electric field as a function of the distance 
from the sphere’s center.

r
(r 
 R)(r 	 R)

Ar � R,r � Ar

R

1.88 � 103 N>C.

43 •• A sphere of radius has volume charge density
for where is a constant and for 

(a) Find the total charge on the sphere. (b) Find the expressions
for the electric field inside and outside the charge distribution.
(c) Sketch the magnitude of the electric field as a function of the
distance from the sphere’s center.

44 •• A sphere of radius has volume charge density
for where is a constant and for 

(a) Find the total charge on the sphere. (b) Find the expressions
for the electric field inside and outside the charge distribution.
(c) Sketch the magnitude of the electric field as a function of the
distance from the sphere’s center.

45 ••• A nonconducting spherical shell of inner radius and
outer radius has a uniform volume charge density (a) Find the
total charge on the shell. (b) Find expressions for the electric field
everywhere.

GAUSS’S LAW APPLICATIONS IN
CYLINDRICAL SYMMETRY
SITUATIONS

46 • CONTEXT-RICH, ENGINEERING APPLICATION For your se-
nior project, you are designing a Geiger tube for detecting radia-
tion in the nuclear physics laboratory. This instrument will consist
of a long metal cylindrical tube that has a long straight metal wire
running down its central axis. The diameter of the wire will be
0.500 mm and the inside diameter of the tube will be 4.00 cm. The
tube is to be filled with a dilute gas in which an electrical discharge
(breakdown of the gas) occurs when the electric field reaches

Determine the maximum linear charge density on
the wire if breakdown of the gas is not to happen. Assume that the
tube and the wire are infinitely long.

47 ••• In Problem 46, suppose ionizing radiation produces an
ion and an electron at a distance of 1.50 cm from the long axis of
the central wire of the Geiger tube. Suppose that the central wire
is positively charged and has a linear charge density equal to

(a) In this case, what will be the electron’s speed as it
impacts the wire? (b) How will the electron’s speed compare to the
ion’s final speed when it impacts the outside cylinder? Explain
your answer.

48 •• Show that the electric field due to an infinitely long, uni-
formly charged thin cylindrical shell of radius a having a surface
charge density is given by the following expressions: for

and for 

49 • A thin cylindrical shell of length 200 m and radius
6.00 cm has a uniform surface charge density of 
(a) What is the total charge on the shell? Find the electric field at
the following radial distances from the long axis of the cylinder:
(b) 2.00 cm, (c) 5.90 cm, (d) 6.10 cm, and (e) 10.0 cm. (Use the re-
sults of Problem 48.)

50 •• An infinitely long nonconducting solid cylinder of radius
a has a uniform volume charge density of Show that the elec-
tric field is given by the following expressions: 
for and for where is the dis-
tance from the long axis of the cylinder.

51 •• A solid cylinder of length 200 m and radius 6.00 cm has 
a uniform volume charge density of (a) What is the total
charge of the cylinder? Use the formulas given in Problem 50 to cal-
culate the electric field at a point equidistant from the ends at the
following radial distances from the cylindrical axis: (b) 2.00 cm,
(c) 5.90 cm, (d) 6.10 cm, and (e) 10.0 cm. SSM
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60 • A charge of is uniformly distributed on a thin
square sheet of nonconducting material of edge length 20.0 cm.
(a) What is the surface charge density of the sheet? (b) What are the
magnitude and direction of the electric field next to the sheet and
proximate to the center of the sheet?
61 • A conducting spherical shell that has zero net charge
has an inner radius and an outer radius A positive point
charge is placed at the center of the shell. (a) Use Gauss’s law
and the properties of conductors in electrostatic equilibrium to
find the electric field in the three regions: 
and where is the distance from the center. (b) Draw the
electric field lines in all three regions. (c) Find the charge density
on the inner surface and on the outer surface of
the shell.
62 •• The electric field just above the surface of Earth has been
measured to typically be pointing downward. (a) What is
the sign of the net charge on Earth’s surface under typical condi-
tions? (b) What is the total charge on Earth’s surface implied by this
measurement?
63 •• A positive point charge of is at the center of a con-
ducting spherical shell that has a net charge of zero, an inner radius
equal to 60 cm, and an outer radius equal to 90 cm. (a) Find the
charge densities on the inner and outer surfaces of the shell and the
total charge on each surface. (b) Find the electric field everywhere.
(c) Repeat Part (a) and Part (b) with a net charge of placed
on the shell.
64 •• If the magnitude of an electric field in air is as great as

the air becomes ionized and begins to conduct elec-
tricity. This phenomenon is called dielectric breakdown. A charge of

is to be placed on a conducting sphere. What is the minimum
radius of a sphere that can hold this charge without breakdown?
65 •• A thin square conducting sheet that has 5.00-m-long
edges has a net charge of The square is in the plane
and is centered at the origin. (Assume the charge on each surface
is uniformly distributed.) (a) Find the charge density on each side
of the sheet and find the electric field on the axis in the region

(b) A thin but infinite nonconducting sheet that has a
uniform charge density of is now placed in the

plane. Find the electric field on the x axis on each side
of the square sheet in the region Find the charge
density on each surface of the square sheet.

GENERAL PROBLEMS

66 •• Consider the concentric metal sphere and spherical shells
that are shown in Figure 22-43. The innermost is a solid sphere that
has a radius A spherical shell surrounds the sphere and has anR1 .

SSM
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Problem 66

52 •• Consider two infinitely long, coaxial thin cylindrical
shells. The inner shell has a radius and has a uniform surface
charge density of and the outer shell has a radius and has a
uniform surface charge density of (a) Use Gauss’s law to find ex-
pressions for the electric field in the three regions: 

and where is the distance from the axis.
(b) What is the ratio of the surface charge densities and their
relative signs if the electric field is to be zero everywhere outside the
largest cylinder? (c) For the case in Part (b), what would be the elec-
tric field between the shells? (d) Sketch the electric field lines for the
situation in Part (b) if is positive.
53 •• Figure 22-42 shows a portion of an infinitely long, con-
centric cable in cross section. The inner conductor has a linear
charge density of and the outer conductor has no net
charge. (a) Find the electric field for all values of where is the
perpendicular distance from the common axis of the cylindrical
system. (b) What are the surface charge densities on the inside and
the outside surfaces of the outer conductor?

RR,
6.00 nC>m
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s2>s1

RR 
 a2,a1 	 R 	 a2 ,
0 � R 	 a1 ,

s2 .
a2s1 ,
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R
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Problems 53 and 57

54 •• An infinitely long nonconducting solid cylinder of radius a
has a nonuniform volume charge density. This density varies linearly
with the perpendicular distance from its axis, according to

where is a constant. (a) Show that the linear charge den-
sity of the cylinder is given by (b) Find expressions for
the electric field for and 
55 •• An infinitely long nonconducting solid cylinder of radius a
has a nonuniform volume charge density. This density varies with 
the perpendicular distance from its axis, according to 
where is a constant. (a) Show that the linear charge density of the
cylinder is given by (b) Find expressions for the electric
field for and 
56 ••• An infinitely long, nonconducting cylindrical shell of
inner radius and outer radius has a uniform volume charge
density Find expressions for the electric field everywhere.
57 ••• The inner cylinder of Figure 22-42 is made of nonconduct-
ing material and has a volume charge distribution given by

where The outer cylinder is metallic,
and both cylinders are infinitely long. (a) Find the charge per unit
length (that is, the linear charge density) on the inner cylinder.
(b) Calculate the electric field for all values of 

ELECTRIC CHARGE AND FIELD
AT CONDUCTOR SURFACES

58 • An uncharged penny is in a region that has a uniform
electric field of magnitude directed perpendicular to its
faces. (a) Find the charge density on each face of the penny, assum-
ing the faces are planes. (b) If the radius of the penny is 1.00 cm, find
the total charge on one face.
59 • A thin metal slab has a net charge of zero and has square
faces that have 12-cm-long sides. It is in a region that has a uniform
electric field that is perpendicular to its faces. The total charge in-
duced on one of the faces is 1.2 nC. What is the magnitude of the
electric field?
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inner radius and an outer radius The sphere and the shell are
both surrounded by a second spherical shell that has an inner radius

and an outer radius None of the three objects initially have a
net charge. Then, a negative charge is placed on the inner
sphere and a positive charge is placed on the outermost shell.
(a) After the charges have reached equilibrium, what will be the di-
rection of the electric field between the inner sphere and the middle
shell? (b) What will be the charge on the inner surface of the mid-
dle shell? (c) What will be the charge on the outer surface of the
middle shell? (d) What will be the charge on the inner surface of the
outermost shell? (e) What will be the charge on the outer surface of
the outermost shell? (f) Plot as a function of for all values of 
67 •• A large, flat, nonconducting, nonuniformly charged sur-
face lies in the plane. At the origin, the surface charge density
is A small distance away from the surface on the pos-
itive axis, the component of the electric field is 
What is a small distance away from the surface on the negative 
axis?
68 •• An infinitely long line charge that has a uniform linear
charge density equal to lies parallel to the axis at

A positive point charge that has a magnitude equal to
is located at Find the electric field

at
69 •• A thin, nonconducting, uniformly charged spherical
shell of radius (Figure 22-44a) has a total positive charge of A
small circular plug is removed from the surface. (a) What are the
magnitude and direction of the electric field at the center of the
hole? (b) The plug is now put back in the hole (Figure 22-44b). Using
the result of Part (a), find the electric force acting on the plug.
(c) Using the magnitude of the force, calculate the “electrostatic
pressure” (force/unit area) that tends to expand the sphere. SSM

Q.R

y � 1.50 m.x � 2.00 m,
y � 2.00 m.x � 1.00 m,1.30 mC

x � �2.00 m.
y�1.50 mC>mSSM

xEx

4.65 � 105 N>C.xx
�3.10 mC>m2.

x � 0

r.rE

�Q0

�Q0

R5 .R4

R3 .R2 0.25 cm from the plate on the right? (b) What is the electric field
between the plates a distance of 1.00 cm from the plate on the
left? (c) What is the electric field just to the left of the plate on
the left? (d) What is the electric field just to the right of the plate
on the right?

72 •• Two infinite nonconducting uniformly charged
planes lie parallel to each other and to the plane. One is at

and has a surface charge density of 
The other is at and has a surface charge density of

Find the electric field in the region: (a)
(b) and (c)

73 ••• A quantum-mechanical treatment of the hydrogen atom
shows that the electron in the atom can be treated as a smeared-out
distribution of negative charge of the form Here 
represents the distance from the center of the nucleus and a repre-
sents the first Bohr radius, which has a numerical value of 0.0529 nm.
Recall that the nucleus of a hydrogen atom consists of just one pro-
ton and treat this proton as a positive point charge. (a) Calculate 
using the fact that the atom is neutral. (b) Calculate the electric field
at any distance from the nucleus.

74 •• A uniformly charged ring has a radius , lies in a hori-
zontal plane, and has a negative charge given by A small par-
ticle of mass has a positive charge given by The small particle
is located on the axis of the ring. (a) What is the minimum value of

such that the particle will be in equilibrium under the action
of gravity and the electrostatic force? (b) If is twice the value
calculated in Part (a) , where will the particle be when it is in equi-
librium? Express your answer in terms of 

75 •• A long, thin, nonconducting plastic rod is bent into a cir-
cular loop that has a radius a. Between the ends of the rod a short gap
of length where remains. A positive charge of magnitude 
is evenly distributed on the loop. (a) What is the direction of the elec-
tric field at the center of the loop? Explain your answer. (b) What is
the magnitude of the electric field at the center of the loop?

76 •• A nonconducting solid sphere that is 1.20 m in diameter
and has its center on the axis at has a uniform volume
charge of density of Concentric with the sphere is a
thin nonconducting spherical shell that has a diameter of 2.40 m
and a uniform surface charge density of Calculate the
magnitude and direction of the electric field at (a)

(b) and (c)

77 •• An infinite nonconducting plane sheet of charge that has
a surface charge density lies in the 
plane. A second infinite nonconducting plane sheet of charge that
has a surface charge density of lies in the 
plane. Lastly, a nonconducting thin spherical shell that has a radius
of 1.00 m and its center in the plane at the intersection of the
two charged planes has a surface charge density of 
Find the magnitude and direction of the electric field on the axis
at (a) and (b)

78 •• An infinite nonconducting plane sheet lies in the
plane and has a uniform surface charge density of

An infinite nonconducting line charge of uniform lin-
ear charge density passes through the origin at an angle of

with the axis in the plane. A solid nonconducting sphere
of volume charge density and radius 0.800 m is cen-
tered on the axis at Calculate the magnitude and direc-
tion of the electric field in the plane at 

79 •• A uniformly charged, infinitely long line of negative
charge has a linear charge density of and is located on the axis.
A small positively charged particle that has a mass and a charge

is in a circular orbit of radius in the plane centered on the line
of charge. (a) Derive an expression for the speed of the particle.
(b) Obtain an expression for the period of the particle’s orbit. SSM
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70 •• An infinite thin sheet in the plane has a uniform
surface charge density A second infinite thin
sheet has a uniform charge density and intersects
the plane at the axis and makes
an angle of with the plane, as
shown in Figure 22-45. Find the electric
field at (a) and
(b) y � 5.0 m.x � 6.0 m,

y � 2.0 mx � 6.0 m,

xz30°
zy � 0

s2 � �45 nC>m2
s1 � �65 nC>m2.

y � 0

30°

y

x

z

+

+
+

+ +
+

+σ2
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Problem 70

71 ••• Two identical square parallel metal plates each have
an area of They are separated by 1.50 cm. They are both
initially uncharged. Now a charge of is transferred
from the plate on the left to the plate on the right and the charges
then establish electrostatic equilibrium. (Neglect edge effects.)
(a) What is the electric field between the plates at a distance of

�1.50 nC
500 cm2.



80 •• A stationary ring of radius lies in the plane and has
a uniform positive charge A small particle that has mass and
a negative charge is located at the center of the ring. (a) Show
that if the electric field along the axis of the ring is propor-
tional to (b) Find the force on the particle as a function of 
(c) Show that if the particle is given a small displacement in the 
direction, it will perform simple harmonic motion. (d) What is the
frequency of that motion?

81 •• The charges and of Problem 80 are and
respectively, and the radius of the ring is 8.00 cm.

When the particle is given a small displacement in the direc-
tion, it oscillates about its equilibrium position at a frequency of
3.34 Hz. (a) What is the particle’s mass? (b) What is the fre-
quency if the radius of the ring is doubled to 16.0 cm and all
other parameters remain unchanged?

82 •• If the radius of the ring in Problem 80 is doubled
while keeping the linear charge density on the ring the same,
does the frequency of oscillation of the particle change? If so, by
what factor does it change?

83 ••• A uniformly charged nonconducting solid sphere of ra-
dius has its center at the origin and has a volume charge density
of (a) Show that at a point within the sphere a distance from the

center (b) Material is removed from the sphere leaving

a spherical cavity that has a radius and its center at 
on the axis (Figure 22-46). Calculate the electric field at points 1
and 2 shown in Figure 22-46. Hint: Model the sphere-with-cavity as two
uniform spheres of equal positive and negative charge densities.
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86 ••• A small Gaussian surface in the shape of a cube has faces
parallel to the and planes (Figure 22-47) and is in a region
in which the electric field is parallel to the axis. (a) Using the dif-
ferential approximation, show that the net electric flux of the electric

field out of the Gaussian surface is given by , where

is the volume enclosed by the Gaussian surface. (b) Using

Gauss’s law and the results of Part (a) show that where

is the volume charge density inside the cube. (This equation is the
one-dimensional version of the point form of Gauss’s law.)
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84 ••• Show that the electric field throughout the cavity of

Problem 83b is uniform and is given by 

85 ••• The cavity in Problem 83b is now filled with a uniformly
charged nonconducting material with a total charge of Calculate
the new values of the electric field at points 1 and 2 shown in
Figure 22-46.
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88 ••• An electric dipole that has a dipole moment of is lo-
cated at a perpendicular distance from an infinitely long line
charge that has a uniform linear charge density Assume that the
dipole moment is in the same direction as the field of the line of
charge. Determine an expression for the electric force on the dipole.

l.
R

pS

87 ••• Consider a simple but surprisingly accurate model for
the hydrogen molecule: two positive point charges, each having
charge are placed inside a uniformly charged sphere of radius

which has a charge equal to The two point charges are
placed symmetrically, equidistant from the center of the sphere
(Figure 22-48). Find the distance from the center, where the net
force on either point charge is zero. SSM
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�2e.R,
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Did you know that the maximum

potential that the dome of a Van de

Graaff generator can be increased to

is determined by the radius of the dome?

(See Example 23-14.)

23
C H A P T E R

763

?

Electric Potential

23-1 Potential Difference

23-2 Potential Due to a System of Point Charges

23-3 Computing the Electric Field from the Potential

23-4 Calculations of for Continuous Charge Distributions

23-5 Equipotential Surfaces

23-6 Electrostatic Potential Energy

G
ravitational potential energy, introduced in Chapter 7, is a powerful con-
ceptual and computational aid. In this chapter, we introduce electrical
potential energy, and like gravitational potential energy, we will find elec-
trical potential energy to be a powerful conceptual and computational aid.
In addition, we continue to develop the concept of the electric field.
Electric fields are discussed in Chapters 21 and 22, and we continue

this discussion in this chapter by introducing the electric potential—a scalar field
that is directly related to the electric field. Because it is a scalar field, it is easier to
use during calculations than the electric field (a vector) in many circumstances.
Also, the potential is usually much easier to measure—using a voltmeter—than is
the electric field. Both electric potential energy and the electrical potential field will
be essential tools in the analysis of capacitance, resistance, and electric circuits—
topics that are developed in Chapters 24 and 25.

In this chapter, we will establish the relationship between the electric field
and electric potential and calculate the electric potential of various continu-
ous charge distributions. We will also calculate the electrical potential
energy of a system of point charges and a system of charged conductors.

V

THIS GIRL HAS BEEN INCREASED TO A
HIGH ELECTRIC POTENTIAL THROUGH
CONTACT WITH THE DOME OF A VAN DE
GRAAFF GENERATOR. SHE IS STANDING
ON A PLATFORM THAT ELECTRICALLY
INSULATES HER FROM THE FLOOR, SO
SHE ACCUMULATES CHARGE FROM THE
VAN DE GRAAFF. HER HAIR STANDS UP
BECAUSE THE CHARGES ON HER HAIR
STRANDS HAVE THE SAME SIGN, AND
LIKE CHARGES REPEL EACH OTHER.
(Courtesy of the U.S. Department
of Energy.)
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23-1 POTENTIAL DIFFERENCE

The electrostatic force exerted by a point charge on another point charge is directed
along the line joining the charges and varies inversely with the square of their sep-
aration distance. This same dependence can be seen when analyzing the gravita-
tional force between two masses. Like the gravitational force, the electric force is
conservative, so there is a potential energy function associated with it. If the point
of application of a conservative force undergoes a displacement the change in
the potential energy function associated with this displacement is given by

If the conservative force is exerted by electrostatic field on point charge then
the force is given by

and if the point charge undergoes a displacement the corresponding change
in the electrostatic potential energy is given by

23-1

In Section 21-4, we revealed that the electrostatic force on a test charge is
proportional to and this relationship led to defining a quantity (the force per
unit charge at the location of the test charge) called the electric field There is an
analogous situation here. The potential energy change associated with the dis-
placement of a test charge that undergoes a displacement is given by

Thus, the potential energy change is proportional to the test
charge. This relation suggests that we define a quantity—the potential energy
change per unit charge—called the potential difference

23-2a

DEFINITION—POTENTIAL DIFFERENCE

For a finite displacement from point to point the change in potential is

23-2b

DEFINITION—FINITE POTENTIAL DIFFERENCE

The potential difference is the negative of the work per unit charge done
by the electric field on a test charge when the test charge moves from point to
point (along any path). During this calculation, the positions of any and all other
charges remain fixed. (Recall that a test charge is a point charge whose magnitude
is so small that it exerts only negligible forces on any and all other charges. For
convenience, test charges are invariably considered to be positive charges.)

The function is called the electric potential; it is often referred to as the
potential. Like the electric field, the potential is a function of position. Unlike 
the electric field, is a scalar function, whereas is a vector function. As with
potential energy only differences in the potential are physically significant.
We are free to choose the potential to be zero at any convenient point, just as we
are when dealing with potential energy. For convenience, the electric potential and
the potential energy of a test charge are chosen to be zero at the same reference
point. Under this restriction they are related by

23-3

RELATION BETWEEN POTENTIAL ENERGY AND POTENTIAL

U � q0V

VU,
E
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V
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b
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¢V � Vb � Va �
¢U
q0
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a
E
S # d�
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CONTINUITY OF 

In Chapter 22, we saw that the electric field is discontinuous by at points
where there is a surface charge density The potential function, on the other
hand, is continuous everywhere, except at points where the electric field is infinite
(points occupied by a point charge or a line charge). We can see this result from the
definition of potential. Consider a region occupied by an electric field The dif-
ference in potential between two nearby points separated by displacement is
related to the electric field by (Equation 23-2a). The dot product
can be expressed as where is the component of in the direction of and

is the magnitude of Substituting into Equation 23-2a gives If
is finite at each of the two points and along the line segment of infinitesimal length

joining them, then is infinitesimal. Thus, the potential function is contin-
uous at any point not occupied by a point charge or a line charge.

UNITS

Because electric potential is the potential energy per unit charge, the SI unit for
potential and potential difference is the joule per coulomb, called the volt

23-4

The potential difference between two points (measured in volts) is commonly
referred to as the voltage between the two points. In a 12- car battery, the positive
terminal has a potential higher than the negative terminal. If we attach an
external circuit to the battery and one coulomb of charge is transferred from the
positive terminal through the circuit to the negative terminal, the potential energy
of the charge decreases by 

We can see from Equation 23-2 that the dimensions of potential are also those of
the product of electric field and distance. Thus, the unit of the electric field is equal
to one volt per meter:

23-5

so we may think of the magnitude of the electric field as either a force per
unit charge or as a rate of change of potential with respect to distance in
a given direction. In atomic and nuclear physics, we often have particles that
have charges of magnitude such as electrons and protons, moving through
potential differences of several thousands or even millions of volts. Because
energy has dimensions of electric charge multiplied by electric potential, a
unit of energy is defined as the product of the fundamental charge unit and
a volt. This particularly useful unit is called an electron volt Energies
used in atomic and molecular physics are typically a few making the
electron volt a convenient-sized unit for atomic and molecular processes.
The conversion between electron volts and joules is obtained by expressing
the fundamental charge unit in coulombs:

23-6

THE ELECTRON VOLT

For example, an electron moving from the negative terminal to the positive
terminal of a 12- car battery loses of potential energy.

POTENTIAL AND ELECTRIC FIELDS

If we place a positive charge in an electric field and release it, it accelerates
in the direction of As the kinetic energy of the charge increases, its potential
energy decreases. The charge therefore accelerates toward a region where its
electric potential energy is less, just as a mass in a gravitational field accelerates
toward a region where its gravitational potential energy is less (Figure 23-1).

E
S

.
E
S

q0

12 eVV

1 eV � 1.60 � 10�19 C # V � 1.60 � 10�19 J

eV,
(eV).

e

e,

(V)
E

1 N>C � 1 V>m
Q ¢V � (1 C)(12 V) � 12 J.

12 V
V

1 V � 1 J>C (V):

VdVd�

E
S

dV � �E|| d�.d�
S

.d�
d�

S
E
S

E||E|| d�,
dV � �E

S # d�
S

d�
S

E
S

.

s.
s>P0

V
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Δ� Δ�

Earth

m

g

qE

E

+q

– –
–

+

Negative
charge

(b)(a)

F I G U R E  2 3 - 1 (a) The work done by the
gravitational field on a mass is equal to the
decrease in the gravitational potential energy. (b) The
work done by the electric field on a charge is
equal to the decrease in the electric potential energy.

qE
S

mgS
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PRACTICE PROBLEM 23-1

If you place a negative charge in an electric field, would the negative charge accelerate in
the direction of increasing or decreasing potential?

High V Low V
q0 +

E

a

F I G U R E  2 3 - 2 The electric field points in
the direction in which the potential decreases
most rapidly. If a positive test charge is in
an electric field, it accelerates in the direction
of the field. If it is released from rest, its
kinetic energy increases and its potential
energy decreases.

q0

1. The difference in potential is related to the electric field by
Equation 23-2b:

Vb � Va � ��
b

a
E
S # d�

S
x

y

z

a

b

(0, ya, za)

(xb, yb, zb)

E
d�

F I G U R E  2 3 - 3

3. Express both and in terms of their Cartesian
components and simplify the expression for E

S # d�
S

:
d�

S
E
S

E
S # d�

S
� Ein # (dx in � dy jn � dz kn) � E dx

2. Sketch points and and coordinate axes and 
In addition, sketch an integration path from to 
(Figure 23-3):

ba
z.x, y,ba

CHECK The step 6 result is equal to zero if which is in agreement with the assump-
tion that at in the problem statement.

PRACTICE PROBLEM 23-2 Repeat this example for the electric field E
S

� (10 V>m2)xin.

x � 0V � 0
x � 0,

4. Substitute the step 3 result into the step 1 result. Let point be
a point in the plane (that way, ):Va � 0x � 0

a Vb � Va � ��
x
b

xa

E dx

5. Because point is any point in the plane, and
In addition, is uniform so it can be factored from the

integrand:
Exa � 0.

Va � 0x � 0a so Vb � �ExbVb � 0 � �E�
x
b

0

dx

6. Replace with replace with and substitute 
for E:

10 V>mV(x),Vbx,xb �(10 V>m)xV(x) � �Ex �

The electric potential energy is related to the electric potential by so
for a positive charge a region where the charge has lower potential energy is also
a region of lower electric potential In summary, a positive charge accelerates
in the direction of (Figure 23-2) toward a region of lower electric potential 
Thus,

V.E
S

V.
U

U � qV,VU

The electric field points in the direction in which the potential decreases
most rapidly.

VE
S

Example 23-1 Find for Uniform 

A uniform electrostatic field points in the direction and has a magnitude of
Find the potential as a function of assuming that at 

PICTURE We can solve for by using (Equation 23-2b). Let be a
point in the plane (where and let be an arbitrary positioned point. 
Express both and in terms of their Cartesian components and then compute the
integral.

SOLVE

d�
S

E
S

bV � 0)x � 0
aVb � Va � ��ba E

S # d�
S

V

x � 0.
V � 0x,E � 10 N>C � 10 V>m.

�x

E
S

V
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In Example 23-1, point —the point where the value of the potential is specified—
is called the reference point for the potential function The potential at a field
point is obtained by calculating where the potential at is
taken to be zero. The integral is to be evaluated along any path from to 

We now show how to calculate the potential for a number of different charge
distributions.

23-2 POTENTIAL DUE TO A SYSTEM 
OF POINT CHARGES

The electric potential a distance from a point charge at the origin can be calculated
using (Equation 23-2b), where at the reference point the
potential equals and is an arbitrary field point (Figure 23-4). The electric field
due to the point charge is given by

Substituting for in the integral gives

where (see Figure 23-4) is the change in the distance associated with
the displacement Setting equal to zero and integrating along a path from
an arbitrary reference point to an arbitrary field point gives

or

23-7

POTENTIAL DUE TO A POINT CHARGE

where we have replaced (the distance to the field point ) with and replaced
with We are free to choose the location of the reference point, so we choose it

to give the potential the simplest algebraic form. Choosing the reference point
infinitely far from the point charge (so accomplishes this. Thus,

23-8

COULOMB POTENTIAL

The potential given by Equation 23-8 is called the Coulomb potential. It is positive
or negative depending on whether is positive or negative.

The potential energy of a point charge placed a distance from the point
charge is

23-9

ELECTROSTATIC POTENTIAL ENERGY OF A TWO-CHARGE SYSTEM
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F I G U R E  2 3 - 4 The change in is It is
the component of in the direction of It
can be seen from the figure that 
Because it follows that
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(a) Use to calculate the potential due to the charge on
the proton at For a proton, q � e:r � r0 .

VV � kq>r
27.2 V� 27.2 N # m>C �

V �
kq

r0

�
ke
r0

�
(8.99 � 109 N # m2>C2)(1.6 � 10�19 C)

0.529 � 10�10 m

(b) Use with to calculate the potential energy:q� � �eU � q�V, �27.2 eVU � q�V � (�e)(27.2 V) �

CHECK By examining the units in the equation we can see that the units work out
to Because and we have 

TAKING IT FURTHER If the electron were at rest at this distance from the proton, it would
take a minimum of to remove it from the atom. However, the electron has kinetic
energy equal to so its total energy in the atom is 
The minimum energy needed to remove the electron from a hydrogen atom is thus 
This energy is called the ionization energy.

PRACTICE PROBLEM 23-3 What is the potential energy of the two point charges in
Example 23-2 in SI units?

13.6 eV.
13.6 eV � 27.2 eV � �13.6 eV.13.6 eV,

27.2 eV

1 N # m>C � 1 J>C � 1 V.1 J>C � 1 V,1 N # m � 1 JN # m>C.
V � kq>r,

Example 23-2 Potential Energy of a Hydrogen Atom

(a) What is the electric potential at a distance from a proton? This is the
average distance between the proton and the electron in a hydrogen atom. (b) What is the
electric potential energy of the electron and the proton at this separation?

PICTURE The electric potential due to the charge of the proton and the potential energy of
two point charges are given by Equations 23-8 and 23-9.

SOLVE

r0 � 0.529 � 10�10 m

This is the electric potential energy of the two-charge
system relative to at infinite separation. If we re-
lease a point particle that has charge from rest at a dis-
tance from (and hold fixed), the point particle that
has charge will be accelerated away from (assuming
that has the same sign as At a very great distance
from the potential energy of the particle that has
charge approaches zero so its kinetic energy approa-
ches

The work an external agent must do to move a test
charge from rest at infinity to rest at point a distance

from is (Figure 23-5). The work per unit charge
is which is the electric potential at point relative
to the potential an infinite distance from 

Choosing the electrostatic potential energy of two
point charges to be zero at an infinite separation is anal-
ogous to the choice we made in Chapter 11 when we
chose the gravitational potential energy of two point
masses to be zero at an infinite separation. If two charges
(or two masses) are at infinite separation, we think of
them as not interacting. That the potential energy is
zero if the particles are not interacting has a certain
aesthetic appeal.

P.
PVkq>r, kq0q>rq,r

P,q0

kqq�>r0 .
q�
q,

q�).q
qq�

qqr0

q�
U � 0

P

r

q

+

+

Fpush

Felectric

q0

F I G U R E  2 3 - 5 The work required to bring a test charge from rest at
infinity to rest at point is where is the distance from to the
positive point charge The work per unit charge is thus which is the
electric potential at point relative to zero potential at infinity. If the test
charge is released from point the electric field does work on the
charge as the charge accelerates to infinity.

kq0q>rP,
P

kq>r,q.
Prkq0q>r,P

q0
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Example 23-3 Potential Energy of Nuclear-Fission Products

During nuclear fission, a uranium-235 nucleus captures a
neutron to form an unstable uranium-236 nucleus. The
unstable nucleus then splits apart into two lighter 
nuclei (Figure 23-6). In addition, two or three neutrons 
are released. Sometimes the two fission products are a
barium nucleus (charge ) and a krypton nucleus
(charge ). Assume that immediately after the split
these nuclei are positive point charges separated by

is the sum of the 
radii of the barium and krypton nuclei). Calculate 
the potential energy of this two-charge system in 
electron volts.

PICTURE The potential energy for two point charges
separated by a distance is To find this energy
in electron volts, we calculate the potential due to one of
the charges in volts, and multiply this quantity by the
other charge expressed as a multiple of 

SOLVE

e.
kq1 >r,

U � kq1q2 >r.r

r � 14.6 � 10�15 m (14.6 � 10�15 m

36e
56e

Neutron

Neutrons

U235
92

U236
92

Ba144
56

Kr89
36

F I G U R E  2 3 - 6 A uranium-235 nucleus absorbs a neutron and fissions into a
barium nucleus and a krypton nucleus.

1. Equation 23-9 gives the potential energy of the two charges: U � q2
kq1
r

2. Substitute the given values and factor out e:

199 MeV� e(199 � 106 V) �

� e
36 # 56 # (8.99 � 109 N # m2>C2)(1.60 � 10�19 C)

14.6 � 10�15 m

U � e
36 # 56ke
r

CHECK The potential energy of a proton and an electron in a hydrogen atom, calculated in
Example 23-2, is seven orders of magnitude smaller than the potential energy calculated 
in this example. Because we expect energies for nuclear processes to be much larger than
energies for atomic processes, this result is as expected.

TAKING IT FURTHER After the fission, the two nuclei fly apart because of their electro-
static repulsion. Their potential energy of is converted into kinetic energy. Upon
colliding with surrounding atoms, this kinetic energy is distributed as thermal energy.
During a chain reaction, one or more of the released neutrons produces a fission of another
uranium nucleus. The average energy released during chain reactions of this type is about

per nucleus, as calculated in this example.200 MeV

199 MeV

The potential at a field point due to the presence of several point charges is 
the sum of the potentials due to each of these charges separately. (This result
follows from the superposition principle for the electric field.) The potential due to
a system of point charges is thus given by

23-10

POTENTIAL DUE TO A SYSTEM OF POINT CHARGES

where the sum is over all the charges, and is the distance from the charge to
the field point at which the potential is to be found. Using this formula, the refer-
ence point (where is at infinity and the distance between any two point
charges in the system is finite.

V � 0)

ithri

V � a
i

kqi
ri

qi
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SOLVE

(a) 1. Use Equation 23-10 to write as a
function of the distances and to
the charges:

r2r1

V V � a
i

kqi
ri

�
kq1
r1

�
kq2
r2

Example 23-4 Potential Due to Two Point Charges

Two point charges are on the axis, one at the origin and the
other at Find the potential at (a) point on the axis at

and (b) point on the axis at The reference point
(where ) is at infinity.

PICTURE The two positive point charges on the axis are shown in
Figure 23-7, and the potential is to be found at points and P2 .P1

x

V � 0
y � 6.0 cm.yP2x � 4.0 cm

xP1x � 8.0 cm.
x�5.0-nC

2. Point is from each charge,
and the charges are equal:

4.0 cmP1

4

y, cm

x, cm
1 32

q1 = 5.0 nC
1

2

3

P2

5 6 7 8 9

4

5

6

7

q2 = 5.0 nC

P1

+ +

10 cm

F I G U R E  2 3 - 7
3. Use these to find the potential at

point P1:

2.2 kV� 2247 V ��
2 � (8.99 � 109 N # m2>C2)(5.0 � 10�9 C)

0.040 m

V �
kq

r
�
kq

r
�

2kq

r

(b) Point is from one charge and
from the other. Use these to find

the potential at point P2:
10 cm

6.0 cmP2

1.2 kV� 749 V � 450 V �

�
(8.99 � 109 N # m2>C2)(5.0 � 10�9 C)

0.10 m
V �

(8.99 � 109 N # m2>C2)(5.0 � 10�9 C)

0.060 m

CHECK The calculated potentials are both positive. The potential at a field point is the work
per unit charge to bring a test charge from a reference point (where the potential is zero) to the
field point. For the potential function used here, the reference point is at infinity. A positive test
charge at any location would be repelled by both and Thus, an external agent would have
to do work on the test charge to bring the test charge from rest at the reference point at infinity
to rest at any field point. Thus, we expect the potential at any field point to be positive.

TAKING IT FURTHER Note that in Part (a), the electric field is zero at the point midway between
the charges but the potential is not. An external agent must do positive work to bring a test charge
to this point from a long distance away, because the electric field is zero only at the final position.

q2 .q1

PROBLEM-SOLVING STRATEGY

Calculating Using Equation 23-10

PICTURE We can use Equation 23-10 to calculate the potential at a field point
due to any collection of point charges if each point charge is a finite distance
from every other point charge.

SOLVE

1. Sketch the charge configuration and include suitable coordinate axes. Label
each point charge with a distinct symbol, such as Draw a straight line
from each point charge to the field point and label it with a suitable
symbol, such as A careful drawing can be very helpful in relating the
distances of interest to the distances given in the problem statement.

2. Use the formula (Equation 23-10) to calculate the potential at
due to the presence of the point charges.

CHECK If the field point is arbitrarily chosen, take the limit as the field point
goes to infinity. In that limit, the potential must approach zero.

P
V � © kqi>riP
riP .

Pqi

q1 .

V

q1 � q2 � q � 5.0 � 10�9 C

r1 � r2 � r � 0.040 m
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Example 23-5 Potential throughout the Axis

A point charge is at the origin, and a second point charge is on the 
axis at Using Equation 23-10, find an expression for the potential
everywhere on the axis as a function of 

PICTURE The total potential at a field point is the sum of the potentials
due to each charge separately.

x.x
x � a.

xq2q1

x

SOLVE

1. Sketch the axis and place the two charges on it. Let be the distance
from to an arbitrary field point at position on the axis, 
that is, Let be the distance from to , that is, 
(Figure 23-8):

r2 � ƒx � a ƒPq2r2r2r1 � ƒx ƒ .
xxPq1

r1x

2. Write the potential as a function of the
distances to the two charges:

CHECK Note that both as and as and both as and as
as one would expect.

TAKING IT FURTHER Figure 23-9 shows versus on the axis for q1 � q2 
 0.xxV

xS �,
xS �VS 0xS a,xS 0VS 

y

x

x

q1

a

q2 P

r1 = |x|

r2 = |x – a|
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kq1

ƒx ƒ
�

kq2

ƒx � a ƒ
  x � 0, x � a�

V �
kq1
r1

�
kq2
r2

1. Sketch the axis and place the two charges on it. For the
distance from the field point to the positive charge is and
the distance from the field point to the negative charge is 
(Figure 23-10).

x � 1
2 �

x � 1
2 �P

x 
 �>2,x

Example 23-6 Potential Due to an Electric Dipole

An electric dipole consists of a positive point charge on the axis at
and a negative point charge on the axis at Find the

potential on the axis for in terms of the dipole moment 

PICTURE The potential at a field point is the sum of the potentials for
each charge.

SOLVE

pS � q�in.xW ��>2x
x � ��>2.x�qx � ��>2 x�q

CHECK A dipole has a total charge of zero, so we expect that far from the
dipole, the potential would decrease with increasing distance from the di-
pole more rapidly than it would for a configuration that has a nonzero net
charge. The step 3 result is that the potential decreases inversely with the
square of the distance. Far from a configuration with a net charge the po-
tential decreases inversely with distance from the configuration, which is
less rapidly than inversely with the square of the distance.

x–q q

y

– � x – 

x + 

+–
P

x

2
1 �2

1�2
1

�2
1

2. For the potential due to the
two charges is
x 
 �>2,

3. The magnitude of is For
we can neglect 

compared with in the denominator.x2
�2>4xW �>2,
p � q�.pS

kq�

x2 �
kp

x2 xW �V �

F I G U R E  2 3 - 1 0

The electrostatic potential in a plane containing both point
charges of an electric dipole. The potential due to each 
point charge is proportional to the charge and inversely
proportional to the distance from the charge. (© 1990 Richard
Menga/Fundamental Photographs.)

�
kq�

x2 � (�2>4)
x 


�

2

V �
kq

x � (�>2)
�
k(�q)

x � (�>2)

0 a x

V(x)

F I G U R E  2 3 - 9
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23-3 COMPUTING THE ELECTRIC FIELD 
FROM THE POTENTIAL

In Section 23-2, we used knowledge of the electric field to calculate the potential
function. To accomplish this calculation, we integrated both sides of the equation

In this section, we will use knowledge of the potential function and
the same equation to calculate the electric field.

Consider a small displacement in an arbitrary electrostatic field The as-
sociated change in potential is given by If the displacement is
perpendicular to then (the potential does not change). For a given 
the maximum increase in occurs when the displacement is in the opposite
direction as To solve for we first solve for the component of in the direction
of That is,

23-11

where (the tangential component of is the component of in the
direction of Then

23-12

If the displacement is perpendicular to the electric field, then (the po-
tential does not change). For a given the maximum increase in occurs when
the displacement is in the same direction as A vector that points in the di-
rection of the greatest change in a scalar function and that has a magnitude equal
to the derivative of that function with respect to the distance in that direction is
called the gradient of the function. Thus, the electric field is the negative gradi-
ent of the potential That is, the direction of the electric field is the same as the
direction of the greatest rate of decrease of the potential function with respect to
distance.

If the potential depends only on there will be no change in for
displacements in the or direction; it follows that and equal zero. For a
displacement in the direction, and Equation 23-11 becomes

Then

23-13

For a spherically symmetric charge distribution centered at the origin, the
potential can be a function only of the radial coordinate Displacements perpen-
dicular to the radial direction give no change in so the electric field must be
radial. A displacement in the radial direction is written Equation 23-11
is then

and

23-14

If we know either the potential or the electric field throughout some region of
space, we can use one to calculate the other. The potential is often easier to calculate
because it is a scalar function, whereas the electric field is a vector function. Note
that we cannot calculate if we know the potential at just a single point—we
must know over a region of space to compute the derivative necessary to obtain

throughout that region. If we only know along a curve or on a surface, then we
can only calculate the component of tangent to the curve or surface. E

S
VE

S
V

VE
S

Er � �
dV (r)

dr

dV (r) � �E
S # d�

S
� �E

S # drrn � �Er dr

d�
S

� drrn.
V(r),

r.

Ex � �
dV(x)

dx

dV(x) � �E
S # d�

S
� �E

S # dxin � �(E
S # in) dx � �Ex dx

d�
S

� dxin,x
EzEyzy

Vx,V

V.
E
S

�E
S

.d�
S

Vd�
S

,
dV � 0d�

S

Etan � �
dV
d�

d�
S

.
E
S

E
S

)Etan � E cosu

dV � �E
S # d�

S
� �E cosu d� � Etand�

d�
S

.
E
S

E
S

,E
S

.
d�

S
V

ƒd�
S

ƒ ,dV � 0E
S

,
d�

S
dV � �E

S # d�
S

.
E
S

.d�
S

(dV � �E
S # d�

S
)

dV � �E
S # d�

S
.

In what direction can you move
relative to an electric field so that
the electric potential increases at
the greatest rate?  

CONCEPT CHECK 23-2

In what direction can you move
relative to an electric field so that
the electric potential does not
change?

CONCEPT CHECK 23-1✓

✓
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The electric field is found from (Equation 23-13)
using V � 100 V � (25 V>m)x:

Ex � �dV>dx so �(25 V>m)inE
S

�Ex � �
dV
dx

 and Ey � Ez � 0

Example 23-7 for a Potential that Varies with 

Find the electric field for the electric potential function given by 

PICTURE This potential function depends only on Use (Equation 23-13) and
solve for Because the potential does not vary with 

SOLVE

y or z, Ey � Ez � 0.Ex .
Ex � �dV>dxx.

V � 100 V � (25 V>m)x.V

xE
S

CHECK The potential decreases as increases. Note that the electric field is in the direc-
tion, the direction of decreasing potential, as expected.

TAKING IT FURTHER This electric field is uniform and in the direction. Note that the
constant in the expression for has no effect on the electric field. The electric field
does not depend on the choice of zero for the potential function.

PRACTICE PROBLEM 23-4 (a) At what points does equal zero in this example? (b) Write
the potential function corresponding to the same electric field with everywhere on the

plane.x � 0
V � 0

V

V(x)100 V
�x

�xx

GENERAL RELATION BETWEEN AND 

In vector notation, the gradient of is written as either or Then

23-15

In general, the potential function can depend on The Cartesian compo-
nents of the electric field are related to the partial derivatives of the potential with
respect to For example, the component of the electric field is given by

23-16a

Similarly, the and components of the electric field are related to the potential by

23-16b

and

23-16c

Thus, Equation 23-15 in Cartesian coordinates is written

23-17

23-4 CALCULATIONS OF V FOR CONTINUOUS 
CHARGE DISTRIBUTIONS

The potential due to a continuous distribution of charge can be calculated by choos-
ing an element of charge which we treat as a point charge, and invoking
superposition, changing the sum in (Equation 23-10) to an integral:

23-18

POTENTIAL DUE TO A CONTINUOUS CHARGE DISTRIBUTION

V � �k dq

r

V � ©kqi>ridq,

E
S

� �∇
S
V � �a�V

�x
in �

�V
�y

jn �
�V
�z

knb
Ez � �

�V
�z

Ey � �
�V
�y

zy

Ex � �
�V
�x

xx, y, or z.

x, y, and z.

E
S

� �∇
S
V

∇
S
V.grad

________"
VV

VE
S
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This equation assumes that at an infinite distance from
the charges, so we cannot use it for any charge distributions of
infinite extent, as is the case for artificial charge distributions
like an infinite line charge or an infinite plane charge.

ON THE AXIS OF A CHARGED RING

Figure 23-11 shows a uniformly charged ring of radius 
and charge in the plane and centered at the origin. The
distance from an element of charge to the field point on
the axis of the ring is Because this distance is the
same for all elements of charge on the ring, we can remove this
term from the integral in Equation 23-18. The potential at point

due to the ring is thus

or

23-19

POTENTIAL ON THE AXIS OF A CHARGED RING

Note that when is much greater than the potential approaches the same
as the potential due to a point charge at the origin.Q

kQ> ƒz ƒ ,a,ƒz ƒ

V �
kQ

3z2 � a2

V � � k dq

r
�
k
r � dq �

kQ

r

P

r � 1z2 � a2 .
Pdq

z � 0Q
a

V

V � 0 dq

a
r

z

P

F I G U R E  2 3 - 1 1 Geometry for the calculation of the electric
potential at a point on the axis of a charged ring of radius a.

Try It YourselfExample 23-8 A Ring and a Particle

A ring of radius is in the plane and has its center at the origin. The ring has a uni-
form charge of A small particle that has a mass equal to and a
charge equal to is placed on the axis at and released. Find the speed of the
particle when it is a great distance from the ring. Assume effects due to gravity are negligible.

PICTURE The particle is repelled by the ring. As the parti-
cle moves along the axis, its potential energy decreases
and its kinetic energy increases. Use conservation of me-
chanical energy to find the kinetic energy of the particle
when it is far from the ring. The final speed is found from
the final kinetic energy.

SOLVE

Cover the column to the right and try these on your own
before looking at the answers.

z

z � 3.0 cmz5.0 nC
6.0 mg (6.0 � 10�6 kg)8.0 nC.

z � 04.0 cm

Steps Answers

1. Sketch the ring, the particle, and the 
axis. Label the sketch appropriately

(Figure 23-12).
z

dq

a
r

z

Q

P

vq, m0

F I G U R E  2 3 - 1 2

2. Write down the relation between the
kinetic energy and the speed.

K � 1
2mv2

3. Use with given by 

(Equation 23-19), to
obtain an expression for the potential
energy as a function of the distance of
the point charge from the center of the ring.

zV

V � kQ>3z2 � a2

VU � qV, U � qV �
kqQ

3z2 � a2
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CHECK In step 3, we found that a positive number. If our result was that 
had equaled a negative number it would be a clear indication that a mistake had been made.

PRACTICE PROBLEM 23-5 What is the potential energy of the particle when it is at
z � 9.0 cm?

v2
fv2

f � 2.40 m2>s2 ,

4. Use conservation of mechanical energy to relate the energy at
to the energy as Solve for the speed as 

approaches infinity.
zfzf S .zi � 0.030 m

so

1.6 m>svf �

v2
f �

2kqQ

m3z2
i � a2

� 2.40 m2>s2

kqQ

3z2
f � a2

�
1
2

mv2
f �

kqQ

3z2
i � a2

�
1
2

mv2
i

Uf � Kf � Ui � Ki

ON THE AXIS OF A UNIFORMLY CHARGED DISK

We can use our result for the potential on the axis of a ring charge to calculate the
potential on the axis of a uniformly charged disk.

V

Example 23-9 Find for a Charged Disk

Find the potential on the axis of a disk of radius that carries a total charge 
distributed uniformly on its surface.

PICTURE We take the axis of the disk to be the axis, and we treat the disk as a set
of ring charges. The ring of radius and thickness in Figure 23-13 has an area of

The charge of the ring is where is the sur-
face charge density. The potential at point due to the charge on this ring is given by

(Equation 23-19). We then integrate from to to find the
total potential due to the charge on the disk.

SOLVE

a � Ra � 0k dq>(z2 � a2)1>2 P
s � Q>(pR2)dq � s dA � s2pa da,2pa da.

daa
z

QR

V

1. Write the potential at point due to the charged ring of
radius a:

PdV dV �
k dq

(z2 � a2)1>2 �
ks2pa da

(z2 � a2)1>2

a

R

z
P

da

r = √a2 + z2

F I G U R E  2 3 - 1 3

2. Integrate from to a � R:a � 0 V � �
R

0

ks2pa da
(z2 � a2)1>2 � ksp�

R

0
(z2 � a2)�1>22a da

3. The integral is of the form with 
and When and when

a � R, u � z2 � R2:
a � 0, u � z2 � 02n � � 1

2 .du � 2z dz,
u � z2 � a2,�un du,

� 2kspa3z2 � R2 � 3z2b
V � ksp�

z2�R2

z
2

�02
u�1>2 du � ksp

u1>2
1
2

` z2�R2

z
2

4. Rearranging this result to find givesV 2pks ƒz ƒ aA1 �
R2

z2 � 1bV �

CHECK For the potential function should approach the potential function of a
point charge at the origin. That is, we expect that for large To approximate
our result for we use the binomial expansion:

Then

V � 2pks ƒz ƒ c a1 �
1
2

R2

z2 � Á b � 1 d �
k(spR2)

ƒz ƒ
�

kQ

ƒz ƒ

a1 �
R2

z2 b 1>2
� 1 �

1
2

R2

z2 � Á

ƒz ƒ W R,
ƒz ƒ , V � kQ> ƒz ƒ .Q

Vƒz ƒ W R,
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** See Taking It Further at the end of this example.

Example 23-10 Find Given 

Calculate the electric field on the axis of a uniformly charged disk that has a charge and a
radius using the potential function given in Equation 23-20.

PICTURE Using we can evaluate by direct differentiation. We cannot evaluate
either or by direct differentiation because we do not know how varies in those directions.
However, the symmetry of the charge distribution dictates that on the axis, 

SOLVE

Ex � Ey � 0.x
VEyEx

EzEz � �dV>dz,

R
q

VE
S

CHECK By factoring from the radical in the step 4 result, we obtain

where we have used This expression for has the same form as the expres-
sion for found in Equation 22-9.

TAKING IT FURTHER The step 3 result defines to equal zero at
In like manner, using in the Check defines to equal zero at 

It is common practice to define the value of a function at a point where it is not continuous
to equal the average of the values of the function on either side of the discontinuity. That is
what we have done here with and with 

PRACTICE PROBLEM 23-6 Using the expression for the potential on the axis of a uni-
formly charged ring of radius (Equation 23-20), compute on the axis and obtain
an expression for on the axis. Show that this expression has the same form as that shown
in Equation 22-8.

Ez

�dV>dzR
V

z> ƒz ƒ .d ƒz ƒ>dz

z � 0.z> ƒz ƒd ƒz ƒ>dz � sign zz � 0.
d ƒz ƒ>dz(d ƒz ƒ>dz � sign z)

Ez

Ezz> ƒz ƒ � sign (z).

Ez � �2pks£ z

ƒz ƒ41 � (a2>z2)
� sign (z)≥ � sign (z) # 2pks£1 �

1

41 � (a2>z2)
≥ƒz ƒ

1. Write Equation 23-20 for the potential on
the axis of a uniformly charged disk:

V � 2pks ƒz ƒ aA1 �
R2

z2 � 1b � 2pks[(z2 � R2)1>2 � ƒz ƒ]

2. Compute to find Ez:�dV>dz Ez � �
dV
dz

� �2pks c1
2

(z2 � R2)�1>22z �
d ƒz ƒ
dz
d

d ƒz ƒ
dz

� sign (z) � c �1 z 
 0
0 z � 0

�1 z 	 0

|z|

z

F I G U R E  2 3 - 1 4 A plot
of versus z.ƒz ƒ

4. Substituting for in the step 2
result gives:

d ƒz ƒ>dz

2pksasign (z) �
z

3z2 � R2
b�

Ez � �2pksa z

3z2 � R2
� sign (z)b

DUE TO AN INFINITE PLANE OF CHARGE

If we let become very large, our uniformly charged disk approaches an infinite
plane. As approaches infinity, the potential function 

(Equation 23-20) approaches infinity. However, we obtained(21 � (R2>z2) � 1)
V � 2pks ƒz ƒR

R

V

3. Evaluate It is the slope of a graph
of versus (Figure 23-14):*zƒz ƒ

d ƒz ƒ>dz.

From Example 23-9, we see that the potential on the axis of a uniformly charged
disk in the plane is

23-20

POTENTIAL ON THE AXIS OF A UNIFORMLY CHARGED DISK

V � 2pks ƒz ƒ aA1 �
R2

z2 � 1b
z � 0
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Equation 23-20 from Equation 23-18, which assumes that at infinity. We have
a contradiction—Equation 23-20 is not a valid potential function for a uniformly
charge disk of infinite radius. For charge distributions that extend to infinity,
we cannot choose at a point at an infinite distance from the charges. Instead,
we first find the electric field (by direct integration or from Gauss’s law) and
then calculate the potential function from its defining relation 
For an infinite plane of uniform charge of density in the plane, the electric
field in the region is given by Equation 22-10:

The potential increment for an arbitrary displacement increment
is then

Integrating both sides of this equation, we obtain

where the arbitrary integration constant is the potential at Note that the
value of this potential function decreases with distance from the plane and ap-
proaches as approaches 

For negative the electric field is

so

and the potential is

Figure 23-15 is a plot of this potential function. The potential again decreases
with distance from the charged plane and approaches as approaches 
For either positive or negative the potential can be written

23-21

POTENTIAL NEAR AN INFINITE PLANE OF CHARGE

V � V0 � 2pks ƒx ƒ

Vx,
�.x�

V � V0 � 2pksx � V0 � 2pks ƒx ƒ x 
 0

dV � �E
S # d�

S
� �2pks dx x 
 0

E
S

� �2pksin x 
 0

x,
�.x�

x � 0.V0

V � �2pksx � V0 x 
 0

dV � �E
S # d�

S
� �(2pksin) # (dxin � dyjn � dzkn) � �2pks dx x 
 0

d�
S

� dxin � dyjn � dykn
dV

E
S

�
s

2P0

in � 2pksin x 
 0

x 
 0
x � 0s

dV � �E
S # d�

S
.V

E
S

V � 0

V � 0

V

x

V0 V = V0 – 2pks|x|

F I G U R E  2 3 - 1 5 Plot of versus for an
infinite plane of charge in the plane.
Note that the potential is continuous at 
even though is not continuous
there. The reference point where is at
the origin.

V � V0

Ex � �dV>dx
x � 0

x � 0
xV

Example 23-11 A Sheet of Charge and a Point Charge

An infinite flat sheet that has a uniform charge density lies in the plane, and a
point charge is on the axis at (Figure 23-16). Find the potential at some point 
a distance from the point charge.

PICTURE We can use the principle of superposition. The total potential is the sum of the
individual potentials due to the plane and the point charge. We must add an arbitrary con-
stant in our expression for which is determined by our choice of the reference point,
where We are free to choose the location of the reference point to be anywhere but
at or at on the axis. For this calculation, we choose at the origin.

SOLVE

V � 0xx � ax � �

V � 0.
V,

V

r
Px � axq

x � 0s

1. Sketch the charge configuration. Include the coordinate axes
and a field point at (x, y, z):

(x, y, z)

(a, 0, 0)

(0, y, z)z

zy

yq

P

x

x
a

s

x − a

√
—————————

r =   (x − a)2 + y2 + z2

√
———
y2 + z2
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2. The potential due to the charged plane is given by
(Equation 23-21) and the potential due to

a point charge is given by (Equation 23-7)
where is the distance from the point charge to the field point.
The total potential is the sum of the two potentials:

r
Vpoint � kq>r � kq>rref

Vplane � V0 � 2pks ƒx ƒ
where the constant is chosen to set the potential
at the reference point to zero.

( � V0 � kq>rref)C

V � Vplane � Vpoint � �2pks ƒx ƒ �
kq

r
� C
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CHECK The step 5 result is what you would expect by superposing the potential for a uni-
formly charged plane and a point charge.

TAKING IT FURTHER The answer is not unique. We could have specified the potential at
any point, other than at or at x � �.x � a

3. The distance from the point charge at to the field point

at is 4(x � a)2 � y2 � z2:(x, y, z)

(a, 0, 0)r V � �2pks ƒx ƒ �
kq

4(x � a)2 � y2 � z2
� C

4. We choose to let at the origin. To do that, set at
and solve for the constant C:x � y � z � 0

V � 0V � 0 so C � �
kq

a
0 � 0 �

kq

a
� C

5. Substitute for in the step 3 result:C�kq>a
�2pks ƒx ƒ � kqa1

r
�

1
a
b�

V � �2pks ƒx ƒ �
kq

4(x � a)2 � y2 � z2
�
kq

a

INSIDE AND OUTSIDE A SPHERICAL SHELL OF CHARGE

Here, we find the potential due to a thin spherical shell that has a radius and a
charge uniformly distributed on its surface. We are interested in the potential at
all points inside, outside, and on the shell. Unlike the infinite plane of charge, this
charge distribution is confined to a finite region of space, so, in principle, we could
calculate the potential by direct integration of Equation 23-18. However, there is a
simpler way. Because the electric field for this charge distribution is easily obtained
from Gauss’s law, we will calculate the potential from the known electric field
using

Outside the spherical shell, the electric field is radial and is the same as if all the
charge were a point charge at the origin:

where is a unit vector directed away from the center of the sphere. The change in
the potential for some displacement outside the shell is then

where the product is equal to (the component of in the direction of 
Integrating along a path from the reference point at infinity, we obtain

where is an arbitrary field point in the region and is the distance from
the center of the shell to the field point The potential is chosen to be zero at in-
finity. Because is arbitrary, we replace with to obtain

Inside the spherical shell, the electric field is zero everywhere. Again integrat-
ing from the reference point at infinity, we obtain

VP � ��
r
S

P

q
E
S # drS � ��

R

q

kQ

r2
dr � �

r
P

R

(0) dr �
kQ

R

r � RV �
kQ

r

rrPP
P.

rPr � R,P

VP � ��
r
S

P

q
E
S # d�

S
� ��

r
P

q

kQ

r2
dr � �kQ�

r
P

q
r�2 dr �

kQ

rP

rn).d�
S

drrn # d�
S

dV � �E
S # d�

S
� �

kQ

r2
rn # d�

S
� �

kQ

r2
dr

d�
S

rn

E
S

�
kQ

r2
rn

Q

dV � �E
S # d�

S
.

Q
R

V



A common mistake is to think that
the potential must be zero inside a

spherical shell because the electric field
is zero throughout that region.  
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where is an arbitrary field point in the region and is the
distance from the center of the shell to the field point The po-
tential at all points inside the shell is where is the radius
of the shell. Inside the shell is the same everywhere. The poten-
tial at any point inside the shell is the work per unit charge to
bring a test charge from infinity to the shell. No additional work
is required to bring it from the shell to any point inside the shell.
Thus,

23-22

POTENTIAL DUE TO A THIN SPHERICAL SHELL

This potential function is plotted in Figure 23-17.
A region of zero electric field merely implies that the potential

field is uniform throughout the region. Consider a spherical shell
that has a small hole through it so that we can move a test charge
in and out of the shell. If we move the test charge from an infinite
distance to the shell, the work per charge we must do is 
Inside the shell there is no electric field, so it takes no work to
move the test charge around inside the shell. The total amount of
work per unit charge it takes to bring the test charge from infinity
to any point inside the shell is just the work per charge it takes to
bring the test charge up to the shell radius which is The
potential is therefore everywhere inside the shell.kQ>R kQ>R.R,

kQ>R.

V � d kQr    (r � R)

kQ

R
   (r � R)

V
RkQ>R,
P.
rPr 	 R,P kQ

R

kQ
r

V

rR

R

R

F I G U R E  2 3 - 1 7 Electric potential of a uniformly charged
thin spherical shell that has a radius as a function of the distance

from the center of the shell. Inside the shell, the potential has the
constant value Outside the shell, the potential is the same as
that due to a point charge at the center of the sphere.Q

kQ>R.
r

R

!

Try It YourselfExample 23-12 Find for a Uniformly Charged Sphere

In one model, a proton is considered to be a uniformly charged solid sphere that has a
radius and a charge The electric field inside the sphere is given by

(Equation 22-18b). Find the potential both inside and outside the sphere.

PICTURE Outside the sphere, the charge looks like a point charge, so the potential is given
by Inside the sphere, can be found by integrating where the elec-
tric field inside the sphere given by (Equation 22-18b).E

S
� (kQr>R3)rn

dV � �E
S # d�

S
,VV � kQ>r.

VEr � k
Q

R3 r

Q.R

V

PRACTICE PROBLEM 23-7

What is the potential of a spherical shell of radius carrying a charge of 6.00 mC?10.0 cm

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

1. Outside the sphere, the electric field is the same as that of a
point charge. If we set the potential equal to zero at infinity, the
potential there is also the same as that of a point charge.

kQ

r
r � RV(r) �

2. For find from where the electric field
inside the sphere given by (Equation 22-18b).E

S
� (kQr>R3)rn

dV � �E
S # d�

S
,dVr � R, dV � �E

S # d�
S

� �
kQr

R3 rn # d�
S

� �
kQr

R3 dr
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CHECK Substituting in the step 4 result gives as required by the step-1
result. At which is greater than as it should be, be-
cause the electric field is in the positive radial direction for (An electrostatic field
always points in the direction of decreasing potential.)

TAKING IT FURTHER Figure 23-18 shows as a function of Note that both 
and are continuous everywhere.

PRACTICE PROBLEM 23-8 Find the potential function if the reference point where
is at (instead of at r � ).r � RV � 0

Er � �dV>dr
V(r)r.V(r)

r 	 R.
kQ>R,r � 0, V � 3kQ>2R � 1.5 kQ>R,

V � kQ>Rr � R

3. Find the definite integral
using the expression in step 2.
Find the change in potential
from infinity to an arbitrary
field point in the region

where is the
distance of point from the
center of the sphere.

P
rPrP 	 R,

P

4. Express the result in terms of
r � rP:

kQ

2R
a3 �

r2

R2 b r � RV(r) �

R 2R r

V(r)

3R 4R

3kQ
2R

kQ
R

kQ
r

5R

V =

kQ
2R

r2

R2V = 3 –

F I G U R E  2 3 - 1 8

DUE TO AN INFINITE LINE CHARGE

We will now calculate the potential due to a uniformly charged infinite line. 
Let the charge per unit length be Like the infinite plane of charge, this charge
distribution is not confined to a finite region of space, so, in principle, we cannot
calculate the potential by direct integration of (Equation 23-18).
Instead, we find the potential by integrating the electric field directly. The 
electric field of a uniformly charged infinite line is given by 
(Equation 22-3), where is the linear charge density and is the radial distance
from the line. The change in potential for an arbitrary displacement is 
given by

where is in the radial direction. The product (the component of 
in the direction of so Integrating from an arbitrary reference
point to an arbitrary field point (Figure 23-19) gives

where and are the radial distances of the field and reference points, respec-
tively, from the line charge. For convenience, we choose the potential to equal zero
at the reference point We cannot choose to be zero because

and we cannot choose to be infinity because 
However, any other choice in the interval is acceptable, and the
potential function is given by

23-23

POTENTIAL DUE TO A UNIFORM LINE CHARGE OF INFINITE LENGTH

V � 2kl ln 
Rref

R

0 	 Rref 	 

ln () � �.Rrefln (0) � �,
Rref(Vref � 0).

RrefRP

VP � Vref � �2kl�
R
P

Rref

dR
R

� �2kl ln 
RP
Rref

P
dV � �(2kl>R) dR.Rn ),

d�
S

Rn # d�
S

� dRRn

dV � �E
S # d�

S
� �

2kl
R

Rn # d�
S

d�
S

Rl

E
S

� (2kl>R) Rn

dV � k dq>rl.

V

Reference
point

Rref

R

dR

RP

P

d//

E = ERR^

R^
Field
point

λ
+ + + + + + +
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�
kQ

R
�
kQ

2R3 (r2P � R2) �
kQ

2R
a3 �

r2P
R2 b

VP � ��
r
P

q
Er dr � ��

R

q

kQ

r2
dr � �

r
P

R

kQ

R3 r dr
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+++ ++
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+
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++

E

V = constant

Electric field has always
intersect equipotential
surfaces at right angles

F I G U R E  2 3 - 2 1 Equipotential surfaces and electric field
lines outside a nonspherical conductor.

We do not encounter charge distributions in nature that actually extend to
infinity. However, such distributions make excellent models for some real-world
situations. An example is the potential of a nearly straight, high-voltage
transmission power line (but not close to either end).

23-5 EQUIPOTENTIAL SURFACES

Because there is no electric field inside the material of a conductor that is in
static equilibrium, the value of the potential is the same throughout the region
occupied by the conducting material. That is, the conductor is a three-dimensional
equipotential region and the surface of a conductor is an equipotential surface.

The potential has the same value everywhere on an equipotential surface. 
If a test charge on an equipotential surface is given a small displacement par-
allel to the surface, Because is zero for any parallel
to the surface, must either be zero or be perpendicular to any and every that
is parallel to the surface. The only way can be perpendicular to every 
parallel to the surface is for to be normal to the surface. Therefore, we conclude
that electric field lines are normal to any equipotential surfaces they intersect.
Figures 23-20 and 23-21 show equipotential surfaces near a spherical conductor
and a nonspherical conductor. Note that anywhere a field line meets or penetrates
an equipotential surface, shown in gray, the field line is normal to the equipoten-
tial surface. If we go from one equipotential surface to a neighboring equipo-
tential surface by undergoing a displacement along a field line in the direction
of the field, the potential changes by It follows that equi-
potential surfaces that have a fixed potential difference between them are more
closely spaced where the electric field strength is greater.E

dV � �E
S # d�

S
� �Ed�.

d�
S

E
S

d�
S

E
S

d�
S

E
S

d�
S

E
S # d�

S
dV � �E

S # d�
S

� 0.
d�

S
V

500-m-long,

+ +++ +

E V = constant

F I G U R E  2 3 - 2 0 Equipotential surfaces and
electric field lines outside a uniformly charged
spherical conductor. The equipotential surfaces
are spherical and the field lines are radial. The
field lines are normal to the equipotential surfaces.
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Example 23-13 A Hollow Spherical Shell

A hollow, uncharged spherical conducting shell has an inner radius and an outer radius 
A positive point charge is located at the center of the shell. (a) Find the charge on each
surface of the conductor. (b) Find the potential everywhere, assuming that at

PICTURE (a) The charge distribution is spherical, so applying Gauss’s law should be a good
method for finding the charges on the inner and outer surfaces of the shell. (b) Sum the in-
dividual potentials for the individual charges to obtain the resultant potential. The potential
for a point charge and for a uniform thin spherical shell of charge have already been estab-
lished (Equations 23-8 and 23-22).

SOLVE

r � .
V � 0V(r)

�q
b.a

(a) 1. The charge inside a closed surface is
proportional to the outward flux of through
the surface:

E
S

where fnet � CS En dA

fnet � 4pkQinside

2. Sketch the point charge and the spherical 
shell. On a conducting object, charge can 
reside on its surfaces but not within the
conducting material. Label the charge on 
each surface of the shell. Include a Gaussian
surface completely inside the conducting
material and enclosing the inner surface 
(Figure 23-22):

q
a

Qb

Qa

b

Gaussian
surface

F I G U R E  2 3 - 2 2

3. Apply Gauss’s law (the step 1 result) to the
Gaussian surface and solve for the charge on
the inner surface of the shell: so �qQa �

En � 0⇒ Qinside � q � Qa � 0

4. The shell is neutral, so solve for the charge on
its outer surface:

so �qQb � �Qa �

Qa � Qb � 0

(b) 1. The potential at any point is the sum of the
potentials due to the individual charges:

V � Vq � VQa � VQb

2. The potential due to a uniformly charged thin
spherical shell of radius is given by Equation
23-22:

R
V � d k Q

r
    (r � R)

k Q
R

(r � R)

3. Add the potentials in the region r � b:
kq

r
 r � b�

kq

r
�
kq

r
�
kq

r
�V �

kq

r
�
kQa
r

�
kQb
r

4. Add the potentials in the region a � r � b:
kq

b
 a � r � bV �

kq

r
�
kq

r
�
kq

b
�

5. Add the potentials in the region 0 	 r � a:
kq

r
�
kq

a
�
kq

b
 0 	 r � aV �

CHECK All potential functions must be continuous. Thus, we expect the Part (b) step-3 and
step-4 results to be equal at and the Part (b) step 4 and step 5 results to be equal at

This expectation is realized by the results obtained. At the step-3 and 4 results
both equal The same is true of the step 4 and 5 results at r � a.kq>b. r � br � a.

r � b,
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TAKING IT FURTHER Each of the individual potential functions in step 1 of Part (b)
has its zero-potential reference point at Thus, the sum of these functions also 
has its zero-potential reference point at The potential arrived at in the example can
be obtained by directly evaluating Yet a third way to obtain the
potential is by evaluating the indefinite integral in each region to find the
integration constants by matching the potential functions at the boundaries. Matching
the potential functions at the boundaries is valid because the potential must be a contin-
uous function.

��Er dr
��P


E
S # d�

S
� ��rP


Er dr.

r � .
r � .

Figure 23-23 shows the electric potential as a function of the
distance from the center of the cavity. Inside the conducting ma-
terial, where the potential has the constant value 
Outside the shell, the potential is the same as that of a point
charge at the center of the shell. Note that is continuous
everywhere. The electric field is discontinuous at the conductor
surfaces, as reflected in the discontinuous slope of at 
and

Two conductors that are separated in space will typically 
not be at the same potential. The potential difference between
such conductors depends on their geometrical shapes, their
separation in space, and the net charge on each. When two con-
ductors touch, the charge on the conductors redistributes itself
so that electrostatic equilibrium is established and the electric
field is zero inside both conductors. While touching, the two
conductors can be considered to be a single conductor with a
single potential. If we put a spherical charged conductor in
contact with a second spherical conductor that is uncharged,
charge will flow between them until both conductors are at the
same potential. If the spherical conductors are identical, after
touching they share the original charge equally. If the identical
spherical conductors are now separated, each has half the
original charge.

THE VAN DE GRAAFF GENERATOR

In Figure 23-24, a small conductor carrying a positive charge is inside the
cavity of a larger conductor. In equilibrium, the electric field is zero inside 
the conducting material of both conductors. The electric field lines that begin 
on the positive charge must terminate on the inner surface of the large con-
ductor. This must occur no matter what the charge may be on the outside
surface of the large conductor. Regardless of the charge on the large conductor,
the small conductor in the cavity is at a greater potential because the electric
field lines go from this conductor to the larger conductor. If the conductors 
are now connected, say, with a fine conducting wire, all the charge originally 
on the smaller conductor will flow to the larger conductor. When the connection
is broken, there is no charge on the small conductor in the cavity, and there 
are no field lines between the conductors. The positive charge transferred from
the smaller conductor resides completely on the outside surface of the larger
conductor. If we put more positive charge on the small conductor in the cavity
and again connect the conductors with a fine wire, all of the charge on the 
inner conductor will again flow to the outer conductor. The procedure can 
be repeated indefinitely. This method is used to produce large potentials in a

q

q

r � b.
r � aV(r)

V(r)q

kq>b.a � r � b,
kq
r

kq
r

V

ra

kq
b

kq
a

+ –

kq
b

b

+ +
+

+

+

++

+

+

+

a

b

q–

–

– –
–

–

–
––

+
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+++

+q

F I G U R E  2 3 - 2 4 Small conductor that has
a positive charge inside a larger hollow
conductor.

q
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device called the Van de Graaff generator, in which the charge is brought to the
inner surface of a larger spherical conductor by a continuous charged belt
(Figure 23-25). Work must be done by the motor driving the belt to bring 
the charge from the bottom to the top of the belt, where the potential is 
very high. One can often hear the motor speed decrease as the sphere accumu-
lates charge. The greater the charge on the outer conductor, the greater the po-
tential of the outer conductor and the greater the electric field just outside its
outer surface. A Van de Graaff accelerator is a device that uses the intense elec-
tric field produced by a Van de Graaff generator to accelerate ions and charged
subatomic particles such as protons.

DIELECTRIC BREAKDOWN

Many nonconducting materials become ionized in very high electric fields and
become conductors. This phenomenon, called dielectric breakdown, occurs in
air at an electric field strength of In air, some of
the existing ions are accelerated to greater kinetic energies before they collide

Emax � 3 � 106 V>m � 3 MN>C.

e–

e–

Corona discharge

Corona discharge

Rubber belt

Plastic roller

Aluminum roller

(b)(a)

F I G U R E  2 3 - 2 5 (a) Schematic diagram of a Van de Graaff generator. The lower roller
becomes positively charged due to contact with the moving belt. (The inner surface of the belt
acquires an equal amount of negative charge that is distributed over a larger area.) The dense
positive charge on the roller attracts electrons to the tips of the lower comb where dielectric
breakdown takes place and negative charge is transported to the belt via corona discharge. 
At the top roller the negatively charged belt repels electrons from the tips of the comb and
negative charge is transferred from the belt to the comb. The charge is then transferred to the
outer surface of the dome. (b) These large demonstration Van de Graaff generators in the 
Boston Science Museum are discharging to the grounded wire cage housing the operator. 
((b) © Karen R. Preuss.)
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with neighboring molecules. Dielectric breakdown occurs when these ions are
accelerated to kinetic energies sufficient to result in a growth in ion concentration
due to the collisions with neighboring molecules. The maximum potential that
can be obtained in a Van de Graaff generator is limited by the dielectric break-
down of the air. Van de Graaff generators can achieve much higher potentials in
a controlled atmosphere than they can in air at atmospheric pressure. Sulfur
hexafluoride gas at several atmospheres of pressure is used when optimal per-
formance is desired. The magnitude of the electric field for which dielectric
breakdown occurs in a material is called the dielectric strength of that material.
The dielectric strength of air is about The discharge through the con-
ducting air resulting from dielectric breakdown is called arc discharge. The elec-
tric shock you receive when you touch a metal doorknob after walking across a
rug on a dry day is a familiar example of arc discharge. These breakdowns occur
more often on dry days because moist air can conduct the charge away before the
breakdown condition is reached. Lightning is an example of arc discharge on a
large scale.

3 MV>m.

Example 23-14 Dielectric Breakdown for a Charged Sphere

A spherical conductor has a radius of (a) What is the maximum charge that
can be placed on the sphere before dielectric breakdown of the surrounding air occurs?
(b) What is the maximum potential of the sphere?

PICTURE (a) We find the maximum charge by relating the charge to the electric field and
setting the field equal to the dielectric strength of air, (b) The maximum potential is then
found from the maximum charge calculated in Part (a).

SOLVE

Emax .

30 cm (�1.0 ft).

(a) 1. The electric field at the surface of a conductor is
proportional to the charge density on the surface of the
conductor (Equation 22-21):

s

E �
s

P0

� 4pks

2. Set this field equal to Emax: Emax � 4pksmax

3. The maximum charge is found from smax:Qmax smax �
charge

area
�
Qmax

4pR2

4. Solving for gives:Qmax

3 � 10�5 C�
(0.30 m)2(3 � 106 N>C)

(8.99 � 109 N # m2>C2)
�

Qmax � 4pR2smax � 4pR2
Emax

4pk
�
R2Emax

k

(b) Use the expression for the maximum charge to calculate the
maximum potential of the sphere:

9 � 105 V� (0.30 m)(3 � 106 N>C) �

Vmax �
kQmax

R
�
k
R
aR2Emax

k
b � REmax

CHECK Small van de Graaff generators are commonly used in hair-raising demonstrations
that must achieve a high potential. Our Part (b) result is certainly a high potential.

TAKING IT FURTHER The values calculated are for a Van de Graaff generator that has a
2.0-ft-diameter dome. For safety reasons, most classroom Van de Graaff generator domes
have a diameter of or less.

PRACTICE PROBLEM 23-9 Calculate the maximum charge and maximum potential of a
Van de Graaff generator that has a 1.0-ft-diameter dome.

1.0 ft
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Example 23-15 Two Charged Spherical Conductors

Two uncharged spherical conductors of radius and
(Figure 23-26) and separated by a distance much greater than

are connected by a long, very thin conducting wire. A total charge
is placed on one of the spheres and the system is allowed to

reach electrostatic equilibrium. (a) What is the charge on each sphere?
(b) What is the electric field strength at the surface of each sphere?
(c) What is the electric potential of each sphere? (Assume that the charge
on the connecting wire is negligible.)

PICTURE The total charge will be distributed with on sphere 1 and 
on sphere 2 so that the spheres will be at the same potential. We can use

for the potential of each sphere.

SOLVE

V � kQ>R Q2Q1

Q � �80 nC
6.0 cm
R2 � 2.0 cm

R1 � 6.0 cm

(a) 1. Conservation of charge gives us one relation between the
charges and Q2:Q1

Q1 � Q2 � Q

2. Equating the potential of the spheres gives us a second
relation for the charges and Q2:Q1

kQ1

R1

�
kQ2

R2

⇒ Q2 �
R2

R1

Q1

3. Combine the results from steps 1 and 2 and solve for and
Q2:

Q1 so

20 nCQ2 � Q � Q1 �

60 nCQ1 �
R1

R1 � R2

Q �
6.0 cm
8.0 cm

(80 nC) �

Q1 �
R1

R2

Q1 � Q

(b) Use these results to calculate the electric field strengths at the
surface of the spheres:

450 kN>C�

E2 �
kQ2

R2
2

�
(8.99 � 109 N # m2>C2)(20 � 10�9 C)

(0.020 m)2

150 kN>C�

E1 �
kQ1

R2
1

�
(8.99 � 109 N # m2>C2)(60 � 10�9 C)

(0.060 m)2

(c) Calculate the common potential from for either sphere:kQ>R
9.0 kV�

V1 �
kQ1

R1

�
(8.99 � 109 N # m2>C2)(60 � 10�9 C)

0.060 m

CHECK If we use sphere 2 to calculate we obtain 
An additional check is available, be-

cause the electric field strength at the surface of each sphere is proportional to its charge
density. The radius of sphere 1 is three times the radius of sphere 2, so its surface area is
nine times the surface area of sphere 2. And because sphere 1 has three times the charge,
its charge density is one-third the charge density of sphere 2. Therefore, the electric field
strength at the surface of sphere 1 should be one-third of the electric field strength at the
surface of sphere 2, which is what we found in Part (b).

TAKING IT FURTHER The presence of the long, very thin wire connecting the spheres
makes the result of this example only approximate because the potential function 
is valid for the region outside an isolated conducting sphere. With the wire in place the
spheres cannot accurately be modeled as isolated spheres.

V � kQ>r

109 N # m2>C2)(20 � 10�9 C)>0.020 m � 9.0 � 103 V.
V2 � kQ2 >R2 � (8.99 �V,

R1
R2

F I G U R E  2 3 - 2 6
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When a charge is placed on a conductor of nonspherical shape, like that in
Figure 23-27a, the surface of the conductor will be an equipotential surface, but the
surface charge density and the electric field just outside the conductor will vary
from point to point. Near a point where the radius of curvature is small, such as
point in the figure, the surface charge density and electric field will be large,
whereas near a point where the radius of curvature is large, such as point in the
figure, the field and surface charge density will be small. We can understand this
qualitatively by considering the ends of the conductor to be spheres of different
radii. Let be the surface charge density.

The potential of a sphere of radius is

23-24

Because the area of a sphere is the charge on a sphere is related to the charge
density by Substituting this expression for into Equation 23-24 
we have

Solving for we obtain

23-25

Because both spheres are at the same potential, the sphere that has the smaller ra-
dius must have the greater surface charge density. And because at the
surface of a conductor, the electric field strength is greatest at points on the con-
ductor where the radius of curvature is least.

For an arbitrarily shaped conductor, the potential at which dielectric breakdown
occurs depends on the smallest radius of curvature of any part of the conductor. If
the conductor has sharp points of very small radius of curvature, dielectric break-
down will occur at relatively low potentials. In the Van de Graaff generator (see
Figure 23-25a), the charge is transferred onto the belt by sharp-edged conductors
near the bottom of the belt. The charge is removed from the belt by sharp-edged
conductors near the top of the belt.

23-6 ELECTROSTATIC POTENTIAL ENERGY

Objects that repel each other have more potential energy if they are close together,
and objects that attract each other have more potential energy if they are far apart.
Suppose there is a point charge at point 1. To bring a second point charge 
from rest at infinity to rest at point 2, a distance from point 1, requires that we
do work:

where is the potential at point 2 due to the presence of charge (It follows that
the potential energy of these two point charges is the negative of this work value.)

V2 �
kq1
r1 2

q1 .V2

W2 � q2V2 � q2
kq1
r12

�
kq2q1
r1 2

r12

q2q1

E � s>P0

s �
P0V

R

s,

V �
1

4pP0

4pR2s

R
�
Rs
P0

QQ � 4pR2s.
4pR2,

V �
kq

R
�

1
4pP0

Q

R

R
s

B
A

r1

r2

A B

(b)

(a)

F I G U R E  2 3 - 2 7 (a) A nonspherical
conductor. If a charge is placed on such a
conductor, it will produce an electric field that
is stronger near point where the radius of
curvature is small, than near point where
the radius of curvature is large. (b) Electric
field lines near a nonspherical conductor and
plate that have equal and opposite charges.
The lines are shown by small bits of thread
suspended in oil. Note that the electric field is
strongest near points of small radius of
curvature, such as at the ends of the plate and
at the pointed left side of the conductor. 
The equipotential surfaces are more closely
spaced where the field strength is greater. 
((b) Harold M. Waage.)

B,
A,
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The potential at point 3, a distance from and a distance from is
given by

so to bring in an additional point charge from rest at infinity to rest at point 3
requires that we do the additional work:

The total work required to assemble the three charges is the electrostatic
potential energy of the system of three point charges:

23-26

This quantity of work is independent of the order in which the charges are
brought to their final positions. In general,

The electrostatic potential energy of a system of point charges is the 
work needed to bring the charges from an infinite separation to their final
positions.

ELECTROSTATIC POTENTIAL ENERGY OF A SYSTEM

The first two terms on the right-hand side of Equation 23-26 can be written

where is the potential at the location of due to charges and Similarly, the
second and third terms represent the charge multiplied by the potential due to
charges and and the first and third terms equal the charge multiplied by
the potential due to charges and We can thus rewrite Equation 23-26 as

The electrostatic potential energy of a system of point charges is thus

23-27

ELECTROSTATIC POTENTIAL ENERGY OF A SYSTEM OF POINT CHARGES

U �
1
2 a
n

i�1

qiVi

nU

�
1
2

(q1V1 � q2V2 � q3V3)

�
1
2

q1a kq2

r12

�
kq3

r13

b �
1
2

q2a kq3

r23

�
kq1

r12

b �
1
2

q3a kq1

r1 3

�
kq2

r2 3

b
�

1
2
a kq2q1

r1 2

�
kq3q1

r1 3

�
kq3q2

r2 3

b �
1
2
a kq2q1

r12

�
kq3q1

r13

�
kq3q2

r23

b
U �

1
2

U �
1
2

U

q2 .q1

q2q2 ,q1

q3

q3 .q2q1V1

kq2q1
r1 2

�
kq3q1
r1 3

� q1a kq2r1 2

�
kq3
r13

b � q1V1

U �
kq2q1
r12

�
kq3q1
r1 3

�
kq3q2
r2 3

U

W3 � q3V3 �
kq3q1
r1 3

�
kq3q2
r2 3

q3

V3 �
kq1
r13

�
kq2
r23

q2 ,r2 3q1r1 3
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* We are assuming that each element of charge is the same size.

where is the potential at the location of the charge due to the
presence of all the other charges in the system.

Equation 23-27 can also describe the electrostatic potential energy 
of a continuous charge distribution. Consider a spherical conductor of
radius When the sphere carries a charge its potential relative to

at infinity is

The work we must do to bring an additional amount of charge 
from infinity to the conductor is This work equals the increase in
the potential energy of the conductor:

The total potential energy is the integral of as increases from
zero to its final value Integrating, we obtain

23-28

where is the potential on the surface of the fully charged sphere. We
can interpret Equation 23-28 as where is the average potential of
the spherical conductor during the charging process. During the charging
process, bringing the first element of charge in from infinity to the uncharged
sphere requires no work because the charge being brought in is not being re-
pelled by the charge already on the sphere. As the charge on the sphere accu-
mulates, bringing in each additional element of charge to the sphere requires
additional work; when the sphere is almost fully charged, bringing the last ele-
ment of charge in against the repulsive force of the charge on the sphere requires
the most work.** The average potential of the sphere during the charging process
is one-half its final potential so the total work required to bring in the entire
charge equals 

Alternatively, if we set and Equation 23-27 becomes Equation 

23-28. We can think of the charge on the uniformly charged spherical shell as a col-
lection of infinitesimal point charges—all at the same potential Thus, Equation
23-27 leads directly Equation 23-28.

Although we derived Equation 23-28 for a spherical conductor, it holds for any
conductor. The potential of any conductor is proportional to its charge so we can
write where is a proportionality constant. The work needed to bring an
additional charge from infinity to the conductor is so the total
work needed to put a charge on the conductor is If we have a set
of conductors with the conductor at potential and carrying a charge the
electrostatic potential energy is

23-29

ELECTROSTATIC POTENTIAL ENERGY OF A SYSTEM OF CONDUCTORS

U �
1
2 a
n

i�1

QiVi

Qi ,Viithn

1
2aQ2 � 1

2QV.Q
V dq � aq dq,dq

aV � aq,
q,

V.

Q � a
i

qi ,Vi � V

1
2QV.Q

V,

1
2VU � Q � 1

2V
V � kQ>R

U �
k
R �

Q

0
q dq �

kQ2

2R
�

1
2
QV

Q.
qdUU

dU � V dq �
kq

R
dq

V dq.
dq

V �
kq

R

V � 0
q,R.

ithVi

Hearts reach a state called ventricular fibrillation in about
two-thirds of people that experience cardiac arrest. In this
state, a heart quivers, spasms chaotically, and does not
pump. To take a heart out of this state, a significant
current is passed through the heart. Then the pacemaker
cells in the heart can again establish a regular heartbeat.
An external defibrillator applies a large voltage across the
chest. (© Steve Allen/The Image Bank/Getty Images.)
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2. Place the first charge at point To accomplish this step, the
work that is needed is zero:WA

A. WA � 0 x 
 0

3. Bring the second charge to point The work required is
where is the potential at point due to the

first charge at point a distance from it:aA
BVAWB � qVA ,

B. WB � qVA � qa kq
a
b �

kq2

a

4. where is the potential at point due to at
point a distance away, and at point a distance 
from it:

aB,q12aA,
qCVCWC � qVC , WC � qVC � qa kq

a
�
kq

22a
b � a1 �

1

22
b kq2

a

5. Similar considerations give the work needed to bring
the fourth charge to point D:

WD , � a2 �
1

22
b kq2

a
WD � qVD � qa kq

a
�

kq

22a
�

kq

a
b

6. Summing the individual contributions gives the total work
required to assemble the four charges:

(4 � 22)
kq2

a
Wtotal � WA � WB � WC � WD �

(b) 1. Calculate from Equation 23-27. Use from step 5 of
Part (a) for the potential at the location of each charge:Vi

VDWtotal

where and q1 � q2 � q3 � q4 � qV1 � V2 � V3 � V4 � VD

Wtotal � U �
1
2 a

4

i�1

qiVi

2. The potential at the location of each charge is Substitute
and for and respectively, and solve for Wtotal:qi ,ViqVD

VD .

(4 � 22)
kq2

a�

�
1
2

qVD4 � 2qa2 �
1

22
b kq

a

Wtotal �
1
2 a

4

i�1

qiVi �
1
2 a

4

i�1

qVD �
1
2

qVDa
4

i�1

1

CHECK Parts (a) and (b) have identical results.

TAKING IT FURTHER equals the total electrostatic energy of the charge distribution.
It is the work an external agent must do to assemble the configuration, beginning with the
four charges at infinite separation.

PRACTICE PROBLEM 23-10 (a) How much additional work is required to bring a fifth pos-
itive charge from infinity to the center of the square? (b) What is the total work required to
assemble the five-charge system?

q

Wtotal

A B

CD

+q

+q

+q

+q
a

a

F I G U R E  2 3 - 2 8

Example 23-16 Work Required to Move Point Charges

Four identical positive point charges, each having charge are initially at rest at infinite sep-
aration. (a) Calculate the total work required to move the point charges to the four corners
of the square of edge length by separately calculating the work required to sequentially
move each charge to its final position. (b) Show that Equation 23-27 gives the total work.

PICTURE Move the charges to the corners of the square sequentially. No work is needed to
move the first charge to a corner because the potential at the corner is zero when the other
three charges are at infinity. As each additional charge is moved to a corner, work must be
done because of the repulsive forces of the previous placed charges.

SOLVE

a

q,

(a) 1. Sketch the square and label the corners and 
(Figure 23-28):

DA, B, C,
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Lightning—Fields of Attraction

Scientists have observed and analyzed lightning for more than 100 years.
In recent years, high-speed digital recording,* low-light television
cameras,† and satellites that have synchronized clocks‡ have given at-
mospheric scientists new information about the events that occur with a
bolt of cloud-to-ground, or CG, lightning.

Thunderstorm clouds have layers of positive and negative charges and
act like enormous, very powerful dipoles. CG lightning is usually negative
charge from the lower part of a cloud that travels to the ground by ioniza-
tion of the air. This charge is often “stepped” through the air with several
pauses on the order of milliseconds. The visible bolt is a return positive
stroke following the ionized path back up from the ground. Most flashes
are 3 to 10 strokes back and forth between cloud and ground, several
milliseconds apart. The strokes follow the initial path, as it already consists
of ionized and heated air, and usually transfer a total negative charge of

# CG lightning strikes carrying negative charge to ground have
been recorded with more than 1 million volts of potential difference.°

Some extremely powerful CG lightning strokes that carry positive
charge to ground have transferred total positive charges of up to §

and have been recorded with over 10 million volts of potential. In large
supercell thunderstorms that have hail and tornadoes,¶,** a majority of
CG lightning strokes carry positive charge from the tops of the clouds to the ground rather than carry negative charge from
the lower middle of the clouds to the ground. This lightning is associated with strong bursts of energy radiated near the start
of the lightning and with brief bursts of light many kilometers above the cloud tops shortly after the strokes.††

But very strong bursts of radiated energy have been observed microseconds before less powerful negative lightning.‡‡,##,°°,§§

Some bursts of energy repeat, detectable by satellite for up to nearly an hour after a lightning strike. Although the bursts last
less than a millisecond, they are so energetic that they are associated with radio noise detected as far away as the opposite
hemisphere of the planet.¶¶

Because high-energy electromagnetic radiation has repeatedly been measured in association with lightning, scientists are
coming up with new models about how lightning is formed. One possible model involves “runaway breakdown.” Because
electric fields associated with thunderstorms are very large, it might be possible for a stray electron or ion to be accelerated
by the electric field of a thunderstorm to approach the speed of light.*** At that speed, the electron would be so energetic that
colliding with molecules in the cloud would not halt it, even as it ionized those molecules. The ions could then be further ac-
celerated by the electric field within the storm to produce a shower, or burst, of energy. Many scientists feel that runaway
breakdown explains the formation of CG lightning in clouds that have measured electric fields ten times lower than the re-
quired potential needed to overcome air’s insulating ability.†††

Because the technology to detect and to time the energy bursts in relation to lightning flashes is recent, scientists are now
developing ways to confirm or refute these new models. The study of lightning is a very attractive field with great potential.

* Wang, D., et al., “Observed Leader and Return-Stroke Propagation Characteristics in the Bottom of a Rocket-Triggered Lightning Channel.” Journal of Geophysical Research, Jun.
27, 1999, Vol. 104, No. D12, pp. 14,369–14,376.

† Lyons, W. A., et al., “Upward Electrical Discharges from Thunderstorm Tops.” Bulletin of the American Meteorological Society, Apr. 2003, pp. 445–454.
‡ Gurevich, A. V., and Zybin, K. P., “Runaway Breakdown and the Mysteries of Lightning.” Physics Today, May 2005, pp. 37–43.
# Uman, M. A., Lightning. New York: Dover, 1984.
° Uman, M. A., op. cit.
§ Rakov, V. A., “A Review of Positive and Bipolar Lightning Discharges.” Bulletin of the American Meteorological Society, Jun. 2003, pp. 767–776.
¶ Lang, T. J., et al., “The Severe Thunderstorm Electrification and Precipitation Study.” Bulletin of the American Meteorological Society, Aug. 2004, pp. 1107–1125
** Wiens, K. C., “The 29 June 2000 Supercell Observed During STEPS. Part II: Lightning and Charge Structure.”[Need journal name, volume, pages.]
†† Lyons, W. A., et al., op. cit.
‡‡ Dwyer, J. H., et al., “X-Ray Bursts Associated Leader Steps in Cloud-to-Ground Lightning.” Geophysical Research Letters, Vol. 32, Letter 01803, 2005.
## Dwyer, J. R., “A Ground Level Gamma-Ray Burst Observed in Association with Rocket-Triggered Lightning.” Geophysical Research Letters, Vol. 31, Letter 05119, 2004.
°° Greenfield, M. B., et al., “Near-Ground Detection of Atmospheric Rays Associated with Lightning.” Journal of Applied Physics, Feb. 1, 2003, Vol. 93, No. 3, pp. 1839–1844.
§§ Gurevich, A. V., and Zybin, K. P., op. cit.
¶¶ Inan, U., “Gamma Rays Made on Earth.” Science, Feb. 18, 2005, Vol. 307, No. 5712, pp. 1054–1055.
*** Inan, U., op. cit.
††† Schrope, M., “The Bolt Catchers.” Nature, Sept. 19, 2004, Vol. 431, pp. 120–121.  

g

400 m

400 C,

20-35 C.

A bolt of lightning strikes near an airport terminal.
(Tom Fox/Dallas Morning News/Corbis.)
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Summary

1. Electric potential at a location, which is defined as the electric potential energy per unit
charge that a test charge would have at that location, is an important derived physical con-
cept that is related to the electric field.

2. Because potential is a scalar quantity, it is often easier to calculate than the electric field.
Once is known, can be calculated from 

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Potential Difference The potential difference is defined as the negative of the work per unit charge done
by the electric field on a test charge as it moves from point to point 

23-2

Potential difference for infinitesimal
displacements 23-2a

2. Electric Potential

Potential due to a point charge 23-7

Coulomb potential 23-8

Potential due to a system of point charges 23-10

Potential due to a continuous charge 23-18
distribution

where is an increment of charge and is the distance from the increment to the field
point. This expression can be used only if the charge distribution is contained in a finite
volume so that the potential can be chosen to be zero at infinity.

Continuity of electric potential The potential function is continuous everywhere in space.

3. Computing the Electric Field from  The electric field points in the direction of the most rapid decrease in the potential.
the Potential

The change in potential when a test charge undergoes a displacement is given by

23-12

Gradient A vector that points in the direction of the greatest rate of change in a scalar function and
that has a magnitude equal to the derivative of that function, with respect to the distance in
that direction, is called the gradient of the function. is the negative gradient of 

Potential a function of alone 23-13

Potential a function of alone 23-14

4. *General Relation between and

or

23-17Vb � Va � ��
b

a
E
S # d�

S

E
S

� �∇
S
V � �a�V

�x
in �

�V
�y

jn �
�V
�z

knbVE
S

Er � �
dV (r)

dr
r

Ex � �
dV (x)

dx
x

V.E
S

Etan � �
dV
d�

d�
S

V

rdq

V � �k dq

r
(V � 0 if r � )

V � a
i

kqi

ri

(V � 0 if ri � , i � 1, 2, Á )

(V � 0 if r � )V �
kq

r

(V � 0 if r � rref)V �
kq

r
�
kq

rref

dV � �E
S # d�

S

b¢V � Vb � Va �
¢U
q0

� ��
b

a
E
S # d�

S

b:a

Vb � Va

V.E
S

V
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TOPIC RELEVANT EQUATIONS AND REMARKS

5. Units

and The SI unit of potential and potential difference is the volt 

23-4

Electric field 23-5

Electron volt The electron volt is the change in potential energy of a particle of charge as it moves
from to where 

23-6

6. Potential Energy of Two Point Charges 23-9

7. Potential Functions

On the axis of a uniformly charged ring 23-19

On the axis of a uniformly charged disk 23-20

For an infinite plane of charge 23-21

For a spherical shell of charge 23-22

For an infinite line charge 23-23

8. Charge on a Nonspherical Conductor On a conductor of arbitrary shape, the surface charge density is greatest at points where
the radius of curvature is smallest.

9. Dielectric Breakdown The amount of charge that can be placed on a conductor is limited by the fact that molecules
of the surrounding medium undergo dielectric breakdown at very high electric fields, caus-
ing the medium to become a conductor.

Dielectric strength The dielectric strength is the magnitude of the electric field at which dielectric breakdown
occurs. The dielectric strength of dry air is

10. Electrostatic Potential Energy The electrostatic potential energy of a system of point charges is the work needed to bring
the charges from an infinite separation to their final positions.

Of point charges 23-27

Of a conductor with charge at potential 23-28

Of a system of conductors 23-29U �
1
2 a
n

i�1

QiVi

U � 1
2QVVQ

U �
1
2 a
n

i�1

qiVi

Emax � 3 � 106 V>m � 3 MV>m

s

V � 2kl ln 
Rref

R
  (V � 0 if r � Rref)

V � μ kQ
r

    r � R

kQ
R

    r � R
     (V � 0 if r � )

V � V0 � 2pks ƒx ƒ  (V � V0 if x � 0)

V � 2pks ƒz ƒ aA1 �
R2

z2 � 1b   (V � 0 if ƒz ƒ � )

V �
kQ

3z2 � a2
   (V � 0 if ƒz ƒ � )

U � q0V �
kq0q

r
   (U � 0 if r � )

1 eV � 1.60 � 10�19 C # V � 1.60 � 10�19 J

Vb � Va � 1 volt:b,a

e(eV)

1 N>C � 1 V>m
1 V � 1 J>C (V):¢VV



794 | C H A P T E R  2 3 Electric Potential

Answers to Concept Checks

23-1 The change in potential is zero if you move in a
direction perpendicular to the direction of 

23-2 The potential increases at the greatest rate with respect
to distance if you move in the direction opposite to
the direction of E

S
.

E
S

.

Answers to Practice Problems

23-1 Increasing potential

23-2

23-3

23-4 (a) the plane, (b)

23-5

23-6

23-7

23-8

23-9

23-10 (a) (b) (4 � 522)kq2>a422kq2>a,7.5 � 10�6 C, 4.4 � 105 V

V(r) � 1
2 (kQ>R)(1 � r2>R2) for r � R

V(r) � kQ>r � kQ>R for r � R;

5.39 � 105 V � 539 kV

V � sign (z) # 2pks£1 �
1

41 � (R2>z2)
≥3.7 � 10�6 J

V � �(25 V>m)xx � 4.0 m

�4.35 � 10�18 J

V(x) � �(5 V>m2)x2

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • A proton is moved to the left in a uniform electric field
that points to the right. Is the proton moving in the direction of
increasing or decreasing electric potential? Is the electrostatic
potential energy of the proton increasing or decreasing?

2 • An electron is moved to the left in a uniform electric field
that points to the right. Is the electron moving in the direction of in-
creasing or decreasing electric potential? Is the electrostatic poten-
tial energy of the electron increasing or decreasing?

SSM

3 • If the electric potential is uniform throughout a region of
space, what can be said about the electric field in that region?

4 • If is known at only a single point in space, can be
found at that point? Explain your answer.

5 •• Figure 23-29 shows a point particle that has a positive
charge and a metal sphere that has a charge Sketch the
electric field lines
and equipoten-
tial surfaces for
this system of
charges. SSM

�Q.�Q

E
S

V

7 •• Sketch the electric field lines and equipotential surfaces
for the region surrounding the charged conductor shown in 
Figure 23-31, assuming that
the conductor has a net posi-
tive charge.

+ Q

Q–

+

F I G U R E  2 3 - 2 9

Problem 5

r1

r2

A B

6 •• Figure 23-30 shows a point particle that has a negative
charge and a metal sphere that has a charge Sketch the
electric field lines and equipotential surfaces for this system of
charges.

�Q.�Q

– Q

Q+

+

F I G U R E  2 3 - 3 0

Problem 6

F I G U R E  2 3 - 3 1

Problem 7

8 •• Two equal positive point charges are separated by a finite
distance. Sketch the electric field lines and the equipotential sur-
faces for this system.
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18 •• The electric field strength near the surface of Earth is
about (a) Estimate the magnitude of the charge density on
the surface of Earth. (b) Estimate the total charge on Earth. (c) What
is value of the electric potential at Earth’s surface? (Assume the po-
tential is zero at infinity.) (d) If all Earth’s electrostatic potential en-
ergy could be harnessed and converted to electric energy at reason-
able efficiency, how long could it be used to run the consumer
households in the United States? Assume the average American
household consumes about of electric energy per month.

ELECTROSTATIC POTENTIAL
DIFFERENCE, ELECTROSTATIC
ENERGY, AND ELECTRIC FIELD

19 • A point particle has a charge equal to and is fixed
at the origin. (a) What is the electric potential at a point from
the origin assuming that at infinity? (b) How much work must
be done to bring a second point particle that has a charge of 
from infinity to a distance of from the charge?

20 •• The facing surfaces of two large parallel conducting plates
separated by have uniform surface charge densities that are
equal in magnitude but opposite in sign. The difference in potential
between the plates is (a) Is the positive plate or the negative
plate at the higher potential? (b) What is the magnitude of the electric
field between the plates? (c) An electron is released from rest next to
the negatively charged surface. Find the work done by the electric
field on the electron as the electron moves from the release point to
the positive plate. Express your answer in both electron volts and
joules. (d) What is the change in potential energy of the electron when
it moves from the release point to the positive plate? (e) What is its
kinetic energy when it reaches the positive plate?

21 •• A uniform electric field has a magnitude and
points in the direction. (a) What is the electric potential differ-
ence between the plane and the plane? A
point particle that has a charge of is released from rest at
the origin. (b) What is the change in the electric potential energy of
the particle as it travels from the plane to the 
plane? (c) What is the kinetic energy of the particle when it arrives
at the plane? (d) Find the expression for the electric po-
tential if its value is chosen to be zero at 

22 •• In a potassium chloride unit, the distance between the
potassium ion and the chloride ion is 
(a) Calculate the energy (in required to separate the two ions to
an infinite distance apart. (Model the two ions as two point parti-
cles initially at rest.) (b) If twice the energy determined in Part (a) is
actually supplied, what is the total amount of kinetic energy that
the two ions have when they were an infinite distance apart?

23 •• Protons are released from rest in a Van de Graaff ac-
celerator system. The protons initially are located where the
electric potential has a value of and then they travel
through a vacuum to a region where the potential is zero.
(a) Find the final speed of these protons. (b) Find the accelerat-
ing electric field strength if the potential changed uniformly over
a distance of 

24 •• The picture tube of a television set was, until recently,
invariably a cathode-ray tube. In a typical cathode-ray tube, an
electron “gun” arrangement is used to accelerate electrons from
rest to the screen. The electrons are accelerated through a poten-
tial difference of (a) Which region is at a higher electric
potential, the screen or the electron’s starting location? Explain
your answer. (b) What is the kinetic energy (in both and of
an electron as it reaches the screen?

J)eV

30.0 kV.

SSM2.00 m.

5.00 MV

eV)
2.80 � 10�10 m.(Cl�)(K�)

x � 0.V(x)
x � 4.00 m

x � 4.00 mx � 0.00 m

�3.00 mC
x � 4.00 mx � 0.00 m

�x
2.00 kV>m

500 V.

10.0 cm

�2.00-mC4.00 m
�3.00 mC

V � 0
4.00 mV

�2.00 mC

500 kW # h

300 V>m.
9 •• Two point charges are fixed on the axis. (a) Each has a
positive charge One is at and the other is at At
the origin, which of the following is true?

(1) and 

(2) and 

(3) and 

(4) and 

(5) None of the above

(b) One point charge has a positive charge and the other has a
negative charge The positive point charge is at and the
negative point charge is at At the origin, which of the fol-
lowing is true?

(1) and 

(2) and 

(3) and 

(4) and 

(5) None of the above

10 •• The electrostatic potential (in volts) is given by
where is a constant, and is in meters.

(a) Sketch the electric field for this potential. (b) Which of the fol-
lowing charge distributions is most likely responsible for this po-
tential: (1) A negatively charged flat sheet in the plane, (2) a
point charge at the origin, (3) a positively charged flat sheet in the

plane, or (4) a uniformly charged sphere centered at the ori-
gin? Explain your answer.

11 •• The electric potential is the same everywhere on the sur-
face of a conductor. Does this mean that the surface charge density is
also the same everywhere on the surface? Explain your answer.

12 •• Three identical positive point charges are located at the
vertices of an equilateral triangle. If the length of each side of the
triangle shrinks to one-fourth of its original length, by what factor
does the electrostatic potential energy of this system change? (The
electrostatic potential energy approaches zero if the length of each
side of the triangle approaches infinity.)

ESTIMATION AND APPROXIMATION

13 • Estimate the maximum potential difference between a
thundercloud and Earth, given that the electrical breakdown of
air occurs at fields of roughly 

14 • The specifications for the gap width of typical auto-
motive spark plugs is approximately equal to the thickness of
the cardboard used for matchbook covers. Because of the high
compression of the air–gas mixture in the cylinder, the dielectric
strength of the mixture is roughly Estimate the
maximum potential difference across the spark gap during op-
erating conditions.

15 • The radius of a proton is approximately 
Suppose two protons having equal and opposite momenta undergo
a head-on collision. Estimate the minimum kinetic energy (in 
required by each proton to allow the protons to overcome electro-
static repulsion and collide. Hint: The rest energy of a proton is

If the kinetic energies of the protons are much less than this rest
energy, then a nonrelativistic calculation is justified.

16 • When you touch a friend after walking across a rug on a
dry day, you typically draw a spark of about Estimate the po-
tential difference between you and your friend just before the spark.

17 • Estimate the maximum surface charge density that can
exist at the end of a sharp lightning rod so that no dielectric break-
down of air occurs.

2.0 mm.

938 MeV.

MeV)

1.0 � 10�15 m.

2.0 � 107 V>m.

SSM3.0 � 106 V>m.

SSM

x � 0

x � 0

xV0V(x, y, z) � 4.00 ƒx ƒ � V0 ,

V � 2kq>aE
S

� (2kq>a2)in
V � 0E

S
� (2kq>a2)in

V � 2kq>aE
S

� 0

V � 0E
S

� 0

x � �a.
x � �a�q.

�q

V � 2kq>aE
S

� (2kq>a2)in
V � 0E

S
� (2kq>a2)in

V � 2kq>aE
S

� 0

V � 0E
S

� 0

x � �a.x � �aq.
x



33 ••• A dipole consists of equal
but opposite point charges and

It is located so that its center is at
the origin, and its axis is aligned with
the axis (Figure 23-32). The distance
between the charges is Let be the
vector from the origin to an arbitrary
field point and be the angle that 
makes with the direction.
(a) Show that at large distances from
the dipole (i.e., for the di-
pole’s electric potential is given by

where
is the dipole moment of the dipole

and is the angle between and 
(b) At what points in the region

other than at infinity, is the
electric potential zero? SSM

rW L,

pS.rSu

pS
kp cosu>r2,V(r, u) � kpS # rn>r2 �

rW L),

�z
rSu

rSL.
z

�q.
�q
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25 ••• (a) A positively charged particle is on a trajectory to collide
head-on with a massive positively charged nucleus that is initially at
rest. The particle initially has kinetic energy In addition, the parti-
cle is initially far from the nucleus. Derive an expression for the dis-
tance of closest approach. Your expression should be in terms of the ini-
tial kinetic energy of the particle, the charge on the particle, and
the charge on the nucleus, where both and are integers. (b) Find
the numerical value for the distance of closest approach between a

particle and a stationary gold nucleus and between a
particle and a stationary gold nucleus. (The values

and are the initial kinetic energies of the alpha
particles. Neglect the motion of the gold nucleus following the colli-
sions.) (c) The radius of the gold nucleus is about If par-
ticles approach the nucleus closer than they experience
the strong nuclear force in addition to the electric force of repulsion.
In the early twentieth century, before the strong nuclear force was
known, Ernest Rutherford bombarded gold nuclei with particles that
had kinetic energies of about Would you expect this experiment
to reveal the existence of this strong nuclear force? Explain your answer.

POTENTIAL DUE TO A SYSTEM OF
POINT CHARGES

Note: In all the problems in this section, assume that
the electric potential is zero at distances far from all charges
unless otherwise stated.
26 • Four point charges, each having a magnitude of 
are fixed at the corners of a square whose edges are long. Find
the electric potential at the center of the square if (a) all the charges are
positive, (b) three of the charges are positive and one charge is nega-
tive, and (c) two charges are positive and two charges are negative.
(Assume the potential is zero very far from all charges.)

27 • Three point charges are fixed at locations on the axis:
is at is at and is at 

Find the electric potential at the point on the axis at 
if (a) (b) and

and (c) and 
(Assume the potential is zero very far from all charges.)

28 • Points and are fixed at the vertices of an equi-
lateral triangle whose edges are long. A point particle
that has a charge of is fixed at each of vertices and

(a) What is the electric potential at point (Assume the po-
tential is zero very far from all charges.) (b) How much work is
required to move a point particle having a charge of 
from a distance of infinity to point (c) How much additional
work is required to move the point particle from point

to the midpoint of side 

29 •• Three identical point particles that have charge are at
the vertices of an equilateral triangle that is circumscribed by a
circle of radius that lies in the plane and is centered at the
origin. The values of and are and respectively.
(Assume the potential is zero very far from all charges.) (a) What is
the electric potential at the origin? (b) What is the electric potential
at the point on the axis at (c) How would your answers to
Parts (a) and (b) change if the charges were still on the circle but one
is no longer at a vertex of the triangle? Explain your answer.

30 •• Two point charges and are separated by a distance 
At a point from and along the line joining the two charges the
potential is zero. (Assume the potential is zero very far from all
charges.) (a) Which of the following statements is true?

(1) The charges have the same sign.
(2) The charges have opposite signs.
(3) The relative signs of the charges cannot be determined by

using the data given.
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(b) Which of the following statements is true?
(1)
(2)
(3)
(4) The relative magnitudes of the charges cannot be determined

by using the data given.

(c) Find the ratio 

31 •• Two identical positively charged point particles are
fixed on the axis at and (a) Write an expression
for the electric potential as a function of for all points on the

axis. (b) Sketch versus for all points on the axis.

32 •• A point charge of is at the origin and a second
point charge of is on the axis at (a) Sketch the
potential function versus for all points on the axis. (b) At
what point or points, if any, is on the axis? (c) At what
point or points, if any, on the axis is the electric field zero? Are
these locations the same locations found in Part (b) ? Explain
your answer. (d) How much work is needed to bring a third
charge to the point on the axis?xx � 1

2 a�e

x
xV � 0

xxV(x)
x � a.x�2e

�3e

SSMxxV(x)x
xV(x)

x � �a.x � �ax

q>q�.
ƒq ƒ � ƒq� ƒ .
ƒq ƒ 	 ƒq� ƒ .
ƒq ƒ 
 ƒq� ƒ .

34 ••• A charge configuration consists of three point charges lo-
cated on the axis (Figure 23-33). One has a charge equal to and
is located at the origin. The other two each have a charge equal to 
one is located at and the other is located at This
charge configuration can be modeled as two dipoles: one centered at

and with a dipole moment in the direction, the other
centered at and with a dipole moment in the direction.
Each of these dipoles has a dipole moment that has a magnitude
equal to Two dipoles arranged in this fashion form a linear electric
quadrupole. (There are other geometrical arrangements of dipoles
that create quadrupoles but they are not linear.) (a) Using the result
from Problem 33, show that at large
distances from the quadrupole
(i.e., for the electric potential
is given by 
where is the magnitude of
the quadrupole moment of the charge
configuration.) (b) Show that on
the positive axis, this potential gives
an electric field (for of

(c) Show you get the
result of Part (b) by adding the electric
fields from the three point charges.
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F I G U R E  2 3 - 3 4 Problem 38

39 •• Three identical point charges, each with a charge equal to
lie in the plane. Two of the charges are on the axis at 

and and the third charge is on the axis at (a) Find
the potential as a function of position along the axis. (b) Use the
Part (a) result to obtain an expression for the component of
the electric field as a function of Check your answers to Parts
(a) and (b) at the origin and as approaches to see if they yield
the expected results.

CALCULATIONS OF FOR
CONTINUOUS CHARGE DISTRIBUTIONS

40 • A charge of is uniformly distributed on a thin
spherical shell of radius (Assume the potential is zero very
far from all charges.) (a) What is the magnitude of the electric field
just outside and just inside the shell? (b) What is the magnitude of
the electric potential just outside and just inside the shell? (c) What
is the electric potential at the center of the shell? (d) What is the
magnitude of the electric field at the center of the shell?

41 • An infinite line charge of linear charge density 
lies on the axis. Find the electric potential at distances from the line
charge of (a) (b) and (c) Assume that we
choose at a distance of from the line of charge.

42 • (a) Find the maximum net charge that can be placed on a
spherical conductor of radius before dielectric breakdown of
the air occurs. (b) What is the electric potential of the sphere when

16 cm

SSM2.50 mV � 0
12.0 m.4.00 m,2.00 m,

z
�1.50 mC>m

12.0 cm.
�10.0 mC

V

x
x.

xEx(x),
x
x � a.xy � �a,

y � �ayxyq,

COMPUTING THE ELECTRIC FIELD
FROM THE POTENTIAL

35 • A uniform electric field is in the direction. Points 
and are on the axis, with at and at 
(a) Is the potential difference positive or negative? (b) If

is what is the magnitude of the electric field?

36 • An electric field is given by the expression 
where Find the potential difference between the
point at and the point . Which of these points
is at the higher potential?

37 •• The electric field on the axis due to a point charge fixed
at the origin is given by where and

(a) Find the magnitude and sign of the point charge. (b) Find
the potential difference between the points on the axis at

and Which of these points is at the higher
potential?

38 •• The electric potential due to a particular charge distribu-
tion is measured at many points along the axis. A plot of the data
is shown in Figure 23-34. At what location (or locations) is the com-
ponent of the electric field equal to zero? At this location (or these
locations) is the potential also equal to zero? Explain your answer.

x
x

x � 2.00 m.x � 1.00 m
x

x � 0.
b � 6.00 kV # mE

S
� (b>x2)in,

x

x � 2.00 mx � 1.00 m
b � 2.00 kV>m4.

E
S

� bx3 in,

100 kV,ƒVb � Va ƒ
Vb � Va

x � 6.00 m.bx � 2.00 maxb
a�x

it has this maximum charge? (Assume the potential is zero very far
from all charges.)

43 • Find the maximum surface charge density that can
exist on the surface of any conductor before dielectric breakdown of
the air occurs.

44 •• A conducting spherical shell of inner radius and outer
radius is concentric with a small metal sphere of radius The
metal sphere has a positive charge The total charge on the con-
ducting spherical shell is (Assume the potential is zero very far
from all charges.) (a) What is the electric potential of the spherical
shell? (b) What is the electric potential of the metal sphere?

45 •• Two coaxial conducting cylindrical shells have equal and
opposite charges. The inner shell has charge and an outer radius 
and the outer shell has charge and an inner radius The length
of each cylindrical shell is and is very long compared with Find
the potential difference between the shells.

46 •• Positive charge is placed on two conducting spheres that
are very far apart and connected by a long, very thin conducting
wire. The radius of the smaller sphere is and the radius of
the larger sphere is The electric field strength at the surface
of the larger sphere is Estimate the surface charge den-
sity on each sphere.

47 •• Two concentric conducting spherical shells have equal
and opposite charges. The inner shell has outer radius and 
charge the outer shell has inner radius and charge Find
the potential difference between the shells.

48 •• The electric potential at the surface of a uniformly
charged sphere is At a point outside the sphere at a (radial)
distance of from its surface, the electric potential is 
(The potential is zero very far from the sphere.) What is the radius
of the sphere, and what is the charge of the sphere?

49 •• Consider two infinite parallel thin sheets of charge, one
in the plane and the other in the plane. The potential is
zero at the origin. (a) Find the electric potential everywhere in space
if the planes have equal positive charge densities (b) Find the
electric potential everywhere in space if the sheet in the plane
has a charge density and the sheet in the plane has a
charge density 

50 ••• The expression for the potential along the axis of a thin 

uniformly charged disk is given by 

(Equation 23-20), where and are the radius and the charge per
unit area of the disk, respectively. Show that this expression reduces
to for where is the total charge on
the disk. Explain why this result is expected. Hint: Use the binomial
theorem to expand the radical.

51 •• A rod of length has a total charge uniformly dis-
tributed along its length. The rod lies along the axis with its
center at the origin. (a) Find an expression for the electric poten-
tial as a function of position along the axis. (b) Show that the
result obtained in Part (a) reduces to for 
Explain why this result is expected.

52 •• A rod of length has a charge uniformly distrib-
uted along its length. The rod lies along the axis with one end
at the origin. (a) Find an expression for the electric potential as a
function of position along the axis. (b) Show that the result ob-
tained in Part (a) reduces to for Explain why
this result is expected.

53 •• A disk of radius has a surface charge distribution given
by where is a constant and is the distance from the
center of the disk. (a) Find the total charge on the disk. (b) Find an
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expression for the electric potential at a distance from the center
of the disk on the axis that passes through the disk’s center and is
perpendicular to its plane.

54 ••• A disk of radius has a surface charge distribution given
by where is a constant and is the distance from the
center of the disk. (a) Find the total charge on the disk. (b) Find an
expression for the electric potential at a distance from the center
of the disk on the axis that passes through the disk’s center and is
perpendicular to its plane.

55 •• A rod of length has a total charge uniformly distrib-
uted along its length. The rod lies along the axis with its center at
the origin. (a) What is the electric potential as a function of position
along the axis for (b) Show that for your result
reduces to that due to a point charge 

56 ••• A circle of radius is removed from the center of a uni-
formly charged thin circular disk of radius and charge per unit
area (a) Find an expression for the potential on the axis a dis-
tance from the center of the disk. (b) Show that for the elec-
tric potential on the axis of the uniformly charged disk with cutout ap-
proaches where is the total charge on the disk.

57 ••• The expression for the electric potential inside a uni-

formly charged solid sphere is given by 

where is the radius of the sphere and is the distance from the
center. This expression was obtained in Example 23-12 by first find-
ing the electric field. In this problem, you derive the same expres-
sion by modeling the sphere as a nested collection of thin spherical
shells, and then adding the potentials of these shells at a field
point inside the sphere. The potential that is a distance from
the center of a uniformly charged thin spherical shell that has a ra-
dius and a charge is given by for and

for (Equation 23-22). Consider a sphere of ra-
dius containing a charge that is uniformly distributed and you
want to find at some point inside the sphere (i.e., for 
(a) Find an expression for the charge on a spherical shell of ra-
dius and thickness (b) Find an expression for the potential 
at due to the charge on a shell of radius and thickness where

(c) Integrate your expression in Part (b) from to
to find the potential at due to all the charge in the region

farther than from the center of the sphere. (d) Find an expression
for the potential at due to the charge in a shell of radius and
thickness where (e) Integrate your expression in Part
(d) from to to find the potential at due to all the
charge in the region closer than to the center of the sphere. (f) Find
the total potential at by adding your Part (c) and Part (e) results.

58 •• Calculate the electric potential at the point a distance 
from the center of a uniformly charged thin spherical shell of radius

and charge (Assume the potential is zero far from the shell.)

59 •• A circle of radius is removed from the center of a uni-
formly charged thin circular disk of radius Show that the poten-
tial at a point on the central axis of the disk a distance from its 

geometrical center is given by
where is the charge density of the disk.

EQUIPOTENTIAL SURFACES

60 • An infinite flat sheet of charge has a uniform surface
charge density equal to How far apart are the equipo-
tential surfaces whose potentials differ by 

61 •• Consider two parallel uniformly charged infinite planes
that are equal but oppositely charged. (a) What is (are) the shape(s)
of the equipotential surfaces in the region between them? Explain
your answer. (b) What is (are) the shape(s) of the equipotential sur-
faces in the regions not between them? Explain your answer. SSM
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z 62 •• A Geiger tube consists of two elements, a long metal cylin-
drical shell and a long straight metal wire running down its central
axis. Model the tube as if both the wire and cylinder are infinitely
long. The central wire is positively charged and the outer cylinder is
negatively charged. The potential difference between the wire and the
cylinder is (a) What is the direction of the electric field inside
the tube? (b) Which element is at a higher electric potential? (c) What
is (are) the shape(s) of the equipotential surfaces inside the tube?
(d) Consider two equipotential surfaces described in Part (c). Suppose
they differ in electric potential by Do two such equipotential
surfaces near the central wire have the same spacing as they would
near the outer cylinder? If not, where in the tube are the equipotential
surfaces that are more widely spaced? Explain your answer.

63 •• Suppose the cylinder in the Geiger tube in Problem 62
has an inside diameter of and the wire has a diameter of

The cylinder is grounded so its potential is equal to zero.
(a) What is the radius of the equipotential surface that has a poten-
tial equal to Is this surface closer to the wire or to the cylin-
der? (b) How far apart are the equipotential surfaces that have
potentials of (c) Compare your result in Part (b) to
the distance between the two surfaces that have potentials of

respectively. What does this comparison tell you
about the electric field strength as a function of the distance from the
central wire?

64 •• A point particle that has a charge of is at the ori-
gin. (a) What is (are) the shapes of the equipotential surfaces in the
region around this charge? (b) Assuming the potential to be zero at

calculate the radii of the five surfaces that have potentials
equal to and sketch them
to scale centered on the charge. (c) Are these surfaces equally
spaced? Explain your answer. (d) Estimate the electric field strength
between the and equipotential surfaces by dividing
the difference between the two potentials by the difference between
the two radii. Compare this estimate to the exact value at the loca-
tion midway between these two surfaces.

ELECTROSTATIC POTENTIAL ENERGY

65 • Three point charges are on the axis: is at the origin, 
is at and is at Find the electrostatic
potential energy of this system of charges for the following charge
values: (a) (b) and

and (c) and 
(Assume the potential energy is zero when the charges are very far
from each other.)

66 • Point charges and are fixed at the vertices of an
equilateral triangle whose sides are long. Find the electro-
static potential energy of this system of charges for the following
charge values: (a) (b)
and and (c) and 
(Assume the potential energy is zero when the charges are very far
from each other.)

67 •• (a) How much charge is on the surface of an isolated
spherical conductor that has a radius and is charged to

(b) What is the electrostatic potential energy of this con-
ductor? (Assume the potential is zero far from the sphere.)

68 ••• Four point charges, each having a charge with a magni-
tude of are at the corners of a square whose sides are 
long. Find the electrostatic potential energy of this system under the
following conditions: (a) all of the charges are negative, (b) three of the
charges are positive and one of the charges is negative, (c) the charges
at two adjacent corners are positive and the other two charges are
negative, and (d) the charges at two opposite corners are positive and
the other two charges are negative. (Assume the potential energy is
zero when the point charges are very far from each other.)
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69 •• Four point charges are fixed at the corners of a square
centered at the origin. The length of each side of the square is 
The charges are located as follows: is at is at

is at and is at A fifth
particle that has a mass and a charge is placed at the ori-
gin and released from rest. Find its speed when it is a very far
from the origin.
70 •• Consider two point particles that have charge are
at rest, and are separated by (a) How much work
was required to bring them together from a very large separation
distance? (b) If they are released, how much kinetic energy will
each have when they are separated by twice their separation at
release? (c) The mass of each particle is What
speed will each have when they are very far from each other?

71 ••• Consider an electron and a proton that are initially at rest
and are separated by Neglecting any motion of the much
more massive proton, what is the minimum (a) kinetic energy and
(b) speed with which the electron must be projected at so it reaches
a point a distance of from the proton? Assume the elec-
tron’s velocity is directed radially away from the proton. (c) How
far will the electron travel away from the proton if it has twice that
initial kinetic energy?

GENERAL PROBLEMS

72 • A positive point charge equal to is
separated from a negative point charge of the same magnitude
by What is the electric potential at a point

from each of the two charges?
73 • Two positive point charges each have a charge of 
and are fixed on the axis at and (a) Find the elec-
tric potential at any point on the axis. (b) Use your result in
Part (a) to find the electric field at any point on the axis.
74 • If a conducting sphere is to be charged to a potential of

what is the smallest possible radius of the sphere so that
the electric field near the surface of the sphere will not exceed the
dielectric strength of air?

75 •• SPREADSHEET Two infinitely long parallel wires have
a uniform charge per unit length and respectively. The
wires are parallel with the axis. The positively charged wire in-
tersects the axis at and the negatively charged wire in-
tersects the axis at (a) Choose the origin as the refer-
ence point where the potential is zero, and express the potential
at an arbitrary point in the plane in terms of and

Use this expression to solve for the potential everywhere on
the axis. (b) Using and obtain the
equation for the equipotential surface in the plane that passes
through the point (c) Use a spreadsheet program
to plot the equipotential surface found in Part (b).
76 •• The equipotential curve graphed in Problem 75 should
be a circle. (a) Show mathematically that it is a circle. (b) The
equipotential circle in the plane is the intersection of a three-
dimensional equipotential surface and the plane. Describe
the three-dimensional surface using one or two sentences.

77 ••• The hydrogen atom in its ground state can be modeled as
a positive point charge of magnitude (the proton) surrounded by
a negative charge distribution that has a charge density (the elec-
tron) that varies with the distance from the center of the proton as

(a result obtained from quantum mechanics), where
is the most probable distance of the electron from the

proton. (a) Calculate the value of needed for the hydrogen atom
to be neutral. (b) Calculate the electrostatic potential (relative to in-
finity) of this system as a function of the distance from the proton.r
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78 •• Charge is supplied to the metal dome of a Van de Graaff
generator by the belt at the rate of when the potential
difference between the belt and the dome is The dome
transfers charge to the atmosphere at the same rate, so the

potential difference is maintained. What minimum
power is needed to drive the moving belt and maintain the

potential difference?

79 •• A positive point charge is located on the axis at
(a) How much work is required to bring an identical point

charge from infinity to the point on the axis at (b) With
the two identical point charges in place at and how
much work is required to bring a third point charge from in-
finity to the origin? (c) How much work is required to move the
charge from the origin to the point on the axis at along
the semicircular path shown (Figure 23-35)?
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80 •• A charge of is uniformly distributed on a ring
of radius that lies in the plane and is centered at the
origin. A point charge of is initially located on the axis
at Find the work required to move the point charge to
the origin.

81 •• Two metal spheres each have a radius of The
centers of the two spheres are apart. The spheres are ini-
tially neutral, but a charge is transferred from one sphere to the
other, creating a potential difference between the spheres of 
A proton is released from rest at the surface of the positively
charged sphere and travels to the negatively charged sphere.
(a) What is the proton’s kinetic energy just as it strikes the nega-
tively charged sphere? (b) At what speed does it strike the sphere?

82 • SPREADSHEET (a) Using a spreadsheet program, graph
versus for a uniformly charged ring in the plane and

centered at the origin. The potential on the axis is given by

(Equation 23-19). (b) Use your graph to
estimate the points on the axis where the electric field strength is
greatest.

83 •• A spherical conductor of radius is charged to 
When it is connected by a long, very thin conducting wire to a sec-
ond conducting sphere far away, its potential drops to What
is the radius of the second sphere?

84 •• A metal sphere centered at the origin has a surface charge
density that has a magnitude of and a radius less than

A distance of from the origin, the electric potential is
and the electric field strength is (Assume the po-

tential is zero very far from the sphere.) (a) What is the radius of the
metal sphere? (b) What is the sign of the charge on the sphere?
Explain your answer.

85 •• Along the central axis of a uniformly charged disk, at a
point from the center of the disk, the potential is and
the magnitude of the electric field is At a distance of 
the potential is and the magnitude of the electric field is

(Assume the potential is zero very far from the sphere.)
Find the total charge on the disk.
23.5 V>m.

40 V
1.5 m,80 V>m.

80 V0.60 m

250 V>m.500 V
2.00 m2.00 m.

24.6 nC>m2

12 kV.

20 kV.R1

z
V(z) � kQ>3a2 � z2

z
z � 0zV(z)

100 V.
Q

50.0 cm
10.0 cm.

x � 50.0 cm.
x�1.00 nC

x � 010.0 cm
�2.00 nC
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89 ••• Three concentric conducting thin spherical shells have
radii so that Initially, the inner shell is un-
charged, the middle shell has a positive charge and the outer
shell has a charge (Assume the potential equals zero at points far
from the shells.) (a) Find the electric potential of each of the three
shells. (b) If the inner and outer shells are now connected by a con-
ducting wire that is insulated as it passes through a small hole in the
middle shell, what is the electric potential of each of the three shells,
and what is the final charge on each shell?

90 ••• Consider two concentric spherical thin metal shells of
radii and where The outer shell has a charge but the
inner shell is grounded. This means that the potential on the inner
shell is the same as the potential at points far from the shells. Find the
charge on the inner shell.

91 ••• Show that the total work needed to assemble a uni-
formly charged sphere that has a total charge of and radius is
given by Energy conservation tells us that this result
is the same as the resulting electrostatic potential energy of the
sphere. Hint: Let be the charge density of the sphere that has charge 
and radius Calculate the work to bring in charge from infinity
to the surface of a uniformly charged sphere of radius and charge
density (No additional work is required to smear throughout a spher-
ical shell of radius thickness and charge density Why?)

92 ••• (a) Use the result of Problem 91 to calculate the classical
electron radius, the radius of a uniform sphere that has a charge 
and an electrostatic potential energy equal to the rest energy of the
electron Comment on the shortcomings of this
model for the electron. (b) Repeat the calculation in Part (a) for a
proton using its rest energy of Experiments indicate the
proton has an approximate radius of about Is your
result close to this value?

93 ••• (a) Consider a uniformly charged sphere that has ra-
dius and charge and is composed of an incompressible fluid,
such as water. If the sphere fissions (splits) into two halves of
equal volume and equal charge, and if these halves stabilize into
uniformly charged spheres, what is the radius of each?
(b) Using the expression for potential energy shown in Problem
91, calculate the change in the total electrostatic potential energy
of the charged fluid. Assume that the spheres are separated by a
large distance.

94 ••• Problem 93 can be modified to be used as a very sim-
ple model for nuclear fission. When a nucleus absorbs a neu-
tron, it can fission into the fragments and 2 neutrons.
The has 92 protons, while has 54 protons and has
38 protons. Estimate the energy released during this fission
process (in assuming that the mass density of the nucleus
is constant and has a value of 4 � 1017 kg>m3.

MeV),

94Sr140Xe235U
140Xe, 94Sr,

235U

SSM

R�

QR

1.2 � 10�15 m.
938 MeV.

(5.11 � 105 eV).

�e

SSMr.dr,r,
dqr.
r (r 	 R)

dqdWR.
Qr

3Q2>(20pP0R).
RQ

Q,b � a.b,a

�Q.
�Q,

a 	 b 	 c.a, b, and c

Q Q

x

y

z

+q

mass = m
– L L

LL
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86 •• A radioactive nucleus emits an particle that has a
charge When the particle is a large distance from the nu-
cleus, it has a kinetic energy of Assume that the parti-
cle had negligible kinetic energy as it left the surface of the nucleus.
The “daughter” (or residual) nucleus has a charge 
Determine the radius of the nucleus. (Neglect the radius of the

particle and assume the nucleus remains at rest.)

87 ••• (a) Configuration consists of two point particles; one
particle has a charge of and is on the axis at and the
other particle has a charge of and is at (Figure 23-36a).
Assuming the potential is zero at large distances from these
charged particles, show that the potential is also zero everywhere
on the plane. (b) Configuration consists of a flat metal
plate of infinite extent and a point particle located a distance 
from the plate (Figure 23-36b). The point particle has a charge
equal to and the plate is grounded. (Grounding the plate forces
its potential to equal zero.) Choose the line perpendicular to the
plate and through the point charge as the axis, and choose the
origin at the surface of the plate nearest the particle. (These choices
put the particle on the axis at For configuration the
electric potential is zero both at all points in the half-space 
that are very far from the particle and at all points on the 
plane—just as was the case for configuration A theorem, called
the uniqueness theorem, implies that throughout the half-space

the potential function —and thus the electric field —for
the two configurations
are identical. Using this
result, obtain the elec-
tric field at every
point in the pla-
ne in configuration 
(The uniqueness theo-
rem tells us that in con-
figuration the electric
field at each point in
the plane is the
same as it is in configu-
ration ) Use this re-
sult to find the surface
charge density at
each point in the con-
ducting plane (in confi-
guration SSMB).

s

A.

x � 0

B

B.
x � 0

E
S

E
S

Vx � 0

A.
x � 0
x � 0
B,x � �d.)x

x

�q

d
Bx � 0

x � �d�q
x � �dx�q

A

206Pba

206Pb
�82e.206Pb

a5.30 MeV.
a�2e.

a210Po

y

z

+q
x

d

(b)

(a)

d

d

z

y

–q

+q

x

F I G U R E  2 3 - 3 6

Problem 87

88 ••• A particle that has a mass and a positive charge is con-
strained to move along the axis. At and are two ring
charges of radius (Figure 23-37). Each ring is centered on the axis
and lies in a plane perpendicular to it. Each ring has a total positive
charge uniformly distributed on it. (a) Obtain an expression for
the potential on the axis due to the charge on the rings.
(b) Show that has a minimum at (c) Show that for

the potential approaches the form 
(d) Use the result of Part (c) to derive an expression for the angular
frequency of oscillation of the mass if it is displaced slightly from
the origin and released. (Assume the potential equals zero at points
far from the rings.)

m

V(x) � V(0) � ax2.ƒx ƒ V L,
x � 0.V(x)

xV(x)
Q

xL
x � Lx � �Lx

qm



Capacitance

24-1 Capacitance

24-2 The Storage of Electrical Energy

24-3 Capacitors, Batteries, and Circuits
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H
ow many people do you know that don’t have a digital camera, a cell
phone, a cell-phone/digital-camera combination, or any of a myriad of ad-
ditional portable electronic devices? Virtually all portable electronic de-
vices contain one or more capacitors, and life without portable electronic
devices seems unthinkable today. We live in an on-the-run age yet still
manage to stay in communication with people important to us using cell

phones, to enjoy music using mp3 players, and even to check and send email using
PDA (personal digital assistant) devices.

In the previous chapters, we discussed the relation of electric fields to charges
and how the relation of charges translates into electric potential energy. Here we
show that potential energy can be stored and released using the concept of
capacitance.

In this chapter, we will discuss circuits containing batteries and capacitors.
In the next few chapters, the concepts of electric potential and capacitance
will be further developed as they relate to circuits containing resistors, in-
ductors, and other devices.

24
C H A P T E R

How do you determine how much

energy can be stored in a capacitor?

(See Example 24-3.)
?

801

THE ENERGY FOR THE ELECTRONIC
FLASH OF THIS CAMERA HAS BEEN
TRANSFERRED FROM A BATTERY TO A
CAPACITOR. (PhotoDisc/Getty Images.)
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24-1 CAPACITANCE

The potential of a single isolated conductor due to the
charge on it is proportional to and depends on the size
and shape of the conductor. Typically, the larger the surface
area of a conductor, the more charge it can carry for a given
potential. For example, if the potential is chosen to be zero
at infinity, the potential of a spherical conductor having a
radius and a charge is

(The equation for an isolated sphere (Equation
23-22) is established in Chapter 23.) The ratio of the
charge to the potential of an isolated conductor is called its
self-capacitance C. A capacitor is a device consisting of two
conductors, one that has a charge and the other that has a
charge . The ratio of charge to the potential difference

between the two conductors is called the capacitance of
the capacitor.

24-1

DEFINITION—CAPACITANCE

Capacitance is a measure of the capacity to store charge for a given potential
difference. Because the potential difference is proportional to the charge, this ratio
does not depend on either or but only on the sizes, shapes, and relative posi-
tions of the conductors. The self-capacitance of an isolated spherical conductor is

24-2

The SI unit of capacitance is the coulomb per volt, which is called a farad (F) after
the great English experimentalist Michael Faraday:

24-3

The farad is a rather large unit, so submultiples such as the microfarad
or the picofarad are more commonly used. Because

capacitance is in farads and is in meters, we can see from Equation 24-2 that the
SI unit for the electric constant (the permittivity of empty space), can also be
written as a farad per meter:

24-4

ELECTRIC CONSTANT

PRACTICE PROBLEM 24-1

Find the radius of a spherical conductor that has a capacitance of 

The farad is indeed a very large unit.

CAPACITORS

A capacitor is usually charged by transferring a charge from one conductor to
the other conductor, which leaves one of the conductors having a charge and
the other conductor having a charge The capacitance of the device is defined�Q.

�Q
Q

1.0 F.

P0 � 8.85 � 10�12 F>m � 8.85 pF>m
P0 ,

R
(1 pF � 10�12 F)(1 mF � 10�6 F)

1 F � 1 C>V
C �

Q

V
�
Q

kQ>R �
R
k

� 4pP0R

V,Q

C �
Q

V

V
Q�Q
Q

Q>VV � kQ>RV �
kQ

R

QR

QQ
V

Capacitors are used in large numbers in common electronic devices such
as television sets. Some capacitors are used to store energy, but most are
used to filter unwanted electrical frequencies. (© Tom Pantages Images.)

A sphere of capacitance carries
a charge of If the charge
is increased to what is the
new capacitance C2?

60 mC,
20 mC.

C1

CONCEPT CHECK 24-1✓



F I G U R E  2 4 - 1 Leyden jar with bells. The
bell on the pole through the stopper is
connected to a conductor on the inside surface
of the jar. The second bell is connected to the
conductor on the outside surface of the jar.
The system is energized by connecting a
battery between the two bells for a short time.
After the battery is removed the conducting
ball swings from one bell to the other,
transferring charge a little bit at a time.
(Courtesy of Bernhard Thomas.)

Capacitance S E C T I O N  2 4 - 1 | 803

to be where is the magnitude of the charge on either conductor and is the
magnitude of the potential difference between the conductors. To calculate the ca-
pacitance, we place equal and opposite charges on the conductors and then find
the potential difference by first finding the electric field due to the charges and
then calculating from 

When we speak of the charge on a capacitor, we mean the magnitude of the charge
on either conductor. The use of rather than for the magnitude of the potential
difference between the plates is standard and simplifies many of the equations relating
to capacitance.

The first capacitor was the Leyden jar (Figure 24-1), a glass container lined with
metal on its outside and base and either filled with water or lined with foil on its in-
side. It was invented at the University of Leyden in the Netherlands by eighteenth-
century experimenters who, while studying the effects of electric charges on people
and animals, got the idea of trying to store a large amount of charge in a bottle of
water. An experimenter held up a jar of water in one hand while charge was con-
ducted to the water by a chain from a static electric generator. When the experi-
menter reached over to lift the chain out of the water with his other hand, he was
knocked unconscious. Benjamin Franklin realized that the device for storing charge
did not have to be jar shaped and used foil-covered window glass, called Franklin
panes. Using several of these panes connected in parallel, Franklin stored a large
charge and attempted to kill a turkey with them. Instead, he knocked himself out.
Franklin later wrote, “I tried to kill a turkey but nearly succeeded in killing a goose.”

PARALLEL-PLATE CAPACITORS

A common capacitor is the parallel-plate capacitor, which uses two parallel con-
ducting plates. In practice, the plates are often thin metallic foils that are separated
and insulated from one another by a thin plastic film. This “sandwich” is then rolled
up, which allows for a large surface area in a relatively small space. Let be the
area of the surface (the area of that side of each plate that faces the other plate), and
let be the separation distance, which is very small compared to the length and
width of the plates. We place a charge on one plate and on the other plate.
These charges attract each other and become uniformly distributed on the inside
surfaces of the plates. Because the plates are very close together, the electric field be-
tween them is uniform and has a magnitude of [That the electric field
strength just outside the surface of a conductor is given by 
(Equation 22-21) is established in Chapter 22.] Because is uniform
between the plates (Figure 24-2), the potential difference between the
plates equals the field strength multiplied by the plate separation 

24-5

where we have substituted for The capacitance of the parallel-
plate capacitor is thus

24-6

CAPACITANCE OF A PARALLEL-PLATE CAPACITOR

Note that because is proportional to the capacitance does not
depend on either or For a parallel-plate capacitor, the capacitance
is proportional to the area of the plates and is inversely proportional to
the gap width (separation distance). In general, capacitance depends
on the size, shape, and geometrical arrangement of the conductors.
Capacitance also depends on the properties of the insulating medium
between the conductors as we shall see in Section 24-4.

V.Q
Q,V

C �
Q

V
�

Q

Qd>(P0A)
�

P0A

d

s.Q>AV � Ed �
s

P0

d � Qd>(P0A)

d:E

E
S
E � s>P0

E � s>P0 .

�Q�Q
d

A

¢VV

E
S

.V
E
S

V

VQQ>V,

+Q –Q

(a)

(b)

F I G U R E  2 4 - 2 (a) Electric field lines between the plates of
a parallel-plate capacitor. The lines are equally spaced between
the plates, indicating that the electric field is uniform.
(b) Electric field lines in a parallel-plate capacitor shown by
small bits of thread suspended in oil. (Harold M. Waage.)
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* Capacitance also depends on a property of any nonconducting material placed between the conductors. This depen-
dence is introduced in Section 24-4.

Example 24-1 The Capacitance of a Parallel-Plate Capacitor

A parallel-plate capacitor has square metallic plates of edge length separated by
(a) Calculate the capacitance of this device. (b) As this capacitor is charged to 

how much charge is transferred from one plate to another?

PICTURE The capacitance is determined by the area and the separation of the plates.
Once is found, the charge for a given voltage is found from the definition of capacitance

SOLVE

C � Q>V.
VC

C

12 V,1.0 mm.
10 cm

(a) We find the capacitance using (Equation 24-6):C � P0A>d  89 pFC �
P0A

d
�

(8.85 pF>m)(0.10 m)2

0.0010 m
� 88.5 pF �

(b) The charge transferred is found from (the definition of
capacitance):

Q � CV 1.1 nC�Q � CV � (88.5 pF)(12 V) � 1.06 � 10�9 C

CHECK The Part (b) expression has units of farads multiplied by volts. Because 
(Equation 24-3), the product of farads and volts equals coulombs, which is the appropriate
unit for charge.

TAKING IT FURTHER is the magnitude of the charge on each plate of the capacitor. A
charge of corresponds to a transfer of electrons from one plate to the other.

PRACTICE PROBLEM 24-2 How large would the plate area have to be for the capacitance
to equal 1.0 F?

6.6 � 1091.1 nC
Q

1 F � 1 C>V

CYLINDRICAL CAPACITORS

A cylindrical capacitor consists of a long conducting cylinder of radius and 
a larger, concentric cylindrical conducting shell of radius The cylinders 
have the same length. A coaxial cable, such as that used for cable television, 
can be thought of as a cylindrical capacitor. The capacitance per unit length of a
coaxial cable is important in determining the transmission characteristics of 
the cable.

R2 .
R1

PROBLEM-SOLVING STRATEGY

Calculating Capacitance

PICTURE Make a sketch of the capacitor that has a charge of on one
conductor and a charge of on the other conductor.

SOLVE

1. Determine the electric field usually by using Gauss’s law.
2. Determine the magnitude of the potential difference between the two

conductors by integrating (Equation 23-2a).
3. The capacitance is equal to 

CHECK Check that the result depends only on the electric constant* and on
geometrical factors such as lengths and areas.

C � Q>V.
dV � �E

S # d�
S

V

E
S

,

�Q
�Q



–Q

+Q

L

R2 R1
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Example 24-2 An Expression for the Capacitance of a Cylindrical Capacitor

Find an expression for the capacitance of a cylindrical capacitor consisting of two conductors,
each of length One conductor is a cylinder of radius and the second conductor is a coax-
ial cylindrical shell of inner radius where as shown in Figure 24-3.

PICTURE We place charge on the inner conductor and charge on the outer conduc-
tor and calculate the potential difference from the electric field between the
conductors, which is found from Gauss’s law. Because the electric field is not uniform (it de-
pends on the distance from the axis) we must integrate to find the potential difference.

SOLVE

E
S

R

V � VR2
� VR1

�Q�Q

R1 	 R2 V LR2 ,
R1L.

1. The capacitance is defined as the ratio Q>V: C � Q>V
2. is related to the electric field:V dV � �E

S # d�
S

L

R

R1

R2

�

3. To find we choose a soup-can-shaped 
Gaussian surface of radius and length 
where and The 
entire Gaussian surface is located far 
from the ends of the coaxial conductors 
(Figure 24-4):

� V L.R1 	 R 	 R2

�,R
ER

4. On the Gaussian surface, is either zero or 
is in the radial direction. Thus, there is no flux 
of through either of the two flat ends of the can.
The area of the curved side of the can is 
and on this side so Gauss’s law gives:En � ER ,

2pR�,
E
S

E
S

where

� ER�
curved side

dA � ER2pR�� 0 � �
curved side

ER dA � 0

CS En dA � �
left end

En dA � �
curved side

En dA � �
right end

En dA

fnet � CS En dA �
Qinside

P0

5. Substituting for in the previous step gives:CS En dA ER2pR� �
Qinside

P0

6. Assuming the charge per unit length on the inner
shell is uniformly distributed, find Qinside:

so Qinside �
�

L
Q

Qinside

Q
�

�

L

7. Substitute for in the step 5 result and solve
for ER:

Qinside so ER �
Q

2pLP0R
ER2pR� �

1
P0

�

L
Q

8. Integrate to find V � ƒVR2
� VR1

ƒ :

so V � ƒVR2
� VR1

ƒ �
Q

2pLP0

 ln 
R2

R1

� �
Q

2pLP0
�
R2

R1

dR
R

� �
Q

2pLP0

 ln 
R2

R1

VR2
� VR1

� �
VR2

VR1

dV � ��
R2

R1

ER dR

FIGURE 24-3

9. Rearrange this result to find C � Q>V:
2pP0L

ln (R2 >R1)
C �

Q

V
�

CHECK The step 9 result is dimensionally correct. Capacitances always have the dimension
of multiplied by length.

TAKING IT FURTHER The capacitance of a cylindrical capacitor is proportional to the length
of the cylinders. In addition, we were able to factor from the integrand in step 4 because
the symmetry reveals that is the same everywhere on the curved side of the can.ER

ER

P0

How is the capacitance affected if the potential across a cylindrical capacitor
is increased from 20 V to 80 V?

CONCEPT CHECK 24-2
✓

FIGURE 24-4



Cross section of a foil-wound capacitor.
(© Bruce Iverson.)

Negative
charge
connection

Positive
charge
connection

Dielectric

Metal plate

Aluminum

Plastic
insulation

Cutaway of an electrolytic capacitor. The
dielectric is an insulator.
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From Example 24-2, we see that the capacitance of a cylindrical capacitor is
given by

24-7

CAPACITANCE OF A CYLINDRICAL CAPACITOR 

C �
2pP0L

ln(R2>R1)

A coaxial cable is a long cylindrical capacitor that has a solid wire for the inner conductor
and a braided-wire shield for the outer conductor. The outer rubber coating has been peeled
back from the cable to show the conductors and the white plastic insulator that separates
the conductors. The braided-wire shield blocks ambient electric fields from reaching the
inner conductor, which carries the information of interest (such as the video and audio
signal for a television show). (John Perry Fish.)

Ceramic capacitors for use in electronic
circuits. (Courtesy Tusonix, Tucson, AZ.)

24-2 THE STORAGE OF ELECTRICAL ENERGY

When a capacitor is being charged, electrons are transferred from the positively
charged conductor to the negatively charged conductor. This leaves the positively
charged conductor with an electron deficit and the negatively charged conductor
with an electron surplus. Alternatively, transferring positive charges from the neg-
atively charged conductor to the positively charged conductor could also charge a
capacitor. Either way, work must be done to charge a capacitor, and at least some
of this work is stored as electrostatic potential energy.

A variable air-gap capacitor such as those
used in the tuning circuits of old radios. The
semicircular plates rotate through the fixed
plates, which changes the amount of surface
area between the plates, and hence the
capacitance. (Loren Winters/Visuals Unlimited.)

Shield

Jacket Dielectric

Inner
conductor
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V

q
q

C dq

Q

q
C
Q

F I G U R E  2 4 - 6 The work needed to
charge a capacitor is the integral of from
the original charge of to the final charge
of This work is equal to area under
the curve. That is, the work equals the area of
the triangle of height and width Q.Q>Cq � Q.

q � 0
V dq

+ + + + + + + + + +

– – – – – – – – – –

dq
+q

V =
q
C+

  q–

F I G U R E  2 4 - 5 When a small amount of
positive charge is moved from the negative
conductor to the positive conductor, its
potential energy is increased by 
where is the potential difference between the
conductors.

V
dU � V dq,

dq

We start with two uncharged conductors that do not touch each other. Let be
the positive charge that has been transferred during the initial stages of the charging
process. The potential difference then is If a small amount of additional
positive charge is now transferred from the negative conductor to the positive
conductor through a potential increase of (Figure 24-5), the electrical potential
energy of the charge, and thus the capacitor, is increased by

The total increase in potential energy is the integral of as increases from
zero to its final value (Figure 24-6):

This potential energy is the energy stored in the capacitor. Using the definition of
capacitance we can express this energy in terms of either and 
and or and 

24-8

ENERGY STORED IN A CAPACITOR

PRACTICE PROBLEM 24-3

A capacitor is charged to How much energy is stored in the capacitor?

PRACTICE PROBLEM 24-4

Obtain the expression for the electrostatic energy stored in a capacitor (Equation 24-8) from

(Equation 23-29), using 

Suppose we charge a capacitor by connecting it to a battery. The potential differ-
ence when the capacitor is fully energized with charge on one conductor and
charge on the other is just the potential difference between the terminals of the
battery before they were connected to the capacitor. The total work done by the battery
in charging the capacitor is which is twice the amount of energy stored in the ca-
pacitor. The additional work done by the battery is either dissipated as thermal energy
in the battery and in the connecting wires* or radiated as electromagnetic waves.†

QV,

�Q
�QV

2, and V2 � V1 � V.n ��Q,Q1 � �Q, Q2 �U � 1
2 a
n

i�1

QiVi

200 V.185-mF

U �
1
2
Q2

C
�

1
2
QV �

1
2
CV2

C:QV,
V, CQ(C � Q>V),

U � � dU � �
Q

0

q

C
dq �

1
C �

Q

0
q dq �

1
2
Q2

C

Q
qdUU

dU � V dq �
q

C
dq

V
dq

V � q>C.

q

Example 24-3 Charging a Parallel-Plate Capacitor with a Battery

A parallel-plate capacitor that has square plates which are on a side and are separated
by is connected to a battery and charged to (a) What is the charge on the
capacitor? (b) How much energy is stored in the capacitor? (c) The battery is then discon-
nected from the capacitor and the plates are pulled apart until the plate separation is
increased to How much does the stored energy change as the plate separation is
increased from 

PICTURE (a) The charge on the capacitor can be calculated from the capacitance. (b) The energy
stored in the capacitor can be calculated if we know both the charge and the capacitance. (c) The
charge remains constant as the plates are separated because the capacitor is not connected to the
battery during separation. The energy change is found by using the charge and new potential
difference to calculate the new energy, from which we subtract the original energy.

2.0 mm to 3.5 mm?
3.5 mm.

12 V.2.0 mm
14 cm

* We show in Section 25-6 that if the capacitor is connected to an ideal battery by wires of some resistance half the
energy supplied by the battery in charging the capacitor is dissipated as thermal energy in the wires.

† We show in Section 30-3 that under certain circumstances the circuit will act as a broadcast antenna and a significant
portion of the work will be broadcast as electromagnetic radiation.

R,



808 | C H A P T E R  2 4 Capacitance

2. The capacitance of the parallel-plate capacitor is given by
Equation 24-6:

C0 �
P0A

d0

3. Substitute for and calculate Q:C0

1.0 nC�

�
(8.85 pF>m)(0.14 m)2

0.0020 m
(12 V) � 1.04 nCQ � C0V0 �

P0A

d0

V0

(b) Calculate the energy stored: 6.2 nJU0 � 1
2QV0 � 1

2 (1.04 nC)(12 V) � 6.24 nJ �

(c) 1. The battery is disconnected and the plate separation is
increased to The change in energy is proportional 
to the change in the voltage:

3.5 mm.
¢U � U � U0 � 1

2QV � 1
2QV0 � 1

2Q(V � V0)

(a) 1. The charge on the capacitor equals the product of and
where is the capacitance and is the battery

voltage:
V0 � 12 VC0V0 ,

C0Q Q � C0V0

SOLVE

2. The voltage is the field strength multiplied by the separation
distance d:

E and V0 � E0d0:V � Ed

3. At the surface of a conductor, (Equation 22-21).
While the capacitor is disconnected, remains constant.
Thus, remains constant:E

s

E � s>P0 E � E0

4. Combining the last two steps establishes that is
proportional to d:

V so V �
d
d0

V0E �
V
d

�
V0

d0

5. Substitute for in the equation of Part (c), step 1 by using
the result from Part (c), step 4. Solve for by using the
value for from Part (b):U0

¢U,
V

 4.7 nJ�� a3.5 mm
2.0 mm

� 1b (6.24 nJ)

� a d
d0

� 1b a 1
2
QV0b � a d

d0

� 1bU0¢U �
1
2
Qa d
d0

V0 � V0b

CHECK An increase in potential energy with an increase in plate separation is expected.
The plates are oppositely charged, so they attract each other. Thus, it takes work to separate
them farther. This work done on the plates results in an increase in the potential energy of
the system.

TAKING IT FURTHER An application of the dependence of capacitance on separation dis-
tance is shown in Figure 24-7.

PRACTICE PROBLEM 24-5 Find the final voltage between the capacitor plates.

PRACTICE PROBLEM 24-6 (a) Find the initial capacitance in this example when sepa-
ration of the plates is (b) Find the final capacitance when separation of the plates
is 3.5 mm.

C2.0 mm.
C0

V

Movable metal plate

Fixed metal plate

F I G U R E  2 4 - 7 Capacitance switching in
computer keyboards. A metal plate attached
to each key acts as the top plate of a capacitor.
Depressing the key decreases the separation
between the top and bottom plates and
increases the capacitance, which triggers the
electronic circuitry of the computer to
acknowledge the keystroke.

It is instructive to work Part (c) of Example 24-3 in another way. The oppositely
charged plates of a capacitor exert attractive forces on one another. Work must be
done on the plates to overcome the forces to increase the plate separation. Assume
that the lower plate is held fixed and the upper plate is moved. The force on the
upper plate is the charge on the plate multiplied by the electric field due to
the charge on the lower plate. This field is half the total field between the
plates because the charge on the upper plate and the charge on the lower plate
contribute equally to the electric field in the region between the plates. When the

E
S

�Q
E
Sœ�Q
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potential difference is and the separation is the total field strength
between the plates is

The magnitude of the force exerted on the upper plate by the bottom plate is
thus

The work that must be done to move the upper plate a distance of 
is then

This value is the same as the number of joules calculated in Part (c) of Example 
24-3. This work is equal to the increase in the potential energy.

ELECTROSTATIC FIELD ENERGY

During the process of charging a capacitor, an electric field is produced between
the plates. The work required to charge the capacitor can be thought of as the work
required to establish the electric field. That is, we can think of the energy stored in
a capacitor as energy stored in the electric field, called electrostatic field energy.

Consider a parallel-plate capacitor. We can relate the energy stored in the ca-
pacitor to the electric field strength between the plates. The potential difference
between the plates is related to the electric field by where is the plate
separation distance. The capacitance is given by (Equation 24-6). The
energy stored (Equation 24-8) is

The quantity is the volume of the space between the plates of the capacitor.
This volume is the volume of the region containing the electric field. The energy
per unit volume is called the energy density The energy density in an electric
field of strength is thus

24-9

ENERGY DENSITY OF AN ELECTROSTATIC FIELD

Thus, the energy per unit volume of the electrostatic field is proportional to the
square of the electric field strength. Although we obtained Equation 24-9 by consider-
ing the electric field between the plates of a parallel-plate capacitor, the result applies to any
electric field. Whenever there is an electric field in space, the electrostatic energy per
unit volume is given by Equation 24-9.

PRACTICE PROBLEM 24-7

(a) Calculate the energy density for Example 24-3 when the plate separation is 
(b) Show that the increase in energy in Example 24-3 equal to multiplied by the increase

in volume of the region between the plates.

We can illustrate the generality of Equation 24-9 by calculating the electrostatic
field energy of a spherical conductor that has a radius and a charge The self-
capacitance of a spherical conductor is given by (Equation 24-2) and theC � R>k Q.R

(A ¢d)
ue

2.0 mm.ue

ue �
energy

volume
�

1
2

P0E
2

E
ue .

Ad

U �
1
2
CV2 �

1
2
a P0A

d
b (Ed)2 �

1
2

P0E
2(Ad)

C � P0A>d dV � Ed,
E

W � F ¢d � (3.1 mN)(1.5 mm) � 4.7 nJ

¢d � 1.5 mm

F � QE� � Q(1
2E) � (1.04 nC)(3.0 kV>m) � 3.1 mN

E �
V
d

�
12 V

2.0 mm
� 6.0 V>mm � 6.0 kV>m

2.0 mm,12 V
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electrostatic potential energy is given by (Equation 24-8).
Thus, for a spherical conductor:

24-10

We now obtain the same result by considering the energy density of an
electric field given by Equation 24-9. When the conductor has a charge 
the electric field is radial and is given by

Because the electric field is spherically symmetric, we choose a spherical
shell for our volume element. If the radius of the shell is and its thick-
ness is the volume is (Figure 24-8). The energy in this
volume element is

where we have used Because the electric field is zero for
we obtain the total energy in the electric field by integrating from

to

24-11

which is the same as Equation 24-8.

24-3 CAPACITORS, BATTERIES, AND CIRCUITS

Next, we examine what happens when an initially uncharged capacitor is connected
to the terminals of a battery. The potential difference between the two terminals of a
battery is called its terminal voltage. The terminals of a battery (Figure 24-9) are con-
nected to dissimilar conductors called electrodes, and within the battery the electrodes
are separated by a conducting liquid or paste called an electrolyte. Because of chemi-
cal reactions in the battery, charge is transferred from one electrode to the other. This
leaves one electrode of the battery (the anode) positively charged and the other elec-
trode (the cathode) negatively charged; this charge separation is maintained by chem-
ical reactions within the battery. Within the battery, there is an electric field directed
away from the positive electrode and toward the negative electrode.* When the plates
of an uncharged capacitor are connected to the terminals of the battery, the negative
electrode shares its negative charge with the plate connected to it and the positive bat-
tery terminal shares its positive charge with the plate connected to it. This charge
sharing momentarily reduces the amount of charge on each of the battery electrodes,
and thus decreases the potential difference between the electrodes. This decrease in
terminal voltage triggers the chemical reactions within the battery, and charge is
transferred from one electrode to the other electrode in an effort to maintain the ter-
minal voltage at its initial level, which is called the open-circuit terminal voltage.
These chemical reactions cease when the battery has transferred sufficient charge
from one capacitor plate to the other capacitor plate to increase the potential differ-
ence between the capacitor plates to the open-circuit terminal voltage of the battery.

U � �ue dV �
1
2
kQ2�

q

R
r�2 dr �

1
2
k
Q2

R
�

1
2
Q2

C

r � :r � R
r 	 R,

4pP0 � 1>k.�
1
2

P0a kQr2 b 2

(4pr2 dr) �
1
2

(4pP0k
2)Q2 dr

r2
�

1
2
kQ2 dr

r2

dU � ue dV �
1
2

P0E
24pr2 dr

dUdV � 4pr2 drdr,
r

r 
 R (outside the conductor)Er �
kQ

r2

r 	 R (inside the conductor)Er � 0

Q,

U �
1
2
Q2

C
�

1
2
Q2

R>k �
kQ2

2R

U � 1
2Q2>C d    = 4 r2 drV π

dr

R

r

 +Q

F I G U R E  2 4 - 8 Geometry for the calculation of the
electrostatic energy of a spherical conductor that has a
charge The volume of the space between and

is The electrostatic field energy in
this volume element is where is the
energy density.

ue � 1
2 P0E

2ue dV,
dV � 4pr2 dr.r � dr

rQ.

* This electric field from the positive to the negative terminal exists outside as well as within the battery.

Insulator

Negative
terminal

Zinc can 
(negative
electrode)

Carbon rod
(positive electrod)

Positive terminal

Electrolytic
paste

+

–

F I G U R E  2 4 - 9 A carbon-zinc cell.
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A battery is a “charge pump.” When we connect the plates of an uncharged
capacitor to the terminals of a battery (Figure 24-10), the terminal voltage of the
battery drops. This results in the battery pumping charge from one plate to the other
plate until the open-circuit terminal voltage is again reached.

In electric circuit diagrams, the symbol representing a battery is where the
longer vertical line represents the positive terminal and the shorter vertical line
represents the negative terminal. The symbol representing a capacitor is .

�,

PRACTICE PROBLEM 24-8

A 6.0- capacitor, initially uncharged, is connected to the terminals of a 9.0-V battery.
What total amount of charge then flows through the battery as the capacitor is charged to
the open-circuit terminal voltage of the battery?

mF

+Q

–Q

V
+

–

+
−

a

b

C1

Q1

−Q1

C2

Q2

−Q2

F I G U R E  2 4 - 1 2

+
−12.0 V

a

b

6.0 Fμ 12.0 Fμ

F I G U R E  2 4 - 1 1

(a) Use a red marker to color the
positive battery terminal and all
the conductors connected to it
(Figure 24-12), and use a blue marker
to color the negative battery
terminal and all the conductors
connected to it:

(�)

(�)
All points colored red are at potential

All points colored blue are at potential 

Vb � 0

Va � 12 V

(b) Use to find the magnitude of
the charge on the plates. (The plate 
of a capacitor at the higher potential
has a positive charge):

Q � CV

144 mCQ2 � C2V � (12.0 mF)(12.0 V) �

72 mCQ1 � C1V � (6.0 mF)(12.0 V) �

(c) The plates become charged because
the battery acts as a charge pump:

216 mCQ � Q1 � Q2 �

CHECK The charge on the 12.0- capacitor is two times the charge on the 6.0- capacitor
when the voltage across each is This result is as expected. The capacitance of a capa-
citor is a measure of its capacity to store charge for a given voltage.

TAKING IT FURTHER The equivalent capacitance of the two-capacitor combination is 
where is the charge passing through the battery and is the open-circuit terminal voltage
of the battery. For this example Ceq � (216 mC)>(12.0 V) � 18.0 mF.

VQ
Q>V,

12.0 V.
mFmF

COMBINATIONS OF CAPACITORS

Example 24-4 Capacitors Connected in Parallel

A circuit consists of a 6.0- capacitor, a 12.0- capacitor, a 12.0- battery, and a switch,
connected as shown in Figure 24-11. The switch is initially open and the capacitors are ini-
tially uncharged. The switch is then closed and the capacitors charge. When the capacitors
are fully charged and the open-circuit terminal voltage of the battery is restored, (a) what is
the potential of each conductor in the circuit? (Choose the negative battery terminal to be the
zero-potential reference point.) (b) What is the charge on each capacitor plate? (c) What total
charge passed through the battery?

PICTURE The potential is the same throughout a conductor in electrostatic equilibrium.
Thus, after the charges stop flowing, all of the conductors connected to each other by a con-
ducting wire are at the same potential. The charge on a capacitor is related to the poten-
tial difference across the capacitor by In addition, the charges on the plates of a
single capacitor are equal in magnitude but opposite in sign.

SOLVE

Q � CV.V
Q

VmFmF

F I G U R E  2 4 - 1 0 When the conductors of
an uncharged capacitor are connected to the
terminals of a battery, the battery “pumps”
charge from one conductor to the other until
the potential difference between the
conductors equals the open circuit potential
difference between the battery terminals.*
The amount of charge transferred through
the battery is Q � CV.

* We will discuss batteries more fully in Chapter 25. Here, all we need to know is that a battery is a device that stores en-
ergy, supplies electrical energy, and pumps charge in an effort to restore the potential difference between its terminals
to the open circuit terminal voltage .V
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When two capacitors are connected, as shown in Figure 24-13, so that the upper
plates of the two capacitors are connected by a conducting wire and are therefore at
a common potential, and the lower plates are also connected together and are at a
common potential, just like the capacitors in Example 24-4, the capacitors are said
to be connected in parallel. Devices connected in parallel share a common potential
difference across each device due solely to the way they are connected.

In Figure 24-13, assume that points and are connected to a battery or some
other device that maintains a potential difference between the plates
of each capacitor. If the capacitances are and the charges and stored on
the plates are given by

and

The total charge stored is

A combination of capacitors in a circuit can sometimes be substituted with a
single capacitor that is operationally equivalent to the combination. The substitute
capacitor is said to have an equivalent capacitance. That is, if a combination of ini-
tially uncharged capacitors is connected to a battery, the charge that flows
through the battery as the capacitor combination becomes charged is the same as
the charge that flows through the same battery if connected to a single uncharged
capacitor of equivalent capacitance. Therefore, the equivalent capacitance of two
capacitors in parallel is the ratio of the charge to the potential difference:

24-12

Thus, for two capacitors in parallel, is the sum of the individual capacitances.
When we add a second capacitor in parallel with the first capacitor, the area that
the charge is distributed on is increased, allowing more charge to be stored for the
same potential difference.

The same reasoning can be extended to three or more capacitors connected in
parallel, as in Figure 24-14:

24-13

EQUIVALENT CAPACITANCE FOR CAPACITORS IN PARALLEL

Ceq � C1 � C2 � C3 � Á

Ceq

Ceq �
Q

V
�
Q1 � Q2

V
�
Q1

V
�
Q2

V
� C1 � C2

Q1 � Q2

Q

Q � Q1 � Q2 � C1V � C2V � (C1 � C2)V

Q2 � C2V

Q1 � C1V

Q2Q1C2 ,C1

V � Va � Vb

ba

+
++

+
+

_
_

_
_

_

Q

C

Q

1

2C1

2

+
+++

+

__
__

_

Q

Q

2

2

2

b

b

a

a

C1C

Va

Vb

Va

Vb

F I G U R E  2 4 - 1 3 Two capacitors in
parallel. The upper plates are connected to
each other by a conductor and are therefore at
a common potential the lower plates are
similarly connected together and therefore at a
common potential Vb .

Va ;

C 2

C2

C 1

C1Ceq

C 3

C 3= + +

b

a
Va

Vb

F I G U R E  2 4 - 1 4 Three capacitors in
parallel. The effect of adding an additional
capacitor in parallel with a combination
of capacitors is to increase the equivalent
capacitance.

Example 24-5 Capacitors Connected in Series

A circuit consists of a 6.0- capacitor, a 12- capacitor, a 12- battery, and a switch, con-
nected as shown in Figure 24-15. Initially, the switch is open and the capacitors are un-
charged. The switch is then closed and the capacitors charge. When the open-circuit terminal
voltage is restored to the battery, the capacitors are fully charged. (a) What is the potential of
each conductor in the circuit? (Choose the negative battery terminal to be the zero-potential
reference point.) If the potential of a conductor is not known, represent its potential symbol-
ically. (b) What is the charge on each capacitor plate? (c) What total charge passed through
the battery?

PICTURE The potential is the same throughout a conductor in electrostatic equilibrium.
After the charges stop moving, all of the conductors connected by a conducting wire are at
the same potential. The charge on a capacitor is related to the potential difference across the
capacitor by Charge does not travel across the gap between the plates of a capacitor.Q � CV.

VmFmF

+
−12 V

a

b

6.0 Fμ

12 Fμ

F I G U R E  2 4 - 1 5
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SOLVE

(a) Use a red marker to color the positive battery
terminal and all conductors connected to it, use a
blue marker to color the negative battery
terminal and all the conductors connected to it,
and use a green marker to color all other
mutually connected conductors (Figure 24-16):

(�)

(�) All points colored red are at potential 

All points colored blue are at potential 

All points colored green are at the yet unknown

potential Vm

Vb � 0

Va � 12 V

(b) 1. Express the potential difference across each
capacitor in terms of the Part(a) results:

and V2 � Vm � VbV1 � Va � Vm

C1

Q1

−Q1

C2

m

Q2

−Q2

+

−
12.0 V

a

b
2. Use to relate the charge on each

capacitor to the potential difference:
Q � CV

and

Q2 � C2V2 � C2(Vm � Vb)

Q1 � C1V1 � C1(Va � Vm)

3. Eliminating gives:Vm Va � Vm �
Q1

C1

Vm � Vb �
Q2

C2

t ⇒  Va � Vb �
Q1

C1

�
Q2

C2

4. During charging, there is no charge
transferred either to or from the green region
in Figure 24-16, so its net charge remains zero:

so Q1 � Q2(�Q1) � Q2 � 0

5. Let Substitute for both 
and and solve for Q:Q2

Q1QQ � Q1 � Q2 . so

48 mCQ1 � Q2 �

Q �
Va � Vb
1
C1

�
1
C2

�
12 V � 0

1
6.0 mF

�
1

12 mF

� 48 mCVa � Vb �
Q

C1

�
Q

C2

(c) All the charge passing through the battery ends
up on the upper plate of C1:

48 mCQ1 � Q �

CHECK The potential difference across a capacitor is equal to Thus the potential
difference across the 6.0- and 12- capacitors are and

respectively. The sum of these potential differences is
which is as expected because the battery is a 12- battery.

TAKING IT FURTHER The equivalent capacitance of the two-capacitor combination is 
where is the charge passing through the battery and is the open-circuit terminal voltage
of the battery. For this example 

PRACTICE PROBLEM 24-9 Find the potential on the conductors colored green in
Figure 24-16.

Vm

Ceq � (48 mC)>(12 V) � 4.0 mF.
VQ

Q>V,

V8.0 V � 4.0 V � 12.0 V,
(48 mC)>(12 mF) � 4.0 V,

(48 mC)>(6.0 mF) � 8.0 VmFmF
Q>C.

F I G U R E  2 4 - 1 6

During the charging of the capac-
itors in Example 24-5, did the net
charge within the battery increase,
decrease, or remain the same?  

CONCEPT CHECK 24-3✓

Consider the circuit shown in Figure 24-15. If we start at point and follow a path
that goes once around the circuit in the clockwise direction, the potential goes up by

as we step across the battery, drops by as we step across the capacitor,
drops by an additional as we step across the 12- capacitor, and remains
the same on the path back to point (thus completing the trip around the circuit).
The changes in potential add to zero, which is not a special
circumstance. The changes in potential around any closed path always sum to zero.
Adding the changes in potential around a circuit loop and setting the sum equal to
zero is a very useful tool for analyzing electric circuits. Known as Kirchhoff’s loop
rule, it is a consequence of the fact that the potential difference between any two
points does not depend on the path taken from one of the points to the other.

The changes in potential around any closed path always sum to zero.

KIRCHHOFF’S LOOP RULE

(�12 V, �4 V, and �8 V)
b

mF8 V
6-mF4 V12 V

b



Equation 24-10 is valid if the
capacitors are connected in series

AND if the total charge on each pair 
of capacitor plates connected by an
otherwise isolated conductor is zero.  

!

A capacitor bank for storing energy to be used
by the pulsed Nova laser at Lawrence Livermore
Laboratories. The laser is used in fusion studies.
(Lawrence Livermore National Laboratory.)

+
++

+

+

_
_

_
_

_

Q

C

Q

+

_

Q

Q
2 C2

C1 C1

++++

Va Va

Vm

Vb Vbb
b

a a

__ __

m

F I G U R E  2 4 - 1 7 The total charge on the
two interconnected capacitor plates equals
zero. The potential difference across the pair
equals the sum of the potential differences
across the individual capacitors. The two
capacitors are connected in series.

814 | C H A P T E R  2 4 Capacitance

A junction is a point in a wire where the wire divides into two or more wires.
In Figure 24-17, two capacitors are connected so that a plate of one capacitor is con-
nected to a plate of a second capacitor by a wire containing no junctions, just like
the wire connecting the capacitors in Example 24-5. Devices connected in this man-
ner are connected in series.

Capacitors and in Figure 24-17 are connected in series and initially they
are without charge. If points and are then connected to the terminals of a bat-
tery, electrons will be pumped through the battery from the upper plate of to the
lower plate of This leaves the upper plate of with a charge and the lower
plate of with a charge When a charge appears on the upper plate of 
the electric field produced by that charge induces an equal negative charge, 
on the lower plate of The charge on the lower plate of comes from electrons
drawn from the upper plate of Thus, there will be a charge equal to on the
upper plate of The potential difference across is

Similarly, the potential difference across the second capacitor is

The potential difference across the two capacitors in series is the sum of these po-
tential differences:

24-14

The equivalent capacitance of the two capacitors is

24-15

where is the charge that passes through the battery during the charging process.
Substituting for in Equation 24-14, and then dividing both sides by 
gives

24-16

Equation 24-16 can be generalized to three or more capacitors connected in
series:

24-17

EQUIVALENT CAPACITANCE FOR EQUALLY CHARGED
CAPACITORS IN SERIES

1
Ceq

�
1
C1

�
1
C2

�
1
C3

� Á

1
Ceq

�
1
C1

�
1
C2

Q,VQ>Ceq

Q

Ceq �
Q

V

V � Va � Vb � V1 � V2 �
Q

C1

�
Q

C2

� Qa 1
C1

�
1
C2

b
V2 �

Q

C2

V1 �
Q

C1

C1C2 .
�QC2 .

C1C1 .
�Q,
C1 ,�Q�Q.C2

�QC1C2 .
C1

ba
C2C1

PRACTICE PROBLEM 24-10

Two capacitors have capacitances of and Find the equivalent capacitance if
the capacitors are connected (a) in parallel and (b) in series.

30 mF.20 mF

Note that in Practice Problem 24-10, the equivalent capacitance of the two capaci-
tors in series is less than the capacitance of either capacitor. Adding a capacitor in
series increases which means the equivalent capacitance decreases.
When we add a second capacitor in series, we decrease the equivalent capacitance
of the combination. The plate separation is, in effect, increased, so it requires a
greater potential difference to store the same charge.

Ceq1>Ceq ,
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Example 24-6 Using the Equivalence Formula

A 6.0- capacitor and a 12- capacitor, each initially un-
charged, are connected in series across a 12- battery. Using 
the equivalence formula for capacitors in series, find the 
charge on each capacitor and the potential difference across
each.

PICTURE Figure 24-18a shows the circuit in this example and
Figure 24-18b shows an equivalent capacitor that has the same
charge After finding the charge, we can find the po-
tential drop across each capacitor.

SOLVE

Q � CeqV.

V
mFmF

1. The charge on each capacitor equals the charge on the
equivalent capacitor:

Q � CeqV

+
12 V

6.0    Fμ

μ

+Q
−Q

12    F
+Q
−Q

Ceq
+Q
−Q

(a)

+
12 V

(b)

F I G U R E  2 4 - 1 8

2. The equivalent capacitance of the series combination is found
from:

Ceq � 4.0 mF

1
Ceq

�
1
C1

�
1
C2

�
1

6.0 mF
�

1
12 mF

�
3

12 mF

3. Use this value to find the charge This is the charge that passed
through the battery. It is also the charge on each capacitor:

Q. 48 mCQ � CeqV � (4.0 mF)(12 V) �

4. Use the result for to find the potential across the 6.0-
capacitor:

mFQ 8.0 VV1 �
Q

C1

�
48 mC
6.0 mF

�

5. Again, use the result for to find the potential across the 12-
capacitor:

mFQ 4.0 VV2 �
Q

C2

�
48 mC
12 mF

�

CHECK The sum of these potential differences is as required.

TAKING IT FURTHER The results are the same as those obtained in Example 24-5.

12 V,

ConceptualExample 24-7 Series, Parallel, or Neither

Consider the capacitors shown in Figure 24-19a. (a) Identify all parallel combinations of
capacitors. (b) Identify all series combinations of capacitors.

PICTURE Capacitors connected in parallel share a common potential difference across each
capacitor due solely to the way they are connected. The potential along a conducing path
remains constant. Use markers to color each conducting path a unique color. Two capacitors
are connected in series if a plate of one capacitor is connected to a plate of a second capaci-
tor by a conducting wire that contains no junctions.

SOLVE

C5

C1

C6
+

C4

C2

C7

C9

C8

C5

C1

C6
+

orange

yellow

green

blue

red plum

C4

C2

C7

C9

C8
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(a) 1. Use markers to give each electric potential
unique color (Figure 24-19b). The potential can
change only at a circuit device such as a
capacitor or a battery.

2. Capacitors connected in parallel share a common
potential difference across each capacitor due
solely to the way they are connected.

Capacitors 4 and 7 are the only
two capacitors that are connected
in parallel with each other.

(b) If two capacitors are connected so that a plate of one
capacitor is connected to a plate of a second
capacitor by a conducting wire containing no
junctions then the capacitors are connected in series.

Capacitors 8 and 9 are the only
two capacitors that are connected
in series with each other.



Charge IS conserved when
capacitors are reconnected, but

while energy IS conserved, electrical
potential energy is NOT conserved.

!
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TAKING IT FURTHER Capacitors 1 and 2 are not in series. We make this conclusion because
there is a junction connecting the wire that connects capacitors 1 and 2. Capacitors 2 and 5 are
not in parallel even though one plate of each capacitor has an orange-colored wire attached
to it. However, there is plum-colored wire connected to one of the plates of capacitor 2 and
there is not a plum-colored wire connected to a plate of capacitor 5. Thus, we know the two
capacitors do not share the same potential difference due to the way they are wired.

Example 24-8 Capacitors Reconnected

The two capacitors in Example 24-6 are removed from the battery and carefully dis-
connected from each other so that the charge on each of the plates is not changed
(Figure 24-20a). They are then reconnected, positive plate to positive plate and negative
plate to negative plate (Figure 24-20b), in a circuit containing open switches and
Find the potential difference across the capacitors and the charge on each capacitor
after the switches are closed and the charges have stopped flowing.

PICTURE Just after the two capacitors are disconnected from the battery, they have equal
charges of After switches and in the new circuit are closed the voltages across
the capacitors are the same. Use the definition of capacitance and conservation of charge
to solve for the charge on each capacitor. Once these charges are known, use them to solve
for the voltage.

SOLVE

S2S148 mC.

S2.S1

1. Draw and label the circuit after both switches have been
closed. Let and be and respectively 
(Figure 24-21).

12 mF,6.0 mFC2C1

+48

6.0 μF

μC +48 μC  48 μC

12μF

– 48 μC–

+48

6.0 μF

12μF

μC

+48 μC

 48 μC–

 48 μC–

a • • b

S1 S2

F I G U R E  2 4 - 2 0

F I G U R E  2 4 - 2 1

2. The wiring is such that after the switches are closed the voltage
is the same across each capacitor.

V � V1 � V2

3. For each capacitor, Substitute this into the step 2
result.

V � Q>C.
Q1

C1

�
Q2

C2

4. The sum of the charges on the two capacitor plates on the left
remains 96 mC.

Q1 � Q2 � 96 mC

5. Simultaneously solve the equations in steps 3 and 4 for the
charge on each capacitor.

64 mCQ2 �

32 mCQ1 �

6. Calculate the potential difference. 5.3 VV �
Q1

C1

�

There is decrease in the potential energy stored in the capacitors when they are
reconnected. This “missing” potential energy is either dissipated as thermal energy
in the wires or radiated away.

C1

C2

S1

a

S2

b

+Q1 −Q1

+Q2 −Q2

CHECK Note that and that as required for consistency.

TAKING IT FURTHER After the switches are closed, the two capacitors are connected in par-
allel with the potential difference between point and point being the potential difference
across the pair. Thus, and 

In addition, after the switches are closed, the two capacitors are connected in series.
However, the series equivalence formula (Equation 24-17) is NOT valid because the sum of
the charges on each pair of capacitor plates connected by a single, otherwise isolated, wire
does NOT equal zero.

PRACTICE PROBLEM 24-11 Find the potential energy stored in the capacitors before and
after they are reconnected.

5.33 V.
V � Q>Ceq �Ceq � C1 � C2 � 18 mF, Q � Q1 � Q2 � 96 mC,

ba

Q2 >C2 � 5.33 V,Q � Q1 � Q2 � 96 mC
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Example 24-9 Capacitors in Series and in Parallel

Three capacitors are connected as shown in Figure 24-22. (a) Find the equivalent capacitance
of the three-capacitor combination. (b) The capacitors are initially uncharged. The combina-
tion is then connected to a 6.0- battery. Find the potential difference across each capacitor
and the charge on each capacitor after the battery is connected and the charges have stopped
flowing.

PICTURE The 2.0- capacitor and the 4.0- capacitor are connected in parallel, and the
parallel combination is connected in series with the 3.0- capacitor. We first find the
equivalent capacitance of the parallel combination
(Figure 24-23a), then we combine this equivalent
capacitance with the 3.0- capacitor to reach a final
equivalent capacitance (Figure 24-23b). The charge
on the positive plate of the 3.0- capacitor is the
charge passing through the battery as
shown in Figure 24-23a.

Q � CeqV
mF

mF

mF
mFmF

V V

2.0 μF

3.0 μF
4.0 μF

F I G U R E  2 4 - 2 2

μF3.06.0 V
+ Ceq 1

+Q

+Q

–Q

–Q

Ceq
6.0 V

+

+Q –Q

(a) (b)

F I G U R E  2 4 - 2 3

SOLVE

(a) 1. The equivalent capacitance of the two capacitors in parallel
is the sum of the capacitances:

Ceq 1 � C1 � C2 � 2.0 mF � 4.0 mF � 6.0 mF

2. Find the equivalent capacitance of the 6.0- capacitor in
series with the 3.0- capacitor:mF

mF

2.0 mFCeq �

1
Ceq

�
1
Ceq 1

�
1
C3

�
1

6.0 mF
�

1
3.0 mF

�
1

2.0 mF

(b) 1. Calculate the charge that passed through the battery
during charging. This is the charge on the 3.0- capacitor:mF

Q 12 mCQ � CeqV � (2.0 mF)(6.0 V) �

2. The potential drop across the 3.0- capacitor is Q>C3:mF 4.0 VV3 �
Q3

C3

�
Q

C3

�
12 mC
3.0 mF

�

CHECK The voltage drop across the parallel combination plus the voltage drop
across the 3.0- capacitor equals the voltage of the battery. Also, the sum of the
charges on the parallel capacitors equals the total charge on the
3.0- capacitor.

PRACTICE PROBLEM 24-12 Find the energy stored in each capacitor.

mF
(12 mC)(4.0 mC � 8.0 mC)

(4.0 V)mF
(2.0 V)

3. The potential drop across the parallel combination is
Q>Ceq 1:

V24 2.0 VV24 �
Q

Ceq 1

�
12 mC
6.0 mF

�

4. The charge on each of the parallel capacitors is found from
where V24 � 2.0 V:Qi � CiV24 ,

8.0 mCQ4 � C4V24 � (4.0 mF)(2.0 V) �

4.0 mCQ2 � C2V24 � (2.0 mF)(2.0 V) �

24-4 DIELECTRICS

A nonconducting material (for example, air, glass, paper, or wood) is called a
dielectric. When the space between the two conductors of a capacitor is occupied
by a dielectric, the capacitance is increased by a factor that is characteristic of the
dielectric, a fact discovered experimentally by Michael Faraday. The reason for this
increase is that the electric field between the plates of a capacitor is weakened by
the dielectric. Thus, for a given charge on the plates, the potential difference is
reduced and the capacitance is increased.

Consider an isolated charged capacitor without a dielectric between its plates. A di-
electric slab is then inserted between the plates, completely filling the space between

(Q>V)
V

A cut section of a multilayer capacitor that has
a blue ceramic dielectric. The white lines are
the edges of the conducting plates.(© Manfred
Kage/Peter Arnold, Inc.)
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* Recall from Chapter 23 that for electric fields greater than about air breaks down; that is, it becomes
ionized and begins to conduct.

3 � 106 V>m,

the plates. If the electric field strength is before the dielectric slab is inserted, after
the dielectric slab is inserted between the plates the electric field strength is

24-18

ELECTRIC FIELD INSIDE A DIELECTRIC

where (kappa) is called the dielectric constant of the inserted material. For a parallel-
plate capacitor of separation the potential difference between the plates is

where is the potential difference with the dielectric and is the original po-
tential difference without the dielectric. The new capacitance is

or

24-19

EFFECT OF A DIELECTRIC ON CAPACITANCE

where is the capacitance without the dielectric. The capacitance of a
parallel-plate capacitor filled with a dielectric of constant is thus

24-20

where
24-21

The parameter is called the permittivity of the dielectric.
In the preceding discussion, the capacitor was electrically isolated (not part of a

circuit), so we assumed that the charge on its plates did not change as the dielec-
tric was inserted. This is the case if the capacitor is charged and then removed from
the charging source (the battery) before the insertion of the dielectric. If the dielec-
tric is inserted while the battery remains connected, the battery pumps additional
charge to maintain the original potential difference. The total charge on the plates
is then In either case, the capacitance is increased by the factor 

PRACTICE PROBLEM 24-13

The 89- capacitor of Example 24-1 is filled with a dielectric of constant (a) Find
the new capacitance. (b) Find the charge on the capacitor when the dielectric is in place
and the capacitor is attached to a 12- battery.

PRACTICE PROBLEM 24-14

The capacitor in the previous problem is charged to without the dielectric and is
then disconnected from the battery. The dielectric of constant is then inserted.
Find the new values for (a) the charge (b) the voltage and (c) the capacitance 

Dielectrics not only increase the capacitance of a capacitor, they also provide a
means for keeping parallel conducting plates apart and they increase the potential
difference at which dielectric breakdown occurs.* Consider a parallel-plate capac-
itor made from two sheets of metal foil that are separated by a thin plastic sheet.

C.V,Q,
k � 2.0

12 V

V

k � 2.0.pF

k.(Q>V)Q � kQ0 .

P

P � kP0

C �
kP0A

d
�

PA
d

k

C0 � Q>V0

C � kC0

C �
Q

V
�
Q

V0>k � k
Q

V0

V0 � E0dV

V � Ed �
E0d

k
�
V0

k

Vd,
k

E �
E0

k

E0
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The plastic sheet allows the metal sheets to be very close together without actually
being in electrical contact, and because the dielectric strength of plastic is greater
than that of air, a greater potential difference can be attained before dielectric
breakdown occurs. Table 24-1 lists the dielectric constants and dielectric strengths
of some dielectrics. Note that for air so, for most situations we do not need
to distinguish between air and a vacuum.

k � 1;

Example 24-10 Using a Dielectric in a Parallel-Plate Capacitor

A parallel-plate capacitor has square plates of edge length and a separation of
A dielectric slab of constant has dimensions 

(a) What is the capacitance without the dielectric? (b) What is the capacitance if the dielectric
slab fills the space between the plates? (c) What is the capacitance if a dielectric slab that has
dimensions is inserted into the 4.0-mm gap?

PICTURE The capacitance without the dielectric, is found from the area and spacing of
the plates (Figure 24-24a). When the capacitor is filled with a slab of dielectric constant 
(Figure 24-24b), the capacitance is (Equation 24-19). If the dielectric only partially
fills the capacitor (Figure 24-24c), we isolate the capacitor and calculate the potential differ-
ence with a given charge then apply the definition of capacitance, C � Q>V.Q0 ,V

C � kC0

k

C0 ,

10 cm � 10 cm � 3.0 mm

10 cm � 10 cm � 4.0 mm.k � 2.0d � 4.0 mm.
10 cm

+ + + + +

– – – – –

d = 4 mm

10 cm

10 cm

+Q

–Q

+ + + + + +Q

–Q

+ + + + +

– – – – –

+Q

–Q

1
4 d

3
4 d

– – – – –

κ

F I G U R E  2 4 - 2 4

Table 24-1 Dielectric Constants and Dielectric Strengths

of Various Materials

Material Dielectric Constant Dielectric Strength, kV mm

Air 1.00059 3

Bakelite 4.9 24

Gasoline

Glass (Pyrex) 5.6 14

Mica 5.4 10–100

Neoprene 6.9 12

Paper 3.7 16

Paraffin 2.1–2.5 10

Plexiglas 3.4 40

Polystyrene 2.55 24

Porcelain 7 5.7

Strontium titanate 240 8

Transformer oil 2.24 12  

2.0 (70°F)

/K
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CHECK The absence of a dielectric corresponds to . Substituting 1 for in the final step
in Part (c) would result as expected. Suppose that the dielectric slab were a con-
ducting slab instead of a dielectric. In a conductor, so, according to 
(Equation 24-18), for a conductor would equal infinity. As approaches infinity, the quan-
tity approaches 4, so the result for the final step in Part (c) approaches A
conducting slab simply reduces the plate separation by the thickness of the slab. The plate
separation when the conducting slab is in place would be According to Equation 24-20

should be 4 as it is for very large values of 

TAKING IT FURTHER The results of this example are independent of the vertical position
of the dielectric (or conducting) slab in the space between the plates.

k.C0 ,C(C � kP0A>d), 1
4 d.

4C0 .4k>(k � 3)
kk

E � E0 >kE � 0;
C � C0 ,

kk � 1

(a) If there is no dielectric, the capacitance is given by
Equation 24-6:

C0 22 pFC0 �
P0A

d
�

(8.85 pF>m)(0.10 m)2

0.0040 m
� 22.1 pF �

(b) When the capacitor is filled with a material that has dielectric
constant its capacitance is increased by the factor k:Ck,

44 pFC � kC0 � (2.0)(22.1 pF) � 44.2 pF �

(c) 1. We keep the capacitor electrically isolated, so the charge
remains constant when dielectric slabs are inserted or
removed. The capacitance is related to the charge and the
new potential difference V:

Q0

C �
Q0

V

2. When the 3.0-mm-thick slab is in place, the potential
difference across the entire gap is the potential difference
across the empty portion of the gap plus the potential
difference across dielectric slab:

V
V � Vgap � Vslab � Egap(1

4 d) � Eslab (3
4 d)

3. The field strength in the empty gap is where
This is the same as the field strength when

no dielectric is between the plates:
E0s0 � Q0 >A.

s0 >P0 ,Egap Egap � E0 �
s0

P0

�
Q0

P0A

4. The field in the dielectric slab is reduced by the factor k�1: Eslab �
E0

k

5. Substituting the results of the previous two steps into the
step 2 result yields in terms of Note that the potential
difference when no dielectric is between the plates is V0 � E0d:

k.V

� E0da1
4

�
3

4k
b � V0ak � 3

4k
b

V � E0dgap � Eslabdslab � E0a1
4
db �

E0

k
a3

4
db

SOLVE

6. Using we find the new capacitance in terms of
the original capacitance, :C0 � Q0 >V0

C � Q0 >V,

35 pF� (22.1 pF)a 4 # 2.0
2.0 � 3

b �

C �
Q0

V
�

Q0

V0

k � 3
4k

�
Q0

V0

a 4k
k � 3

b � C0a 4k
k � 3

b

PROBLEM-SOLVING STRATEGY

Calculating Capacitance II

PICTURE To calculate the capacitance of a capacitor that has a gap containing
two or more dielectric slabs, first calculate the electric field strength using
charge and with no dielectrics in the gap.

SOLVE

1. When the dielectric is in the gap, the electric field strength within a
dielectric slab is where is the dielectric constant.kE � E0 >k,
Q

E0



Dielectrics S E C T I O N  2 4 - 4 | 821

2. Use within a dielectric slab to calculate the voltage across the slab.
The voltage across the entire gap is the sum of the voltages across the
individual slabs in the gap plus the sum of the voltages across any empty
regions of the gap.

3. Then, calculate using 

CHECK Evaluate your expression for by setting equal to 1. Then
compare your result with the expression for (the capacitance without a
dielectric present).

C0

kC

C � Q>V.C

V
VslabE

S

Context-RichExample 24-11 A Homemade Capacitor

When studying capacitors in physics class, your professor claims that you could build a
parallel-plate capacitor from waxed paper and aluminum foil. You decide to build one about
the size of a piece of notebook paper. Before testing its charge-storing power on your gullible
roommate, you decide to calculate the amount of charge the capacitor will store when con-
nected to a 9.0-V battery.

PICTURE We want charge, which we can get from the definition if we know the
capacitance. We can get the capacitance from the parallel-plate capacitor formula 
We will need to either measure or estimate the thickness of the waxed paper.

C � P0A>d.C � Q>V
SOLVE

1. The charge on a capacitor is related to the voltage and the
capacitance by the definition of capacitance:

Q � CV

2. The capacitance is obtained from the parallel-plate capacitance
formula:

C �
kP0A

d

3. Substituting for and solving for give:QC Q � CV �
kP0VA

d

4. A sheet of notebook paper is approximately 8.5 by 11 in: A � 8.5 in � 11 in � 93.5 in2 � 0.0603 m2

5. We assume a sheet of wax paper is the same thickness as a
sheet of the paper your physics textbook is made of. Measure
the thickness of 300 sheets of paper in a book (from page 1
through page 600):

The 300 sheets of paper are thick. 
So, the thickness of a single sheet of paper is
0.020 m>300 � 66.7 mm.

2.0 cm (0.020 m)

6. Using the step 3 result, solve for the charge. Assume the
dielectric constant of wax paper is 2.3 (the same as that of
paraffin): 0.17mC� 1.66 � 105 pC �

Q �
kP0AV

d
�

2.3 (8.85 pF>m)(0.0603 m2)(9.0 V)

66.7 � 10�6 m

CHECK A farad is a coulomb per volt, so the units do reduce to coulombs.

ENERGY STORED IN THE PRESENCE OF A DIELECTRIC

The energy stored in a parallel-plate capacitor that has a dielectric is

We can express the capacitance in terms of the area and separation of the plates,
and the voltage difference in terms of the electric field and plate separation,
to obtain

U �
1
2
CV2 �

1
2
a PA
d
b (Ed)2 �

1
2

PE2(Ad)

V
C

U � 1
2QV � 1

2CV2
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Example 24-12 Inserting the Dielectric—Battery Disconnected

A parallel combination of two parallel-plate air-gap capacitors, each having a capacitance of
are connected in parallel across a 12.0-V battery. The battery is disconnected from

the parallel combination, and then a slab that has a dielectric constant is inserted
between the plates of one of the capacitors, completely filling the gap. Before the dielectric
slab is inserted, find (a) the charge on and energy stored in each capacitor, and (b) the total
energy stored in the capacitors. After the dielectric is inserted, find (c) the potential differ-
ence across each capacitor, (d) the charge on each capacitor, and (e) the total energy stored in
the capacitors.

PICTURE The capacitors are connected in parallel, so the voltage across each is the same.
The charge and total energy can be found for each capacitor from its capacitance and
voltage After the capacitors are removed from the battery, the total charge on the pair
remains the same. When the dielectric is inserted into one of the capacitors, its capacitance
changes. The potential across the parallel combination can be found from the total charge
and the equivalent capacitance.

SOLVE

V.
CUQ

k � 2.50
2.00 mF,

(a) The charge on each capacitor is found from its capacitance 
and voltage V � 12.0 V:

C 24.0 mCQ � CV � (2.00 mF)(12.0 V) �

(b) 1. The energy stored in each capacitor is found from its charge 
and its voltage V:

Q U � 1
2QV � 1

2 (24.0 mC)(12.0 V) � 144mJ

2. The total potential energy is twice that stored in each
capacitor:

288 mJUtotal � 2U �

(c) 1. The potential across the parallel combination is related
to the total charge and the equivalent capacitance Ceq:Qtotal

V �
Qtotal

Ceq

2. The capacitance of the capacitor that has the dielectric is
increased by the factor The equivalent capacitance is the
sum of the capacitances:

k. � 2.00 mF � 5.00 mF � 7.00 mF

� (2.00 mF) � 2.50(2.00 mF)Ceq � C1 � C2 � C1 � kC2

3. The total charge remains Substitute for and 
to calculate V:

CeqQtotal48.0 mC. 6.86 VV �
Qtotal

Ceq

�
48.0 mC
7.00 mF

�

(d) The charge on each capacitor is again obtained from Q � CV:

34.3 mCQ2 � (5.00 mF)(6.86 V) �

13.7 mCQ1 � (2.00 mF)(6.86 V) �

(e) The potential energy stored in each capacitor is found from its
new charge and new voltage:

165 mJ� 1
2 (13.7 mC � 34.3 mC)(6.86 V) �

U � U1 � U2 � 1
2Q1V � 1

2Q2V � 1
2 (Q1 � Q2)V

The quantity is the volume of the region where there is an electric field. (This
is the region between the two plates.) The energy per unit volume is thus

24-22

Part of this energy is the energy associated with the electric field (Equation 24-9)
and the rest is the energy associated with mechanical stress associated with the
polarization of the dielectric (discussed in Section 24-5).

ue � 1
2 PE2 � 1

2 kP0E
2

Ad

CHECK When the dielectric is inserted into one of the capacitors, the electric field is weak-
ened so the potential difference across it is lowered. Because the two capacitors are con-
nected in parallel, charge must flow from the other capacitor so that the potential difference
is the same across both capacitors. Note that the capacitor that has the dielectric has the
greater charge, and that when the charges calculated for each capacitor in Part (d) are added,

the result is the same as the original net charge.Q1 � Q2 � 13.7 mC � 34.3 mC � 48.0 mC,
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TAKING IT FURTHER The total energy of is less than the original energy of
When the dielectric is inserted, it is attracted by the charges on the plates, so it

must be restrained from accelerating into the gap. During this process of work
is done on the dielectric by the forces of restraint. To remove the

dielectric from the gap, must be done on it, and this work is stored as potential
energy in the capacitors.

�123 mJ
(165 mJ � 123 mJ � 288 mJ)

�123mJ
288 mJ.

123 mJ165 mJ

Context-RichExample 24-13 Running Out of Fuel

You are flying from New Zealand to Hawaii
when the electronic components of the fuel gauge
on the instrument panel of the small plane you
are in start to combust. Your companion becomes
very concerned and asks you to try to find a solu-
tion for the problem. The gauge consists of an air-
gap cylindrical capacitor in the fuel tank (Figure
24-25). The axis of this capacitor is vertical, and
fuel fills the gap up to the level of the fuel in the
tank. Can you find a way make the gauge work?
You had noticed the tank was half full when the
gauge broke. In addition, a handheld multimeter
capable of measuring capacitance (Figure 24-26) is
on board.

PICTURE The cylindrical capacitor can be mod-
eled as a parallel combination of two capacitors,
with the submerged portion as one of the capaci-
tors and the portion above the fuel as the other.
The ratio of the length of the submerged portion
to the entire length is the desired reading.

SOLVE

2C1C
Multimeter

1. Disconnect the two wires from the fuel tank at the instrument
panel, connect them to the multimeter, and measure the
capacitance so you know the reading when the tank is
half full:

C1>2
C � C1>2

2. Model the capacitor as a parallel combination of two capacitors,
one submerged and one not, and make a schematic diagram
of the combination. Label the capacitances and where 
is the capacitance of the submerged portion.

C2C2 ,C1

3. The capacitance of a cylindrical capacitor is proportional to its
length. Let be the height of the tank (and the length of the
capacitor) and let be the height of the fuel. The capacitance of
the capacitor is when the tank is empty:C0

h
H

C1 �
H � h
H

C0 and C2 �
h
H
kC0

4. The equivalent capacitance is the sum of the capacitances:C � c1 � (k � 1)
h
H
dC0C � C1 � C2 �

H � h
H

C0 �
h
H
kC0

5. Look up the dielectric constant of gasoline in Table 24-1.
(Lucky you had your physics book with you):

C � c1 � (2.0 � 1)
h
H
dC0 � c1 � 1.0

h
H
dC0

k � 2.0

6. Just before the gauge burned the tank was half full. Set 
and and solve for C0:h � h>H C � C1>2 C1>2 � c1 � 1.0

1
2
dC0⇒ C0 �

2
3
C1>2

7. Substitute for in the step 4 result, and then solve for 
You now have a formula to convert the readings of the meter 
into the fraction of the fuel remaining:

C
h>H.C0 so

h
H

�
3
2
C
C1>2 � 1C � c1 � 1.0

h
H
d 2

3
C1>2

h

H

F I G U R E  2 4 - 2 5 The cylinder is one of the plates of
the capacitor. A coaxial rod is the other plate. The top
of the cylinder is to be capped with the two wires
feeding through the cap. This way no fuel can exit the
tank through the top of the cylinder. One of the wires is
attached to the cylinder and the second wire is attached
to the rod. There needs to be a small hole though the side
of the cylinder—near the top. This hole prevents
pressure from building up as the tank is filled.

F I G U R E  2 4 - 2 6

(Paul Silverman/
Fundamental Photographs.)
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CHECK Substituting for in our step 7 result gives as expected. In addition,
substituting zero for for and solving for gives which is the expression
obtained for in step 6.

TAKING IT FURTHER Because fuel tanks are not of uniform height, this fuel gauge will not
be very accurate. This is the case with many automotive fuel gauges.

C0

C0 � 2
3C1>2 ,C0C,C0h,

h>H � 1
2 ,CC1>2

Try It YourselfExample 24-14 Inserting the Dielectric—Battery Connected

For the circuit of Example 24-12, the dielectric is slowly inserted into one of the capacitors
while the battery remains connected. Find (a) the charge on each capacitor, (b) the total energy
stored in the capacitors, and (c) the work done by the battery during the insertion process.

PICTURE Because the battery is still connected, the potential difference across the capacitors
remains This condition determines the charge and energy stored in each capacitor. Let
subscript 1 refer to the capacitor without the dielectric and subscript 2 refer to the capacitor
with the dielectric.

12.0 V.

Steps Answers

(a) Calculate the charge on each capacitor from using
the result that and as found in
Example 24-12.

C2 � 5.00 mFC1 � 2.00 mF
Q � CV

60.0 mCQ2 � C2V �

24.0 mCQ1 � C1V �

(b) 1. Calculate the energy stored in each capacitor from
(Check your results by using U � 1

2QV.)U � 1
2CV2.

U2 � 360 mJU1 � 144 mJ

2. Add your results for and to obtain the final energy.U2U1 504 mJUtotal �

(c) The work done by the battery during the insertion process is
the battery voltage multiplied by the charge passing through
the battery. This charge is the increase of the charge on C2 .

432 mJW � V¢Q � (12.0 V)(60.0 mC � 24.0 mC) �

CHECK The total energy of the two capacitors is larger when the dielectric is in place by
than when the dielectric is not in place. This result is expected be-

cause during the insertion the battery delivers which is more than enough to account
for the increase in the energy stored in the capacitors as the dielectric is inserted. (The di-
electric is pulled in by forces of electrical attraction, so work must be done on the dielectric
by the restraining forces to prevent the dielectric from gaining speed during the insertion.)

432 mJ,
504 mJ � 288 mJ � 216 mJ

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

24-5 MOLECULAR VIEW OF A DIELECTRIC

A dielectric weakens the electric field between the plates of a capacitor. This happens
because the polarized molecules of the dielectric produce an electric field within the
dielectric in a direction opposite to the field produced by the charges on the plates.
The electric field produced by the dielectric is due to the electric dipole moments of
the molecules of the dielectric.

Although atoms and molecules are neutral, they are affected by electric fields be-
cause they contain positive and negative charges that can individually respond to ex-
ternal fields. We can think of an atom as a very small, positively charged nucleus sur-
rounded by a negatively charged electron cloud. In some atoms and molecules, the
charge configuration is sufficiently symmetric so that the “center of negative charge” co-
incides with the center of positive charge. An atom or molecule that has this symmetry
has zero dipole moment and is said to be nonpolar. In the presence of an external elec-
tric field, however, the positive and negative charges experience forces in opposite di-
rections, so the positive and negative charges then separate until the attractive force they

Does the work done by the re-
straining forces to prevent the
dielectric from gaining speed
during insertion have a positive
value or a negative value?

CONCEPT CHECK 24-4✓
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exert on each other balances the forces due to the external electric field (Figure 24-27).
The molecule is then said to be polarized and it behaves like the electric dipole it is.

In some molecules (for example, HCl and ), the centers of positive and nega-
tive charge do not coincide, even in the absence of an external electric field. As we
noted in Chapter 21, these polar molecules have a permanent electric dipole moment.

When a dielectric is placed in the field of a charged capacitor, its molecules are po-
larized in such a way that there is a net dipole moment parallel to the field. If the mol-
ecules are polar, their dipole moments, originally oriented at random, tend to become
aligned due to the torque exerted by the field.* If the molecules are nonpolar, the field
induces dipole moments that are parallel to the field. In either case, the molecules in
the dielectric are polarized in the direction of the external field (Figure 24-28).

H2O

Center of negative charge
coincides with center of
positive charge

–+
– +

E

p

(a) (b)

F I G U R E  2 4 - 2 7 Schematic diagrams of
the charge distributions of an atom or nonpolar
molecule. (a) In the absence of an external
electric field, the center of positive charge
coincides with the center of negative charge.
(b) In the presence of an external electric field,
the centers of positive and negative charge are
displaced, producing an induced dipole
moment in the direction of the external field.

* The degree of alignment depends on the external field and on the temperature. It is approximately proportional to
where is the maximum energy of a dipole in a field and is the characteristic thermal energy.kTE,pEpE>(kT),
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F I G U R E  2 4 - 2 8 (a) The randomly oriented electric dipoles of a polar dielectric in the
absence of an external electric field. (b) In the presence of an external electric field, the dipoles are
partially aligned parallel to the field.
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F I G U R E  2 4 - 2 9 When a dielectric is
placed between the plates of a capacitor, the
electric field of the capacitor polarizes the
molecules of the dielectric. The result is a
bound charge on the surface of the dielectric
that produces its own electric field; this field
opposes the external field. The field of the
bound surface charges thus weakens the
electric field within the dielectric.
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F I G U R E  2 4 - 3 0 The electric field
between the plates of a capacitor that has
(a) no dielectric and (b) a dielectric. The
surface charge on the dielectric weakens the
original field between the plates.

The net effect of the polarization of a homogeneous dielectric in a parallel-plate ca-
pacitor is the creation of surface charges on the dielectric faces near the plates, as
shown in Figure 24-29. The surface charge on the dielectric is called a bound charge,
because the surface charge is bound to the surface molecules of the dielectric and can-
not move about like the free charge on the conducting capacitor plates. This bound
charge produces an electric field opposite in direction to the electric field produced
by the free charge on the conductors. Thus, the net electric field between the plates is
reduced, as illustrated in Figure 24-30.



826 | C H A P T E R  2 4 Capacitance

L

+e–e – –

– –
R

–

–

E

F I G U R E  2 4 - 3 1

Example-24-15 Induced Dipole Moment—Hydrogen Atom

A hydrogen atom consists of a proton of charge and an electron of charge 
The charge distribution of the atom is spherically symmetric, so the atom is nonpolar.
Consider a model in which the hydrogen atom consists of a positive point charge 
at the center of a uniformly charged spherical cloud of radius and total charge 
Show that when such an atom is placed in a uniform external electric field the
induced dipole moment is proportional to that is, where is called the 
polarizability.

PICTURE In the external field, the center of the uniform negative cloud is displaced 
from the positive charge by an amount so that the force exerted by the field 
on the positive point charge is balanced by the force on it exerted by the negative cloud 
where is the field due to the cloud at the location of the point charge (Figure 24-31).
We use Gauss’s law to find and then we calculate the induced dipole moment 
where and is the position of the positive charge relative to the center of the cloud.
The dipole moment, defined as is discussed in Section 21-4.

SOLVE

qL
S

,
L
S

q � e
pS � qL

S
,E�,

E
Sœ

eE
Sœ,
eE

S
L

apS � aE
S

,E
S

;
E
S

,
�e.R
�e

�e.�e

1. Write the magnitude of the induced dipole moment in terms of
and L:e

p � eL

2. We can find by calculating the field due to the negatively
charged cloud at a distance from the center. We use Gauss’s
law to compute Choose a spherical Gaussian surface of
radius concentric with the cloud. Then is the same
everywhere on this surface:

Eœ
nL

Eœ
n .

L
Eœ
nL

Eœ
n �

Qinside

4pP0L
2

fnet � CEn dA �
Qinside

P0

3. The charge inside the sphere of radius equals the charge
density multiplied by the volume:

L Qinside � r 4
3pL3 �

�e
4
3pR3

4
3pL3 � �e

L3

R3

4. Substitute this value of to calculate Eœ
n:Qinside Eœ

n �
Qinside

4pP0L
2 �

�eL3>R3

4pP0L
2 � �

e
4pP0R

3 L

5. Solve for L: L � �
4pP0R

3

e
Eœ
n

6. is negative because points inward on the Gaussian
surface. At the positive charge, points to the left. Because 
is equal to , we conclude that Eœ

n � �E:E
EœE

Sœ
E
SœEœ

n so L �
4pP0R

3

e
EEœ

n � �E

7. Substitute these results for and to express in terms of the
external field strength E:

pEœ
nL

so

where a � 4pP0R
3

pS � aE
S

p � eL � 4pP0R
3E

CHECK We expected to be positive because we expected and to be in the same direc-
tion. Our step 7 result met this expectation.

TAKING IT FURTHER The charge distribution of the negative charge in a hydrogen atom,
obtained from quantum theory, is spherically symmetric, but the charge density decreases
exponentially with distance rather than being uniform. Nevertheless, the above calculation
shows that the dipole moment is proportional to the external field and the polariz-
ability is of the order of , where is the radius of the atom or molecule. The di-
electric constant can be related to the polarizability and to the number of molecules per
unit volume.

ak

R4pP0R
3a

p � aE,

E
S

pSa
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MAGNITUDE OF THE BOUND CHARGE

The bound charge density on the surfaces of the dielectric is related to the di-
electric constant and to the free charge density on the surfaces of the plates.
Consider a dielectric slab between the plates of a parallel-plate capacitor, as shown
in Figure 24-32. If the dielectric is a thin slab between plates that are close together,
the electric field inside the dielectric slab due to the bound charge densities, 
on the right and on the left, is just the field due to two infinite-plane charge
densities. Thus, the field has the magnitude

This field is directed to the left and subtracts from the electric field due to the
free charge density on the capacitor plates, which has the magnitude

The strength of the net field is the difference between these magnitudes:

or

Writing for and for we obtain

24-23

The bound charge density is always less than or equal to the free charge density
on the capacitor plates, and it is zero if which is the case when there is no

dielectric. For a conducting slab, and 

*THE PIEZOELECTRIC AND PYROELECTRIC EFFECTS

In certain crystals that have polar molecules (for example, quartz, tourmaline, and
topaz), a mechanical stress applied to the crystal produces polarization of the mol-
ecules. This is known as the piezoelectric effect. The polarization of the stressed
crystal causes a potential difference across the crystal, which can be used to pro-
duce an electric current. Piezoelectric crystals are used in transducers (for example,
microphones, phonograph pickups, and vibration-sensing devices) to convert me-
chanical strain into electrical signals. The converse piezoelectric effect, in which a
voltage applied to such a crystal induces mechanical strain (deformation), is used
in headphones and many other devices. Because the natural frequency of vibration
of quartz is in the range of radio frequencies, and because its resonance curve is
very sharp,* quartz is used extensively to stabilize radio-frequency oscillators and
to make accurate clocks.

Many crystals that exhibit the piezoelectric effect also exhibit the pyroelectric
effect, which is the generation of a large electric field within the crystal when the
temperature of the crystal is increased. Pyroelectric crystals are sometimes used to
accelerate charged particles to such high speeds that X rays, and even nuclear fu-
sion, result when the charged particles impact a target material.

sb � sf .k � 

k � 1,sf

sb

sb � a1 �
1
k
bsf

E0 ,sf >P0Ebsb >P0

Eb � a1 �
1
k
bE0

E � E0 � Eb �
E0

k

E � E0 >k
E0 �

sf

P0

E0

Eb �
sb

P0

Eb

�sb

�sb

sfk

sb

* Resonance in AC circuits, which will be discussed in Chapter 29, is analogous to mechanical resonance, which was dis-
cussed in Chapter 14.
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F I G U R E  2 4 - 3 2 A parallel-plate
capacitor with a dielectric slab between the
plates. If the plates are closely spaced, each of
the surface charges can be considered as an
infinite plane charge. The electric field due to
the free charge on the plates is directed to the
right and has a magnitude That
due to the bound charge is directed to the left
and has a magnitude Eb � sb >P0 .

E0 � sf >P0 .

CONCEPT CHECK 24-5

Does the capacitance always incre-
ase when a dielectric is inserted
into the gap of a capacitor? Explain
your answer.

✓
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Physics Spotlight

Changes in Capacitors—Charging Ahead

In 1746, shortly after the Leyden jar was publicized, 180 soldiers
demonstrated the power of a large Leyden jar to the French court.
They joined hands in a circle and waited to be connected to the
Leyden jar. When a single shock from the jar passed through the cir-
cle, all the soldiers simultaneously jumped and shouted.*,† Some
Leyden jars have since been measured with a capacitance of 
at

Capacitors have come a long way since then. One change (of
many) that was made during the nineteenth century was the addi-
tion of mineral oil to capacitors as a dielectric. However, oil-filled
condensers, as they were known, are fire hazards when heated.
In 1929, the Swann chemical company produced polychlorinated
biphenyls, or PCBs, for use as dielectrics in industrial capacitors.‡

PCBs are resistant to burning and do not easily react with other sub-
stances. They also have dielectric constants slightly larger than min-
eral oil’s. Unfortunately, PCBs proved to be carcinogenic, and they
are extremely toxic when partially burned.# In 1979, PCB manufac-
ture was banned in the United States, and the use of PCBs as di-
electrics for capacitors° was discontinued. (Numerous older capaci-
tors using PCBs are still in service as of 2006.§) The ban on PCBs in
new capacitors caused researchers to try to develop more efficient
capacitors. (In this context, efficient usually means with greater
capacitance per unit mass.)

Several types of very efficient capacitors are available. Many capacitors now take advantage of the large dielectric coeffi-
cients of specialized ceramics,¶ plastic films, and polymer gels. But the most efficient capacitors are electrical double-layer ca-
pacitors (EDLCs). EDLCs are composed of electrodes that are made of porous carbon deposited on either side of an electrolyte
separator. The layers are tightly wound and placed into a container. The carbon and the electrolyte separator are so thin that
the distance between the layers of carbon is molecules thick.** The capacitors are called double layered because each layer of
electrolyte has two layers of charge.

Owing to the porous nature of the carbon, each layer has a very large surface area for the carbon to be in contact with the
electrolyte—from 400 up to 2000 This large surface area combined with the very thin electrolyte layer yields a large ca-
pacitance. Because the electrolyte layers are very thin, most electrical double-layer capacitors have low breakdown voltages.
An EDLC the size of a D-cell battery weighs 60 grams, has a capacitance of 350 farads, and is rated at 2.5 volts.†† Because of
the low breakdown voltage, EDLCs are rarely used individually. A package of six of the D-cell–sized capacitors in series has
an equivalent capacitance of 58 farads with a rating of 15 volts.‡‡

EDLCs are already incorporated into cell phones, cameras, and automobiles. For frequently used rechargeable items,
EDLCs may soon be inexpensive and powerful enough to be used instead of batteries.

* Dray, P., Stealing God’s Thunder: Benjamin Franklin’s Lightning Rod and the Invention of America. New York: Random House, 2005, pp. 45–46.
† Cohen, I. B., Benjamin Franklin’s Science. Cambridge: Harvard University Press, 1990, pp. 4–37.
‡ History of PCB Manufacturing in Anniston. 2000. Solutia http://www.solutia.com/pages/anniston/pcbhistory.asp As of Sept. 2006.
# Lloyd, R. J. W., et al., Current Intelligence Bulletin 7—Polychlorinated Biphenyls (PCBs). Washington, D.C.: Centers for Disease Control, Nov. 3, 1975.

http://www.cdc.gov/niosh/78127_7.html As of Sept. 2006.
° EPA Bans PCB Manufacture; Phases Out Uses. United States Environmental Protection Agency, Apr. 19, 1979. http://www.epa.gov/history/topics/pcbs/01.htm As of Sept. 2006.
§ Brookhaven National Laboratory Reduces Mercury and PCBs. United States Environmental Protection Agency, http://www.epa.gov/epaoswer/hazwaste/minimize/brookhav.htm As

of Sept. 2006.
¶ Chen, L., et al., “Migration and Redistribution of Oxygen Vacancy in Barium Titanate Ceramics.” Applied Physics Letters, Aug. 14, 2006, Vol. 89, No. 7, Letter 071916.
** Prophet, G., “Supercaps for Supercaches.” Electronic Design News, Jan. 9, 2003, pp. 53–58.
†† Blankenship, S., “It Looks Like a Battery, but It’s an Ultracapacitor.” Power Engineering, May 2004, pp. 64–65.
‡‡ Everett, M., “Ultracapacitors Turn Malibus into Mercedes.” Machine Design, Dec. 8, 2005, pp. 82–88. 

m2>g.

10 kV.
2.5 nF

Capacitor come in many different sizes and shapes as
well as several different types. Circuit designers choose
the size, shape and type to suit the requirements for
specific circumstances. (Maynard & Bouchard/Scientifica/
Visuals Unlimited.)

http://www.solutia.com/pages/anniston/pcbhistory.asp
http://www.cdc.gov/niosh/78127_7.html
http://www.epa.gov/history/topics/pcbs/01.htm
http://www.epa.gov/epaoswer/hazwaste/minimize/brookhav.htm
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Summary

1. Capacitance is an important defined quantity that relates charge to potential difference.

2. Two devices connected in parallel share a common potential difference across each device
due solely to the way they are connected.

3. Two devices connected in series are connected by a conducting path that contains no junctions.

4. The changes in potential around any closed path always sum to zero. This is known as
Kirchhoff’s loop rule

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Capacitor A capacitor is a device for storing charge and energy. It consists of two conductors that are
insulated from each other and carry equal and opposite charges.

2. Capacitance Definition of capacitance

24-1

Single conductor is the conductor’s total charge, is the conductor’s potential relative to its surroundings.

Capacitor is the magnitude of the charge on either conductor, is the magnitude of the potential dif-
ference between the conductors.

Of an isolated spherical conductor 24-2

Of a parallel-plate capacitor 24-6

Of a cylindrical capacitor 24-7

Energy stored in a capacitor 24-8

Energy density of an electric field 24-9

3. Equivalent Capacitance

Parallel capacitors When devices are connected in parallel, the voltage drop is the same across each.

24-13

Series capacitors When capacitors are in series, the voltage drops add. If the total charge on each connected
pair of plates is zero, then:

24-17

4. Dielectrics

Macroscopic behavior A nonconducting material is called a dielectric. When a dielectric is inserted between the
plates of a charged, electrically isolated capacitor, the electric field between the plates is weak-
ened and the capacitance is thereby increased by the factor which is the dielectric constant.

Microscopic view The electric field in the dielectric of a capacitor is weakened because the molecular dipole
moments (either preexisting or induced) tend to align with the applied field and thereby
produce a second electric field inside the dielectric that opposes the applied field. The
aligned dipole moment of the dielectric is proportional to the applied field.

k,

1
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1
C1

�
1
C2
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1
C3
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U �
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TOPIC RELEVANT EQUATIONS AND REMARKS

Electric field inside 24-18

Effect on capacitance 24-19

Permittivity 24-21

Uses of a dielectric 1. Increases capacitance
2. Increases dielectric strength
3. Physically separates conductors

*5. Piezoelectric Effect In certain crystals a mechanical stress changes the polarization of the material, which results
in a voltage across the crystal. Conversely, an applied voltage induces mechanical strain
(deformation) in the crystal.

*Pyroelectric Effect In certain crystals an increase in temperature changes the polarization of the material, which
results in a voltage across the crystal.

P � kP0P

C � kC0

E �
E0

k

Answers to Concept Checks

24-1 The capacitance does not depend on the
charge. If the charge is tripled, the potential of the
sphere will be tripled and the ratio which
depends only on the radius of the sphere, remains
unchanged.

24-2 The capacitance of any capacitor does not depend on
the potential. To increase you must increase the
charge and vice versa. The ratio depends only
on the geometry of the capacitor and on the nature of
any dielectric material separating the plates.

24-3 The net charge remains the same. Like a water pump
transfers water, a battery transfers charge. The amount
of water in a water pump does not change and the
amount of charge in a battery does not change.

24-4 A negative value.

24-5 Yes. Capacitance is defined as So for an
isolated charged capacitor, a capacitor for which is
constant, the capacitance is inversely proportional to
the voltage When a dielectric is inserted into an
isolated capacitor the bound surface charges induced
on the dielectric result in a reduced electric-field
strength within the dielectric. The voltage is directly
proportional to the electric-field strength, so a reduced
electric-field strength means a reduced voltage and an
increased capacitance.

V.
C

Q
C � Q>V.

Q>VQ,
V

Q>V,

C2 � C1 .

Answers to Practice Problems

24-1 which is about 1400 times the radius of
Earth. (The farad is indeed a very large unit.)

24-2 which corresponds to a square 
on a side

24-3

24-4

24-5

24-6 (a) (b)

24-7 (a)

(b) in
agreement with Example 24-3

24-8

24-9

24-10 (a) (b)

24-11 where Thus,

24-12 Note that

24-13 (a) (b)

24-14 (a) (which is unchanged), (b)

(c) C � 180 pF

V � 6.0 V,Q � 1.1 nC

2.1 nC0.18 nF,

U2 � U3 � U4 � 36 mJ � 1
2QV � 1

2Q2>Ceq � 1
2CeqV

2.

U2 � 4.0 mJ,U3 � 24 mJ,U4 � 8.0 mJ.

Uf � Q2
1 >(2C1) � Q2

2 >(2C2) � 256 mJ.Ui � 288 mJ.

q � 48 mC.Ui � q2 >(2C1) � q2 >(2C2),

12 mF50 mF,

4.0 V

54 mC

¢vol � A ¢d � 2.9 � 10�5 m3, ue ¢vol � 4.7 nJ,

ue � 1
2 P0E

2 � 160 mJ>m3,

C � 50 pFC0 � 87 pF,

21 V

� 1
2 (�Q)V1 � 1

2 (�Q)(V1 � V) � 1
2QV

U � 1
2 a
n

i�1

QiVi � 1
2Q1V1 � 1

2Q2V2

3.7 J

11 kmA � 1.1 � 108 m2,

9.0 � 109 m,
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In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

Problems

CONCEPTUAL PROBLEMS

1 • If the voltage across a parallel-plate capacitor is doubled,
its capacitance (a) doubles, (b) drops by half, (c) remains the same.

2 • If the charge on an isolated spherical conductor is dou-
bled, its self-capacitance (a) doubles, (b) drops by half, (c) remains
the same.

3 • True or false: The electrostatic energy density is uni-
formly distributed in the region between the conductors of a cylin-
drical capacitor.

4 • If the distance between the plates of a charged and iso-
lated parallel-plate capacitor is doubled, what is the ratio of the
final stored energy to the initial stored energy?

5 • A parallel-plate capacitor is connected to a battery.
The space between the two plates is empty. If the separation
between the capacitor plates is tripled while the capacitor
remains connected to the battery, what is the ratio of the final
stored energy to the initial stored energy?

6 • If the capacitor of Problem 5 is disconnected from the
battery before the separation between the plates is tripled, what
is the ratio of the final stored energy to the initial stored energy?

7 • True or false:
(a) The equivalent capacitance of two capacitors in parallel is always

greater than the larger of the two capacitance values.
(b) The equivalent capacitance of two capacitors in series is always

less than the least of the two capacitance values if the charges
on the two plates that are connected by an otherwise isolated
conductor sum to zero.

8 • Two uncharged capacitors have capacitances and 
respectively, and are connected in series. This series combination is
then connected across the terminals a battery. Which of the follow-
ing is true?
(a) The capacitor has twice the charge of the other capacitor.
(b) The voltage across each capacitor is the same.
(c) The energy stored by each capacitor is the same.
(d) The equivalent capacitance is 
(e) The equivalent capacitance is 

9 • A dielectric is inserted between the plates of a parallel-
plate capacitor, completely filling the region between the plates. Air
initially filled the region between the two plates. The capacitor was
connected to a battery during the entire process. True or false:

2C0 >3.
3C0 .

2C0

2C0 ,C0

SSM

(a) The capacitance value of the capacitor increases as the dielectric
is inserted between the plates.

(b) The charge on the capacitor plates decreases as the dielectric is
inserted between the plates.

(c) The electric field between the plates does not change as the di-
electric is inserted between the plates.

(d) The energy storage of the capacitor decreases as the dielectric is
inserted between the plates.

10 •• Capacitors A and B (Figure 24-33) have identical plate
areas and gap separations. The space between the plates of each
capacitor is half-filled with a dielectric as shown. Which has the
larger capacitance, capacitor A or capacitor B? Explain your answer.

SSM

A B
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11 •• (a) Two identical capacitors are connected in parallel.
This combination is then connected across the terminals of a bat-
tery. How does the total energy stored in the parallel combina-
tion of the two capacitors compare to the total energy stored if
just one of the capacitors were connected across the terminals of
the same battery? (b) Two identical capacitors that have been
discharged are connected in series. This combination is then
connected across the terminals of a battery. How does the total
energy stored in the series combination of the two capacitors
compare to the total energy stored if just one of the capacitors
were connected across the terminals of the same battery?

12 •• Two identical capacitors that have been discharged
are connected in series across the terminals of a battery.
When only one of the capacitors is connected across the termi-
nals of the battery, the energy stored is What is the total en-
ergy stored in the two capacitors when the series combination is
connected to the battery? (a) , (b) , (c) , (d) , (e) U0 >4U0 >2U02U04U0

U0 .

100-V

SSM
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ESTIMATION AND APPROXIMATION

13 •• Disconnect the coaxial cable from a television or other
device and estimate the diameter of the inner conductor and the di-
ameter of the shield. Assume a plausible value (see Table 24-1) for
the dielectric constant of the dielectric separating the two conduc-
tors and estimate the capacitance per unit length of the cable.

14 •• ENGINEERING APPLICATION, CONTEXT-RICH You are
part of an engineering research team that is designing a pulsed ni-
trogen laser. To create the high energy densities needed to operate
such a laser, the electrical discharge from a high-voltage capacitor
is used. Typically, the energy requirement per pulse (i.e., per dis-
charge) is Estimate the capacitance required if the discharge
is to create a spark across a gap of about Assume that
the dielectric breakdown of nitrogen is the same as the value for
normal air.

15 •• Estimate the capacitance of the Leyden jar shown in
Figure 24-34. The figure of a man is one-tenth the height of an
average man. SSM

1.0 cm.
100 J.

SSM

CAPACITANCE

16 • An isolated conducting sphere that has a radius
has an electric potential of (the potential far from the
sphere is zero). (a) How much charge is on the sphere? (b) What is
the self-capacitance of the sphere? (c) By how much does the self-
capacitance change if the sphere’s electric potential is increased to

17 • The charge on one plate of a capacitor is and
the charge on the other plate is The potential difference
between the plates is What is the capacitance of the capacitor?

18 •• Two isolated conducting spheres of equal radius have
charges and respectively. Their centers are separated by a
distance that is large compared to their radius. Estimate the ca-
pacitance of this unusual capacitor.

THE STORAGE OF
ELECTRICAL ENERGY

19 • (a) The potential difference between the plates of a
capacitor is How much energy is stored in the ca-

pacitor? (b) How much additional energy is required to increase
the potential difference between the plates from to 

SSM

200 V?100 V

100 V.3.00-mF

d
�Q,�Q

R

400 V.
�30.0 mC.

�30.0 mC

6.00 kV?

2.00 kV
10.0-cm
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20 • The charges on the plates of a 10- capacitor are
(a) How much energy is stored in the capacitor? (b) If

charge is transferred until the charges on the plates are equal to
how much stored energy remains?

21 • (a) Find the energy stored in a 20.0- capacitor when the
charges on the plates are (b) How much additional energy
is stored if charges are increased from to 

22 • What is the maximum electric energy density in a region
containing dry air at standard conditions?

23 •• An air-gap parallel-plate capacitor that has a plate
area of and a separation of is charged to 
(a) What is the electric field between the plates? (b) What is the
electric energy density between the plates? (c) Find the total en-
ergy by multiplying your answer from Part (b) by the volume
between the plates. (d) Determine the capacitance of this
arrangement. (e) Calculate the total energy from and
compare your answer with your result from Part (c).

24 •• A solid metal sphere has radius of and a con-
centric metal spherical shell has an inside radius of The
solid sphere has a charge (a) Estimate the energy stored
in the electric field in the region between the spheres. Hint: You
can treat the spheres essentially as parallel flat slabs separated by

(b) Estimate the capacitance of this two-sphere system.
(c) Estimate the total energy stored in the electric field from

and compare it to your answer in Part (a).

25 •• A parallel-plate capacitor has plates of area and
is connected across the terminals of a battery. After some time
has passed, the capacitor is disconnected from the battery. When
the plates are then moved farther apart, the charge on each
plate remains constant but the potential difference between the
plates increases by (a) What is the magnitude of the charge
on each plate? (b) Do you expect the energy stored in the capacitor
to increase, decrease, or remain constant as the plates are moved
this way? Explain your answer. (c) Support your answer to Part (b)
by determining the change in stored energy in the capacitor due
to the movement of the plates.

COMBINATIONS OF CAPACITORS

26 • (a) How many 1.00- capacitors connected in parallel
would it take to store a total charge of if the potential
difference across each capacitor is Diagram the parallel
combination. (b) What would be the potential difference across this
parallel combination? (c) If the capacitors in Part (a) are discharged,
connected in series, and then energized until the potential differ-
ence across each is equal to find the charge on each capaci-
tor and the potential difference across the connection.

27 • A 3.00- capacitor and
a 6.00- capacitor are discharged
and then connected in series, and
the series combination is then con-
nected in parallel with an 8.00-
capacitor. Diagram this combina-
tion. What is the equivalent capac-
itance of this combination?

28 • Three capacitors are
connected in a triangle as shown
in Figure 24-35. Find an expression
for the equivalent capacitance
between points and in terms of
the three capacitance values.

ca

mF

mF
mF

10.0 V,

10.0 V?
1.00 mC

mF

100 V.

0.40 cm

500 cm2

1
2Q2>C0.5 cm.

5.00 nC.
10.5 cm.

10.0 cm

SSM

U � 1
2CV2,

100 V.1.00 mm2.00 m2

�10.0 mC?�5.00 mC
�5.00 mC.

nF

�2.0 mC,

�4.0 mC.
mF

2

c

ba

C

1C

3C
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equivalent capacitance between points and if the capacitor at the
center is replaced by a capacitor that has a capacitance of 10C0 .

ba
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29 •• A 10.0- capacitor and a 20.0- capacitor are con-
nected in parallel across the terminals of a 6.00- battery. (a) What
is the equivalent capacitance of this combination? (b) What is the
potential difference across each capacitor? (c) Find the charge on
each capacitor. (d) Find the energy stored in each capacitor.

30 •• A 10.0- capacitor and a 20.0- capacitor are dis-
charged and then connected in series. The series combination is
then connected across the terminals of a 6.00- battery. (a) What
is the equivalence capacitance of this combination? (b) Find the
charge on each capacitor. (c) Find the potential difference across
each capacitor. (d) Find the energy stored in each capacitor.

31 •• Three identical capacitors are connected so that their
maximum equivalent capacitance, which is is obtained.
(a) Determine how the capacitors are connected and diagram the
combination. (b) There are three additional ways to connect all three
capacitors. Diagram these three ways and determine the equivalent
capacitances for each arrangement.

32 •• For the circuit shown in Figure 24-36, the capacitors were
each discharged before being connected to the voltage source. Find
(a) the equivalent capacitance of the combination, (b) the charge
stored on the positively charged plate of each capacitor, (c) the volt-
age across each capacitor, and (d) the energy stored in each capacitor.

15.0 mF,

V

mFmF

V
mFmF

200 V
4.0 μF

15.0 μF

12.0 μF
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33 •• (a) Show that the equivalent capacitance of two capaci-
tors in series can be written

(b) Using only this formula and some algebra, show that must
always be less than and and hence must be less than the
smaller of the two values. (c) Show that the equivalent capacitance
of three capacitors in series can be written

(d) Using only this formula and some algebra, show that must
always be less than each of and and hence must be less
than the least of the three values.

34 •• For the circuit shown in Figure 24-37 find (a) the equiva-
lent capacitance between the terminals, (b) the charge stored on the
positively charged plate of each capacitor, (c) the voltage across
each capacitor, and (d) the total stored energy.

C3 ,C2 ,C1 ,
Ceq

Ceq �
C1C2C3

C1C2 � C2C3 � C1C3

C2 ,C1

Ceq

Ceq �
C1C2

C1 � C2

10.0 V

0.300 μF

1.00 μF 0.250 μF
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0

ba

C

0C0C

0C

0C

35 •• Five identical capacitors of capacitance are connected
in a so-called bridge network, as shown in Figure 24-38. (a) What is
the equivalent capacitance between points and (b) Find theb?a

C0

C

C C C

C C C
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PARALLEL-PLATE CAPACITORS

39 • A parallel-plate capacitor has a capacitance of 
and a plate separation of (a) What is the maximum po-
tential difference between the plates, so that dielectric breakdown
of the air between the plates does not occur? (b) How much charge
is stored at this potential difference?

40 • An electric field of exists between the cir-
cular plates of a parallel-plate capacitor that has a plate separation
of (a) What is the potential difference across the capacitor
plates? (b) What plate radius is required if the positively charged
plate is to have a charge of 

41 •• A parallel-plate, air-gap capacitor has a capacitance of
The plates are apart. (a) What is the area of each

plate? (b) What is the potential difference between the plates if
the positively charged plate has a charge of (c) What is the
stored energy? (d) What is the maximum energy this capacitor
can store before dielectric breakdown of the air between the plates
occurs?

42 •• Design a parallel-plate capacitor that has air be-
tween its plates and that can be charged to a maximum potential
difference of before dielectric breakdown occurs. (a) What is
the minimum possible separation between the plates? (b) What
minimum area must each plate of the capacitor have?

1000 V

0.100-mF

3.2 mC?

0.50 mm0.14 mF.

10.0 mC?

2.00 mm.

2.00 � 104 V>m
1.60 mm.

2.00 mF
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36 •• You and your laboratory team have been given a project
by your electrical engineering professor. Your team must design a
network of capacitors that has an equivalent capacitance of 
and breakdown voltage of The restriction is that your team
must use only 2.00- capacitors that have individual breakdown
voltages of Diagram the combination.

37 •• Find the different equivalent capacitances that can be ob-
tained by using two or three of the following capacitors: a 1.00-
capacitor, a 2.00- capacitor, and a 4.00- capacitor.

38 ••• What is the equivalent capacitance (in terms of which
is the capacitance of one of the capacitors) of the infinite ladder of
capacitors shown in Figure 24-39?

C,

mFmF
mF

100 V.
mF

400 V.
2.00 mF
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CYLINDRICAL CAPACITORS

43 • In preparation for an experiment that you will do in your
introductory nuclear physics lab, you are shown the inside of a
Geiger tube. You measure the radius and the length of the central
wire of the Geiger tube to be and respectively.
The outer surface of the tube is a conducing cylindrical shell that has
an inner radius of The shell is coaxial with the wire and has
the same length Calculate (a) the capacitance of your tube,
assuming that the gas in the tube has a dielectric constant of 1.00,
and (b) the value of the linear charge density on the wire when the
potential difference between the wire and shell is of 

44 •• A cylindrical capacitor consists of a long wire that has a
radius a length and a charge The wire is enclosed by a
coaxial outer cylindrical shell that has an inner radius length 
and charge (a) Find expressions for the electric field and en-
ergy density as a function of the distance from the axis. (b) How
much energy resides in a region between the conductors that has a
radius a thickness and a volume (c) Integrate your
expression from Part (b) to find the total energy stored in the
capacitor. Compare your result with that obtained by using the
formula in conjunction with the known expression for
the capacitance of a cylindrical capacitor.

45 ••• Three concentric, thin, long conducting cylindrical shells
have radii of and The space between
the shells is filled with air. The innermost and outermost shells are
connected at one end by a conducting wire. Find the capacitance
per unit length of this configuration.

46 ••• ENGINEERING APPLICATION A goniometer is a precise in-
strument for measuring angles. A capacitive goniometer is shown in
Figure 24-40a. Each plate of the variable capacitor (Figure 24-40b)
consists of a flat metal semicircle that has an inner radius and an
outer radius The plates share a common rotation axis, and the
width of the air gap separating the plates is Calculate the capac-
itance as a function of the angle and the parameters given.u

d.
R2 .

R1

8.00 mm.5.00 mm,2.00 mm,

U � Q2>(2C)

2prL dR?dR,R,

R
�Q.

L,R2 ,
�Q.L,R1 ,

1.20 kV.

(12.0 cm).
1.50 cm.

12.0 cm,0.200 mm

47 ••• ENGINEERING APPLICATION A capacitive pressure gauge is
shown in Figure 24-41. Each plate has an area The plates are sep-
arated by a material that has a dielectric constant a thickness 
and a Young’s modulus If a pressure increase of is applied
to the plates, derive an expression for the change in capacitance.

¢PY.
d,k,

A.

SPHERICAL CAPACITORS

48 •• Model Earth as a conducting sphere. (a) What is its self-
capacitance? (b) Assume the magnitude of the electric field at
Earth’s surface is What charge density does this corre-
spond to? Express this value in fundamental charge units per
square centimeter.

49 •• A spherical capacitor consists of a thin spherical shell
that has a radius and a thin, concentric spherical shell that has a
radius where (a) Show that the capacitance is given by

(b) Show that when the radii of the shells
are nearly equal, the capacitance is approximately given by the ex-
pression for the capacitance of a parallel-plate capacitor, 
where is the area of the sphere and 

50 •• A spherical capacitor is composed of an inner sphere
which has a radius and a charge and an outer concentric
spherical thin shell which has a radius and a charge (a) Find
the electric field and the energy density as a function of where 
is the distance from the center of the sphere, for 
(b) Calculate the energy associated with the electrostatic field in a
spherical shell between the conductors that has a radius a thick-
ness and a volume (c) Integrate your expression from
Part (b) to find the total energy and compare your result with the re-
sult obtained using 

51 ••• An isolated conducting sphere of radius has a charge 
distributed uniformly over its surface. Find the distance from the
center of the sphere such that half the total electrostatic energy of the
system is associated with the electric field beyond that distance.

DISCONNECTED AND
RECONNECTED CAPACITORS

52 •• A 2.00- capacitor is energized to a potential difference
of The wires connecting the capacitor to the battery are then
disconnected from the battery and connected across a second,
initially uncharged capacitor. The potential difference across the
2.00- capacitor then drops to What is the capacitance of
the second capacitor?

53 •• A 100- capacitor and a 400- capacitor are both
charged to They are then disconnected from the voltage
source and are connected together, positive plate to negative
plate and negative plate to positive plate. (a) Find the resulting
potential difference across each capacitor. (b) Find the energy
dissipated when the connections are made.

54 •• Two capacitors, one that has a capacitance of 
and one that has a capacitance of are first discharged
and then are connected in series. The series combination is then
connected across the terminals of a 12.0- battery. Next, they are
carefully disconnected so that they are not discharged and they
are then reconnected to each other—positive plate to positive
plate and negative plate to negative plate. (a) Find the potential
difference across each capacitor after they are reconnected.
(b) Find the energy stored in the capacitors before they are dis-
connected from the battery, and find the energy stored after they
are reconnected.

55 •• A 1.2- capacitor is charged to After charging, the
capacitor is disconnected from the voltage source and is connected
across the terminals of a second capacitor that had previously been
discharged. The final voltage across the 1.2- capacitor is 
(a) What is the capacitance of the second capacitor? (b) How much
energy was dissipated when the connection was made?

10 V.mF

30 V.mF

V

12.0 mF,
4.00 mF

SSM

2.00 kV.
pFpF

4.00 V.mF

12.0 V.
mF

R�
QR

U � 1
2QV.

4pr2 dr.dr,
r,

0 � r 	 .
rr,

�Q.R2

�QR1

SSMd � R2 � R1 .A
C � P0A>d,C � 4pP0R1R2 >(R2 � R1).

R2 
 R1.R2,
R1

e
150 V>m.

P

d
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θ

θΔ

(a) (b)

R1

R2
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56 •• A 12- capacitor and a capacitor of unknown capaci-
tance are both charged to After charging, the two capaci-
tors are disconnected from the voltage source. The capacitors are
then connected to each other—positive plate to negative plate and
negative plate to positive plate. The final voltage across the termi-
nals of the 12- capacitor is (a) What is the capacitance of
the second capacitor? (b) How much energy was dissipated when
the connection was made?
57 •• Two capacitors, one that has a capacitance of and
one that has a capacitance of are connected in parallel. The
parallel combination is then connected across the terminals of a
12.0- battery. Next, they are carefully disconnected so that they are
not discharged. They are then reconnected to each other— the pos-
itive plate of each capacitor connected to the negative plate of the
other. (a) Find the potential difference across each capacitor after
they are reconnected. (b) Find the energy stored in the capacitors
before they are disconnected from the battery, and find the energy
stored after they are reconnected.
58 •• A capacitor is charged to and then removed
from the battery and connected to an uncharged 50- capacitor.
(a) What is the new charge on each capacitor? (b) Find the energy
stored in the 20- capacitor before it is disconnected from the bat-
tery, and the energy stored in the two capacitors after they are con-
nected to each other. Does the stored energy increase or decrease
when the two capacitors are connected to each other?
59 •• Capacitors 1, 2, and 3 have capacitances equal to 

and respectively. The capacitors are connected in
parallel, and the parallel combination is connected across the ter-
minals of a source. The capacitors are then disconnected
from both the voltage source and each other, and are connected
to three switches as shown in Figure 24-42. (a) What is the poten-
tial difference across each capacitor when switches and are
closed but switch remains open? (b) After switch is closed,
what is the final charge on the leftmost plate of each capacitor?
(c) Give the final potential difference across each capacitor after
switch is closed. SSMS3

S3S3

S2S1

200-V

6.00 mF,4.00 mF,
2.00 mF,

pF

pF
3.0 kV20-pF

V

12.0 mF,
4.00 mF

1.00 kV.mF

2.00 kV.
mF

60 •• A capacitor has a capacitance and a charge on its
positively charged plate. A student connects one terminal of the ca-
pacitor to a terminal of an identical capacitor whose plates are elec-
trically neutral. When the remaining two terminals are connected,
charge flows until electrostatic equilibrium is reestablished and
both capacitors have charge on them. Compare the total energy
initially stored in the one capacitor to the total energy stored in the
two capacitors in which electrostatic equilibrium is reestablished. If
there is less energy afterward, where do you think the missing en-
ergy went? Hint: Wires that transport charge can heat up, which is called
Joule heating and is discussed in detail in Chapter 25.

DIELECTRICS

61 • ENGINEERING APPLICATION, CONTEXT-RICH You are a
laboratory assistant in a physics department that has budget prob-
lems. Your supervisor wants to construct inexpensive parallel-
plate capacitors for use in introductory laboratory experiments. The
design uses polyethylene, which has a dielectric constant of 2.30,

Q>2
QC

between two sheets of aluminum foil. The area of each sheet of foil
is and the thickness of the polyethylene is Find
the capacitance of this arrangement.

62 •• The radius and the length of the central wire in a Geiger
tube are and respectively. The outer surface of
the tube is a conducing cylindrical shell that has an inner radius of

The shell is coaxial with the wire and has the same length
The tube is filled with a gas that has a dielectric constant

of 1.08 and a dielectric strength of (a) What is the
maximum potential difference that can be maintained between
the wire and shell? (b) What is the maximum charge per unit length
on the wire?

63 •• ENGINEERING APPLICATION, CONTEXT-RICH You are a
materials science engineer and your group has fabricated a new
dielectric, that has a dielectric constant of 24 and a dielectric
strength of Suppose you want to use this material
to construct a 0.10- parallel plate capacitor that can withstand
a potential difference of (a) What is the minimum plate
separation required to do this? (b) What is the area of each plate at
this separation?

64 •• A parallel-plate capacitor has plates separated by a dis-
tance The capacitance of this capacitor is when no dielectric is
in the space between the plates. However, the space between the
plates is completely filled by two different dielectrics. One diel-
ectric has a thickness and a dielectric constant and the other
dielectric has a thickness and a dielectric constant Find the
capacitance of this capacitor.

65 •• Two capacitors each have two conducting plates of surface
area and an air gap of width They are connected in parallel, as
shown in Figure 24-43, and each has a charge on the positively
charged plate. A slab that has a width an area and a dielectric
constant is inserted between the plates of one of the capacitors.
Calculate the new charge on the positively charged plate of that
capacitor after electrostatic equilibrium is reestablished.

Q�
k

A,d,
Q

d.A

k2 .3
4 d

k1 ,1
4 d

C0d.

2.0 kV.
mF

4.0 � 107 V>m.

2.00 � 106 V>m.
(12.0 cm).
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66 •• A parallel-plate capacitor has a plate separation and
has a capacitance equal to when there is only empty space in the
space between the plates. A slab of thickness where that has
a dielectric constant is placed in the space between the plates—-
completely covering one of the plates. What is the capacitance with
the slab inserted?

67 •• BIOLOGICAL APPLICATION The membrane of the axon of
a nerve cell can be modeled as a thin cylindrical shell of radius

having a length of and a thickness of
The membrane has a positive charge on one side and a

negative charge on the other, and the membrane acts as a parallel-
plate capacitor of area and separation Assume the mem-
brane is filled with a material whose dielectric constant is 3.00.
(a) Find the capacitance of the membrane. If the potential difference
across the membrane is find (b) the charge on the posi-
tively charged side of the membrane, and (c) the electric field
strength in the membrane.

68 •• The space between the plates of a capacitor that is con-
nected across the terminals of a battery is filled with a dielectric
material. Determine the dielectric constant of the material if the
induced bound charge per unit area on it is (a) 80 percent of the free
charge per unit area on the plates, (b) 20 percent of the free charge
per unit area on the plates, and (c) 98 percent of the free charge per
unit area on the plates.

70.0 mV,

d.2prL

10.0 nm.
10.0 cm1.00 � 10�5 m,

k

t 	 d,t,
C0

d
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69 •• The positively charged plate of a parallel-plate capacitor
has a charge equal to When the space between the plates is evac-
uated of air, the electric field strength between the plates is

When the space is filled with a certain dielectric ma-
terial, the field strength between the plates is reduced to

(a) What is the dielectric constant of the material?
(b) If what is the area of the plates? (c) What is the total
induced bound charge on either face of the dielectric material?

70 •• Find the capacitance of the
parallel-plate capacitor shown in
Figure 24-44.

GENERAL PROBLEMS

71 • You are given four identical capacitors and a 100- bat-
tery. When only one of the capacitors is connected to the battery the
energy stored is Combine the four capacitors in such a way that
the total energy stored in all four capacitors is Describe the com-
bination and explain your answer.

72 • Three capacitors have capacitances of 
and Find the equivalent capacitance if (a) the capacitors are
connected in parallel and (b) the capacitors are connected in series.

73 • A 1.00- capacitor is connected in parallel with a 2.00-
capacitor, and this combination is connected in series with a 6.00-
capacitor. What is the equivalent capacitance of this combination?

74 • The voltage across a parallel-plate capacitor that has a
plate separation equal to is The capacitor is dis-
connected from the voltage source and the separation between the
plates is increased until the energy stored in the capacitor has been
doubled. Determine the final separation between the plates.

75 •• Determine the equivalent capacitance, in terms of of
each of the combinations of capacitors shown in Figure 24-45.

C0 ,

1.20 kV.0.500 mm

mF
mFmF

8.00 mF.
4.00 mF,2.00 mF,

U0 .
U0 .

V

Q � 10 nC,
1.2 � 105 V>m.

2.5 � 105 V>m.

Q.

76 •• Figure 24-46 shows four capacitors connected in the
arrangement known as a capacitance bridge. The capacitors are
initially uncharged. What must the relation between the four
capacitances be so that the potential difference between points and

remains zero when a voltage is applied between points and b?aVd
c

77 •• The plates of a parallel-plate capacitor are separated by
distance and each plate has area The capacitor is charged to a
potential difference and then disconnected from the voltage
source. The plates are then pulled apart until the separation is 
Find (a) the new capacitance, (b) the new potential difference, and
(c) the new stored energy. (d) How much work was required to
change the plate separation from to 

78 •• A parallel-plate capacitor has capacitance when there
is no dielectric in the space between the plates. The space between
the plates is then filled with a material that has a dielectric constant
of When a second capacitor of capacitance is connected in
series with the first, the capacitance of the series combination is 
Find in terms of 

79 •• A parallel combination of two identical 2.00- parallel-
plate capacitors (no dielectric is in the space between the plates) is
connected to a 100- battery. The battery is then removed and the
separation between the plates of one of the capacitors is doubled.
Find the charge on the positively charged plate of each of the
capacitors.

80 •• A parallel-plate capacitor
that has no dielectric in the space be-
tween the plates has a capacitance 
and a plate separation Two dielec-
tric slabs that have dielectric con-
stants of and respectively, are
then inserted between the plates as
shown in Figure 24-47. Each slab
has a thickness and has area the
same area as each capacitor plate. When the charge on the positively
charged capacitor plate is find (a) the electric field in each dielec-
tric and (b) the potential difference between the plates. (c) Show that
the capacitance of the system after the slabs are inserted is given by

(d) Show that is the equiva-
lent capacitance of a series combination of two capacitors, each
having plates of area and a gap width equal to The space be-
tween the plates of one is filled with a material that has a dielectric
constant equal to and the space between the plates of the other is
filled with a material that has a dielectric constant equal to 

81 •• The plates of a parallel-plate capacitor are separated by
distance and each plate has area A metal slab of thickness and
area is inserted between the plates in such a way that the slab is
parallel with the capacitor plates. (a) Show that the new capacitance
is given by regardless of the distance between the metal
slab and the positively charged plate. (b) Show that this arrangement
can be modeled as a capacitor that has plate separation in series
with a capacitor of plate separation where a � b � d � d0 .b,

a

P0A>(d0 � d),

A
dA.d0 ,

k2 .
k1

d>2.A

[2k1k2 >(k1 � k2)]C0[2k1k2 >(k1 � k2)]C0 .

Q,

A,1
2 d

k2 ,k1

d.
C0

SSM

V

mF

C0 .C�
C0 .

C�k.

C0

3d?d

3d.
V

A.d,

A d

3κ
2κ

1κ
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b
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a

C

4C3C
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82 •• A parallel-plate capaci-
tor that has plate area is filled
with two dielectrics of equal size, as
shown in Figure 24-48. (a) Show
that this system can be modeled
as two capacitors that are connected
in parallel and each have an area

(b) Show that the capacitance is
given by where is the capacitance if there were no di-
electric materials in the space between the plates.

83 •• A parallel-plate capacitor that has no dielectric in the
space between the plates has a plate area and a gap width 
A charge is on the positively charged plate. (a) Find the stored
electrostatic energy as a function of (b) Find the increase in energy

due to an increase in plate separation from 
(c) If is the force exerted by one plate on the other, the work
needed to move one plate a distance is Show that

(d) Show that the force in Part (c) equals where
is the charge on one plate and is the electric field between the

plates. Give a conceptual explanation for the factor in this result.

84 •• A rectangular parallel-
plate capacitor that has a length 
and a width has a dielectric that
has a width partially inserted a
distance between the plates, as
shown in Figure 24-49. (a) Find
the capacitance as a function of 
Neglect edge effects. (b) Show that
your answer gives the expected
results for and 

85 ••• An electrically isolated capacitor that has a charge on
its positively charged plate is partly filled with a dielectric sub-
stance as shown in Figure 24-49. The capacitor consists of two rec-
tangular plates that have edge lengths and and are separated by
distance The dielectric is inserted into the gap a distance 
(a) What is the energy stored in the capacitor? Hint: The capacitor can
be modeled as two capacitors connected in parallel. (b) Because the en-
ergy of the capacitor decreases as increases, the electric field must
be doing work on the dielectric, meaning that there must be an elec-
tric force pulling it in. Calculate this force by examining how the
stored energy varies with (c) Express the force in terms of the ca-
pacitance and potential difference between the plates. (d) From
where does this force originate?

86 ••• A spherical capacitor consists of a solid conducting sphere
that has a radius and a charge and a concentric conducting
spherical shell that has an inner radius and a charge The space
between the two is filled with two different dielectric materials of
dielectric constants and The boundary between the two di-
electrics occurs a distance from the center. (a) Calculate the
electric field in the regions and 
(b) Integrate the expression to obtain the potential dif-
ference, between the two conductors. (c) Use to obtain
an expression for the capacitance of this system. (d) Show that your
answer from Part (c) simplifies to the expected one if equals 

87 ••• A capacitance balance is shown in Figure 24-50. The bal-
ance has a weight attached on one side and a capacitor that has a
variable gap width on the other side. Assume the upper plate of

k2 .k1

C � Q>VV,
dV � �E

S # d�
S

1
2 (a � b) 	 r 	 b.a 	 r 	 1

2 (a � b)
1
2 (a � b)
k2 .k1

�Q.b
�Qa

SSM

V
x.

x

x.d.
ba

Q

x � a.x � 0

x.

x
b
b

a

1
2

EQ

1
2EQ,F � Q2 >(2P0A).

F dx � dU.dx
F

dU � (dU>dx) dx.dxdU
x.

Q
x.A

C0
1
2 (k1 � k2)C0 ,

1
2A.

A
the capacitor has negligible mass. When the capacitor potential dif-
ference between the plates is the attractive force between the
plates balances the weight of the hanging mass. (a) Is the balance
stable? That is, if we balance it out, and then move the plates a lit-
tle closer together, will they snap shut or move back to the equi-
librium point? (b) Calculate the value of required to balance an
object of mass assuming the plates are separated by distance 
and have area Hint: A useful relation is that the force between the
plates is equal to the derivative of the stored electrostatic energy with
respect to the plate separation.

88 ••• ENGINEERING APPLICATION, CONTEXT-RICH You are an in-
tern at an engineering company that makes capacitors used for
energy storage in pulsed lasers. Your manager asks your team to
construct a parallel-plate, air-gap capacitor that will store of
energy. (a) What minimum volume is required between the plates
of the capacitor? (b) Suppose you have developed a dielectric that
has a dielectric strength of and a dielectric con-
stant of 5.00. What volume of this dielectric, between the plates of
the capacitor, is required for it to be able to store of energy?

89 ••• Consider two parallel-plate capacitors, and that
are connected in parallel. The capacitors are identical except that 
has a dielectric inserted between its plates. A battery is con-
nected across the combination until electrostatic equilibrium is es-
tablished, and then the battery is disconnected. (a) What is the
charge on each capacitor? (b) What is the total stored energy of the
capacitors? (c) The dielectric is removed from What is the final
stored energy of the capacitors? (d) What is the final voltage across
the two capacitors?

90 ••• A capacitor is constructed of two coaxial conducting
thin cylindrical shells of radii and which have a length

A charge of is on the inner cylinder, and a charge of 
is on the outer cylinder. The region between the two cylinders is
filled with a material that has a dielectric constant (a) Find the po-
tential difference between the cylinders. (b) Find the density of the
free charge on the inner cylinder and the outer cylinder. (c) Find
the bound charge density on the inner cylindrical surface of the
dielectric and on the outer cylindrical surface of the dielectric.
(d) Find the total stored energy. (e) If the dielectric will move with-
out friction, how much mechanical work is required to remove the
dielectric cylindrical shell?

91 ••• Before switch S is closed, as
shown in Figure 24-51, the voltage
across the terminals of the switch is

and the voltage across the capac-
itor labeled is The capaci-
tance of is The total energy
stored in the two capacitors is 
After closing the switch, the voltage
across each capacitor is and the
energy stored by the two capacitors has
dropped to Determine the ca-
pacitance of and the charge on that
capacitor before the switch was closed.

92 ••• An air-filled parallel-plate
capacitor that has gap width has
plates that each have an area The ca-
pacitor is charged to a potential differ-
ence and is then removed from the
voltage source. A dielectric slab that
has a dielectric constant of 2.00, a thick-
ness and an area is then inserted, as shown in Figure 24-52. Let

be the free charge density at the conductor–dielectric surface, ands1
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let be the free charge density at the conductor–air surface.
(a) Explain why the electric field must have the same value inside
the dielectric as in the free space between the plates. (b) Show that

(c) Show that the final capacitance (after the slab is in-
serted) is 1.50 times the capacitance when the capacitor is filled
with air. (d) Show that the final potential difference is (e) Show
that energy stored after the slab is inserted is only two-thirds of the
energy stored before insertion.

93 ••• A capacitor has rectan-
gular plates of length and width 
The top plate is inclined at a small
angle, as shown in Figure 24-53.
The plate separation varies from 
at the left to at the right, where

is much less than or Calculate
the capacitance of this arrange-
ment. Hint: Break the problem up into

b.ay0

2y0

y0

b.a

2
3V.

s1 � 2s2 .

s2 a parallel combination. Choose strips of width and length b to approximate
small (differential) capacitors (each having a value of ). Each will have a
plate area of b and separation distance Then argue that these
differential capacitors are connected in parallel.

94 ••• Not all dielectrics that separate the plates of a capacitor
are rigid. For example, the membrane of a nerve axon is a lipid
bilayer that has a finite compressibility. Consider a parallel-plate ca-
pacitor whose plate separation is maintained by a material that has
a dielectric constant of 3.00, a dielectric strength of 
and a Young’s modulus for compressive stress of 
When the potential difference between the capacitor plates is zero,
the thickness of the dielectric is equal to and the capaci-
tance of the capacitor is given by (a) Derive an expression for the
capacitance as a function of the potential difference between the ca-
pacitor plates. (b) What is the maximum value of this potential dif-
ference? (Assume that the dielectric constant and the dielectric
strength do not change under compression.)

C0 .
0.200 mm

5.00 � 106 N>m2.
40.0 kV>mm,

y0 � (y0 >a)x.dx
dC

dx

x dx

2y0

y0

a

b a
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Electric Current
and Direct-Current
Circuits

25-1 Current and the Motion of Charges

25-2 Resistance and Ohm’s Law

25-3 Energy in Electric Circuits

25-4 Combinations of Resistors

25-5 Kirchhoff’s Rules

25-6 RC Circuits

W
hen we turn on a light, we connect the wire filament in the lightbulb
across a potential difference that causes charge to flow through the wire,
which is similar to the way a pressure difference in a garden hose causes
water to flow through the hose. The flow of charge constitutes an elec-
tric current. We usually think of currents as being in conducting wires,
but the electron beam in a cathode-ray tube (CRT) video monitor and a

beam of charged ions from a particle accelerator also constitute electric currents.

In Chapter 25, we look at direct-current (dc) circuits, which are circuits where
the direction of the current in a circuit element does not vary with time. Direct
currents can be produced by batteries connected to resistors and capacitors.
In Chapter 29, we discuss alternating-current (ac) circuits, in which the direc-
tion of the current changes.

25
C H A P T E R

When jump-starting your car using

a second car, which terminal of

the battery of your car should be

connected to the positive terminal of

the battery of the second car?

(See Example 25-15.)

?

839

UNDERSTANDING DIRECT-CURRENT
CIRCUITS CAN HELP YOU PERFORM
POTENTIALLY DANGEROUS TASKS
LIKE JUMP-STARTING A VEHICLE.
(© Tom Stewart/CORBIS.)
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F I G U R E  2 5 - 1 A segment of a current-
carrying wire. If is the amount of charge
that flows through the cross-sectional area 
in time the current through is 
in the limit that approaches zero.¢t
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* The ampere is operationally defined (see Chapter 26) in terms of the magnetic force that current-carrying wires exert
on one another. The coulomb is then defined as the ampere-second.

† The average kinetic energy of the free electrons in a metal is quite large, even at very low temperatures. These electrons
do not have the classical Maxwell–Boltzmann energy distribution and do not obey the classical equipartition theorem.
We discuss the energy distribution of these electrons and calculate their average speed in Chapter 38.

25-1 CURRENT AND THE MOTION OF CHARGES

When a switch is thrown to turn on a circuit, a very small amount of charge accu-
mulates along the surfaces of the wires and other conducting elements of the cir-
cuit, and these surface charges produce electric fields that drive the motion of
charges through the conducting materials of the circuit. In the circuits we consider
here, the time required for these small surface charges to be established is very
short. The time for steady-state flow to be established depends on the size and the
conductivity of the elements in the circuit, but the time is instantaneous as far as
our perceptions are concerned. In steady state, charge no longer continues to ac-
cumulate at points along the circuit and the current is steady. (For the circuits in
this chapter containing capacitors and resistors, the current may increase or de-
crease slowly, but appreciable changes occur only over a period that is much
longer than the time needed to reach the steady state.)

Electric current is the rate of flow of charge through a surface—typically a cross-
sectional surface of a conducting wire. Figure 25-1 shows a segment of a wire that
is carrying a current (charges are moving). If is the charge that flows through
the cross-sectional area in time the current is

25-1

in the limit that approaches zero. The SI unit of current is the ampere (A)*:

25-2

Mobile charges can be negatively charged or positively charged. In addition,
a direction along the wire is designated as the positive direction. By convention,
the sign of the current is positive if the current is due either to positive charges
moving in the positive direction or to negative charges moving in the negative
direction. However, the current is negative if it is due either to positive charges
moving in the negative direction or to negative charges moving in the positive
direction. This convention was established before it was known that the mobile
charge carriers in metals were free electrons. Thus, in a current-carrying metallic
wire, the free electrons move in the negative direction when the current is posi-
tive, and vice versa.

In a metal wire, the motion of negatively charged free electrons is quite com-
plex. When there is no electric field in the wire, the free electrons move in random
directions with relatively large speeds of the order of † In addition, the
electrons collide repeatedly with the lattice ions in the wire. Because the velocity
vectors of the electrons are randomly oriented, the average velocity is zero. When
an electric field is applied, the field exerts a force on each free electron, giv-
ing it a change in velocity in the direction opposite the field. However, any addi-
tional kinetic energy acquired is quickly dissipated by collisions with the lattice
ions in the wire. During the time between collisions with the lattice ions, the free
electrons, on average, acquire an additional velocity in the direction opposite to
the field. The net result of this repeated acceleration and dissipation of energy is
that the electrons drift along the wire with a small average velocity, directed
opposite to the electric-field direction, called the drift velocity. The drift speed
is the magnitude of the drift velocity.

�eE
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1 A � 1 C>s¢t
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F I G U R E  2 5 - 2 During time all the free
charges initially in the shaded volume pass
through If there are charge carriers per
unit volume, each having charge the total
free charge in this volume is 
where is the drift speed of the charge
carriers.
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The motion of the free electrons in a metal is similar to the motion of the mole-
cules of a gas, such as air. In still air at room temperature, the gas molecules move
with large speeds (about due to their thermal energy, but their average
velocity is zero. When there is a breeze, the air molecules have a small average ve-
locity or drift velocity in the direction of the breeze superimposed on their random
high-speed motions. Similarly, when there is no applied electric field, the average
velocity of all the free electrons in a metal is zero, but when there is an applied
electric field, the average velocity is not zero due to the small drift velocities of
the free electrons.

Let be the number of mobile charged particles (charge carriers) per unit vol-
ume in a conducting wire of cross-sectional area We call the number density
of the charge carriers. Assume that each particle carries a charge and moves in
the positive direction with a drift speed During time all the particles in the
volume shown in Figure 25-2 as a shaded region, pass through the area el-
ement. The number of particles in this volume is and the total free charge
in the volume is

The current is thus

25-3

RELATION BETWEEN CURRENT AND DRIFT SPEED

Equation 25-3 can be used to find the current due to the flow of any species of
charged particle. If the current is the result of the motion of more than one species
of mobile charge, as it sometimes is in ionic solutions such as salt water, then
the total current is the sum of the currents for each of the individual species of
mobile charges.

The number density of charge carriers in a conductor can be measured by the
Hall effect, which is discussed in Chapter 26. The result is that, in most metals,
there is approximately one free electron per atom.

The current per unit area is which is gotten by dividing both sides of Equa-
tion 25-3 by the area The current density vector, , is specified by

25-4

DEFINITION—CURRENT DENSITY

The current through a surface is defined as the flux of the current density vector
through the surface. That is,

25-5

DEFINITION—CURRENT

where is an element of area for the surface and is the unit vector normal
to the surface in the direction of (see Figure 25-3). If is uniform and if
the surface is flat, which means that would be uniform, then the flux can be
expressed

where is the area of the surface and is the angle between and The sign
of the current is the same as the sign of If is positive, and if u 
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Example 25-1 Finding the Drift Speed

The wire used for student laboratory experiments is typically made of copper and has a ra-
dius equal to (a) Estimate the total charge of the free electrons in each meter of
such a wire carrying a current that has a magnitude equal to Assume one free electron
per atom. (b) Calculate the drift speed of the free electrons.

PICTURE Equation 25-3 relates the drift speed to the number density of charge carriers,
which approximately equals the number density of copper atoms. We can find from the
mass density and molar mass of copper and Avogadro’s number.

SOLVE

nana

1.0 A.
0.815 mm.

(a) 1. The drift speed is related to the current and number
density of charge carriers:

I � nqvdA

2. If there is one free electron per atom, the number
density of free electrons equals the number density

of atoms:na

n
n � na

3. The number density of atoms is related to the mass
density Avogadro’s number and the molar 
mass For copper, and
M � 63.5 g>mol:

rm � 8.93 g>cm3M.
NA,rm,

na

� 8.47 � 1022 atoms/cm3 � 8.47 � 1028 atoms/m3

�
(8.93 g>cm3)(6.02 � 1023 atoms>mol)

63.5 g>mol

na �
rmNA

M

� �1.36 � 1010 C>m3

� �(1.60 � 10�19 C)(8.47 � 1028 m�3)

rfe � �en

so

�2.8 � 104 C>m� �2.83 � 104 C>m �

Q>L � �enA � (�1.36 � 1010 C>m3) p(8.15 � 10�4 m)2

Q � rfeAL � �enAL

4. The charge density of the free electrons equals the
number density multiplied by the charge:

rfe

5. The charge is the charge density multiplied by the
volume:

(b) Substituting numerical values in Equation 25-3 yields 
(The current is negative because Equation 25-3 is valid
only for charges moving in the positive direction.):

vd

3.5 � 10�2 mm>s�
�1.0 C>s

(�2.83 � 104 C>m)
�

vd �
I
nqA

�
I

�neA
�
I
Q>L

then is negative (Figure 25-4). The black arrow with the plus sign next to each
wire in the figure indicates the choice for the direction of on the cross-sectional
surfaces of the wire.
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F I G U R E  2 5 - 4 The flat surface is perpendicular to the current density vector The area vector
for the surface is defined to be in the same direction as normal for the surface. However, there

are two choices for the direction of (a) The current through surface is positive if the direction of
is chosen so that and are in the same direction. (b) The current through surface is negative if

the direction of is chosen so that and are in opposite directions.J
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(a) 1. The number density is related to the current, the charge, the
cross-sectional area, and the speed:

I � qnAv

2. We find the speed of the protons from their kinetic energy: K � 1
2mv2 � 5.0 MeV

3. Use for the mass of a proton, and solve
for the speed:
m � 1.67 � 10�27 kg

3.1 � 107 m>s� 3.09 � 107 m>s �

v � A2K
m

� C(2)(5.0 � 106 eV)
1.67 � 10�27 kg

�
1.60 � 10�19 J

1 eV

CHECK Because there is 28 000 coulombs of mobile charge per meter of wire [Part (a), step 5],
only a small drift speed is expected for a current of one coulomb per second. The Part (b) result
is in agreement with this expectation.

PRACTICE PROBLEM 25-1 How long would it take for an electron to drift from your car
battery to the starter motor, a distance of about if its drift speed is 3.5 � 10�5 m>s?1 m,

Example 25-2 Finding the Number Density

In a certain particle accelerator, a current of is carried by a proton beam
that has a radius equal to (a) Find the number density of protons in the beam. (b) If
the beam hits a target, how many protons hit the target in 

PICTURE To find the number density, we use the relation (Equation 25-3), where
is the drift speed of the charge carriers. (The drift speed is the magnitude of the average

velocity.) We can find from the energy. (In a beam, each particle in the beam
has a kinetic energy equal to .) The amount of charge that hits the target in time

is and the number of protons that hits the target is divided by the charge
per proton.

SOLVE

QNI ¢t,¢t
Q5.0 MeV

5.0-MeVv
v

I � qnAv

1.0 s?
1.5 mm.

5.0-MeV0.50 mA

The drift speed of the mobile electrons in the wire in Example 25-1 is only a few
hundredths of a millimeter per second. If electrons drift along wires at such low
speeds, why does an electric light on the ceiling come on instantly when the wall
switch is turned on? A comparison with water in a hose may prove useful. If you
attach an empty hose to a water faucet and turn on the water, it typi-
cally takes several seconds for the water to travel the length of the hose to the noz-
zle. However, if the hose is already full of water when the faucet is opened, the
water emerges from the nozzle almost instantaneously. Because of the water pres-
sure at the faucet, the segment of water near the faucet pushes on the water im-
mediately next to it, which pushes on the next segment of water, and so on, until
the last segment of water is pushed out the nozzle. This pressure wave moves
down the hose at the speed of sound in water, and the water quickly reaches a
steady flow rate.

Unlike a water hose, a metal wire is never empty. That is, there are always a very
large number of conduction electrons throughout the metal wire. Thus, electrons
start moving along the entire length of the wire (including the wire inside the light-
bulb) almost immediately after the light switch is turned on. The transport of a sig-
nificant amount of electrons in a wire is accomplished not by a few electrons mov-
ing rapidly down the wire, but by a very large number of electrons slowly drifting
down the wire. Surface charges are established on the wires, and these surface
charges produce an electric field. It is the electric field produced by these surface
charges that drives the conduction electrons through the wire.

100-ft-long
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4. Substitute to calculate n:

1.4 � 1013 protons>m3� 1.43 � 1013 protons>m3 �

�
0.50 � 10�3 A

(1.60 � 10�19 C>proton) p(1.5 � 10�3 m)2 (3.10 � 107 m>s)

n �
I
qAv

(b) 1. The number of protons that hit the target in is related to
the total charge that hits in and the proton charge q:1.0 s¢Q

1.0 sN ¢Q � Nq

2. The charge that strikes the target in time is the current
multiplied by the time:

¢t¢Q ¢Q � I ¢t

3. The number of protons is then:

3.1 � 1015 protons� 3.13 � 1015 protons �

N �
¢Q
q

�
I ¢t
q

�
(0.50 � 10�3 A)(1.0 s)
1.60 � 10�19 C>proton

CHECK The number of protons hitting the target in time is the number in the
volume Thus, Substituting then gives 

which is the expression for that we used in Part (b).

TAKING IT FURTHER We were able to use the classical expression for kinetic energy in step
2 of Part (a) without taking relativity into consideration, because the proton kinetic energy
of is much less than the proton rest energy (about The speed found,

is about one-tenth the speed of light.

PRACTICE PROBLEM 25-2 Using the number density found in Part (a), how many protons
are there in a volume of of the space containing the beam?

25-2 RESISTANCE AND OHM’S LAW

Current in a conductor is driven by an electric field inside the conductor that
exerts a force on the free charges. (In electrostatic equilibrium, the electric field
must be zero inside a conductor, but when there is a current in a conductor, the
conductor is no longer in electrostatic equilibrium.) The free charges drifts down
the conductor, driven by forces exerted on the charges by the electric field. In a
metal, the free charges are negatively charged, so the free charges are driven in
a direction opposite to the direction of the electric field If the only forces on the
free charges were the electric forces, then the free charges would gain speed indef-
initely. However, this does not happen because the free electrons interact with the
lattice of ions that make up the metal, and the interaction forces oppose the drift-
ing motion of the free electrons.

Figure 25-5 shows a wire segment that has a length a cross-sectional area 
and a current Because electric fields point in the direction of decreasing poten-
tial, the potential at point is greater than the potential at point If we model the
current as the flow of positive charge carriers, these positive charge carriers drift in
the direction of decreasing potential. Assuming the electric field to be uniform
throughout the segment, the potential drop between points and is

25-6

The ratio of the potential drop in the direction of the current* to the current is
called the resistance of the segment,

25-7

DEFINITION—RESISTANCE

where the direction of the current refers to the direction of the current density vector.
The SI unit of resistance, the volt per ampere, is called an ohm

25-81Æ � 1 V>A (Æ):

R �
V
I

V � Va � Vb � E ¢L

baV
E
S

b.a
I.

A,¢L,

E
S

.

qE
S

E
S

1.0 mm3

3.1 � 107 m>s,
931 MeV).5.0 MeV

N[I>(qAv)](Av) ¢t � I ¢t>q � ¢Q>q, N � nAv ¢t �n � I>(qAv)N � nAv ¢t.Av ¢t.
¢tN

* Because current is a scalar it does not have a direction.
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F I G U R E  2 5 - 6 Plots of versus 
(a) The potential drop is proportional to
the current in accord with Ohm’s law.
The resistance equal to the
slope of the line, is independent of as
indicated by the constant slope of the
line. (b) The potential drop is not
proportional to the current. The
resistance equal to the slope of
the chord connecting the origin with the
point increases with increasing I.(I, V),

R � V>I,
I

R � V>I,
I.V
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For many materials, the resistance of a sample of the material does not depend
on either the potential drop or the current. Such materials, which include most
metals, are called ohmic materials. For many ohmic materials resistance remains
essentially constant over a wide range of conditions. In that case the potential drop
across a segment of the material is proportional to the current in the material.
Equation 25-7 is typically written:

25-9

OHM’S LAW

The relation is commonly referred to as Ohm’s law, even when the resis-
tance varies with the current 

Figure 25-6 shows the potential difference versus the current for two con-
ductors. For one conductor (Figure 25-6a), the relation is linear, but for the other
conductor (Figure 25-6b), the relation is not linear. Ohm’s law is not a fundamen-
tal law of nature, like Newton’s laws or the laws of thermodynamics, but rather is
an empirical description of a property shared by many materials under specified
conditions. As we shall see, the resistance of a conductor does vary with the tem-
perature of the conductor.

IV
I.R

V � IR

V � IR

Slope equals R.

Slope equals V/I = R.
(I, V)

II I

V V

V

(a) (b)

PRACTICE PROBLEM 25-3

A wire of resistance carries a current of What is the potential drop across
the wire?

1.5 A.3.0 Æ

The resistance of a conducting wire is found to be proportional to the length 
of the wire and inversely proportional to its cross-sectional area 

25-10

where the proportionality constant is called the resistivity of the conducting
material.* The unit of resistivity is the ohm-meter Note that Equation 25-9
and Equation 25-10 for electrical conduction and electrical resistance are of the same
form as Equation 20-9 and Equation 20-10 for thermal
conduction and thermal resistance. For the equations that describe current, the
potential difference is substituted for the temperature difference and is
substituted for the thermal conductivity (In fact, is called the electrical conduc-
tivity.†) Ohm was led to his law by the similarity between the conduction of elec-
tricity and the conduction of heat.

1>rk.
1>r¢TV

[R � ¢ƒx ƒ>(kA)](¢T � IR)

(Æ # m).
r

R � r
L
A

A:
LR

* The symbol used here for the resistivity was used in previous chapters for volume charge density. Care must be taken
to identify what quantity refers to from context.

† The unit of conductance is the siemens and the units for conductivity are siemens per meter (S>m).(S), 1 S � 1 Æ�1,
r

r
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F I G U R E  2 5 - 7 Plot of resistivity versus
temperature for copper. Because the Celsius
and absolute temperatures differ only in the
choice of zero, the resistivity has the same
slope whether it is plotted against or T.tC

r
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* There is a breakdown in this linearity for all metals at very low temperatures that is not shown in Figure 25-7.

PRACTICE PROBLEM 25-4

A Nichrome wire has a radius of What length of wire is
needed to obtain a resistance of 2.0 Æ?

0.65 mm.(r � 110 � 10�8 Æ # m)

For a segment of wire that has a length a cross-sectional area a current 
and a resistance the voltage drop across the length of the segment is related
to the current in the segment by

The voltage drop and the electric field strength are related by 
Substituting for and for gives

Dividing both sides by and expressing and as vectors, we obtain

25-11

Equation 25-11 is an alternative version of Ohm’s law. It states that the current den-
sity vector at a point in a current-carrying conductor is equal to the reciprocal of
the resistivity multiplied by the electric field vector at the same point.

The resistivity of any given metal depends on the temperature. Figure 25-7
shows the temperature dependence of the resistivity of copper. This graph is
nearly a straight line, which means that the resistivity varies nearly linearly with
temperature.* In tables, the resistivity is usually given in terms of its value at

along with the temperature coefficient of resistivity, which is the
ratio of the fractional change in resistivity to the change in temperature:

25-12

where is the resistivity at temperature and is the resistivity at temperature T.rT0r0

a �
(r � r0)>r0

T � T0

a,20°C, r20 ,

E
S

J
S

E
S

� r J
S

JEL

EL � rJL

I>AJVEL
V � EL.EV

V � IR � Ir
L
A

I
VR,

I,A,L,

I(
A

)

2

4

6

0
0 40 80 120

t (ms)

F I G U R E  2 5 - 9 The current in the
tungsten filament of an incandescent light
bulb peaks when the bulb is first connected
to the battery, but during the next 100 ms or
so the current drops to its steady-state value
of about 0.75 A. This occurs because the
resistance of the filament increases with
increasing temperature.

Switch

Battery

Bulb

+

−

F I G U R E  2 5 - 8

CONCEPT CHECK 25-1

The filament in the lightbulb
shown in Figure 25-8 is a thin
tungsten wire, and Figure 25-9 is a
plot of the current in the filament
as a function of time. Note that the
current increases rapidly when the
switch is closed, and then decrea-
ses until the current is maintained
at a constant value. (a) Why does
the current initially get larger
than the constant value? (b) Why
does the current remain constant
following the initial surge?

✓
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Table 25-1 gives the resistivity and the temperature coefficient at for vari-
ous materials. Note the tremendous range of resistivity values for various materi-
als at The classical theory of conduction predicts that the resistivities of met-
als decrease with increases in temperature, which is one of several reasons that the
classical theory of conduction has been discredited. However, the increases in re-
sistivities of metals with increases in temperature are consistent with the quantum-
mechanical theory of conduction. Both the classical and the quantum-mechanical
theories of conduction are presented in Chapter 38.

Electrical wires are manufactured in standard sizes. The diameter of the circular
cross section is indicated by a gauge number—larger numbers correspond to smaller
diameters—as can be seen in Table 25-2. 

20°C.

20°C

Table 25-1 Resistivities and Temperature Coefficients

Temperature
Resistivity Coefficient 

Material at at 

Conducting Elements
Aluminum
Copper
Iron
Lead
Mercury
Platinum
Silver
Tungsten
Carbon

Conducting alloys
Brass
Constantin

Manganin

Nichrome

Semiconductors
Germanium 0.45
Silicon 640

Insulators
Neoprene
Polystyrene
Porcelain
Wood
Glass
Hard rubber
Amber
Sulfur
Teflon

Body material
Blood 1.5
Fat 25  

1 � 1014

1 � 1015

5 � 1014

1013 � 1016

1010 � 1014

108 � 1014

�1011

�108

�109

�7.5 � 10�2

�4.8 � 10�2

0.4 � 10�3100 � 10�8

0.000 � 10�344 � 10�8(�84% Cu, �12% Mn, �4% Ni)

0.002 � 10�3�44 � 10�8(60% Cu, 40% Ni)

2 � 10�3�8 � 10�8

�0.5 � 10�33500 � 10�8

4.5 � 10�35.5 � 10�8

3.8 � 10�31.6 � 10�8

3.927 � 10�3100 � 10�8

0.89 � 10�396 � 10�8

4.3 � 10�322 � 10�8

5.0 � 10�310 � 10�8

3.93 � 10�31.7 � 10�8

3.9 � 10�32.8 � 10�8

20°C, K�1æ # m20°C,
AR

Table 25-2 Wire Diameters and

Cross-Sectional Areas for 

Commonly Used Copper Wires

AWG* Diameter† at Area,
Gauge Number

4 5.189 21.15

6 4.115 13.30

8 3.264 8.366

10 2.588 5.261

12 2.053 3.309

14 1.628 2.081

16 1.291 1.309

18 1.024 0.8235

20 0.8118 0.5176

22 0.6438 0.3255

* American wire gauge.
† The diameter is related to the gauge number by

d � 0.127 � 92[(36�n)>39].

nd

mm220°C, mm



Color-coded carbon resistors on a circuit board. 
(© Chris Rogers/The Stock Market.)
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Example 25-3 Resistance per Unit Length

Calculate the resistance per unit length of a 14-gauge copper wire.

PICTURE To calculate the resistance per unit length of the 14-gauge wire, you will need to
find the resistivity of copper from Table 25-1 and the cross-sectional area of the copper wire
from Table 25-2.

SOLVE

Table 25-3 The Color Code for Resistors and Other Devices

1. From Equation 25-10, the resistance per unit length equals the
resistivity divided by unit area:

so
R
L

�
r

A
R � r

L
A

2. Find the resistivity of copper from Table 25-1 and the cross-
sectional area of the copper wire from Table 25-2: A � 2.08 mm2

r � 1.7 � 10�8 Æ # m

3. Use these values to find R>L: 8.2 � 10�3 Æ>mR
L

�
r

A
�

1.7 � 10�8 Æ # m
2.08 � 10�6 m2 �

CHECK 14-gauge copper wire is commonly used for household lighting circuits. The resistance
of a lightbulb filament is and the resistance of of 14-gauge copper
wire is so the resistance of the 14-gauge copper wire is negligible compared to the resis-
tance of the lightbulb filament as expected.

0.82 Æ,
100 m144 Æ100-W, 120-V

Carbon, which has a relatively high resistivity, is used in resistors found in elec-
tronic equipment. Resistors are often marked with colored stripes that indicate
their resistance value. The code for interpreting these colors is given in Table 25-3. 

Colors Numeral Tolerance

The color bands consist of a group of three or four equally spaced bands that
represent the value of the resistance in ohms, plus an additional tolerance band that
is separate from the group. The value bands are read starting with the band closest
to the end of the resistor. If there are three value bands, the first two bands represent
a number between 1 and 99 the third band represents the number of zeros that
follow. For the resistor shown, the colors of the first three bands are, respectively,
orange, black, and blue. Thus, the number is 30 000 000 and the resistance value is

(If a green band had been inserted between the black and blue bands, the
resistance value would have been The band separated from the others
is the tolerance band. If the tolerance band is silver, as shown here, the tolerance is
10 percent. Ten percent of 30 is 3, so the resistance value is (30 � 3) MÆ.

305 MÆ.)
30 MÆ.

 White �  9
 Gray �  8

 Violet �  7
 Blue �  6

 Green �  5
 None �  20% Yellow �  4
 Silver �  10% Orange �  3
 Gold �  5% Red �  2
 Red �  2% Brown �  1

 Brown �  1% Black �  0
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Example 25-4 The Electric Field That Drives the Current

Find the electric field strength in the copper wire of Example 25-3 when the wire
has a current equal to 

PICTURE We find the electric field strength as the potential drop for a given length of wire,
The potential drop is found using Ohm’s law, and the resistance per length

is given in Example 25-3.

SOLVE

V � IR,E � V>L.

1.3 A.
14-gaugeE

1. The electric field strength equals the potential drop per unit
length:

E �
V
L

2. Write Ohm’s law for the potential drop: V � IR

3. Substitute this expression into the equation for E: E �
V
L

�
IR
L

� I
R
L

4. Substitute the value of found in Example 25-3 to calculate E:R>L 0.011 V>mE � I
R
L

� (1.3 A)(8.2 � 10�3 Æ>m) �

CHECK An electric field of means that the potential drop for a length of
the wire is This result seems acceptable for a household circuit. However, a 
current would mean an drop, which is much less acceptable. (It is unacceptable because
many devices do not function properly if the potential difference applied across their termi-
nals is significantly less than the full 120 volts.)

11-V
13-A120-V1.1 V.

100-m0.011 V>m

25-3 ENERGY IN ELECTRIC CIRCUITS

When there is an electric field in a conductor, the free electrons gain kinetic energy
due to the work done on the free electrons by the field. However, steady state is
soon achieved as the kinetic energy gain is continuously dissipated into the ther-
mal energy of the conductor by interactions between the free electrons and the lat-
tice ions of the conductor. This mechanism for increasing the thermal energy of a
conductor is called Joule heating.

Consider the segment of wire of length and cross-sectional area shown in
Figure 25-10a. The wire carries a steady current that we will model as positive free
charge in the wire that is moving to the right. Consider the free charge initially
in the segment. During time this free charge undergoes a small displacement to
the right (Figure 25-10b). This displacement is equivalent to an amount of charge

(Figure 25-10c) being moved from its left end, where it had potential energy
to its right end, where it has potential energy The net change in the

potential energy of is thus

Because this represents a net loss in the potential energy. The potential
energy lost is then

where is the potential drop across the segment in the direction of the
current. The rate of potential energy loss is

�
¢U
¢t

�
¢Q
¢t
V

V � Va � Vb

�¢U � ¢Q V

Va 
 Vb ,

¢U � ¢Q(Vb � Va)
Q

¢Q Vb .¢Q Va ,
¢Q

¢t,
Q

AL

PRACTICE PROBLEM 25-5

What are the values of the resistance and tolerance of the resistor shown on the lower left
in the photo?

E

La

(a)

(b)

(c)

Q

A

Q

b

ΔQ

F I G U R E  2 5 - 1 0 During a time an
amount of charge passes point where the
potential is During the same time interval, an
equal amount of charge leaves the segment,
passing point where the potential is The net
effect during time is that the charge initially
in the segment both loses an amount of potential
energy equal to and gains an amount
equal to This change amounts to a net
decrease in potential energy because Va 
 Vb .

¢Q Vb .
¢Q Va

Q¢t
Vb .b,

Va .
a,¢Q

¢t,
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Taking the limit as approaches zero gives

where is the current. The rate of potential energy loss is the power 
delivered to the conducting segment, and it is equal to the rate of dissipation of
electrical potential energy in the segment:

25-13

RATE OF POTENTIAL ENERGY LOSS

If is in volts and is in amperes, the power is in watts. The power loss is the
product where is the decrease in potential energy per unit charge, and is the
rate at which the charge flows past a cross section of the segment. Equation 25-13
applies to any device in a circuit. The rate at which potential energy is delivered to
the device is the product of the potential drop across the device in the direction
of the current, and the current through the device. In a conductor (a resistor is a
conductor), the potential energy is dissipated as thermal energy. Using or

we can write Equation 25-13 in other convenient forms

25-14

POWER DELIVERED TO A RESISTOR

P � IV � I2R �
V2

R

I � V>R,
V � IR,

IVIV,
IV

P � IV

PI � dQ>dt

�
dU
dt

�
dQ
dt
V � IV

¢t

Example 25-5 Power Delivered to a Resistor

A resistor has a current equal to Find the power delivered to this resistor.

PICTURE Because we are given the current and the resistance, but not the potential drop,
(Equation 25-14) is the most convenient equation to use. Alternatively, we could

find the potential drop from then use 

SOLVE

P � IV.V � IR,
P � I2R

3.00 A.12.0-Æ

1. Compute I2R: 108 WP � I2R � (3.00 A)2(12.0 Æ) �

CHECK The potential drop across the resistor is We can
use this value to find the power from 

PRACTICE PROBLEM 25-6 A wire has a resistance equal to and a current equal to
for (a) What is the power being delivered to the wire during the ? (b) How

much thermal energy is produced during the ?6.0 s
6.0 s6.0 s.3.0 A

5.0 Æ

P � IV � (3.00 A)(36.0 V) � 108 W.
V � IR � (3.00 A)(12.0 Æ) � 36.0 V.

EMF AND BATTERIES

To maintain a steady current in a conductor, we need a constant supply of electrical
energy. A device that supplies electrical energy to a circuit is called a source of emf.
(The letters emf stand for electromotive force a term that is now rarely used. The term
is something of a misnomer because it is definitely not a force. In addition, a source
of emf is sometimes called a seat of emf.) Examples of emf sources are a battery,
which converts chemical energy into electrical energy, and a generator, which con-
verts mechanical energy into electrical energy. A source of emf does nonconserva-
tive work on the charge passing through it, increasing or decreasing the potential
energy of the charge (much the same as your lifting a weight increases the gravita-
tional potential energy of a weight). The work per unit charge is called the emf E of
the source. The unit of emf is the volt, the same unit as potential difference. An ideal
battery is a source of emf that maintains a constant potential difference between its



two terminals, independent of the current through the bat-
tery. The potential difference between the terminals of an
ideal battery is equal in magnitude to the emf of the battery.

Figure 25-11 shows a simple circuit consisting of a resis-
tance connected to an ideal battery. The resistance is indicated
by the symbol . The straight lines indicate connecting
wires of negligible resistance. The source of emf ideally main-
tains a constant potential difference equal to emf E between
points and with point being at the higher potential. There
is negligible potential difference between points and and be-
tween points and because the connecting wire is assumed
to have negligible resistance. The potential drop from point 
to is therefore equal in magnitude to the emf E, and the cur-
rent through the resistor is given by The direction of
the current in this circuit is clockwise, as shown in the figure.

Note that inside the source of emf, the charge flows from a
region where its potential energy is low to a region where its
potential is high, so the charge gains electric potential energy.*
When charge flows through the ideal source of emf E, its
potential energy is increased by the amount The charge
then flows through the resistor, where this potential energy is
dissipated as thermal energy. The rate at which energy is sup-
plied by the source of emf is the power output of the source:

25-15

POWER SUPPLIED BY AN IDEAL EMF SOURCE

In the simple circuit of Figure 25-11, the power output by the ideal source of emf
equals the power delivered to the resistor.

The battery in Figure 25-11 can be thought of as a charge pump that pumps the
charge from a region where its potential energy is low to a region where its potential
energy high. Figure 25-12 shows a mechanical analog of the simple electric circuit
just discussed.

P �
(¢Q)E

¢t
� IE

¢QE.
¢Q

I � E>R.I
d

c
b,d

ca
ab,a

R
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The electric ray has two large electric organs on each side of its head,
where current passes from the lower to the upper surface of the body.
These organs are composed of columns, with each column consisting
of one hundred forty to half a million gelatinous plates. In saltwater
fish, these batteries are connected in parallel, whereas in freshwater
fish the batteries are connected in series, transmitting discharges of
higher voltage. Fresh water has a higher resistivity than salt water, so
to be effective a higher voltage is required. It is with such a battery that
an average electric ray can electrocute a fish, delivering at 
(Stephen Frink/CORBIS.)

50 V.50 A

+

+

–

a
I

c

R

b d

E

F I G U R E  2 5 - 1 1 A simple circuit
consisting of an ideal battery of emf E, a
resistance and connecting wires that are
assumed to be of negligible resistance.

R,

+

–

(b)(a)

F I G U R E  2 5 - 1 2 A mechanical analog of a simple circuit consisting of a resistance and source
of emf. (a) The marbles start at some height above the bottom and are accelerated between
collisions with the nails by the gravitational field. The nails are analogous to the lattice ions in the
resistor. During the collisions, the marbles transfer the kinetic energy they obtained between
collisions to the nails. Because of the many collisions, the marbles have only a small,
approximately constant, drift velocity toward the bottom. (b) When the marbles reach the bottom,
a child picks them up, lifts them to their original height and starts them again. The child, who
does work on each marble of mass is analogous to the source of emf. The energy source in
this case is the internal chemical energy of the child.

m,mgh
h,

h

* When a battery is being charged (by a generator or by another battery), within the battery the charge flows from a
region where its potential energy is high to a region where its potential energy is low, thus losing electric potential
energy. The energy lost is converted to chemical energy and stored in the battery being charged.



a

R

I
r

b

+

+

_
_E

F I G U R E  2 5 - 1 4 A real battery can be
represented by an ideal battery of emf and
a small resistance r.

E

V

I

E

F I G U R E  2 5 - 1 3 Terminal voltage V
versus for a real battery. The dashed line
shows the terminal voltage of an ideal battery,
which has the same magnitude as E.

I
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In a real battery, the potential difference across the battery terminals, called the
terminal voltage, is not simply equal to the emf of the battery. Consider a circuit
consisting of a real battery and a variable resistor. If the current is varied by vary-
ing the resistance and the terminal voltage of the battery is measured, the ter-
minal voltage is found to decrease as the current increases (Figure 25-13), as if there
were a resistor internal to the battery.

Thus, we can consider a real battery to consist of an ideal source of emf E and a
resistor with resistance called the internal resistance of the battery.

The circuit diagram for a nonideal battery and resistor is shown in Figure 25-14.
If the current in the circuit is the potential at point is related to the potential at
point by

The terminal voltage is thus

25-16

The terminal voltage of the battery decreases linearly with current, as we saw in
Figure 25-13. The potential drop across the resistor is and is equal to the ter-
minal voltage:

Solving for the current we obtain

25-17

If a battery is connected as shown in Figure 25-14, the terminal voltage given by
Equation 25-16 is less than the emf of the battery because of the decrease in poten-
tial due to the internal resistance of the battery. Real batteries, such as a good car
battery, usually have an internal resistance of the order of a few hundredths of an
ohm, so the terminal voltage is nearly equal to the emf unless the current is very
large. One sign of a bad battery is an unusually high internal resistance. If you sus-
pect that your car battery is bad, checking the terminal voltage with a voltmeter,
which draws very little current, is not always sufficient. You need to check the ter-
minal voltage while current is being drawn from the battery, such as while you are
trying to start your car. Then the terminal voltage may drop considerably, indicat-
ing a high internal resistance and a bad battery.

Batteries are often rated in ampere-hours which is the maximum charge
that batteries can deliver:

The energy stored in the battery is the product of the emf and the total charge it
can deliver.

25-18

The stored energy is the amount of work that the battery can do.

Estored � QE

1 A # h � (1 C>s)(3600 s) � 3600 C

(A # h),

I �
E

R � r

I,

IR � Va � Vb � E � Ir

IRR

Va � Vb � E � Ir

Va � Vb � E � Ir

b
aI,

r,

VR

Example 25-6 Terminal Voltage, Power, and Stored Energy

An resistor is connected across a battery of emf and internal resistance 
Find (a) the current, (b) the terminal voltage of the battery, (c) the power supplied by the
chemical reactions within the battery, (d) the power delivered to the external resistor, and
(e) the power delivered to the battery’s internal resistance. (f ) If the battery is rated at

how much energy does the battery store?

PICTURE The circuit diagram is the same as the circuit diagram shown in Figure 25-14.
We find the current from (Equation 25-17) and then use it to find the terminal
voltage and power delivered to the resistors.

I � E>(R � r)

150 A # h,

1.00 Æ.6.00 V11.0-Æ
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(a) Equation 25-17 gives the current: 0.500 AI �
E

R � r
�

6.00 V
11.0 Æ � 1.00 Æ

�

(b) Use the current to calculate the terminal voltage of the battery: 5.50 V�Va � Vb � E � Ir � 6.00 V � (0.500 A)(1.00 Æ)

(c) The power supplied by the chemical reactions within the
battery equals EI:

3.00 WP � EI � (6.00 V)(0.500 A) �

CHECK Of the of power supplied by the chemical reactions of the battery, is
delivered to the external resistor and is dissipated in the battery due the internal re-
sistance of the battery.

TAKING IT FURTHER The value of the internal resistance of the battery in this example is
larger than that of most batteries. This value was chosen to simplify the calculations. In other
examples, we may simply assume that the internal resistance of the battery is negligible.

0.250 W
2.75 W3.00 W

(d) The power delivered to the external resistance equals 
(Equation 25-14):

I2R 2.75 WI2R � (0.500 A)2(11.0 Æ) �

(e) The power delivered to the internal resistance is I2r: 0.250 WI2r � (0.500 A)2(1.00 Æ) �

(f ) The energy stored is the emf of the battery multiplied by
the total charge the battery can deliver:

3.24 MJ�W � QE � a150 A # h �
3600 C
A # h

b (6.00 V)

SOLVE

Example 25-7 Maximum Power Delivered

For a battery that has an emf equal to and internal resistance equal to what value of
external resistance should be placed across the terminals to obtain the maximum power
delivered to the resistor?

PICTURE The circuit diagram is shown in Figure 25-14. The power delivered to the resistor
is (Equation 25-14), where (Equation 25-17). To find the value of that re-
sults in the maximum power being delivered to the resistor, we set equal to zero and
solve for 

SOLVE

R.
dP>dR

RI � E>(R � r)I2R

R
r,E

CHECK For the current is maximum but so no power is delivered to the external
resistor when To take the limit of as we factor from the denominator to
obtain

From this result we can see that as This means that must be maximum
for in the range so is a plausible result.

TAKING IT FURTHER The maximum value of occurs when that is, when the load
resistance equals the internal resistance. A similar result holds for alternating-current cir-
cuits. Choosing to maximize the power delivered to the load is known as impedance
matching. A graph of versus is shown in Figure 25-15.RP

R � r

R � r,P

R � r0 	 R 	 ,R
PPS 0.RS ,

P �
E 2R

(R � r)2 �
E 2

R(1 � r>R)2

RRS PR � 0.
P � 0,R � 0,

1. Use (Equation 25-17) to eliminate from 
so that is written as a function of and the constants 

and r:E

RP
P � I2RII � E>(R � r) P �

E 2R
(R � r)2

2. Calculate the derivative (We use the quotient rule.):dP>dR
dP
dR

�
(R � r)2E 2 � 2E 2R(R � r)

(R � r)4 �
E 2(r � R)
(R � r)3

3. Solve for the value of for which equals zero:dP>dRR R � r

321

P

R/r

F I G U R E  2 5 - 1 5 The power delivered
to the external resistor is maximum if R � r.
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25-4 COMBINATIONS OF RESISTORS

The analysis of a circuit can often be simplified by replacing a combination of two
or more resistors with a single equivalent resistor that has the same current and
potential drop as the combination of resistors. The replacement of a combination of
resistors by an equivalent resistor is similar to the replacement of a combination
of capacitors by an equivalent capacitor, discussed in Chapter 24.

RESISTORS IN SERIES

When two or more resistors are connected like and in Figure 25-16 so that
due to the way they are connected the current in each resistor is the same, the re-
sistors are said to be connected in series. The potential drop across is and the
potential drop across is where is the current in each resistor. The poten-
tial drop across the two resistors is the sum of the potential drops across the indi-
vidual resistors:

25-19V � IR1 � IR2 � I(R1 � R2)

IIR2 ,R2

IR1R1

R2R1

R1 R2

ba
I

c a
I

c

R R1eq += R2

(b)(a)

F I G U R E  2 5 - 1 6 (a) Two resistors connected in series that carry the same current. (b) The
resistors in Figure 25-16a can be replaced by a single equivalent resistance that
gives the same total potential drop when carryng the same current as in Figure 25-16a.

Req � R1 � R2

R

R

II

I

I1 1

2 2

a b

(b)

(a)

R R

a
I

b

1
1

eq
–1

+=( )R
1

2

F I G U R E  2 5 - 1 7 (a) Two resistors are in
parallel when they are connected together at
both ends so that the potential drop is the
same across each. (b) The two resistors in
Figure 25-17a can be replaced by an equivalent
resistance that is related to and by
1>Req � 1>R1 � 1>R2 .

R2R1Req

The single equivalent resistance that yields the same total potential drop 
when carrying the same current is found by setting equal to (Figure 25-
16b). Then is given by

When there are more than two resistors connected  in series, the equivalent resis-
tance is

25-20

EQUIVALENT RESISTANCE FOR RESISTORS IN SERIES

RESISTORS IN PARALLEL

Two resistors that are connected, as in Figure 25-17a, so that due to the way they
are wired they have the same potential difference across them, are connected in
parallel. Note that due to the way the circuit is wired, one terminal of each resistor
is at the potential of point and the other terminal of each resistor is at the poten-
tial of point Let be the current in the wire leading to point At point the cir-
cuit splits into two branches and the current divides into two parts—current in
the upper branch containing resistor and current in the lower branch con-
taining The branch currents and sum to the current in the wire leading into
point

25-21I � I1 � I2

a:
II2I1R2 .

I2R1

I1I
a,a.Ib.

a,

Req � R1 � R2 � R3 � Á

Req � R1 � R2

Req

IReqVI
VReq
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The equivalent resistance of a
parallel combination of resistors is

less than the resistance of any single
resistor in the combination.  

Conceptual 

!

At point the branch currents recombine so the current in the wire following point 
is also equal to The potential drop across either resistor, 
is related to the branch currents by

25-22

The equivalent resistance for parallel resistors is the resistance for which the same
total current requires the same potential drop (Figure 25-17b):

25-23

Solving Equations 25-22 and 25-23 for and and substituting into 
(Equation 25-21), we have

25-24

Dividing both sides by gives

which can be solved for the equivalent resistance, for two resistors in parallel.
This result can be generalized for parallel combinations such as that shown in
Figure 25-18, in which three or more resistors are connected in parallel:

25-25

EQUIVALENT RESISTANCE FOR RESISTORS IN PARALLEL

1
Req

�
1
R1

�
1
R2

�
1
R3

� Á

Req ,

1
Req

�
1
R1

�
1
R2

V

V
Req

�
V
R1

�
V
R2

� Va 1
R1

�
1
R2

b
I � I1 � I2I2I, I1

V � IReq

VI
Req

V � I1R1 and V � I2R2

V � Va � Vb ,VI � I1 � I2 .
bb

R1 R2 R3V

F I G U R E  2 5 - 1 8 Three resistors
in parallel.

Example 25-8 Identifying Series and Parallel Combinations

The circuit shown in Figure 25-19 has a battery and six resistors. (a) Which resistors, if any,
are connected in series? (b) Which resistors, if any, are connected in parallel?

PICTURE Resistors are connected in series if the current through each of them is the same
due to the way they are connected. Resistors are connected in parallel if the potential differ-
ence (voltage) across each of them is the same due to the way they are connected.

PRACTICE PROBLEM 25-7

A resistor and a resistor are connected (a) in series and (b) in parallel. Find the
equivalent resistances for both combinations.

4.0-Æ2.0-Æ

The equivalent resistance of a parallel combination of resistors is less than the re-
sistance of any single resistor in the combination. From Equation 25-25, we see that

where is the resistance of any single resistor in the combination. Multiplying
both sides of this inequality by the product we obtain

Resistors are, in reality, conductors. (They do not conduct as well as the wires con-
necting them in a circuit, but they are conductors nevertheless.) Adding more re-
sistors in parallel means adding more conducting paths for charges to flow along.
The creation of additional parallel paths lowers the equivalent resistance of the
combination.

Ri 
 Req

ReqRi ,
Ri

1
Req



1
Ri

R2

a b

e cd

R4

R3R1

+
−E

R5R6

F I G U R E  2 5 - 1 9
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SOLVE

Resistor

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

VeVdVcVbVa

(a) In a circuit, the current only changes
at junctions (points and d):b, c,

are connected in series.Resistors 1 and 6

(b) 1. The potential along any path does
not change except in batteries,
resistors, or capacitors. Let

and be the
potentials at points and 
respectively. Construct a table that
lists the potential of both terminals
of each resistor:

e,a, b, c, d,
VeVa , Vb , Vc , Vd ,

2. The table reveals that a terminal of
resistor 3 and a terminal of resistor
4 are both at potential and the
other terminals of the same
resistors are both at potential Vc:

Vb ,

are connected in parallel.Resistors 3 and 4

TAKING IT FURTHER Resistor 5 is in series with the parallel combination consisting of resistors
3 and 4. Resistor 2 is in parallel with the combination consisting of resistors 3, 4, and 5. In addi-
tion, resistor 6, the battery, resistor 1, and the combination of resistors 2, 3, 4, and 5 are in series.

Example 25-9 Resistors in Parallel

An ideal battery applies a potential difference of across
the parallel combination of and resistors shown in
Figure 25-20. Find (a) the equivalent resistance, (b) the total current,
(c) the current through each resistor, (d) the power delivered to each
resistor, and (e) the power supplied by the battery.

PICTURE Choose symbols and directions for the currents in
Figure 25-21.

6.0-Æ4.0-Æ
12 V

PROBLEM-SOLVING STRATEGY

Problems Involving Series and/or 

Parallel Combinations of Resistors

PICTURE If no circuit diagram is provided, draw one.

SOLVE

1. Identify each series and/or parallel combination of resistors and calculate
its equivalent resistance.

2. Redraw the circuit so that each series or parallel combination of resistors
is replaced by a single resistor of equivalent resistance.

3. Repeat steps 2 and 3 until there are no more series or parallel
combinations. (At this point the circuit should contain only a single
resistor.) Apply and calculate the current.

4. Return to the previous drawing and calculate the voltage across and/or
the current in each resistor in that drawing.

5. Repeat step 4 until you calculate all currents and/or voltages of interest.

CHECK Calculate the power delivered to each resistor (using or its
equivalent) and calculate the power supplied by the chemical reactions in
each battery using Then check to see that the total power being
delivered equals the total power being supplied.

P � IE.

P � IV

V � IR

I2

I1

I

4.0 Ω 6.0 Ω12 V

F I G U R E  2 5 - 2 1

4.0 Ω 6.0 Ω12 V

F I G U R E  2 5 - 2 0
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(a) Calculate the equivalent resistance:

2.4 ÆReq �
12.0 Æ

5.0
�

1
Req

�
1

4.0 Æ
�

1
6.0 Æ

�
3.0

12.0 Æ
�

2.0
12.0 Æ

�
5.0

12.0 Æ

(b) The total current is the potential drop divided by the equivalent
resistance:

5.0 AI �
V
Req

�
12 V
2.4 Æ

�

(c) We obtain the current through each resistor using Equation 25-22
and using the potential drop across the parallel combination,
12 V:

2.0 AI2 �
12 V
6.0 Æ

�

3.0 AI1 �
12 V
4.0 Æ

�

V � IR

(d) Use together with to find the power delivered
to each resistor:

V � IRP � VI

24 WP2 � I22R � (2.0 A)2(6.0 Æ) �

36 WP1 � I21R � (3.0 A)2(4.0 Æ) �

P � VI � (IR)R � I2R

(e) Use to find the power supplied by the battery:P � EI 60 WP � EI � (12 V)(5.0 A) �

CHECK The power supplied by the battery equals the total power delivered to the two
resistors In Part (d), we could just as well have calculated
the power delivered to each resistor from and

TAKING IT FURTHER The ratio of the currents in the two parallel resistors equals the in-
verse ratio of the resistances. This result follows from (Equation 25-22).
Rearranging gives

25-26
I1
I2

�
R2

R1

 (two parallel resistors)

I1R1 � I2R2

P2 � VI2 � (12 V)(2.0 A) � 24 W.
P1 � VI1 � (12 V)(3.0 A) � 36 W

P � 60 W � 36 W � 24 W.

SOLVE

Try It Yourself

+ _

12.0 V

4.0 Ω 6.0 Ω

I

F I G U R E  2 5 - 2 2

Example 25-10 Resistors in Series

A resistor and a resistor are connected in series to a battery that has an emf equal
to and has a negligible internal resistance. Find (a) the equivalent resistance of the two
resistors, (b) the current in the circuit, (c) the potential drop across each resistor, (d) the power
delivered to each resistor, and (e) the total power delivered to the resistors.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

12.0 V
6.0-Æ4.0-Æ

(a) 1. Draw a circuit diagram (Figure 25-22):

2. Calculate for the two series resistors:Req
10.0 ÆReq �

Steps Answers

(b) Use to find the current through the battery:V � IReq
1.2 AI �

(c) Use Ohm’s law to find the potential drop across each resistor: 7.2 VV6 �4.8 VV4 �

(d) Find the power delivered to each resistor using P � I2R: 8.6 WP6 �5.8 WP4 �

(e) Add your results from Part (d) to find the total power: 14.4 WP �

CHECK The current through the battery in this example is but in the corresponding
parallel circuit with the same resistors (Example 25-9) the current in the battery is The
current in a circuit is expected to be less when the resistors are connected in series.

5.0 A.
1.2 A,
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Try It YourselfExample 25-11 Series and Parallel Combinations

Consider the circuit in Figure 25-23. When switch is open and switch is closed, find
(a) the equivalent resistance of the circuit, (b) the current in the source of emf, (c) the po-
tential drop across each resistor, and (d) the current in each resistor. (e) If switch is now
closed, find the current in the resistor. (f ) If switch is now opened (while switch 
remains closed), find the potential drops across the resistor and across switch 

PICTURE (a) To find the equivalent resistance of the circuit, first replace the two parallel
resistors by their equivalent resistance. Ohm’s law can then be used to find the current and
potential drops. For Part (b) and Part (c), use Ohm’s law.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

S2.6.0-Æ
S1S22.0-Æ

S1

S2S1

Steps Answers

(a) 1. Find the equivalent resistance of the and parallel
combination.

12.0-Æ6.0- Req � 4.0 Æ

2. Combine your result in step 1 with the resistor in
series to find the total equivalent resistance of the circuit.

2.0-Æ 6.0 ÆRœ
eq �

(b) Find the current using Ohm’s law. This is the current both in
the battery and in the resistor.2-Æ

3.0 AI2Æ �

(c) 1. Find the potential drop across the resistor from
V2 Æ � IR.

2.0-Æ 6.0 VV2 Æ �

2. Find the potential drop across each resistor in the parallel
combination using where is the potential drop
across the parallel combination.

VpVp � IReq,
12.0 VV6 Æ � V12 Æ �

(d) Find the current in the and resistors from
I � Vp >R.

12.0-Æ6.0-Æ 1.0 AI12Æ �2.0 AI6 Æ �

(e) When is closed, the potential drop across the resistor
is zero. Using calculate the current through the 

resistor.2.0-Æ
V2 Æ � IR,

2.0-ÆS1 0I2 Æ �

(f ) When is open, the current through the resistor is zero.
Using calculate the potential drop across the 
resistor. The potential drop across the resistor plus the
potential drop across switch equals the potential drop across
the resistor.12.0-Æ

S2

6.0-Æ
6.0-ÆV6 Æ � IR,

6.0-ÆS2 18 VV12Æ �VS2
�0V6 Æ �

CHECK When is open and is closed, the current in the resistor is twice that in the
resistor, as we should expect. In addition, these two currents sum to give the current in

the resistor, as they must. Finally, note that the potential drops across the resistor and
the parallel combination sum to the emf of the battery; 

PRACTICE PROBLEM 25-8 Repeat Part (a) through Part (d) of this example, but with the
resistor having been replaced by a wire of negligible resistance.6.0-Æ

V2 Æ � Vp � 6.0 V � 12.0 V � 18.0 V.
2.0-Æ2.0-Æ

12.0-Æ
6.0-ÆS2S1

Example 25-12 Combinations of Combinations

Find the equivalent resistance of the combination of resistors shown in Figure 25-24.

PICTURE You can analyze this complicated combination step by step. First, find the equiv-
alent resistance of the and parallel combination. Next, find the equivalent
resistance of the series combination of the resistor and Finally, find the equiv-
alent resistance of the parallel combination of the resistor and Rœ

eq .24-ÆRfl
eq

Req.5.0-ÆRœ
eq

12-Æ4.0-ÆReq

ba

24 Ω

4.0 Ω

12 Ω
5.0 Ω

F I G U R E  2 5 - 2 4

Try It Yourself

I

+
_

6.0 Ω12.0 Ω
2.0 Ω

18.0 V

I12 Ω I6 Ω

S2

S1

F I G U R E  2 5 - 2 3
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Steps Answers

1. Find the equivalent resistance of the and 
resistors in parallel.

12-Æ4.0-ÆReq Req � 3.0 Æ

2. Find the equivalent resistance of in series with the 
resistor.

5.0-ÆReqRœ
eq Rœ

eq � 8.0 Æ

3. Find the equivalent resistance of in parallel with the 
resistor.

24-ÆRœ
eq

6.0 ÆRfl
eq �

CHECK As expected for parallel combinations, the step-1 and step-3 results are less than the
resistance of either of the two resistors in parallel. In addition, the step-2 result is greater than
either of the two resistors in series, as expected for series combinations.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Context-RichExample 25-13 Blowing the Fuse

You are making a snack for you and some friends to help you get ready for a full night of
studying. You decide that coffee, toast, and popcorn would be a good start. You turn on the
toaster, place some popcorn in the microwave, and turn on the microwave. Because your
apartment is in an older building, you know that the fuse may blow when you turn on too
many appliances. Should you start the coffeemaker? You look on the appliances and find
that the toaster has a rating of the microwave has a rating of and the cof-
feemaker has a rating of You know that your apartment uses fuses.

PICTURE We can assume that household circuits are wired in parallel, because plugging in
one device does not affect others that are in the circuit. Household voltage in the United
States is (We can neglect the fact that it is not dc.) If we can determine the current
through each device, we can add up the total current in the circuit and see how it compares
to the fuse current.

120 V.

20-A600 W.
1200 W,900 W,

CHECK The maximum possible power that can be delivered by a circuit that has a
fuse is The total power needed to run the

three appliances simultaneously is which is 
more than the maximum that the circuit can deliver.

TAKING IT FURTHER We have assumed that the apartment has only one circuit, and thus
only one fuse. Typically, there are several circuits, each fused separately. The coffeemaker can
be plugged into an outlet that is on a different circuit than the outlet for the toaster and mi-
crowave without a fuse blowing.

300 W900 W � 1200 W � 600 W � 2700 W,
Pmax � ImaxV � (20 A)(120 V) � 2400 W.20-A

120-V

1. The power delivered to a device is the current multiplied by the
voltage. That is, Solve for the current for each device:P � IV.

Ic-maker �
Pc-maker

V
�

600 W
120 V

� 5.0 A

Im-wave �
Pm-wave

V
�

1200 W
120 V

� 10.0 A

Itoaster �
Ptoaster

V
�

900 W
120 V

� 7.5 A

SOLVE

2. The current through the fuse is the sum of these currents: Ifuse � 22.5 A

3. A current this large is above the rating of the fuse:20-A Your guests will have to wait on the coffee.
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* There is also such a thing as a nonconservative electric field that is discussed in Chapter 28. The resultant electric field is
the superposition of the conservative electric field and the nonconservative electric field. Kirchhoff’s loop rule applies
only to the conservative part of the electric field.

25-5 KIRCHHOFF’S RULES

There are many circuits, such as the circuit shown in Figure 25-25, that cannot be
analyzed by merely replacing combinations of resistors by an equivalent resis-
tance. The two resistors and in this circuit appear as though they might be
in parallel, but they are not. The potential drop is not the same across both resis-
tors because of the presence of the emf source in series with Nor are and

in series, because the wire connecting them has a branch point—they do not
have the same current due to the way they are connected.

Two rules, called Kirchhoff’s rules, apply to this circuit and to any other circuit:

1. When any closed loop is traversed, the algebraic sum of the changes in
potential around the loop must equal zero.

2. At any junction (branch point) in a circuit where the current can divide,
the sum of the currents into the junction must equal the sum of the cur-
rents out of the junction.

KIRCHHOFF’S RULES

Kirchhoff’s first rule, called the loop rule, was introduced in Chapter 24. This
rule follows directly from the presence of a conservative field * To say is con-
servative means that

25-27

where the integral is taken around any closed curve Changes in potential 
and are related by Thus, Equation 25-27 implies
that the sum of the changes in potential (the sum of the around any closed
path equals zero.

Kirchhoff’s second rule, called the junction rule, follows from the conserva-
tion of charge. Figure 25-26 shows the junction of three wires carrying currents

and Because charge does not originate or accumulate at this point, the
conservation of charge implies the junction rule, which for this case gives

25-28

Charges do accumulate on the surfaces of conductors.
However, it would require a very large surface area,
such as the surface area of some capacitor plates, to ac-
cumulate a significant amount of charge. The surface
areas of the conductors that are used in common circuits
are much too small to accumulate a significant amount
of charge.

SINGLE-LOOP CIRCUITS

As an example of using Kirchhoff’s loop rule, consider the
circuit shown in Figure 25-27, which contains two batteries
that have internal resistances and and three external re-
sistors. We wish to find the current in terms of the emfs and
resistances.

r2r1

I1 � I2 � I3

I3 .I2 ,I1 ,

¢Vs)
¢V � Vb � Va � ��ba E

S # drS.E
S

¢VC.

CC E
S # drS � 0

E
S

E
S

.

R2

R1R2 .E2

R2R1

+
_

+
_E

E

R11

2

R3

R2

F I G U R E  2 5 - 2 5 An example of a circuit
that cannot be analyzed by replacing
combinations of resistors in series or parallel
with their equivalent resistances. The
potential drops across and are not equal
because of the emf source so these
resistors are not in parallel. (Parallel resistors
would be connected together at both ends.)
The resistors do not have the same current,
so they are not in series.

E2 ,
R2R1

+

+

+

_
_

R
ba

c

r

de

I

1

R2

R3

2

2

r1

E
1E

Battery

Battery

Changes in Potential
a → b
b → c – IR2
c → d
d → e – IR3
e → a + E1 – Ir1

– IR1

1

2

– E2 – Ir2

F I G U R E  2 5 - 2 7 Circuit containing two batteries and
three external resistors.

F I G U R E  2 5 - 2 6 Illustration of
Kirchhoff’s junction rule. The current into
point equals the sum of the currents
out of point a.

I2 � I3a
I1
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We choose clockwise as positive, as indicated by the arrow with the plus sign
next to it in Figure 25-27. We then apply Kirchhoff’s loop rule as we traverse the cir-
cuit in the positive direction, beginning at point Note that we encounter a poten-
tial drop as we traverse the source of emf between points and and we encounter
a potential rise as we traverse the source of emf between and Assuming that 
is positive, we encounter a potential drop as we traverse each resistor. Beginning at
point we obtain from Kirchhoff’s loop rule

Expressing the changes in potential in terms of the current, the emfs, and the re-
sistances gives

Solving for the current we obtain

25-29

If is greater than we get a negative value for the current indicating that the
current is in the negative (counterclockwise) direction.

For this example, we assume that is greater than so the current is positive.
In addition, we model the current as positive charge carriers that move clockwise
around the circuit. (The actual charge carriers are negatively charged electrons
traveling counterclockwise.) Then, charge flows through battery 2 from the high-
potential end to the low-potential end. Therefore, a positive charge moving
through battery 2 from point to point loses potential energy (in addition
to any energy dissipated within the battery due to the internal resistance ). If bat-
tery 2 is a rechargeable battery, much of this lost potential energy is stored in the
battery as chemical energy, which means that battery 2 is charging.

The analysis of a circuit is usually simplified if we define the potential to equal
zero at a convenient point in the circuit. Then we calculate the potential at the other
points relative to it. Because only potential differences are important, any point in
a circuit can be chosen to have zero potential. In many circuits, however, one point
is connected to a rod that is driven into the ground. Such a point is said to be
grounded or put to earth, and the potential is defined to be zero at that point.
However, in an automobile the negative terminal of the battery is connected to the
engine block by a heavy cable (called a grounding cable), and the point where
the cable is connected to the engine block is referred to as ground. In the following
example, we choose point in the figure to be at zero potential. This is indicated
by the ground symbol at point e.

e

r2

¢QE2dc
¢Q

E2 ,E1

I,E1 ,E2

I �
E1 � E2

R1 � R2 � R3 � r1 � r2

I,

(�IR1) � (�IR2) � (�E2 � Ir2) � (�IR3) � (E1 � Ir1) � 0

(Vb � Va) � (Vc � Vb) � (Vd � Vc) � (Ve � Vd) � (Va � Ve) � 0

a,

Ia.e
dc

a.

Example 25-14 Finding the Potential

Suppose the elements in the circuit in Figure 25-28 have the values 
and (a) Find the potentials at points through

in the figure, assuming that the potential at point is zero. (b) Discuss the energy transfers
in the circuit.

PICTURE To find the potential differences, we first need to find the current in the circuit.
The potential drop across each resistor is equal to the product To discuss the energy
transfers, we calculate the power delivered to or supplied by each element using Equations
25-14 and 25-15.

IR.
I

ee
aR3 � 4.0 Æ.R1 � R2 � 5.0 Æ,r1 � r2 � 1.0 Æ,

E2 � 4.0 V,E1 � 12.0 V, +

+

+

_
_12.0 V

4.0 V

0 V

1.0 Ω

1.0Ω

4.0 Ω

5.0 Ω

5.0 Ω
ba

c

de

I
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* Batteries do not store charge. A fully charged battery is one with a maximum amount of stored chemical energy.

Note that the terminal voltage of the battery that is being charged in Example
25-14 is which is greater than the emf of the battery. If the same

battery were used to deliver to an external circuit, its terminal voltage
would be (again assuming that its internal resistance is If the internal
resistance is very small, the terminal voltage of a battery is nearly equal to its emf,
whether the battery is delivering energy to an external circuit or is being charged.
Some real batteries, such as those used in automobiles, are nearly reversible and
can easily be recharged. Other types of batteries are not reversible. If you attempt
to recharge one of those batteries by driving current through it from its positive to
its negative terminal, virtually all of the energy will be dissipated into thermal
energy rather than being transformed into the chemical energy of the battery.

1.0 Æ).3.5 V
0.50 A4.0-V

Vc � Vd � 4.5 V,

(a) 1. The current in the circuit is found using Equation 25-29:I

�
8.0 V
16 Æ

� 0.50 A

I �
12.0 V � 4.0 V

5.0 Æ � 5.0 Æ � 4.0 Æ � 1.0 Æ � 1.0 Æ

2. We now find the potential at each labeled point in the circuit:

0.0 VVe � Vd � IR3 � 2.0 V � (0.50 A)(4.0 Æ) �

2.0 VVd � Vc � E2 � Ir2 � 6.5 V � 4.0 V � (0.50 A)(1.0 Æ) �

6.5 VVc � Vb � IR2 � 9.0 V � (0.50 A)(5.0 Æ) �

9.0 VVb � Va � IR1 � 11.5 V � (0.50 A)(5.0 Æ) �

11.5 VVa � Ve � E1 � Ir1 � 0 � 12.0 V � (0.50 A)(1.0 Æ) �

(b) 1. First, calculate the power supplied by the chemical reactions
in the emf source that has emf E1:

PE1
� E1I � (12.0 V)(0.50 A) � 6.0 W

2. Part of this power is delivered to the resistors, both inside
and outside the batteries: � (0.50 A)2(5.0 Æ � 5.0 Æ � 4.0 Æ � 1.0 Æ � 1.0 Æ) � 4.0 W

PR � I2R1 � I2R2 � I2R3 � I2r1 � I2r2

3. The remaining of power goes into charging battery 2:2.0 W PE2
� E2I � (4.0 V)(0.50 A) � 2.0 W

4. The rate at which potential energy is being delivered in the
circuit is

P � PR � PE1
� 6.0 W

CHECK The rate at which the battery converts chemical energy to electrical potential
energy is equal to the rate at which the battery converts electrical potential en-
ergy to chemical energy plus the rate at which potential energy is dissipated (4.0 W).(2.0 W)

4.0-V(6.0 W)
12-V

Example 25-15 Jump-Starting a Car

A fully charged* car battery is to be connected by jumper cables to a discharged car battery
in order to charge it. (a) To which terminal of the discharged battery should the positive ter-
minal of the charged battery be connected? (b) Assume that the charged battery has an emf
of the discharged battery has an emf of the internal resistances of
the batteries are and the resistance of the jumper cables is 
What will be the charging current? (c) What will be the current if the batteries are connected
incorrectly?

PICTURE For Part (a) the batteries should be connected so the initially discharged battery is
charged. To calculate the current apply Kirchhoff’s loop rule.

R � 0.010 Æ.r1 � r2 � 0.020 Æ,
E2 � 11.0 V,E1 � 12.0 V,

SOLVE



+

+

_

_

r

E

E

R

1

1

r2

2
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Two batteries connected
incorrectly—dangerous!

Kirchhoff’s Rules S E C T I O N  2 5 - 5 | 863

CHECK If the batteries are connected incorrectly, as shown in
Figure 25-30, the current is very large and the batteries could ex-
plode—producing a shower of boiling battery acid.

+ +
_ _

r

E E

R

1

1

r2

2
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(a) To charge the discharged battery, we connect positive terminal
to positive terminal and negative terminal to negative terminal,
to drive current through the discharged battery from the
positive terminal to the negative terminal (Figure 25-29):

(b) Use Kirchhoff’s loop rule to find the charging current:

so

20 AI �
E1 � E2

R � r1 � r2
�

12.0 V � 11.0 V
0.050 Æ

�

E1 � Ir1 � Ir2 � E2 � IR � 0

(c) When the batteries are connected incorrectly, positive terminals
to negative terminals, the emfs add: so

460 AI �
E1 � E2

R � r1 � r2
�

12.0 V � 11.0 V
0.050 Æ

�

E1 � Ir1 � E2 � Ir2 � IR � 0

MULTILOOP CIRCUITS

In multiloop circuits, often the direction of the current in one or more branches of
the circuit are not obvious. Fortunately, Kirchhoff’s rules do not require that we
know these directions initially. In fact, the opposite is true. Kirchhoff’s rules enable
us to determine the directions of the currents. To accomplish this, for each branch
of the circuit we arbitrarily assign a positive direction along the branch, and we in-
dicate this assignment by placing a corresponding arrow on the circuit diagram
(Figure 25-31). If the current density in the branch is in this positive direction, then
when we solve for this current we will get a positive value. However, if the current
density is opposite to the assigned positive direction, when we solve for the cur-
rent we will get a negative value. In a resistor, an electric field within the resistor
causes the current, and the current is in the same direction as the electric field.
Because the electric field always points in the direction of decreasing potential, we
know that in a resistor the direction of the current is also the direction of decreas-
ing potential. Therefore, any time we traverse a resistor in the direction of the cur-
rent, the change in potential is negative, and vice versa. Here is the rule:

SOLVE

For each branch of a circuit, we draw an arrow to indicate the positive direc-
tion for that branch. Then, if we traverse a resistor in the direction of the
arrow, the change in potential is equal to (and if we traverse a resis-
tor in the direction opposite the direction of the arrow, is equal to 

SIGN RULE FOR THE CHANGE IN POTENTIAL ACROSS A RESISTOR

�IR).¢V
�IR¢V

+
−

a

b

R

+
I

E

F I G U R E  2 5 - 3 1 It is not known whether
the current has a positive or a negative
value. Whether it is positive or negative,

If the current is in the positive
direction, then is positive and is
negative. If the current is in the negative
direction, however, then is negative and 
is positive.

�IRI

�IRI
Vb � Va � �IR.

I

If we traverse a resistor in the positive direction, and if is positive, then is neg-
ative. This is as expected, because in a resistor, the current is always in the direction
of decreasing potential. However, if we traverse a resistor in the positive direction,

�IRI
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4.0 Ω
2.0 Ω
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12 V

11 V
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b c

de
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2.0 A 0.50 A
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CHECK In Figure 25-33, we have chosen the potential to be zero at point and we have
labeled the currents and the potentials at the other points. Note that and

Applying the loop rule to the loop on the left gives 
6.0 V � 0.

�12 V � 6.0 V �Ve � Vf � 6.0 V.
Vb � Ve � 6.0 V
f,

Example 25-16 Applying Kirchhoff’s Rules

(a) Find the current in each branch of the circuit shown in Figure 25-32. (b) Find the energy
dissipated in the resistor in 

PICTURE There are three branch currents, and to be determined, so we need three
equations. One equation comes from applying the junction rule to point (We can also apply
the junction rule to point the only other junction in the circuit, but it gives exactly the same
information.) The other two relations are obtained by applying the loop rule. There are three
loops in the circuit: the two interior loops, abefa and bcdeb, and the exterior loop, abcdefa. We
can use any two of these loops—the third will give redundant information. There is at least
one direction arrow on each branch in Figure 25-32. Each direction arrow indicates the posi-
tive direction for that branch. If our analysis results in a negative value for a branch current,
then that current is in the direction opposite to the direction arrow for that branch.

SOLVE

e,
b.

I2 ,I1 ,I,

3.0 s.4.0-Æ

(a) 1. Apply the junction rule to point b: I � I1 � I2

2. Apply the loop rule to the outer loop, abcdefa: � (2.0 Æ)I2 � 5.0 V � (3.0 Æ)(I1 � I2) � 12 V � 0

3. Divide the above equation by recalling that
then simplify:(1 V)>(1 Æ) � 1 A,

1 Æ, 7.0 A � 3.0I1 � 5.0I2 � 0

4. For the third condition, apply the loop rule to the loop on
the right, bcdeb:

so �5.0 V � 4.0I1 � 2.0I2 � 0�(2.0 Æ)I2 � 5.0 V � (4.0 Æ)I1

5. The results for steps 3 and 4 can be combined to solve for 
and To do so, first multiply the result for step 3 by 2, and
then multiply the result for step 4 by �5:
I2 .

I1
25 A � 20I1 � 10I2 � 0

14 A � 6.0I1 � 10I2 � 0

6. Add the equations in step 5 to eliminate then solve for I1 ;I2 ,

1.5 AI1 �
39 A

26
�

39 A � 26I1 � 0

7. Substitute in the results for step 3 or 4 to solve for I2:I1

0.50 AI2 �
2.5 A

5.0
�

7.0 A � 3.0(1.5 A) � 5.0I2 � 0

8. Finally, and determine using the equation in step 1:II2I1 2.0 AI � I1 � I2 � 1.5 A � 0.50 A �

(b) 1. The power delivered to the resistor is found using
P � I21R:

4.0-Æ P � I21R � (1.5 A)2(4.0 Æ) � 9.0 W

2. The total energy dissipated in the resistor during time
is In this case, ¢t � 3.0 s:W � P ¢t.¢t

4.0-Æ 27 JW � P ¢t � (9.0 W)(3.0 s) �

and if is negative, then is positive. Similarly, if we traverse a resistor in the neg-
ative direction, and if is positive, then is positive. And if we traverse a resistor
in the negative direction and if is negative, then is negative.

To analyze circuits containing more than one loop, we need to use both of
Kirchhoff’s rules, with Kirchhoff’s junction rule applied to junctions (points where
the current splits into two or more parts).

�IRI
�IRI

�IRI

a

+

+ +

+

+

+
_

_

3.0 Ω

4.0 Ω
2.0 Ω

12 V

5.0 V

b
c

d
e

f

I

I I2

I1
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PROBLEM-SOLVING STRATEGY

Method for Analyzing Multiloop Circuits

PICTURE Draw a sketch of the circuit.

SOLVE

1. Replace any series or parallel resistor combinations or capacitor
combinations with their equivalent values.

2. Repeat step 1 as many times as possible.

3. Next, assign a positive direction for each branch of the circuit and
indicate this direction with an arrow. Label the current in each branch.
Add a plus sign and a minus sign to indicate the high-potential
terminal and low-potential terminal of each source of emf.

4. Apply the junction rule to all but one of the junctions.

5. Apply the loop rule to the different loops until the total number of
independent equations equals the total number of unknowns. When
traversing a resistor in the positive direction, the change in potential
equals When traversing a battery from the negative terminal 
to the positive terminal, the change in potential equals 

6. Solve the equations to obtain the values of the unknowns.

CHECK Check your results by assigning a potential of zero to one point in
the circuit and use the values of the currents found to determine the
potentials at other points in the circuit.

E � Ir.
�IR.

TAKING IT FURTHER Applying the loop rule to the loop on the left, abefa, gives
or Note that this is just the

result for step 3 minus the result for step 4 and hence contains no new information, as
expected.

PRACTICE PROBLEM 25-9 Find for the case in which the resistor approaches
(a) zero resistance and (b) infinite resistance.

3.0-ÆI1

12 A � 7.0I1 � 3.0I2 � 0.12 V � (4.0 Æ)I1 � (3.0 Æ)(I1 � I2) � 0,

Example 25-16 illustrates the general methods for the analysis of multiloop
circuits. These methods are listed in the following problem-solving strategy.

Example 25-17 A Three-Branch Circuit

(a) Find the current in each branch of the circuit shown in Figure 25-34.
(b) Assign to point and then find the potential at each other point 
through 

PICTURE First, replace the two parallel resistors by an equivalent resis-
tance. Second, assign a positive direction to each branch and indicate each
choice with an arrow. Third, place a plus sign and a minus sign at the high-
potential and low-potential terminals of each battery. Assign a symbol for
the current in each branch. These branch currents can then be found by ap-
plying the junction rule at either junction or junction and by applying the
loop rule twice.

eb

f.
acV � 0

a

+

+_
_

6.0 Ω

6.0 Ω

12 Ω 3.0 Ω

3.0 Ω
18 V 21 V

b c

def
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(a) 1. Find the equivalent resistance of the and 
parallel resistors:

6.0-Æ3.0-Æ Req � 2.0 Æ

2. Redraw the circuit (Figure 25-35) with the resistor in
place of the parallel combination. Place an arrow on each
branch indicating your direction-sign assignments. Let be
the current in branch with the battery, let be the
current in the resistor, and let be the current in
branch with the battery:21-V

I26.0-Æ
I118-V

I

2.0-Æ

3. Apply the junction rule at point b: I � I1 � I2

4. Apply Kirchhoff’s loop rule to loop abefa to obtain an
equation involving and I2:I

18 V � (12 Æ)I � (6.0 Æ)I1 � 0

5. Simplify the equation from step 4 (dividing both sides by
6.0 Æ):

3.0 A � 2.0I � 1.0I1 � 0

6. Apply Kirchhoff’s loop rule to loop bcdeb: �(3.0 Æ)I2 � 21 V � (2.0 Æ)I2 � (6.0 Æ)I1 � 0

7. Simplify the equation in step 6 (dividing both sides by 1.0 Æ): 21 A � 6.0I1 � 5.0I2 � 0

8. Solve the simultaneous equations (from steps 3, 5, and 7)
for and One way to do this calculation is first
substitute for in the step 5 equation to obtain

This equation and the step 7
equation constitute two equations and two unknowns.
Solve for the currents:

3.0 A � 3.0I1 � 2.0I2 � 0.
II1 � I2

I2 .I1 ,I,
2.0 AI �3.0 AI2 ��1.0 AI1 �

9. Use to find the potential drop across the parallel
combination consisting of the and resistors:6.0-Æ3.0-Æ
V � I2Req V � 6.0 V

10. Use the result of step 9 and Ohm’s law to find the current
in each of the parallel resistors;

1.0 AI6 Æ �2.0 AI3 Æ �

(b) Redraw Figure 25-35 showing the direction and value of the
current in each branch of the circuit (Figure 25-36). Begin with

at point and calculate the potential at points 
and b:

a,f,e,d,cV � 0

9 VVb � Va � (2.0 A)(12.0 Æ) � 33 V � 24 V �

33 VVa � Vf � 18 V � 15 V � 18 V �

15 VVf � Ve �

15 VVe � Vd � (3.0 A)(2.0 Æ) � 21 V � 6.0 V �

21 VVd � Vc � 21 V � 0 � 21 V �

a

+

+ +_

_
6.0 Ω

12 Ω 3.0 Ω

2.0 Ω

18 V 21 V

b c

def

I

I1

I2

I2

I1 = I – I2
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CHECK From point to point the potential drops by which gives
as assumed. From point to point the potential drops by so

Vb � Ve � 6.0 V � 15 V � 6.0 V � 9 V.
(1.0 A)(6.0 Æ) � 6.0 V,beVc � 0,

(3.0 A)(3.0 Æ) � 9.0 V,cb
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+_
_

6.0 Ω
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2.0 Ω
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15 V

33 V
9.0 V
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21 V

21 V

b c
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3.0 A2.0 A
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potential drop across a resistor, a voltmeter 
(circled) is placed in parallel with the resistor
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F I G U R E  2 5 - 3 7 To measure the current
in a resistor an ammeter A (circled) is
placed in series with the resistor so that it
carries the same current as the resistor.

R,
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AMMETERS, VOLTMETERS, AND OHMMETERS

The devices that measure current, potential difference, and resistance are called
ammeters, voltmeters, and ohmmeters, respectively. Often, all three of these meters
are included in a single multimeter that can be switched from one use to another. You
might use a voltmeter to measure the terminal voltage of your car battery and an
ohmmeter to measure the resistance of some electrical device at home (for example,
a toaster or lightbulb) when you suspect a short circuit or a broken wire.

To measure the current in a resistor in a simple circuit, we place an ammeter
in series with the resistor, as shown in Figure 25-37, so that the current is the same
in the ammeter and the resistor. Because the ammeter has a very low (but finite) re-
sistance, the current in the circuit decreases very slightly when the ammeter is
inserted. Ideally, the ammeter should have a negligibly small resistance so that the
current to be measured is only negligibly affected.

The potential difference across a resistor is measured by placing a voltmeter across
the resistor (in parallel with the resistor), as shown in Figure 25-38, so that the poten-
tial drop is the same across both the voltmeter and the resistor. The voltmeter reduces
the resistance between points and thus increasing the total current in the circuit
and changing the potential drop across the resistor. A voltmeter should have an
extremely high resistance so that its effect on the current in the circuit is negligible.

The principal component of many commonly used ammeters and voltmeters is
a galvanometer, a device that detects small currents passing through it. The gal-
vanometer is designed so that the scale reading is proportional to the current pass-
ing through. The type of galvanometer used in many student laboratories consists
of a coil of wire in the magnetic field of a permanent magnet. When there is cur-
rent in the coil, the magnetic field exerts a torque on the coil, which causes the coil
to rotate. A pointer attached to the coil indicates the reading on a scale. The coil it-
self contributes some resistance when the galvanometer is placed within a circuit.

To construct an ammeter from a galvanometer, we place a small resistor called
a shunt resistor in parallel with the galvanometer. The resistance of the shunt
resistor is usually much smaller than the resistance of the galvanometer so that the
majority of the current is carried by the shunt resistor. The equiv-
alent resistance of the ammeter is then approximately equal to
the resistance of the shunt resistor, which is much smaller than
the internal resistance of the galvanometer alone. To construct a
voltmeter, we place a resistor that has a large resistance in series
with the galvanometer so that the equivalent resistance of the
voltmeter is much larger than the resistance of the galvanometer
coil alone. Figure 25-39 illustrates the construction of an amme-
ter and voltmeter from a galvanometer. The resistance of the gal-
vanometer is shown separately in these schematic drawings,
but it is actually part of the galvanometer.

A simple ohmmeter consists of a battery connected in series
with a galvanometer and a resistor, as shown in Figure 25-40a.
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F I G U R E  2 5 - 3 9 (a) An ammeter consists of a galvanometer G
(circled) whose resistance is and a small parallel resistance 
(b) A voltmeter consists of a galvanometer G (circled) and a large
series resistance Rs .
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F I G U R E  2 5 - 4 0 (a) An ohmmeter consists of a battery
connected in series with a galvanometer and a resistor 
which is chosen so that the galvanometer gives full-scale
deflection when points and are shorted. (b) When a
resistor is connected between terminals and the
galvanometer needle deflects by an amount that depends on
the value of The galvanometer scale is calibrated to give a
readout in ohms.
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* If the positive direction were chosen to be counterclockwise, then the sign in Equation 25-31 would be a plus sign.

The resistance is chosen so that when the terminals and are shorted (put in
electrical contact with negligible resistance between them), the current through the
galvanometer gives a full-scale deflection. Thus, a full-scale deflection indicates no
resistance between terminals and A zero deflection indicates an infinite resis-
tance between the terminals. When the terminals are connected across an unknown
resistance the current through the galvanometer depends on so the scale can
be calibrated to give a direct reading of as shown in Figure 25-40b. Because an
ohmmeter sends a current through the resistance to be measured, some caution
must be exercised when using this instrument. For example, you would not want to
try to measure the resistance of a sensitive galvanometer with an ohmmeter, be-
cause the current provided by the battery in the ohmmeter could possibly damage
the galvanometer.

25-6 RC CIRCUITS

A circuit containing a resistor and a capacitor is called an RC circuit. The current
in an RC circuit is in a single direction, as in all dc circuits, but the magnitude of the
current varies with time. A practical example of an RC circuit is the circuit in
the flash attachment of a camera. Before a flash photograph is taken, a battery in the
flash attachment charges the capacitor through a resistor. When the capacitor is
fully charged, the light is ready to flash. When the picture is taken, the capacitor
discharges through the flashbulb. The battery then recharges the capacitor, and a
short time later the flash is ready for another picture. Using Kirchhoff’s rules, we
can obtain equations for the charge and the current as functions of time for both
the charging and discharging of a capacitor through a resistor.

DISCHARGING A CAPACITOR

Figure 25-41 shows a capacitor that has an initial charge on the upper plate
and an initial charge on the lower plate. The capacitor is connected to a resis-
tor and a switch S, which is initially open. The potential difference across the
capacitor is initially where is the capacitance.

We close the switch at time Because there is now a potential difference
across the resistor, there is also a current in the resistor. This initial current is

25-30

The current is the rate of flow of positive charge from the positive plate of the
capacitor to the negative plate through the resistor. (We model the charge carriers
as being positively charged, when actually they are negatively charged electrons.)
As time passes, the charge on the capacitor decreases. If we choose the positive
direction to be clockwise, then the current equals the rate of decrease of the charge.
If is the charge on the upper plate of the capacitor at time the current is related
to by

25-31

(The minus sign is needed because while decreases, is negative.*)
Traversing the circuit in the clockwise direction, we encounter a potential drop 
across the resistor and a potential increase across the capacitor. Thus,
Kirchhoff’s loop rule gives

25-32
Q

C
� IR � 0

Q>C IR
dQ>dtQ

I � �
dQ
dt

Q
t,Q

I0 �
V0

R
�
Q0

RC

t � 0.
CV0 � Q0>C,

R
�Q0

�Q0

IQ

R,
R,R,

b.a

baRs

+
++

+
+

_
_

_
_

_

S

R

Q

C

Q

0

0

+

_

S

R
Q

C
0

Q0

(b)

(a)

F I G U R E  2 5 - 4 1 (a) A parallel-plate
capacitor in series with a switch S and a
resistor (b) A circuit diagram for 
Figure 25-41a.

R.



See

Math Tutorial for more

information on

Exponential Functions

tτ

RC=τ

Q
Q0

F I G U R E  2 5 - 4 2 Plot of the charge on
the capacitor versus time for the circuit shown
in Figure 25-41. The switch is closed at time

The time constant is the time it
takes for the charge to decrease by a factor
of (The time constant is also the time it
would take the capacitor to discharge fully if
its discharge rate remains constant,
as indicated by the dashed line.)

e�1.

t � RCt � 0.
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where and both functions of time, are related by Equation 25-31. Substituting
for in Equation 25-32, we have

or

25-33

To solve this equation, we first separate the variables and by multiplying both
sides of the equation by and then we integrate both sides. Multiplying both
sides by we obtain

25-34

The variables and are now in separate terms. Integrating from at to 
at time gives

so

Because is arbitrary, we can replace with and then Solving for 
gives

25-35

where called the time constant, is the time it takes for the charge to decrease by
a factor of 

25-36

DEFINITION–TIME CONSTANT

Figure 25-42 shows the charge on the capacitor in the circuit of Figure 25-41 as
a function of time. After a time the charge is After a
time the charge is and so forth. After a time equal to
several time constants, the charge is negligible. This type of decrease, which is
called an exponential decrease, is very common in nature. It occurs whenever the
rate at which a quantity decreases is proportional to the quantity itself.*

The decrease in the charge on a capacitor can be likened to the decrease in the
amount of water in a bucket that has vertical sides and a small hole in the bottom.
(The rate at which the water flows out of the hole is proportional to the difference
in pressure of the water on either side of the hole, which is in turn proportional to
the amount of water still in the bucket.)

The current is obtained by differentiating Equation 25-35

Substituting, using Equation 25-30, we obtain

25-37

where is the initial current. The current as a function of time
is shown in Figure 25-43. As with the charge, the current decreases exponentially
with time constant t � RC.

I0 � V0>R � Q0>(RC)

I � I0e
�t>t

I � �
dQ
dt

�
Q0

RC
e�t>(RC)

Q
Q � e�2Q0 � 0.135Q0 ,t � 2t,

Q � e�1Q0 � 0.37Q0 .t � t,

t � RC

e�1:
t,

Q(t) � Q0e
�t>(RC) � Q0e

�t>t
Q(t)Q� � Q(t).t,t�t�

ln
Q�

Q0

� �
t�
RC

�
Q�

Q0

dQ
Q

� �
1
RC �

t�

0
dt

t�
Q�t � 0Q0tQ

dQ
Q

� �
1
RC

dt

dt>Q,
dt>Q,

tQ

dQ
dt

� �
1
RC
Q

Q

C
� R

dQ
dt

� 0

I�dQ>dt
I,Q

* We encountered exponential decreases in Chapter 14 when we studied the damped oscillator.

I

t

I0

τ

RC=τ

F I G U R E  2 5 - 4 3 Plot of the current
versus time for the circuit in Figure 25-41.
The curve has the same shape as that in
Figure 25-42. If the rate of decrease of the
current remains constant, the current would
reach zero after one time constant, as
indicated by the dashed line.
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F I G U R E  2 5 - 4 4 (a) A circuit for charging
a capacitor to a potential difference (b) After
the switch is closed, there is both a current
through and a potential drop across the
resistor and both a charge on and a potential
drop across the capacitor.
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CHARGING A CAPACITOR

Figure 25-44a shows a circuit for charging a capacitor. The capacitor is initially un-
charged. The switch S, originally open, is closed at time Charge immediately
begins to flow through the battery (Figure 25-44b). If the charge on the rightmost
plate of the capacitor at time is the current in the circuit is and clockwise is
positive, then Kirchhoff’s loop rule gives

25-38

By inspecting this equation, we can see that when is zero (at ) the current
is The charge then increases and the current decreases. The charge
approaches a maximum value of as the current approaches zero, as can
also be seen from Equation 25-38.

In this circuit, we have chosen the positive direction so if is positive is
increasing. Thus,

Substituting for in Equation 25-38 gives

25-39

Equation 25-39 can be solved in the same way that we solved Equation 25-33.

E � R
dQ
dt

�
Q

C
� 0

IdQ>dt

I � �
dQ
dt

QI

IQf � CE
I � I0 � E>R.

t � 0Q

E � IR�
Q

C
� 0

I,Q,t

t � 0.

(a) The initial charge is related to the capacitance and voltage:

(b) The initial current is the initial voltage divided by the resistance:

96 mCQ0 � CV0 � (4.0 mF)(24 V) �

0.12 AI0 �
V0

R
�

24 V
200 Æ

�

(c) The time constant is RC:

(d) Substitute ms into Equation 25-35 to find the charge on 
the capacitor at that time:

t � 4.0

0.80 mst � RC � (200 Æ)(4.0 mF) � 800 ms �

CHECK At the initial current of it would take 
for the capacitor to fully discharge. Because the current decreases exponentially during dis-
charge, it is not surprising that it takes 4.0 ms for the charge to lose of its initial charge.

TAKING IT FURTHER After five time constants, is less than 1 percent of its initial value.

PRACTICE PROBLEM 25-10 Find the current through the resistor at t � 4.0 ms.200-Æ

Q

99.3%

Q0 >I0 � 96 mC>0.12 A � 0.80 msI0 � 0.12 A

Example 25-18 Discharging a Capacitor

capacitor is charged to and then connected across a resistor. Find (a) the
initial charge on the capacitor, (b) the initial current through the resistor, (c) the time
constant, and (d) the charge on the capacitor after 

PICTURE The circuit diagram is the same as the circuit diagram shown in Figure 25-41.

SOLVE

4.0 ms.
200-Æ
200-Æ24 VA 4.0-mF

0.65 mC� (96 mC)e�5 �

Q � Q0e
�t>t � (96 mC)e�(4.0 ms)>(0.80 ms)



Try It Yourself

I

I

t

0 I0 =   /R

τ

RC=τ

E

F I G U R E  2 5 - 4 6 Plot of the current
versus time for the charging circuit of
Figure 25-44. The current is initially and
the current decreases exponentially with time.

E>R,

t

CQf =
Q

τ

RC=τ

Qf

E

F I G U R E  2 5 - 4 5 Plot of the charge on
the capacitor versus time for the charging
circuit of Figure 25-44 after the switch is
closed (at ). After a time the
charge on the capacitor is where is
its final charge. If the charging rate were
constant, the capacitor would be fully charged
after a time t � t.

CE0.63CE,
t � t � RC,t � 0
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Example 25-19 Charging a Capacitor

battery that has a negligible internal resistance is used to charge a capacitor
through a resistor. Find (a) the initial current, (b) the final charge on the capacitor,
(c) the time required for the charge to reach 90 percent of its final value, and (d) the charge
when the current is half its initial value.

PICTURE The charge initially is zero so the voltage across the resistor is equal to the emf of
the battery. Apply Ohm’s law to the resistor and solve for the current. After a long time, the
current is zero so the voltage across the capacitor is equal to the emf of the battery. Apply the
definition of capacitance and solve for the charge. Use Equation 25-40 to relate the charge to
the time, and use Kirchhoff’s loop rule to relate the charge to the current.

100-Æ
2.0-mFA 6.0-V

PRACTICE PROBLEM 25-11

Show that Equation 25-40 does indeed satisfy Equation 25-39 by substituting the expres-
sions for and into Equation 25-39.dQ>dtQ

PRACTICE PROBLEM 25-12

What fraction of the maximum charge is on the charging capacitor after a time t � 2t?

The details are left as a problem (see Problem 101). The result is

25-40

where is the final charge. The current is obtained from 

or

25-41

where the initial current is 
Figure 25-45 and Figure 25-46 show the charge and the current as functions of time.

I0 � E>R.

I �
E

R
e�t>(RC) � I0e

�t>t

I �
dQ
dt

� CE c� �1
RC
e�t>(RC) d �

E

R
e�t>(RC)

I � dQ>dt:Qf � CE

Q � CE [1 � e�t>(RC)] � Qf11 � e�t>t2
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SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

(a) Find the initial current from I0 � E>R. 60 mAI0 � 0.060 A �

(b) Find the final charge from Q � CE. 12 mCQf �

(c) Set in Equation 25-40 and solve for (First
solve for then take the natural log of both sides and
solve for .)t

et>t, t.Q � 0.90Qf 0.46 mst � 2.3t �

(d) 1. Apply Kirchhoff’s loop rule to the circuit using
Figure 25-44b.

E � IR �
Q

C
� 0

2. Set and solve for Q.I � I0 >2 6.0 mCQ �
Qf

2
�

CHECK The answer to Part (d) can be obtained by first solving for using Equation 25-41,
then substituting that time into Equation 25-40 and solving for However, using the loop
rule is certainly the more direct approach.

Q.
t

Example 25-20 Finding Values at Short and Long Times

The capacitor in the circuit shown in Figure 25-47 is initially uncharged. Find
the current through the resistor and the current through the resistor
(a) immediately after the switch is closed and (b) a long time after the switch is closed.
(c) Find the charge on the capacitor a long time after the switch is closed.

PICTURE Because the capacitor is initially uncharged (and the resistor limits the
current through the battery), the initial potential difference across the capacitor is zero.
The capacitor and the resistor are connected in parallel, and the difference in
potential across each is the same. Thus, the initial potential difference across the 
resistor is also zero. The positive direction for the branch that has the battery is up
the page, and the positive direction for the other two branches is down the page. Let
be the charge on the upper plate of the capacitor.

SOLVE

Q

8.0-Æ
8.0-Æ

4.0-Æ

8.0-Æ4.0-Æ
6.0-mF

CHECK The analysis of this circuit at the extreme times when the capacitor is either un-
charged or fully charged is simple. When the capacitor is uncharged, it acts like a good con-
ductor (a short circuit) between points and that is, the circuit is the same as the one
shown in Figure 25-48a where we have replaced the capacitor by a wire of zero resistance.
When the capacitor is fully charged, it acts like an open switch, as shown in Figure 25-48b.

d;c

(b) After a long time, the capacitor is fully charged (no more charge
flows onto its plates) and the current through both resistors is
the same. Apply the loop rule to the loop on the left and solve
for the current:

1.0 AIf �

12 V � (4.0 Æ)If � (8.0 Æ)If � 0

(c) The potential difference across the resistor and the
capacitor are equal. Use this to solve for Qf:

8.0-Æ

48 mCQf � (1.0 A)(8.0 Æ)(6.0 mF) �

If (8.0 Æ) �
Qf

C

(a) The charge on the capacitor initially is zero. Apply the loop rule
to the outer loop and solve for the current through the 
resistor. Apply the loop rule to the loop containing the 
resistor and the capacitor and solve for the current through the

resistor.8.0-Æ

8.0-Æ
4.0-Æ

0I8 Æ �

I8 Æ(8 Æ) �
0
C

� 0

3.0 AI4 Æ �

12 V � (4.0 Æ)I4Æ �
0
C

� 0

+
_ 8.0 Ω

4.0 Ω

12 V 6.0 μF

Sa b c

def
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+
_

4.0 Ω

8.0 Ω12 V

Sa b c

def

+
_

4.0 Ω

8.0 Ω12 V

Sa b c

def

(a) (b)
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ENERGY CONSERVATION IN CHARGING A CAPACITOR

During the charging process, a total charge flows through the battery. The
battery therefore does work

Half of this work is accounted for by the energy stored in the capacitor (see
Equation 24-8):

We now show that the other half of work done by the battery is dissipated as ther-
mal energy by the resistance of the circuit. The rate at which energy is dissipated
by the resistance is

where (Equation 25-41). Substituting for we have

We find the total energy dissipated by integrating from to 

where Thus,

The total amount of Joule heating is thus

where This result is independent of the resistance Thus, when a
capacitor is charged through a resistor by a constant source of emf, half the energy
provided by the source of emf is stored in the capacitor and half goes into thermal
energy. This thermal energy includes the energy that is dissipated by the internal
resistance of the source of emf.

R.Qf � E C.

WR �
1
2

E 2C �
1
2
QfE

WR �
E 2

R
e�at

�a
`
0

� �
E 2

Ra
(0 � 1) �

E 2

R
1
a

�
E 2

R
RC
2

a � 2>(RC).

WR � �
q

0

E 2

R
e�2t>(RC) dt �

E 2

R �
q

0
e�at dt

t � :t � 0

dWR
dt

� aE

R
e�t>(RC)b 2

R �
E 2

R
e�2t>(RC)

II � (E>R)e�t>(RC)

dWR
dt

� I2R

R

U � 1
2QfE

W � QfE � CE 2

Qf � EC
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Physics Spotlight

Vehicle Electrical Systems: Driven to Innovation

During the 1930s, 6-volt batteries (7-volt charging) and electrical circuits were
standard for automobiles in the United States. In the mid-1950s, manufacturers
around the world recognized that this battery was inadequate for a car’s electrical de-
mands, and changed to 12-volt batteries (14-volt charging) that can support 14-volt
electrical systems.* The changeover took several years.†

In the mid-1960s, demands on a car’s electrical system included the starter, igni-
tion, lights, radio, and air-conditioning in luxury cars.‡ Today, the electrical system
and electronics of a car# can include crash sensors, automatic braking systems, seat
motors, power steering, power braking, windshield washers with intermittent
timing, video-based entertainment systems, engine controllers, cruise control, and
window motors. Some high-end luxury cars put further demands on their electrical
systems with electronic throttle control, radar to detect the distance to objects,° elec-
tronic stability and suspension control, and heated seats.§ The power requirement
for an automobile is to today, and is expected to increase to to 
or more in the near future.¶ The electrical system and electronics of a car now ac-
count for more than 20 percent of the manufacturing cost of the average car.**

Because demands on the electrical system of cars are expected to increase still
further,†† many people have suggested that it would be a good idea to upgrade the
electrical system of cars to a 36-volt battery and a 42-volt system. (Because power
is the product of voltage and current, this means that when the voltage increased,
the current would decrease in order to supply the same power.) Many people were
excited about the prospect of using smaller wires and lighter wiring harnesses to
carry power to all the electrical devices.‡‡ In addition, the higher voltage would
mean smaller and lighter starter motors and alternators.

But switching over to a 42-volt system is proving to be more difficult than
expected. Although a concept car was built with a 42-volt system, it was made
from nonstandard customized parts.## In a system, a connection that has vi-
brated loose will not arc persistently over a gap that is about a millimeter. In a 
system, the same loose connection will arc, which creates the danger of an electri-
cal fire.°° At more expensive electrical connectors are required. By mid-2005,
several manufacturers had confirmed that they were not interested in using 42-volt
systems within the next few years.§§,¶¶ A consortium of researchers continues to
look at issues involving 42-volt automotive systems.*** When the economics of a
switch to the 42-volt systems make sense, then 42-volt electrical systems will be put
into mass-production automobiles.

* Ribbens, W. B., Understanding Automotive Electronics, 6th ed. New York: Newnes (Elsevier), 2003.
† Corbett, B., “No Flick of the Switch.” Ward’s Auto World, April 2001, Vol. 37, No. 4, p. 50.
‡ Ribbens, W. B., op. cit.
# Automotive Electronics Handbook, R. Jurgen, ed., New York: McGraw-Hill, 1995.
° Allen, R., “New Technologies Make Roads Safer… One Smart Car at a Time.” Electronic Design, Jun. 29, 2006, pp. 41–44.
§ “The 2007 S600 Sedan,” Mercedes-Benz, http://www.mbusa.com/models/features/specs/overview.do?modelCode

�S600V&class�07_S As of Sept. 2006.
¶ Masrur, M. A., Monroe, J., Patel, R., and Garg, V. K., “42-volt Electrical Power System for Military Vehicles—

Comparison with Commercial Automotive Systems,” Vehicular Technology Conference, 2002. Proceedings, VTC 2002-
Fall, 2002 IEEE 56th, Vol. 3, pp. 1846–1850.

** Marsh, D., “LIN Simplifies and Standardizes In-Vehicle Networks.” Electronic Design News, Apr. 8, 2005, pp. 29�.
†† Huber, P. W., and Mills, M. P., “The End of the M. E.?” Mechanical Engineering, May 2005, pp. 26–29.
‡‡ Truett, R., “42-Volt Systems Boost Fuel Economy Efforts.” Automotive News, Oct. 21, 2001, Vol. 77, No. 6008, p. 6i.
## “No-Compromise Mild Hybrid Car Engine Has a Promising Future.” Asia-Pacific Engineer, Jun. 1, 2003. http://

www.engineerlive.com/asiapacific-engineer/automotive-design/1603/nocompromise-mild-hybrid-car-engine-has-
a-promising-future.thtml As of Sept. 2006.

°° Moran, T., “42-Volt Challenges: Arcs and Sparks.” Automotive News, Mar. 12, 2001, Vol. 75, No. 5920, p. 8.
§§ Kelly, K., “DC Dumps 42-Volts.” Ward’s AutoWorld, Jun. 2004, p. 9.
¶¶ Crain, K., “Let’s Step Back, Rethink Technology.” Automotive News, Jan. 3, 2005, Vol. 79, No. 6128, p. 12.
*** MIT/Industry Consortium on Advanced Automotive Electrical/Electronic Components and Systems. “Consortium

Research Units.” http://lees-web.mit.edu/public/Public%20Documents/Research_Units_and_Deliverables.pdf
As of Sept. 2006.

42 V,

42-V
14-V

3.5 kW3.02.0 kW1.5

(Graham Harrison/Alamy.)

http://www.mbusa.com/models/features/specs/overview.do?modelCode=S600V&class=07_S
http://www.mbusa.com/models/features/specs/overview.do?modelCode=S600V&class=07_S
http://www.engineerlive.com/asiapacific-engineer/automotive-design/1603/nocompromise-mild-hybrid-car-engine-hasa-promising-future.thtml
http://www.engineerlive.com/asiapacific-engineer/automotive-design/1603/nocompromise-mild-hybrid-car-engine-hasa-promising-future.thtml
http://www.engineerlive.com/asiapacific-engineer/automotive-design/1603/nocompromise-mild-hybrid-car-engine-hasa-promising-future.thtml
http://lees-web.mit.edu/public/Public%20Documents/Research_Units_and_Deliverables.pdf


Summary | 875

Summary

1. Ohm’s law is an empirical law that holds only for certain materials.

2. Current, resistance, and emf are important defined quantities.

3. Kirchhoff’s rules follow from the conservation of charge and the conservative nature of
the electric field.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Electric Current Electric current is the rate of flow of electric charge through a cross-sectional area.

25-1

in the limit that approaches zero.

Drift velocity In a conducting wire, electric current is the result of the slow drift of negatively charged elec-
trons that are accelerated by an electric field in the wire and then collide with the lattice ions.
Typical drift speeds of electrons in wires are of the order of a few millimeters per second.
For mobile charges moving in the positive direction,

25-3

where is the number density of free electrons, is the cross-sectional area, and 
is the drift speed.

Current density The current density is related to the drift velocity by

25-4

The current through a cross-sectional surface is the flux of the current density through
the surface.

2. Resistance

Definition of resistance 25-7

Resistivity, 25-10

Temperature coefficient of resistivity, 25-12

3. Ohm’s Law For ohmic materials, the resistance does not depend on either the current or the potential drop:

constant 25-9

4. Power

Supplied to a device or segment 25-13

Delivered to a resistor 25-14

5. Emf

Source of emf A device that supplies electrical energy to a circuit.

Power supplied by an ideal emf source 25-15

6. Battery

Ideal An ideal battery is a source of emf that maintains a constant potential difference between its
two terminals, independent of the current through the battery.

Real A real battery can be considered as an ideal battery in series with a small resistance, called
its internal resistance.

Terminal voltage 25-16

where in the battery the positive direction is the direction of increasing potential.

Va � Vb � E � Ir

P � IE

P � IV � I2R �
V2

R

P � IV

RV � IR,

a �
(r � r0)>r0

T � T0

a

R � r
L
A

r

R �
V
I

I

J
S

� qnvSd

J
S

vdAq � �e, n

I � qnAvd

¢t

I �
¢Q
¢t
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Total energy stored 25-18

7. Equivalent Resistance

Resistors in series 25-20

Resistors in parallel 25-25

8. Kirchhoff’s Rules 1. When any closed loop is traversed, the algebraic sum of the changes in potential around
the loop must equal zero.

2. At any junction (branch point) in a circuit where the current can divide, the sum of the cur-
rents into the junction must equal the sum of the currents out of the junction.

9. Measuring Devices

Ammeter An ammeter is a very low resistance device that is placed in series with a circuit element to
measure the current in the element.

Voltmeter A voltmeter is a very high resistance device that is placed in parallel with a circuit element
to measure the potential difference across the element.

Ohmmeter An ohmmeter is a device containing a battery connected in series with a galvanometer
and a resistor that is used to measure the resistance of a circuit element placed across its
terminals.

10. Discharging a Capacitor

Charge on the capacitor 25-35

Current in the circuit 25-37

Time constant 25-36

11. Charging a Capacitor

Charge on the capacitor 25-40

Current in the circuit 25-41I �
E

R
e�t>(RC) � I0e

�t>t
Q � CE [1 � e�t>(RC)] � Qf(1 � e�t>t)

t � RC

I � �
dQ
dt

�
V0

R
e�t>(RC) � I0e

�t>t
Q(t) � Q0e

�t>(RC) � Q0e
�t>t

1
Req

�
1
R1

�
1
R1

�
1
R3

� Á

Req � R1 � R2 � R3 � Á

Estored � QE

Answers to Concept Checks

25-1 (a) The current is larger just after the switch is thrown
because the bulb filament is a metal and is relatively
cool, so its resistance is less than it will be when the
bulb has been running for a while. Lower resistance
means higher current. (b) Energy from the battery
initially is delivered to the filament at a greater rate
than the relatively cool filament releases heat. After a
while, energy from the battery is delivered to the
filament at the same rate that the now hot filament
releases heat. Under these conditions the filament’s
temperature, and thus its resistance, remains constant.

Answers to Practice Problems

25-1

25-2

25-3

25-4

25-5 The color bands are colored, from top to bottom,
brown, orange, blue, red, and brown. The value of the
resistance is and the tolerance is 1%.

25-6 (a) (b) 270 J45 W,

13.6 kÆ

2.4 m

4.5 V

14 000

7.9 h

TOPIC RELEVANT EQUATIONS AND REMARKS
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Problems

25-7 (a) (b)

25-8 (a) (b) (c)
(d)

25-9 (a) (b)

25-10

25-12 0.86

0.81 mA

0.83 A3.0 A

I12 � 0I0 � 9.0 A,I2 � 9.0 A,V12 � 0;
V0 � 0,V2 � 18 V,I � 9.0 A;Rœ

eq � 2.0 Æ;

1.3 Æ6.0 Æ,

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • In our study of electrostatics, we concluded that no elec-
tric field exists within the material of a conductor in electrostatic
equilibrium. Why can we discuss electric fields within the material
of conductors in this chapter?
2 • Figure 25-12 shows a mechanical analog of a simple elec-
tric circuit. Devise another mechanical analog in which the current
is represented by a flow of water instead of marbles. In the water
circuit, what would be analogous to the battery? What would be
analogous to the wire? What would be analogous to the resistor?
3 • Wires A and B are both made of copper. The wires are
connected in series, so we know they carry the same current.
However, the diameter of wire A is twice the diameter of wire B.
Which wire has the higher number density of charge carriers (num-
ber per unit charge)? (a) (b) (c) They have the same number
density of charge carriers.
4 • The diameters of copper wires A and B are equal. The
current carried by wire A is twice the current carried by wire B. In
which wire do the charge carriers have the higher drift speed? (a)
(b) (c) They have the same drift speed.
5 • Wire A and wire B are identical copper wires. The current
carried by wire A is twice the current carried by wire B. Which wire
has the higher current density? (a) (b) (c) They have the same
current density. (d) None of the above
6 •• Consider a metal wire that has each end connected to a
different terminal of the same battery. Your friend argues that no
matter how long the wire is, the drift speed of the charge carriers in
the wire is the same. Evaluate your friend’s claim.
7 • In a resistor, the direction of the current must always be in
the “downhill” direction, that is, in the direction of decreasing elec-
tric potential. Is it also the case that in a battery, the direction of the
current must always be the “downhill”? Explain your answer.

B,A,

B,
A,

B,A,

8 • Discuss the distinction between an emf and a potential
difference.
9 • Wire A and wire B are made of the same material and
have the same length. The diameter of wire A is twice the diameter
of wire B. If the resistance of wire B is then what is the resistance
of wire A? (Neglet any effects that temperature may have on resis-
tance.) (a) (b) (c) (d) (e)
10 • Two cylindrical copper wires have the same mass.
Wire A is twice as long as wire B. (Neglet any effects that tempera-
ture may have on resistance.) Their resistances are related by
(a) (b) (c) (d)
11 • If the current in a resistor is the power delivered to the
resistor is If the current in the resistor is increased to what is
the power then delivered to the resistor? (Assume the resistance of
the resistor does not change.) (a) (b) (c) (d) (e)
12 • If the potential drop across a resistor is the power
delivered to the resistor is If the potential drop is increased to 
what is the power delivered to the resistor then equal to? (a)
(b) (c) (d) (e)
13 • A heater consists of a variable resistor (a resistor whose
resistance can be varied) connected across an ideal voltage supply.
(An ideal voltage supply is one that has a constant emf and a neg-
ligible internal resistance.) To increase the heat output, should you
decrease the resistance or increase the resistance? Explain your
answer.
14 • One resistor has a resistance and another resistor has
a resistance The resistors are connected in parallel. If 
the equivalent resistance of the combination is approximately
(a) (b) (c) 0, (d) infinity.
15 • One resistor has a resistance and another resistor has
a resistance The resistors are connected in series. If the
equivalent resistance of the combination is approximately (a)
(b) (c) 0, (d) infinity.R2 ,

R1 ,
R1 W R2 ,R2 .

R1

R2 ,R1 ,

R1 W R2 ,R2 .
R1

SSM

P>4P>2,4P,2P,
P,

2V,P.
V,

P>99P,P>3,3P,P,

3I,P.
I,

RA � RB .RA � 2RB ,RA � 4RB ,RA � 8RB ,

R>44R,R>2,2R,R,

R,
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F I G U R E  2 5 - 4 9 Problems 21 and 24
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R2

R3
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F I G U R E  2 5 - 5 0 Problem 23

16 • A parallel combination consisting of resistors A and B is
connected across the terminals of a battery. The resistor A has twice
the resistance of resistor B. If the current carried by resistor A is 
then what is the current carried by resistor B? (a) (b) (c)
(d) (e)
17 • A series combination consisting of resistors A and B is
connected across the terminals of a battery. The resistor A has twice
the resistance of resistor B. If the current carried by resistor A is 
then what is the current carried by resistor B? (a) (b) (c)
(d) (e)
18 • Kirchhoff’s junction rule is considered to be a conse-
quence of (a) conservation of charge, (b) conservation of energy,
(c) Newton’s laws, (d) Coulomb’s law, (e) quantization of charge.
19 • True or false:

(a) An ideal voltmeter has a zero internal resistance.
(b) An ideal ammeter has a zero internal resistance.
(c) An ideal voltage source has a zero internal resistance.
20 • Before you and your classmates run an experiment, your
professor lectures about safety. She reminds you that to measure the
voltage across a resistor you connect a voltmeter in parallel with the
resistor, and to measure the current in a resistor you connect an am-
meter in series with the resistor. She also states that connecting a
voltmeter in series with a resistor will not measure the voltage
across the resistor, but also cannot do any damage to the circuit or
the instrument. In addition, connecting an ammeter in parallel with
a resistor will not measure the current in the resistor, but could
cause significant damage to the circuit and the instrument. Explain
why connecting a voltmeter in series with a resistor causes no dam-
age while connecting an ammeter in parallel with a resistor can
cause significant damage.
21 • The capacitor in Figure 25-49 is initially uncharged.
Just after the switch is closed, (a) the voltage across equals 
(b) the voltage across equals (c) the current in the circuit is zero,
(d) both (a) and (c) are correct.

E,R
E,CS

C

I>44I,
I>2,2I,I,
I,

I>44I,
I>2,2I,I,
I,

24 •• The capacitor in Figure 25-49 is initially uncharged. The
switch is closed and remains closed for a very long time. During
this time, (a) the energy supplied by the battery is (b) the en-
ergy dissipated in the resistor is (c) the energy in the resistor
is dissipated at a constant rate, (d) the total charge passing through
the resistor is 

ESTIMATION AND 
APPROXIMATION

25 •• It is not a good idea to stick the ends of a metal paper clip
into the two rectangular slots of a household electrical wall outlet in
the United States. Explain why by estimating the current that a paper
clip would carry until either the fuse blows or the breaker trips.

26 •• (a) Estimate the resistance of an automobile jumper cable.
(b) Look up the current required to start a typical car. At that cur-
rent, what is the potential drop that occurs across the jumper cable?
(c) How much power is dissipated in the jumper cable when it car-
ries that current?

27 •• ENGINEERING APPLICATION, CONTEXT-RICH Your man-
ager wants you to design a new superinsulated water heater for the
residential market. A coil of Nichrome wire is to be used as the heat-
ing element. Estimate the length of wire required. Hint: You will need
to determine the size of a typical water heater and a reasonable time period
for creating hot water.

28 •• A compact fluorescent lightbulb costs about $6.00 and
has a typical lifetime of The bulb uses of power but
produces illumination equivalent to that of a incandescent
bulb. An incandescent bulb costs about $1.50 and has a typical life-
time of Your family wonders whether it should buy fluo-
rescent lightbulbs. Estimate the amount of money your household
would save each year by using compact fluorescent lightbulbs
instead of the incandescent bulbs.

29 •• CONTEXT-RICH The wires in a house must be large
enough in diameter so that they do not get hot enough to start a fire.
While working for a building contractor during the summer, you
are involved in remodeling a house. The local building code states
that the Joule heating of the wire used in houses should not exceed

Estimate the maximum gauge of the copper wire that you
can use during the rewiring of the house with circuits.

30 •• A laser diode used in making a laser pointer is a highly
nonlinear circuit element. Its behavior is as follows. For any voltage
drop across it that is less than about it behaves as if it has an
infinite internal resistance, but for voltages higher than it has
a very low internal resistance—effectively zero. (a) A laser pointer
is made by putting two watch batteries in series across the
laser diode. If the batteries each have an internal resistance between

and estimate the current in the laser diode. (b) About
half of the power delivered to the laser diode goes into radiant
energy. Using this fact, estimate the power of the laser beam, and
compare this value to typical quoted values of about (c) If
the batteries each have a capacity of (i.e., they can de-
liver a constant current of for approximately 1 hour before
discharging), estimate how long one can continuously operate the
laser pointer before replacing the batteries.

CURRENT, CURRENT DENSITY, 
DRIFT SPEED, AND THE MOTION
OF CHARGES

31 • A copper wire carries a current equal to 
Assuming copper has one free electron per atom, calculate the drift
speed of the free electrons in the wire. SSM

20 A.10-gauge

20.0 mA
20.0 mA # h

3.00 mW.

1.50 Æ,1.00 Æ

1.55-V

2.30 V
2.30 V,

20-A
2.0 W>m.

1000 h.

75-W
20 W10 000 h.

1
2CE.

1
2CE 2,

1
2CE 2,

S

22 •• A capacitor is discharging through a resistor. If it takes a
time for the charge on a capacitor to drop to half its initial value,
how long (in terms of ) does it take for the stored energy to drop
to half its initial value?

23 •• In Figure 25-50, the values of the resistances are related
as follows: If power is delivered to what is the
power delivered to and SSMR3?R2

R1 ,PR2 � R3 � 2R1 .

T
T
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F I G U R E  2 5 - 5 1 Problem 48

32 •• A thin nonconducting ring that has a radius and a lin-
ear charge density rotates with angular speed about an axis
through its center and perpendicular to the plane of the ring. Find
the current of the ring.

33 •• A length of copper wire and a length of
copper wire are welded together end to end. The wires

carry a current of (a) If there is one free electron for each
copper atom in each wire, find the drift speed of the electrons in
each wire. (b) What is the ratio of the magnitude of the current
density in the length of wire to the magnitude of the
current density in the length of wire?

34 •• An accelerator produces a beam of protons with a cir-
cular cross section that is in diameter and has a current
of The current density is uniformly distributed through-
out the beam. The kinetic energy of each proton is The
beam strikes a metal target and is absorbed by the target.
(a) What is the number density of the protons in the beam?
(b) How many protons strike the target each minute? (c) What is
the magnitude of the current density in this beam? 

35 •• In one of the colliding beams of a planned proton super-
collider, the protons are moving at nearly the speed of light and the
beam current is The current density is uniformly distrib-
uted throughout the beam. (a) How many protons are there per
meter of length of the beam? (b) If the cross-sectional area of the
beam is what is the number density of protons?
(c) What is the magnitude of the current density in this beam?

36 •• CONTEXT-RICH The solar wind consists of protons from
the Sun moving toward Earth (the wind actually consists of about
95% protons). The number density of protons at a distance from the
Sun equal to the orbital radius of Earth is about 7.0 protons per
cubic centimeter. Your research team monitors a satellite that is in
orbit around the Sun at a distance from the Sun equal to Earth’s or-
bital radius. You are in charge of the satellite’s mass spectrometer, an
instrument used to measure the composition and intensity of the
solar wind. The aperture of your spectrometer is a circle of radius

The rate of collection of protons by the spectrometer is such
that they constitute a measured current of What is the speed
of the protons in the solar wind? (Assume the protons enter the
aperture at normal incidence.)

37 •• A gold wire has a cross section.
Opposite ends of this wire are connected to the terminals of a 
battery. If the length of the wire is how much time, on aver-
age, is required for electrons leaving the negative terminal of the
battery to reach the positive terminal? Assume the resistivity of
gold is 

RESISTANCE, RESISTIVITY, AND
OHM’S LAW

Note: In this section, assume the resistors are ohmic
(constant resistance) unless stated otherwise.

38 • A wire has a resistance equal to and
carries a current equal to (a) What is the potential difference
across the entire length of the wire? (b) What is the electric-field
strength in the wire?

39 • A potential difference of across the terminals of a
resistor produces a current of in the resistor. (a) What is the
resistance of the resistor? (b) What is the current in the resistor
when the potential difference is only (Assume the resistance
of the resistor remains constant.) SSM

25.0 V?

3.00 A
100 V

5.0 A.
0.20 Æ10-m-long

2.44 � 10�8 Æ # m.

7.5 cm,
1.5-V

0.10-mm-diameter

85 nA.
25 cm.

SSM

1.00 � 10�6 m2,

5.00 mA.

20 MeV.
1.0 mA.

2.0 mm

SSM14-gauge
10-gauge

15 A.
14-gauge

10-gauge

vl

a 40 • A block of carbon is long and has a square cross-
section whose sides are long. A potential difference of 
is maintained across its length. (a) What is the resistance of the
block? (b) What is the current in this resistor?

41 • An extension cord consists of a pair of 30-m-long 
16-gauge copper wires. What is the potential difference that
must be applied across one of the wires if it is to carry a current
of

42 • (a) How long is a copper wire that has a
resistance of (b) How much current will it carry if a

potential difference is applied across its length?

43 • A cylinder of glass is long and has a resistivity of
What length of copper wire that has the same cross-

sectional area will have the same resistance as the glass cylinder?

44 •• ENGINEERING APPLICATION While remodeling your
garage, you need to temporarily splice, end to end, an 
copper wire that is in diameter with a alu-
minum wire that has the same diameter. The maximum current in
the wires is (a) Find the potential drop across each wire of
this system when the current is (b) Find the electric field in
each wire when the current is 

45 •• A wire has a resistance equal to A
second wire made of identical material has a length of and a
mass equal to the mass of the first wire. What is the resistance of the
second wire?

46 •• A copper wire can safely carry currents up to
(a) What is the resistance of a length of the wire?

(b) What is the electric field in the wire when the current is 
(c) How long does it take for an electron to travel in the wire
when the current is 

47 •• A cube of copper has edges that are long. If cop-
per in the cube is drawn to form a length of wire, what
will the resistance of the length of wire be? Assume the density of
the copper does not change.

48 ••• Find an expression for the resistance between the ends of
the half-ring shown in Figure 25-51. The resistivity of the material
constituting the half-ring is Hint: Model the half-ring as a parallel
combination of a large number of thin half-rings. Assume the current is
uniformly distributed on a cross section of the half-ring.

r.

14-gauge
2.00 cm

30.0 A?
100 m

30.0 A?
100-m30.0 A.

10-gauge

SSM

2.00 m
0.300 Æ.1.00-m-long

2.00 A.
2.00 A.

2.00 A.

49-m-long1.00 mm
80-m-long

1.01 � 1012 Æ # m.
1.00 cm

120-V
12.0 Æ?

14-gauge

SSM5.0 A?

8.4 V0.50 cm
3.0 cm

49 ••• Consider a wire of length in the shape of a truncated
cone. The radius of the wire varies with distance from the nar-
row end according to where 
Derive an expression for the resistance of this wire in terms of its
length radius radius and resistivity Hint: Model the wire
as a series combination of a large number of thin disks. Assume the
current is uniformly distributed on a cross section of the cone.

50 ••• The space between two metallic concentric spherical
shells is filled with a material that has a resistivity of

If the inner metal shell has an outer radius of
and the outer metal shell has an inner radius of 

what is the resistance between the conductors? Hint: Model the ma-
terial as a series combination of a large number of thin spherical shells.

5.00 cm,1.50 cm
3.50 � 10�5 Æ # m.

SSM

r.b,a,L,

0 	 x 	 L.r � a � [(b � a)>L]x,
x

L
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51 ••• The space between two metallic coaxial cylinders that
have the same length L is completely filled with a nonmetallic ma-
terial having a resistivity The inner metal shell has an outer ra-
dius and the outer metal shell has an inner radius (a) What is
the resistance between the two cylinders? Hint: Model the material as
a series combination of a large number of thin cylindrical shells. (b) Find
the current between the two metallic cylinders if 

and a potential difference of
is maintained between the two cylinders.

TEMPERATURE DEPENDENCE OF
RESISTANCE

52 • A tungsten rod is long and has a square cross sec-
tion that has (a) What is its resistance at 
(b) What is its resistance at 

53 • At what temperature will the resistance of a copper
wire be 10 percent greater than its resistance at 

54 •• ENGINEERING APPLICATION You have a toaster that
uses a Nichrome wire as a heating element. You need to deter-
mine the temperature of the Nichrome wire under operating
conditions. First, you measure the resistance of the heating ele-
ment at and find it to be Then you measure the cur-
rent immediately after you plug the toaster into a wall outlet—
before the temperature of the Nichrome wire increases signifi-
cantly. You find this startup current to be When the heat-
ing element reaches its operating temperature, you measure the
current to be Use your data to determine the maximum
operating temperature of the heating element.

55 •• ENGINEERING APPLICATION Your electric space heater
has a Nichrome heating element that has a resistance of

When is applied, the electric current heats
the Nichrome wire to (a) What is the initial current in the
heating element at (b) What is the resistance of the heating
element at (c) What is the operating power of this heater?

56 •• A Nichrome resistor is wired into an electronic
circuit using copper leads (wires) that have diameters equal to

The copper leads have a total length of (a) What
additional resistance is due to the copper leads? (b) What percent-
age error in the total resistance is produced by neglecting the resis-
tance of the copper leads? (c) What change in temperature would
produce a change in resistance of the Nichrome wire equal to the re-
sistance of the copper leads? Assume that the Nichrome section is
the only one whose temperature is changed.

57 ••• A wire that has a cross-sectional area a length a re-
sistivity and a temperature coefficient is connected end to end
to a second wire that has the same cross-sectional area, a length 
a resistivity and a temperature coefficient so that the wires
carry the same current. (a) Show that if then
the total resistance is independent of temperature for small temper-
ature changes. (b) If one wire is made of carbon and the other wire
is made of copper, find the ratio of their lengths for which the total
resistance is approximately independent of temperature.

58 ••• The resistivity of tungsten increases approximately lin-
early with temperature from at to at

A lightbulb is powered by a dc power supply. Under
those operating conditions the temperature of the tungsten filament
is the length of the filament is equal to and the
power delivered to the filament is Estimate (a) the resistance
of the filament and (b) the diameter of the filament.

40 W.
5.00 cm,2500 K,

100-V3500 K.
1.10 mÆ # m293 K56.0 nÆ # m

SSM

r1L1a1 � r2L2a2 � 0,
a2 ,r2 ,

L2 ,
a1r1 ,

L1 ,A,

50.0 cm.0.600 mm.

10.0-Æ

1000°C?
20.0°C?

1000°C.
120 V8.00 Æ at 20.0°C.

7.00 A.

8.70 A.

80.0 Æ.20°C

SSM20°C?

40°C?
20°C?1.0-mm-long edges.

50 cm

10.0 V
a � 1.50 cm, b � 2.50 cm, L � 50.0 cm,

30.0 Æ # m,r �

b.a
r.

59 ••• A lightbulb used in an electronics class has a car-
bon filament that has a length of and a diameter of 
At temperatures between and the resistivity of the
carbon used in making small lightbulb filaments is about

(a) Assuming that the bulb is a perfect blackbody
radiator, calculate the temperature of the filament under operating
conditions. (b) One concern about carbon filament bulbs, unlike
tungsten filament bulbs, is that the resistivity of carbon decreases
with increasing temperature. Explain why this decrease in resistiv-
ity is a concern.

ENERGY IN ELECTRIC CIRCUITS

60 • A heater is designed to operate at 
(a) What is the heater’s resistance and what is the current in the
wires that supply power to the heater? (b) What is the power deliv-
ered to the heater if it operates at Assume that its resistance
remains the same.

61 • A battery has an emf of How much work does it do
in if it delivers a current of 

62 • An automotive battery has an emf of When sup-
plying power to the starter motor, the current in the battery is

and the terminal voltage of the battery is What is the
internal resistance of the battery?

63 • (a) How much power is delivered by the battery in
Problem 62 due to the chemical reactions within the battery when
the current in the battery is (b) How much of this power is de-
livered to the starter when the current in the battery is (c) By
how much does the chemical energy of the battery decrease if the
current in the starter is for (d) How much energy is dis-
sipated in the battery during those 

64 • A battery that has an emf of and an internal resis-
tance of is connected to a variable resistor with resistance 
Find the current and power delivered by the battery when is (a) 0,
(b) (c) and (d) infinite.

65 •• ENGINEERING APPLICATION, CONTEXT-RICH A
automobile battery that has a negligible internal resistance can de-
liver a total charge of (a) What is the amount of energy
stored in the battery? (b) After studying all night for a calculus test,
you try to drive to class to take the test. However, you find that the
car’s battery is “dead” because you had left the headlights on!
Assuming the battery was able to produce current at a constant rate
until it died, how long were your lights on? Assume the pair of
headlights together operates at a power of 

66 •• ENGINEERING APPLICATION The measured current in a
circuit in your uncle’s house is . In this circuit, the only ap-
pliance that is on is a space heater that is being used to heat the
bathroom. A pair of copper wires carries the current from
the supply panel in your basement to the wall outlet in the bath-
room, a distance of You measure the voltage at the supply
panel to be exactly What is the voltage at the wall outlet in
the bathroom that the space heater is connected to?

67 •• ENGINEERING APPLICATION A lightweight electric car is
powered by a series combination of ten batteries, each hav-
ing negligible internal resistance. Each battery can deliver a charge
of before needing to be recharged. At a speed of 
the average force due to air drag and rolling friction is 
(a) What must be the minimum power delivered by the electric
motor if the car is to travel at a speed of (b) What is the80.0 km>h?

1.20 kN.
80.0 km>h,160 A # h

12.0-V

120 V.
30.0 m.

12-gauge

12.5 A

150 W.

160 A # h.

12.0-V

10 Æ,5.0 Æ,
R

R.0.30 Æ
6.0 V

SSM7.0 seconds?
7.0 s?20 A

20 A?
20 A?

11.4 V.20.0 A

12.0 V.

3.0 A?5.0 s
12 V.

120 V?

240 V.1.00-kW

3.00 � 10�5 Æ # m.

700 K,500 K
40.0 mm.3.00 cm

5.00-V
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total charge, in coulombs, that can be delivered by the series combi-
nation of ten batteries before recharging is required? (c) What is the
total electrical energy delivered by the ten batteries before recharg-
ing? (d) How far can the car travel (at before the batter-
ies must be recharged? (e) What is the cost per kilometer if the cost
of recharging the batteries is per kilowatt-hour?

68 ••• A heater is designed to operate with an applied
voltage of (a) What is the heater’s resistance, and what cur-
rent does the heater carry? (b) Show that if the potential difference

across the heater changes by a small amount the power 
changes by a small amount where Hint:
Approximate the changes by modeling them as differentials, and assume
the resistance is constant. (c) Using the Part (b) result, find the ap-
proximate power delivered to the heater if the potential difference
is decreased to Compare your result to the exact answer.115 V.

¢P>P � 2 ¢V>V.¢P,
P¢V,V

120 V.
100-W

SSM9.00 cents

80.0 km>h)

72 •• The battery in Figure 25-55 has negligible internal resis-
tance. Find (a) the current in each resistor and (b) the power deliv-
ered by the battery.

ba

6.00 Ω

2.00 Ω

3.00 Ω

F I G U R E  2 5 - 5 3 Problem 70

ba
6.00 Ω

4.00 Ω

3.00 Ω

F I G U R E  2 5 - 5 2 Problem 69

R R

RR

a

c

b

d

F I G U R E  2 5 - 5 4 Problem 71

ba

12.0 Ω 6.00 Ω

6.00 Ω

6.00 Ω

6.00 Ω

F I G U R E  2 5 - 5 6 Problem 75

+
_

3.00 Ω

2.00 Ω
2.00 Ω

4.00 Ω6.00 V

F I G U R E  2 5 - 5 5 Problem 72

71 • (a) Show that the equivalent resistance between point 
and point in Figure 25-54 is (b) How would adding a fifth re-
sistor that has resistance between point and point affect the
equivalent resistance between point and point ?ba

dcR
R.b

a

ba

6.00 Ω
4.00 Ω

2.00 Ω 4.00 Ω

8.00 Ω

8.00 Ω

4.00 Ω

F I G U R E  2 5 - 5 7 Problem 76

COMBINATIONS OF RESISTORS

69 • If the potential drop from point to point (Figure
25-52) is find the current in each resistor.

70 • If the potential drop between point and point 
(Figure 25-53) is find the current in each resistor.12.0 V,

ba

SSM12.0 V,
ba

73 •• A power supply has an internal resistance of
What is the smallest resistor that can be put in series with

the power supply so that the voltage drop across the resistor is
larger than 

74 •• ENGINEERING APPLICATION You have been handed an
unknown battery. Using your multimeter, you determine that when
a resistor is connected across the battery’s terminals, the
current in the battery is When this resistor is replaced by
an resistor, the current drops to From those data,
find (a) the emf and (b) internal resistance of the battery.

75 •• (a) Find the equivalent resistance between point and
point in Figure 25-56. (b) If the potential drop between point and
point is find the current in each resistor.12.0 V,b

ab
a

0.250 A.11.0-Æ
0.500 A.

5.00-Æ

SSM4.50 V?

50.0 Æ.
5.00-V

76 •• (a) Find the equivalent resistance between point and
point in Figure 25-57. (b) If the potential drop between point and
point is find the current in each resistor.12.0 V,b

ab
a

77 •• A length of wire has a resistance of The wire is cut
into pieces that have the same length, and then the wires are con-
nected in parallel. The resistance of the parallel arrangement is

Find the number of pieces into which the wire was cut. SSM1.88 Æ.

120 Æ.
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78 •• A parallel combination of an resistor and a resis-
tor of unknown resistance is connected in series with a 
resistor and an ideal battery. The circuit is disassembled and the
three resistors are then connected in series with each other and the
same battery. In both arrangements, the current through the 
resistor is the same. What is the resistance of the unknown resistor?

79 •• For the network shown in Figure 25-58, let denote the
equivalent resistance between terminals and Find (a) so that

(b) so that and (c) so that Rab � R1 .R1 ,Rab � R3 ;R2 ,Rab � R1 ;
R3 ,b.a

Rab

8.00-Æ

16.0-Æ
8.00-Æ connect a second battery that has an emf of and an in-

ternal resistance of in parallel with the first battery and the
resistor with a pair of jumper cables. (a) Draw a diagram of the cir-
cuit. (b) Find the current in each branch of the circuit. (c) Find the
power supplied by the second battery and discuss where that
power is delivered. Assume that the emfs and internal resistances
of both batteries remain constant.

84 •• In the circuit in Figure 25-61, the reading of the ammeter
is the same when both switches are open and when both switches
are closed. What is the unknown resistance R?

10.0 mÆ
E2 � 12.6 V

b

R

a

1

R2

R3

F I G U R E  2 5 - 5 8 Problems 79 and 80

+
_

r
R

E

F I G U R E  2 5 - 5 9 Problem 81

80 •• Check your results for Problem 79 using the following
specific values: (a) (b)

; and (c)

KIRCHHOFF’S RULES

Note: While simpler circuits in this section can be solved
using the concepts of equivalent parallel and series resistor
combinations, the intent is to gain practice using Kirchhoff’s
rules. Use them to solve all the problems in this section.

81 • In Figure 25-59, the battery’s emf is and
The rate of Joule heating in (a) What is

the current in the circuit? (b) What is the potential difference
across (c) What is the resistance 

82 • The batteries in the circuit in Figure 25-60 have negli-
gible internal resistance. (a) Find the current using Kirchhoff’s
loop rule. (b) Find the power delivered to or supplied by each
battery. (c) Find the rate of Joule heating in each resistor.

SSMr?R?

R is 8.00 W.R is 0.500 Æ.
6.00 V

R2 � 6.00 Æ, R3 � 3.00 Æ.3.00 Æ
4.00 Æ, R3 �R1 �R1 � 4.00 Æ, R2 � 6.00 Æ;

+
_

+
_

2.00 Ω

4.00 Ω

12.0 V 6.00 V

F I G U R E  2 5 - 6 0 Problem 82

+ _300 Ω

50.0 Ω

100 Ω
Α

R

1.50 V

F I G U R E  2 5 - 6 1 Problem 84

+ +
_ _6.00 Ω

4.00 Ω 3.00 Ω

12.0 V 12.0 V

b

a

F I G U R E  2 5 - 6 2 Problem 85

85 •• In the circuit shown in Figure 25-62, the batteries have
negligible internal resistance. Find (a) the current in each branch
of the circuit, (b) the potential difference between point and
point and (c) the power supplied by each battery.

86 •• In the circuit shown in Figure 25-63, the batteries have
negligible internal resistance. Find (a) the current in each branch
of the circuit, (b) the potential difference between point and
point and (c) the power supplied by each battery.b,

a

SSMb,
a

+

+

_

_
1.00 Ω

3.00 Ω

2.00 Ω

5.00 V

7.00 V

b

a

F I G U R E  2 5 - 6 3 Problem 86

83 •• ENGINEERING APPLICATION An old car battery that has
an emf of and an internal resistance of is con-
nected to a resistor. In an attempt to recharge the battery, you2.00-Æ

50.0 mÆE1 � 11.4 V
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+
−V

R1

Vout

Rload
R2

F I G U R E  2 5 - 6 4 Problem 88

+

+

+
_

_

_

1.00 Ω 1.00 Ω

1.00 Ω 1.00 Ω

4.00 Ω

2.00 V 2.00 V

4.00 V

b

a

F I G U R E  2 5 - 6 5 Problem 89

+

+

+
_

_

_

1.00 Ω 2.00 Ω

6.00 Ω

2.00 Ω

8.00 V

4.00 V

4.00 V

F I G U R E  2 5 - 6 6 Problem 90

+
−10 V

R V Voltmeter

2R

F I G U R E  2 5 - 6 7 Problem 91

87 ••• Two identical batteries, each having an emf and an in-
ternal resistance can be connected across a resistance with the
batteries connected either in series or in parallel. In each situation,
determine explicitly whether the power supplied to is greater
when is less than or when is greater than 

88 •• ENGINEERING APPLICATION The circuit fragment shown
in Figure 25-64 is called a voltage divider. (a) If is not attached,
show that (b) If what is the
smallest value of that can be used so that drops by less
than 10 percent from its unloaded value? is measured with
respect to ground.)

(Vout

VoutRload

R1 � R2 � 10 kÆ,Vout � VR2>(R1 � R2).
Rload

r.RrR
R

Rr,
E

90 ••• For the circuit shown in Figure 25-66, find (a) the current
in each resistor, (b) the power supplied by each source of emf, and
(c) the power delivered to each resistor.

89 ••• For the circuit shown in Figure 25-65, find the potential
difference between point and point SSMb.a

AMMETERS AND VOLTMETERS

91 •• The voltmeter shown in Figure 25-67 can be modeled as an
ideal voltmeter (a voltmeter that has an infinite internal resistance) in
parallel with a resistor. Calculate the reading on the volt-
meter when (a) (b) (c)
(d) and (e) (f ) What is the largest value
of possible if the measured voltage is to be within 10 percent of
the true voltage (i.e., the voltage drop across without the voltmeter
in place)? SSM

R
R

R � 100 MÆ.R � 10.0 MÆ,
1.00 MÆ,R �R � 10.0 kÆ,R � 1.00 kÆ,

10.0-MÆ

92 •• You are given a D’Arsonval galvanometer that will de-
flect full scale if a current of runs through the galvanome-
ter. At that current, there is a voltage drop of across the
meter. What is the internal resistance of the galvanometer?

93 •• You are given a D’Arsonval galvanometer that will de-
flect full scale if a current of runs through the galvanome-
ter. At that current, there is a voltage drop of across the
meter. You wish to use the galvanometer to construct an ammeter
that can measure currents up to Show that this can be done
by placing a resistor in parallel with the meter, and find the value
of its resistance.

94 •• You are given a D’Arsonval galvanometer that will de-
flect full scale if a current of runs through the galvanome-
ter. At that current, there is a voltage drop of across the
meter. You wish to use the galvanometer to construct a voltmeter
that can measure potential differences up to Show that this
can be done by placing a large resistance in series with the meter
movement, and find the resistance needed.

RC CIRCUITS

95 • For the circuit shown in Figure 25-68, 
and After having been at contact for a long

time, the switch throw is rotated to contact . (a) What is the charge
on the upper plate of the capacitor just as the switch throw is moved
to contact (b) What is the current just after the switch throw is
rotated to contact (c) What is the time constant of this circuit?
(d) How much charge is on the upper plate of the capacitor 
after the switch throw is rotated to contact 

96 • At the switch throw in Figure 25-68 is rotated to
contact after having been at contact for a long time. (a) How
much energy is stored in the capacitor at (b) For find
the energy stored in the capacitor as a function of time. (c) Sketch a
plot of the energy stored in the capacitor versus time t.

t 
 0,t � 0?
ab

t � 0

b?
6.00 ms

b?
b?

b
aR � 500 Æ.E � 100 V,
C � 6.00 mF,

10.0 V.

0.250 V
50.0 mA

100 mA.

0.250 V
50.0 mA

0.250 V
50.0 mA
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R
S+

−E

F I G U R E  2 5 - 6 9 Problems 97 and 99

R
b

a

C

+
E

F I G U R E  2 5 - 6 8 Problems 95, 96, and 98

+ _

50.0 Ω
5.00 Ω

10.0 Ω

310 V

5.00 μF

R3

R1

R2

5.00 A

5.00 A

F I G U R E  2 5 - 7 0 Problem 100

97 •• In the circuit in Figure 25-69, the emf equals 
and the capacitance equals Switch is opened after hav-
ing been closed for a long time, and later the voltage drop
across the resistor is Find the resistance of the resistor.

98 •• For the circuit shown in Figure 25-68, 
and The switch throw is rotated to contact after
having been at contact for a long time, and later the
potential difference across the capacitor is equal to What is
the value of R?

1
2 E.

4.00 sa
bE � 100 V.

C � 0.120 mF

SSM

20.0 V.
4.00 s

S2.00 mF.
50.0 V

99 •• In the circuit in Figure 25-69, the emf equals and
has negligible internal resistance. The capacitance equals 
and the resistance equals Switch has been closed for a
long time. Switch S is opened. After a time interval equal to one
time constant of the circuit has elapsed, find (a) the charge on the
capacitor plate on the right, (b) the rate at which the charge is in-
creasing, (c) the current, (d) the power supplied by the battery,
(e) the power delivered to the resistor, and (f ) the rate at which the
energy stored in the capacitor is increasing.

100 •• A constant charge of is on the positively charged
plate of the capacitor shown in Figure 25-70. Find (a) the
battery current and (b) the resistances and R3 .R1 , R2 ,

5.00-mF
1.00 mC

S2.00 MÆ.
1.50 mF

6.00 V

103 ••• For the circuit shown in Figure 25-72, switch S has been
open for a long time. At time the switch is then closed.
(a) What is the battery current just after switch is closed? (b) What
is the battery current a long time after switch is closed? (c) What is
the current in the resistor as a function of time?600-Æ

S
S

t � 0

50.0 V

15.0 Ω

12.0 Ω

15.0 Ω

10.0 Ω

+ _

S

10.0 μF

5.00 μF

F I G U R E  2 5 - 7 1 Problem 102

+
_ 600 kΩ

1.20 MΩ

50.0 V 2.50 μF

S

F I G U R E  2 5 - 7 3 Problem 104

+_

600 Ω

200 Ω50.0 V

5.00 μF

S

F I G U R E  2 5 - 7 2 Problem 103

104 ••• For the circuit shown in Figure 25-73, switch S has been
open for a long time. At time the switch is then closed.
(a) What is the battery current just after switch is closed? (b) What
is the battery current a long time after switch is closed? (c) The
switch has been closed for a long time. At time the switch is
then opened. Find the current through the resistor as a func-
tion of time.

600-kÆ
t � 0

S
S

t � 0

101 •• Show that Equation 25-39 can be rearranged and written

as Integrate this equation to derive the solution

given by Equation 25-40.

102 •• Switch shown in Figure 25-71, is closed after having
been open for a long time. (a) What is the initial value of the battery
current just after switch is closed? (b) What is the battery current
a long time after switch is closed? (c) What are the charges on the
plates of the capacitors a long time after switch is closed?
(d) Switch is reopened. What are the charges on the plates of the
capacitors a long time after switch is reopened?S

S
S

S
S

S,

dQ
EC � Q

�
dt
RC

.
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+

+

_

_

36.0 V

12.0 VS

R

C

F I G U R E  2 5 - 7 4 Problems 105 and 106

E

R2

R1

R3

F I G U R E  2 5 - 7 5 Problem 107

+ _

G

R

R

I

I

1

1 R2

x R0

I 2

0 cm 100 cm
a

b

E

F I G U R E  2 5 - 7 6 Problems 109 and 110

105 ••• In the circuit shown in Figure 25-74, the capacitor has
a capacitance of and the resistor has a resistance of

Before the switch is closed, the potential drop across
the capacitor is as shown. Switch is closed at 
(a) What is the current immediately after switch is closed?
(b) At what time is the voltage across the capacitor 

106 ••• Repeat Problem 105 if the initial polarity of the capac-
itor is opposite to that shown in Figure 25-74.

SSM

24.0 V?t
S

t � 0.S12.0 V,
0.500 MÆ.

2.50 mF

GENERAL PROBLEMS

107 •• In Figure 25-75, 
and the battery emf is Denote the currents through the re-
sistors as and respectively. (a) Decide which of the follow-
ing inequalities holds for the circuit. Explain your answer concep-
tually. (1) (2) (3) (4) None of the above
(b) To verify that your answer to Part (a) is correct, calculate all three
currents. SSM

I3 
 I2 ,I2 � I3 ,I1 
 I2 
 I3 ,

I3 ,I1 , I2 ,
12.0 V.

R1 � 4.00 Æ, R2 � 6.00 Æ, R3 � 12.0 Æ,

110 •• For the Wheatstone bridge in Problem 109, suppose the
bridge balances at the mark. (a) What is the unknown re-
sistance? (b) What is the percentage error in the measured value of

if there is an error of in the location of the balance
point? (c) To what value should be changed to so that the balance
point for the unknown resistor will be nearer the mark?
(d) If the balance point is at the mark, what is the percent-
age error in the measured value of if there is an error of 
in the location of the balance point?

111 •• You are running an experiment that uses an accelerator
that produces a proton beam. Each proton in the beam has

of kinetic energy. The protons impinge on, and come to rest
inside, a copper target within a vacuum chamber. You are con-
cerned that the target will get too hot and melt the solder on some
connecting wires that are crucial to the experiment. (a) Determine the
number of protons that strike the target per second. (b) Find 
the amount of energy delivered to the target each second.
(c) Determine how much time elapses before the target temperature
increases to (Neglect any heat released by the target.)

112 •• The belt of a Van de Graaff generator carries a surface
charge density of The belt is wide and moves
at (a) What current does the belt carry? (b) If the potential
of the dome of the generator is above ground, what is the
minimum power of the motor needed to drive the belt?

113 •• ENGINEERING APPLICATION Large conventional electro-
magnets use water cooling to prevent excessive heating of the mag-
net coils. A large laboratory electromagnet has a current equal to

when a voltage of is applied to the terminals of the
energizing coils. To cool the coils, water at an initial temperature of

is circulated around the coils. How many liters of water must
circulate by the coils each second if the temperature of the coils is
not to exceed 

114 ••• (a) Give support to the assertion that a leaky capacitor
(one for which the resistance of the dielectric is finite) can be mod-
eled as a capacitor that has an infinite resistance in parallel with a re-
sistor. (b) Show that the time constant for discharging the capacitor
is given by (For simplicity, assume the capacitor is a par-
allel-plate variety filled completely with a leaky dielectric.) (c) Mica
has a dielectric constant equal to about and a resistivity equal to
about Calculate the time it takes for the charge of a
mica-filled capacitor to decrease to 10 percent of its initial value.

115 ••• ENGINEERING APPLICATION Figure 25-77 shows the basis
of the sweep circuit used in an oscilloscope. Switch is an electronic
switch that closes whenever the potential across the switch in-
creases to a value and opens when the potential across the switch
decreases to The emf which is much greater than Vc ,E,0.200 V.

Vc

S

9.0 � 1013 Æ # m.
5.0

t � kE0r.

50°C?

15°C

240 V100 A

100 kV
20.0 m>s.

0.500 m5.00 mC>m2.

SSM300°C.

50.0-g
60.0 MeV

3.50-mA

2.00 mmRx

50.0-cm
50.0-cm

R0

2.00 mmRx

98.0-cm

108 •• A lightbulb is connected in series with a
lightbulb and a potential difference of is placed

across the combination. Assume the bulbs have constant resistance.
(a) Which bulb should be brighter under those conditions? Explain
your answer conceptually. Hint: What does the phrase “25.0-W light-
bulb” mean? That is, under what conditions is 25 W of power delivered to
the bulb? (b) Determine the power delivered to each bulb under
those conditions. Do your results support your answer to Part (a)?

109 •• The circuit shown in Figure 25-76 is a Wheatstone bridge,
and the variable resistor is being used as a slide-wire potentiome-
ter. The resistance is known. This “bridge” is used to determine
an unknown resistance The resistances and comprise a
wire long. Point is a sliding contact that is moved along the
wire to vary the resistances. Resistance is proportional to the dis-
tance from the left end of the wire (labeled to point and

is proportional to the distance from point to the right end of the
wire (labeled The sum of and remains constant.
When points and are at the same potential, there is no current in
the galvanometer and the bridge is said to be balanced. (Because
the galvanometer is used to detect the absence of a current, it is

ba
R2R1100 cm).
aR2

a,0.00 cm)
R1

a1.00 m
R2R1Rx .

R0

120 V100-W120 V,
25.0-W120 V,

called a null detector.) If the fixed resistance find the un-
known resistance if (a) the bridge balances at the mark,
(b) the bridge balances at the mark, and (c) the bridge bal-
ances at the mark.95.0-cm

60.0-cm
18.0-cmRx

R0 � 200 Æ,



886 | C H A P T E R  2 5 Electric Current and Direct-Current Circuits

charges the capacitor through a resistor The resistor 
represents the small but finite resistance of the electronic switch.
In a typical circuit, 

and (a) What is the time constant for charg-
ing of the capacitor (b) Show that as the potential across switch

increases from to the potential across the capacitor
increases almost linearly with time. Hint: Use the approximation

for (This approximation of can be derived using
the differential approximation.) (c) What should the value of be
changed to so that the capacitor charges from to in

(d) How much time elapses during the discharge of the
capacitor when switch closes? (e) At what average rate is energy
delivered to the resistor during charging and to the switch resis-
tance during discharge?R2

R1

S
0.100 s?

4.20 V0.200 V
R1

exƒx ƒ V 1.ex � 1 � x,

4.20 V,0.200 VS
C?

C � 20.0 nF.0.500 MÆ,
1.00 mÆ, R1 �E � 800 V, Vc � 4.20 V, R2 �

R2R1 .C

+
_ C

R1

R 2

S

E

F I G U R E  2 5 - 7 7 Problem 115

117 ••• Two batteries that have emfs and and internal re-
sistances and are connected in parallel. Prove that if a resistor
of resistance is connected in parallel with combination, the opti-
mal load resistance (the value of at which maximum power is de-
livered) is given by 

118 ••• Capacitors and are connected to a resistor of resis-
tance and an ideal battery that has as shown in Figure 25-79.
The throw of switch is initially at contact and both capacitors
are without charge. The throw is then rotated to contact and left
there for a long time. Finally, at time the throw is returned to
contact (a) Quantitatively compare the total energy stored in the
two capacitors at and a long time later. (b) Find the currentt � 0

a.
t � 0,

b
aS

ER
C2C1

R � r1r2 >(r1 � r2).
R

R
r2r1

E2E1

+
_ C10.0 V

R 1
R 2

S

F I G U R E  2 5 - 7 8 Problem 116

+
C1 C2

R

a

Sb

E

F I G U R E  2 5 - 7 9 Problem 118

through as a function of . (c) Find the energy delivered
to the resistor as a function of . (d) Find the total energy
dissipated in the resistor and compare it with the loss of
stored energy found in Part (a).

119 ••• (a) Calculate the equivalent resistance (in terms of the
resistance of each individual resistor) between points and for
the infinite ladder of resistors shown in Figure 25-80 assuming the
resistors are identical. That is, assuming (b) Repeat
Part (a) but do not assume that and express your answer in
terms of and (c) Check your results by showing that your
result from Part (b) agrees with your result from Part (a) if you sub-
stitute for both and R2 .R1R

R2 .R1

R1 � R2

R � R1 � R2 .

ba
R,

after t � 0
t for t 
 0

t for t 
 0R

a

b

R1 R1

R2 R2

F I G U R E  2 5 - 8 0 Problem 119

120 ••• A graph of current as a function of voltage for an Esaki
diode is shown in Figure 25-81. (a) Make a graph of the differential
resistance of the diode as a function of voltage. The differential
resistance of a circuit element is defined as where 
is the voltage drop across the element and is the current in the
element. (b) At what value of the voltage drop does the differential
resistance become negative? (c) What is the maximum differential
resistance for this diode in the range shown and at what voltage
does it occur? (d) Are there any places in the voltage range shown
where the diode exhibits a differential resistance equal to zero? If so,
under what value(s) of the voltage does this (do these) occur?

I
VRd � dV>dI,Rd

0.60.40 0.1 0.2 0.50.3

C
ur

re
nt

, m
A

Voltage, V

20

10

5

0

15

F I G U R E  2 5 - 8 1 Problem 120

116 ••• In the circuit shown in Figure 25-78, 
and The capacitor is initially without charge

on either plate. At switch is closed, and at switch
is opened. (a) Sketch a graph of the voltage across and the cur-

rent in between and (b) Find the voltage across
the capacitor at and at t � 8.00 s.t � 2.00 s

t � 10.0 s.t � 0R2

CS
t � 2.00 sSt � 0,

C � 1.00 mF.5.00 MÆ,
2.00 MÆ, R2 �R1 �



26
How does Earth’s magnetic field

act on subatomic particles?

(See Example 26-1.) 
?
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C H A P T E R

THE AURORA BOREALIS APPEARS WHEN
THE SOLAR WIND, CHARGED PARTICLES
PRODUCED BY NUCLEAR FUSION
REACTIONS IN THE SUN, BECOMES
TRAPPED BY EARTH’S MAGNETIC FIELD.
(Atlas Photo Bank/Photo Researchers, Inc.)

The Magnetic Field

26-1 The Force Exerted by a Magnetic Field

26-2 Motion of a Point Charge in a Magnetic Field

26-3 Torques on Current Loops and Magnets

26-4 The Hall Effect

M
ore than 2000 years ago, the Greeks were aware that a certain type of
stone (now called magnetite) attracts pieces of iron, and written refer-
ences exist which describe the use of magnets for navigation dating
from the twelfth century.

In 1269, Pierre de Maricourt discovered that a needle laid at various
positions on a spherical natural magnet orients itself along lines that

pass through points at opposite ends of the sphere. He called these points the poles
of the magnet. Subsequently, many experimenters noted that every magnet of any
shape has two poles, called the north and the south pole, where the force exerted
by the magnet is strongest. It was also noted that the like poles of two magnets repel
each other and the unlike poles of two magnets attract each other.

In 1600, William Gilbert discovered that Earth is a natural magnet and has mag-
netic poles near the north and south geographic poles. Because the north pole of a
compass needle points toward the south pole of a given magnet, what we call the
north pole of Earth is actually a south magnetic pole, as illustrated in Figure 26-1.
Thus, the north and south poles of a magnet are sometimes referred to as the north-
seeking and south-seeking poles, respectively.

Although electric charges and magnetic poles are similar in many respects,
there is an important difference: Magnetic poles always occur in pairs. When
a magnet is broken in half, equal and opposite poles appear at either side of
the break point. The result is two magnets, each with a north and a south pole.

F I G U R E  2 6 - 1 Magnetic field lines of
Earth depicted by iron filings around a
uniformly magnetized sphere. The field
lines exit from the north magnetic pole,
which is near the south geographic pole,
and enter the south magnetic pole, which
is near the north geographic pole.
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F I G U R E  2 6 - 3 Part (a) and (b) show the
direction of the magnetic force on a positively
charged particle moving with velocity in a
magnetic field In Concept Check 26-2
(see page 889), you are asked to find the sign
of the charge on the particle shown in part (c)
of this figure.

B
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.
vS

q
+

F =

B

v

v × B

qv × B

v × B

B

v

(b)

(a)

F I G U R E  2 6 - 2 Right-hand rule for
determining the direction of a force exerted on
a charged particle moving in a magnetic field.
If is positive, then is in the same direction
as (a) The vector product is
perpendicular to both and and is in the
direction of the advance of a right-hand-
threaded screw if turned in the same direction
as to rotate into (b) If the fingers of the
right hand are in the direction of so that they
can be curled toward the thumb points in
the direction of vS � B

S
.
B
S

,
vS

B
S

.vS

B
S

vS
vS � B

S
vS � B

S
.

F
S

,q
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There has long been speculation about the existence of an isolated magnetic pole,
and in recent years considerable experimental effort has been made to find such an
object. Thus far, there is no conclusive evidence that an isolated magnetic pole exists.

In this chapter, we consider the effects of a given magnetic field on moving
charges and on wires carrying currents. The sources of magnetic fields are
discussed in the next chapter.

26-1 THE FORCE EXERTED 
BY A MAGNETIC FIELD

The existence of a magnetic field at some point in space can be demonstrated
using a compass needle. If there is a magnetic field, the needle will align itself in
the direction of the field.*

It has been experimentally observed that, when a particle that has charge and
velocity is in a region with a magnetic field a force acts on the particle that is
proportional to to to and to the sine of the angle between the directions of

and Surprisingly, the force is perpendicular to both the velocity and the meg-
netic field. These experimental results can be summarized as follows: When a par-
ticle that has a charge and a velocity is in a region with a magnetic field the
magnetic force on the particle isF

S
B
S

,vSq

B
S

.vS
B,v,q,

B
S

,vS
q

B
S

26-1

MAGNETIC FORCE ON A MOVING CHARGED PARTICLE

F
S

� qvS � B
S

Because is perpendicular to both and is perpendicular to the plane de-
fined by these two vectors. The direction of is given by the right-hand rule
as is rotated into as illustrated in Figure 26-2. If is positive, then is in the
same direction as 

Examples of the direction of the forces exerted on moving charged particles when
the magnetic field vector is in the vertical direction are shown in Figure 26-3. 

The direction of any particular magnetic field can be found experimentally by
measuring and for several velocities in different directions and then applying
Equation 26-1.

Equation 26-1 defines the magnetic field in terms of the force exerted on a
moving charged particle. The SI unit of magnetic field is the tesla (T). A particle that
has a charge of one coulomb and is moving with a velocity of one meter per second
perpendicular to a magnetic field of one tesla experiences a force of one newton:

26-21 T � 1
N

C # m>s � 1 N>(A # m)

B
S

vSF
S

B
S

B
S

vS � B
S

.
F
S

qB
S

,vS
vS � B

S
B
S

, F
S

vSF
S

* Compass needles are suspended so they remain horizontal. This results in the compass needle aligning itself in the hor-
izontal component of the magnetic field. A compass needle with an unrestricted suspension would align itself in the
magnetic field.
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The direction of any magnetic field is specified as the direction that the north
pole of a compass needle points toward when the needle is aligned in the field.
Suppose that the direction of the magnetic field were instead specified as the
direction pointed toward by the south pole of a compass needle aligned in the
field. Would the right-hand rule shown in Figure 26-2 then give the direction of
the magnetic force on the moving positive charge, or would a left-hand rule be
required? Explain your answer.  
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✓

Example 26-1 Force on a Proton Going North

The magnetic field strength of Earth is measured at a point on the surface to have
a magnitude of about and is tilted downward in the northern hemisphere,
making an angle of about with the horizontal, as shown in Figure 26-4.
(Earth’s magnetic field varies from place to place. These data are approxi-
mately correct for the central United States.) A proton is moving hor-
izontally in the northward direction with speed Calculate
the magnetic force on the proton (a) using and (b) by first expres-
sing and in terms of the unit vectors and and then computing

PICTURE Let the and directions be to the east and to the north, respec-
tively, and let the direction be vertically upward (Figure 26-5). The velocity
vector is then in the direction.�y

z
yx

F
S

� qvS � B
S

.
kn,in, jn,B

S
vS

F � qvB sinu
1.0 � 107 m>s.v �

(q � �e)

70°
0.6 G

Like the farad, the tesla is a large unit. The magnetic field strength of Earth has a
magnitude somewhat less than on Earth’s surface. The magnetic field
strengths near powerful permanent magnets are about to and powerful
laboratory and industrial electromagnets produce fields of Fields greater
than are extremely difficult to produce because the resulting magnetic forces
will either tear the magnets apart or crush the magnets. A commonly used unit, de-
rived from the cgs system, is the gauss (G), which is related to the tesla as follows:

26-3

DEFINITION—GAUSS

Because magnetic fields are often given in gauss, which is not an SI
unit, you need to remember to convert from gauss to teslas when mak-
ing calculations.

1 G � 10�4 T

10 T
1 T to 2 T.

0.5 T,0.1 T
10�4 T

+q
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(a) Calculate 
using From
Figure 26-4, we see
that the direction of
the force is westward.

u � 70°.
F � qvB sinu

(b) 1. The magnetic
force is the
vector product of

and B
S

:qvS

F
S

� qvS � B
S

2. Express and in
terms of their
components:

B
S

vS

B
S

� By j
n � Bzk

n

vS � vy j
n

SOLVE

9.0 � 10�17 N�

� (1.6 � 10�19 C)(10 � 106 m>s)(0.6 � 10�4 T)(0.94)

F � qvB sin 70°

The particle in Figure 26-3(c) (a) is
positively charged, (b) is nega-
tively charged, (c) could be either
positively or negatively charged.
Explain your answer.  

CONCEPT CHECK 26-2
✓
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F I G U R E  2 6 - 6 Wire segment that has
a length and carries a current If the wire
is in a magnetic field there will be a force
on each charge carrier resulting in a force
on the wire.
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CHECK The Part (a) result is equal to the magnitude of the Part (b) result.

TAKING IT FURTHER Note that the direction of is to the east, so the force is directed to
the west as shown in Figure 26-5.

PRACTICE PROBLEM 26-1 Find the force on a proton moving with velocity 
in a magnetic field B

S
� 2.0 Tkn.106 m>s in4 �

vS �

in

* By the direction of the current we mean the direction of the current-density vector J
S

.

4. Evaluate F
S

:

�9.0 � 10�17 Nin�

� �(1.6 � 10�19C)(107 m>s)(0.6 � 10�4 T)sin 70° in

F
S

� qv (�B sinu)in

3. Write 
in terms of these
components:

F
S

� qvS � B
S

� qvyBy(jn � jn) � qvyBz(jn � kn) � qvyBz i
n

F
S

� qvS � B
S

� q(vy j
n) � (By j

n � Bzk
n)

When a current-carrying wire is in a region that has a magnetic field, there is a
force on the wire that is equal to the sum of the magnetic forces on the individual
charge carriers in the wire. Figure 26-6 shows a short segment of wire that has
cross-sectional area length and current If the wire is in a magnetic field 
the magnetic force on each charge is where is the drift velocity of the
charge carriers (the drift velocity is the same as the average velocity). The number
of charges in the wire segment is the number per unit volume multiplied by the
volume Thus, the total force on the wire segment is

From Equation 25-3, the current in the wire is

Hence, the force can be written

26-4

MAGNETIC FORCE ON A STRAIGHT SEGMENT OF
CURRENT-CARRYING WIRE

where is a vector whose magnitude is the length of the segment and whose
direction is the same as that of the current.* For the current in the direction
(Figure 26-7) and the magnetic field vector at the segment in the plane, the force
on the wire is in the direction.

When using Equation 26-4, it is assumed that the wire segment is
straight and that the magnetic field does not vary over its length.
The equation can be generalized for an arbitrarily shaped wire in any
magnetic field. If we choose a very short wire segment that has length

and write the force on this segment as we have

26-5

MAGNETIC FORCE ON A CURRENT ELEMENT

where is the magnetic field vector at the location of the segment. The quantity
is called a current element. We find the total magnetic force on a current-

carrying wire by summing (integrating) the magnetic forces due to all the current
elements in the wire. (Note that Equation 26-5 is the same as Equation 26-1 with
the current element replacing qvS.)I d�
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F I G U R E  2 6 - 7 Magnetic force on a
current-carrying segment of wire in a
magnetic field. The current is in the 
direction, and the magnetic field is in the 
plane and makes an angle with the 
direction. The force is in the direction,
perpendicular to both and and has
magnitude ILB sinu.
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F I G U R E  2 6 - 8 (a) Magnetic field lines inside and outside a bar magnet. The lines emerge from the
north pole and enter the south pole, but they have no beginning or end. Instead, they form closed loops.
(b) Magnetic field lines outside a bar magnet as indicated by iron filings. (© 1995 Tom Pantages.)
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Just as the electric field can be represented by electric field lines, the magnetic
field can be represented by magnetic field lines. In both cases, the direction of
the field is indicated by the direction of the field lines and the magnitude of the
field is indicated by the density (number per unit area) of the lines on surface per-
pendicular to the lines. There are, however, two important differences between
electric field lines and magnetic field lines:

1. Electric field lines are in the direction of the electric force on a positive charge,
but the magnetic field lines are perpendicular to the magnetic force on a mov-
ing charge.

2. Electric field lines begin on positive charges and end on negative charges; mag-
netic field lines neither begin nor end.

Figure 26-8 shows the magnetic field lines both inside and outside a bar magnet.

B
S

E
S

9.0 � 10�5 Nkn�

� (3.0 A)(0.0030 m)(0.020 T)(sin 30°)kn
F
S

� IL
S

� B
S

� ILB sin 30° kn1. The magnetic force is given by
Equation 26-4:

CHECK The force is perpendicular to the wire, as expected.

Example 26-2 Force on a Straight Wire

A long segment of wire carries a current of in the direction. It
lies in a magnetic field of magnitude 0.020 T that is in the plane and makes an
angle of with the direction, as shown in Figure 26-9. What is the magnetic
force exerted on the wire segment?

PICTURE The magnetic force is in the direction of which we see from
Figure 26-9 is in the direction.

SOLVE

�z
L
S

� B
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,

�x30°
xy

�x3.0 A3.0-mm-

z
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3.0 mm

30°3.0 A 
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Do not think the field lines for the
magnetic field of a magnet begin

on magnetic south poles and end on
magnetic north poles. In reality, they
neither begin nor end. Instead they
enter the magnet at one end and exit
the magnet at the other end.

!
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F I G U R E  2 6 - 1 2 Charged particle moving
in a plane perpendicular to a uniform
magnetic field. The magnetic field is into the
page as indicated by the crosses. (Each cross
represents the tail feathers of an arrow. A field
out of the plane of the page would be
indicated by dots, each dot representing the
point of an arrow.) The magnetic force is
perpendicular to the velocity of the particle,
causing it to move in a circular orbit.

z

x

y

a

b

θ

θ

dF

B
R

Id�

d�

F I G U R E  2 6 - 1 1

892 | C H A P T E R  2 6 The Magnetic Field

Example 26-3 Force on a Bent Wire

A wire bent into a semicircular loop of radius lies in the plane. It
carries a current from point to point as shown in Figure 26-10.
Throughout the region there is a uniform magnetic field that is
perpendicular to the plane of the loop. Find the magnetic force acting on
the semicircular loop section of the wire.

PICTURE The magnetic force is exerted on a segment of the semi-
circular wire that lies in the plane, as shown in Figure 26-11. We find
the total magnetic force by expressing the and components of in
terms of and integrating them separately from to u � p.u � 0u

dF
S

yx
xy

dF
S

B
S

� Bkn
b,aI

xyR

SOLVE

2. Express in terms of
the unit vectors and jn:in

d�
S

d�
S

� �d� sinuin � d� cosujn

CHECK The result that the component of is zero can be seen from symmetry. For the
right half of the loop, tilts to the right; for the left half of the loop, tilts to the left.

TAKING IT FURTHER The net force on the semicircular wire is the same as if the semicircle
were replaced by a straight-line segment of length connecting points and (This is a
general result that is derived in Problem 26.)

b.a2R

dF
S

dF
S

F
S

x

26-2 MOTION OF A POINT CHARGE
IN A MAGNETIC FIELD

The magnetic force on a charged particle moving through a region with a magnetic
field is always perpendicular to the velocity of the particle. The magnetic force
thus changes the direction of the velocity but not the magnitude of the velocity
(the speed). Therefore, magnetic forces do no work on particles and do not change their
kinetic energy.

In the special case where the velocity of a charged particle is perpendicular to
a uniform magnetic field, as shown in Figure 26-12, the particle moves in a circu-
lar orbit. The magnetic force provides the force in the centripetal direction that is
necessary for circular motion. We can use Newton’s second law to relate the ra-
dius of the circle to the magnetic field and the speed of the particle. If the velocity
is the magnetic force on a particle that has charge is given by The
magnitude of the net force is equal to because and are perpendicular.B

S
vSqvB,

F
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� qvS � B
S

.qvS,
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1. Write the force on a

current element I d�
S

.
dF

S

3. Compute using
and B

S
� Bkn:d� � R du

I d�
S

� IRB sinu dujn � IRB cosu duin
� I(�R sinu duin � R cosu dujn) � Bkn
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S
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S
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S

4. Integrate each
component of from

to u � p.u � 0
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Newton’s second law gives

or

26-6

where is the mass of the particle.
The period of the circular motion is the time it takes the particle to travel once

around the circumference of the circle. The period is related to the speed by

Substituting for (Equation 26-6), we obtain the period of the particle’s cir-
cular orbit, which is called the cyclotron period:

26-7

CYCLOTRON PERIOD

The frequency of the circular motion, called the cyclotron frequency, is the recip-
rocal of the period:

26-8

CYCLOTRON FREQUENCY

Note that the period and the frequency given by Equations 26-7 and 26-8 depend
on the charge-to-mass ratio but the period and the frequency are independent
of the velocity or the radius Two important applications of the circular motion
of charged particles in a uniform magnetic field, the mass spectrometer and the
cyclotron, are discussed later in this section.

r.v
q>m,

f �
1
T

�
qB

2pm
 so v � 2pf �

q

m
B

T �
2p(mv>qB)

v
�

2pm
qB

rmv>(qB)

T �
2pr
v

m

r �
mv
qB

qvB � m
v2

r

F � ma

(a) Circular path of electrons moving in the magnetic field produced by the current in two large coils. The electrons ionize the dilute gas in the tube,
causing it to give off a glow that indicates the path of the beam. (b) False-color photograph showing tracks of a 1.6- proton (red) and a 
7- particle (yellow) in a cloud chamber. The radius of curvature is proportional to the momentum and inversely proportional to the charge
of the particle. For these energies, the momentum of the particle, which has twice the charge of the proton, is about four times that of the proton
and so its radius of curvature is greater. ((a) Larry Langrill. (b) © Lawrence Berkeley Laboratory/Science Photo Library.)
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Example 26-4 Cyclotron Period

A proton has a mass equal to , has a charge equal to , and
moves in a circle of radius perpendicular to a magnetic field equal to 
Find (a) the speed of the proton and (b) the period of the motion.

PICTURE Apply Newton’s second law to find the speed, and use distance equals speed mul-
tiplied by time to find the period.

SOLVE

4000 G.r � 21.0 cm
1.60 � 10�19 C1.67 � 10�27 kg

(a) 1. Apply Newton’s second law :(F � ma) F � ma ⇒  qvB � m
v2

r

(b) Use distance equals speed multiplied by time and solve for
the period:

 8.05 � 106 m>s � 0.0268c�

v �
rqB

m
�

(0.210 m)(1.60 � 10�19 C)(0.400 T)
1.67 � 10�27 kg

TAKING IT FURTHER The radius of the circular orbit is proportional to the speed, but the
period of the orbit is independent of both the speed and radius.

F I G U R E  2 6 - 1 3 (a) When a particle has a velocity
component parallel to a magnetic field as well as a velocity
component perpendicular to the magnetic field the particle
moves in a helical path around the field lines. (b) Cloud-
chamber photograph of the helical path of an electron
moving in a magnetic field. The path of the electron is
made visible by the condensation of water droplets in the
cloud chamber. (Carl E. Nielson.)

Suppose that a charged particle is in a region that has a uniform magnetic field
and is moving with a velocity that is not perpendicular to There is no magnetic
force component, and thus no acceleration component, parallel to so the com-
ponent of the velocity that is parallel to remains constant. The magnetic force on
the particle is perpendicular to so the change in motion of the particle due to
this force is the same as that just discussed. The path of the particle is thus a helix,
as shown in Figure 26-13.

The motion of charged particles in nonuniform magnetic fields can be quite
complex. Figure 26-14 shows a magnetic bottle, an interesting magnetic field con-
figuration in which the field is weak at the center and strong at both ends. A de-
tailed analysis of the motion of a charged particle in such a field shows that the
particle spirals around the field lines and becomes trapped, oscillating back and
forth between points and in the figure. Such magnetic field configurations are
used to confine dense beams of charged particles, called plasmas, in nuclear fusion
research. A similar phenomenon is the oscillation of ions back and forth between
Earth’s magnetic poles in the Van Allen belts (Figure 26-15).

P2P1

B
S

,
B
S

B
S

,
B
S

.

2. Solve for the speed:

so

 164 nsT �
2pr
v

�
2p(0.210 m)

(8.05 � 106 m>s)
� 1.64 � 10�7 s �

2pr � vT
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F I G U R E  2 6 - 1 5 Van Allen belts. Protons (inner belts) and
electrons (outer belts) are trapped in Earth’s magnetic field and spiral
around the field lines between the north and south poles.

P1
+q

P2
+

+

+
F

v
B

F

v
B

F

v

B

F I G U R E  2 6 - 1 4 Magnetic bottle. When a charged particle
moves in such a field, which is strong at both ends and weak in
the middle, the particle becomes trapped and moves back and
forth, spiraling around the field lines.
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*THE VELOCITY SELECTOR

The magnetic force on a charged particle moving in a uniform magnetic
field can be balanced by an electric force if the magnitudes and directions
of the magnetic field and the electric field are properly chosen. Because
the electric force is in the direction of the electric field (for particles with
positive charge) and the magnetic force is perpendicular to the magnetic
field, the electric and magnetic fields in the region through which the par-
ticle is moving must be perpendicular to each other if the forces are to bal-
ance. Such a region is said to have crossed fields.

Figure 26-16 shows a region of space between the plates of a capacitor
where there is an electric field and a perpendicular magnetic field (pro-
duced by a magnet that has one pole on each side of this sheet of paper).
Consider a particle that has charge entering this space from the left. The
net force on the particle is

If is positive, the electric force of magnitude is down the page and the mag-
netic force of magnitude is up the page. If the charge is negative, the direction
of each of these forces is reversed. The two forces balance if that is, if

26-9

For given magnitudes of the electric and magnetic fields, the forces balance only
for particles that have the exact speed given by Equation 26-9. Any particle that has
this speed, regardless of its mass or charge, will traverse the space undeflected. A par-
ticle that has a greater speed will be deflected toward the direction of the magnetic
force, and a particle that has a lesser speed will be deflected in the direction of the
electric force. This arrangement of fields is often used as a velocity selector, which is
a device that allows only particles with the speed specified by Equation 26-9 to pass.
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E
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qE � qvB
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qEq
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F I G U R E  2 6 - 1 6 Crossed electric and magnetic
fields. When a particle that has a positive charge moves
to the right, the particle experiences a downward
electric force and an upward magnetic force. These
forces balance if the speed of the particle is related to
the field strengths by vB � E.

PRACTICE PROBLEM 26-2

A proton is moving in the direction in a region of crossed fields where
and (a) What is the speed of the proton if it is not de-

flected? (b) If the proton moves with twice this speed, in which direction will it be deflected?
B
S

� 0.300 T jn.E
S

� 2.00 � 105 N>C kn
�x
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*THOMSON’S MEASUREMENT OF FOR ELECTRONS

An example of the use of crossed electric and magnetic fields is the famous experi-
ment performed by J. J. Thomson in 1897 where he showed that the rays of a cathode-
ray tube can be deflected by electric and magnetic fields, indicating that they must
consist of charged particles. By measuring the deflections of these particles, Thomson
showed that all the particles have the same charge-to-mass
ratio He also showed that particles that have this
charge-to-mass ratio can be obtained using any material for
a source, which means that these particles, now called elec-
trons, are a fundamental constituent of all matter.

Figure 26-17 shows a schematic diagram of the cathode-
ray tube Thomson used. Electrons are emitted from the
cathode C, which is at a negative potential relative to
the potential at slits A and B. An electric field in the direc-
tion from A toward C accelerates the electrons, and some
of the electrons pass through slits A and B into a field-free
region. The electrons then enter the electric field between
the capacitor plates D and F that is perpendicular to the ve-
locity of the electrons. This field accelerates the electrons
vertically for the short time that they are between the
plates. The electrons are deflected and strike the phospho-
rescent screen S at the far right side of the tube at some de-
flection from the point at which they strike when there
is no electric field between the plates. The screen glows
where the electrons strike the screen, indicating the loca-
tion of the beam. The speed of the electrons is deter-
mined by introducing a magnetic field between the
plates in a direction that is perpendicular to both the elec-
tric field and the initial velocity of the electrons. The mag-
nitude of is adjusted until the beam is not deflected.
The speed is then found from Equation 26-9.

With the magnetic field turned off, the beam is
deflected by an amount which consists of two parts:
the deflection which occurs while the electrons are
between the plates, and the deflection which occurs
after the electrons leave the region between the plates
(Figure 26-18).

Let be the horizontal distance across the deflection plates D and F. If the elec-
tron is moving horizontally with speed when it enters the region between the
plates, the time spent between the plates is and the vertical velocity
when it leaves the plates is

where is the upward component of the electric field between the plates. The de-
flection in this region is

The electron then travels an additional horizontal distance in the field-free
region from the deflection plates to the screen. Because the velocity of the electron
is constant in this region, the time to reach the screen is and the addi-
tional vertical deflection is
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F I G U R E  2 6 - 1 7 Thomson’s tube for measuring for the particles
of cathode rays (electrons). Electrons from the cathode C pass through the
slits at A and B and strike a phosphorescent screen S. The beam can be
deflected by an electric field between plates D and F or by a magnetic field
(not shown).
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F I G U R E  2 6 - 1 8 The total deflection of the beam in the J. J. Thomson
experiments consists of the deflection while the electrons are between
the plates plus the deflection that occurs in the field-free region
between the plates and the screen.
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SOLVE

1. The total deflection of the electron is given by Equation 26-10: ¢y � ¢y1 � ¢y2 �
1
2

qEy

mv2
0

x2
1 �
qEy

mv2
0

x1x2

2. The speed equals E>B:v0 v0 �
E
B

�
3000 V>m

1.40 � 10�4 T
� 2.14 � 107 m>s

3. Substitute the value for determined in step 2, the given value
of and the known values for and into Equation 26-10 to
find ¢y:

qmE ,
v0

14.7 mm� 0.92 mm � 13.8 mm �

� 9.20 � 10�4 m � 1.38 � 10�2 m
¢y � ¢y1 � ¢y2

� 1.38 � 10�2 m

¢y2 �
(�1.60 � 10�19 C)(�3000 V>m)

(9.11 � 10�31 kg)(2.14 � 107 m>s)2 (0.0400 m)(0.300 m)

� 9.20 � 10�4 m

¢y1 �
1
2

(�1.60 � 10�19 C)(�3000 V>m)

(9.11 � 10�31 kg)(2.14 � 107 m>s)2 (0.0400 m)2

CHECK As expected, is an order of magnitude greater than This was expected be-
cause the distance from the plates to the screen is an order of magnitude greater than the
length of the plates.

¢y1 .¢y2
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The total deflection at the screen is therefore

26-10

The measured deflection can be used to determine the charge-to-mass ratio,
from Equation 26-10.q>m,

¢y

¢y � ¢y1 � ¢y2 �
1
2

qEy

mv2
0

x2
1 �
qEy

mv2
0

x1x2

Example 26-5 Electron Beam Deflection

Electrons pass undeflected through the plates of Thomson’s apparatus when the electric
field is and there is a crossed magnetic field of If the plates are 
long and the ends of the plates are from the screen, find the deflection on the screen
when the magnetic field is turned off.

PICTURE The mass and charge of the electron are known: and
The speed of the electron can be found from the ratio of the mag-

netic and electric fields.
q � �e � �1.60 � 10�19 C.

m � 9.11 � 10�31 kg

30.0 cm
4.00 cm0.140 mT.3000 V>m

v

+q

+_

P P21

Ion Source

Acceleration
region

Deflection region

ΔV

r

+

Bout of the page 

+

*THE MASS SPECTROMETER

The mass spectrometer, first designed by Francis William Aston in 1919, was de-
veloped as a means of measuring the masses of isotopes. Such measurements are
important in determining both the presence of isotopes and their abundance in na-
ture. On Earth, for example, naturally occurring magnesium has been found to
consist of 78.7 percent 10.1 percent and 11.2 percent These iso-
topes have masses in the approximate ratio 24:25:26.

Figure 26-19 shows a simple schematic drawing of a mass spectrometer. Positive
ions are formed by bombarding atoms with X rays or a beam of electrons. (Electrons
are knocked out of the atoms by the X rays or bombarding electrons to form posi-
tive ions.) The ions are accelerated by an electric field and enter a uniform magnetic
field. If the positive ions start from rest and move through a potential difference 
the ions’ kinetic energy when they enter the magnetic field equals their loss in
potential energy, 

26-111
2mv2 � q ƒ¢V ƒ

q ƒ¢V ƒ :

¢V,

26Mg.25Mg,24Mg,

F I G U R E  2 6 - 1 9 Schematic drawing of a
mass spectrometer. Positive ions from an ion
source are accelerated through a potential
difference and enter a uniform magnetic
field at The magnetic field is out of the
plane of the page as indicated by the dots.
The ions are bent into a circular arc and
emerge at The radius of the circle varies
with the mass of the ion.

rP2 .

P1 .
¢V
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Example 26-6 Separating Isotopes of Nickel

A ion that has a charge equal to and a mass equal to is accelerated
through a potential drop of and deflected in a magnetic field of (a) Find the
radius of curvature of the orbit of the ion. (b) Find the difference in the radii of curvature of

ions and ions. (Assume that the mass ratio is 58:60.)

PICTURE The radius of curvature can be found using Equation 26-12. Using the mass de-
pendence of we can find the radius of curvature for the orbit of the ions from the radius
of curvature for the orbit of the ions, and then take the difference between the two radii.

SOLVE

58Ni

60Nir,
r

60Ni58Ni

0.120 T.3.00 kV
9.62 � 10�26 kg�e58Ni

(a) Solve Equation 26-12 for r:

0.501 m�

r � C2m ƒ¢V ƒ
qB2 � c2(9.62 � 10�26 kg)(3000 V)

(1.60 � 10�19 C)(0.120 T)2 d 1>2

2. Use the result of the previous step to calculate for 60Ni:r2 r2 � 1.017r1 � (1.017)(0.501 m) � 0.510 m

(b) 1. Let and be the radius of the orbit of the ion and the
ion, respectively. Use the result in Part (a) to find the

ratio of to r1:r2

60Ni

58Nir2r1
r2
r1

� Am2

m1

� A60
58

� 1.017

3. The difference in orbital radii is r2 � r1: 9 mmr2 � r1 � 0.510 m � 0.501 m �

CHECK The difference in the orbital radii is less than 2 percent of the radius of curvature of
either orbit. This result is expected for two ions whose masses differ by less than 4 percent.

THE CYCLOTRON

The cyclotron was invented by E. O. Lawrence and M. S. Livingston in 1934 to ac-
celerate particles, such as protons or deuterons, to large kinetic energies.* The high-
energy particles are used to bombard atomic nuclei, causing nuclear reactions that

The ions move in a semicircle of radius given by Equation 26-6, and
strike a photographic plate at point a distance from the point where the
ions entered the magnetic field.

The speed can be eliminated from Equations 26-6 and 26-11 to find in
terms of the known quantities and We first solve Equation 26-6 for and
square each term, which gives

Substituting this expression for into Equation 26-11, we obtain

Simplifying this equation and solving for we obtain

26-12

In Aston’s original mass spectrometer, mass differences could be measured to a
precision of about 1 part in 10,000. The precision has been improved by introduc-
ing a velocity selector between the ion source and the magnet, which increases the
degree of accuracy with which the speeds of the incoming ions can be determined.

m
q

�
B2r2

2 ƒ¢V ƒ

m>q,
1
2
ma r2q2B2

m2 b � q ƒ¢V ƒ

v2

v2 �
r2q2B2

m2

vr.V, B,
m>qv

P12rP2 ,
r � mv>qB,r

* A deuteron is the nucleus of heavy hydrogen, which consists of a proton and neutron tightly bound together.2H,
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are then studied to obtain information about nuclei. High-energy
protons and deuterons are also used to produce radioactive ma-
terials and for medical purposes.

Figure 26-20 is a schematic drawing of a cyclotron. The par-
ticles move in two semicircular metal containers called dees
(because they are the shape of the letter “D”). The dees are
housed in a vacuum chamber that is in a region with a uniform
magnetic field provided by an electromagnet. The region in
which the particles move must be evacuated so that the particles
will not be scattered in collisions with air molecules. A potential
difference which alternates in time with a period is main-
tained between the dees. The period is chosen to be the cyclotron
period (Equation 26-7). The potential difference
creates an electric field across the gap between the dees. At the
same time, there is no electric field within each dee because
the metal dees act as shields.

Positively charged particles are initially injected into 
with a small velocity from an ion source near the center of
the dees. They move in a semicircle in and arrive at the gap
between and after a time The potential is adjusted
so that is at a higher potential than when the particles
arrive at the gap between them. Each particle is therefore accel-
erated across the gap by the electric field and gains kinetic
energy equal to 

Because the particle now has more kinetic energy, the particle
moves in a semicircle of larger radius in It arrives at the
gap again after a time because the period is independent of
the particle’s speed. By this time, the potential difference between the dees has
been reversed so that is now at the higher potential. Once more the particle
is accelerated across the gap and gains additional kinetic energy equal to 
Each time the particle arrives at the gap, it is accelerated and gains kinetic energy
equal to Thus, the particle moves in larger and larger semicircular orbits
until it eventually leaves the magnetic field. In the typical cyclotron, each particle
may make 50 to 100 revolutions and exit with energies of up to several hundred
megaelectron volts.

The kinetic energy of a particle leaving a cyclotron can be calculated by setting
in Equation 26-6 equal to the maximum radius of the dees and solving the equa-

tion for 

Then

26-13K �
1
2
mv2 �

1
2
a q2B2

m
br2

r �
mv
qB

 ⇒  v �
qBr

m

v:
r

q¢V.

q¢V.
dee2

1
2T,

dee2 .

q¢V.

dee2dee1

1
2T.dee2dee1

dee1

S
dee1

T � 2pm >(qB)

T,¢V,

Dee2

Dee1

Constant-frequency
alternating

voltage

S

B

F I G U R E  2 6 - 2 0 Schematic drawing of a cyclotron. The
upper-pole face of the magnet has been omitted. Charged
particles, such as protons, are accelerated from a source S at the
center by the potential difference across the gap between the dees.
When the charged particles arrive at the gap again the potential
difference has changed sign so they are again accelerated across
the gap and move in a larger circle. The potential difference
across the gap alternates with the cyclotron frequency of the
particle, which is independent of the radius of the circle.

Example 26-7 Energy of Accelerated Proton

A cyclotron for accelerating protons has a magnetic field of and a maximum radius
of (a) What is the cyclotron frequency? (b) What is the kinetic energy of the protons
when they emerge?

PICTURE Apply Newton’s second law with Use and solve
for the frequency and the speed.

v � rvF � ƒqvS � B
S

ƒ .(F � ma)

0.500 m.
0.150 T



n̂
b

a
I

(b)

(a)

F I G U R E  2 6 - 2 1 (a) The orientation of a
current loop is described by the unit vector 
perpendicular to the plane of the loop.
(b) Right-hand rule for determining the
direction of If the fingers of the right hand
curl around the loop in the direction of the
current, the thumb points in the direction of nn.

nn.

nn
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26-3 TORQUES ON CURRENT LOOPS
AND MAGNETS

A current-carrying loop experiences no net force in a uniform magnetic field, but
it does experience a net torque. The orientation of the loop can be described con-
veniently by a unit vector that is normal to the plane of the loop, as illustrated in
Figure 26-21. If the fingers of the right hand curl around the loop in the direction
of the current, the thumb points in the direction of 

Figure 26-22 shows the forces exerted by a uniform magnetic field on a
rectangular current-carrying loop whose vector makes an angle with the
direction of the magnetic field The net force on the loop is zero. The forces

and have the magnitude

The forces form a couple, so the torque they exert is the same about any point.
Point in Figure 26-22 is a convenient point about which to compute the torque.
The magnitude of the torque is

where is the area of the loop. For a loop that has turns, the torque has the
magnitude

This torque tends to twist the loop so that is in the same direction as .B
S

nn

t � NIAB sinu

NA � ab

t � F2b sinu � IaBb sinu � IAB sinu

P

F1 � F2 � IaB

F
S

2F
S

1

B
S

.
unn

nn.

nn

2. Use to calculate the frequency in cycles per second
(hertz):

2pf � v

2.29 MHz� 2.29 � 106 Hz �

f �
v

2p
�

1.44 � 107 rad>s
2p rad

(b) 1. Calculate the kinetic energy:

� 4.33 � 10�14 J

�
1
2

(1.67 � 10�27 kg)(1.44 � 107 rad>s)2(0.500 m)2

K �
1
2
mv2 �

1
2
mv2r2

2. The energies of protons and other elementary particles are
usually expressed in electron volts. Use 
to convert to eV:

1 eV � 1.60 � 10�19 J
271 keVK � 4.33 � 10�14 J �

1 eV
1.60 � 10�19 J

�

CHECK The exit speed of the proton is 
The speed of light is Our calculated value of for the angular
frequency is plausible because it is a high speed that is less than ten percent of the speed of light.

1.44 � 107 rad>s3.00 � 108 m>s.
7.20 � 106 m>s.(1.44 � 107 rad>s) �v � rv � (0.500 m)

SOLVE

(a) 1. Apply where is the magnetic force and is the
centripetal acceleration. Substitute for and solve for v:vvr

aFF � ma,

� 1.44 � 107 rad>sv �
qB

m
�

(1.60 � 10�19 C)(0.150 T)
1.67 � 10�27 kg

qvrB � m
v2r2

r

qvB � m
v2

r

F � ma
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F I G U R E  2 6 - 2 2

(a) Rectangular current loop whose
unit normal makes an angle 
with a uniform magnetic field 
(b) An edge-on view of the current
loop. The torque on the loop has
magnitude and is in the
direction such that tends to
rotate so as to align itself with B

S
.

nn
IAB sinu

B
S

.
unn

n̂ b
a

I

F1

F2

θ

θ

θ
b sin

B

P

b

b sin

F2

F1

Bθ
θ

θ

n̂

(b)(a)

The torque can be written conveniently in terms of the magnetic dipole moment
(also referred to simply as the magnetic moment) of the current loop, which is

defined as

26-14

MAGNETIC DIPOLE MOMENT OF A CURRENT LOOP

The SI unit of magnetic moment is the ampere-square meter In terms of
the magnetic dipole moment, the torque on the current loop is given by

26-15

TORQUE ON A CURRENT LOOP

Equation 26-15, which we have derived for a rectangular loop, holds in general
for a loop of any shape that lies in a single plane. The torque on any such loop is
the vector product of the magnetic moment of the loop and the magnetic field

where the magnetic moment (Figure 26-23) is defined as a vector that has a mag-
nitude equal to NIA and has the same direction as Comparing Equation 26-15
with Equation 21-11 for the torque on an electric dipole, we see that
the expression for the torque on a magnetic dipole in a magnetic field has the same
form as that for the torque on an electric dipole in an electric field.

(TS � pS � E
S

)
nn.

B
S

,
M
S

T
S

� M
S

� B
S

(A # m2).

M
S

� NIAnn

M
S

The magnitude of the torque is given by Equation 26-15:

1.51 � 10�2 N # m�

� (10.0)(3.00 A)p(0.0200 m)2(0.800 T) sin 30.0°

t � ƒMS � B
S

ƒ � mB sinu � NIAB sinu

CHECK From (Equation 26-4) we can see that the SI unit for magnetic field
(the tesla) must have units of With this in mind, one can see by inspection that
the units for the right-hand side of the equation in the solution work out to which are
SI units for torque.

N # m,
N>(A # m).

F
S

� IL
S

� B
S

I
= NIA ^n

^n

B

A

Example 26-8 Torque on a Current Loop

A circular loop has a radius equal to has 10 turns of wire, and carries a current equal
to The axis of the loop makes an angle of with a magnetic field of Find
the magnitude of the torque on the loop.

PICTURE The torque on a current loop is given by (Equation 26-15) where
(Equation 26-14).

SOLVE

M
S

� NIAnn
T
S

� M
S

� B
S

8000 G.30.0°3.00 A.
2.00 cm,

F I G U R E  2 6 - 2 3 A flat current loop of
arbitrary shape is described by its magnetic
moment In a magnetic field 
the loop experiences a torque MS � B

S
.

B
S

,M
S

� NIAnn.
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Steps Answers

1. Find the magnitude of the magnetic torque acting
on the loop.

tm � mB sin (90°) � IpR2B

2. Find the magnitude of the gravitational torque
exerted on the loop.

tg � mgR

3. Equate the magnitudes of the torques and solve for
the current I.

mg

pRB
I �

CHECK The current is directly proportional to the mass for constant which makes sense.
The larger the mass, the more current is needed to start to rotate the ring.

B,

Example 26-9 Tilting a Loop

A circular wire loop that has a radius a mass and a current lies on a horizontal sur-
face (Figure 26-24). There is a horizontal magnetic field How large can the current be be-
fore one edge of the loop will lift off the surface?

PICTURE The loop (Figure 26-25) will start to rotate when the magnitude of the net torque
on the loop is greater than zero. To eliminate the torque due to the normal force, we calculate
torques about the point of contact between the surface and the loop. The magnetic torque is
given by The magnetic torque is the same about any point because the magnetic
torque consists of couples. The lever arm for the gravitational torque is the radius of the loop.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

T
S

� M
S

� B
S

.

IB
S

.
Im,R,

POTENTIAL ENERGY OF A MAGNETIC DIPOLE IN
A MAGNETIC FIELD

When a torque is exerted on a rotating object, work is done. When a magnetic di-
pole is rotated through an angle the work done is

where is the angle between and The minus sign arises because the magnetic
torque tends to decrease Setting this work equal to the decrease in potential en-
ergy we have

Integrating, we obtain

We choose the potential energy to be zero when Then and the po-
tential energy of the dipole is given by

26-16

POTENTIAL ENERGY OF A MAGNETIC DIPOLE

Equation 26-16 gives the potential energy of a magnetic dipole at an angle to the
direction of a magnetic field.

u

U � �mB cosu � �M
S # B

S

U0 � 0u � 90°.

U � �mB cosu � U0

dU � �dW � �mB sinu du

U,
u.

B
S

.M
S

u

dW � �t du � �mB sinu du

du,
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Example 26-10 Torque on a Coil

A square 12-turn coil has an edge-length equal to and carries a current of 
It lies in the plane, as shown in a uniform magnetic field 
The current is counterclockwise when viewed from a point on the positive axis. Find (a) the
magnetic moment of the coil and (b) the torque exerted on the coil. (c) Find the potential en-
ergy of the coil.

z
B
S

� 0.300 T in � 0.400 T kn.z � 0
3.00 A.40.0 cm

5.76 A # m2 kn�

M
S

� NIAkn � (12)(3.00 A)(0.400 m)2kn

(b) The torque on
the current loop
is given by
Equation 26-15: 1.73 N # m jn�

� (5.76 A # m2 kn) � (0.300 T in � 0.400 T kn)

T
S

� M
S

� B
S

(c) The potential
energy is the
negative dot
product of 
and B

S
:

M
S �2.30 J�

� �(5.76 A # m2 kn ) # (0.300 T in � 0.400 T kn)

U � �M
S # B

S

CHECK The torque in the Part (b) result is perpendicular to both the magnetic moment vec-
tor and the magnetic field vector, as is expected for a vector product.

PRACTICE PROBLEM 26-3 The potential energy of a current-carrying coil in a uniform
magnetic field is equal to zero when the angle between the magnetic dipole moment of the
coil and the magnetic field is Calculate the potential energy of the system if the coil is
oriented so and are (a) in the same direction and (b) in opposite directions.M

SB
S

90°.M
S

B
S

I

y
12 loops

x

μ
z

B
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Example 26-11 of a Spinning Disk

A thin nonconducting disk that has a mass a radius and a uniform surface
charge per unit area spins with angular velocity about an axis through the cen-
ter of the disk and perpendicular to the plane of the disk. Find the magnetic mo-
ment of the spinning disk.

V
S

s

a,m,

M
S

PICTURE From Figure 26-26, we see that the magnetic moment of the
loop is in the direction.

SOLVE

�z

(a) Calculate the
magnetic
moment of
the loop:

When a permanent magnet, such as a compass needle or a bar magnet, is placed
in a region where there is a magnetic field the field exerts a torque on the mag-
net that tends to rotate the magnet so that it lines up with the field. (This effect also
occurs with previously unmagnetized iron filings, which become magnetized in
the presence of a field The bar magnet is characterized by a magnetic moment

a vector that points in the same direction as an arrow drawn from the south pole
of the magnet to the north pole of the magnet. A short bar magnet thus behaves
like a current loop.

M
S ,

B
S

.)

B
S

,

ω

dR R
a

F I G U R E  2 6 - 2 7

PICTURE We find the magnetic moment of a circular element that has a radius 
and a width and integrate (Figure 26-27). The charge on the element is

If the charge is positive, the magnetic moment is in the di-
rection of so we need only calculate its magnitude.V

S ,
dq � s dA � s2pR dR.

dR
R
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3. Substitute to obtain the magnitude of the magnetic moment of
the strip in terms of and dr:rdm

dm � pR2 dI � pR2svR dR � psvR3 dR

4. Integrate from to r � a:r � 0 m � �
a

0
psvR3 dR �

1
4
psva4

5. Use the fact that is parallel to (if is positive) to express
the magnetic moment as a vector:

sV
S

M
S 1

4psa4V
S

M
S

�

CHECK Consider a thin spinning ring, also of radius carrying the same charge, 

as the disk. The magnitude of the magnetic moment of the ring is given by 

which is twice the step-5 result. The step-5 result is smaller than the

magnitude of the magnetic moment of the ring, which is what one would expect.

TAKING IT FURTHER In terms of the total charge the magnetic moment is
The angular momentum of the disk is so the magnetic moment 

can be written which is a more general result. (See Problem 57.)M
S

�
Q

2m
L
S

,

L
S

� (1
2ma2)VS ,M

S
� 1

4Qa2V
S .

Q � spa2,

spa2

2p>vpa2 � 1
2psa4v,

m � IA �
Q

T
pa2 �

Q � spa2,a,

26-4 THE HALL EFFECT

As we have seen, charges moving in a region where there is a magnetic field each
experience a force perpendicular to their motion. When these charges are traveling
in a conducting wire, they will be pushed to one side of the wire. This results in a
separation of charge in the wire—a phenomenon called the Hall effect. This phe-
nomenon allows us to determine the sign of the charge on the charge carriers and
the number of charge carriers per unit volume in a conductor. The Hall effect also
provides a convenient method for measuring magnetic fields.

Figure 26-28 shows two conducting strips; each conducting strip carries a cur-
rent to the right because the left sides of the strips are connected to the positive
terminal of a battery and the right sides are connected to the negative terminal.
A magnetic field is directed into the paper. Let us suppose the current in the strip
is due to positively charged particles moving to the right, as shown in Figure 
26-28a. On average, the magnetic force on these particles is (where is the
drift velocity). This force is directed up the page. The positively charged particles
therefore move up the page to the top edge of the strip, leaving the bottom edge of
the strip with an excess negative charge. This separation of charge produces an
electric field in the strip that exerts a force on the particles that opposes the mag-
netic force on them. When the electric and magnetic forces balance, the charge
carriers no longer drift up the page. Because the electric field points in the direc-
tion of decreasing potential, the upper edge of the strip is at a higher potential than
is the lower edge of the strip. This potential difference can be measured using a
sensitive voltmeter.

On the other hand, suppose the current is due to negatively charged particles
moving to the left, as shown in Figure 26-28b. (The negatively charged particles in

E
S

vSdqvSd � B
S

B
S

I

n

1. The magnitude of the magnetic moment of the strip shown is
the current multiplied by the area of the loop:

dm � A dI � pR2 dI

2. The current in the strip is the total charge on the strip
divided by the period During one period the charge 
passes by a point not rotating with the strip. The period is
equal to the reciprocal of the frequency of rotation 
f � v>(2p):

1>T �f

dqT.
dq

�
v

2p
s2pR dR � svR dR

dI �
dq

T
�
v

2p
dq �

v

2p
s dA

SOLVE
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the strip must move to the left because the current, as before, is to the right.) The
magnetic force is again up the page, because the signs of both and the
direction of have been reversed. Again the carriers are forced to the upper edge
of the strip, but the upper edge of the strip now carries a negative charge (be-
cause the charge carriers are negative) and the lower edge of the strip now carries
a positive charge.

vSd

qqvSd � B
S

PRACTICE PROBLEM 26-4

A conducting strip of width is placed in a magnetic field of The Hall
voltage is measured to be Calculate the drift velocity of the electrons.0.64 mV.

0.80 T.w � 2.0 cm

Because the drift velocity for ordinary currents is very small, we can see from
Equation 26-17 that the Hall voltage is very small for ordinary-sized strips and
magnetic fields. From measurements of the Hall voltage for a strip of a given size,
we can determine the number of charge carriers per unit volume in the strip.

F I G U R E  2 6 - 2 8 The Hall effect. The magnetic field is directed into the plane of the page
as indicated by the crosses. The magnetic force on a charged particle is upward for a current
to the right whether the current is due to (a) positive particles moving to the right or (b) negative
particles moving to the left.

A measurement of the sign of the potential difference between the upper and
lower parts of the strip tells us the sign of the charge carriers. In semiconductors,
the charge carriers may be negative electrons or positive “holes.” A measurement
of the sign of the potential difference tells us which are dominant for a particu-
lar semiconductor. For a metal strip, we find that the upper edge of the strip in
Figure 26-28b is at a lower potential than is the lower edge of the strip—which
means that the upper part must carry a negative charge. Thus, Figure 26-28b
is the correct illustration of the current in a metal strip. It was a measurement
like this which led to the discovery that the charge carriers in metals are nega-
tively charged.

The potential difference between the top of the strip and the bottom of the strip
is called the Hall voltage. We can calculate the magnitude of the Hall voltage in
terms of the drift velocity. The magnitude of the magnetic force on the charge car-
riers in the strip is This magnetic force is balanced by the electrostatic force
of magnitude where is the electric field due to the charge separation.
Thus, we have If the width of the strip is the potential difference is

The Hall voltage is therefore

26-17VH � EHw � vdBw

EHw.
w,EH � vdB.

EHqEH,
qvdB.
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The Hall voltage provides a convenient method for measuring magnetic fields.
If we rearrange Equation 26-19, we can write for the Hall voltage

26-20

A given strip can be calibrated by measuring the Hall voltage for a given current
in a known magnetic field. The strip can then be used to measure an unknown
magnetic field by measuring the Hall voltage for a given current.

*THE QUANTUM HALL EFFECTS

According to Equation 26-20, the Hall voltage should increase linearly with mag-
netic field strength for a given current in a given slab. In 1980, while studying the
Hall effect in semiconductors at very low temperatures and very large magnetic

B

B

VH �
ƒI ƒ
nte
B

Example 26-12 Charge Carrier Number Density in Silver

A silver slab has a thickness equal to a width equal to and a current equal
to in a region where there is a magnetic field of magnitude perpendicular to the
slab. The Hall voltage is measured to be (a) Calculate the number density of the
charge carriers. (b) Calculate the number density of atoms in silver, which has a mass den-
sity of and a molar mass of and compare the number den-
sity of atoms in silver with the Part (a) result.

PICTURE We can use Equation 26-19 to find the number density of charge carriers. The num-
ber density of atoms can be obtained from knowledge of the density and the molar mass.

SOLVE

M � 107.9 g>mol,r � 10.5 g>cm3

0.334 mV.
1.25 T2.50 A

1.50 cm,1.00 mm,

(a) Substitute numerical values into Equation 26-19 to find n:

5.85 � 1028 electrons>m3�

n �
ƒI ƒB
teVH

�
(2.50 A)(1.25 T)

(1.00 � 10�3 m)(1.60 � 10�19 C)(3.34 � 10�7 V)

(b) 1. The number of atoms per unit volume is rNA >M:

5.86 � 1022 atoms>cm3 � 5.86 � 1028 atoms>m3�

na � r
NA

M
� (10.5 g>cm3)

6.02 � 1023 atoms>mol

107.9 g>mol

2. Compare the Part (b) step-1 result with the Part (a) result: These results indicate that the number of charge carriers in silver
is very nearly one per atom.

CHECK We should expect the number density of charge carriers and the number density of
atoms in a metal to be the same order of magnitude. Our results validate that expectation.

The magnitude of the current is given by Equation 26-3:

where is the cross-sectional area of the strip. For a strip of width and thickness 
the cross-sectional area is Because the charge carriers are electrons, the
quantity is the charge on one electron The number density of charge carriers 
is thus given by

26-18

Substituting for (Equation 26-17), we have

26-19n �
ƒI ƒB
teVH

vdwVH>B
n �

ƒI ƒ
A ƒq ƒvd

�
ƒI ƒ
wtevd

ne.ƒq ƒ
A � wt.

t,wA

ƒI ƒ � ƒq ƒnvdA
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fields, Klaus von Klitzing discovered that a plot of versus resulted in a series
of plateaus, as shown in Figure 26-29, rather than a straight line. That is, the Hall
voltage is quantized. For the discovery of the integer quantum Hall effect, von
Klitzing won the Nobel Prize in Physics in 1985.
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F I G U R E  2 6 - 2 9 A plot of the Hall voltage versus applied
magnetic field shows plateaus, indicating that the Hall voltage
is quantized. The data were taken at a temperature of 
with the current I held fixed at 25.52 mA.

1.39 K

* The value of differs only slightly from that of The currently used value of the von Klitzing constant is
RK � (25 812.807 572 � 0.000 095) Æ.

RK.RK�90

In the theory of the integer quantum Hall effect, the Hall resistance, defined as
can take on only the values

26-21

where is an integer, and called the von Klitzing constant, is related to the
fundamental electric charge and Planck’s constant by

26-22

Because the von Klitzing constant can be measured to an accuracy of a few parts
per billion, the quantum Hall effect is now used to define a standard of resistance.
As of January 1990, the ohm is defined in terms of the conventional value* of the
von Klitzing constant which has the value

26-23

In 1982, it was observed that under certain special conditions the Hall resistance
is given by Equation 26-22 but with the integer replaced by a series of rational
fractions. This is called the fractional quantum Hall effect. For the discovery and ex-
planation of the fractional quantum Hall effect, American professors Laughlin,
Störmer, and Tsui won the Nobel Prize in Physics in 1998.

n

RK�90 � 25812.8076 Æ (exact)

RK�90 ,

RK �
h
e2

he
RK,n

n � 1, 2, 3, ÁRH �
VH

I
�
RK

n

RH � VH>I,



Physics Spotlight

Earth and the Sun—Magnetic Changes

The magnetic fields of the Sun and Earth have been measured almost con-
stantly in recent years by satellite and ground-based magnetic observatories.*
Geologists and physicists have collaborated to study the paleomagnetic fields
of both Earth† and the Sun.‡ The paleomagnetic studies and the ongoing
observations show that the magnetic fields of the Earth and Sun are conti-
nuously changing.

Earth’s magnetic field has been used as a navigational aid for over 900 years.#

Navigators were soon aware that magnetic north does not coincide with celes-
tial north, and that the magnetic declination (the difference in direction between
magnetic north and celestial north) varied from place to place. Measurements of
magnetic declination taken in the same places dating from the sixteenth cen-
tury° showed that the apparent location of magnetic north varied with time at
the same place.§ These measurements are the first evidence that Earth’s mag-
netic field is dynamic.

In the 1960s, drill cores showed many layers of magnetic reversals in vol-
canic rocks.¶ It became clear that Earth’s magnetic field reverses around every

years, but there have been durations of over six million years during
which there were no geomagnetic reversals. Immediately surrounding the re-
versal, the record shows that the field strength decreases, reverses, and then
increases over a period of a few thousand years.** The last geomagnetic re-
versal was years ago. Lately, Earth’s magnetic field strength has been decreasing. From 1840 to the present, Earth’s
magnetic field has decreased by †† which is a decrease of 3% per century, and reconstruction of data from ships’ logs
shows a decrease of about from 1590 to 1840.

In the early twentieth century, G. E. Hale noted that sunspots, which had been observed for hundreds of years, had mag-
netic fields. He demonstrated that during a 22-year sunspot cycle, the Sun’s magnetic field gradually decreased, reversed, in-
creased, and returned back to the original configuration.‡‡ Sunspots themselves have been measured with a magnetic field
strength in excess of ## Recent observation has shown that sunspots are magnetically powered vortices in the Sun.
Although the surface of the Sun has an apparent average field of in regions without sunspots, small areas of such re-
gions have magnetic strengths varying from below 20 mT up to °°

The solar wind, which consists of charged sub-atomic particles ejected from the Sun at around §§ carries a mag-
netic field. Satellite data show that the interplanetary magnetic field is complex and dynamic.¶¶,** Near Earth, the strength of
the interplanetary magnetic field varies between 1 and Sometimes, the Sun ejects a large burst of charged particles.
When a large burst arrives at Earth’s magnetic field, it causes a magnetic storm that can block radio communications and
cause widespread power blackouts. The Voyager 1 spacecraft was more than from the Sun when it measured the
strength of the interplanetary magnetic field as ††,‡‡ The solar wind still carries a measurable magnetic field well be-
yond the orbit of Pluto.

* “Geomagnetic Frequently Asked Questions.” United States National Geophysical Data Center, National Oceanic and Atmospheric Administration. http://www.ngdc.noaa.gov/seg/
geomag/faqgeom.shtml As of Sept., 2006.

† Yamazaki, T., and Oda, H., “Orbital Influence on Earth’s Magnetic Field: 100,000-Year Periodicity in Inclination.” Science, Mar. 29, 2002, Vol. 294 pp. 2435–2437.
‡ Solanki, S. K., et al., “11,000 Year Sunspot Number Reconstruction.” IBGP Pages/World Data Center for Paleoclimatology Data Contribution Series #2005-015. 2005.

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate-forcing/solar_variability/solanki2004-ssn.txt As of Sept., 2006.
# Hellemans, A., and Bunch, B., The Timetables of Science. New York: Simon and Schuster, 1988. p. 75.
° Kono, M., “Ships’ Logs and Archeomagnetism.” Science, May 12, 2006, Vol. 312, pp. 865–66.
§ Hermanus Magnetic Observatory, “Detailed History.” http://www.hmo.ac.za/detailed-history.html As of Sept., 2006.
¶ Dunn, J. R., et al., “Paleomagnetic Study of a Reversal of the Earth’s Magnetic Field.” Science, May 21, 1971, Vol. 172, pp. 840–844.
** Merrill, R. T., and McFadden, P. L., “Geomagnetic Polarity Transitions.” Reviews of Geophysics, May 1999, Vol. 37, No. 2, pp. 201–226.
†† Gubbins, D., Jones, A. L., and Finlay, C., “Fall in Earth’s Magnetic Field is Erratic.” Science, May 12, 2006, Vol 312, pp. 900–902.
‡‡ Abbot, C. G., “Sun-Spots and Weather.” Science, Dec. 8, 1933, Vol. 78, pp. 518–519.
## Liang, H.-F., Zhao, H.-J., and Xiang, F.-Y., “Vector Magnetic Field Measurement of NOAA AR 10197.” Chinese Journal of Astronomy and Astrophysics, Aug. 2006, Vol. 6, No. 4, pp. 470–476.
°° Lin, H., and Rimmele, T., “The Granular Magnetic Fields of the Quiet Sun.” The Astrophysical Journal, Mar. 20, 1999, Vol. 514, Pt. 1, pp. 448–455.
§§ Hathaway, D., “The Solar Wind.” Solar Physics, Marshall Space Flight Center, NASA http://solarscience.msfc. nasa.gov/SolarWind.shtml. Jun. 1, 2006, As of Oct., 2006.
¶¶ Smith, E. J., et al., “The Sun and Heliosphere at Solar Maximum.” Science, Nov. 14, 2003, Vol. 302, pp. 1165–1168.
*** Arnold, N., and Lyons, A., “Granta MIST: Meeting Report.” Astronomy and Geophysics, Aug. 2006, Vol. 46, pp. 4.18–4.21.
††† Gurnett, D. A., and Kurth, W. S., “Electron Plasma Oscillations Upstream of the Solar Wind Termination Shock.” Science, Sept. 23, 2005, Vol. 309, pp. 2025–2027.
‡‡‡ Burlaga, L. F., et al., “Crossing the Termination Shock into the Helosheath: Magnetic Fields.” Science, Sept. 23, 2005, Vol. 309, pp. 2027–2029.  
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Sunspots are regions where the magnetic field
strength is very high. They are darker than the
surrounding surface because the temperature in
the sunspot is cooler than the temperature of the
surrounding area. (SOHO/NASA.)

http://www.ngdc.noaa.gov/seg/geomag/faqgeom.shtml
http://www.ngdc.noaa.gov/seg/geomag/faqgeom.shtml
http://www.hmo.ac.za/detailed-history.html
http://solarscience.msfc.nasa.gov/SolarWind.shtml
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Summary

1. The magnetic field describes the condition in space in which moving charges experience
a force perpendicular to their velocity.

2. The magnetic force is part of the electromagnetic interaction, one of the three known fun-
damental interactions in nature.

3. The magnitude and direction of a magnetic field are defined by the formula 
where is the force exerted on a particle with charge moving with velocity 

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Magnetic Force

On a moving charge 26-1

On a current element 26-5

Unit of the magnetic field The SI unit of magnetic fields is the tesla A commonly used unit is the gauss which
is related to the tesla by

26-3

2. Motion of Point Charges A particle of mass and charge moving with speed in a plane perpendicular to a uni-
form magnetic field moves in a circular orbit. The period and frequency of the circular mo-
tion are independent of the radius of the orbit and of the speed of the particle.

Newton’s second law 26-6

Cyclotron period 26-7

Cyclotron frequency 26-8

*Velocity selector A velocity selector consists of crossed electric and magnetic fields so that the electric and
magnetic forces balance for a particle moving with speed 

26-9

*Thomson’s measurement of The deflection of a charged particle in an electric field depends on the speed of the particle and
is proportional to the charge-to-mass ratio of the particle. J. J. Thomson used crossed elec-
tric and magnetic fields to measure the speed of cathode rays and then measured for these
particles by deflecting them in an electric field. He showed that all cathode rays consist of par-
ticles which all have the same charge-to-mass ratio. These particles are now called electrons.

*Mass spectrometer The mass-to-charge ratio of an ion of known speed can be determined by measuring the ra-
dius of the circular path taken by the ion in a known magnetic field.

3. Current Loops

Magnetic dipole moment 26-14

Torque 26-15

Potential energy of a magnetic dipole 26-16

Net force The net force on a current loop in a uniform magnetic field is zero.
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4. The Hall Effect When a conducting strip carrying a current is placed in a magnetic field, the magnetic force
on the charge carriers causes a separation of charge called the Hall effect. This results in a
voltage called the Hall voltage. The sign of the charge carriers can be determined from a
measurement of the sign of the Hall voltage, and the number of carriers per unit volume can
be determined from the magnitude of 

Hall voltage 26-17, 26-20

*Quantum Hall effects Measurements at very low temperatures in very large magnetic fields indicate that the Hall
resistance is quantized and can take on only the values given by

26-21

*Conventional von Klitzing constant 26-23
(definition of ohm)

RK�90 � 25 812.8076 Æ (exact)

n � 1, 2, 3, ÁRH �
VH

I
�
RK

n

RH � VH >I
VH � EHw � vdBw �

ƒI ƒ
nte
B

VH.

VH,

Answers to Practice Problems

26-1

26-2 (a) (b) in the direction

26-3 (a) Note that this potential energy is lower than
the potential energy calculated in the example.
(The potential energy is lowest when and are in the
same direction.) (b)

26-4 4.0 � 10�5 m>s �2.88 J
B
S

M
S

�2.88 J.

�z667 km>s,

�1.3 � 10�12 N jn

Answers to Concept Checks

26-1 A left-hand rule is one way to answer the question. The
definition for the direction of is a convention. If the
definition for the direction of were changed as
described in the question statement, a correct force law
could be written where the symbol
denotes the same operation as the symbol , except the
product denoted by requires using the left-hand rule
instead of the right-hand rule. Alternatively, the force
law could be revised to and then you
could stay with the right-hand rule.

26-2 (b) Negatively charged. The force and the vector
are in opposite directions only if the particle is

negatively charged. This is consistent with the relation
F
S

� qvS � B
S

.

vS � B
S

F
S

F
S
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Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • When the axis of a cathode-ray tube is horizontal in a re-
gion in which there is a magnetic field that is directed vertically up-
ward, the electrons emitted from the cathode follow one of the
dashed paths to the face of the tube in Figure 26-30. The correct
path is (a) 1, (b) 2, (c) 3, (d) 4, (e) 5. SSM

2 •• We define the direction of the electric field to be the same
as the direction of the force on a positive test charge. Why then do
we not define the direction of the magnetic field to be the same as the
direction of the magnetic force on a moving positive test charge?

3 • A flicker bulb is a lightbulb that has a long, thin flexible
filament. It is meant to be plugged into an ac outlet that delivers
current at a frequency of There is a small permanent magnet60 Hz.

TOPIC RELEVANT EQUATIONS AND REMARKS
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at high speed relative to some observer passes by an electron that is
at rest relative to the same observer. Explain why you are sure that
a force must be acting on the electron. In what direction will the
force point at the instant the north pole of the magnet passes di-
rectly underneath the electron? Explain your answer.

B

1

2

3

4
5

F I G U R E  2 6 - 3 0 Problem 1

v

N

e–

S

F I G U R E  2 6 - 3 1 Problem 11

inside the bulb. When the bulb is plugged in the filament oscillates
back and forth. At what frequency does it oscillate? Explain your
answer.

4 • In a cyclotron, the potential difference between the dees
oscillates with a period given by Show that the
expression to the right of the equal sign has units of seconds
if have units of coulombs, teslas, and kilograms,
respectively.

5 • A nucleus has a charge equal to and a mass that
is equal to the mass of seven protons. A nucleus and a proton are
both moving perpendicular to a uniform magnetic field The
magnitude of the momentum of the proton is equal to the magni-
tude of the momentum of the nucleus. The path of the proton has a
radius of curvature equal to and the path of the nucleus has
a radius of curvature equal to The ratio is closest to
(a) (b) (c) (d) (e) (f)

6 • An electron moving in the direction enters a region
that has a uniform magnetic field in the direction. When the
electron enters this region, it will (a) be deflected toward the di-
rection, (b) be deflected toward the direction, (c) be deflected to-
ward the direction, (d) be deflected toward the direction,
(e) continue undeflected in the direction.

7 • In a velocity selector, the speed of the undeflected
charged particle is given by the ratio of the magnitude of the elec-
tric field to the magnitude of the magnetic field. Show that in
fact does have the units of if and are in units of volts per
meter and teslas, respectively.

8 • How are the properties of magnetic field lines similar to
the properties of electric field lines? How are they different?

9 • True or false:
(a) The magnetic moment of a bar magnet points from its north

pole to its south pole.
(b) Inside the material of a bar magnet, the magnetic field due to

the bar magnet points from the magnet’s south pole toward its
north pole.

(c) If a current loop simultaneously has its current doubled and its
area cut in half, then the magnitude of its magnetic moment re-
mains the same.

(d) The maximum torque on a current loop placed in a magnetic
field occurs when the plane of the loop is perpendicular to the
direction of the magnetic field.

10 •• Show that the von Klitzing constant, gives the SI
unit for resistance (the ohm) if and e are in units of joule-seconds
and coulombs, respectively.

11 ••• The theory of relativity states that no law of physics can
be described using the absolute velocity of an object, which is in fact
impossible to define due to a lack of an absolute reference frame.
Instead, the behavior of interacting objects can only be described by
the relative velocities between the objects. New physical insights re-
sult from this idea. For example, in Figure 26-31 a magnet moving

h
h>e2,

SSM

BEm>s E>B
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7LiRp

B
S

.

7Li
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T � 2pm>(qB).

SSM

ESTIMATION AND 
APPROXIMATION

12 • Estimate the maximum magnetic force per meter that
Earth’s magnetic field could exert on a current-carrying wire in a
20-A circuit in your house.

13 •• CONTEXT-RICH Your friend wants to be a magician and
intends to use Earth’s magnetic field to suspend a current-carrying
wire above the stage. He asks you to estimate the minimum current
needed to suspend the wire just above Earth’s surface at the equa-
tor (where Earth’s magnetic field is horizontal). Assume the wire
has a linear mass density of Would you advise him to pro-
ceed with his plans for this act?

THE FORCE EXERTED BY
A MAGNETIC FIELD

14 • Find the magnetic force on a proton moving in the di-
rection at a speed of in a uniform magnetic field of

in the direction.

15 • A point particle has a charge equal to and a ve-
locity equal to Find the force on the charge if the
magnetic field is (a) (b) (c) and
(d)

16 • A uniform magnetic field equal to is in the di-
rection. Find the force exerted by the field on a proton if the velocity
of the proton is (a) (b) (c) and
(d)

17 • A straight wire segment that is long makes an
angle of with a uniform 0.37- magnetic field. Find the magni-
tude of the force on the wire if the wire has a current of 

18 • A straight segment of a current-carrying wire has a cur-
rent element where and 
The segment is in a region with a uniform magnetic field given by

Find the force on the segment of wire.

19 • What is the force on an electron that has a velocity equal
to when it is in a region with a
magnetic field given by 0.80 T in � 0.60 T jn � 0.40 T kn?

2.0 � 106 m>s in � 3.0 � 106 m>s jn

1.3 T in.

L
S

� 3.0 cm in � 4.0 cm jn.I � 2.7 AIL
S

,

2.6 A.
T30°

2.0 m

4.0 km>s in � 3.0 km>s jn.
6.8 km>s kn,3.7 km>s jn,2.7 km>s in,

�z1.48 T kn

0.75 T in � 0.75 T kn.
0.65 T in,0.75 T in � 0.75 T jn,0.38 T jn,

2.75 � 103 m>s in.
�3.64 nC

�z1.75 T
0.446 Mm>s �x

10 g>m.
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20 •• The section of wire shown in Figure 26-32 carries a
current equal to from to The segment is in a region that
has a magnetic field whose value is Find the total force
on the wire and show that the total force is the same as if the wire
were in the form of a straight wire directly from to and carrying
the same current.

ba

1.2 T kn.
b.a1.8 A

25 •• A current-carrying wire is bent into a closed semicircular
loop of radius that lies in the plane (Figure 26-34). The wire is
in a uniform magnetic field that is in the direction, as shown.
Verify that the force acting on the loop is zero. SSM

�z
xyR

21 •• A straight, stiff, horizontal 25-cm-long wire that has a
mass equal to is connected to a source of emf by light, flexible
leads. A magnetic field of is horizontal and perpendicular to
the wire. Find the current necessary to “float” the wire, that is,
when the wire is released from rest it remains at rest.

22 •• ENGINEERING APPLICATION In your physics laboratory
class, you have constructed a simple gaussmeter for measuring the
horizontal component of magnetic fields. The setup consists of a
stiff 50-cm wire that hangs vertically from a conducting pivot so
that its free end makes contact with a pool of mercury in a dish
below (Figure 26-33). The mercury provides an electrical contact
without constraining the movement of the wire. The wire has a
mass of and conducts a current downward. (a) What is the
equilibrium angular displacement of the wire from vertical if the
horizontal component of the magnetic field is and the cur-
rent is (b) What is the sensitivity of this gaussmeter? That is,
what is the ratio of the output to the input (in radians per tesla)?

0.20 A?
0.040 T

5.0 g

1.33 T
50 g

I

θ
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3.00 cm
4.00 cm
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23 •• A 10-cm-long straight wire is parallel with the axis
and carries a current of in the direction. The force on
this wire due to the presence of a magnetic field is

If this wire is rotated so that it is parallel
with the axis with the current in the direction, the force on
the wire becomes Determine the magnetic
field

24 •• A 10-cm-long straight wire is parallel with the axis
and carries a current of in the direction. The force on this
wire due to a uniform magnetic field is 
If this wire is rotated so that it is parallel with the axis with the
current in the direction, the force on the wire becomes

Find B
S

.0.20 kn N.
�x

x
�0.20 N in � 0.20 N jn.B

S
�z4.0 A

z

SSMB
S

.
�3.0 N jn � 2.0 N kn.

�yy
3.0 N jn � 2.0 N kn.

B
S

�x2.0 A
x

26 ••• A wire bent in some arbitrary shape carries a current 
The wire is in a region with a uniform magnetic field Show that
the total force on the part of the wire from some arbitrary point on
the wire (designated as to some other arbitrary point on the wire
(designated as is where is the vector from point

to point In other words, show that the force on an arbitrary sec-
tion of the bent wire is the same as the force on a straight section
wire carrying the same current and connecting the two endpoints
of the arbitrary section.

MOTION OF A POINT CHARGE IN
A MAGNETIC FIELD

27 • A proton moves in a 65-cm-radius circular orbit that is
perpendicular to a uniform magnetic field of magnitude 
(a) What is the orbital period for the motion? (b) What is the
speed of the proton? (c) What is the kinetic energy of the proton?

28 • A electron (an electron that has a kinetic en-
ergy equal to moves in a circular orbit that is perpen-
dicular to a magnetic field of (a) Find the radius of the
orbit. (b) Find the frequency and period of the orbital motion.

29 •• A proton, deuteron, and an alpha particle in a region
with a uniform magnetic field each follow circular paths that have
the same radius. The deuteron has a charge that is equal to the
charge a proton has, and an alpha particle has a charge that is equal
to twice the charge a proton has. Assume that 
Compare (a) their speeds, (b) their kinetic energies, and (c) the mag-
nitudes of their angular momenta about the centers of the orbits.

30 •• A particle has a charge a mass a linear momentum
of magnitude and a kinetic energy The particle moves in a cir-
cular orbit of radius perpendicular to a uniform magnetic field 
Show that (a) and (b)

31 •• A beam of particles with velocity enters a region that
has a uniform magnetic field in the direction. Show that when
the component of the displacement of one of the particles is

where is the angle between and the velocity
of the particle is in the same direction as it was when the particle
entered the field.

32 •• A proton that has a speed equal to enters
a region with a uniform magnetic field that has a magnitude of

and points into the page, as shown in Figure 26-35. The pro-
ton enters the region at an angle Find the exit angle and
the distance d.
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33 •• Suppose that in Figure 26-35, the magnetic field has a
magnitude of the distance is and is Find the
speed at which a particle enters the region and the exit angle 
if the particle is (a) a proton and (b) a deuteron. Assume that

34 •• The galactic magnetic field in some region of interstellar
space has a magnitude of A particle of interstellar
dust has a mass of and a total charge of How
many years does it take for the particle to complete a revolution of
the circular orbit caused by its interaction with the magnetic field?

APPLICATIONS OF THE
MAGNETIC FORCE ACTING ON
CHARGED PARTICLES

35 • A velocity selector has a magnetic field that has a
magnitude equal to and is perpendicular to an electric
field that has a magnitude equal to (a) What must
the speed of a particle be for that particle to pass through the ve-
locity selector undeflected? What kinetic energy must (b) pro-
tons and (c) electrons have in order to pass through the velocity
selector undeflected?

36 •• A beam of protons is moving in the direction with
a speed of through a region in which the electric field
is perpendicular to the magnetic field. The beam is not deflected
in this region. (a) If the magnetic field has a magnitude of 
and points in the direction, find the magnitude and direction
of the electric field. (b) Would electrons that have the same ve-
locity as the protons be deflected by these fields? If so, in what
direction would they be deflected? If not, why not?

37 •• The plates of a Thomson apparatus are long
and are separated by The end of the plates is from
the tube screen. The kinetic energy of the electrons is If a
potential difference of is applied across the deflection plates,
by how much will the point where the beam of electrons strikes the
screen be displaced?

38 •• Chlorine has two stable isotopes, and Chlorine
gas which consists of singly ionized ions is to be separated into its
isotopic components using a mass spectrometer. The magnetic field
strength in the spectrometer is What is the minimum value of
the potential difference through which these ions must be acceler-
ated so that the separation between them, after they complete their
semicircular path, is 

39 •• In a mass spectrometer, a singly ionized ion has
a mass equal to and is accelerated through a 
2.50-kV potential difference. It then enters a region where it is de-
flected by a magnetic field of (a) Find the radius of curvature
of the ion’s orbit. (b) What is the difference in the orbital radii of the

and ions? Assume that their mass ratio is SSM26:24.24Mg26Mg

557 G.

3.983 � 10�26 kg
24Mg

1.4 cm?

1.2 T.

37Cl.35Cl

25.0 V
2.80 keV.
30.0 cm1.20 cm.
6.00 cmq>m

�y
0.85 T

12.4 km>s �x

SSM

0.46 MV>m.
0.28 T

0.300 nC.10.0 mg
1.00 � 10�9 T.

SSMmd � 2mp .
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24°.u40 cm,d60 mT,

d
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Problems 32 and 33

40 •• A beam of singly ionized and ions passes
through a velocity selector and enters a region of uniform mag-
netic field with a velocity that is perpendicular to the direction
of the field. If the diameter of the orbit of the ions is 
what is the diameter of the orbit for ions? Assume their mass
ratio is 

41 •• Using Example 26-6, determine the time required for a
ion and a ion to complete the semicircular path.

42 •• Before entering a mass spectrometer, ions pass through a
velocity selector consisting of parallel plates that are separated by

and have a potential difference of The magnetic field
strength is in the region between the plates. The magnetic
field strength in the mass spectrometer is Find (a) the speed
of the ions entering the mass spectrometer and (b) the difference in
the diameters of the orbits of singly ionized and The mass
of a ion is 

43 •• A cyclotron for accelerating protons has a magnetic
field strength of and a radius of (a) What is the cy-
clotron’s frequency? (b) Find the kinetic energy of the protons
when they emerge. (c) How will your answers change if
deuterons are used instead of protons?

44 •• A certain cyclotron that has a magnetic field whose
magnitude is is designed to accelerate protons to a kinetic
energy of (a) What is the cyclotron frequency for this
cyclotron? (b) What must the minimum radius of the magnet be
to achieve this energy? (c) If the alternating potential difference
applied to the dees has a maximum value of how many
revolutions must the protons make before emerging with kinetic
energies of 

45 •• Show that for a given cyclotron the cyclotron frequency for
accelerating deuterons is the same as the frequency for accelerating
alpha particles and is half the frequency for accelerating protons in
the same magnetic field. The deuteron has a charge that is equal to the
charge a proton has, and an alpha particle has a charge that is equal
to twice the charge a proton has. Assume that 

46 ••• Show that the radius of the orbit of a charged particle in
a cyclotron is proportional to the square root of the number of or-
bits completed.

TORQUES ON CURRENT LOOPS,
MAGNETS, AND MAGNETIC
MOMENTS

47 • A small circular coil consisting of 20 turns of wire lies in
a region with a uniform magnetic field whose magnitude is 
The arrangement is such that the normal to the plane of the coil
makes an angle of with the direction of the magnetic field. The
radius of the coil is and the wire carries a current of 
(a) What is the magnitude of the magnetic moment of the coil?
(b) What is the magnitude of the torque exerted on the coil?

48 • What is the maximum torque on a 400-turn circular
coil of radius that carries a current of and is in a
region with a uniform magnetic field of 

49 • A current-carrying wire is in the shape of a square of
edge length The square lies in the plane. The wire car-
ries a current of What is the magnitude of the torque on the
wire if it is in a region with a uniform magnetic field of magnitude

that points in the (a) direction and (b) direction? SSM�x�z0.30 T

2.5 A.
z � 06.0 cm.

0.25 T?
1.6 mA0.75 cm

SSM

3.0 A.4.0 cm,
60°
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235U.238U
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0.42 T
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60Ni58Ni
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7Li
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59 ••• A uniform noncon-
ducting thin rod of mass and
length has a uniform charge per
unit length and rotates with an-
gular speed about an axis
through one end and perpendicu-
lar to the rod. (a) Consider a small
segment of the rod of length 
and charge at a distance

from the pivot (Figure 26-39).
Show that the average current
created by this moving segment is

and show that the mag-
netic moment of this segment is

(b) Use this to show that
the magnitude of the magnetic moment of the rod is (c) Show
that the magnetic moment and angular momentum are related
by where is the total charge on the rod.

60 ••• A nonuniform, nonconducting thin disk of mass ra-
dius and total charge has a charge per unit area that varies
as and a mass per unit area that is given by The
disk rotates with angular speed about its central axis. (a) Show
that the magnetic moment of the disk has a magnitude 
which can be alternatively rewritten as (b) Show that the
magnetic moment and angular momentum are related by

61 ••• A spherical shell of radius carries a constant surface
charge density The shell rotates about its diameter with angular
speed Find the magnitude of the magnetic moment of the rotat-
ing spherical shell.

62 ••• A uniform, solid, uniformly charged sphere of radius 
has a volume charge density The sphere rotates about an axis
through its center with angular speed Find the magnitude of the
magnetic moment of the rotating sphere.
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50 • A current-carrying wire is in the shape of an equilateral tri-
angle of edge length The triangle lies in the plane. The
wire carries a current of What is the magnitude of the torque
on the wire if it is in a region with a uniform magnetic field of mag-
nitude that points in the (a) direction and (b) direction?
51 •• A rigid wire is in the shape of a square of edge length 
The square has mass and the wire carries current The square lies
on a flat horizontal surface in a region where there is a magnetic
field of magnitude that is parallel to two edges of the square. What
is the minimum value of so that one edge of the square will lift off
the surface?
52 •• A rectangular current-carrying 50-turn coil, as shown in
Figure 26-36, is pivoted about the axis. (a) If the wires in the 
plane make an angle with the axis, what angle does the
magnetic moment of the coil make with the unit vector (b) Write
an expression for in terms of the unit vectors and where is a
unit vector in the direction of the magnetic moment. (c) What is the
magnetic moment of the coil? (d) Find the torque on the coil when
there is a uniform magnetic field in the region occupied
by the coil. (e) Find the potential energy of the coil in this field.
(The potential energy is zero when u � 0.)

B
S
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Problem 59

53 •• For the coil in Problem 52 the magnetic field is now
Find the torque exerted on the coil when is equal to

(a) (b) (c) and (d)
54 •• A small bar magnet has a length equal to and its
magnetic moment is aligned with a uniform magnetic field of mag-
nitude The bar magnet is then rotated through an angle of

about an axis perpendicular to its length. The observed torque on
the bar magnet has a magnitude of (a) Find the magnetic
moment of the magnet. (b) Find the potential energy of the magnet.
55 •• A wire loop consists of two semicircles connected by
straight segments (Figure 26-37). The inner and outer radii are

and respectively. A current of is in this wire
and the current in the outer semicircle is in the clockwise direction.
What is the magnetic moment of this current loop?

1.5 A0.50 m,0.30 m

0.10 N # m.
60°

0.040 T.

6.8 cm
SSM(in � jn)>22.�jn,jn,in,

nnB
S

� 2.0 T jn.

57 •• A particle that has a charge and a mass moves with
angular velocity in a circular path of radius (a) Show that the
average current created by this moving particle is and
that the magnetic moment of its orbit has a magnitude of 
(b) Show that the angular momentum of this particle has the
magnitude of and that the magnetic moment and angular
momentum vectors are related by where is the
angular momentum about the center of the circle.

58 ••• A uniformly charged nonconducting cylindrical shell
(Figure 26-38) has length inner and outer radii and 
respectively, a charge density and an angular velocity about
its axis. Derive an expression for the magnetic moment of the
cylinder.
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Problems 52 and 53
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I = 1.5 A

0.30 m

0.50 mF I G U R E  2 6 - 3 7

Problem 55

56 •• A wire of length is wound into a circular coil that has
turns. Show that when the wire carries a current the magnetic

moment of the coil has a magnitude given by IL2>(4pN).
I,N

L



Problems | 915

63 ••• A uniform, thin, uniformly charged disk of mass radius
and uniform surface charge density rotates with angular speed
about an axis through its center and perpendicular to the disk

(Figure 26-40). The disk is in a region with a uniform magnetic
field that makes an angle with the rotation axis. Calculate (a) the
magnitude of the torque exerted on the disk by the magnetic field
and (b) the precession frequency of the disk in the magnetic field.

uB
S

v

sR,
m, 68 •• The Hall coefficient is a property of conducting mate-

rial (just as resistivity is). It is defined as where is
the component of the current density in the material, is the 
component of the magnetic field, and is the component of the
resulting Hall electric field. Show that the Hall coefficient is equal
to where is the charge of the charge carriers (-e if they are
electrons). (The Hall coefficients of monovalent metals, such as cop-
per, silver, and sodium, are therefore negative.)

69 •• Aluminum has a density of and a molar
mass of The Hall coefficient of aluminum is

(See Problem 68 for the definition of 
What is the number of conduction electrons per aluminum atom?

GENERAL PROBLEMS

70 • A long wire parallel to the axis carries a current of
in the direction. The wire occupies a region that has a

uniform magnetic field Find the magnetic force per
unit length on the wire.

71 • An alpha particle travels in a circular path
of radius in a region with a magnetic field whose magnitude
is Find (a) the period, (b) the speed, and (c) the kinetic energy
(in electron volts) of the alpha particle. (The mass of an alpha parti-
cle is 

72 •• The pole strength of a bar magnet is defined by
where is the magnetic moment of the magnet and 

is the position of the north-pole end of the magnet relative to the
south-pole end. Show that the torque exerted on a bar magnet
in a uniform magnetic field is the same as if a force is ex-
erted on the north pole of the magnet and a force is exerted
on the south pole.

73 •• A particle of mass and charge enters a region where
there is a uniform magnetic field parallel with the axis. The ini-
tial velocity of the particle is so the particle moves
in a helix. (a) Show that the radius of the helix is 
(b) Show that the particle takes a time to complete
each turn of the helix. (c) What is the component of the displace-
ment of the particle during the time given in Part (b)?

74 •• A metal cross-
bar of mass rides on a
parallel pair of long hori-
zontal conducting rails
separated by a distance 
and connected to a device
that supplies constant
current to the circuit, as
shown in Figure 26-42.
The circuit is in a region
with a uniform magnetic
field whose direction is
vertically downward.
There is no friction and
the bar starts from rest at (a) In which direction will the bar
start to move? (b) Show that at time the bar has a speed of

75 •• Assume that the rails Problem 74 are frictionless but
tilted upward so that they make an angle with the horizontal, and
with the current source attached to the low end of the rails. The
magnetic field is still directed vertically downward. (a) What mini-
mum value of is needed to keep the bar from sliding down the
rails? (b) What is the acceleration of the bar if is twice the value
found in Part (a)? SSM
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THE HALL EFFECT

64 • A metal strip that is wide and thick car-
ries a current of in a region with a uniform magnetic field of

as shown in Figure 26-41. The Hall voltage is measured to be
(a) Calculate the drift speed of the free electrons in the

strip. (b) Find the number density of the free electrons in the strip.
(c) Is point or point at the higher potential? Explain your answer.ba

4.27 mV.
2.00 T,

20.0 A
0.100 cm2.00 cm

65 •• The number density of free electrons in copper is
electrons per cubic centimeter. If the metal strip in

Figure 26-41 is copper and the current is find (a) the drift
speed and (b) the potential difference Assume that the
magnetic field strength is 

66 •• ENGINEERING APPLICATION A copper strip has 
free electrons per cubic centimeter, is wide, is 
thick, and is used to measure the magnitudes of unknown magnetic
fields that are perpendicular to it. Find the magnitude when the
current is and the Hall voltage is (a) (b) and
(c)

67 •• BIOLOGICAL APPLICATION Because blood contains ions,
moving blood in the presence of a magnetic field develops a Hall
voltage across the diameter of an artery. A large artery that has a di-
ameter of can have blood flowing through it with a maxi-
mum speed of If a section of the artery is in a magnetic
field of what is the maximum potential difference across the
diameter of the artery?

0.20 T,
0.60 m>s.

0.85 cm

8.00 mV.
5.25 mV,2.00 mV,20.0 A
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Problems 74 and 75
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76 •• A long, narrow bar magnet that has magnetic moment 
parallel to its long axis is suspended at its center as a frictionless
compass needle. When placed in region with a horizontal magnetic
field the needle lines up with the field. If it is displaced by a
small angle show that the needle will oscillate about its equilib-

rium position with frequency where is the moment

of inertia of the needle about the point of suspension.

77 •• A straight 20-m-long conducting wire is parallel to the 
axis and is moving in the direction with a speed of in a
region that has a magnetic field given by (a) A magnetic force
acting on the conduction electrons leaves one end negatively charged
due to an electron surplus and the other end positively charged due
to an electron deficit. This charge separation process continues until
the electric field due to the accumulated positive and negative charges
exerts forces on the remaining conduction electrons that exactly bal-
ance the magnetic forces acting on them. Find the magnitude and di-
rection of this electric field in the steady-state situation. (b) Which end
of the wire is positively charged and which end is negatively charged?
(c) Suppose the moving wire is long. What is the potential dif-
ference between its two ends due to this electric field?

78 ••• A circular loop of wire that has a mass and a constant
current is in a region with a uniform magnetic field. It is initially
in equilibrium and its magnetic moment is aligned with the mag-
netic field. The loop is given a small angular displacement about an
axis through its center and perpendicular to the magnetic field and
then released. What is the period of the subsequent motion?
(Assume that the only torque exerted on the loop is due to the mag-
netic field and that there are no other forces acting on the loop.)
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79 ••• A small bar magnet has a magnetic moment that
makes an angle with the axis. The magnet is in a region that
has a nonuniform magnetic field given by 
Using and show that
there is a net magnetic force on the magnet that is given by

80 •• A proton, a deuteron, and an alpha particle all have the
same kinetic energy. They are moving in a region with a uniform
magnetic field that is perpendicular to each of their velocities.
Let and be the radii of their circular orbits, respec-
tively. The deuteron has a charge that is equal to the charge a proton
has, and an alpha particle has a charge that is equal to twice the
charge a proton has. Find the ratios and Assume that

81 ••• ENGINEERING APPLICATION, CONTEXT-RICH Your foren-
sic chemistry group, working closely with local law enforcement
agencies, has acquired a mass spectrometer similar to that dis-
cussed in the text. It employs a uniform magnetic field that has a
magnitude of To calibrate the mass spectrometer, you decide
to measure the masses of various carbon isotopes by measuring the
position of impact of the various singly ionized carbon ions that
have entered the spectrometer with a kinetic energy of 
A wire chamber with position sensitivity of is part of the
apparatus. What will be the limit on its mass resolution (in kg) for
ions in this mass range, that is, those whose mass is on the order of
that of a carbon atom?
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Sources of the
Magnetic Field

27-1 The Magnetic Field of Moving Point Charges

27-2 The Magnetic Field of Currents: The Biot–Savart Law

27-3 Gauss’s Law for Magnetism

27-4 Ampère’s Law

27-5 Magnetism in Matter

A
s we discussed in Chapter 26, an awareness of the power of permanent
magnets has been around since the year 1000. However, the study of
magnets as they relate to electricity did not occur until 1819 when a Danish
physicist, Hans Christian Oersted, discovered that a compass needle is
deflected by an electric current. Just a month after Oersted’s discovery, 
Jean-Baptiste Biot and Félix Savart announced the results of their

measurements of the torque on a magnet near a long, current-carrying wire and
they analyzed these results in terms of the magnetic field produced by each
element of the current. André-Marie Ampère did additional experiments and
showed that current elements also experience a force in the presence of a magnetic
field and that two current elements exert forces on each other.

In this chapter, we begin by considering the magnetic field produced by a
single moving charge and by the moving charges in a current element. We
then calculate the magnetic fields produced by some common current con-
figurations, such as a straight-wire segment; a long, straight wire; a current
loop; and a solenoid. Next we discuss Ampère’s law. Finally, we consider the
magnetic properties of matter.

27

Do you know how to calculate 

the magnitude of the magnetic 

field of a current-carrying coil? 

(See Example 27-2.)

?
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THESE COILS AT THE KETTERING
MAGNETICS LABORATORY AT OAKLAND
UNIVERSITY ARE CALLED HELMHOLTZ
COILS. THEY ARE USED TO CANCEL
EARTH’S MAGNETIC FIELD AND TO
PROVIDE A UNIFORM MAGNETIC FIELD
IN A SMALL REGION OF SPACE FOR
STUDYING THE MAGNETIC PROPERTIES
OF MATTER. (Bob Williamson, Oakland
University, Rochester, Michigan.)
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F I G U R E  2 7 - 1 A positive point charge 
moving with velocity produces a
magnetic field at a field point 
The magnetic field at is in the direction of

where is the velocity of the point
charge and is the unit vector pointing from
the charge to the field point. The field varies
inversely as the square of the distance from
the charge to the field point and is
proportional to the sine of the angle between 
and (The blue at the field point indicates
that the direction of the field is into the page.)
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* This expression is used only for speeds much much less than the speed of light.
† Some care must be taken not to confuse the constant with the magnitude of the magnetic moment vector MS .m0

27-1 THE MAGNETIC FIELD OF 
MOVING POINT CHARGES

When a point charge moves with velocity the moving point charge produces a
magnetic field in space, given by*

27-1

MAGNETIC FIELD OF A MOVING POINT CHARGE

where is a unit vector (see Figure 27-1) that points to the field point from the
charge moving with velocity and is a constant of proportionality called
the magnetic constant (permeability of free space),† which, by definition, has the
exact value

27-2

The units of are such that is in teslas when is in coulombs, is in meters
per second, and is in meters. The unit comes from the fact that 

The constant is arbitrarily included in Equation 27-1 so that
the factor does not appear in Ampère’s law (Equation 27-16), which we will
study in Section 27-4.
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CHECK It is also possible to obtain without finding an explicit expression for the unit vec-
tor From Figure 27-2 we note that is in the direction. In addition, the magnitude
of is where Combining these results, we have

in agreement with our result in line 1 of step 3.

PRACTICE PROBLEM 27-1 At the same instant, find the magnetic field on the axis both
at and at y � 6.0 m.y � 3.0 m

y

vS � rn � v sinu(�kn) � �v(0.60)kn,
(5.0 m) � 0.60.sinu � (3.0 m)>v sinu,vS � rn

�zvS � rnrn.
B
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Example 27-1 Magnetic Field of a Moving Point Charge

A point particle that has charge is moving with velocity along the
line in the plane. Find the magnetic field at the origin produced by this
charge when the charge is at the point as shown in Figure 27-2.

PICTURE The magnetic field associated with a moving charged particle is given by
Equation 27-1.

SOLVE

x � �4.0 m, y � 3.0 m,
z � 0y � 3.0 m

vS � 3.0 m>s inq � 4.5 mC

1. The magnetic field is given by
Equation 27-1:

where vS � vinB
S

�
m0

4p

qvS � rn

r2

2. Find and from Figure 27-2 and
write in terms of and jn:inrn

rrn

rn �
rS

r
�

4.0 m in � 3.0 m jn

5.0 m
� 0.80 in � 0.60 jn

r � 34.02 � 3.02 m � 5.0 m

rS � 4.0 m in � 3.0 m jn

3. Substitute the above results in
Equation 27-1:

�3.2 � 10�14 T kn�

� �(10�7 T # m>A)
(4.5 � 10�6 C)(0.60)(3.0 m>s)

(5.0 m)2 kn

B
S

�
m0

4p

qvS � rn

r2
�
m0

4p

q(vin) � (0.80in � 0.60jn)

r2
�
m0

4p

q(�0.60vkn)

r2

θ
q

x, m

z

y, m

–4 –2

4

2

v

r

v
^

= 3 × 103 m/s i
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27-2 THE MAGNETIC FIELD OF CURRENTS:
THE BIOT–SAVART LAW

In the previous chapter, we extended our discussion of forces on point charges to forces
on current elements by substituting with the current element We do the same
for the magnetic field produced by a current element. The magnetic field produced
by a current element is given by Equation 27-1, where is replaced by 

27-3

BIOT–SAVART LAW

Equation 27-3, known as the Biot–Savart law, was also deduced by Ampère. The
Biot–Savart law and Equation 27-1 are analogous to Coulomb’s law for the electric
field of a point charge. The source of the magnetic field is a moving charge or a
current element just as the charge is the source of the electrostatic field.
The magnetic field decreases with the square of the distance from the moving charge
or current element, just as the electric field decreases with the square of the distance
from a point charge. However, the directional aspects of the electric and magnetic
fields are quite different. Whereas the electric field points in the radial direction 
from the point charge to the field point (for a positive charge), the magnetic field is
perpendicular to both and in the case of a point charge, or and in the case
of a current element. At a point along the line of a current element, such as point 
in Figure 27-3, the magnetic field due to that current element is zero. (Equation 27-3
gives if and are either parallel or antiparallel.)

The magnetic field due to the total current in a circuit can be calculated by using
the Biot–Savart law to find the field due to each current element, and then sum-
ming (integrating) over all the current elements in the circuit. This calculation is
challenging for all but the simplest circuit geometries.

DUE TO A CURRENT LOOP

Figure 27-4 shows a current element of a current loop of radius and the unit vec-
tor that is directed from the element to the center of the loop. The magnetic field at the
center of the loop due to this element is directed along the axis of the loop, and its mag-
nitude, obtained by taking the magnitude of both sides of Equation 27-3, is given by

27-4

where is the angle between and which is for each current element, so
The resultant magnetic field due to all the current elements in the loop

is found by integrating Equation 27-4 over all the current elements in the loop.
sin u � 1.

90°rn,d�
S

u

dB �
m0

4p
I d� sinu
R2

rn
RI d�

S

B
S

rnd�
S

dB
S

� 0

P2

d�
S

rnvS,rn

rn

qI d�
S

,
qvS

dB
S

�
m0

4p
I d�

S
� rn
r2

I d�
S

:qvSI d�
S

dB
S

I d�
S

.qvS

θ
r

dB

I d�

P2

P1

F I G U R E  2 7 - 3 The current element 
produces a magnetic field at point that
is in the direction of and thus
perpendicular to both and The current
element produces no magnetic field at
point which is along the line of d�

S
.P2 ,

rn.d�
S

I d�
S

� rn,
P1dB

S
I d�

S

(a) (b)
Oersted’s experiment. (a) When no current
exists in the wire, the compass needle points
north. (b) When the wire carries a current, the
compass needle is deflected in the direction of
the resultant magnetic field. The current in
the wire is directed upward, from left to right.
The insulation has been stripped from the wire
to improve the contrast of the photograph.
(© 1990 Richard Menga/Fundamental Photographs.)

^r

y

z

x

R dB

I d�

F I G U R E  2 7 - 4 Current element for
calculating the magnetic field at the center of
a circular current loop. Each element
produces a magnetic field that is directed
along the axis of the loop.



y

R

r

dBy

dBz

dB

z

x

P

θ

θ

r

I d�

^

F I G U R E  2 7 - 5 Geometry for calculating
the magnetic field at a point on the axis of a
circular current loop.
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Because and are the same for all elements, we obtain

The integral of around the complete loop gives the total length the cir-
cumference of the loop. The magnetic field due to the entire loop is thus

27-5

AT THE CENTER OF A CURRENT LOOPB

B �
m0

4p
I
R2 2pR �

m0I

2R

2pR,d�

B �
m0

4p
I
R2 C d�

RI

PRACTICE PROBLEM 27-2

Find the current in a circular loop of radius that will produce a magnetic field of
at the center of the loop.0.20 mT

8.0 cm

Figure 27-5 shows the geometry for calculating the magnetic field at a point
on the axis of a circular current loop a distance from the circular loop’s center.
We first consider the current element at the top of the loop. Here, as everywhere on
the loop, is tangent to the loop and perpendicular to the vector from the cur-
rent element to the field point The magnetic field due to this element is in
the direction shown in the figure, perpendicular to and also perpendicular to

The magnitude of is

where we have used the facts that and that and are perpendicu-
lar, so 

When we sum around all the current elements in the loop, the components of
perpendicular to the axis of the loop, such as in Figure 27-5, sum to zero,

which leave only the components that are parallel to the axis. We thus compute
only the component of the field. From Figure 27-5, we have

To find the field due to the entire loop of current, we integrate around the loop:

Because neither nor varies as we sum over the elements in the loop, we can re-
move those quantities from the integral. Then,

The integral of around the loop gives Thus,

27-6

ON THE AXIS OF A CURRENT LOOPB

Bz �
m0

4p
IR

(z2 � R2)3>2 2pR �
m0

4p
2pR2I

(z2 � R2)3>2
2pR.d�

Bz �
m0

4p
IR

(z2 � R2)3>2 C d�

Rz

Bz � C dBz � C
m0

4p
IR

(z2 � R2)3>2 d�

dBz

dBz � dB sinu � a m0

4p
I d�

(z2 � R2)
b a R

3z2 � R2
b �

m0

4p
IR d�

(z2 � R2)3>2
z

dBz

dBydB
S

ƒd�
S

� rn ƒ � d�.
rnd�

S
r2 � z2 � R2

ƒdB
S

ƒ �
m0

4p

I ƒd�n � rn ƒ
r2

�
m0

4p
I d�

(z2 � R2)

dB
S

I d�
S

.
rn
dB

S
P.

rSI d�
S

z
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At great distances from the loop, is much greater than so 
Then,

or

27-7

MAGNETIC-DIPOLE FIELD ON THE AXIS OF THE DIPOLE

where is the magnitude of the magnetic moment of the loop. Note the
similarity of this expression and the electric field on the axis of an electric dipole
whose electric dipole moment has magnitude (Equation 21-10):

Although it has not been demonstrated, our result that a current loop produces
a magnetic dipole field far away holds in general for any point whether it is on the
axis of the loop or off of the axis of the loop. Thus, a current loop behaves as a mag-
netic dipole because it experiences a torque when placed in an external
magnetic field (as was shown in Chapter 26) and it also produces a magnetic di-
pole field at field points far from the current loop. Figure 27-6 shows the magnetic
field lines for a current loop.

M
S

� B
S

Ez �
1

4pP0

2p

ƒz ƒ 3

p

m � IpR2

Bz �
m0

4p
2m

ƒz ƒ 3

Bz �
m0

4p
2IpR2

ƒz ƒ 3

(z2)3>2 � ƒz ƒ 3.
(z2 � R2)3>2 �R,ƒz ƒ

B

(b)

(a)

Example 27-2 Find on Axis of Coil

A circular coil has a radius equal to has 12 turns, lies in the plane, and is cen-
tered at the origin. It carries a current of and the magnetic moment of the coil is in
the direction. Using Equation 27-6, find the magnetic field on the axis at (a)
(b) and (c) (d) Using Equation 27-7, find the magnetic field on the 
axis at z � 3.00 m.

zz � 3.00 m.z � 15.0 cm,
z � 0,z�z

4.00 A,
z � 05.00 cm,

B
S

F I G U R E  2 7 - 6 (a) The magnetic field
lines of a circular current loop. (b) The
magnetic field lines of a circular current
loop indicated by iron filings. (© 1990
Richard Menga/Fundamental Photographs.)

PRACTICE PROBLEM 27-3

Show that Equation 27-6 reduces to (Equation 27-5) at the center of the loop.Bz � 1
2m0I>R
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(c) Use Equation 27-6 again:

2.79 � 10�9 T�

� (10�7 T # m>A)
2p (0.0500 m)2(12)(4.00 A)C(3.00 m)2 � (0.0500 m)2 D 3>2

Bz �
m0

4p
2pR2NI

(z2 � R2)3>2

(d) 1. Because is much greater than the radius
we can use Equation 27-7 for the magnetic

field far from the loop:
R � 0.0500 m,

3.00 m Bz �
m0

4p
2m

ƒz ƒ 3

2. The magnitude of the magnetic moment of the loop is N>A: � 0.377 A # m2m � NIpR2 � (12)(4.00 A)p (0.0500 m)2

3. Substitute and into the
expression for in step 1:Bz

z � 3.00 mm � 0.377 A # m2

2.79 � 10�9 T�

Bz �
m0

4p
2m

ƒz ƒ 3
� (10�7 T # m>A)

2(0.377 A # m2)
(3.00 m)3

CHECK In Part (d) so we were able to use an approximation that is valid for 
The result differs from the exact value, calculated in Part (c), by less than one part in 279.

zW R.z � 60R,

Example 27-3 Calculating the Amount of Mobile Charge

In the coil described in Example 27-2, the current is Assuming the drift speed is
find the number of coulombs of mobile charge (free electrons) in the wire.

(The drift speed for a wire carrying a current of was found to be in
Example 25-1.)

PICTURE The amount of moving charge in the wire is the product of the rate at which
charge enters one end of the wire and the time it takes the charge to travel the length of the
wire. The rate at which charge enters one end of the wire is the current and the time for
the charge to travel the length of the wire is where is the drift speed.

SOLVE

vdL>vd ,L
I,

Q

3.5 � 10�5 m>s1 A
1.40 � 10�4 m>s,

4.00 A.

1. The amount of moving charge is the product of the current and
the time for a charge carrier to travel the length of the wire:

Q � I ¢t

2. The drift speed is the length of the wire divided by the time: vd �
L
¢t

(b) on the axis is times that given by Equation 27-6:NBz

1.91 � 10�5 T�

� (10�7 T # m>A)
2p(0.0500 m)2(12)(4.00 A)C(0.1500 m)2 � (0.0500 m)2 D 3>2

Bz �
m0

4p
2pR2NI

(z2 � R2)3>2

(a) at the center is times that given by Equation 27-5 for a
single turn of the coil:

NBz

6.03 � 10�4 T�

� (4p � 10�7 T # m>A)
(12)(4.00 A)
2(0.0500 m)

Bz �
m0NI

2R

SOLVE

PICTURE The magnetic field due to a loop that has turns is times that due to a single
turn. (a) At (from Equation 27-5). Equation 27-6 gives the magnetic field
on the axis due to the current in a single turn. Far from the loop, as in Part (c), the field can
be found using Equation 27-7. In that case, because we have loops, the magnetic moment
is where A � pR2.m � NIA,

N

B � 1
2m0N>Rz � 0,

NN
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3. The length is the number of turns multiplied by the length
per turn. Also, we solve the step-2 result for the time:

L

and

¢t �
L
vd

�
3.77 m

1.40 � 10�4 m>s � 2.69 � 104 s

L � N2pR � (12)2p (0.0500 m) � 3.77 m

4. Solve the step 1 result for the amount of moving charge in the
wire:

1.08 � 105 C�

Q � I ¢t � (4.00 A)(2.69 � 104 s)

CHECK There is approximately one conduction electron for each atom in a metal. If the
wire is made of copper (with an molar mass equal to it is plausible that 
of the wire would have a mass approximately equal to Thus, we estimate about one
mole of copper exists in the wire. That means the number of conduction electrons in the
wire is approximately equal to Avogadro’s number. The total charge carried by these elec-
trons is the number of electrons multiplied by the charge per electron. That is, 

The magnitude of this result is very close
to our step-4 result.

TAKING IT FURTHER The current consists of about of moving charges. In compari-
son to the amount of charge stored in an ordinary capacitor, this amount is an enormous
amount of charge.

105 C

�0.965 � 105 C.�(6.02 � 1023)(1.60 � 10�19 C) �

Q � �NAe �

Q

63.5 g.
3.77 m63.5 g>mol),

Try It YourselfExample 27-4 Torque on a Bar Magnet

A small bar magnet that has a magnetic moment whose magnitude is is placed
at the center of the coil of Example 27-2 so that its magnetic moment vector lies in the 
plane and makes an angle of with the direction as shown. Neglecting any variation
in over the region occupied by the magnet, find the torque on the magnet.

PICTURE The torque on a magnetic moment is given by is in the direction,
so you can use the right-hand rule to show that is in the direction (Figure 27-7).

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

�xM
S

� B
S

�zT
S

� M
S

� B
S

. B
S

B
S

�z30°
x � 0

0.0300 A # m2

Steps Answers

1. Compute the magnitude of the torque from TS � M
S

� B
S

. t � 9.04 � 10�6 N # m

2. Indicate the direction using a unit vector. (9.04 � 10�6 N # m)inT
S

�

CHECK We expect the torque to tend to align the magnetic moment with the magnetic field.
Thus, a torque vector in the direction is as expected.�x

y

z

x

30°

12 loops

B
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DUE TO A CURRENT IN A SOLENOID

A solenoid is a conducting wire wound into a helix of
closely spaced turns, as illustrated in Figure 27-8. A solenoid
is used to produce a strong, uniform magnetic field in the re-
gion surrounded by its loops. The solenoid’s role in magnet-
ism is analogous to that of the parallel-plate capacitor, which
produces a strong, uniform electric field between its plates.

B
S

I I

F I G U R E  2 7 - 8 A tightly
wound solenoid can be considered
as a set of circular current loops
placed side by side that carry the
same current. The solenoid
produces a uniform magnetic field
inside the loops and distant from
the ends of the solenoid.
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I

I

B

(b)

(a)

B

S N

(c)

F I G U R E  2 7 - 9 Magnetic field lines due to two identical coaxial
loops carrying the same current. The points where the loops intersect
the plane of the page are each marked by an where the current
enters the page and by a dot • where the current emerges from the
page. In the region between the loops near the axis the magnetic fields
of the individual loops superpose, so the resultant field is strong and
surprisingly uniform. The region where the field is uniform is greatest
if the planes of the two loops are separated by a distance equal to the
radius of the loops.

:

F I G U R E  2 7 - 1 0 (a) Magnetic field lines of a solenoid. The lines
are identical to those of a bar magnet of the same shape, as in (b).
(c) Magnetic field lines of a solenoid shown by iron filings. (© 1990
Richard Menga/Fundamental Photographs.)

The magnetic field of a solenoid is essentially that of a set of
identical current loops placed side by side. Figure 27-9

shows the magnetic field lines for two such loops.
Figure 27-10a shows the magnetic field lines for a tightly

wound solenoid. Inside the solenoid and away from the ends,
the field lines are approximately parallel to the axis and are
closely and uniformly spaced, indicating a strong, uniform
magnetic field. Outside the solenoid (above and below it) the
lines are much less dense. In addition, the field lines become
farther apart as you move away from either end of the sole-
noid. Comparing this figure with Figure 27-10b, we see that the
magnetic field of a solenoid, both inside and outside the sole-
noid, are virtually identical to the magnetic field of a bar mag-
net of the same size and shape as the solenoid. In Figure 27-10c,
iron filings align with the field of a current-carrying solenoid.

N
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Example 27-5 The Field of a Long,Tightly Wound Solenoid

The previous paragraph asserts that magnetic field inside and far from the ends of a long,
tightly wound, current-carrying solenoid is uniform and parallel with the axis of the sole-
noid, and that the magnetic field is zero outside the solenoid. Validate this assertion by mod-
eling the solenoid as a tightly packed stack of current-carrying rings, and by using the field
line drawing of a single current-carrying ring (Figure 27-11).

2. The magnitude of the magnetic field is greater where the field
lines are closer together. An examination of the field lines in
Figure 27-11 reveals that magnitude of the field (due to
loop 2) at point A is greater than it is at point B:

B
S

2

3. An examination of the field lines in Figure 27-11 reveals that
in the plane of the current-carrying ring, at points outside the
ring the magnetic field is in the opposite direction than it is at
points inside the ring:

At point C, the direction of is to the left and the direction of
is to the right. In addition, additional loops in the

solenoid that are near loops 1 and 3 will produce additional
magnetic fields at whose vector sum is to the right. It is
feasible, therefore, that the resultant magnetic field at is zero.C

C

B
S

1 � B
S

3

B
S

2

TAKING IT FURTHER The arguments presented in this example only hold for those sections of
the solenoid located far from either end of the solenoid. Suppose loop 2 in Figure 27-13 is not near
the center of a long solenoid, but is the last loop at the right end of the solenoid. Then, loop 3
would be absent from the picture, and the three vectors labeled would be absent as well.B

S

3

PICTURE Figure 27-12 shows three equally
spaced current-carrying rings representing
three loops of a long, tightly wound solenoid. At
each of points and where A is just inside
loop 2, B is just outside loop 2, and C is at the
center of loop 2, sketch the three magnetic field
vectors due to the three loops shown. Use the
field line drawing of a single current-carrying
ring (Figure 27-11) to obtain the directions and
relative magnitudes of the three fields. Using
your sketch, present an argument that the resultant magnetic fields at points and are
equal in magnitude and are parallel with the axis of the solenoid. Using your sketch, present
an argument that the resultant magnetic field at point is zero.

SOLVE

C

BA

C,A, B,

Consider a solenoid that has a length consists of turns, and carries a cur-
rent We choose the axis of the solenoid to be the axis, with the left end at 
and the right end at as shown in Figure 27-14. We will calculate the magnetic
field at field point P on the axis a distance from the origin. The figure shows an
element of the solenoid of length at a distance from the origin. If is
the number of turns per unit length, there are turns of wire in this element,n dz�

n � N>Lz�dz�

zz
z � z2 ,

z � z1zI.
NL,

B
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The magnitude of the field (due to loop 2) is greater at 
point A than the magnitude of is at point B. However, because

and are in the same direction, it is feasible that the
resultant field at point B has the same magnitude
as the resultant magnetic field at A.

(B
S

1 � B
S

2 � B
S

3)
B
S

3B
S

2B
S

1 ,
B
S

2

B
S

2

1. At point A, sketch the magnetic-field vectors and 
due to the currents in loops 1, 2, and 3, respectively

(Figure 27-13). Use Figure 27-11 for guidance:
B
S

3

B
S

1 , B
S

2 ,

dB

I I

R

P

y

dz�

+z

di = nI dz�

z1 z2

z�

F I G U R E  2 7 - 1 4 Geometry for calculating the magnetic field inside a solenoid on its axis.
The number of turns in the element is where is the number of turns per unit
length. The element is treated as a current loop carrying a current di � nI dz�.dz�

n � N>Ln dz�,dz�

C

A
21 3

B

II I
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Movable
iron core

F I G U R E  2 7 - 1 6 An automotive starter solenoid. When the solenoid is energized, its
magnetic field pulls in the iron core. This engages gears that connect the starter motor to the
flywheel of the engine. Once the current to the solenoid is interrupted, a spring disengages the
gears and pushes the iron core to the right.

L/2−L/2 0

Bz

0nI

z

μ

F I G U R E  2 7 - 1 5 Graph of the magnetic
field on the axis inside a solenoid versus the
position on the axis. The field inside the
solenoid is nearly constant except near the
ends. The length of the solenoid is ten times
longer than the radius.

L

z

926 | C H A P T E R  2 7 Sources of the Magnetic Field

with each turn carrying a current The element is thus equivalent to a single loop
carrying a current The magnetic field at a point on the axis due to a
loop at the origin carrying current is given by Equation 27-6:

where is the distance between the loop and the field point. For a at 
carrying current the distance between the loop and the field point P is

so

We find the magnetic field at P due to the entire solenoid by integrating the expres-
sion from to 

27-8

The integral in Equation 27-8 can be evaluated using trigonometric substitution
with Also, the integral can be looked up in standard tables of
integrals. The integral’s value is

Substituting this into Equation 27-8, we obtain

27-9

ON THE AXIS OF A SOLENOID

A solenoid is called a long solenoid if its length is much greater than its radius
Inside and far from the ends of a long solenoid, the fraction on the left in

the parentheses approaches and the fraction on the right approaches 
This means the expression in the parentheses tends toward Thus, in the region
inside and far from either end of the solenoid the magnetic field is given by

27-10

INSIDE A LONG SOLENOID

To evaluate at the right end of the solenoid we use Equation 27-9 with 
This gives where Then, if the ratio

becomes very close to one, so Thus, at either
end of a long solenoid is half the value of at points deep inside the solenoid (dis-
tant from either end). Figure 27-15 gives a plot of the magnetic field on the axis of
a solenoid versus position on the axis (with the origin at the center of the sole-
noid). The approximation that the field is uniform (independent of the position)
along the axis is good, except for near the ends.

z

B
BzBz(z2) � 1

2m0nI.L>1L2 � R2

LW R,L � z2 � z1 .Bz(z2) � 1
2m0nI L>1L2 � R2 ,

z � z2 .Bz

Bz

Bz � m0nI

�2.
�1.�1

R.
L

Bz

Bz(z) � 1
2m0nI£ z � z1

4(z � z1)
2 � R2

�
z � z2

4(z � z2)
2 � R2

≥
�
z2

z1

dz�C (z � z�)2 � R2 D 3>2 �
1
R2 £ z � z1

4(z � z1)
2 � R2

�
z � z2

4(z � z2)
2 � R2

≥
z � z� � R tanu.

Bz � 1
2m0nIR

2 �
z2

z1

dz�C (z � z�)2 � R2 D 3>2
z� � z2:z� � z1

dBz � 1
2m0

R2nI dz�C (z � z�)2 � R2 D 3>2
z � z�,

di � nI dz�,
z � z�loopz

dBz � 1
2m0

R2 di
(z2 � R2)3>2

di
zdi � nI dz�.

I.

See

Math Tutorial for more

information on 

Integrals



The Magnetic Field of Currents: The Biot–Savart Law S E C T I O N  2 7 - 2 | 927

Example 27-6 at Center of a Solenoid

Find the magnetic field at the center of a solenoid that has a length equal to a radius
equal to 600 turns, and a current equal to 

PICTURE To find on the axis of the solenoid we apply Equation 27-9 with the origin at the
center of the solenoid.

SOLVE

B

4.00 A.1.40 cm,
20.0 cm,

B
S

1. We will calculate the field
exactly, using Equation 27-9:

Bz(z) � 1
2m0nI£ z � z1

4(z � z1)
2 � R2

�
z � z2

4(z � z2)
2 � R2

≥
2. To find the magnetic field at

the middle of the solenoid,
we choose the middle of
the solenoid as the origin.
Then we set 
and z2 � 1

2L:
z � 0, z1 � � 1

2L,
� 1

2m0nI
L

31
4L2 � R2

� m0nI
L

3L2 � 4R2

Bz(0) � 1
2m0nI£ 0 � A� 1

2L B
4 C0 � (�1

2L) D 2 � R2
�

0 � A 12L B
4 C A0 � A 12L B B 2 D � R2

≥
3. Substituting in the given

information, we have:

1.50 � 10�2 T�

� 0.990(4p � 10�7 T # m>A)
600

0.200 m
(4.00 A)

Bz(0) � 0.990m0nI

L

3L2 � 4R2
�

20.0 cm

4(20.0 cm)2 � 4(1.40 cm)2
� 0.990

CHECK Note that the approximation obtained using Equation 27-10 amounts to replacing
0.990 by 1 in step 3. Doing so gives a result that differs from the step-3 result by only one per-
cent. This result is expected for a solenoid whose length to radius ratio is 

PRACTICE PROBLEM 27-4 Calculate on the axis a distance halfway between the center
and one end of the solenoid. Compare this result with the step-3 result.

B

20 cm>1.4 cm � 14.

DUE TO A CURRENT IN A STRAIGHT WIRE

Figure 27-17 shows the geometry for calculating the magnetic field 
at a point due to the current in the straight-wire segment shown.
We choose to be the perpendicular distance from the wire to point 
and we choose the axis to be along the wire with at the pro-
jection of onto the axis.

A typical current element at a distance from the origin is
shown. The vector points from the element to the field point 
The direction of the magnetic field at due to this element is the
direction of which is out of the paper. Note that at , 
the magnetic fields due to all the current elements of the wire are in

PI d�
S

� rn,
P

P.rS
xI d�

S
xP

x � 0x
P,R

P
B
S

B
S

x
x2x1

x

I

d� = dxi
^

r

u1

u

u2

dB

R

P

f

R

F I G U R E  2 7 - 1 7 Geometry for calculating the magnetic field at point due
to a straight current segment. Each element of the segment contributes to the total
magnetic field at point which is directed out of the paper. The result is
expressed in terms of the angles and u2 .u1

P,

P

A cross section of a doorbell. When the
solenoid is energized, its magnetic field pulls
on the plunger, causing it to strike the bell
(not shown). The spring returns the plunger
to its normal position. (© Bruce Iverson.)



I

B

(b)

(a)

this same direction. Thus, we need to compute only the magnitude of the field. The
field due to the current element shown has the magnitude (Equation 27-3)

It is more convenient to write this in terms of rather than 

27-11

To sum over all the current elements, we need to relate the variables and It
turns out to be easiest to express and in terms of We have

Then, taking the differential of each side with as a constant gives

where we have used Substituting this expression for into Equation
27-11, we obtain

We sum over these elements by integrating from to where and 
are shown in Figure 27-17. This calculation gives

Evaluating the integral, we obtain

27-12

DUE TO A STRAIGHT-WIRE SEGMENT

This result gives the magnetic field due to any straight, current-carrying wire
segment in terms of the perpendicular distance and and which are
the angles subtended at the field point by the ends of the wire. If the length
of the wire approaches infinity in both directions, approaches and 
approaches The result for such a very long wire is obtained from
Equation 27-12, by setting and 

27-13

DUE TO AN INFINITELY LONG, STRAIGHT WIRE

At any point in space, the magnetic field lines of a long, straight, current-
carrying wire are tangent to a circle of radius about the wire, where is the
perpendicular distance from the wire to the field point. The direction of can
be determined by applying the right-hand rule, as shown in Figure 27-18a.
The magnetic field lines thus encircle the wire, as shown in Figure 27-18b.

The result expressed by Equation 27-13 was found experimentally by Biot
and Savart in 1820. From their analysis, Biot and Savart were able to dis-
cover the expression given in Equation 27-3 for the magnetic field due to a
current element.

B
S
RR

B

B �
m0

4p
2I
R

u2 � �90°:u1 � �90°
�90°.

u1�90°u2

u2 ,u1R

B

B �
m0

4p
I
R

(sin u2 � sin u1)

B � �
u2

u1

m0

4p
I
R

 cos u du �
m0

4p
I
R �

u2

u1

 cos u du

u2u1u � u2 ,u � u1

dB �
m0

4p
I
r2
r2 du
R

 cosu �
m0

4p
I
R

 cosu du

dxsec u � r>R.

dx � R sec2 u du � R
r2

R2 du �
r2

R
du

R

x � R tanu

u.rx
x.u, r,

dB �
m0

4p
I dx
r2

 cosu

f:u

dB �
m0

4p
Idx
r2

 sinf
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F I G U R E  2 7 - 1 8 (a) Right-hand rule for
determining the direction of the magnetic field due to
a long, straight, current-carrying wire. The magnetic
field lines encircle the wire in the direction of the
fingers of the right hand when the thumb points in
the direction of the current. (b) Magnetic field lines
due to a long wire, which is indicated by iron filings.
(© 1990 Richard Menga/Fundamental Photographs.)
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1. The magnitude of the resultant field is 4 times the magnitude of
the field due to a single side:Bs

B � 4Bs

2. Calculate the magnitude of the magnetic field due to a
single side of the loop. Note from the figure that and

and u2 � �45°:u1 � �45°
R � 1

2L
Bs

� (10�7 T # m>A)
1.5 A

0.25 m
2 sin 45° � 8.5 � 10�7 T

Bs �
m0

4p
I
R

(sinu2 � sinu1) �
m0

4p
I

1
2L

[sin(�45°) � sin(�45°)]

3. Multiply this value by 4 to find the magnitude of the resultant
field:

  3.4 � 10�6 TB � 4Bs � 4(8.5 � 10�7 T) �

Example 27-7 at Center of Square Current Loop

Find the magnetic field at the center of a square current loop that has an edge length which
is equal to and carries a current equal to 

PICTURE The magnetic field at the center of the loop is the sum of the contributions from
each of the four sides of the loop. From Figure 27-19, we can see that each side of the loop
produces a field of equal magnitude pointing out of the page. Thus, we use Equation 27-12
for a given side, then multiply by 4 for the total field.

1.5 A.50 cm,
L,

B
S

SOLVE

A current gun used to measure electric
current. The jaws of the current gun clamp
around a current-carrying wire without
touching the wire. The magnetic field
produced by the wire is measured with a
Hall-effect device mounted in the current
gun. The Hall-effect device puts out a
voltage proportional to the magnetic field,
which in turn is proportional to the current
in the wire. (Courtesy of F. W. Bell.)

CHECK Practice Problem 27-5 serves as a check.

PRACTICE PROBLEM 27-5

Compare the magnetic field
at the center of a circular
current loop of radius 
with the magnetic field at
the center of a square current
loop of side carrying the
same current. Which is larger?

PRACTICE PROBLEM 27-6 Find the distance
from a long, straight wire carrying a current of 12 A to a point where the
magnetic field due to the current in the wire has a magnitude equal to 60 mT.

L � 2R

R

R

P

y

x

BL

BR

IL IR

θ

θB

, cm

, cm
F I G U R E  2 7 - 2 1

y

z x, cm

P

I = 1.7 A

I = 1.7 A

F I G U R E  2 7 - 2 0

Example 27-8 Due to Two Parallel Wires

A long, straight wire carries a current of in the direction and lies along the
line A second such wire carries a current of in the 
direction and lies along the line as shown in Figure 27-20.
Find the magnetic field at a point on the axis at y � 6.0 cm.yP

x � �3.0 cm, y � 0,
�z1.7 Ax � �3.0 cm, y � 0.

�z1.7 A

B
S

PICTURE The magnetic field at point
is the vector sum of the field due

to the wire on the left in Figure 27-21,
and the field due to the wire on the
right. Because each wire carries the
same current and each wire is the
same distance from point the mag-
nitudes and are equal. is per-
pendicular to the radius from the left
wire to point and is perpendicu-
lar to the radius from the right wire to
the point P.

B
S

RP,

B
S

LBRBL

P,

B
S

R

B
S

LP



930 | C H A P T E R  2 7 Sources of the Magnetic Field

CHECK The magnitude of the step-6 result is less than twice the step-4 result, which is
expected because the vectors being added are not parallel.

PRACTICE PROBLEM 27-7 Find at the origin.

PRACTICE PROBLEM 27-8 Find at the origin assuming that the direction of the current
is reversed in the wire along the line x � 3.0 cm, y � 0.

B
S

B
S

SOLVE

1. The field at is the vector sum of the fields and B
S

R:B
S

LP B
S

� B
S

L � B
S

R

2. From Figure 27-21 we see that the resultant magnetic field is in
the direction and has the magnitude 2BL cosu.�x

B
S

� �2BL cosu in

3. The magnitudes of and are given by Equation 27-13:B
S

RB
S

L BL � BR �
m0

4p
2I
R

4. is the radial distance from each wire to the point We find 
from the figure and substitute into the expression for and BR:BLR

RP.R

so

BL � BR � (10�7 T # m>A)
2(1.7 A)
0.067 m

� 5.07 � 10�6 T

R �4(3.0 cm)2 � (6.0 cm)2 � 6.7 cm

5. We obtain from the figure:cosu cosu �
6.0 cm
R

�
6.0 cm
6.7 cm

� 0.894

6. Substitute the values of and into the equation in step 2
for B

S
:

BLcosu �9.1 � 10�6 T inB
S

� �2(5.07 � 10�6 T)(0.894)in �

I1

I2

R

dF12

B1

I2 d�2

MAGNETIC FORCE BETWEEN PARALLEL WIRES

We can use Equation 27-13 for the magnetic field due to a long, straight, current-
carrying wire and (Equation 26-5) for the force exerted by a mag-
netic field on a segment of a current-carrying wire to find the magnetic force exerted
by one long, straight, current-carrying wire on another. Figure 27-22 shows two long
parallel wires carrying currents in the same direction. We consider the force on a seg-
ment carrying current as shown. The magnetic field at this segment due to
current is perpendicular to the segment as shown. This is true for all current
elements along wire 2. That the force, given by on current ele-
ment is directed toward wire 1 can be revealed by applying the right hand
rule. Similarly, a current segment will experience a magnetic force directed
toward current due to a magnetic field arising from current given
by Thus, two parallel currents attract each other. If one of the
currents is reversed, the forces will be reversed, so two antiparallel currents will
repel each other. The attraction or repulsion of parallel or antiparallel currents was
discovered experimentally by Ampère one week after he heard of Oersted’s
discovery of the effect of a current on a compass needle.

The magnitude of the magnetic force on the current element is

Because the magnetic field at current element is perpendicular to the
current element, we have

If the distance between the wires is much less than their lengths, the magnetic
field at due to current will approximate the field due to an infinitely long,
current-carrying wire, which is given by Equation 27-13. The magnitude of the
force on the segment is therefore

and the force per unit length is

27-14
dF12

d�2

�
m0

2p

I1I2
R

dF1 2 � I2 d�2

m0I1
2pR

I2 d�
S

2

I1I2 d�
S

2

R

dF1 2 � I2 d�2B1

I2 d�
S

2

dF1 2 � ƒI2 d�
S

2 � B
S

1 ƒ
I2 d�

S

2

dF
S

21 � I1 d�
S

1 � B
S

2 .
I2 ,B

S

2I2 ,
I1 d�

S

1

I2 d�
S

2

dF
S

1 2 � I2 d�
S

2 � B
S

1 ,
d�

S

2 ,I1

B
S

1I2 ,d�
S

2

dF
S

� I d�
S

� B
S

F I G U R E  2 7 - 2 2 Two long, straight, wires
carrying parallel currents. The magnetic field

due to current is perpendicular to current
The force on current is toward current 

There is an equal and opposite force exerted by
current on The current-carrying wires
thus attract each other.

I1 .I2

I1 .I2I2 .
I1B

S

1
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In Chapter 21, the coulomb was defined in terms of the ampere, but the definition
of the ampere was deferred. The ampere is defined as follows:

The ampere is that constant current which, if maintained in two straight,
parallel conductors of infinite length and of negligible circular cross sec-
tions placed one meter apart in a vacuum, would produce a force between
the conductors equal to newton per meter of length.

DEFINITION—AMPERE

That definition of the ampere allows the unit of current
(and therefore the unit of electric charge) to be deter-
mined by a mechanical measurement. In practice, cur-
rents much closer together than are used so that the
force can be measured more accurately.

Figure 27-23 shows a current balance, which is a de-
vice that can be used to calibrate an ammeter from the
definition of the ampere. The upper conductor, directly
above the lower conductor, is pivoted on knife-edge
contacts and is balanced so that the wires (or conducting
rods) are a small distance apart. The conductors are con-
nected in series to carry the same current but in opposite
directions so that the currents will repel each other.
Weights are placed on the upper conductor until it
balances again at the original separation. The force of
repulsion is thus determined by measuring the total
weight required to balance the upper conductor.

1 m

2 � 10�7

Laser
beam

Beam
deflected
upward

Mirror

Knife–edge
contacts

F I G U R E  2 7 - 2 3 A picture of a current balance used in a general
physics lab. A schematic diagram of a current balance. The two parallel
rods in front carry equal but oppositely directed currents and therefore repel
each other. The force of repulsion is balanced by weights placed on the upper
rod, which is part of a rectangle that is balanced on knife edges at the back.
The mirror on top is used to reflect a beam of laser light to accurately
determine the position of the upper rod. (Photo by Gene Mosca.)

(b)
(a)

(a)

(b)
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Example 27-9 Balancing the Magnetic Force

Steps Answers

1. Set the weight equal to the magnetic force of repulsion of
the rods.

mg mg �
m0

2p

I1I2
R
L

2. Solve for the mass m. 1.53 gm � 1.53 � 10�3 kg �

TAKING IT FURTHER Because only is required to balance the system, we see that
the magnetic force between two straight current-carrying wires is relatively small, even for
currents as large as separated by only 1.50 mm.15.0 A

1.53 g

Two straight rods have central axes that are 1.50 mm apart in a current balance,
and carry currents of 15.0 A each in opposite directions. What mass must be placed on the
upper rod to balance the magnetic force of repulsion?

PICTURE Equation 27-14 gives the magnitude of the magnetic force per unit length exerted
by the lower rod on the upper rod. Find this force for a rod of length and set it equal to the
weight

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

mg .
L

50.0-cm-long

27-3 GAUSS’S LAW FOR MAGNETISM

The magnetic field lines shown in Figure 27-6, Figure 27-9, and Figure 27-10 differ
from electric field lines because the lines of form closed curves, whereas lines of

begin and end on electric charges. The magnetic equivalent of an electric charge
is a magnetic pole, such as appears to be at the ends of a bar magnet. Magnetic field
lines appear to diverge from the north-pole end of a bar magnet (Figure 27-10b)
and appear to converge on the south-pole end. Inside the magnet, however, the
magnetic field lines neither diverge from a point near the north-pole end, nor do
they converge on a point near the south-pole end. Instead, the magnetic field lines
pass through the bar magnet from the south-pole end to the north-pole end, as
shown in Figure 27-10b. If a Gaussian surface encloses one end of a bar magnet, the
number of magnetic field lines that penetrate the surface from the inside is exactly
equal to the number of magnetic field lines that penetrate the surface from the
outside. That is, the net flux of the magnetic field through any closed sur-
face is always zero.*

27-15

GAUSS’S LAW FOR MAGNETISM

where is the component of normal to surface at area element The defi-
nition of the magnetic flux is exactly analogous to the definition of electric flux,
with replacing This result is called Gauss’s law for magnetism. It is the mathe-
matical statement that no point in space exists from which magnetic field lines
diverge, or to which magnetic field lines converge. That is, isolated magnetic
poles do not exist.† The fundamental unit of magnetism is the magnetic dipole.

E
S

.B
S

fm

dA.SB
S

Bn

fm net � CS B
S # nn dA � CS Bn dA � 0

S
B
S

fm net

E
S

B
S

* Recall that the net flux of the electric field is a measure of the net number of field lines that leave a closed surface and
is equal to 

† The existence of magnetic monopoles is a subject of great debate, and the search for magnetic monopoles remains
active. To date, however, none have been discovered.

Qinside >P0 .



Figure 27-24 compares the field lines of for a
magnetic dipole with the field lines of for an elec-
tric dipole. Note that far from the dipoles the field
lines are identical. But inside the dipole, the
field lines of are directed opposite to the field
lines of The field lines of diverge from the pos-
itive charge and converge to the negative charge,
whereas the field lines of are continuous loops.

27-4 AMPÈRE’S LAW

In Chapter 22, we found that for highly symmetric
charge distributions we could calculate the electric
field more easily using Gauss’s law than
Coulomb’s law. A similar situation exists in mag-
netism. Ampère’s law relates the tangential com-
ponent of the magnetic field summed (inte-
grated) around a closed curve to the current 
that passes through any surface bounded by 
This law can be used to obtain an expression for the magnetic field in situations that
have a high degree of symmetry. In mathematical form, Ampère’s law is

is any closed curve 27-16

AMPÈRE’S LAW

where is the net current that penetrates any surface bounded by the curve 
The positive tangential direction for the path integral along is related to the choice
for the positive direction for the current through by the right-hand rule shown
in Figure 27-25. Ampère’s law holds as long as the currents are steady and continuous.
This means the current does not change in time and that charge is not accumulating
anywhere. Ampère’s law is useful in calculating the magnetic field in situations
that have a high degree of symmetry so that the line integral can be writ-
ten as (the product of and some distance). The integral is called a
circulation integral. More specifically, is called the circulation of around
curve Ampère’s law and Gauss’s law are both of considerable theoretical impor-
tance, and both laws hold whether there is symmetry or there is no symmetry. If there
is no symmetry, neither law is very useful in calculating electric or magnetic fields.

The simplest application of Ampère’s law is to find the magnetic field due to the
current in an infinitely long, straight wire. Figure 27-26 shows a circular curve 
around a long wire with its center at the wire. We know the direction of the mag-
netic field due to each current element is tangent to this circle from the Biot–Savart
law. Assuming that the magnetic field is tangent to this circle, is in the same
direction as and has the same magnitude at any point on the circle, Ampère’s
law then gives

where We can factor out of the integral because has the same value
everywhere on the circle. The integral of around the circle equals (the cir-
cumference of the circle). The current is the current in the wire. We thus obtain

or

which is Equation 27-13.
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m0I

2pR
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– +

E B

(b)(a)

F I G U R E  2 7 - 2 4 Electric field lines of an electric dipole. Magnetic field
lines of a magnetic dipole. Far from the dipoles, the field lines are identical. In the
region between the charges in , the electric field lines are approximately opposite
the direction of the dipole moment, whereas inside the loop in the magnetic
field lines are approximately parallel to the direction of the dipole moment.

(b),
(a)

(b)(a)

IC

r

B

S

Cd�

F I G U R E  2 7 - 2 6 Geometry for calculating
the magnetic field of a long, straight, current-
carrying wire using Ampère’s law. The
magnetic field is tangent to the circle and the
magnitude of the magnetic field is the same
everywhere in the circle.

+

+C

F I G U R E  2 7 - 2 5 The positive direction for
the path integral for Ampère’s law is related to
the positive direction for the current passing
through the surface by a right-hand rule.

Ampère’s law holds as long 
as the currents are steady

and continuous.  
!
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Example 27-10 The Direction of the Magnetic Field

A long, straight cylindrical shell carries a current. Show that the direction of the magnetic
field due to the current in the shell is tangent to a circle coaxial with the shell (Figure 27-27).

1. Choose a field point Use the right-hand rule (Figure 27-25) to find the directions of
the magnetic fields at due to the current in a thin wire and the current in its symmetric
counterpart. Draw a sketch of these two wires and their magnetic fields at the field point
(Figure 27-28). Also show the sum of the two magnetic fields:

P
P.

B2

Current into page

Thin wire
1

Thin wire
2

Plane

P

B1

B1 B2+
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B1

B1 B2

B2

Current into page

Thin wire
1

Plane
P

Thin wire
2 +
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2. The resultant magnetic field at 
is the sum of the magnetic fields due to
all the thin wires that make up the
cylindrical shell:

P
The resultant magnetic field at is in the
same direction as the sum This is
because the sum of the magnetic fields
due to the currents in any thin wire and 
its symmetric counterpart will point in the
same direction as B

S

1 � B
S

2 .

B
S

1 � B
S

2 .
P

3. If the field point is inside the shell, the magnetic field at due to the currents in the
thin wires to the right of (Figure 27-29) will point in the opposite direction of those to
the left of (Figure 27-28):P

P
PP

B

Current
into page
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PICTURE Model the cylindrical shell as a bundle of thin, long, straight wires, each parallel
to the central axis and each carrying a small fraction of the total current. Pick a field point 
at an arbitrary location. Divide the shell in half with an imaginary plane that contains 
both and the central axis of the shell. Using the right-hand rule (Figure 27-25), find the
direction of the magnetic field at due to the current in one of the thin wires in the model.
Identify the symmetric counterpart to the thin wire in the other half of the shell. The
counterpart is the wire equidistant from the plane and opposite the initially identified wire.
Find the direction of the magnetic field at due to the current in the counterpart thin wire.
The direction of the magnetic field at is midway between the directions of the magnetic
fields due to currents in the thin wire and its counterpart.

SOLVE

P
P

P
P

P

Example 27-11 Inside and Outside a Wire

A long, straight wire has a radius and carries a current that is uniformly distributed over
the circular cross section of the wire. Find the magnetic field both outside the wire and inside
the wire.

PICTURE We can use Ampère’s law to calculate because of the high degree of symmetry.
At a distance (Figure 27-30), we know that is tangent to the circle of radius about the wire
and is constant in magnitude everywhere on the circle. The expression for the current
through the surface that is bounded by depends on whether is less than or greater than
the radius of the wire 

SOLVE

R.
rCS

B
S

rB
S

r
B
S

IR

B
S

1. Ampère’s law is used to relate the circulation of around curve 
to the current passing through the surface bounded by C:S

CB
S

CCB
S # d�

S
� m0IC

2. Evaluate the circulation of around a circle of radius that is
coaxial with the wire:

rB
S

CCB
S # d�

S
� BCC d� � B2pr

I

r

R

S

C
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3. Substitute into Ampère’s law and solve for B:
so

B �
m0IC
2pr

B2pr � m0IC

I r

I

a

b

C

S

F I G U R E  2 7 - 3 2 A toroid consists of
loops of wire wound around an imaginary
doughnut-shaped form. The magnetic field at
any distance r can be found by applying
Ampère’s law to the circle of radius r. The
surface is bounded by curve C. The wire
penetrates S once for each turn.

S

4. Outside the wire, and the total current passes through
the surface bounded by C:

r 
 R,

or
m0

2p
I
r
  r � RB �

IC � I

5. Inside the wire, Assume that the current is distributed
uniformly to solve for Solve for B:IC .

r 	 R.

or

so
m0I

2pR2 r � RB �
m0

2p

IC
r

�
m0

2p

(r2>R2)I

r
�

aIC �
r2

R2 Ib
IC
pr2

�
I
pR2

CHECK The step 4 and step 5 results give the same expression for for as expected.

TAKING IT FURTHER Inside the wire, the field increases with distance from the center of
the wire. Figure 27-31 shows the graph of versus for this example.rB

r � R,B

2R 3RR0

B

B∝r

r

1
rB∝−

F I G U R E  2 7 - 3 1

We see from Example 27-11 that the magnetic field due to a current uniformly dis-
tributed over a wire of radius is given by

27-17

FOR A LONG STRAIGHT WIRE

For the next application of Ampère’s law, we calculate the magnetic field of
a tightly wound toroid, which consists of loops of wire wound around a doughnut-
shaped form, as shown in Figure 27-32. There are N turns of wire, each carrying
a current To calculate we evaluate the line integral around a circle
of radius that is coaxial with the toroid and is inside its loops. By symmetry, 

is tangent to this circle and constant in magnitude at every point on the circle.
Then,

Let and be the inner and outer radii of the toroid, respectively. The total cur-
rent through the surface bounded by a circle of radius for is 
Ampère’s law then gives

or

27-18

INSIDE A TIGHTLY WOUND TOROIDB

a 	 r 	 bB �
m0NI

2pr

CCB
S # d�

S
� m0IC  or  (B2pr � m0NI)

IC � NI.a 	 r 	 brS
ba

CCB
S # d�

S
� B2pr � m0IC

B
S

r
ACB

S # d�
S

B,I.

B

B � d m0I

2pR2 r r � R

m0

2p
I
r

r � R

R
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If is less than there is no current through the surface If is greater than 
the total current through is zero because for each turn of the wire the current
penetrates the surface twice (Figure 27-33), once going into the page and once
coming out of the page. Thus, the magnetic field is zero for both the region 
and the region 

or

The magnetic field intensity inside the toroid is not uniform but decreases with
increasing However, if (the diameter of the loops of the coil) is much less
than the variation in from to is small, so the variation of inside
the loops is also small.

Br � br � ar2b,
b � ar.

r 
 br 	 aB � 0,
r 
 b:

r 	 a
S
S

b,rS .a,r

I
C

P

r

S

O

F I G U R E  2 7 - 3 5 The application of Ampère’s
law to find the magnetic field on the bisector of a
finite current segment gives an incorrect result.

I

C

S

F I G U R E  2 7 - 3 4 Ampère’s law holds for the
curve encircling the current in the circular loop,
but it is not useful for finding because cannot
be factored out of the circulation integral.

BtBt

C

(b + a)1
2

(b – a)1
2

a

b

I

I

F I G U R E  2 7 - 3 3 The toroid has mean
radius where and are the
inner and outer radii of the toroid. Each turn
of the wire is a circle of radius 12 (b � a).

bar � 1
2 (b � a),

(b)

LIMITATIONS OF AMPÈRE’S LAW

Ampère’s law is useful for calculating the magnetic field only when there is
both a steady and continuous current and a high degree of symmetry. Consider
the current loop shown in Figure 27-34. According to Ampère’s law, the line
integral around a curve, such as curve in the figure,
equals multiplied by the current in the loop. Although Ampère’s law is
valid for this curve, the tangential component of magnetic field is not constant
along any curve encircling the current. Thus, there is not enough symmetry in
this situation to allow us to evaluate the integral and solve for 

Figure 27-35 shows a finite current segment of length We wish to find the
magnetic field at point which is equidistant from the ends of the segment and
at a distance from the center of the segment. A direct application of Ampère’s
law gives

This result is the same as for an infinitely long wire, because the same sym-
metry arguments apply. It does not agree with the result obtained from the
Biot–Savart law, which depends on the length of the current segment and

B �
m0

2p
I
r

r
P,

�.
Bt .ACBt d�

Bt

Im0

CACB
S # d�

S
� ACBt d�

(a) The Tokamak fusion-test reactor is a large toroid that produces a magnetic
field for confining charged particles. Coils containing over 10 km of water-
cooled copper wire carry a pulsed current, which has a peak value of 73,000
A and produces a magnetic field of 5.2 T for about 3 s. (b) Inspection of the
assembly of the Tokamak reactor from inside the toroid. (Courtesy of Princeton
University Plasma Physics Laboratory.)

(a)
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which agrees with experiment. If the current segment is just one part of a con-
tinuous circuit carrying a current, as shown in Figure 27-36, Ampère’s law for
curve is valid, but it cannot be used to find the magnetic field at point be-
cause there is insufficient symmetry.

In Figure 27-37, the current in the segment arises from a small spherical con-
ductor that has an initial charge at the left of the segment and another small
spherical conductor at the right that has a charge When they are connected,
a current exists in the segment for a short time, until the spheres are
uncharged. For this case, we do have the symmetry needed to assume that is
tangential to the curve and is constant in magnitude along the curve. For a
situation like this, in which the current is discontinuous in space, Ampère’s law is
not valid. In Chapter 30, we will see how Maxwell was able to modify Ampère’s
law so that it holds for all currents. When Maxwell’s generalized form of
Ampère’s law is used to calculate the magnetic field for a current segment, such
as the current segment shown in Figure 27-37, the result agrees with the result
found from the Biot–Savart law.

27-5 MAGNETISM IN MATTER

Atoms have magnetic dipole moments due to the motion of their electrons and due
to the intrinsic magnetic dipole moment associated with the spin of the electrons.
Unlike the situation with electric dipoles, the alignment of magnetic dipoles paral-
lel to an external magnetic field tends to increase the field. We can see this differ-
ence by comparing the electric field lines of an electric dipole with the magnetic
field lines of a magnetic dipole, such as a small current loop, as was shown in
Figure 27-24. Far from the dipoles, the field lines are identical. However, between
the charges of the electric dipole, the electric field lines are opposite the direction
of the dipole moment, whereas inside the current loop, the magnetic field lines are
parallel to the magnetic dipole moment. Thus, inside a magnetically polarized
material, the magnetic dipoles create a magnetic field that is parallel to the mag-
netic dipole moment vectors.

Materials fall into three categories—paramagnetic, ferromagnetic, and
diamagnetic—according to the behavior of their magnetic moments in an external
magnetic field. Paramagnetism arises from the partial alignment of the electron
spins (in metals) or from the atomic or molecular magnetic moments by an
applied magnetic field in the direction of the field. In paramagnetic materials, the
magnetic dipoles do not interact strongly with each other and are normally ran-
domly oriented. In the presence of an applied magnetic field, the dipoles are par-
tially aligned in the direction of the field, thereby increasing the field. However,
in external magnetic fields of ordinary strength at ordinary temperatures, only a
very small fraction of the atoms are aligned because thermal motion tends to ran-
domize their orientation. The increase in the total magnetic field is therefore very
small. Ferromagnetism is much more complicated. Because of a strong interaction
between neighboring magnetic dipoles, a high degree of alignment occurs even in
weak external magnetic fields, which causes a very large increase in the total field.
Even when there is no external magnetic field, a ferromagnetic material may have
its magnetic dipoles aligned, as in permanent magnets. Diamagnetism arises from
the orbital magnetic dipole moments induced by an applied magnetic field. These
magnetic moments are opposite the direction of the applied magnetic field,
thereby decreasing the field. This effect actually occurs in all materials; however,
because the induced magnetic moments are very small compared to the perma-
nent magnetic moments, diamagnetism is often masked by paramagnetic or fer-
romagnetic effects. Diamagnetism is thus observed only in materials whose atoms
have no permanent magnetic moments.

B
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B
S

I � �dQ>dt
�Q.

�Q
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I –+Q

P2P1

+ –
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C S Q

F I G U R E  2 7 - 3 7 If the current segment in
Figure 27-35 is due to a momentary flow of
charge from a small conductor on the left to a
small conductor on the right, there is enough
symmetry to use Ampère’s law to compute
the magnetic field at but Ampère’s law is
not valid because the current is not steady.

P,

I
C

P

r

+ –

S

F I G U R E  2 7 - 3 6 If the current segment
in Figure 27-34 is part of a complete circuit,
Ampère’s law for the curve is valid,
but there is not enough symmetry to use
Ampère’s law to find the magnetic field
at point P.

C
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MAGNETIZATION AND MAGNETIC SUSCEPTIBILITY

When some material is placed in a strong magnetic field, such as that of a solenoid,
the magnetic field of the solenoid tends to align the magnetic dipole moments
(either permanent or induced) inside the material and the material is said to be
magnetized. We describe a magnetized material by its magnetization which is
defined as the net magnetic dipole moment per unit volume of the material:

27-19

Long before we had any understanding of atomic or molecular structure,
Ampère proposed a model of magnetism in which the magnetization of materials
is due to microscopic current loops inside the magnetized material. We now know
that these current loops are a classical model for the orbital motion and spin of the
electrons in atoms. Consider a cylinder of magnetized material. Figure 27-38 shows
atomic current loops in the cylinder aligned with their magnetic moments along the
axis of the cylinder. Because of cancellation of neighboring current loops, the net
current at any point inside the material is zero, leaving a net current on the surface
of the material (Figure 27-39). This surface current, called an amperian current,
is similar to the real current in the windings of the solenoid.

Figure 27-40 shows a short cylinder of cross-sectional area length and vol-
ume Let be the amperian current on the curved surface of the disk.
The magnitude of the magnetic dipole moment of the disk is the same as that of a
current loop that has an area and carries a current di:

The magnitude of the magnetization of the disk is the magnetic moment per unit
volume:

27-20

Thus, the magnitude of the magnetization vector is the amperian current per unit
length along the surface of the magnetized material. We see from this result that
the SI units for magnetization M are amperes per meter.

Consider a cylinder that has a uniform magnetization parallel to its axis. The
effect of the magnetization is the same as if the cylinder carried a surface current
per unit length of magnitude This current is similar to the current carried by a
tightly wound solenoid. For a solenoid, the current per unit length is where 
is the number of turns per unit length and is the current in each turn. The mag-
nitude of the magnetic field inside the cylinder and far from its ends is thus
given by (Equation 27-10) for a solenoid with replaced by 

27-21

Suppose we place a cylinder of magnetic material inside a long solenoid that
has turns per unit length and carries a current The applied field of the solenoid

magnetizes the material so that it has a magnetization The
resultant magnetic field at a point inside the solenoid and far from its ends due to
the current in the solenoid plus the magnetized material is

27-22

For paramagnetic and ferromagnetic materials, is in the same direction as 
for diamagnetic materials, is opposite to For paramagnetic and diam-
agnetic materials, the magnetization is found to be proportional to the applied
magnetic field that produces the alignment of the magnetic dipoles in the material.
We can thus write

27-23M
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F I G U R E  2 7 - 4 0 A disk element for
relating the magnetization M to the surface
current per unit length di>d�.

Amperian
current

F I G U R E  2 7 - 3 8 A model of atomic
current loops in which all the atomic dipoles
are parallel to the axis of the cylinder. The net
current at any point inside the material is
zero due to cancellation of neighboring atoms.
The result is a surface current similar to that
of a solenoid.

F I G U R E  2 7 - 3 9 The currents in the
adjacent current loops in the interior of a
uniformly magnetized material cancel, leaving
only a surface current. Cancellation occurs at
every interior point independent of the shape
of the very small loops.
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where the proportionality constant is a dimensionless number called the
magnetic susceptibility. Equation 27-22 is then

27-24

where

27-25

is called the relative permeability of the material. For paramagnetic materials, 
is a small positive number that depends on temperature. For diamagnetic materi-
als (other than superconductors), it is a small negative constant independent of
temperature. Table 27-1 lists the magnetic susceptibility of various paramagnetic
and diamagnetic materials. We see that the magnetic susceptibility for the solids
listed is of the order of and 

The magnetization of ferromagnetic materials, which we discuss shortly, is
much more complicated. The relative permeability defined as the ratio 
is not constant and has maximum values ranging from 5000 to 100,000. In the case
of permanent magnets, is not even defined because such materials exhibit mag-
netization even in the absence of an applied field.

ATOMIC MAGNETIC MOMENTS

The magnetization of a paramagnetic or ferromagnetic material can be related to the
permanent magnetic moments of the individual atoms or electrons of the material.
The orbital magnetic moment of an atomic electron can be derived semiclassically,
even though it is quantum mechanical in origin. Consider a particle of mass 
and charge moving with speed in a circle of radius as shown in Figure 27-41.
The magnitude of the angular momentum of the particle about the center of the
circle is

27-26

The magnitude of the magnetic moment is the product of the current and the area
of the circle:

If T is the time for the charge to complete one revolution, the current (the charge
passing a point per unit time) is Because the period is the distance 
divided by the velocity the current is

The magnetic moment is then

27-27

Using from Equation 27-26, we have for the magnetic moment

If the charge is positive, the angular momentum and magnetic moment are in
the same direction. We can therefore write

27-28

CLASSICAL RELATION BETWEEN MAGNETIC MOMENT
AND ANGULAR MOMENTUM
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S
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xm Table 27-1 Magnetic

Susceptibility of 

Various Materials

at

Material

Aluminum
Bismuth
Copper
Diamond
Gold
Magnesium
Mercury
Silver
Sodium
Titanium
Tungsten
Hydrogen (1 atm)
Carbon dioxide (1 atm)
Nitrogen (1 atm)
Oxygen (1 atm)  2090 � 10�9

�5.0 � 10�9

�2.3 � 10�9

�9.9 � 10�9

 6.8 � 10�5

 7.06 � 10�5

�0.24 � 10�5

�2.6 � 10�5

�3.2 � 10�5

 1.2 � 10�5

�3.6 � 10�5

�2.2 � 10�5

�0.98 � 10�5

�1.66 � 10�5

2.3 � 10�5

xm

20°C
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Equation 27-28 is the general classical relation between magnetic moment and
angular momentum. It also holds in the quantum theory of the atom for orbital
angular momentum, but the equation does not hold for the intrinsic spin angular
momentum of the electron. For electron spin, the magnetic moment is twice that pre-
dicted by the equation.* The extra factor of 2, which is accounted for by quantum
theory, has no analog in classical mechanics.

Because angular momentum is quantized, the magnetic moment of an atom is
also quantized. The quantum of angular momentum is where is
Planck’s constant, so we express the magnetic moment in terms of 

For an electron, and so the magnetic moment of the electron due
to its orbital motion is

27-29

MAGNETIC MOMENT DUE TO THE ORBITAL MOTION OF AN ELECTRON

where

27-30

BOHR MAGNETON

is the quantum unit of magnetic moment called a Bohr magneton. The magnetic
moment of an electron due to its intrinsic spin angular momentum is

27-31

MAGNETIC MOMENT DUE TO ELECTRON SPIN

Although the calculation of the magnetic moment of any atom is a complicated
problem in quantum theory, the result for all electrons, according to both theory
and experiment, is that the magnetic moment is of the order of a few Bohr magne-
tons. In addition, any atom that has an angular momentum equal to zero has a net
magnetic moment equal to zero. (This topic is further discussed in Chapter 36.)

If all the atoms in a sample of material have their magnetic moments aligned,
the magnetic moment per unit volume of the sample is the product of the number
of atoms per unit volume and the magnetic moment of each atom. For this ex-
treme case, the saturation magnetization is

27-32

The number of atoms per unit volume can be found from the molar mass the
density of the material, and Avogadro’s number 

27-33n �
NA (atoms>mol)

M (kg>mol)
r(kg>m3)
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S
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2me

SS
S
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SS
S
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SS
S
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eU

2me

� 9.27 � 10�24 A # m2 � 9.27 � 10�24 J>T
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S
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S

U
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S

�
qU
2m

L
S
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L
S>U:

hU � h>(2p),

* This result and the phenomenon of electron spin was predicted in 1927 by Paul Dirac, who combined special relativ-
ity and quantum mechanics into a relativistic wave equation called the Dirac equation. Precise measurements indicate
that the magnetic moment of the electron due to its spin is 2.00232 times that predicted by Equation 27-28. The fact that
the intrinsic magnetic moment of the electron is approximately twice what we would expect makes it clear that the sim-
ple model of the electron as a spinning ball is not to be taken literally.
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Example 27-12 Saturation Magnetization for Iron

Find the saturation magnetization of a sample of iron and find the magnetic field it
produces deep within the sample. Assume that each iron atom has a magnetic moment of
1 Bohr magneton.

PICTURE We find the number of atoms per unit volume from the density of iron,
and its molar mass 

SOLVE

M � 55.8 � 10�3 kg>mol.r � 7.87 � 103 kg>m3,

1. The saturation magnetization is the product of the number of
atoms per unit volume and the magnetic moment of each
molecule:

Ms � nm

2. Calculate the number of atoms per unit volume from
Avogadro’s number, the molar mass, and the density:

� 8.49 � 1028 atoms>m3

n �
NA

M
r �

6.02 � 1023 atoms>mol

55.8 � 10�3 kg>mol
(7.87 � 103 kg>m3)

3. Substitute this result and Bohr magneton to calculate the
saturation magnetization:

m � 1

7.88 � 105 A>m�

� (8.49 � 1028 atoms>m3) (9.27 � 10�24 A # m2)

Ms � nm

4. The magnetic field on the axis inside and far from the ends of a
long iron cylinder resulting from this maximum magnetization
is given by B � m0Ms:

0.990 T � 1 T�

� (4p � 10�7 T # A)(7.86 � 105 A>m)

B � m0Ms

CHECK The step-4 result of is a large magnetic field. This result is as expected for
the saturation magnetic field inside a ferromagnetic material.

TAKING IT FURTHER The measured saturation magnetic field of annealed iron is about
indicating that the magnetic moment of an iron atom is slightly greater than 2 Bohr

magnetons. This magnetic moment is due mainly to the spins of two unpaired electrons in
the iron atom.

2.16 T,

B � 1 T

*PARAMAGNETISM

Paramagnetism occurs in materials whose atoms have permanent magnetic mo-
ments that interact with each other only very weakly, resulting in a very small,
positive magnetic susceptibility When there is no external magnetic field, these
magnetic moments are randomly oriented. In the presence of an external magnetic
field, the magnetic moments tend to line up parallel to the field, but this is counter-
acted by the tendency for the magnetic moments to be randomly oriented due to
thermal motion. The degree to which the moments line up with the field depends on
the strength of the field and on the temperature. This degree of alignment usually is
small because the energy of a magnetic moment in an external magnetic field is typ-
ically much smaller than the thermal energy of an atom of the material, which is of
the order of where is Boltzmann’s constant and is the absolute temperature.

The potential energy of a magnetic dipole of moment in an external magnetic
field is given by Equation 27-16:

The potential energy when the moment and the field are parallel is thus
lower than the potential energy when the moment and the field are antiparallel

by For a typical atomic magnetic moment of 1 Bohr magneton and a
typical strong magnetic field of the difference in these potential energies is

¢U � 2mBB � 2(5.79 � 10�5 eV>T)(1 T) � 1.16 � 10�4 eV

1 T,
2mB.(u � 180°)

Umax

(u � 0)Umin

U � �mB cos u � �M
S # B

S

B
S

m
S

TkkT,

xm.

Liquid oxygen, which is paramagnetic, is
attracted by the magnetic field of a
permanent magnet. A net force is exerted on
the magnetic dipoles because the magnetic
field is not uniform. (J. F. Allen, St. Andrews
University, Scotland.)
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F I G U R E  2 7 - 4 2 Plot of magnetization 
versus an applied magnetic field In very
strong fields, the magnetization approaches the
saturation value This can be achieved only
at very low temperatures. In weak fields, the
magnetization is approximately proportional to

a result known as Curie’s law.Bapp ,
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Example 27-13 Applying Curie’s Law

If at what temperature will the magnetization be 1.00 percent of the saturation mag-
netization in an applied magnetic field of 

PICTURE Using Equation 27-34, solve for the temperature when 

SOLVE

M>Ms equals 0.0100.

1.00 T?
m � mB ,

1. Curie’s law relates and Bapp:M, T,Ms , M �
1
3

mBapp

kT
Ms

2. Solve for using and M>Ms � 0.0100:m � mBT

22.4 K�

T �
mBBapp

3k

Ms

M
�

(5.79 � 10�5 eV>T)(1.00 T)

3(8.62 � 10�5 eV>K)
100

CHECK The step-2 result is greater than absolute zero, as expected.

TAKING IT FURTHER From this example, we see that even in a strong applied magnetic
field of the magnetization is less than 1.00 percent of saturation at temperatures
above

PRACTICE PROBLEM 27-9 If what fraction of the saturation magnetization is 
at for an external magnetic field of 1.5 T?300 K

Mm � mB ,

22.4 K.
1.00 T,

*FERROMAGNETISM

Ferromagnetism occurs in pure iron, cobalt, and nickel as well as in alloys of
those metals with each other. It also occurs in gadolinium, dysprosium, and a
few compounds. Ferromagnetism arises from a strong interaction between the
electrons in a partially full band in a metal or between the localized electrons
that form magnetic moments on neighboring atoms. This interaction, called the
exchange interaction, lowers the energy of a pair of electrons with parallel spins.

At a normal temperature of the typical thermal energy is

which is more than 200 times greater than Thus, even in a very strong mag-
netic field of most of the magnetic moments will be randomly oriented because
of thermal motions (unless the temperature is very low).

Figure 27-42 shows a plot of the magnetization versus an applied external
magnetic field at a given temperature. In very strong applied fields, nearly all
the magnetic moments are aligned with the field and (For magnetic fields
attainable in the laboratory, this can occur only for very low temperatures.) When

indicating that the orientation of the moments is completely ran-
dom. In weak fields, the magnetization is approximately proportional to the
applied field, as indicated by the orange dashed line in the figure. In this region,
the magnetization is given by

27-34

CURIE’S LAW

Note that is the ratio of the maximum energy of a dipole in the magnetic
field to the characteristic thermal energy. The result that the magnetization varies
inversely with the absolute temperature was discovered experimentally by Pierre
Curie and is known as Curie’s law.

mBapp>(kT)

M �
1
3

mBapp

kT
Ms

Bapp � 0,M � 0,

M �Ms .
Bapp

M

1 T,
2mBB.

kT � (8.62 � 10�5 eV>K)(300 K) � 2.59 � 10�2 eV

kTT � 300 K,
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Ferromagnetic materials have very large positive values of magnetic suscepti-
bility (as measured under conditions described, which follow). In samples of
these substances, a small external magnetic field can produce a very large degree
of alignment of the atomic magnetic dipole moments. In some cases, the alignment
can persist even when the external magnetizing field is removed. This alignment
persists because the magnetic dipole moments exert strong forces on their neigh-
bors so that over a small region of space the moments are aligned with each other
even when there is no external field. The region of space over which the magnetic
dipole moments are aligned is called a magnetic domain. The size of a domain is
usually microscopic. Within the domain, all the permanent atomic magnetic
moments are aligned, but the direction of alignment varies from domain to domain
so that the net magnetic moment of a macroscopic piece of ferromagnetic material
is zero in the normal state. Figure 27-43 illustrates this situation. The dipole forces
that produce this alignment are predicted by quantum theory and cannot be
explained with classical physics. At temperatures above a critical temperature,
called the Curie temperature, thermal agitation is great enough to break up this
alignment and ferromagnetic materials become paramagnetic.

When an external magnetic field is applied, the boundaries of the domains may
shift or the direction of alignment within a domain may change so that there is a
net macroscopic magnetic moment in the direction of the applied field. Because the
degree of alignment is large for even a small external field, the magnetic field pro-
duced in the material by the dipoles is often much greater than the external field. 

xm

(a) Magnetic field lines on a cobalt magnetic recording tape. The solid arrows indicate the encoded magnetic bits. (b) Cross section of a magnetic
tape recording head. Current from an audio amplifier is sent to wires around a magnetic core in the recording head where it produces a magnetic
field. When the tape passes over a gap in the core of the recording head, the fringing magnetic field encodes information on the tape. 
((a) Akira Tonomura, Hitachi Advanced Research Library, Hatomaya, Japan; (b) © Bruce Iverson.)

A chunk of magnetite (lodestone) attracts
the needle of a compass. (© Paul
Silverman/Fundamental Photographs.)

F I G U R E  2 7 - 4 3 (a) Schematic illustration of ferromagnetic domains. Within a domain, the
magnetic dipoles are aligned, but the direction of alignment varies from domain to domain so
that the net magnetic moment is zero. A small external magnetic field may cause the enlargement
of those domains that are aligned parallel to the field (at the expense of the neighboring
domains), or it may cause the alignment within a domain to rotate. In either case, the result is a
net magnetic moment parallel to the field. (b) Magnetic domains on the surface of a 97 percent 

–3 percent Si crystal observed using a scanning electron microscope with polarization analysis.
The four colors indicate four possible domain orientations. (Robert J. Celotta, National Institute of
Standards and Technology.)

Fe

A Canadian quarter that is attracted by a
magnet. Canadian coins often contain
significant amounts of nickel, which is
ferromagnetic. (Photo by Gene Mosca.)

(b)

(a)

(a) (b)
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Let us consider what happens when we magnetize a long iron rod by placing it
inside a solenoid and gradually increase the current in the solenoid windings.
We assume that the rod and the solenoid are long enough to permit us to neglect
end effects. Because the induced magnetic moments are in the same direction as
the applied field, and are in the same direction. Then,

27-35

In ferromagnetic materials, the magnetic field due to the magnetic moments
is often greater than the magnetizing field by a factor of several thousand.

Figure 27-44 shows a plot of versus the magnetizing field As the current
is gradually increased from zero, increases from zero along the part of the curve
from the origin to point The flattening of this curve near point indicates
that the magnetization is approaching its saturation value at which all the
atomic magnetic moments are aligned. Above saturation, increases only because
the magnetizing field increases. When is gradually decreased from
point there is not a corresponding decrease in the magnetization. The shift of
the domains in a ferromagnetic material is not completely reversible, and some
magnetization remains even when is reduced to zero, as indicated in the
figure. This effect is called hysteresis, from the Greek word hysteros meaning later
or behind, and the curve in Figure 27-44 is called a hysteresis curve. The value of
the magnetic field at point when is zero is called the remnant field At
that point, the iron rod is a permanent magnet. If the current in the solenoid is now
reversed so that is in the opposite direction, the magnetic field is gradually
brought to zero at point The remaining part of the hysteresis curve is obtained
by further increasing the current in the opposite direction until point is reached,
which corresponds to saturation in the opposite direction, and then decreasing the
current to zero at point and increasing it again in its original direction.

Because the magnetization depends on the previous history of the material,
and because it can have a large value even when the applied field is zero, it is not
simply related to the applied field However, if we confined ourselves to that
part of the magnetization curve from the origin to point in Figure 27-44, and

are parallel and is zero when is zero. We can then define the magnetic
susceptibility as in Equation 27-23,

and
27-36

where
27-37

is called the permeability of the material. [For paramagnetic and diamagnetic ma-
terials, is much less than 1 so the permeability and the magnetic constant
(permeability of empty space) are very nearly equal.]

Because does not vary linearly with as can be seen from Figure 27-44, the
relative permeability is not constant. The maximum value of occurs at a magne-
tization that is considerably less than the saturation magnetization. Table 27-2 lists
the saturation magnetic field and the maximum values of for some ferro-
magnetic materials. Note that the maximum values of are much greater than 1.

The area enclosed by the hysteresis curve is proportional to the energy dissipated
as heat in the irreversible process of magnetizing and demagnetizing. If the
hysteresis effect is small, so that the area inside the curve is small, indicating a small
energy loss, the material is called magnetically soft. Soft iron (chemically pure iron)
is an example. The hysteresis curve for a magnetically soft material is shown in
Figure 27-45. Here the remnant field is nearly zero, and the energy loss per cycle
is small. Magnetically soft materials are used for transformer cores to allow the
magnetic field to change without incurring large energy losses as the field changes.B
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F I G U R E  2 7 - 4 4 Plot of versus the
applied magnetizing field The outer
curve is called a hysteresis curve. The field

is called the remnant field. It remains
when the applied field returns to zero.
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Bapp .
B

F I G U R E  2 7 - 4 5 Hysteresis curve for a
magnetically soft material. The remnant field
is very small compared with the remnant field
for a magnetically hard material such as that
shown in Figure 27-44.
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Table 27-2 Maximum Values of and for Some Ferromagnetic Materials

Material

Iron (annealed) 2.16 5500
Iron–silicon (96 percent Fe, 4 percent Si) 1.95 7000
Permalloy (55 percent Fe, 45 percent Ni) 1.60 25,000
Mu-metal (77 percent Ni, 16 percent Fe, 5 percent Cu, 2 percent Cr) 0.65 100,000  

Kmm0Ms,T

K
m

M
0
M

s

On the other hand, a large remnant field is desirable in a permanent magnet.
Magnetically hard materials, such as carbon steel, the alloy Alnico 5, and the rare
earths samarium and neodymium (samarium–cobalt and neodymium–iron–boron)
are used for permanent magnets.

(a)
(b)

(a) An extremely high-capacity, hard-disk drive for magnetic storage of information, capable of storing over
250 gigabytes of information. (b) A magnetic test pattern on a hard disk, magnified 2400 times. The light and dark
regions correspond to oppositely directed magnetic fields. The smooth region just outside the pattern is a region of the
disk that has been erased just prior to writing. ((a) © 2003 Western Digital Corporation. All rights reserved. (b) Tom Chang/
IBM Storage Systems Division, San Jose, CA.)

Example 27-14 Solenoid with Iron Core

A long solenoid has 12 turns per centimeter and a core of soft iron. When the current is
the magnetic field inside the iron core is Find (a) the applied field (b) the

relative permeability and (c) the magnetization 

PICTURE The applied field is just that of a long solenoid given by Because the
total magnetic field is given, we can find the relative permeability from its definition

and we can find from 

SOLVE

B � Bapp � m0M.M(Km � B>Bapp)

Bapp � m0nI.

M.Km,
Bapp ,1.36 T.0.500 A,

(a) The applied field is given by Equation 27-10:

7.54 � 10�4 T�

� (4p � 10�7 T # m>A)(1200 m�1)(0.500 A)

Bapp � m0nI

(b) The relative permeability is the ratio of to Bapp:B 1.80 � 103Km �
B
Bapp

�
1.36 T

7.54 � 10�4 T
�
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* It is simpler to consider positive charges even though negatively charged electrons provide the magnetic moments in matter.
† The electron speeds up because of an electric field induced by the changing magnetic field, an effect called induction,

which we discuss in Chapter 28.

(c) The magnetization is found from Equation 27-35:M

1.08 � 106 A>mM �
B
m0

�
1.36 T

4p � 10�7 T # m>A �

� 1.36 T � 7.54 � 10�4 T � B � 1.36 T

m0M � B � Bapp

CHECK Table 27-2 gives 5500 for the maximum value for Our Part (b) result is less than
this maximum value, as expected.

TAKING IT FURTHER The applied magnetic field of is a negligible fraction
of the total field of 1.36 T.

7.54 � 10�4 T

Km.

*DIAMAGNETISM

Diamagnetic materials are those materials that have very small negative values of
magnetic susceptibility Diamagnetism was discovered by Michael Faraday in
1845 when Faraday found that a piece of bismuth is repelled by either pole of a
magnet, indicating that the external field of the magnet induces a magnetic moment
in bismuth in the direction opposite the field.

We can understand this effect qualitatively from Figure 27-46, which shows two
positive charges moving in circular orbits with the same speed but in opposite di-
rections. Their magnetic moments are in opposite directions and therefore cancel.*
In the presence of an external magnetic field directed into the paper, the charges
experience an extra force which is along the radial direction. For the charge
on the left, this extra force is inward, increasing the centripetal force. If the charge is
to remain in the same circular orbit, it must speed up so that equals the total
centripetal force.† Its magnetic moment, which is out of the page, is thus increased.
For the charge on the right, the additional force is outward, so the particle must
slow down to maintain its circular orbit. Its magnetic moment, which is into the
page, is decreased. In each case, the change in the magnetic moment of the charges
is in the direction out of the page, opposite that of the external applied field. Because
the permanent magnetic moments of the two charges are equal and oppositely
directed they add to zero, leaving only the induced magnetic moments, which are
both in the direction opposite to the direction of the applied magnetic field.

A material is diamagnetic if its atoms have zero net angular momentum and
therefore no permanent magnetic moment. (The net angular momentum of an atom
depends on the electronic structure of the atom, which is presented in Chapter 36.)
The induced magnetic moments that cause diamagnetism have magnitudes of the
order of Bohr magnetons. Because this is much smaller than the permanent
magnetic moments of the atoms of paramagnetic or ferromagnetic materials, the
diamagnetic effect in these atoms is masked by the alignment of their permanent
magnetic moments. However, because this alignment decreases with temperature,
all materials are theoretically diamagnetic at sufficiently high temperatures.

When a superconductor is placed in an external magnetic field, electric currents
are induced on the superconductor’s surface so that the net magnetic field in the su-
perconductor is zero. Consider a superconducting rod inside a solenoid of turns per
unit length. When the solenoid is connected to a source of emf so that it carries a cur-
rent the magnetic field due to the solenoid is A surface current of per unit
length is induced on the superconducting rod that cancels out the field due to the so-
lenoid so that the net field inside the superconductor is zero. From Equation 27-24,

so

A superconductor is thus a perfect diamagnet with a magnetic susceptibility of �1.

xm � �1

B
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S

app(1 � xm) � 0
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,
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xm.
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F I G U R E  2 7 - 4 6 (a) A positive charge
moving counterclockwise in a circle has its
magnetic moment directed out of the paper.
When an external magnetic field directed
into the page is turned on, the magnetic force
increases the centripetal force so the speed
of the particle must increase. The change in
the magnetic moment is out of the page. 
(b) A positive charge moving clockwise in a
circle has its magnetic moment directed into
the page. When an external magnetic field
directed into the page is turned on, the
magnetic force decreases the centripetal force
so the speed of the particle must decrease.
As in (a), the change in the magnetic moment
is directed out of the page.

A superconductor is a perfect diamagnet. Here
the superconducting pendulum bob is repelled
by the permanent magnet. (© Bill Pierce/
Time Magazine, Inc.)
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Physics Spotlight

Solenoids at Work

Why solenoids? Unlike gears, solenoids do not depend on friction for
transferring motion, which means that solenoid-based movement is
less likely to wear out machine parts. Solenoid valves, switches, and
actuators are all based on the same principle—a central core in the so-
lenoid is moved when current exists in the solenoid coils. Solenoid
valves to control the flow of liquids and gases are the most popular
mechanical use of solenoids. Some solenoid valves are opened directly
by the motion of solenoid cores. When the solenoids turn off, springs
return the valves to the off position.* Other solenoid valves, known as
pilot-operated valves, use solenoid cores as switches for pistons that
have very large ports, or use the motion of solenoid cores to open small
pilot ports, which cause enough of a pressure differential in the main
fluid line to open the main valve port.†

Because the cost of replacing a small valve is large due to lost time
on a manufacturing line, manufacturers often choose solenoid valves in
these lines.‡ Some solenoid valves have been rated at several million
cycles.# Solenoid valves also have been designed for use in very chal-
lenging environments. Solenoid valves can operate in corrosive°,§ areas
and in areas that have explosive atmospheres.¶ Landscaping and irriga-
tion applications** require solenoids that can operate outdoors. Solenoids
are increasingly used for complex automated manufacturing processes.††

Because of their high reliability, long duty life, and low power draw compared to strictly mechanical systems, solenoids are
used in robotics, aviation, and automotive applications. In robotics, solenoids often control air valves. In automotive applica-
tions, some solenoids control fluid pressure in the transmission, while others control automatic door locks.

One shortcoming of solenoids is that they are liable to overheating if they are overpowered‡‡ or if the solenoid continu-
ally receives the power that is required to originally turn the solenoid on.## Overheating can fuse solenoid coils, shut down
manufacturing lines, keep engines from starting, and even start fires. Because of these problems, designers are very care-
ful to fit the solenoid to the use and the circuit.

Not all solenoids are used in mechanical applications. Some of the most powerful solenoids on Earth are used to provide
large uniform magnetic fields for particle physics experiments. Many of these solenoids use cryogenically cooled supercon-
ductors to reach their full strength without overheating. A 5-T superconducting solenoid is set up at the Deutsches Elektro-
nen-Synchrotron, or DESY. This magnet produces a magnetic field of when it carries currents of up to 1000 A. For the
superconductors in the coil to work most efficiently, as well as to prevent overheating, the DESY solenoid must be cooled to

°° In Cessy, France, the largest superconducting solenoid magnet on Earth, the Compact Muon Solenoid, is scheduled
to begin operating in November 2007.§§ The coils of the solenoid contain of superconducting niobium/titanium
strands, and the solenoid has an internal diameter of When it is cooled to a current of more than produces
a magnetic field of ¶¶ Whether very large solenoids for particle physics or miniature solenoids for chemical plants, the
reliability and predictability of solenoids are prized assets.

* Hargraves, D., “Solenoid Valves: Operation, Selection, and Application.” Air Conditioning, Heating, & Refrigeration News, Apr. 5, 1999, pp. 26–28.
† Zdobinski, D., Mudd, W., and Byrne, G., “Understanding Applications, Uses, Key to Solenoid Valve Selection.” Plant Engineering, Jun. 2006, pp. 65–68.
‡ Heney, P. J., “Wide Variety of Solenoid Valves Available to Designers.” Hydraulics and Pneumatics, Sept. 1998, Vol. 51, No. 9, pp. 51–56.
# “Updated Solenoid Survives 20 Million Cycles.” Machine Design, Aug. 23, 2001, p. 54.
° “Direct-Acting Solenoid Valves.” Design News, Jun. 5, 2006, pp. 83–84.
§ “Solenoid Valve Handles Acids.” Manufacturing Chemist, Jul. 1996, Vol. 67, No. 7, p. 51.
¶ ”Solenoid Valve for Hazardous Areas.” Offshore, Nov. 1998, Vol. 58, No. 11, p. 216.
** Mentzer, T., “Control Gets ‘Smart’.” Landscape Management, Jan. 2000, Vol. 39, No. 1, pp. .
†† Mervartova, K., Martinez Calatayud, J., and Catala Icardo, M., “A Fully Automated Assembly Using Solenoid Valves for the Photodegradation and Chemiluminometric

Determination of the Herbicide Chlorsulfuron.” Analytical Letters, Jan. 2005, Vol. 38, No. 1, pp. 179–194.
‡‡ Zdobinski, D., Mudd, W., and Byrne, G., op. cit.
## Nakhe, S. V., “Smart Solenoid Driver Reduces Power Loss.” Electronic Design, Oct. 13, 2005, Vol. 53, No. 22, pp. 62–64.
°° Gadwinkel, E., et al., “Cryogenics for a 5 Tesla Superconducting Solenoid with Large Aperture at DESY.” CP170, Advances in Cryogenic Engineering: Transactions of the Cryogenic

Engineering Conference—CEC, Vol. 49, AIP Conference Proceedings, 2004, Vol. 710, Issue 1, pp. 719–725.
§§ Science Daily, “World’s Largest Superconducting Solenoid Magnet Reaches Full Field.” Science Daily, Sept. 26, 2006. http://www.sciencedaily.com/releases/2006/09/

060925075001.htm As of Oct. 2006.
¶¶ Blau, B., and Pauss, F., “Superconducting Magnet: ETH Zürich and Superconductor Manufacture for CMS.” CMS Info, CERN, Apr. 2003, http://cmsinfo.cern.ch/outreach/

CMSdocuments/MagnetBrochure/MagnetBrochure.pdf As of Oct. 2006.  

38�

4 T.
56 kA4.5 K,6.0 m.

1947 km
4.4 K.

5.25 T

The world’s largest superconducting solenoid magnet first
reached its full field strength of 4 T in December 2006.
Weighing in at over 10,000 tonnes, the magnet is built
around a 6-m diameter, 13-m long superconducting
solenoid. The solenoid, which is at CERN, will be used as
part of a muon detector. (CERN.)

http://www.sciencedaily.com/releases/2006/09/060925075001.htm
http://www.sciencedaily.com/releases/2006/09/060925075001.htm
http://cmsinfo.cern.ch/outreach/CMSdocuments/MagnetBrochure/MagnetBrochure.pdf
http://cmsinfo.cern.ch/outreach/CMSdocuments/MagnetBrochure/MagnetBrochure.pdf
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Summary

1. Magnetic fields arise from moving charges, and therefore from currents.

2. The Biot–Savart law describes the magnetic field produced by a current element.

3. Ampère’s law relates the line integral of the magnetic field along some closed curve to the
current that passes through any surface bounded by the curve.

4. The magnetization vector describes the magnetic dipole moment per unit volume 
of matter.

5. The classical relation is derived from the definitions of angular momentum
and magnetic moment.

6. The Bohr magneton is a convenient unit for atomic and nuclear magnetic moments.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Magnetic Field

Due to a moving point charge 27-1

where is a unit vector that points to the field point from the charge moving 
with velocity and is a constant of proportionality called the magnetic constant (the 
permeability of empty space):

27-2

Due to a current element (Biot–Savart law) 27-3

On the axis of a current loop 27-6

Inside a long solenoid, far from the ends 27-10

where is the number of turns per unit length.

Due to a straight-wire segment 27-12

where is the perpendicular distance to the wire and and are the angles subtended at
the field point by the ends of the wire.

Due to a long, straight wire Use Equation 27-12 with and or derive using Ampere’s law.

The direction of is such that the magnetic field lines of encircle the wire in the direction
of the fingers of the right hand if the thumb points in the direction of the current.

Inside the loops of a tightly wound toroid 27-18

2. Magnetic Field Lines Magnetic lines neither begin nor end. Either they form closed loops or they continue
indefinitely.

3. Gauss’s Law for Magnetism 27-15

4. Magnetic Poles Magnetic poles always occur in north–south pairs. Isolated magnetic poles have not been found.

5. Ampère’s Law 27-16

where is any closed curve.C
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Validity of Ampère’s law Ampère’s law is valid only if the currents are steady and continuous. It can be used to derive
expressions for the magnetic field for situations with a high degree of symmetry, such as a
long, straight, current-carrying wire or a long, tightly wound solenoid.

6. Magnetism in Matter Matter can be classified as paramagnetic, ferromagnetic, or diamagnetic.

Magnetization A magnetized material is described by its magnetization vector which is defined as the
magnetic dipole moment per unit volume of the material:

27-19

The magnetic field due to a uniformly magnetized cylinder is the same as if the cylinder car-
ried a current per unit length of magnitude on its surface. This current, which is due to
the intrinsic motion of the atomic charges in the cylinder, is called an amperian current.

7. in Magnetic Materials 27-22

Magnetic susceptibility 27-23

For paramagnetic materials, is a small positive number that depends on temperature. For
diamagnetic materials (other than superconductors), it is a small negative constant indepen-
dent of temperature. For superconductors, For ferromagnetic materials, the mag-
netization depends not only on the magnetizing current but also on the past history of the
material.

Relative permeability 27-24

where

27-25

8. Atomic Magnetic Moments 27-28

where is the orbital angular momentum of the particle.

Bohr magneton

27-30

Due to the orbital motion of an electron 27-29

Due to electron spin 27-31

*9. Paramagnetism Paramagnetic materials have permanent atomic magnetic moments that have random
directions in the absence of an applied magnetic field. In an applied field these dipoles are
aligned with the field to some degree, producing a small contribution to the total field that
adds to the applied field. The degree of alignment is small except in very strong fields and
at very low temperatures. At ordinary temperatures, thermal motion tends to maintain the
random directions of the magnetic moments.

Curie’s law In weak fields, the magnetization is approximately proportional to the applied field and
inversely proportional to the absolute temperature.
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*10. Ferromagnetism Ferromagnetic materials have small regions of space called magnetic domains in which all
the permanent atomic magnetic moments are aligned. When the material is unmagnetized,
the direction of alignment in one domain is independent of that in another domain so that
no net magnetic field is produced. When the material is magnetized, the domains of a ferro-
magnetic material are aligned, producing a very strong contribution to the magnetic field.
This alignment can persist in magnetically hard materials, even when the external field is
removed, thus leading to permanent magnets.

*11. Diamagnetism Diamagnetic materials are those materials in which the magnetic moments of all electrons in
each atom cancel, leaving each atom with a zero magnetic moment in the absence of an ex-
ternal field. In an applied magnetic field, a very small magnetic moment is induced that
tends to weaken the field. This effect is independent of temperature. Superconductors are
diamagnetic with a magnetic susceptibility equal to �1.

Answers to Practice Problems

27-1

27-2 25 A

27-4 This is about 2 percent less than the 
step-3 result.

27-5 at the center is larger for the circle.

27-6

27-7 0

27-8
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� 3.2 � 10�14 T kn

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

+ +q

− −q
I

Magnetic dipoleElectric dipole

F I G U R E  2 7 - 4 7 Problem 1

CONCEPTUAL PROBLEMS

1 • Sketch the field lines for the electric dipole and the mag-
netic dipole shown in Figure 27-47. How do the field lines differ in
appearance close to the center of each dipole? I I

F I G U R E  2 7 - 4 8

Problem 2

2 • Two wires lie in the plane of
the page and carry equal currents in
opposite directions, as shown in Figure
27-48. At a point midway between the
wires, the magnetic field is (a) zero,
(b) into the page, (c) out of the page,
(d) toward the top or bottom of the page,
(e) toward one of the two wires.

3 • Parallel wires 1 and 2 carry
currents and respectively, where

The two currents are in the
same direction. The magnitudes of the
magnetic force by current 1 on wire 2

I2 � 2I1 .
I2 ,I1

TOPIC RELEVANT EQUATIONS AND REMARKS
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and by current 2 on wire 1 are and respectively. These mag-
nitudes are related by (a) (b) (c)
(d) (e)

4 • Make a field-line sketch of the
magnetic field due to the currents in the pair
of identical coaxial coils shown in Figure 
27-49. Consider two cases: (a) the currents in
the coils have the same magnitude and have
the same direction and (b) the currents in the
coils have the same magnitude and have
the opposite directions.

5 • Discuss the differences and similarities between
Gauss’s law for magnetism and Gauss’s law for electricity.

6 • Explain how you would modify Gauss’s law if scientists
discovered that single, isolated magnetic poles actually existed. 

7 • You are facing directly into one end of a long solenoid and
the magnetic field inside of the solenoid points away from you. From
your perspective, is the direction of the current in the solenoid coils
clockwise or counterclockwise? Explain your answer.

8 • Opposite ends of a helical metal spring are connected to
the terminals of a battery. Do the spacings between the coils of the
spring tend to increase, decrease, or remain the same when the bat-
tery is connected? Explain your answer.

9 • The current density is constant and uniform in a long,
straight wire that has a circular cross section. True or false:
(a) The magnitude of the magnetic field produced by the wire is

greatest at the surface of the wire.
(b) The magnetic field strength in the region surrounding the wire

varies inversely with the square of the distance from the wire’s
central axis.

(c) The magnetic field is zero at all points on the wire’s central axis.
(d) The magnitude of the magnetic field inside the wire increases

linearly with the distance from the wire’s central axis.

10 • If the magnetic susceptibility of a material is positive,
(a) paramagnetic effects or ferromagnetic effects must be greater
than diamagnetic effects, (b) diamagnetic effects must be greater than 
paramagnetic effects, (c) diamagnetic effects must be greater than fer-
romagnetic effects, (d) ferromagnetic effects must be greater than
paramagnetic effects, (e) paramagnetic effects must be greater
than ferromagnetic effects.

11 • Of the four gases listed in Table 27-1, which are diamag-
netic and which are paramagnetic?

12 • When a current is passed through the wire in Figure 27-50,
will the wire tend to bunch up or will it tend to form a circle? Explain
your answer.

SSM

SSM

SSM

4F21 � F12 .F21 � 4F12 ,
2F21 � F12 ,F21 � 2F12 ,F12 � F21 ,

F21 ,F12
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THE MAGNETIC FIELD OF
MOVING POINT CHARGES

13 • At time a particle has a charge of is lo-
cated in the plane at and has a velocity
equal to Find the magnetic field in the plane at
(a) the origin, (b) (c) and
(d) SSMx � 0, y � 4.0 m.

x � 0, y � 3.0 m,x � 0, y � 1.0 m,
z � 030 m>s in.

x � 0, y � 2.0 m,z � 0
12 mC,t � 0,

14 • At time a particle has a charge of is
located in the plane at and has a velocity
equal to Find the magnetic field in the plane 
at (a) (b) and
(c)

15 • A proton has a velocity of 
and is located in the plane at 

at some time Find the magnetic field in the plane 
at (a) (b) and
(c)

16 •• In a pre–quantum-mechanical model of the hydrogen
atom, an electron orbits a proton at a radius of m.
According to this model, what is the magnitude of the magnetic
field at the proton due to the orbital motion of the electron? Neglect
any motion of the proton.

17 •• Two equal point charges are, at some instant, located at
(0, 0, 0) and at (0, 0). They are both moving with speed in the

direction (assume . Find the ratio of the magnitude of the
magnetic force to the magnitude of the electric force on each charge.

THE MAGNETIC FIELD
USING THE BIOT–SAVART LAW

18 • A small current element at the origin has a length of
and carries a current of in the direction. Find 

the magnetic field due to the current element (a) on the axis 
at (b) on the axis at (c) on the axis at

and (d) on the axis at

19 • A small current element at the origin has a length of
and carries a current of in the direction. Find the

magnitude and direction of the magnetic field due to this current
element at the point .

20 • A small current element at the origin has a length of
and carries a current of in the direction. Find the

magnitude of the magnetic field due to this current element and in-
dicate its direction on a diagram at (a)
and (b)

THE MAGNETIC FIELD DUE
TO CURRENT LOOPS AND COILS

21 • A single conducting loop has a radius equal to 
and carries a current equal to What is the magnitude of the
magnetic field on the line through the center of the loop and per-
pendicular to the plane of the loop (a) at the center of the loop,
(b) from the center, (c) from the center, and (d)
from the center?

22 ••• SPREADSHEET A pair of identical coils, each having a
radius of are separated by a distance equal to their radii, that
is, Called Helmholtz coils, they are coaxial and carry equal
currents in directions such that their axial fields are in the same di-
rection. A feature of Helmholtz coils is that the resultant magnetic
field in the region between the coils is very uniform. Assume the
current in each is and there are 250 turns for each coil. Using a
spreadsheet program, calculate and graph the magnetic field as a
function of the distance from the center of the coils along the
common axis, for Over what range of 
does the field vary by less than 20%?

z�30 cm 	 z 	 �30 cm.
z,

15 A

30 cm.
30 cm,

35 cm2.0 cm1.0 cm

2.6 A.
3.0 cm

x � 2.0 m, y � 0, z � 4.0 m.
x � 2.0 m, y � 4.0 m, z � 0

�z2.0 A2.0 mm

SSM(0, 3.0 m, 4.0 m)

�z2.0 A2.0 mm

y � 3.0 m.yz � 3.0 m,
zx � �6.0 m,xx � 3.0 m,
x

�z2.0 A2.0 mm

v V c)�x
vb,

q

5.29 � 10�11

x � 3.0 m, y � 6.0 m.
y � 4.0 m,x � 6.0 m,x � 2.0 m, y � 2.0 m,

z � 0t � T.
x � 3.0 m, y � 4.0 mz � 0102 m>s jn

1.0 � 102 m>s in � 2.0 �

x � 2.0 m, y � 3.0 m.
y � 2.0 m,x � 2.0 m,x � 1.0 m, y � 3.0 m,
z � 030 m>s in.

x � 0, y � 2.0 m,z � 0
12 mC,t � 0,



33 •• As a student technician, you are preparing a lecture
demonstration on “magnetic suspension.” You have a 16-cm-long
straight, rigid wire that will be suspended by flexible conductive
lightweight leads above a long, straight wire. Currents that are equal
but are in opposite directions will be established in the two wires so
the 16-cm wire “floats” a distance above the long wire with no
tension in its suspension leads. If the mass of the 16-cm wire is 
and if (the distance between the central axes of the two wires) is

what should their common current be?

34 •• Three long, parallel straight wires pass through the
vertices of an equilateral triangle that has sides equal to as
shown in Figure 27-53. A dot indicates that the direction of the cur-
rent is out of the page and a cross indicates that the direction of the
current is into the page. If each current is find (a) the magnetic
field at the location of the upper wire due to the currents in the two
lower wires and (b) the force per unit length on the upper wire.

15 A,

10 cm,

SSM1.5 mm,
h

14 g
hz

x y

y = –6.0 cm

y = +6.0 cm
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23 ••• A pair of Helmholtz coils that have radii have their axes
along the axis (see Problem 22). One coil is in the plane
and the second coil is in the plane. Show that on the axis
at and (Note: These re-
sults show that the magnitude and direction of the magnetic field in
the region to either side of the midpoint are approximately equal to
the magnitude and direction of the magnetic field at the midpoint.)

24 ••• ENGINEERING APPLICATION Anti-Helmholtz coils are used
in many physics applications, such as laser cooling and trapping,
where a field with a uniform gradient is desired. These coils have
the same construction as a Helmholtz coil, except that the currents
have opposite directions, so that the axial fields are in opposite
directions, and the coil separation is rather than Graph the
magnetic field as a function of the axial distance from the center
of the coils, for an anti-Helmholtz coil using the same parameters as
in Problem 22. Over what interval of the axis is within one
percent of its value at the midpoint between the coils?

THE MAGNETIC FIELD DUE
TO STRAIGHT-LINE CURRENTS

Problems 25 to 30 refer to Figure 27-51 which shows two
long, straight wires in the plane and parallel to the axis.
One wire is at and the other wire is at

The current in each wire is 20 A.y � �6.0 cm.
y � �6.0 cm

xxy

dBz >dzz

z,
R.13R

d3Bz >dz3 � 0.dBz >dz � 0, d2Bz >dz2 � 0,z � 0
zz � �1

2R
z � �1

2Rz
R 29 • Find the magnetic field on the axis at if

(a) the currents are both in the direction and (b) the current in
the wire at is in the direction and the current in the
wire at is in the direction.

30 • Find the magnitude of the force per unit length exerted
by one wire on the other.

31 • Two long, straight parallel wires apart carry equal
currents. The wires repel each other with a force per unit length of

(a) Are the currents parallel or antiparallel? Explain your
answer. (b) Determine the current in each wire.

32 •• The current in the wire shown in Figure 27-52 is 8.0 A.
Find the magnetic field at point P.

3.6 nN>m.

8.6 cm

�xy � �6.0 cm
�xy � �6.0 cm

�x
z � �8.0 cmz

2.0 cm

P8.0 A

1.0 cm
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10 cm

10 cm

10
 cm
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25 •• If the currents are both in the direction, find
the magnetic field at the following points on the axis:
(a) (b) (c) and (d)

26 •• SPREADSHEET Using a spreadsheet program or
graphing calculator, graph versus when both currents are in
the direction. 

27 •• The current in the wire at is in the di-
rection and the current in the wire at is in the di-
rection. Find the magnetic field at the following points on the axis:
(a) (b) (c) and (d)

28 •• SPREADSHEET The current in the wire at is
in the direction and the current in the wire at is in
the direction. Using a spreadsheet program or graphing calcu-
lator, graph versus y .Bz

�x
y � �6.0 cm�x
y � �6.0 cm

y � �9.0 cm.y � �3.0 cm,y � 0,y � �3.0 cm,
y
�xy � �6.0 cm
�xy � �6.0 cm

�x
yBz

SSM

�9.0 cm.y �y � �3.0 cm,y � 0,y � �3.0 cm,
y

�x

35 •• Rework Problem 34 with the current in the lower right
corner of Figure 27-53 reversed.

36 •• An infinitely long wire lies along the axis and carries
current in the direction. A second infinitely long wire lies
along the axis and carries current in the direction. At what
points in the plane is the resultant magnetic field zero?

37 •• An infinitely long wire lies along the axis and carries
a current of in the direction. A second infinitely long wire
is parallel to the axis and intersects the axis at x � 10.0 cm.xz

�z20 A
z

z � 0
�yIy

�xI
x



47 •• Show that a uniform magnetic field that has no fringing
field, such as that shown in Figure 27-56, is impossible because it vi-
olates Ampère’s law. Do this calculation by applying Ampère’s law
to the rectangular curve shown by the dashed lines. SSM
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44 ••• In Problem 43, an expression for the magnitude of the
magnetic field along the axis of a solenoid is given. For and

the angles and are very small, so the small-angle ap-
proximations and are highly accu-
rate. (a) Draw a diagram and use it to show that, for these condi-
tions, the angles can be approximated as and

(b) Using these approximations, show that the
magnetic field at points on the axis where can be written as

where is the distance to the near end

of the solenoid, is the distance to the far end, and the
quantity is defined by where is
the magnitude of the magnetic moment of the solenoid.

USING AMPÈRE’S LAW

45 • A long, straight, thin-walled cylindrical shell of radius 
carries a current parallel to the central axis of the shell. Find
the magnetic field (including direction) both inside and outside the
shell.
46 • In Figure 27-55, one current is into the page, the
other current is out of the page, and each curve is a circular
path. (a) Find for each path, assuming that each integral is
to be evaluated in the counterclockwise direction. (b) Which path, if
any, can be used to find the combined magnetic field of the currents?

AC B
S # d�

S
8.0 A

8.0 A
SSM

I
R

m � NIpR2qm � nIpR2 � m>�,qm

r1 � z � 1
2 �

r2 � z � 1
2 �B �

m0

4p
a qm
r 2

2

�
qm
r 2

1

b zW �z
u2 � R>(z � 1

2 �).
u1 � R>(z � 1

2 �)

sinu � tanu � ucosu � 1 � 1
2 u

2
u2u1zW R,

zW �
(a) Find the current in the second wire if the magnetic field 
is zero at (b) What is the magnetic field at

38 •• Three long parallel wires are at the corners of a square, as
shown in Figure 27-54. The wires each carry a current Find the
magnetic field at the unoccupied corner of the square when (a) all
the currents are into the page, (b) and are into the page and 
is out, and (c) and are into the page and is out. Your answers
should be in terms of and L .I

I3I2I1

I2I3I1

I.

SSM(5.0 cm, 0, 0)?
(2.0 cm, 0, 0).

C1

C2

C3
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39 •• Four long, straight parallel wires each carry current In a
plane perpendicular to the wires, the wires are at the corners of a
square of side length Find the magnitude of the force per unit
length on one of the wires if (a) all the currents are in the same
direction and (b) the currents in the wires at adjacent corners are
oppositely directed.

40 •• Five long, straight, current-carrying wires are parallel to
the axis, and each carries a current in the direction. The wires
each are a distance from the axis. Two of the wires intersect the

axis, one at and the other at Another wire intersects
the axis at One of the remaining wires intersects the 
plane at the point and the last remaining wire
intersects the plane at the point Find the
magnetic field on the axis.

MAGNETIC FIELD DUE TO A
CURRENT-CARRYING SOLENOID

41 •• A solenoid that has length radius and
300 turns carries a current of Find the magnitude of the
magnetic field on the axis of the solenoid (a) at the center of the
solenoid and (b) at one end of the solenoid.

42 • A solenoid is long, has a radius of 
and has 600 turns. It carries a current of What is the
magnitude of the magnetic field inside the solenoid and far
from either end?

43 •• A solenoid has turns per unit length, has a radius 
and carries a current Its axis coincides with the axis—one 
end at and the other end at Show that 
the magnitude of the magnetic field at a point on the axis is 
given by where the angles are related

to the geometry by and 

(z � 1
2 �)>4(z � 1

2 �)2 � R2 .

cosu2 �cosu1 � (z � 1
2 �)>4(z � 1

2 �)2 � R2

B � 1
2m0nI(cosu1 � cosu2),

z
z � � 1

2 �.z � � 1
2 �

zI.
R,n

B
2.5 A.I

0.85 cm,2.7 m

SSM

2.6 A.
1.2 cm,30 cm,

z
(�R>12, R>12).z � 0

(R>12, R>12)
z � 0y � R.y

x � �R.x � Rx
zR

�zIz

SSM

a.

I.

L

L

L

L
I2 I3

I1
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definitely in all directions and the current is uniformly distributed
throughout the sheet. To find the direction of the magnetic field at
point consider the field due only to the currents and in 
the two narrow strips shown. The strips are identical, so 
(a) What is the direction of the magnetic field at point due to 
just and ? Explain your answer using a sketch. (b) What 
is the direction of the magnetic field at point due to the 
entire sheet? Explain your answer. (c) What is the direction of 
the field at a point to the right of point (where )? Explain
your answer. (d) What is the direction of the field at a point 
below the sheet (where )? Explain your answer using a
sketch. (e) Apply Ampère’s law to the rectangular curve (Figure
27-58b) to show that the magnetic field strength at point is given
by where is the current per unit length along
the axis.

MAGNETIZATION AND
MAGNETIC SUSCEPTIBILITY

53 • A tightly wound solenoid is long, has
and carries a current of so that its axial field is

in the direction. Find and at the center when (a) there
is no core in the solenoid and (b) there is a soft iron core that has
a magnetization of 

54 • A long tungsten-core solenoid carries a current. (a) If
the core is removed while the current is held constant, does the
magnetic field strength in the region inside the solenoid
decrease or increase? (b) By what percentage does the magnetic
field strength in the region inside the solenoid decrease or
increase?

55 • As a liquid fills the interior volume of a solenoid that car-
ries a constant current, the magnetic field inside the solenoid
decreases by Determine the magnetic susceptibility
of the liquid.

56 • A long thin solenoid carrying a current of has
per centimeter of length. What is the magnetic field

strength in the region occupied by the interior of the solenoid when
the interior is (a) a vacuum, (b) filled with aluminum, and (c) filled
with silver?

57 •• A cylinder of iron, initially unmagnetized, is cooled to
What is the magnetization of the cylinder at that tem-

perature due to the influence of Earth’s magnetic field of
Assume a magnetic moment of 2.00 Bohr magnetons

per atom.

58 •• A cylinder of silver at a temperature of has a
magnetization equal to 0.075% of its saturation magnetization.
Assume a magnetic moment of one Bohr magneton per atom.
The density of silver is (a) What value of ap-
plied magnetic field parallel to the central axis of the cylinder is
required to reach this magnetization? (b) What is the magnetic
field strength at the center of the cylinder?

59 •• During a solid-state physics lab, you are handed a cylin-
drically shaped sample of unknown magnetic material. You and
your lab partners place the sample in a long solenoid that has turns
per unit length and a current The values for magnetic field BI.

n

1.05 � 104 kg>m3.

77 K

SSM

0.300 G?

4.00 K.

50 turns
10 A

0.0040 percent.

SSM1.2 � 106 A>m.

BappB�z
4.00 A400 turns,

20.0 cm

y
l � dI>dyB � 1

2m0l,
P

z 	 0

y � 0P

P
I2I1

P
I1 � I2 .
I2I1P

51 •• A tightly wound 1000-turn toroid has an inner radius of
and an outer radius of and carries a current of

The toroid is centered at the origin with the centers of the in-
dividual turns in the plane. In the  plane: (a) What is the
magnetic field strength at a distance of from the origin?
(b) What is the magnetic field strength at a distance of from
the origin?

52 ••• A thin conducting sheet in the plane carries
current in the direction (Figure 27-58a). The sheet extends in-�x

z � 0

SSM

1.50 cm
1.10 cm
z � 0z � 0

1.50 A.
2.00 cm,1.00 cm

48 •• SPREADSHEET A coaxial cable consists of a solid con-
ducting cylinder that has a radius equal to and a conduct-
ing cylindrical shell that has an inner radius equal to and
an outer radius equal to The solid cylinder carries a cur-
rent of parallel to the central axis. The cylindrical shell car-
ries a current of in the opposite direction. Assume that the
current densities are uniformly distributed in both conductors.
(a) Using a spreadsheet program or graphing calculator, graph the
magnitude of the magnetic field as a function of the radial distance 
from the central axis for (b) What is the magni-
tude of the field for 

49 •• A long cylindrical shell has an inner radius and an
outer radius and carries a current parallel to the central axis.
Assume that within the material of the shell the current density is
uniformly distributed. Find an expression for the magnitude of the
magnetic field for (a) (b) and (c)

50 •• Figure 27-57 shows a solenoid that has turns per unit
length and carries a current Apply Ampère’s law to the rectangu-
lar curve shown in the figure to derive an expression for the mag-
nitude of the magnetic field. Assume that inside the solenoid the
magnetic field is uniform and parallel with the central axis, and that
outside the solenoid there is no magnetic field.

I.
n

SSMR 
 b.a 	 R 	 b,0 	 R 	 a,

Ib
a

R 
 3.00 mm?
0 	 R 	 3.00 mm.

r

15.0 A
15.0 A

3.00 mm.
2.00 mm

1.00 mm

b C

a

B

Iout

Iin

w

y

P

P

h

y

x

z

aa

h

(b)

(a)

I1 I2

h
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within the material versus are given below. Use these values to
plot versus and versus where is the field due to the 
current and is the relative permeability of the sample.

0 50 100 150 200 500 1000 10 000

T 0 0.04 0.67 1.00 1.2 1.4 1.6 1.7

ATOMIC MAGNETIC MOMENTS

60 •• Nickel has a density of and a molar mass of
Nickel’s saturation magnetization is Calculate

the magnetic moment of a nickel atom in Bohr magnetons.

61 •• Repeat Problem 60 for cobalt, which has a density of
a molar mass of and a saturation magneti-

zation of 

*PARAMAGNETISM

62 • Show that Curie’s law predicts that the magnetic suscep-
tibility of a paramagnetic substance is given by 

63 •• In a simple model of paramagnetism, we can consider
that some fraction of the atoms have their magnetic moments
aligned with the external magnetic field and that the rest of the
atoms are randomly oriented and therefore do not contribute to
the magnetic field. (a) Use this model and Curie’s law to show that
at temperature and external magnetic field the fraction of
aligned atoms is given by (b) Calculate this fraction for
a sample temperature of and an external field of 
Assume that has a value of 

64 •• Assume that the magnetic moment of an aluminum atom
is The density of aluminum is and
its molar mass is (a) Calculate the value of the satura-
tion magnetization and the saturation magnetic field for aluminum.
(b) Use the result of Problem 62 to calculate the magnetic suscepti-
bility at (c) Explain why the result for Part (b) is larger than
the value listed in Table 27-1.

65 •• A toroid has turns, carries a current has a mean
radius and has a cross-sectional radius where 
(Figure 27-59). When the toroid is filled with material, it is called a
Rowland ring. Find and in such a ring, assuming a magneti-
zation that is everywhere parallel to SSMB

S

app .
BBapp

r V Rr,R,
I,N

300 K.

27.0 g>mol.
2.70 g>cm31.00 Bohr magneton.

1.00 Bohr magneton.m

1.00 T.300 K
mB>(3kT).f

B,T

f

xm � m0Ms >(3kT).

1.79 T.
58.9 g>mol,8.90 g>cm3,

0.610 T.58.7 g>mol.
8.70 g>cm3

B,

nI, A/m

KmI

BappnI,KmBappB
nI

I

I

Rr
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67 •• The centers of the turns of a toroid form a circle with a ra-
dius of The cross-sectional area of each turn is It
is wound with of fine wire, and the wire carries a current
of The core is filled with a paramagnetic material of mag-
netic susceptibility (a) What is the magnitude of the
magnetic field within the substance? (b) What is the magnitude of
the magnetization? (c) What would the magnitude of the magnetic
field be if there were no paramagnetic core present?

*FERROMAGNETISM

68 • For annealed iron, the relative permeability has its
maximum value of approximately 5500 at 
Find the magnitude of the magnetization and magnetic field in an-
nealed iron when is maximum.

69 •• The saturation magnetization for annealed iron occurs
when Find the permeability and the relative perme-
ability of annealed iron at saturation. (See Table 27-2.)

70 •• The coercive force (which is a misnomer because it is really
a magnetic field value) is defined as the applied magnetic field
needed to bring the magnetic field back to zero along the hysteresis
curve (which is point in Figure 27-44). For a certain permanent bar
magnet, the coercive force is known to be The bar
magnet is to be demagnetized by placing it inside a 15.0-cm-long
solenoid that has What minimum current is needed in
the solenoid to demagnetize the magnet?

71 •• A long thin solenoid has and carries a cur-
rent of The solenoid is filled with iron and the magnetic
field is measured to be (a) Neglecting end effects, what is the
magnitude of the applied magnetic field? (b) What is the magneti-
zation? (c) What is the relative permeability?

72 •• When the current in Problem 71 is the magnetic
field is measured to be (a) Neglecting end effects, what is the
applied magnetic field? (b) What is the magnetization? (c) What is
the relative permeability?

73 •• A toroid has turns, carries a current has a mean
radius and has a cross-sectional radius where (Figure
27-59). The core of the toroid is filled with iron. When the current
is the magnetic field in the region where the iron is has a
magnitude of (a) What is the magnetization? (b) Find the
values for the relative permeability, the permeability, and the
magnetic susceptibility for this iron sample.

74 • The centers of the turns of a toroid form a circle with
a radius of The cross-sectional area of each turn is

It is wound with of fine wire, and the wire
carries a current of The core is filled with soft iron,
which has a relative permeability of 500. What is the magnetic
field strength in the core?

75 ••• A long, straight wire that has a radius of is
coated with an insulating ferromagnetic material that has a thick-
ness of and a relative magnetic permeability of 400. The
coated wire is in air and the wire itself is nonmagnetic. The wire
carries a current of (a) Find the magnetic field in the region
occupied by the inside of the wire as a function of the perpendicu-
lar distance, from the central axis of the wire. (b) Find the mag-
netic field in the region occupied by the inside of the ferromagnetic

r,

40.0 A.

3.00 mm

1.00 mm

0.200 A.
5278 turns3.00 cm2.

14.0 cm.

SSM

1.80 T.
10.0 A,

r V Rr,R,
I,N

1.58 T.
0.200 A,

1.72 T.
2.00 A.

50 turns>cm

600 turns.

5.53 � 10�2 T.
c

SSM

Bapp � 0.201 T.

Km

Bapp � 1.57 � 10�4 T.
Km

2.90 � 10�4.
4.00 A.

5278 turns
3.00 cm2.14.0 cm.

66 •• A toroid is filled with liquid oxygen that has a magnetic
susceptibility of The toroid has and carries
a current of Its mean radius is and the radius of its
cross section is (a) What is the magnetization? (b) What is
the magnetic field? (c) What is the percentage change in the mag-
netic field produced by the liquid oxygen?

8.00 mm.
20.0 cm,15.0 A.

2000 turns4.00 � 10�3.
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material as a function of the perpendicular distance, from the
central axis of the wire. (c) Find the magnetic field in the region
surrounding the wire and coating as a function of the perpendicu-
lar distance, from the central axis of the wire. (d) What must the
magnitudes and directions of the amperian currents be on the sur-
faces of the ferromagnetic material to account for the magnetic
fields observed?

GENERAL PROBLEMS

76 • Find the magnetic field at point in Figure 27-60.P

r,

r, 81 •• A long, straight wire carries a current of as shown
in Figure 27-63. A rectangular coil that has two sides parallel to the
straight wire has sides that are long and long. The
side nearest to the wire is from the wire. The coil carries a
current of (a) Find the force on each segment of the rectan-
gular coil due to the current in the long, straight wire. (b) What is
the net force on the coil? SSM

5.00 A.
2.00 cm

10.0 cm5.00 cm

20.0 A,

77 • Using Figure 27-61, find the magnetic field (in terms of
the parameters given in the figure) at point the common center
of the two arcs. SSM

P,

P

60°

F I G U R E  2 7 - 6 4 Problem 82

20 A

2.0 cm

10 cm

5.0 cm

5.0 A

F I G U R E  2 7 - 6 3 Problem 81

P
R1

R2

I

F I G U R E  2 7 - 6 1 Problem 77

2a

P

I

a

a

F I G U R E  2 7 - 6 2 Problem 79

78 •• A wire of length is wound into a circular coil of N turns
and carries a current Show that the magnetic field strength in the
region occupied by the center of the coil is given by 

79 •• A very long wire carrying a current is bent into the
shape shown in Figure 27-62. Find the magnetic field at point P.

I

m0pN
2I>�.

I.
�

P

F I G U R E  2 7 - 6 5 Problem 83

82 •• The closed loop shown in Figure 27-64 carries a current
of in the counterclockwise direction. The radius of the outer
arc is and that of the inner arc is Find the magnetic
field at point P.

0.40 m.0.60 m
8.0 A

83 •• A closed circuit consists of two semicircles of radii 
and that are connected by straight segments, as shown in
Figure 27-65. A current of exists in this circuit and has a clock-
wise direction. Find the magnetic field at point P.

3.0 A
20 cm

40 cm

15 A

P

20 cm

F I G U R E  2 7 - 6 0 Problem 76

80 •• A power cable carrying is below Earth’s sur-
face, but the cable’s direction and precise position are unknown.
Explain how you could locate the cable using a compass. Assume
that you are at the equator, where Earth’s magnetic field is
horizontal and due north.0.700 G

2.0 m50 A

84 •• A very long, straight wire carries a current of An
electron outside the wire is from the central axis of the wire
and is moving with a speed of Find the force on the
electron when it moves (a) directly away from the wire, (b) parallel to
the wire in the direction of the current, and (c) perpendicular to the
central axis of wire and tangent to a circle that is coaxial with the wire.

85 •• SPREADSHEET A current of is uniformly distrib-
uted over the cross section of a long, straight wire of radius

Using a spreadsheet program, graph the magnetic
field strength as a function of (the distance from the central axis
of the wire) for 0 � R � 10R0 .

R
R0 � 2.55 mm.

5.00 A

5.00 � 106 m>s.
1.00 cm

20.0 A.
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10 cm

r

I

F I G U R E  2 7 - 6 6 Problem 91

θ

a

R

I

P

F I G U R E  2 7 - 6 7 Problem 92

86 •• A 50-turn coil of radius carries a current of 
and a concentric 20-turn coil of radius carries a current of

The planes of the two coils are perpendicular. Find the mag-
nitude of the torque exerted by the large coil on the small coil.
(Neglect any variation in magnetic field due to the current in the
large coil over the region occupied by the small coil.)

87 •• The magnetic needle of a compass is a uniform rod with
a length of a radius of and a density of

The needle is free to rotate in a horizontal plane,
where the horizontal component of Earth’s magnetic field is

When disturbed slightly, the compass executes simple har-
monic motion about its midpoint with a frequency of 
(a) What is the magnetic dipole moment of the needle? (b) What is
the magnetization of the needle? (c) What is the amperian current
on the surface of the needle?

88 •• A relatively inexpensive ammeter, called a tangent gal-
vanometer, can be made using Earth’s magnetic field. A plane circu-
lar coil that has turns and a radius is oriented so the magnetic
field it produces in the center of the coil is either east or west. A
compass is placed at the center of the coil. When there is no current
in the coil, assume the compass needle points due north. When there
is a current in the coil , the compass needle points in the direction
of the resultant magnetic field at an angle to the north. Show that
the current is related to and to the horizontal component of Earth’s

magnetic field by 

89 •• Earth’s magnetic field is about at the magnetic
poles, and is pointed vertically downward at the magnetic pole in
the northern hemisphere. If the magnetic field were due to an elec-
tric current circulating in a loop at the radius of the inner iron core
of Earth (approximately , (a) what would be the magni-
tude of the current required? (b) What direction would this current
have–the same as Earth’s spin, or opposite? Explain your answer.

90 •• A long, narrow bar magnet has its magnetic moment 
parallel to its long axis and is suspended at its center—in essence
becoming a frictionless compass needle. When the magnet is placed
in a magnetic field it lines up with the field. If it is displaced by
a small angle and released, show that the magnet will oscillate

about its equilibrium position with frequency given by 

where is the moment of inertia about the point of suspension.

91 •• An infinitely long, straight wire is bent, as shown in
Figure 27-66. The circular portion has a radius of and its
center is a distance from the straight part. Find the value of such
that the magnetic field at the center of the circular portion is zero.

rr
10.0 cm

I

1
2p AmBI ,

B
S

,

M
S

1300 km)

0.600 G

I �
2RBe

m0N
 tanu.Be

uI
u

(I)

Bc

RN

1.40 Hz.
0.600 G.

7.96 � 103 kg>m3.
0.850 mm,3.00 cm,

1.00 A.
0.500 cm

4.00 A10.0 cm

z

yx
I = 5.0 A

10 cm

20 cm

I = 10 A

F I G U R E  2 7 - 6 8 Problem 94

92 •• (a) Find the magnetic field strength at point on the per-
pendicular bisector of a wire segment carrying current as shown
in Figure 27-67. (b) Use your result from Part (a) to find the mag-
netic field strength at the center of a regular polygon of sides.
(c) Show that when is very large, your result approaches that for
the magnetic field strength at the center of a circle.

N
N

I,
P

93 •• The current in a long cylindrical conductor of radius
varies with distance from the axis of the cylinder according

to the relation Find the magnetic field at the fol-
lowing perpendicular distances from the wire’s central axis:
(a) (b) and (c)

94 •• Figure 27-68 shows a square loop that has 20-cm-long
sides and is in the plane with its center at the origin. The loop
carries a current of An infinitely long wire that is parallel to
the axis and carries a current of intersects the axis at

. The directions of the currents are shown in the figure.
(a) Find the net torque on the loop. (b) Find the net force on the loop.
z � 10 cm

z10 Ax
5.0 A.
z � 0

20 cm.10 cm,5.0 cm,

I(r) � (50 A>m)r.
10 cm

95 •• A current balance is constructed in the following way:
A straight 10.0-cm-long section of wire is placed on top of the
pan of an electronic balance (Figure 27-69). This section of wire
is connected in series with a power supply and a long straight
horizontal section of wire that is parallel to it and positioned
directly above it. The distance between the central axes of the
two wires is The power supply provides a current in 
the wires. When the power supply is switched on, the reading
on the balance increases by What is the current in the
wire? SSM

5.00 mg.

2.00 cm.

2 cm

Power
supply

Electronic balance

Wire 
supports

F I G U R E  2 7 - 6 9 Problem 95
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96 •• Consider the current balance of Problem 95. If the sen-
sitivity of the balance is what is the minimum current
detectable using this current balance?

97 ••• A nonconducting disk has radius carries a uniform
surface charge density and rotates with angular speed 
(a) Consider an annular strip that has a radius a width and a
charge Show that the current produced by this rotating strip
is given by (b) Use your result from Part (a) to show that the
magnetic field strength at the center of the disk is given by the ex-

vsr dr.
(dI)dq.

dr,r,
v.s,

R,

0.100 mg,
pression (c) Use your result from Part (a) to find an ex-
pression for the magnetic field strength at a point on the central axis
of the disk a distance from its center.

98 ••• A square loop that has sides of length lies in the 
plane with its center at the origin. The loop carries a current 
(a) Derive an expression for the magnetic field strength at any point
on the axis. (b) Show that for much larger than your result
from Part (a) becomes where is the magnitude of
the magnetic moment of the loop.

mB � mm0 >(2pz3),
�,zz

I.
z � 0�

SSMz

1
2m0svR.



Magnetic Induction

28-1 Magnetic Flux

28-2 Induced EMF and Faraday’s Law

28-3 Lenz’s Law

28-4 Motional EMF

28-5 Eddy Currents

28-6 Inductance

28-7 Magnetic Energy

28-8 Circuits

28-9 Magnetic Properties of Superconductors

I
n the early 1830s, Michael Faraday in England and Joseph Henry in the United
States independently discovered that in a changing magnetic field a changing
magnetic flux through a surface bounded by a closed stationary loop of wire
induces a current in the wire. The emfs and currents caused by such changing
magnetic fluxes are called induced emfs and induced currents. The process
itself is referred to as induction. Faraday and Henry also discovered that in

a static magnetic field a changing magnetic flux through a surface bounded by a
moving loop of wire induces an emf in the wire. An emf caused by the motion of
a conductor in a region with a magnetic field is called a motional emf.

When you pull the plug of an electric cord from its socket, you sometimes ob-
serve a small spark. Before the cord is disconnected, the cord carries a current that
produces a magnetic field encircling the current. When the cord is disconnected,
the current abruptly ceases and the magnetic field encircling the cord collapses.

RL

28
C H A P T E R

How do you calculate the

magnitude of an induced emf in

a coil? (See Example 28-2.)
?

959

DEMONSTRATION OF INDUCED EMF.
WHEN THE MAGNET IS MOVING
TOWARD OR AWAY FROM THE COIL, AN
EMF IS INDUCED IN THE COIL, AS
SHOWN BY THE GALVANOMETER’S
DEFLECTION. NO DEFLECTION IS
OBSERVED WHEN THE MAGNET IS
STATIONARY. (Richard Megna/
Fundamental Photographs.)

*

*



B

S

(b)

(a)

A (area within
one turn)

B

F I G U R E  2 8 - 2 (a) The flux through the
surface S bounded by a coil that has N turns
is proportional to the number of field lines
penetrating the surface. The coil shown
has 4 turns. For the two field lines shown,
each line penetrates the surface S four times,
once for each turn, so the flux through S is
four times greater than the flux through the
surface “bounded” by a single turn of the coil.
The coil shown is not tightly wound so the
surface S can be seen better. (b) The area A
of the flat surface is (almost) bounded by a
single turn.

θ

n̂

B

dA

S

F I G U R E  2 8 - 1 When makes an angle 
with the normal to the surface the flux
through the area is 
where is the area of the surface element.dA

B dA cosu,B
S # nn dA �dA

S,
uB

S
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This changing magnetic field induces an emf that tends to maintain the original
current, resulting in a spark at the points of the disconnect. Once the magnetic field
collapses to zero it is no longer changing, and the induced emf is zero.

This chapter will explore the various methods of magnetic induction, all
of which can be summarized by a single relation known as Faraday’s law.
Faraday’s law relates the induced emf in a circuit to the rate of change in
magnetic flux through the circuit. (The magnetic flux through the circuit
refers to the flux of the magnetic field through a surface bounded by
the circuit.)

28-1 MAGNETIC FLUX

The flux of any vector field through a surface is calculated in the same way as the
flux of an electric field through a surface (Section 22-2). Let be an element of
area on the surface , and let be a unit vector normal to the surface element of
area (Figure 28-1). If is a normal to a surface element, then so is so there
are two directions normal to any surface element, and which of the two directions
is selected for the direction of is optional. However, the sign of the flux does de-
pend on the choice for the direction of The magnetic flux through is

28-1

MAGNETIC FLUX

The unit of magnetic flux is that of magnetic field strength multiplied by area,
namely, the tesla-meter-squared, which is called a weber (Wb):

28-2

Because is proportional to the number of field lines per unit area, the magnetic
flux is proportional to the number of field lines through an element of area.

PRACTICE PROBLEM 28-1

Show that one weber per second is one volt.

If the surface is flat and has an area and if is uniform (has the same mag-
nitude and direction) everywhere on the surface, the magnetic flux through the
surface is

28-3

where is the angle between the direction of and the direction of We shall
refer to the direction of as the positive normal direction. We are often interested
in the flux through a surface bounded by a coil that has several turns of wire. If the
coil has turns, the flux through the surface is multiplied by the flux through
each turn (Figure 28-2). That is,

28-4

where is the area of the flat surface bounded by a single turn. (Note: Only a
closed curve can actually bound a surface. A single turn of a multiturn coil is not
closed, so a single turn cannot actually bound a surface. However, if a coil is tightly
wound a single turn is almost closed, and is the area of the flat surface that it
almost bounds.)

A

A

fm � NBA cosu

NN

nn
nn.B

S
u

fm � B
S # nnA � BA cosu � BnA

B
S

A,

B

1 Wb � 1 T # m2

fm � �
S
B
S # nn dA � �

S
Bn dA

Sfmnn.
nn

�nn,nndA
nnS

dA



Induced EMF and Faraday’s Law S E C T I O N  2 8 - 2 | 961

1. The magnetic flux is the product of the number of turns,
the magnetic field strength, and the area bounded by one turn
(Equation 28-4):

fm � NBA

2. The magnetic field inside the solenoid is given by 
(Equation 27-10), where is the number of turns per
unit length:

n � N>� B � m0nI fm � Nm0nIA � Nm0

N
�
IA �

m0N
2IA

�

3. Express the area in terms of its radius:A A � pr2

4. Substitute the given values to calculate the flux:

1.67 � 10�2 Wb�

�
(4p � 10�7 T # m>A)(600)2 (7.5 A)p(0.025 m)2

0.40 m

fm �
m0N

2Ipr2

�

CHECK The units in line 2 of step 4 work out to and a weber is defined as 1 
These are the correct units for magnetic flux.

TAKING IT FURTHER Note that because and is proportional to the number
of turns is proportional to N2.N, fm

Bfm � NBA

T # m2.T # m2,

Example 28-1 Flux through a Solenoid

Find the magnetic flux through a solenoid that is long, has a radius of has
600 turns, and carries a current of 

PICTURE The magnetic field inside this long solenoid is uniform and parallel with the
axis of the solenoid. (We are neglecting the end effects.) It is therefore perpendicular to
the plane of each loop of the solenoid. Therefore, to find the flux we need to find inside the
solenoid and then multiply by 

SOLVE

NA.B
B

B
S

7.5 A.
2.5 cm,40 cm

28-2 INDUCED EMF AND FARADAY’S LAW

Experiments by Faraday, Henry, and others showed that if the magnetic flux
through a surface bounded by a wire (a conducting path) changes, an emf equal in
magnitude to the rate of change of the flux is induced in the wire. We usually de-
tect the emf by observing a current in the conductor, but the emf around the
boundary of the surface exists even if the conducting path does not exist or is in-
complete (not closed) and no current exists. In previous chapters, we considered
emfs that were localized in a specific part of a circuit, such as between the termi-
nals of a battery. However, induced emfs can be distributed throughout a circuit.

The magnetic flux through a flat surface of area in a uniform magnetic
field is given by (Equation 28-3), where is the angle between 
and the normal to the surface. The flux can be changed by increasing or decreas-
ing by increasing or decreasing or by changing the angle If the magnetic
field is due to a permanent magnet, the magnitude of the magnetic field can be in-
creased or decreased by moving a permanent magnet toward or away from the
surface. If the magnetic field is due to a current in a circuit, the magnitude of
the magnetic field can be increased or decreased by increasing or decreasing the
current. The flux through the surface can also be changed by varying the angle 
To vary we can change either the orientation of the surface or the direction of
the magnetic field. In each case, if along the perimeter of the surface there is a

u,
u.

u.A,B,

B
S

ufm � BA cosuB
S

Afm



v B

v
S

C

S
Enc

F I G U R E  2 8 - 3 If the magnetic flux
through the stationary wire loop is changing,
an emf is induced in the loop. The emf is
distributed throughout the loop, which is due
to a nonconservative electric field tangent
to the wire. The closed path C is within the
material of the conducting loop.

E
S

nc
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conducting path, such as a metal wire, an emf is induced along the path that is
equal in magnitude to the rate of change of the magnetic flux through the surface.
That is,

28-5

FARADAY’S LAW

This result is known as Faraday’s law. The minus sign in Faraday’s law has to do
with the direction of the induced emf (clockwise or counterclockwise), which is
addressed later in this section.

Figure 28-3 shows a single stationary loop of wire in a magnetic field. The flux
through the loop is changing because the magnetic field strength on surface is in-
creasing, so an emf is induced in the loop. Because emf is the work done per unit
charge, we know there must be forces exerted on the mobile charges that are doing
work on these charges. Magnetic forces can do no work; therefore, we cannot at-
tribute the emf to the work done by magnetic forces. It is electric forces associated
with a nonconservative electric field doing the work on the mobile charges. The
line integral of this electric field around a complete circuit equals the work done
per unit charge, which is equal to the induced emf in the circuit.

The electric fields that we studied in earlier chapters resulted from static electric
charges. Such electric fields are conservative, meaning that their circulation about
any closed path is zero. (The circulation of a vector field about a closed path 
is defined as However, the electric field associated with a changing mag-
netic field is nonconservative. Its circulation about is equal to the induced emf in
the loop of wire. The circulation of the electric field is equal to the negative of the
rate of change of the magnetic flux through any surface bounded by 

28-6

INDUCED EMF FOR A STATIONARY CIRCUIT
IN A CHANGING MAGNETIC FIELD

E � CC E
S

nc
# d�

S
� �

d
dt �SB

S # nn dA � �
dfm

dt

C:S

C
ACE

S # d�
S

.)
CE

S
C

E
S

nc

S

E � �
dfm
dt

E

Example 28-2 Induced EMF in a Circular Coil I

A uniform magnetic field makes an angle of with the axis of a circular coil that has 300
turns and a radius equal to The magnitude of the magnetic field increases at a rate of

while its direction remains fixed. Find the magnitude of the induced emf in the coil.

PICTURE The induced emf equals the number of turns multiplied by the rate of change
of the flux through a single turn. Because is uniform, the flux through each turn is simply

where is the area of the circle bounded by one turn of the coil.

SOLVE

A � pr2fm � BA cosu,
B
S

N

85.0 T>s 4.00 cm.
30.0°

1. The magnitude of the induced emf is given by Faraday’s law: E � �
dfm

dt

2. For a uniform field, the flux is: fm � NB
S # nnA � NBA cosu

3. Substitute this expression for and calculate :Efm

111 VE �

� (300)p(0.0400 m)2 cos 30.0°(85.0 T>s) � �111 V

E � �
dfm

dt
� �

d
dt

(NBA cosu) � �Npr2 cosu
dB
dt

CHECK Line 2 of step 3 has units of where [Use the
formula as a reminder that so .]

PRACTICE PROBLEM 28-2 If the resistance of the coil is what is the induced current?200 Æ,

1 T � 1 N # s>(C # m)1 N � 1 C # m # T>s,F
S

� qvS � B
S

1 T # m2>s � 1 Wb>s � 1 volt.T # m2>s,
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Example 28-3 Induced EMF in a Circular Coil II

An 80.0-turn coil that has a radius equal to and a resistance equal to sits in a
region that has a uniform magnetic field normal to the plane of the coil. At what rate must
the magnitude of the magnetic field change to produce a current of in the coil?

PICTURE The number of turns, multiplied by the rate of change of the magnetic flux
through a surface bounded by a single turn, is equal to the negative of the induced emf using
Faraday’s law. The emf in the coil equals 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

IR.

4.00 A

30.0 Æ5.00 cm

Steps Answers

1. Write the magnetic flux in terms of and the radius and
solve for B.

r,B,N,

B �
fm

Npr2

fm � NBA � NBpr2

2. Take the time derivative of B.
dB
dt

�
1
Npr2

dfm

dt

3. Use Faraday’s law to relate the rate of change of the flux to
the emf.

E � �
dfm

dt

4. Calculate the magnitude of the emf in the coil from the current
and resistance of the coil.

5. Substitute numerical values of , and to calculate ƒdB>dt ƒ .rN,E 191 T>s2 dB
dt
2 � 1
Npr2

ƒE ƒ �

A sign convention allows us to use the minus sign in
Faraday’s law to find the direction of the induced emf.
According to this convention, the positive tangential direc-
tion along the integration path is related to the direction
of the unit normal on the surface bounded by by a
right-hand rule (Figure 28-4). By placing your right thumb
in the direction of the fingers of your hand curl in the
positive tangential direction on If is positive,
then in accord with Faraday’s law (Equation 28-6), is in
the negative tangential direction. (The direction of can
also be determined via Lenz’s law, which is discussed in
Section 28-3.)

E
E

dfm>dtC.
nn,

CSnn
C

n̂

+

+

S

C

F I G U R E  2 8 - 4 By placing your right
thumb in the direction of on the surface S,
the fingers of your hand curl in the positive
tangential direction on C.

nn

Example 28-4 Induced Nonconservative Electric Field

A magnetic field is perpendicular to the plane of the page. is uni-
form throughout a circular region that has a radius as shown in
Figure 28-5. Outside this region, equals zero. The direction of re-
mains fixed and the rate of change of is What are the magni-
tude and direction of the induced electric field in the plane of the page
(a) a distance from the center of the circular region and (b) a dis-
tance from the center, where 

PICTURE The magnetic field is into the page and uniform over a
circular region of radius as shown in Figure 28-6. As increases or
decreases, the magnetic flux through a surface bounded by closed
curve also changes, and an emf is induced around 
The induced electric field is found by applying 
(Equation 28-6). To take advantage of the system’s symmetry, we

Ac E
S # d�

S
� �dfm >dt

C.E � Ac E
S # d�

S
C

BR,
B
S

B � 0?r 
 R
r 	 R

dB>dt.B
B
S

B
R,

B
S

B
S

|E| � IR � 120 V

Bin

R

F I G U R E  2 8 - 5

r

R
E

B

ΔB into page

C

F I G U R E  2 8 - 6



choose to be a circular curve of radius and then evaluate the line integral. By symmetry,
is tangent to circle and has the same magnitude at any point on the circle. We will as-

sign into the page as the direction of The sign convention then tells us that the positive
tangential direction is clockwise. We then calculate the magnetic flux take its time de-
rivative, and solve for (the tangential component of 

SOLVE

E
S

).Et

fm,
nn.

CE
S

rC
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(a) 1. The and fields are related by Equation 28-6:B
S

E
S

2. (the tangential component of is found from
the line integral for a circle of radius is
tangent to the circle and has the same magnitude
at all points on the circle:

E
S

r 	 R.
E
S

)Et CC E
S # d�

S
� CCEt d� � EtCC d� � Et 2pr

3. For is uniform on the flat surface 
bounded by the circle We choose into the page as
the direction of Because is also into the page,
the flux through is simply BA:S

B
S

nn.
C.

Sr 	 R, B
S

� BA � Bpr2

fm � �
S
B
S # nn dA � �

S
Bn dA � Bn�

S
dA

4. Calculate the time derivative of fm:
dfm

dt
�
d
dt

(Bpr2) �
dB
dt
pr2

5. Substitute the step 2 and step 4 results into
the step 1 result and solve for Et: so

�
r
2

dB
dt

 r 	 REt �

Et 2pr � �
dB
dt
pr2

6. For the choice of the direction of in step 3,
the positive tangential direction is clockwise:

nn is negative, so the
direction of is

.counterclockwise

E
S

Et

(b) 1. For a circle of radius (the region where the
magnetic field is zero), the line integral is the same
as before:

r 
 R CC E
S # d�

S
� Et2pr

2. Because for the magnetic flux through
is BpR2:S

r 
 R,B � 0 fm � BpR2

3. Apply Faraday’s law to find Et:

is negative, so the direction

of is .counterclockwiseE
S

Et

�
R2

2r
dB
dt

 r 
 REt �

so

Et2pr � �
dB
dt
pR2

CHECK The positive tangential direction is clockwise. When is positive, is nega-
tive. The electric field direction is counterclockwise, as shown in Figure 28-7.

TAKING IT FURTHER Note that the electric field in this example is produced by a chang-
ing magnetic field rather than by electric charges. Note also that and thus an emf, exists
along any closed curve bounding the area through which the magnetic flux is changing,
whether there is a wire or circuit along the curve or there is not.

E
S

,

Etdfm >dt

ΔB into page

B

E

R

F I G U R E  2 8 - 7 The magnetic
field is into the page and increasing
in magnitude. The induced electric
field is counterclockwise.

where

fm � �
S
B
S # nn dA

CC E
S # d�

S
� �

dfm

dt

Note also that and thus
the emf, exists along any closed

curve bounding the area through
which the magnetic flux is changing,
whether there is a wire or circuit
along the curve or there is not.  

E
S

,!
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28-3 LENZ’S LAW

The minus sign in Faraday’s law has to do with the direction of the induced emf.
This can be obtained by applying the sign convention described in the previous
section, or by applying a general physical principle known as Lenz’s law:

The induced emf is in such a direction as to oppose, or tend to oppose, the
change that produces it.

LENZ’S LAW

Note that Lenz’s law does not specify just what kind of change causes the induced
emf and current. The statement of Lenz’s law is purposely left vague to cover a va-
riety of conditions, which we will now illustrate.

Figure 28-8 shows a bar magnet moving
toward a conducting loop. It is the motion of
the bar magnet to the right that induces an
emf and current in the loop. Lenz’s law tells
us that this induced emf and current must be
in a direction to oppose the motion of the bar
magnet. That is, the current induced in the
loop produces a magnetic field of its own,
and this magnetic field must exert a force to
the left on the approaching bar magnet.
Figure 28-9 shows the induced magnetic mo-
ment of the current loop when the magnet is
moving toward it. The loop acts like a small
magnet with its north pole to the left and its
south pole to the right. Because like poles
repel, the induced magnetic moment of the
loop repels the bar magnet; that is, it opposes its motion toward the
loop. This result means the direction of the induced current in the loop
must be as shown in Figure 28-9.

Suppose the induced current in the loop shown in Figure 28-9 was
opposite to the direction shown. Then there would be a magnetic force
toward the right on the approaching bar magnet, causing the bar mag-
net to gain speed. This gain in speed would cause an increase in the in-
duced current, which in turn would cause the force on the bar magnet
to increase, and so on. This result is too good to be true. Any time we
nudge a bar magnet toward a conducting loop it would move toward
the loop with ever increasing speed and with no significant effort on
our part. Were this situation to occur, it would be a violation of energy
conservation. The reality, however, is that energy is conserved, and
Lenz’s law is consistent with this reality.

An alternative statement of Lenz’s law in terms of magnetic flux is
frequently of use. This statement is

When a magnetic flux through a surface changes, the magnetic field due to
any induced current produces a flux of its own—through the same surface
and opposite in sign to the initial change in flux.

ALTERNATIVE STATEMENT OF LENZ’S LAW

For an example which shows how this alternative statement is applied, see
Example 28-5. 

I
v

v

I

F I G U R E  2 8 - 8  When the bar magnet is moving to the right, toward the loop,
the emf induced in the loop produces an induced current in the direction shown.
The magnetic field due to this induced current in the loop produces a magnetic field that
exerts a force on the bar magnet opposing its motion to the right.

F I G U R E  2 8 - 9 The magnetic moment of the loop 
(shown in outline as if it were a bar magnet) due to the
induced current is such as to oppose the motion of the bar
magnet. The bar magnet is moving toward the loop, so the
induced magnetic moment repels the bar magnet.

m
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Example 28-5 Lenz’s Law and Induced Current

Using the alternative statement of Lenz’s law, find the direction of the induced current in
the loop shown in Figure 28-8.

PICTURE Use the alternative statement of Lenz’s law to determine the direction of the mag-
netic field due to the current induced in the loop. When a magnetic flux through a surface
changes, the magnetic field due to any induced current produces a flux of its own—through
the same surface and opposite in sign to the initial change in flux. Then use a right-hand rule
to determine the direction of the induced current.

SOLVE

1. Draw a sketch of the loop bounding the flat surface 
(Figure 28-10). On surface draw the vector which is
the change in the magnetic field of the approaching bar
magnet on S:

B
S

1

¢B
S

1 ,S
S

2. On the sketch draw the vector which is the magnetic
field of the current induced in the loop (Figure 28-11).
Because was initially zero, is in the same
direction as Use the alternative statement of Lenz’s
law to determine the direction of and must
penetrate in opposite directions for the change in the flux
of to be opposite in sign to the change in flux of :B

S

1B
S

2

S
¢B

S

1B
S

2B
S

2.
¢B

S

2.
B
S

2B
S

2

B
S

2 ,

3. Using the right-hand rule and the direction of 
determine the direction of the current induced in the loop
(Figure 28-12):

B
S

2 ,

CONCEPT CHECK 28-1

Using the alternative statement of Lenz’s law, find the direction of the in-
duced current in the loop shown in Figure 28-8 if the magnet is moving to the
left (away from the loop).

✓
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CHECK The step-3 result gives the same direction as was obtained on page 995 using the ini-
tial statement of Lenz’s law.



In Figure 28-13, the bar magnet is at rest and the loop is moving
away from the magnet. The induced current and magnetic moment
are shown in the figure. In this case, the bar magnet attracts the loop,
thus opposing the motion of the loop as required by Lenz’s law.

In Figure 28-14, when the current in circuit 1 is changing, there is
a changing flux through circuit 2. Suppose that the switch in cir-
cuit 1 is initially open so that there is no current in the circuit
(Figure 28-14a). When we close the switch (Figure 28-14b), the cur-
rent in circuit 1 does not instantaneously reach its steady value 
but takes some time to change from zero to that value. During the
time the current is increasing, the flux through circuit 2 is changing
and a current is induced in circuit 2 in the direction shown. When the
current in circuit 1 reaches its steady value, the flux through circuit 2
is no longer changing, so there is no longer an induced current in circuit 2. An in-
duced current in circuit 2 in the opposite direction appears briefly when the
switch in circuit 1 is opened (Figure 28-14c) and the current in circuit 1 is de-
creasing to zero. It is important to understand that there is an induced emf
only while the flux is changing. The emf does not depend on the magnitude of the
flux itself, but only on its rate of change. If there is a large steady flux through a
circuit, there is no induced emf.

E1>R1

S

R2
+
_E1

R1

1 2

S

R2
+
_E1

R1

S

I1 increasing

I2 induced

R2
+
_E1

R1

S

I1 decreasing

I2 induced

B  increasing B  decreasing ΔB1 B1 1 2ΔB2

(b) (c)(a)

B1

F I G U R E  2 8 - 1 4 (a) Two adjacent circuits. (b) Just after the switch is closed, is increasing in
the direction shown. The changing flux through circuit 2 induces the current The flux through
circuit 2 due to opposes the change in flux due to (c) As the switch is opened, decreases
and the flux through circuit 2 changes. The induced current then tends to maintain the flux
through circuit 2.

I2

I1I1 .I2

I2 .
I1

I

v

F I G U R E  2 8 - 1 3 When the loop is moving away
from the stationary bar magnet, the bar magnet attracts
the magnetic moment of the loop, again opposing the
relative motion.
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+
_

S

F I G U R E  2 8 - 1 5 The coil that has many
turns of wire yields a large flux for a given
current in the circuit. Thus, when the current
changes, there is a large emf induced in the
coil opposing the change.

For our next example, we consider the single isolated circuit shown in Figure
28-15. If there is a current in the circuit, there is a magnetic flux through the coil
due to its own current. If the current is changing, the flux through the coil is
changing and there is an induced emf in the circuit while the flux is changing. This
self-induced emf opposes the change in the current. It is therefore called a back emf.
Because of this self-induced emf, the current in a circuit cannot jump instan-
taneously from zero to some finite value or from some finite value to zero. Henry
first noticed this effect when he experimented with a circuit consisting of many
turns of a wire like that in Figure 28-15. This arrangement gives a large flux
through the circuit for even a small current. Joseph Henry noticed a spark across
the switch when he tried to break the circuit. Such a spark is due to the large in-
duced emf that occurs when the current varies rapidly, as during the opening of
the switch. In this case, the induced emf is directed so as to maintain the original
current. The large induced emf produces a large potential difference across the
switch as it is opened. The electric field between the contacts of the switch is large
enough to produce dielectric breakdown in the surrounding air. When dielectric
breakdown occurs, the air conducts electric current in the form of a spark.
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CHECK In Part (b) the motion up the page causes the current to be induced, so the direction
of the induced current must result in a force opposing the upward motion. Applying

(Equation 26-4) to the upper section of the loop gives a force down the page if the
current in the loop is counterclockwise. This is in agreement with our Part (b) result.

TAKING IT FURTHER In this example the magnetic field is static, so no nonconservative
electric field exists. Thus, the emf is not the work done by a nonconservative electric field.
The cause of this emf is examined in the next section.

F
S

� IL
S

� B
S

Example 28-6 Lenz’s Law and a Moving Coil

A rectangular coil has turns and each turn has a width and a length
Half the coil is located in a region that has a magnetic field of magnitude

directed into the page (Figure 28-16). The resistance of the coil is Find
the magnitude and direction of the induced current if the coil is moved with a speed of

(a) to the right, (b) up the page, and (c) down the page.

PICTURE The induced current equals the induced emf divided by the resistance. We can
calculate the emf induced in the circuit as the coil moves by calculating the rate of change
of the flux through the coil. The direction of the induced current is found from Lenz’s law.

SOLVE

2.00 m>s 30.0 Æ.RB � 0.800 T
b � 30.0 cm.

a � 20.0 cmN � 80

(a) 1. The induced current equals the emf divided by the
resistance:

I �
E

R

2. The induced emf and the magnetic flux are related by
Faraday’s law:

E � �
dfm

dt

3. The flux through the surface bounded by the coil is 
multiplied by the flux through each turn of the coil. We
choose into the page as the direction of The flux through
the surface bounded by a single turn is Bax:S

nn.

N

� N[Bax � (0)a(b � x)] � NBax

fm � NB
S # nnA

4. When the coil is moving to the right (or to the left), does
not change and the flux does not change (until the coil
leaves the region of the magnetic field). The current is
therefore zero:

x

so

 0I �

E � �
dfm

dt
� 0

(b) 1. Compute the rate of change of the flux when the coil is
moving up the page. In this case is increasing, so 
is positive:

dx>dtx

dfm

dt
�
d
dt

(NBax) � NBa
dx
dt

2. The derivative is equal to the speed of the coil.dx>dt

� 0.853 A

�
(80)(0.800 T)(0.200 m)(2.00 m>s)

30.0 ÆƒI ƒ �
ƒE ƒ
R

�
NBa ƒdx>dt ƒ
R

3. As the coil moves up the page, the flux of through is
increasing. The induced current must produce a magnetic
field whose flux through decreases as increases. That
would be a magnetic field whose dot product with is
negative. Such a magnetic field is directed out of the page
on To produce a magnetic field in this direction the
induced current must be counterclockwise:
S.

nn
xS

SB
S

I � 0.853 A, counterclockwise

(c) As the coil moves down the page, the flux of through is
decreasing. The induced current must produce a magnetic
field whose flux through increases as decreases. That would
be a magnetic field whose dot product with is positive.
Such a magnetic field is directed into the page on To produce
a magnetic field in this direction the induced current must be
clockwise:

S.
nn

xS

SB
S

I � 0.853 A, clockwise

a

x

N = 80 turns
 a = 20.0 cm
 b = 30.0 cm

b
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Example 28-7 Total Charge through a Flipped Coil

A small coil of turns has its plane perpendicular to a uniform static magnetic field as
shown in Figure 28-17. The coil is connected to a current integrator (C.I.), which is a device
used to measure the total charge passing through the coil. Find the charge passing through
the coil if the coil is rotated through about the axis shown.

PICTURE When the coil in Figure 28-17 is rotated, the magnetic flux through the coil
changes, causing an induced emf . The emf in turn causes a current where is
the total resistance of the circuit. Because we can find the charge passing
through the integrator by integrating that is, 

SOLVE

Q � �I dt.I;
QI � dq>dt,

RI � E>R,E

180°

B
S

,N

1. The increment of charge equals the current multiplied by
the increment of time dt:

Idq dq � I dt

28-4 MOTIONAL EMF

The emf induced in a conductor due to its motion in a region in which there exists
a magnetic field is called motional emf. More generally,

Motional emf is any emf induced by the motion of a conductor in a region
in which there exists a magnetic field.

DEFINITION—MOTIONAL EMF

B

Before rotation After rotation

ni
^ B nf

^

F I G U R E  2 8 - 1 8

2. The emf is related to by Ohm’s law:IE

so

E dt � RI dt

E � RI

3. The emf is related to the flux by Faraday’s law:fm

or

E dt � �dfm

E � �
dfm

dt

4. Substitute for and for in the step 2 result and
solve for dq:

I dtdqE dt�dfm
so

dq � �
1
R

dfm

�dfm � R dq

5. Integrate to find the total charge Q: � �
1
R

(fmf � fmi) � �
¢fm

R
Q � �

Q

0
dq � �

1
R �

f
mf

fmi

dfm

6. The flux through the coil is where is the
normal to the flat surface bounded by the coil (Figure 28-18).
The normal initially is directed into the page. When the coil
rotates, so does the surface and its normal. Find the change
in when the coil rotates 180°:fm

nnfm � nB
S # nnA,

� NA[(�B) � (�B)] � �2NBA� NA(B
S # nnf � B

S # nni)

¢fm � fmf � fmi � NB
S # nnfA � NB

S # nniA

7. Combining the results from the previous two steps yields Q:
2NBA
R

Q �

C.I.

N turns

R

Bin
Axis

n̂
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x
dx = v dt

R

Bin

v
Sn̂�

F I G U R E  2 8 - 1 9 A conducting rod
sliding on conducting rails in a magnetic field.
As the rod moves to the right, the area of the
surface increases, so the magnetic flux
through into the paper increases. An emf of
magnitude is induced in the circuit,
inducing a counterclockwise current that
produces flux through the surface directed
out of the paper opposing the change in flux
due to the motion of the rod.

S

B�v
S
S
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TAKING IT FURTHER Note that the charge does not depend on whether or not the coil
is rotated slowly or quickly—all that matters is the change in the magnetic flux through the
coil. A coil used in this way is called a flip coil. It is used to measure magnetic fields. For ex-
ample, if the current integrator (C.I.) measures a total charge passing through the coil
when it is flipped, the magnetic field strength is given by which can be ob-
tained directly from the step-7 result.

PRACTICE PROBLEM 28-3 A flip coil has 40 turns, a radius of and a resistance of
and the plane of the coil is initially perpendicular to a static, uniform 0.500-T mag-

netic field. If the coil is rotated about an axis perpendicular to the magnetic field, how
much charge passes through the coil?

90°
16.0 Æ,

3.00 cm,

B � RQ>(2NA),
Q

Q

Figure 28-19 shows a thin conducting rod sliding to the right along conducting
rails that are connected by a resistor. A uniform magnetic field is directed into
the page.

Consider the magnetic flux through the flat surface bounded by the circuit. Let the
normal to the surface be into the page. As the rod moves to the right, the surface 
increases, as does the magnetic flux through . Thus, an emf is induced in the circuit.
Let be the separation of the rails and be the distance from the left end of the rails to
the rod. The area of surface is then and the magnetic flux through is

Taking the time derivative of both sides gives

where is the speed of the rod. The emf induced in this circuit is therefore

where the negative sign tells us that the emf is in the negative tangential direction. Put
your right thumb in the direction of (into the page) and your fingers will curl in the
positive tangential direction (clockwise). Thus, the induced emf is counterclockwise.

We can check this result (the direction of the induced emf) using Lenz’s law. It is
the motion of the rod to the right that produces the induced current, so the magnetic
force on this rod due to the induced current must be to the left. The magnetic force
on a current-carrying conductor is given by (Equation 26-4), where is in
the direction of the current. If is up the page and is into the page, the force is to
the left, which affirms our previous result (that the induced emf is counterclockwise).
If the rod is given some initial velocity to the right and is then released, the force
due to the induced current slows the rod until it stops. To maintain the motion of the
rod, an external force pushing the rod to the right must be maintained.

A second check on the direction of the induced emf and current is implemented
by considering the direction of the magnetic force on the charge carriers moving to
the right with the rod. The charge carriers move rightward with the same velocity 
as the rod, so the charge carriers experience a magnetic force If is pos-
itive that force is upward, which means the induced emf is counterclockwise.

28-7

MAGNITUDE OF EMF FOR A ROD MOVING
PERPENDICULAR TO BOTH THE LENGTH OF THE ROD AND 

(If the magnetic field is not normal to the plane of the circuit, the in Equation 
28-7 should be replaced with the component of normal to the plane of the circuit.)B

B

B
S

ƒE ƒ � B�v

qF
S

� qvS � B
S

.
vS

vS

B
S

L
S

L
S

IL
S

� B
S

nn

E � �
dfm

dt
� �B�v

v � dx>dt

dfm

dt
� B�

dx
dt

� B�v

fm � B
S # nnA � BnA � B�x

S�x,S
x�

S
Snn

S

B
S



Motional EMF S E C T I O N  2 8 - 4 | 971

F = qvB

+ + +
+ + + Bin

v

F

�
q

 = qv � B

�

F I G U R E  2 8 - 2 0 A positive charge carrier
in a conducting rod that is moving through a
magnetic field experiences a magnetic force
that has an upward component. Some of these
charge carriers move to the top of the rod,
leaving the bottom of the rod negative. The
charge separation produces a downward
electric field of magnitude in the rod.
Thus, the potential at the top of the rod is
greater than the potential at the bottom of the
rod by E‘� � vB�.

E‘ � vB

Figure 28-20 shows a positive charge carrier in a conducting rod that is moving
at constant speed through a uniform magnetic field directed into the paper.
Because the charge carrier is moving horizontally with the rod, there is an upward
magnetic force on the charge carrier of magnitude Responding to that force,
the charge carriers in the rod move upward, producing a net positive charge at the
top of the rod and leaving a net negative charge at the bottom of the rod. The
charge carriers continue to move upward until the electric field produced by the
separated charges exerts a downward force of magnitude on the separated
charges, which balances the upward magnetic force In equilibrium, the mag-
nitude of this electric field in the rod is

The direction of this electric field is parallel to the rod, directed downward. The as-
sociated potential difference across the length of the rod is

with the potential being higher at the top. That is, when there is no current through
the rod, the potential difference across the length of the rod equals (the mo-
tional emf). When there is a current through the rod, the potential difference is

28-8

where is the resistance of the rod.r

¢V � vB� � Ir

I
vB�

¢V � E‘� � vB�

�

E‘ � vB

qvB.
qE‘

E
S

‘

qvB.

PRACTICE PROBLEM 28-4

A rod long moves at in a plane perpendicular to a magnetic field of 
The rod’s velocity is perpendicular to its length. Find the emf induced in the rod.

0.30 T.12 m>s40 cm

Try It YourselfExample 28-8 A U-Shaped Conductor and a Sliding Rod

Using Figure 28-19, let and assume that
the resistances of the rod and the rails are negligible. Find (a) the induced emf in the circuit,
(b) the current in the circuit, (c) the force needed to move the rod with constant velocity, and
(d) the power dissipated in the resistor.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

R � 25.0 Æ;B � 0.600 T, v � 8.00 m>s, � � 15.0 cm,

Steps Answers

1. Calculate the induced emf from Equation 28-7. 0.720 VE � Bv� �

2. Find the current from Ohm’s law. 28.8 mAI �
E

R
�

3. The force needed to move the rod with constant velocity is
equal and opposite to the force exerted by the magnetic field on
the rod, which has the magnitude (Equation 26-4). Calculate
the magnitude of this force.

IB�

2.59 mNF � IB� �

4. Find the power dissipated in the resistor. 20.7 mWP � I2R �

CHECK Using we confirm that the power is 

TAKING IT FURTHER The potential at the top of the rod is greater than the potential at the
bottom of the rod by the emf.

20.7 mW.P � Fv,
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CHECK The kinetic energy of the rod is transformed into thermal energy in the resistor. To
conserve energy the kinetic energy of the rod must decrease, which means its speed must de-
crease. The step 7 result is in agreement with the conservation of energy.

TAKING IT FURTHER If the force were constant, the rod’s speed would decrease linearly
with time. However, because the force is proportional to the rod’s speed, as found in step 4,
the force is large initially but the force decreases as the speed decreases. In principle, the rod
never stops moving. Even so, the rod travels only a finite distance.

Example 28-9 Magnetic Drag

A rod that has a mass slides on frictionless conducting rails in a region that has a static
uniform magnetic field directed into the page (Figure 28-21). An external agent is pushing
the rod, maintaining its motion to the right at constant speed At time the agent
abruptly stops pushing and the rod continues forward while being slowed by the magnetic
force. Find the speed of the rod as a function of time.

PICTURE The speed of the rod changes because a magnetic force acts on the induced cur-
rent. The motion of the rod through a magnetic field induces an emf and, therefore,
a current in the rod, This result causes a magnetic force to act on the rod, 
(Equation 26-4). With the force known, we apply Newton’s second law to find the speed as
a function of time. Take the direction as being to the right.

SOLVE

�x

F � I�BI � E>R.
E � B�v

v

t � 0,v0.
B
S
m

1. Apply Newton’s second law to the rod: Fx � max � m
dv
dt

2. The force exerted on the rod is the magnetic force (Equation 26-4),
which is proportional to the current and in the direction, as
shown in Figure 28-21:

�x
Fx � �I�B

3. The current equals the motional emf divided by the resistance
of the rod:

I �
E

R
�
B�v
R

4. Combining these results, we find the component of the
magnetic force exerted on the rod:

x Fx � �IB� � �
B�v
R
B� � �

B2�2v
R

5. Newton’s second law then gives: �
B2�2v
R

� m
dv
dt

6. Separate the variables, then integrate the velocity from to 
and the time from 0 to tf :

vfv0

ln
vf

v0

� �
B2 �2

mR
tf

�
vf

v0

dv
v

� �
B2 �2

mR �
tf

0

dt

dv
v

� �
B2�2

mR
dt

7. Let and then solve for v:t � tf ,v � vf
v0e

�t>t  where t �
mR
B2 �2v �

GENERATORS AND MOTORS

Most electrical energy used today is produced by electric generators in the form
of alternating current (ac). A simple generator of alternating current is a coil ro-
tating in a uniform magnetic field as shown in Figure 28-22. The ends of the coil
are connected to rings called slip rings that rotate with the coil. Electrical contact
is made with the coil by stationary graphite brushes in contact with the rings.

R

I
v

Bin

�
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When the normal to the plane of the coil makes an angle with a uni-
form magnetic field as shown in the figure, the magnetic flux
through the coil is

28-9

where is the number of turns in the coil and is the area of the flat
surface bounded by the coil. When the coil is mechanically rotated, the
flux through it will change, and an emf will be induced in the coil ac-
cording to Faraday’s law. If the initial angle between and is zero,
then the angle at some later time is given by

where is the angular frequency of rotation. Substituting this expres-
sion for into Equation 28-9, we obtain

The emf in the coil will then be

28-10

This can be written

where

is the maximum value of the emf. We can thus produce a sinusoidal
emf in a coil by rotating it with constant frequency in a magnetic field.
In this source of emf, the mechanical energy of the rotating coil is con-
verted into electric energy. The mechanical energy usually comes from
a waterfall or a steam turbine. Although practical generators are con-
siderably more complicated, they work on the same principle that an
alternating emf is produced in a coil rotating in a magnetic field, and
they are designed so that the emf produced is sinusoidal.

The same coil in a magnetic field that can be used to generate an al-
ternating emf can also be used as an ac motor. Instead of mechanically
rotating the coil to generate an emf, we apply an alternating current to
the coil from another ac generator as shown in Figure 28-23. (In circuit
diagrams, an ac generator is represented by the symbol .) A current
loop in a magnetic field experiences a torque that tends to rotate the
loop such that its magnetic moment points in the direction of and
the plane of the loop is perpendicular to If direct current were supplied to the
coil in Figure 28-23, the torque on the coil would change directions when the coil
rotates past its equilibrium position, which is when the plane of the coil is vertical
in the figure. The coil would then oscillate about its equilibrium position, eventu-
ally coming to rest there with its plane vertical. However, if the direction of the cur-
rent is reversed just as the coil passes the vertical position, the torque does not
change direction but continues to rotate the coil in the same direction. As the coil
rotates in the magnetic field, a back emf is generated that tends to oppose the cur-
rent. When the motor is first turned on, there is no back emf and the current is
very large, being limited only by the resistance in the circuit. As the motor begins
to rotate, the back emf increases and the current decreases.
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b
V

V

n̂

θ

(a)

(b)

S

F I G U R E  2 8 - 2 2 (a) An ac generator. A coil rotating
with constant angular speed in a magnetic field 
generates a sinusoidal emf. Energy from a waterfall or a
steam turbine is used to rotate the coil to produce electrical
energy. The emf is supplied to an external circuit by the
brushes in contact with the rings. (b) At this instant,
the normal to the plane of the coil makes an angle with
the magnetic field and the flux is equal to BA sinu.

u

B
S

v

PRACTICE PROBLEM 28-5

A 250-turn coil has an area per turn of If it rotates at in a 0.40-T magnetic
field at what is the maximum emf in the coil?60 Hz,

60 rev>s3.0 cm2.

N

a

b
V

S

F I G U R E  2 8 - 2 3 When alternating current is
supplied to the coil of Figure 28-22, the coil becomes a
motor. As the coil rotates, a back emf is generated,
limiting the current.

CONCEPT CHECK 28-2

When a generator delivers electric
energy to a circuit, where does the
energy come from?

✓



28-5 EDDY CURRENTS

In the examples we have discussed, currents were induced in thin wires or rods.
However, a changing flux often induces circulating currents, which are called eddy
currents, in a piece of bulk metal like the core of a transformer. The heat produced by
such current constitutes a power loss in the transformer. Consider a conducting slab
between the pole faces of an electromagnet (Figure 28-24). If the magnetic field 
between the pole faces is changing with time (as it will if the current in the magnet
windings is alternating current), the flux through any closed loop in the slab, such as
through the curve indicated in the figure, will change. Consequently, there will be
an induced emf around Because path is in a conductor, the emf will drive cur-
rents in the conductor.

The existence of eddy currents can be demonstrated by pulling a copper or alu-
minum sheet through the region between the poles of a strong permanent magnet
(Figure 28-25). Part of the area enclosed by curve in the figure is in the magnetic
field, and part of the area enclosed by curve is outside the magnetic field. As the
sheet is pulled to the right, the flux through this curve decreases (assuming that
into the paper is the positive normal direction). A clockwise emf is induced around
this curve. This emf drives a current that is directed upward in the region between
the pole faces, and the magnetic field exerts a force on this current to the left op-
posing motion of the sheet. You can feel this drag force on the sheet if you pull a
conducting sheet rapidly through a region that has a strong magnetic field.

Eddy currents are frequently undesirable because power is lost due to Joule heat-
ing by the current, and this dissipated energy must be transferred to the environment.
The power loss can be reduced by increasing the resistance of the possible paths for
the eddy currents, as shown in Figure 28-26a. Here the conducting slab is laminated;
that is, the conducting slab is made up of small strips glued together. Because insu-
lating glue separates the strips, the eddy currents are essentially confined to the indi-
vidual strips. The large eddy-current loops are broken up, and the power loss is
greatly reduced. Similarly, if there are cuts in the sheet, as shown in Figure 28-26b, the
eddy currents are lessened and the magnetic force is greatly reduced.

Eddy currents are not always undesirable. For example, eddy currents are often
used to damp unwanted oscillations. With no damping present, sensitive mechani-
cal balance scales that are used to measure small masses might oscillate back and
forth around their equilibrium reading many times. Such scales are usually designed
so that a small sheet of aluminum (or some other metal) moves between the poles of
a permanent magnet as the scales oscillate. The resulting eddy currents dampen the
oscillations so that equilibrium is quickly reached. Eddy currents also play a role in
the magnetic braking systems of some rapid transit cars. A large electromagnet is po-
sitioned in the vehicle over the rails. If the magnet is energized by a current in its
windings, eddy currents are induced in the rails by the motion of the magnet and the
magnetic forces provide a drag force on the magnet that slows the car.

28-6 INDUCTANCE

SELF-INDUCTANCE

Consider a coil carrying a current The current in the coil produces a mag-
netic field that varies from point to point, but at each point in space the value
of is proportional to The magnetic flux of through the coil is therefore also
proportional to 

28-11

DEFINITION—SELF- INDUCTANCE

fm � LI
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F I G U R E  2 8 - 2 5 Demonstration of eddy
currents. When the metal sheet is pulled to the
right, there is a magnetic force to the left on
the induced current opposing the motion.

C

C

(b)

(a)

F I G U R E  2 8 - 2 6 Disrupting the
conduction paths in the metal slab can reduce
the eddy current. (a) If the slab is constructed
from strips of metal glued together, the
insulating glue between the slabs increases
the resistance of the closed loop (b) Slots
cut into the metal slab also reduce the
eddy current.

C.

F I G U R E  2 8 - 2 4 Eddy currents. When
the magnetic field through a metal slab is
changing, an emf is induced in any
closed loop in the metal, such as loop 
The induced emfs drive currents, which are
called eddy currents.

C.
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where the proportionality constant, is called the self-inductance of the coil. The
self-inductance depends on the geometric shape of the coil. The SI unit of induc-
tance is the henry (H). From Equation 28-11, we can see that the unit of inductance
equals the unit of flux divided by the unit of current:

In principle, the self-inductance of any coil or circuit can be calculated by as-
suming a current calculating at every point on a surface bounded by the coil,
calculating the flux and using In actual practice, the calculation is
often very challenging. However, the self-inductance of a long, tightly wound so-
lenoid can be calculated directly. The magnetic flux through a long, thin solenoid
is given by where is the number of turns, is the number of
turns per unit length, is the current and is the area per turn. Thus, the magnetic
flux through the coil is

28-12

where is the length of the solenoid. As expected, the flux is proportional to the
current. The proportionality constant is the self-inductance 

28-13

SELF- INDUCTANCE OF A LONG SOLENOID

The self-inductance of a long solenoid is proportional to the square of the number of
turns per unit length and to the volume Thus, like capacitance, self-inductance
depends only on geometric factors.* From the dimensions of Equation 28-13, we can
see that can be expressed in henrys per meter:

m0 � 4p � 10�7 H>mm0

A�.n

L �
fm

I
� m0n

2A�

L:
�

fm � NBA � m0N(m0nI)A �
m0N

2IA

�
� m0n

2IA�

AI
nB � m0nI,NNBA,

L � fm>I.fm,
B
S

I,

1 H � 1 Wb>A � 1 T # m2>A
L,

Example 28-10 Self-Inductance of a Solenoid

Find the self-inductance of a solenoid of length area and 

PICTURE We can calculate the self-inductance in henrys from Equation 28-13.

SOLVE

100 turns.5.00 cm2,10.0 cm,

1. is given by Equation 28-13:L L � m0n
2A�

2. Convert the given quantities to SI units:

m0 � 4p � 10�7 H>mn � N>� � (100 turns)>(0.100 m) � 1000 turns>mA � 5.00 cm2 � 5.00 � 10�4 m2

� � 10.0 cm � 0.100 m

3. Substitute the given quantities:

  6.28 � 10�5 H�

� (4p � 10�7 H>m)(1000 turns>m)2 (5.00 � 10�4 m2)(0.100 m)

L � m0n
2A�

CHECK The inductance of a solenoid that does not have a soft iron core is expected to be a
small fraction of a henry. That is the case for the solenoid in this example.

* If the inductor has a material in the core, the self-inductance also depends on the properties of the material.
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When the current in a circuit is changing, the magnetic flux due to the current
is also changing, so an emf is induced in the circuit. Because the self-inductance 
of a circuit is constant, the rate of change of the flux is related to the rate of change
of the current by

According to Faraday’s law, we have

28-14

SELF–INDUCED EMF

Thus, the self-induced emf is proportional to the rate of change of the current.
Because of the negative sign in Equation 28-14, the self-induced emf is often called
a back emf. A coil or solenoid that has enough turns to have a significant self-
inductance is called an inductor. In circuits, it is denoted by the symbol .
Typically, the self-inductance of the rest of the circuit is negligible in comparison to
the self-inductance of a coil or solenoid. The potential difference across an inductor
is given by

28-15

POTENTIAL DIFFERENCE ACROSS AN INDUCTOR

where is the internal resistance of the inductor.* For an ideal inductor, 

PRACTICE PROBLEM 28-6

At what rate must the current in the solenoid of Example 28-10 change in order to induce
a back emf of 

MUTUAL INDUCTANCE

When two or more circuits are close to each other, as in Figure 28-27, the magnetic
flux through one circuit depends not only on the current in that circuit but also on
the current in the nearby circuits. Let be the current in circuit 1, on the left in
Figure 28-27, and let be the current in circuit 2, on the right. The magnetic field 
at surface is the superposition of due to and due to where is pro-
portional to and is proportional to We can therefore write the flux of 
through circuit 2, as

28-16a

DEFINITION—MUTUAL INDUCTANCE

where is called the mutual inductance of the two circuits. The mutual induc-
tance depends on the geometrical arrangement of the two circuits. For instance,
if the circuits are far apart, the flux of through circuit 2 will be small and the mu-
tual inductance will be small. (The net flux of through circuit 2 is
given by An equation similar to Equation 28-16a can be
written for the flux of through circuit 1:

28-16b

We can calculate the mutual inductance for two tightly wound coaxial solenoids
like the solenoids shown in Figure 28-28. Let be the length of both solenoids, and
let the inner solenoid have turns and radius and the outer solenoid have 
turns and radius We will first calculate the mutual inductance by assuming
that the inner solenoid carries a current and finding the magnetic flux due
to this current through the outer solenoid.
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¢V � E � Ir � �L
dI
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E � �
dfm

dt
� �L

dI
dt

dfm

dt
�
d(LI)

dt
� L

dI
dt

L

+
_ I1 S2

I2
+
_

Circuit 1 Circuit 2

F I G U R E  2 8 - 2 7 Two adjacent circuits.
The magnetic field on is partly due to
current and partly due to current The
flux through is the sum of two terms, one
proportional to and the other to I2 .I1

S2

I2 .I1

S2

* If the inductor has an iron core, the internal resistance includes properties of the core.



The magnetic field due to the current
in the inner solenoid is uniform in the space
inside the inner solenoid and has magnitude

28-17

and outside the inner solenoid this mag-
netic field is essentially zero. The flux of

through the outer solenoid is thereforeB
S

1

B1

r 	 r1B1 � m0(N1>�)I1 � m0n1I1

B
S

1

F I G U R E  2 8 - 2 8 (a) A long, narrow
solenoid inside a second solenoid of the same
length. A current in either solenoid produces a
magnetic flux in the other. (b) A tesla coil
illustrating the geometry of the wires in
Figure 28-28a. Such a device functions as a
transformer.* Here, low-voltage alternating
current in the outer winding is transformed
into a higher-voltage alternating current in the
inner winding. The emf induced in the inner
coil by the field of the charging current in the
outer coil is high enough to light the bulb
above the coils. ((b) © Michael Holford, Collection
of the Science Museum, London.)
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+
_E0

a b

c

S R

L

+
I

F I G U R E  2 8 - 2 9 Just after the switch S is
closed in this circuit, the current begins to
increase and a back emf of magnitude 
is induced in the inductor. The potential drop
across the resistor plus the potential drop
across the inductor equals the emf of
the battery (E0).

(L dI>dt)
IR

L dI>dt

N1
turns

N2
turns

r1

r2

(b)

(a)

�

Note that the area used to compute the flux through the outer solenoid is not the
area of the surface bounded by a loop of that solenoid, but rather is the area
of the surface bounded by a loop of the inner solenoid, This is because
the magnetic field due to the inner solenoid is zero outside the inner solenoid.
The mutual inductance is thus

28-18

PRACTICE PROBLEM 28-7

Calculate the mutual inductance of the coaxial solenoids of Figure 28-28 by finding
the flux through the inner solenoid due to a current in the outer solenoid.

Note the result of Practice Problem 28-7 reveals that It can be shown
that this is a general result. Therefore in the future we will drop the subscripts for
mutual inductance and simply write M.

M12 �M21 .

I2

M21

M1 2 �
fm12

I1
� m0n2n1�pr21

M12

pr21 .
pr22 ,

fm2 � N2B1(pr
2
1) � n2�B1(pr

2
1) � m0n2n1�(pr21)I1

28-7 MAGNETIC ENERGY

An inductor stores magnetic energy, just as a capacitor stores electrical energy. Consider
the circuit shown in Figure 28-29, which consists of an ideal inductor that has an in-
ductance and a resistor that has a resistance in series with an ideal battery that has
emf and a switch S. We assume that and are the resistance and inductance of the
entire circuit. The switch is initially open, so no current exists in the circuit. A short time
after the switch is closed, there are a current in the circuit, a potential difference 
across the resistor, and a potential difference across the inductor. (For an ideal
inductor, the difference in potential across the inductor equals the back emf, which was
given in Equation 28-14.) Applying Kirchhoff’s loop rule to this circuit gives

28-19

If we multiply each term by the current I and rearrange, we obtain

28-20

The term is the rate at which electrical potential energy is supplied by the battery.
The term is the rate at which potential energy is delivered to the resistor. (It is also
the rate at which potential energy is dissipated by the resistance in the circuit.) The
term is the rate at which potential energy is delivered to the inductor, so if

is the energy stored in the inductor, then

which implies
dUm � LI dI

dUm

dt
� LI

dI
dt

Um

LI dI>dt

I2R
E0I

E0I � I2R � LI
dI
dt

E0 � IR � L
dI
dt

� 0

�L dI>dt
�IRI

LRE0

RL

* The transformer is discussed in Chapter 29.
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Integrating this equation, we obtain

where is a constant of integration. To evaluate we set equal to zero when
is equal to zero. The energy stored in an inductor carrying a current is thus

given by

28-21

ENERGY STORED IN AN INDUCTOR

When a current is produced in an inductor, a magnetic field is created in the re-
gion in and around the inductor coil. We can think of the energy stored in an in-
ductor as energy stored in this magnetic field. For the special case of a long, thin
solenoid, the magnetic field strength is zero except for the region inside the induc-
tor, where it is given by

The self-inductance of a long, thin solenoid is given by Equation 28-13:

where is the cross-sectional area and is the length. Substituting for 
and for in Equation 28-21, we obtain

The quantity is the volume of the space within the solenoid containing the mag-
netic field. The energy per unit volume is the magnetic energy density

28-22

MAGNETIC ENERGY DENSITY

Although we derived this expression by considering the special case of the mag-
netic field in a long solenoid, it is a general result. Whenever a magnetic field exists in
space, the magnetic energy per unit volume is given by Equation 28-22. Note the sim-
ilarity to the energy density in a region where there is an electric field (Equation 24-9):
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Example 28-11 Electromagnetic Energy Density

A certain region of space has a uniform magnetic field of and a uniform electric field
of Find (a) the total electromagnetic energy density in the region, and (b) the
energy in a cubical box of edge length 

PICTURE The total energy density is the sum of the electrical and magnetic energy den-
sities, The energy in a volume is given by 

SOLVE

U � uV.Vu � ue � um.
u

� � 12.0 cm.
2.50 � 106 N>C.

0.0200 T

(a) 1. Calculate the electrical energy density:

� 27.7 J>m3

�
1
2

(8.85 � 10�12 C2>N # m2)(2.50 � 106 N>C)2

ue �
1
2

P0E
2



RL Circuits S E C T I O N  2 8 - 8 | 979

*28-8 CIRCUITS

A circuit containing a resistor and an inductor, such as that shown in Figure 28-29, is
called an RL circuit. Because all circuits have resistance and self-inductance at room
temperature, the analysis of an circuit can be applied to some extent to all circuits.*

For the circuit shown in Figure 28-29, application of Kirchhoff’s loop rule gave us

28-19

Let us look at some general features of this equation. First, the sum 
equals the emf of the battery, which is constant. Immediately after we close the
switch in the circuit, the current is still zero, so is zero, and equals the
emf of the battery, Setting in Equation 28-19, we get

28-23

As the current increases, increases and decreases. Note that the current
cannot abruptly jump from zero to some final value as it would if the inductance 
were zero. When the inductance is greater than zero is finite, and therefore
the current must be continuous in time. After a short time, the current has reached
a positive value and the rate of change of the current is

At this time the current is still increasing, but its rate of increase is less than it was
at The final value of the current can be obtained by setting equal to
zero in Equation 28-19:

28-24

Figure 28-30 shows the current in this circuit as a function of time. This figure is the
same as that for the charge on a capacitor as a function of time when the capacitor
is being charged in an circuit (Figure 25-45).

Equation 28-19 is of the same form as Equation 25-38 for the charging of a
capacitor—and can be solved in the same way (by separating variables and inte-
grating). The result is

28-25

where is the current as and

28-26

is the time constant of the circuit. The larger the self-inductance or the smaller
the resistance the longer it takes for the current to reach any specified fraction
of its final current If .

R,
L

t �
L
R

tS ,If � E0 >R I �
E0

R
(1 � e�(R>L)t) � If(1 � e�t>t)
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If �
E0

R

dI>dtIft � 0.

dI
dt
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E0 � IR

L

I,

dI>dtL
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dI>dtIR
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I � 0E0 .
L dI>dtIR
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dI
dt

� 0

RL

RL

* All circuits also have some capacitance between parts of the circuits at different potentials. We will consider the effects
of capacitance in Chapter 29 when we study ac circuits. Here we will neglect capacitance to simplify the analysis and
to focus on the effects of inductance.

E0
R

I

tτ

If = 

I If (1�e�t/t) = 

F I G U R E  2 8 - 3 0 Current versus time in
an circuit. At a time the
current is at 63 percent of its maximum value
E0>R.

t � t � L>R,RL

2. Calculate the magnetic energy density: um �
B2

2m0

�
(0.0200 T)2

2(4p � 10�7 N>A2)
� 159 J>m3

3. The total energy density is the sum of the above two
contributions:

187 J>m3u � ue � um � 27.7 J>m3 � 159 J>m3 �

(b) The total energy in the box is where is the
volume of the box:

V � �3U � uV, 0.323 JU � uV � u�3 � (187 J>m3)(0.120 m)3 �
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F I G U R E  2 8 - 3 1 An RL circuit that has a
make-before-break switch so that the battery
can be removed from the circuit without
interrupting the current through the inductor.
The current in the inductor reaches its steady-
state value with the switch pole in position e.
The pole is then rapidly moved to position f.
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CHECK In five time constants, the current is within one percent of its final value. This is con-
sistent with the results of Example 25-18 where we found that after five time constants the
charge on a discharging capacitor was less that one percent of its initial charge.

Example 28-12 Energizing a Coil

A coil that has a self-inductance equal to and a resistance equal to is placed
across the terminals of a 12.0-V battery that has a negligible internal resistance. (a) What is
the final current? (b) What is the time constant? (c) How many time constants does it take for
the current to reach 99.0 percent of its final value?

PICTURE The final current is the current when The current as a function of time
is given by Equation 28-25, where 

SOLVE

t � L>R.I � If (1 � e�t>t), dI>dt � 0.

15.0 Æ5.00 mH

(a) Using Equation 28-19, set equal to zero to find the final
current, If :

dI>dt

0.800 AIf �
E0

R
�

12.0 V
15.0 Æ

�

E0 � IfR � 0 � 0

E0 � IR � L
dI
dt

� 0

(b) Calculate the time constant t. 333 mst �
L
R

�
5.00 � 10�3H

15.0 Æ
�

(c) Use Equation 28-25 and calculate the time for I � 0.990If :t

so

Taking the logarithm of both sides gives

Thus,

4.61t� �t ln(0.010) � t ln 100 �

t � �t lna1 �
I
If
b � �t ln(1 � 0.990)

�
t
t

� lna1 �
I
If
b

e�t>t � a1 �
I
If
b

I � If (1 � e�t>t),

PRACTICE PROBLEM 28-8

How much energy is stored in this inductor when the final current has been attained?

In Figure 28-31, the circuit has a make-before-break switch (shown in Figure 28-32)
that allows us to remove the battery from the circuit without interrupting the current
through the inductor. The resistor protects the battery so that the battery is not
shorted when the switch is thrown. If the switch throw is in position the battery,
the inductor, and the two resistors are connected in series and the current builds up
in the circuit as just discussed, except that the total resistance is now and the
final current is Suppose that the throw has been in position for a long
time, so that the current remains at its final value, which we will call At time 
we rapidly move the throw from position to position With the throw at the
current is zero in the branch with the battery and We now have a closed single-
loop circuit (loop that has a resistor and an inductor carrying an initial
current Applying Kirchoff’s loop rule to this circuit gives

�IR � L
dI
dt

� 0

I0 .
abcdfa)

R1.
f,f.e
t � 0,I0 .

eE0>(R � R1).
R1 � R

e,
R1



RL Circuits S E C T I O N  2 8 - 8 | 981

Rearranging this equation to separate the variables and gives

28-27

(Equation 28-27 is of the same form as Equation 25-34 for the discharge of a capacitor.)
Integrating and then solving for gives

28-28

where is the time constant. Figure 28-33 shows the current as a function of
time.

PRACTICE PROBLEM 28-9

What is the time constant of a closed single-loop circuit that has a resistance equal to 
and an inductance equal to 6.0 mH?
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F I G U R E  2 8 - 3 2 (a) The standard single-
pole, double-throw switch is a break-before-
make switch. That is, it breaks the first contact
before making the second contact. (b) In a
make-before-break, single-pole, double-throw
switch, the throw makes the second contact
before breaking the first contact. With the
throw in the middle position, the throw is
simultaneously in electrical contact with
contacts L and R.

I

t

I0

τ

F I G U R E  2 8 - 3 3 Current versus time for
the circuit in Figure 28-31. The current
decreases exponentially with time.



PICTURE (a) We simplify our calculations by using the fact that the current in
an inductor cannot change abruptly. Thus, because the current in the inductor
is zero before the switch is closed, the current in the inductor must be zero just
after the switch is closed. (b) When the current reaches its final value 
equals zero, so there is no potential drop across the inductor. The inductor thus acts like a
short circuit; that is, the inductor acts like a wire with zero resistance. (c) Immediately after
the switch is opened, the current in the inductor is the same as it was just before the switch
was opened. (d) A long time after the switch is opened, all the currents must be zero.

SOLVE

dI>dt

(a) 1. The switch is just closed. The current through the inductor is
zero, just as it was before the switch was closed. Apply the
junction rule to relate and I2:I1 so

I1 � I2

I1 � I2 � I3

 0I3 �
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Example 28-13 Energy Dissipated

Find the total energy dissipated in the resistor as shown in Figure 28-31, when the current
in the circuit decreases from its initial value of to 0.

PICTURE The rate of energy dissipation is equal to 

SOLVE

I2R.

I0

R,

1. The rate of energy dissipation is I2R:
dU
dt

� I2R

2. The total energy dissipated in the resistor is the integral of
from to t � :t � 0P dt

U U � �
q

0
I2R dt

3. The current is given by Equation 28-28:I I � I0e
�(R>L)t

4. Substitute this current into the integral: U � �
q

0
I2R dt � �

q

0
I20e

�2(R>L)tR dt � I20R �
q

0
e�2(R>L)t dt

5. The integration can be done by substituting x � 2Rt>L:
1
2
LI20U � I20R

e�2(R>L)t

�2(R>L)
` 
0

� I20R
�L
2R

(0 � 1) �

CHECK The total amount of energy dissipated equals the energy originally stored in
the inductor. (The energy stored in an inductor is (Equation 28-21.)1

2LI2

1
2LI20

2. The current in the left loop is obtained by applying the loop
rule to the loop on the left: so

 5.0 AI1 � I2 �
E

R1 � R2

�
150 V

10 Æ � 20 Æ
�

E � I1R1 � I1R2 � 0

(b) 1. After a long time, the currents are steady and the inductor acts
like a short circuit, so the potential drop across is zero.
Apply the loop rule to the loop on the right and solve for I2:

R2
 0 0 � I2R2 � 0 ⇒ I2 �

�L
dI3
dt

� I2R2 � 0

Example 28-14 Initial Currents and Final Currents

For the circuit shown in Figure 28-34, find the currents and (a) imme-
diately after switch S is closed and (b) a long time after switch S has been
closed. After the switch has been closed for a long time the switch is opened.
Immediately after the switch is opened (c) find the three currents and (d) find
the potential drop across the resistor. (e) Find all three currents a long
time after switch S was opened.

20-Æ

I3I1 , I2 ,

+
_E = 150 V I2 L = 2 H

S R1

I3
+

I1
+

+

= 10 �

R2= 20 �
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28-9 MAGNETIC PROPERTIES
OF SUPERCONDUCTORS

A superconductor has a resistivity equal to zero
below a critical temperature which varies
from material to material. In the presence of a
magnetic field the critical temperature is lower
than the critical temperature is when there is no
magnetic field. As the magnetic field increases,
the critical temperature decreases. If the magnetic
field strength is greater than some critical field
strength superconductivity does not exist at
any temperature.

*MEISSNER EFFECT

As a superconductor in a region that has a mag-
netic field is cooled below its critical temperature,
the magnetic field in the region within the super-
conducting material becomes zero (Figure 28-35).
This effect was discovered by Walter Meissner and
Robert Ochsenfeld in 1933 and is now known as
the Meissner effect. The magnetic field becomes
zero because superconducting currents induced
on the surface of the superconductor produce a

Bc ,

B
S

,

Tc ,
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TAKING IT FURTHER Were you surprised to find the potential drop across in Part (d) to
be larger than the emf of the battery? This potential drop is equal to the emf of the inductor.

PRACTICE PROBLEM 28-10 Suppose and the switch has been closed for a long
time. What is the potential drop across immediately after the switch is then opened?R2

R2 � 200 Æ

R2

2. Apply the loop rule to the loop on the left and solve for I1:

so

 15 AI1 �
E

R1

�
150 V
10 Æ

�

E � I1R1 � 0 � 0

E � I1R1 � I2R2 � 0

3. Apply the junction rule and solve for I3:

so

 15 AI3 �

15 A � 0 � I3

I1 � I2 � I3

(c) When the switch is reopened, “instantaneously” becomes zero.
The current in the inductor changes continuously, so at that
“instant” Apply the junction rule and solve for I2:I3 � 15 A.

I3

I1

so

�15 AI2 � I1 � I3 � 0 � 15 A �

I1 � I2 � I3

 15 AI3 �

(d) Apply Ohm’s law to find the potential drop across R2:  300 VV � I2R2 � (15 A)(20 Æ) �

(e) A long time after the switch is opened, all the currents must
equal zero.

 0I1 � I2 � I3 �

T > Tc

TcT < 

(b)(a)

F I G U R E  2 8 - 3 5 (a) The Meissner effect in a superconducting solid sphere
cooled in a constant applied magnetic field. As the temperature drops below
the critical temperature the magnetic field inside the sphere becomes zero.
(b) Demonstration of the Meissner effect. A superconducting tin cylinder is situated
with its axis perpendicular to a horizontal magnetic field. The directions of the field
lines are indicated by weakly magnetized compass needles mounted in a Lucite
sandwich so that they are free to turn. (A. Leitner/Rensselaer Polytechnic Institute.)

Tc ,



second magnetic field that cancels out the applied one. The magnetic levitation
(see the photo) results from the repulsion between the permanent magnet produc-
ing the applied field and the magnetic field produced by the currents induced in
the superconductor.

Only certain superconductors, called type I superconductors, exhibit the com-
plete Meissner effect. Figure 28-36a shows a plot of the magnetization multi-
plied by versus the applied magnetic field for a type I superconductor. For
a magnetic field less than the critical field strength the magnetic field in-
duced in the superconductor is equal and opposite to the applied magnetic field.
The values of for type I superconductors are always too small for such materi-
als to be useful in the coils of a superconducting magnet.

Other materials, known as type II superconductors, have a magnetization
curve similar to that in Figure 28-36b. Such materials are usually alloys or metals
that have large resistivities in the normal state. Type II superconductors exhibit the
electrical properties of superconductors, except for the Meissner effect, up to the
critical field which may be several hundred times the typical values of critical
fields for type I superconductors. For example, the alloy has a critical field

Such materials can be used for high-field superconducting magnets.
Below the critical field the behavior of a type II superconductor is the same as
that of a type I superconductor.

Bc1 ,
Bc2 � 34 T.

Nb3Ge
Bc2 ,

Bc

m0MBc ,
Bappm0

M

Type I
superconductor

Bc Bapp Bapp

Type II
superconductor
Bc1 Bc2

m0M m0M

m0M = –Bapp

(b)(a)

F I G U R E  2 8 - 3 6 Plots of multiplied by the magnetization versus applied magnetic field
for type I and type II superconductors. (a) In a type I superconductor, the resultant magnetic field is
zero below a critical applied field because the field due to induced currents on the surface of the
superconductor exactly cancels the applied field. Above the critical field, the material is a normal
conductor and the magnetization is too small to be seen on this scale. (b) In a type II superconductor,
the magnetic field starts to penetrate the superconductor at a field but the material remains
superconducting up to a field after which the material becomes a normal conductor.Bc2 ,

Bc1 ,

Bc

Mm0

The disk is a superconductor. The magnetic
levitation results from the repulsion between
the permanent magnet producing the applied
field and the magnetic field produced by the
currents induced in the superconductor.
(© Palmer/Kane, Inc./CORBIS.)
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*FLUX QUANTIZATION

Consider a superconducting ring that has an area and carries a current. A mag-
netic flux can exist through the flat surface bounded by the ring due to
the current in the ring and due also perhaps to other currents external to the ring.
According to Equation 28-6, if the flux of the magnetic field through changes, an
electric field will be induced in the ring whose circulation is proportional to the rate
of change of the flux. But no electric field can exist in a superconducting ring
because the ring has no resistance and a finite electric field would drive an infinite
current. The flux through is thus fixed and cannot change.

Another effect, which results from the quantum-mechanical treatment of super-
conductivity, is that the total flux through surface is quantized and is given by

28-29

The smallest unit of flux, called a fluxon, is

28-30f0 �
h
2e

� 2.0678 � 10�15 T # m2

n � 1, 2, 3, Áfm � n
h
2e

S

S

S

Sfm � BnA
A



Physics Spotlight

The Promise of Superconductors

In 1986, a pair of IBM researchers tested a metal oxide—a ceramic—and found it
was superconductive at * Researchers worldwide then began testing differ-
ent ceramics for superconductivity. By early 1987, a high-temperature supercon-
ductor (HTS) ceramic had been found. It is superconducting at —warm
enough to be cooled by liquid nitrogen rather than liquid helium.† Superconduc-
ting ceramics were also found that could carry very large currents. The popular
press assumed that room-temperature superconductors would be discovered.
Books written in the late discussed the possibilities of superconductor-as-
sisted levitating trains, superconductor-enabled computers, transfer of power
over long distances without large losses due to resistance, and even supercon-
ductor-assisted satellite lasers.‡, #

Unfortunately, room-temperature superconductors have not been reliably
observed. Furthermore, high-temperature ceramic superconductors are difficult
to work with.° They are brittle and cannot be connected easily to wires, so sev-
eral ways of depositing the superconducting ceramics on other surfaces had
to be invented. In addition, if the boundaries between the tiny ceramic grains
are not properly oriented or if the layers are too thick, the ceramic is not super-
conductive.§

These difficulties have, however, slowly been overcome. HTS are now used
in a growing number of applications. Superconducting quantum interference
detectors, or SQUIDs, use interruptions¶ in superconductivity to detect ex-
tremely small amounts of energy. They are used in extraordinarily sensitive
metal detectors,** light detectors,†† and even to detect magnetic fields in the
nervous systems of newborns.‡‡ HTS have been tested in short lengths of elec-
trical cable that have been nitrogen-cooled and carry large currents## and in fine
superconducting wires.°°

Superconductors become resistive conductors when they carry large currents, which can be advantageous for long-dis-
tance power distribution systems. When short circuits occur in electrical circuits, the current rapidly increases unless the
circuit is protected by a fuse or circuit breaker. Without the protections, the large currents can damage equipment and cause
fires. Superconducting current limiters are being developed§§ to protect electrical distribution networks from those exces-
sively large currents.¶¶

In 2001, Japanese researchers discovered that magnesium diboride, is superconductive at much warmer than
any other metallic superconductor. Unlike other metallic superconductors, it can be cooled by liquid neon instead of the
more costly liquid helium. Because is a metallic alloy, it is easily made into wire.*** Pure does develop resistance
at a lower critical current than other metallic superconductors, so it is not currently used for high-current applications.†††

Researchers are studying the additions of small amounts of other elements to improve the characteristics of ‡‡‡

* Yamazaki, S., “Superconducting Ceramics,” September 26, 2006.
† Chu, C. W., “Superconductivity Above 90 K.” Proceedings of the National Academy of Sciences, Jul. 1987, Vol. 84, pp. 4681–4682.
‡ Asimov, I., How Did We Find Out About Superconductivity? New York: Walker and Company, 1988, pp. 57–62.
# Lampton, C. E., Superconductors. Hillside, New Jersey: Enslow, 1989, pp. 7–8, 53–69.
° Pool, R., “Superconductors’ Material Problems.” Science, Apr. 1, 1988, Vol. 240, No. 4848, pp. 25–27.
§ Service, R. F., “YBCO Confronts Life in the Slow Lane.” Science, Feb. 1, 2002, Vol. 295, p. 787.
¶ Irwin, K. D., “Seeing with Superconductors.” Scientific American, Nov. 2006, pp. 86–94.
** Bick, M., et al., “A SQUID-Based Metal Detector-Comparison to Coil and X-Ray Systems.” Superconducting Science and Technology, Jan. 18, 2005, Vol. 18, pp. 346–351.
†† “Color Video Streaming from Space” Machine Design, May 25, 2006, p. 40.
‡‡ Draganova, R., et al., “Sound Frequency Change Detection in Fetuses and Newborns, a Magnetoencephalographic Study.” Neuroimage, Nov. 1, 2005, Vol. 28, No. 2, pp. 354–361.
## Malozemoff, A. P., Mannhart, J., and Scalapino, D., “High-Temperature Cuprate Superconductors Get to Work.” Physics Today, April 2005, pp. 41–47.
°° Kang, S., “High-Performance, High-TC Superconducting Wires.” Science, Mar. 31, 2006, Vol. 311, pp. 1911–1914.
§§ Malozemoff, A. P., Mannhart, J., and Scalapino, D., op. cit.
¶¶ Meerovich, V., and Sokolovsky, V., “Experimental Study of a Transformer with Superconducting Elements for Fault Current Limitation and Energy Redistribution.” Cryogenics, Aug.

2005, Vol. 45, No. 8, pp. 572–577.
*** Service, R., “MgB2 Trades Performance for a Shot at the Real World.” Science, Feb. 1, 2002, Vol. 295, pp. 786–788.
††† Canfield, P., and Bud’ko, S., “Low-Temperature Superconductivity Is Warming Up.” Scientific American, Apr. 2005, pp. 80–87.
‡‡‡ Senkowicz, B. J., et al., “Atmospheric Conditions and Their Effect on Ball-Milled Magnesium Diboride.” Superconductor Science and Technology, Oct. 2006, Vol. 19, pp. 1173–1177.

United States Patent 7,1112,556 B1.

MgB2.

MgB2MgB2

39 K,MgB2,

1980s

90 K

23 K.
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The researcher is filling tubes with high-
temperature superconducting powder in
order to make wire. (Courtesy of Department
of Energy.)
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Summary

1. Faraday’s law and Lenz’s law are fundamental laws of physics.

2. Self-inductance is a property of a circuit element that relates the flux through the element
to the current.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Magnetic Flux

General definition 28-1

Uniform field, flat surface bounded 28-4
by coil of turns where is the area of the flat surface bounded by a single turn.

Units 28-2

Due to current in a circuit 28-11

Due to current in two circuits

28-16

2. EMF

Faraday’s law (includes both induction 28-5
and motional emf)

Induction (time-varying magnetic field, 28-6
stationary)

Rod moving perpendicular to both 28-7
its length and

Self-induced (back emf) 28-14

3. Faraday’s Law 28-5

4. Lenz’s Law The induced emf and induced current are in such a direction as to oppose, or tend to oppose,
the change that produces them.

Alternative statement When a magnetic flux through a surface changes, the magnetic field due to any induced cur-
rent produces a flux of its own—through the same surface and opposite in sign to the change
in flux.

5. Inductance

Self-inductance 28-11

Self-inductance of a solenoid 28-13L � m0n
2A�

L �
fm

I

E � �
dfm

dt

E � �L
dI
dt

B
S

ƒE ƒ � vB�

C

E � CC E
S # d�

S

E � �
dfm

dt

fm2 � L2I2 �MI1

fm1 � L1I1 �MI2

fm � LI

1 Wb � 1 T # m2

AN
fm � NBA cosu

fm � �
S
B
S # nn dA

Fm
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TOPIC RELEVANT EQUATIONS AND REMARKS

Answers to Concept Checks

28-1 Opposite to the direction shown in Figure 28-12.

28-2 The external agent turning the coil does work on the
coil. The energy comes from the external agent.

Answers to Practice Problems

28-2

28-3

28-4

28-5

28-6

28-7

28-8

28-9

28-10 3.0 kV

71 ms

Um � 1
2LI2f � 1.60 � 10�3 J

M12 � m0n2n1�pr21

3.18 � 105 A>s11 V

1.4 V

3.53 mC

0.555 A

Mutual inductance 28-18

Units and constants

6. Magnetic Energy

Energy stored in an inductor 28-21

Energy density in a magnetic field 28-22

*7. RL Circuits

Potential difference across an inductor 28-15

where is the internal resistance of the inductor. For an ideal inductor 

Energizing an inductor with a battery In a single-loop circuit consisting of a resistor that has a resistance an inductor that has a
self-inductance and a battery that has an emf , the current does not reach its maximum
value instantaneously, but rather takes some time to build up. If the current is initially zero,
its value at some later time is given by

28-25

Time constant 28-26

De-energizing an inductor In a single-loop circuit consisting of a resistor that has a resistance and an inductor that has
a self-inductance the current does not drop to zero through a resistor instantaneously, but
rather takes some time to decrease. If the current is initially its value at some later time 
is given by

28-28I � I0 e
�t>t

tI0 ,
L,

R

t �
L
R

t

I �
E0

R
(1 � e�t>t) � If (1 � e�t>t)

t

If

E0L,
R,

r � 0.r

¢V � E � Ir � �L
dI
dt

� Ir

um �
B2

2m0

Um � 1
2LI2

m0 � 4p � 10�7 H>m1 H � 1 Wb>A � 1 T # m2>A
M �

fm21

I1
�
fm12

I2



the loop as a function of time. Indicate on the graph when the mag-
net is halfway through the loop by designating this time Choose
the direction of the normal to the flat surface bounded by the loop
to be to the right. (b) Make a graph of the induced current in the loop
as a function of time. Choose the positive direction for the current to
be clockwise as viewed from the left.
9 • A bar magnet is mounted on the
end of a coiled spring and is oscillating in
simple harmonic motion along the axis of
a loop, as shown in Figure 28-40. The mag-
net is in its equilibrium position when
its midpoint is in the plane of the loop.
(a) Make a graph of the magnetic flux
through the loop as a function of time.
Indicate when the magnet is halfway
through the loop by designating these
times and (b) Make a graph of the
induced current in the loop as a function of
time, choosing the current to be positive
when it is clockwise as viewed from above.
10 • A pendulum is fabricated from
a thin, flat piece of aluminum. At the bot-
tom of its arc, it passes between the poles
of a strong permanent magnet. In Figure
28-41a, the metal sheet is continuous,
whereas in Figure 28-41b, there are slots in the sheet. When released
from the same angle, the pendulum that has slots swings back and
forth many times, but the pendulum that does not have slots stops
swinging after no more than one complete oscillation. Explain why.

t2 .t1

t1 .
CONCEPTUAL PROBLEMS

1 • (a) The magnetic equator is a line on the surface of
Earth on which Earth’s magnetic field is horizontal. At the mag-
netic equator, how would you orient a flat sheet of paper so as
to create the maximum magnitude of magnetic flux through it?
(b) How about the minimum magnitude of magnetic flux? 

2 • At one of Earth’s magnetic poles, how would you ori-
ent a flat sheet of paper so as to create the maximum magnitude
of magnetic flux through it?

3 • Show that the following combination of SI units is equiv-
alent to the volt: 

4 • Show that the following combination of SI units is equiv-
alent to the ohm: 

5 • A current is induced in a conducting loop that lies in a
horizontal plane, and the induced current is clockwise when
viewed from above. Which of the following statements could be
true? (a) A constant magnetic field is directed vertically downward.
(b) A constant magnetic field is directed vertically upward. (c) A
magnetic field whose magnitude is increasing is directed vertically
downward. (d) A magnetic field whose magnitude is decreasing is
directed vertically downward. (e) A magnetic field whose magni-
tude is decreasing is directed vertically upward.

6 • Give the direc-
tion of the induced cur-
rent in the circuit, shown
on the right in Figure 
28-37, when the resistance
in the circuit on the left
is suddenly (a) increased
and (b) decreased. Explain
your answer.

7 • The planes of
the two circular loops in
Figure 28-38 are parallel.
As viewed from the left, a
counterclockwise current
exists in loop A. If the mag-
nitude of the current in
loop A is increasing, what
is the direction of the cur-
rent induced in loop B? Do
the loops attract or repel
each other? Explain your
answer.

8 • A bar magnet
moves with constant ve-
locity along the axis of a
loop, as shown in Figure
28-39. (a) Make a graph of
the magnetic flux through

SSM

SSM

Wb>(A # s)

SSMT # m2>s.

SSM

v0
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E

R
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Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

F I G U R E  2 8 - 4 0

Problem 9

N

S

(b)(a)

N

S

F I G U R E  2 8 - 4 1 Problem 10 (Courtesy of PASCO Scientific Co.)

11 • A bar magnet is dropped inside a long, vertical tube. If
the tube is made of metal, the magnet quickly approaches a termi-
nal speed, but if the tube is made of cardboard, the magnet falls
with constant acceleration. Explain why the magnet falls differently
in the metal tube than it does in the cardboard tube.
12 • A small square wire loop lies in the plane of this page, and
a constant magnetic field is directed into the page. The loop is mov-
ing to the right, which is the direction. Find the direction of the
induced current, if any, in the loop if (a) the magnetic field is uni-
form, (b) the magnetic field strength increases as increases, and
(c) the magnetic field strength decreases as increases.x

x

�x



21 • A circular coil has and a radius of It is
at the equator, where Earth’s magnetic field is , north.
The axis of the coil is the line that passes through the center of
the coil and is perpendicular to the plane of the coil. Find the
magnetic flux through the coil when the axis of the coil is (a) ver-
tical, (b) horizontal with the axis pointing north, (c) horizontal
with the axis pointing east, and (d) horizontal with the axis mak-
ing an angle of with north.

22 • A magnetic field of is perpendicular to the plane
of a 14-turn square coil with sides long. (a) Find the mag-
netic flux through the coil. (b) Find the magnetic flux through
the coil if the magnetic field makes an angle of with the nor-
mal to the plane of the coil.

23 • A uniform magnetic field is perpendicular to the base
of a hemisphere of radius Calculate the magnetic flux (in terms
of and through the spherical surface of the hemisphere.

24 • Find the magnetic flux through a 400-turn solenoid that
has a length equal to has a radius equal to and car-
ries a current of 

25 • Find the magnetic flux through a 800-turn solenoid that
has a length equal to has a radius equal to and car-
ries a current of 

26 •• A circular coil has has a radius of and
is in a uniform magnetic field of in the direction. Find
the flux through the coil when the unit normal to the plane of the
coil is (a) (b) (c) (d) and (e)

27 •• A long solenoid has turns per unit length, has a radius
and carries a current A circular coil with radius and with

total turns is coaxial with the solenoid
and equidistant from its ends. (a) Find the
magnetic flux through the coil if 
(b) Find the magnetic flux through the coil
if

28 ••• (a) Compute the magnetic flux
through the rectangular loop shown in
Figure 28-43. (b) Evaluate your answer
for
and

29 ••• A long, cylindrical conductor
with a radius and a length carries a
current . Find the magnetic flux per unit
length through the area indicated in
Figure 28-44.

I
LR

I � 20 A.
d � 2.0 cm,b � 10 cm,a � 5.0 cm,

SSMR2 	 R1.

R2 
 R1.

N
R2I.R1 ,

n

0.60in � 0.80jn.kn,A in � jn B >22,jn,in,

�x4.00 kG
4.00 cm,15.0 turns,

2.00 A.
1.00 cm,30.0 cm,

3.00 A.
1.00 cm,25.0 cm,

R)B
R.

B
S

60°

5.0 cm
1.2 T

SSM30°

0.70 G
5.0 cm.25 turns13 • If the current in an inductor doubles, the energy stored in

the inductor will (a) remain the same, (b) double, (c) quadruple,
(d) halve.

14 • Two solenoids are equal in length and radius, and the
cores of both are identical cylinders of iron. However, solenoid A
has three times the number of turns per unit length as solenoid B.
(a) Which solenoid has the larger self-inductance? (b) What is the
ratio of the self-inductance of solenoid A to the self-inductance of
solenoid B?

15 • True or false:
(a) The induced emf in a circuit is equal to the negative of the mag-

netic flux through the circuit.
(b) There can be a nonzero induced emf at an instant when the flux

through the circuit is equal to zero.
(c) The self-inductance of a solenoid is proportional to the rate of

change of the current in the solenoid.
(d) The magnetic energy density at some point in space is propor-

tional to the square of the magnitude of the magnetic field at
that point.

(e) The inductance of a solenoid is proportional to the current in it.

ESTIMATION AND 
APPROXIMATION

16 • CONTEXT-RICH Your baseball teammates, having just
studied this chapter, are concerned about generating enough volt-
age to shock them while swinging aluminum bats at fastballs.
Estimate the maximum possible motional emf measured between
the ends of an aluminum baseball bat during a swing. Do you think
your team should switch to wooden bats to avoid electrocution?

17 • Compare the energy density stored in Earth’s electric field
near its surface to that stored in Earth’s magnetic field near its surface.

18 •• A physics teacher does the following emf demonstration.
She has two students hold a long wire connected to a voltmeter. The
wire is held slack, so that it sags with a large arc in it. When she
says, “Start,” the students begin rotating the wire as if they were
playing jump rope. The students stand apart, and the sag in
the wire is about The motional emf from the “jump rope” is
then measured on the voltmeter. (a) Estimate a reasonable value
for the maximum angular speed at which the students can rotate
the wire. (b) From this, estimate the maximum motional emf in the
wire. Hint: What field is involved in creating the induced emf?

19 •• (a) Estimate the maximum possible motional emf between
the wingtips of a typical commercial airliner in flight. (b) Estimate the
magnitude of the electric field between the wingtips. 

MAGNETIC FLUX

20 • A uniform magnetic
field of magnitude is in
the direction. A square coil
that has 5.00-cm-long sides has
a single turn and makes an
angle with the axis, as
shown in Figure 28-42. Find
the magnetic flux through the
coil when is (a) (b)
(c) and (d) 90°.60°,

30°,0°,u

zu

�x
0.200 T

1.5 m.
3.0 m

SSM
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y

x

z

5 cm

5 cm

θ

B
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a

b

I

d
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R

L

I

Area
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Problem 29

INDUCED EMF AND 
FARADAY’S LAW

30 • The flux through a loop is given by 
where is in webers and is in seconds. (a) Find the induced emf
as a function of time. (b) Find both and at 

and t � 6.0 s.t � 4.0 s,
t � 0, t � 2.0 s,Efm

tfm

(0.10t2 � 0.40t),fm �



39 •• A 10-cm by
5.0-cm rectangular loop
(Figure 28-46) that has
a resistance equal to

moves at a con-
stant speed of 
through a region that
has a uniform 1.7-T ma-
gnetic field directed out
of the page as shown.
The front of the loop
enters the field region
at time (a) Graph the flux through the loop as a function of
time. (b) Graph the induced emf and the current in the loop as
functions of time. Neglect any self-inductance of the loop and
construct your graphs to include the interval 

40 •• A uniform 1.2-T magnetic field is in the direction.
A conducting rod of length lies parallel to the axis and
oscillates in the direction with displacement given by 

where has units of (a) Find an
expression for potential difference between the ends of the rod as a
function of time?
(b) What is the maxi-
mum potential differ-
ence between the ends
the rod?

41 •• In Figure 28-
47, the rod has a mass
and a resistance The
rails are horizontal, fric-
tionless, and have negli-
gible resistances. The
distance between the rails is An ideal battery that has an emf
is connected between points and so that the current in the rod is
downward. The rod is released from rest at (a) Derive an ex-
pression for the force on the rod as a function of the speed. (b) Show
that the speed of the rod approaches a terminal speed and find an ex-
pression for the terminal speed. (c) What is the current when the rod
is moving at its terminal speed?

42 • A uniform magnetic field is established perpendicular to
the plane of a loop that has a radius equal to and a resistance
equal to The magnitude of the field is increasing at a rate of

Find (a) the magnitude of the induced emf in the loop,
(b) the induced current in the loop, and (c) the rate of Joule heating in
the loop.

43 •• In Figure 28-
48, a conducting rod that
has a mass and a neg-
ligible resistance is free
to slide without friction
along two parallel fric-
tionless rails that have
negligible resistances
separated by a distance 
and connected by a resis-
tance The rails are at-
tached to a long inclined
plane that makes an
angle with the horizontal. There is a magnetic field directed up-
ward as shown. (a) Show that there is a retarding force directed up
the incline given by (b) Show that the terminal
speed of the rod is 

44 ••• A conducting rod of length rotates at constant angular
speed about one end, in a plane perpendicular to a uniform mag-
netic field (Figure 28-49). (a) Show that the potential difference be-
tween the ends of the rod is (b) Let the angle between theu1

2B v�2.
B

v

�

vt � mgR sinu>(B2�2 cos2 u)
F � (B2�2v cos2 u)>R.

u

R.

�

m

40.0 mT>s.
0.400 Æ.

5.00 cm

SSM

t � 0.
ba

E�.

R.
m,

rad>s.120p(2.0 cm) cos(120pt),
x �x

y15 cm
�z

0 � t � 16 s.

t � 0.

2.4 cm>s2.5 Æ
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31 • The flux through a loop is given by 
where is in webers and is in seconds. (a) Sketch graphs of mag-
netic flux and induced emf as a function of time. (b) At what time(s)
is the flux minimum? What is the induced emf at that (those)
time(s)? (c) At what time(s) is the flux zero? What is (are) the in-
duced emf(s) at those time(s)?
32 • A solenoid that has a length equal to a radius
equal to and 400 turns is in a region where a magnetic
field of exists and makes an angle of with the axis of the
solenoid. (a) Find the magnetic flux through the solenoid. (b) Find
the magnitude of the average emf induced in the solenoid if the
magnetic field is reduced to zero in 

33 •• A 100-turn circular coil has a diameter of and
a resistance of and the two ends of the coil are connected
together. The plane of the coil is perpendicular to a uniform
magnetic field of magnitude The direction of the field is
reversed. (a) Find the total charge that passes through a cross
section of the wire. If the reversal takes find (b) the av-
erage current and (c) the average emf during the reversal.
34 •• At the equator, a 1000-turn coil that has a cross-sec-
tional area of and a resistance of is aligned so that
its plane is perpendicular to Earth’s magnetic field of 
(a) If the coil is flipped over in what is the average in-
duced current in it during the (b) How much charge
flows through a cross section of the coil wire during the 

35 •• ENGINEERING APPLICATION A current integrator measures
the current as a function of time and integrates (adds) the current to
find the total charge passing through it. (Because the in-
tegrator calculates the integral of the current or A circu-
lar coil that has and a radius equal to is connected
to such an instrument. The total resistance of the circuit is 
The plane of the coil is originally aligned perpendicular to Earth’s
magnetic field at some point. When the coil is rotated through 
about an axis that is in the plane of the coil a charge of 
passes through the current integrator. Calculate the magnitude of
Earth’s magnetic field at that point.

MOTIONAL EMF

36 • A 30.0-cm-long rod moves steady at in a plane
that is perpendicular to a magnetic field of The velocity of
the rod is perpendicular to its length. Find (a) the magnetic force on
an electron in the rod, (b) the electrostatic field in the rod, and (c) the
potential difference between the ends of the rod.
37 • A 30.0-cm-long rod moves in a plane that is perpendi-
cular to a magnetic field of The velocity of the rod is per-
pendicular to its length. Find the speed of the rod if the potential
difference between the ends is 
38 •• In Figure 28-45, let the magnetic field strength be 
the rod speed be the rod length be and the resistance
of the resistor be (The resistance of the rod and rails are neg-
ligible.) Find (a) the induced emf in the circuit, (b) the induced cur-
rent in the circuit (including direction), and (c) the force needed to
move the rod with constant speed (assuming negligible friction).
Find (d) the power delivered by the force found in Part (c) and (e)
the rate of Joule heating in the resistor.

2.0 Æ.
20 cm,10 m>s,

0.80 T,
6.00 V.

500 G.

500 G.
8.00 m>s

9.40 mC
90°

20.0 Æ.
5.00 cm300 turns
Q � �I dt.)
I � dq>dt,

0.350 s?
0.350 s?
0.350 s,

0.700 G.
15.0 Æ300 cm2

SSM

0.100 s,

1.00 T.

50.0 Æ,
2.00 cm

1.40 s.

50°600 G
0.800 cm,

25.0 cm,

tfm

fm � (0.10t2 � 0.40t), 20 cm

10 cm

5 cm

x

B

v
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�

F I G U R E  2 8 - 4 7 Problem 41

θ

B

m

�

F I G U R E  2 8 - 4 8 Problem 43



rotating rod and the
dashed line be given by

Show that the
area of the pie-shaped re-
gion swept out by the rod
during time is 
(d) Compute the flux 
through that area, and
apply (Fara-
day’s law) to show that
the motional emf is given
by

GENERATORS AND MOTORS

45 • A 2.00-cm by 1.50-cm rectangular coil has 
and rotates in a region that has magnetic field of 
(a) What is the maximum emf generated when the coil rotates at

(b) What must its angular speed be to generate a max-
imum emf of 

46 • The coil of Problem at in a mag-
netic field. If the maximum emf generated by the coil is 
,what is the magnitude of the magnetic field?

INDUCTANCE

47 • When the current in an 8.00-H coil is equal to and
is increasing at find (a) the magnetic flux through the coil
and (b) the induced emf in the coil.

48 •• A 300-turn solenoid has a radius equal to and a
length equal to a 1000-turn solenoid has a radius equal to

and is also long. The two solenoids are coaxial,
with one nested completely inside the other. What is their mutual
inductance?

49 •• An insulated wire that has a resistance of and a
length of will be used to construct a resistor. First, the wire is
bent in half and then the doubled wire is wound on a cylindrical
form (Figure 28-50) to create a 25.0-cm-long helix that has a diameter
equal to Find both the resistance and the inductance of this
wire-wound resistor. SSM

2.00 cm.

9.00 m
18.0 Æ>m

25.0 cm5.00 cm
25.0 cm;

2.00 cm

200 A>s,
3.00 A

24 V,
60 rev>s45 rotates

SSM110 V?
60 rev>s?

0.400 T.
300 turns

1
2B v�2.

E � �dfm >dt

fm

1
2 �2u.t

u � vt.
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53 ••• Show that the inductance of a toroid of rectangular cross

section, as shown in Figure 28-52, is given by 

where is the total number of turns, is the inside radius, is the
outside radius, and is the height of the toroid. SSMH

baN

L �
moN

2H ln(b>a)
2p

,

ω

Bin
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+
_E

S R1

L1

R2

L2

Circuit 1 Circuit 2

G
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Problem 52
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Problem 49

50 •• You are given a length of wire that has radius and are
told to wind it into an inductor in the shape of a helix that has a cir-
cular cross section of radius The windings are to be as close to-
gether as possible without overlapping. Show that the self-induc-
tance of this inductor is 

51 • Using the result of Problem 50, calculate the self-induc-
tance of an inductor wound from of wire that has a diameter
of into a coil that has a radius of 

52 ••• In Figure 28-51, circuit 2 has a total resistance of 
After switch is closed, the current in Circuit 1 increases—reaching a
value of 5.00 A after a long time. A charge of passes through
the galvanometer in Circuit 2 during the time that the current in
Circuit 1 is increasing. What is the mutual inductance between the
two coils?

200 mC
S

300 Æ.

0.25 cm.1.0 mm
10 cm

L � 1
4m0r�>a.r.

a�

a

b

H

F I G U R E  2 8 - 5 2

Problem 53

MAGNETIC ENERGY

54 • A coil that has a self-inductance of and a resistance
of is connected to an ideal 24.0-V battery. (a) What is the
steady-state current? (b) How much energy is stored in the inductor
when the steady-state current is established?

55 • In a plane electromagnetic wave, the magnitudes of the
electric fields and magnetic fields are related by where

is the speed of light. Show that when the elec-
tric and the magnetic energy densities are equal.

56 •• A solenoid has a cross-sectional area equal to
and a length equal to The solenoid carries a current of

(a) Calculate the magnetic energy stored in the solenoid using
where (b) Divide your answer in Part (a) by the

volume of the region inside the solenoid to find the magnetic energy per
unit volume in the solenoid. (c) Check your Part (b) result by comput-
ing the magnetic energy density from where 

57 •• A long cylindrical wire has a radius equal to and
carries a current of uniformly distributed over its cross-sectional
area. Find the magnetic energy per unit length within the wire.

58 •• A toroid that has a mean radius equal to and cir-
cular loops with radii equal to is wound with a supercon-
ducting wire. The wire has a length equal to and carries a
current of (a) What is the number of turns of the wire?
(b) What is the magnetic field strength and magnetic energy density
at the mean radius? (c) Estimate the total energy stored in this
toroid by assuming that the energy density is uniformly distributed
in the region inside the toroid.

*RL CIRCUITS

59 • A circuit consists of a coil that has a resistance equal to
and a self-inductance equal to an open switch, and

an ideal 100-V battery—all connected in series. At the switch
is closed. Find the current and its rate of change at times (a)
(b) (c) and (d) SSMt � 1.00 ms.t � 0.500 ms,t � 0.100 ms,

t � 0,
t � 0

4.00 mH,8.00 Æ

400 A.
1000 m

2.00 cm
25.0 cm

80 A
2.0 cm

B � m0nI.um � B2>(2m0)

L � m0n
2A�.U � 1

2LI2,
4.0 A.

30 cm.4.0 cm2
2000-turn

SSM

E � cBc � 1>1P0m0

E � cB,

12.0 Æ
2.00 H
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66 •• Given the circuit shown in Figure 28-56, the inductor has
negligible internal resistance and the switch has been open for a
long time. The switch is then closed. (a) Find the current in the bat-
tery, the current in the resistor, and the current in the induc-
tor immediately after the switch is closed. (b) Find the current in the
battery, the current in the resistor, and the current in the in-
ductor a long time after the switch is closed. After being closed for
a long time the switch is now opened. (c) Find the current in the
battery, the current in the resistor, and the current in the in-
ductor immediately after the switch is opened. (d) Find the current
in the battery, the current in the resistor, and the current in
the inductor after the switch is opened for a long time.

100-Æ

100-Æ

100-Æ

100-Æ

S
60 • In the circuit shown in Figure 28-53, the throw of the
make-before-break switch has been at contact for a long time and
the current in the coil is equal to At the throw
is quickly moved to contact The total resistance of the coil
and the resistor is Find the current when (a)
and (b) t � 10.0 ms.

t � 0.500 ms10.0 Æ.
R � rb.
t � 02.00 A.1.00 mH

a

62 •• How many time constants must elapse before the current
in an circuit (Figure 28-54) that is initially zero reaches (a) 90 per-
cent, (b) 99 percent, and (c) 99.9 percent of its steady-state value?

63 •• A circuit consists of a 4.00-mH coil, a resistor, a
12.0-V ideal battery, and an open switch—all connected in series.
After the switch is closed: (a) What is the initial rate of increase
of the current? (b) What is the rate of increase of the current
when the current is equal to half its steady-state value? (c) What
is the steady-state value of the current? (d) How long does it take
for the current to reach 99 percent of its steady state value?

64 •• A circuit consists of a large electromagnet that has an in-
ductance of and a resistance of a dc 250-V power
source, and an open switch—all connected in series. How long after
the switch is closed is the current equal to (a) and (b)

65 •• SPREADSHEET Given the circuit shown in Figure 28-55,
assume that the inductor has negligible internal resistance and that
the switch S has been closed for a long time so that a steady current
exists in the inductor. (a) Find the battery current, the current in
the resistor, and the current in the inductor. (b) Find the poten-
tial drop across the inductor immediately after the switch S is
opened. (c) Using a spreadsheet program, make graphs of the current
in the inductor and the potential drop across the inductor as func-
tions of time, for the period during which the switch is open. SSM

100 Æ

30 A.10 A

8.00 Æ,50.0 H

SSM

150-Æ

RL

67 •• An inductor, two resistors, a make-before-break switch,
and a battery are connected as shown in Figure 28-57. The switch
throw has been at contact for a long time and the current in the in-
ductor is Then, at the throw is quickly moved to con-
tact During the next the current in the inductor drops to

(a) What is the time constant for this circuit? (b) If the resis-
tance is equal to what is the value of the inductance L?0.40 Æ,R
1.5 A.

45 msf .
t � 0,2.5 A.
e

+
_E0

a b

c

S R

L

+
I
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Problems 61, 62 and 69

61 •• In the circuit shown in Figure 28-54, let 
and The switch, which was initially open,

is closed at time At time find (a) the rate at which
the battery supplies energy, (b) the rate of Joule heating in the resistor,
and (c) the rate at which energy is being stored in the inductor. SSM

t � 0.500 s,t � 0.
L � 0.600 H.R � 3.00 Æ,

E0 � 12.0 V,

+
E

R

S

r

a

b
L

F I G U R E  2 8 - 5 3

Problem 60
S

2.00 H 10.0 V

10.0 Ω

100 Ω
++ +

+
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Problem 66

+
_

S

10.0 V

10.0 Ω

100 Ω 2.00 H
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Problem 67

68 •• A circuit consists of a coil that has a self-inductance equal
to and an internal resistance equal to an ideal 12.0-V
battery, and an open switch—all connected in series (Figure 28-58).
At the switch is closed. Find the time when the rate at which
energy is dissipated in the coil equals the rate at which magnetic
energy is stored in the coil.

t � 0

15.0 Æ,5.00 mH

69 ••• In the circuit shown in Figure 28-54, let 
and The switch is closed at time 

During the time from to find (a) the amount of energy
supplied by the battery, (b) the amount of energy dissipated in the
resistor, and (c) the amount of energy delivered to the inductor. Hint:
Find the energy transfer rates as functions of time and integrate. SSM

t � L>R,t � 0
t � 0.L � 0.600 H.R � 3.00 Æ,

E0 � 12.0 V,
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GENERAL PROBLEMS

70 • A 100-turn coil has a radius of and a resistance of
(a) The coil is in a uniform magnetic field that is perpendic-

ular to the plane of the coil. What rate of change of the magnetic
field strength will induce a current of in the coil? (b) What
rate of change of the magnetic field strength is required if the mag-
netic field makes an angle of 20° with the normal to the plane of
the coil?

71 •• ENGINEERING APPLICATION Figure 28-59 shows a
schematic drawing of an ac generator. The basic generator
consists of a rectangular loop of dimensions and and has 
turns connected to slip rings. The loop rotates (driven by a gaso-
line engine) at an angular speed of in a uniform magnetic field

(a) Show that the induced potential difference between the
two slip rings is given by (b) If 

and at what angular fre-
quency must the coil rotate to generate an emf whose maxi-
mum value is 

72 •• ENGINEERING APPLICATION Prior to 1960, magnetic
field strengths were usually measured by a rotating coil gaussme-
ter. The device uses a small multiturn coil rotating at a high
speed on an axis perpendicular to the magnetic field. The coil is
connected to an ac voltmeter by means of slip rings, like those
shown in Figure 28-59. In one specific design, the rotating coil
has and an area of The coil rotates at

If the magnetic field strength is find the
maximum induced emf in the coil and the orientation of the nor-
mal to the plane of the coil relative to the field for which the
maximum induced emf occurs.

0.450 T,180 rev>min.
1.40 cm2.400 turns

SSM100 V?
v

B � 0.200 T,N � 250,b � 4.00 cm,
a � 2.00 cm,E � NBabv sinv t.

B
S

.
v

Nba

4.00 A

25.0 Æ.
4.00 cm

ω

a

b N turns

B
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73 •• Show that the equivalent self-inductance for two inductors
that have self-inductances and and are connected in series is
given by if there is no flux linkage between the two in-
ductors. (Saying there is no flux linkage between them is equivalent to
saying that the mutual inductance between them is zero.)

74 •• Show that the equivalent self-inductance for two in duc-
tors that have self-inductances and and are connected 

in parallel is given by if there is no flux linkage 

between the two inductors. (Saying there is no flux linkage between
them is equivalent to saying that the mutual inductance between
them is equal to zero.)

75 •• A circuit consists of a 12-V battery, a switch, and a light-
bulb—all connected in series. It is known that the lightbulb re-
quires a minimum current of in order to produce a visible
glow. In the circuit, that particular bulb draws when the
switch has been closed for a long time. Now, an inductor is put in
series with the bulb and the rest of the circuit. If the lightbulb be-
gins to glow after the switch is closed, how large is the self-
inductance of the inductor? Ignore any heating time of the filament
and assume the glow is observed as soon as the current in the fila-
ment reaches the 0.10-A threshold.

3.5 ms

2.0 W
0.10 A

1
Leq

�
1
L1

�
1
L2

L2L1

Leq � L1 � L2

L2L1

76 •• Your friend decides to generate electrical power by ro-
tating a coil of wire around an axis in the plane of
the coil and through its center. The coil is perpendicular to Earth’s
magnetic field in a region where the field strength is equal to

The loops of the coil have a radius of and the coil
has negligible resistance. (a) If your friend turns the coil at a rate of

what peak current will exist in a resistor that is
connected across the terminals of the coil? (b) The average of the
square of the current will equal half of the square of the peak cur-
rent. What will be the average power delivered to the resistor? Is
this an economical way to generate power? Hint: Energy has to be
expended to keep the coil rotating.

77 •• Figure 28-60a shows an experiment designed to mea-
sure the acceleration due to gravity. A large plastic tube is encir-
cled by a wire, which is arranged in single loops separated by a
distance of A strong magnet is dropped through the top of
the loop. As the magnet falls through each loop the voltage rises;
then the voltage rapidly falls through zero to a large negative
value and then returns to zero. The shape of the voltage signal is
shown in Figure 28-60b. (a) Explain the basic physics behind the
generation of this voltage pulse. (b) Explain why the tube cannot
be made of a conductive material. (c) Qualitatively explain the
shape of the voltage signal in Figure 28-60b. (d) The times at which
the voltage crosses zero as the magnet falls through each loop in
succession are given in the table on the next page. Use these data
to calculate a value for g. SSM

10 cm.

1500-Æ150 rev>s,

25.0 cm,0.300 G.

100000-turn

Coils

Magnet

Oscilloscope

0.10 m

Tube

0 V

Time

(b)

(a)
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82 ••• S P R E A D S H E E T Figure 28-64
shows a rectangular loop of wire that is

wide, is long, and lies in
the vertical plane which is perpendicular
to a region that has a uniform magnetic
field. The magnitude of the uniform
magnetic field is and the direc-
tion of the magnetic field is into the page.
The portion of the loop not in the mag-
netic field is long. The resistance
of the loop is and its mass is

The loop is released from rest at
(a) What are the magnitude and di-

rection of the induced current when the
loop has a downward speed (b) What
is the force that acts on the loop as a re-
sult of the current? (c) What is the net
force acting on the loop? (d) Write out
Newton’s second law for the loop.
(e) Obtain an expression for the speed
of the loop as a function of time.
(f) Integrate the expression obtained in Part (e) to find the distance
the loop falls as a function of time. (g) Using a spreadsheet pro-
gram, make a graph of the position of the loop as a function of time
(letting at the start) for values of between and 
(i.e., when the loop leaves the magnetic field). (h) At what time
does the loop completely leave the field region? Compare this to
the time it would have taken if there were no field.

83 ••• A coil that has turns and an area is suspended from
the ceiling by a wire that provides a linear restoring torque that
has a torsion constant The two ends of the coil are connected to
each other, the coil has resistance and the moment of inertia of
the coil is The plane of the coil is vertical and parallel to a uni-
form horizontal magnetic field when the wire is not twisted (i.e.,

The coil is twisted about a vertical axis through its center
by a small angle and released. The coil then undergoes damped
harmonic oscillation. Show that its angle with its equilibrium po-
sition will vary with time according to where

and v� � v021 � (2v0t)
�2.v � 1k>It � RI>(NBA)2,

u(t) � u0e
�t>2t cosv�t,

u0

u � 0).
B
S

I.
R,

k.

AN

1.40 m0 myt � 0

v?

t � 0.
50.0 g.

0.200 Æ
0.100 m

0.400 T

1.50 m0.300 m

78 •• The rectangular coil
shown in Figure 28-61 has

is wide, is
long, and is located in a

magnetic field of di-
rected out of the page, as
shown. Only half of the coil is in
the region of the magnetic field.
The resistance of the coil is

Find the magnitude and
the direction of the induced
current if the coil is moving
with a velocity of (a) to
the right, (b) up the page, (c) to
the left, and (d) down the page.

79 •• A long solenoid has
turns per unit length and

carries a current that varies
with time according to The solenoid has a circular cross
section of radius Find the induced electric field, at points near the
plane equidistant from the ends of the solenoid, as a function of both
the time and the perpendicular distance from the axis of the sole-
noid for (a) and (b)

80 ••• A coaxial cable con-
sists of two very thin-walled
conducting cylinders of radii

and (Figure 28-62). The
currents in the inner and
outer cylinders are equal in
magnitude but opposite in di-
rection. (a) Use Ampère’s law
to find the magnetic field as a
function of the perpendicular
distance from the central
axis of the cable for (1)

(2) and
(3) (b) Show that the magnetic energy density in the region
between the cylinders is given by (c) Show
that the total magnetic energy in a cable volume of length is given
by (d) Use the result in Part (c) and the re-
lationship between magnetic energy, current, and inductance to
show that the self-inductance per unit length of the cable arrange-
ment is given by L>� � (m0 >2p) ln(r2 >r1).
Um � (m0 >4p)I2� ln(r2 >r1). �

um � 1
2 (m0 >4p)I2>(pr2).r 
 r2 .

r1 	 r 	 r2 ,0 	 r 	 r1 ,

r

r2r1

SSMr 
 R.r 	 R
rt

R.
I � I0 sinvt.

n

2.0 m>s
24 Æ.

0.14 T
30 cm

25 cm80 turns,
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Loop Number Zero Crossing Time (s)

1 0.011189
2 0.063133
3 0.10874
4 0.14703
5 0.18052
6 0.21025
7 0.23851
8 0.26363
9 0.28853
10 0.31144
11 0.33494
12 0.35476
13 0.37592
14 0.39107

81 ••• A coaxial cable consists of two very thin-walled con-
ducting cylinders of radii and (Figure 28-63). The currents in
the inner and outer cylinders are equal in magnitude but opposite
in direction. Compute the flux through a rectangular area of sides

and between the conductors shown in Figure 28-63.
Use the relationship between flux and current to show
that the self-inductance per unit length of the cable is given by

.L>� � (m0 >2p) ln(r2 >r1) (fm � LI)
r2 � r1�

r2r1

r1

r2
�

F I G U R E  2 8 - 6 3 Problem 81

I
r1

r2
I

F I G U R E  2 8 - 6 2 Problem 80

F I G U R E  2 8 - 6 1 Problem 78

F I G U R E  2 8 - 6 4

Problem 82
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29-1 Alternating Current in a Resistor

29-2 Alternating-Current Circuits

29-3 The Transformer

29-4 and Circuits without a Generator

29-5 Phasors

29-6 Driven Circuit

M
ore than 99 percent of the electrical energy used today is produced by
electrical generators in the form of alternating current, which has a great
advantage over direct current. Electrical energy can be distributed over
large regions at very high voltages and low currents to reduce energy
losses due to Joule heating. With alternating current, electrical energy
can then be transformed, with almost no energy loss, to lower and safer

voltages and correspondingly higher currents for local distribution and use.*
The transformer that accomplishes these changes in potential difference and cur-
rent works on the basis of magnetic induction. In North America, power is deliv-
ered by a sinusoidal current that has a frequency equal to Devices such as
radios, television sets, and microwave ovens detect or generate alternating
currents of much higher frequencies.

Alternating current is produced by motional emf or by magnetic induction in an
ac generator, which is designed to provide a sinusoidal emf.

60 Hz.

RLC

RLCLC

29
C H A P T E R
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THIS LISTENER DIALS IN HER FAVORITE
RADIO STATION. THIS CHANGES THE
RESONANT FREQUENCY OF AN
OSCILLATING ELECTRIC CIRCUIT
WITHINTHE TUNER, SO ONLY THE
STATION SHE SELECTS IS AMPLIFIED. 
(© Roger Ressmeyer/Corbis.)

What component of the circuit is

modified as she turns the dial?

(See Example 29-11.)
?

*

*

*

*

* High voltage direct current is sometimes used to transmit electrical power between one point and another distant point.
However, alternating current is always used to transmit power from one point to two or more distant points.



R

I

E

+

+

VR

F I G U R E  2 9 - 2 An ac generator in series
with a resistor R.

F I G U R E  2 9 - 1 (a) An ac generator. A coil rotating with constant angular frequency in a static
magnetic field generates a sinusoidal emf. Energy from falling water or from a steam turbine is
used to rotate the coil to produce electrical energy. The emf is supplied to an external circuit by the
brushes that are in contact with the rings. (b) At this instant, the normal to the plane of the coil
makes an angle with the magnetic field, and the flux through the each turn of the coil is BA cosu.u

B
S

v
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N
S

N turns

ω

Stationary
brushes

Rotating
rings

θ

ω B

(b)(a)

In this chapter, we will see that when the generator output is sinusoidal, the
current in an inductor, a capacitor, or a resistor is also sinusoidal, although
it is generally not in phase with the generator’s emf. When the emf and cur-
rent are both sinusoidal, their maximum values are proportional. The study
of sinusoidal currents is particularly important because even currents that
are not sinusoidal can be analyzed in terms of sinusoidal components using
Fourier analysis.

29-1 ALTERNATING CURRENT IN A RESISTOR

Figure 29-1 shows a simple ac generator. An analysis of such a generator is presented
in Chapter 28. The emf of such a generator is given by the equation immediately
following Equation 28-10:

29-1

where is the angular speed of the coil. (Equation 28-10 has the emf proportional to
rather than The distinction between the two is the choice of when
If the -turn coil has area and if the magnetic field is uniform and has mag-

nitude the peak emf is given by Although practical generators are consid-
erably more complicated, they all produce a sinusoidal emf either by induction or by
motional emf. In circuit diagrams, an ac generator is represented by the symbol .

Figure 29-2 shows a simple ac circuit that consists of an ideal generator and a 
resistor. (A generator is ideal if its internal resistance, its self-inductance, and its ca-
pacitance are negligible.) The voltage drop across the resistor is equal to the emf 
of the generator. If the generator produces an emf given by Equation 29-1, we have

Applying Ohm’s law, we have

29-2

Thus,
29-3

so the current in the resistor is

29-4

where

29-5Ipeak �
VR peak

R

I �
VR peak

R
 cosvt � Ipeak cosvt

VR peak cosvt � IR

VR � IR

VR � VR peak cosvt

EVR

vNBA.B,
A,Nt � 0.)

cosvt.sinvt
v

E � Epeak cosvt



(b)

(c)

(a)

0 tπ
ω

1
2

P

π2

I2 R  peak

I2 R  peak

ω

F I G U R E  2 9 - 4 Plot of the power delivered
to the resistor shown in Figure 29-2 versus time.
The power varies from zero to a peak value

The average power is half the peak power.I2peakR.

I

t

VR

F I G U R E  2 9 - 3 The voltage drop across a
resistor is in phase with the current.

(a) The mechanical energy of falling water
drives turbines (b) for the generation of
electricity. (c) Schematic drawing of the
Hoover Dam showing the intake towers
and pipes (penstocks) that carry the water
to the generators below. ((a) Courtesy of U.S.
Department of the Interior, Department of
Reclamation. (b) © Lee Langum/
Photo Researchers, Inc.)
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Note that the current through the resistor is in phase with the potential drop across
the resistor, as shown in Figure 29-3.

The power delivered to the resistor varies with time. Its instantaneous value is

29-6

Figure 29-4 shows the power as a function of time. The power varies from zero to
its peak value as shown. We are usually interested in the average power over
one or more complete cycles:

The average value of over one or more complete periods is This result can
be seen from the identity A plot of looks the same as a
plot of except that the plot is shifted by Both have the same average value
over one or more complete periods, and because their sum is 1, the average value of
each must be The average power dissipated in the resistor is thus

29-7Pav � (I2R)av �
1
2
I2peakR

1
2 .

90°.cos2 vt
sin2 vtcos2 vt � sin2 vt � 1.

1
2 .cos2 vt

Pav � (I2R)av � I2peakR(cos2 vt)av

I2peak ,

P � I2R � (Ipeak cosvt)2R � I2peakR cos2 vt

ROOT-MEAN-SQUARE VALUES

Most ac ammeters and voltmeters are designed to measure the root-mean-square
(rms) values of current and potential difference. The rms value of a current is
defined by

29-8

DEFINITION—RMS CURRENT

Irms �4(I2)av

Irms



The rms current equals the
steady dc current that would

produce the same Joule heating as
the actual ac current.  
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For a sinusoidal current, the average value of is

Substituting for in Equation 29-8, we obtain

29-9

RMS VALUE RELATED TO PEAK VALUE

The rms value of any quantity that varies sinusoidally with time is equal to the peak
value of that quantity divided by 

Substituting for in Equation 29-7, we obtain for the average power
delivered to the resistor

29-10

The rms current equals the steady dc current that would produce the same Joule
heating as the actual ac current.

For the simple circuit in Figure 29-2, the average power delivered by the gener-
ator is

or

Using and this can be written

29-11

AVERAGE POWER DELIVERED BY A GENERATOR

The rms current is related to the rms potential drop in the same way that the peak
current is related to the peak potential drop. We can see this by dividing each side
of Equation 29-5 by and substituting for and using 
and

29-12

Equations 29-10, 29-11, and 29-12 are of the same form as the corresponding equa-
tions for direct-current circuits; however, is replaced by and is replaced by

We can therefore calculate the power input and the heat generated using the
same equations that we used for direct current, if we use rms values for the current
and potential drop.

VR rms .
VRIrmsI

Irms �
VR rms

R

VR rms � VR peak>12.
Irms � Ipeak>12VR rmsIpeak12

Pav � ErmsIrms

Erms � Epeak>12,Irms � Ipeak>12

Pav � 1
2 EpeakIpeak

Pav � (EI)av � C AEpeak cosvt B AIpeak cosvt B D av � EpeakIpeak(cos2 vt)av

Pav � (Irms)
2R

1
2 I2peak(Irms)

2
12.

Irms �
112
Ipeak � 0.707Ipeak

(I2)av
1
2 I2peak

(I2)av � C (Ipeak cosvt)2 D av �
1
2
I2peak

I2

!

PRACTICE PROBLEM 29-1

The sinusoidal potential drop across a resistor has a peak value of Find (a) the
rms current, (b) the average power, and (c) the maximum power delivered to the resistor.

48 V.12–Æ

The ac power supplied to domestic wall outlets and light fixtures in the United
States has an rms potential difference of at a frequency of This po-
tential difference is maintained, independent of the current. If you plug a 1600-W
space heater into a wall outlet it will draw a current of

Irms �
Pav

Vrms

�
1600 W
120 V

� 13.3 A

60 Hz.120 V
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All appliances plugged into the outlets of a single 120-V circuit are connected in
parallel. If you plug a 500-W toaster into another outlet of the same circuit, it will
draw a current of and the total current through the parallel
combination will be Typical household wall outlets are rated at and
are part of a circuit using wires rated at either or with each circuit hav-
ing several outlets. A total current greater than the rated current for the wiring is
likely to overheat the wiring and is a fire hazard. Each circuit is therefore equipped
with a circuit breaker (or a fuse in older houses) that trips (or blows) when the total
current exceeds the 15-A or 20-A rating.

High-power domestic appliances, such as electric clothes dryers, kitchen
ranges, and hot water heaters, typically require power delivered at 
For a given power requirement, only half as much current is required at as
at but is more likely to deliver a fatal shock or to start a fire than 120 V.240 V120 V,

240 V
240 V rms.

20 A,15 A
15 A17.5 A.

500 W>120 V � 4.17 A,

Example 29-1 Sawtooth Waveform

Find (a) the average current and (b) the rms current for the sawtooth waveform shown in
Figure 29-5. In the region the current is given by 

PICTURE The average of any quantity over a time interval is the integral of the quantity
over the interval divided by We use this to find both the average current, and the av-
erage of the square of the current, 

SOLVE

(I2)av .
Iav ,T.

T

I � (I0/T)t.0 	 t 	 T,

(a) Calculate by integrating from
to and dividing by T:t � Tt � 0

IIav
1
2
I0Iav �

1
T �

T

0
I dt �

1
T �

T

0

I0
T
t dt �

I0
T2

T2

2
�

(b) 1. Find by integrating I2:(I2)av (I2)av �
1
T �

T

0
I2 dt �

1
T
a I0
T
b 2

�
T

0
t2 dt �

I20
T3

T3

3
�

1
3
I20

2. The rms current is the square
root of (I2)av:

I0

23
Irms �4(I2)av �

CHECK Both the average current and the rms current are less than as expected.I0 ,

29-2 ALTERNATING-CURRENT CIRCUITS

Alternating current behaves differently than direct current in inductors and capac-
itors. When a capacitor becomes fully charged in a dc circuit, the capacitor blocks
the current; that is, the capacitor acts like an open circuit. However, if the current
alternates, charge continually flows onto the plates and off of the plates of the ca-
pacitor. We will see that at high frequencies, a capacitor hardly impedes the current
at all. That is, the capacitor acts like a short circuit. Conversely, an induction coil
that has a low internal resistance is essentially a short circuit for direct current;
however, when the current is changing, a back emf is generated in an inductor that
is proportional to At high frequencies, the back emf is large and the inductor
acts like an open circuit.

INDUCTORS IN ALTERNATING-CURRENT CIRCUITS

Figure 29-6 shows an induction coil in series with an ac generator. When the
current changes in the inductor, a back emf equal to is generated due to
the changing flux. Usually this back emf is much greater than the drop due
to the resistance of the coil, so we normally neglect the resistance of the coil.r

Ir
L dI>dt

dI>dt. L

I

E Vapp

+

+

F I G U R E  2 9 - 6 An ac generator in series
with an inductor The arrow indicates the
positive direction along the wire. Note that for
a positive value of the potential drop 
across the inductor is positive.

VLdI>dt,

L.

F I G U R E  2 9 - 5

t

I

T

I0

2T



t

IVL

T1
4

T1
2

T3
4 T

F I G U R E  2 9 - 7 Current and potential
drop across the inductor shown in Figure 29-6
as functions of time. The maximum potential
drop occurs one-fourth period before the
maximum current. Thus, the potential drop
is said to lead the current by one-fourth
period or 90°.
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The potential drop across the inductor is then given by

29-13

POTENTIAL DROP ACROSS AN IDEAL INDUCTOR

In this circuit, the potential drop across the inductor equals the emf of the
generator. That is,

where Substituting for in Equation 29-13 gives

29-14

Rearranging, we obtain

29-15

We solve for the current by integrating both sides of the equation:

29-16

where the constant of integration is the dc component of the current. Setting the
dc component of the current to be zero, we have

29-17

where

29-18

The potential drop across the inductor is out of phase with the
current From Figure 29-7, which shows and as functions of time,
we can see that the peak value of the potential drop occurs earlier in time than
the corresponding peak value of the current, where is the period. The potential
drop across an inductor is said to lead the current by We can also conceptually un-
derstand this result. The potential drop across the inductor its equal to the emf
induced in it. When is zero but decreasing, is at its minimum, which is nega-
tive, so the emf induced in the inductor is at its maximum. One-quarter cycle later, 

is maximum. At this time, is zero, so is zero. Using the trigonometric iden-
tity Equation 29-17 for the current can be written

29-19

The relation between the peak current and the peak potential drop (or between
the rms current and rms potential drop) for an inductor can be written in a form
similar to (Equation 29-12). From Equation 29-18, we have

29-20

where

29-21

DEFINITION—INDUCTIVE REACTANCE

XL � vL

Ipeak �
VL peak

vL
�
VL peak

XL

Irms � VR rms>R
I � Ipeak cos(vt � p

2)

sinu � cos1u � p
22, VLdI>dtI

dI>dtI

90°.
T

1
4T
VLII � Ipeak sinvt.

90°VL � VL peak cosvt

Ipeak �
VL peak

vL

I �
VL peak

vL
 sinvt � Ipeak sinvt

C

I �
VL peak

L � cosvt dt �
VL peak

vL
 sinvt � C

I

dI �
VL peak

L
 cosvt dt

VL peak cosvt � L
dI
dt

VLVL peak � Epeak .

VL � E � Emax cosvt � VL peak cosvt

EVL

VL � L
dI
dt

VL

L

I

E VL

+

+

F I G U R E  2 9 - 6 (repeated)

An ac generator in series with an inductor 
The arrow indicates the positive direction
along the wire. Note that for a positive value
of the potential drop across the
inductor is positive.

VLdI>dt,

L.
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is called the inductive reactance. Because and 
the rms current is given by

29-22

Like resistance, inductive reactance has units of ohms. As we can see from Equa-
tion 29-22, the larger the reactance for a given rms potential drop, the smaller the
rms current. Unlike resistance, the inductive reactance depends on the frequency—
the greater the frequency, the greater the reactance.

The instantaneous power delivered to the inductor is

The average power delivered to the inductor is zero. We can see this by using the
trigonometric identity

The value of oscillates twice during each cycle of the current, and so is neg-
ative as often as it is positive. Thus, when averaged over an integral number of
cycles, no energy is delivered to an inductor. (If the internal resistance of the in-
ductor is not negligible, then the average power delivered is equal to )(Irms)

2r.
r

sin 2vt

2 cosvt sinvt � sin 2vt

P � VLI � (VL peak cosvt)(Ipeak sinvt) � VL peakIpeak cosvt sinvt

Irms �
VL rms

XL

VL rms � VL peak>12,Irms � Ipeak>12

Example 29-2 Inductive Reactance

The potential drop across a 40.0-mH inductor is sinusoidal and has an rms potential drop of
Find the inductive reactance and the rms current when the frequency is (a)

and (b)

PICTURE We calculate the inductive reactance at each frequency and use Equation 29-20 to
find the peak current.

SOLVE

2000 Hz.
60.0 Hz120 V.

(a) 1. The peak current equals the rms potential drop divided by the
inductive reactance:

Irms �
VL rms

XL

2. Compute the inductive reactance at 60.0 Hz:

 15.1 Æ�

� (2p)(60.0 Hz)(40.0 � 10�3 H)

XL1 � v1L � 2pf1L

3. Use this value of to compute the rms current at 60.0 Hz:XL  7.95 AI1 rms �
120 V
15.1 Æ

�

(b) 1. Compute the inductive reactance at 2000 Hz:

 503 Æ� (2p)(2000 Hz)(40.0 � 10�3 H) �

XL2 � v2L � 2pf2L

2. Use this value of to compute the rms current at 2000 Hz:XL  0.239 AI2 rms �
120 V
503 Æ

�

CHECK The rms current at is about 3 percent of the rms current at This
result is expected because we expect the inductor to behave more and more like an open
circuit as the frequency increases.

60.0 Hz.2000 Hz
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IVC

F I G U R E  2 9 - 9 Current and potential
drop across the capacitor shown in Figure 29-8
versus time. The maximum potential drop
occurs one-fourth period after the maximum
current. Thus, the potential drop is said to lag
the current by .90°

Q

P

–Q

I

E VC C

+

+

F I G U R E  2 9 - 8 An ac generator in series
with a capacitor The positive direction
along the circuit is such that when the current
is positive the charge on the upper capacitor
plate is increasing, so the current is related to
the charge by I � �dQ>dt.

Q

C.
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CAPACITORS IN ALTERNATING-CURRENT CIRCUITS

When a capacitor is connected across the terminals of an ac generator (Figure 29-8),
the voltage drop across the capacitor is

29-23

where is the charge on the upper plate of the capacitor.
In this circuit, the potential drop across the capacitor equals the emf of the

generator. That is,

where Substituting for in Equation 29-23 and solving for gives

The current is

where
29-24

Using the trigonometric identity where we obtain

29-25

The voltage drop across the capacitor is in phase with the charge (Equation
29-23), so as with the inductor, the voltage drop across the capacitor is out of
phase with the current in the circuit. From Figure 29-9, we see that the maximum
value of the potential drop occurs or one-fourth period later in time than the
maximum value of the current. Thus, the potential drop across a capacitor lags the cur-
rent by We can also understand this result in another way. The charge is
proportional to the potential drop so the maximum value of occurs
when the charge and therefore is zero. As the charge on the capacitor plate
increases the current decreases, until one-fourth period later the charge and
therefore is a maximum and the current is zero. The current then becomes
negative as the charge decreases.

We can relate the current to the potential drop in a form similar to
(Equation 29-5) for a resistor. From Equation 29-24, we have

and, similarly,

29-26

where

29-27

DEFINITION—CAPACITIVE REACTANCE

XC �
1
vC

Irms �
VC rms

XC

Ipeak � vQpeak � vCVC peak �
VC peak

1>(vC)
�
VC peak

XC

Irms � VR rms>R
Q

VC ,
Q,

VC ,Q,
dQ>dt � IVC ,

Q90°.

90°

90°
QVC

I � �vQpeak sinvt � Ipeak cos(vt � p
2 )

u � vt,sinu � �cos(u � p
2 ),

Ipeak � vQpeak

I �
dQ
dt

� �vQpeak sinvt � �Ipeak sinvt

Q � VCC � VC peakC cosvt � Qpeak cosvt

QVCVC peak � Epeak .

VC � Epeak cosvt � VC peak cosvt

EVC

Q

VC �
Q

C
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is called the capacitive reactance of the circuit. Like resistance and inductive reac-
tance, capacitive reactance has units of ohms and, like inductive reactance, capacitive
reactance depends on the frequency of the current. In this case, the greater the fre-
quency, the smaller the reactance. The average power delivered to a capacitor in an
ac circuit is zero, as it is for an inductor. This is so because the potential drop is pro-
portional to and the current is proportional to and 
Thus, like inductors with no resistance, capacitors dissipate no energy.

Because charge cannot pass across the space between the plates of a capacitor,
it may seem strange that there is a continuing alternating current in the circuit
shown in Figure 29-8. Suppose we choose the time to be zero at the instant that
the voltage drop across the capacitor is both zero and increasing. (At this
same instant, the charge on the upper plate of the capacitor is also both zero
and increasing.) As then increases, positive charge flows off the lower plate
and onto the upper plate, and reaches its maximum value a quarter pe-
riod later. After reaches its maximum value continues to change, reaching
zero at the half-period point, at the three-quarter-period point, and zero
(again) at the completion of the cycle at the full-period point. The charge 
flows past point (see Figure 29-8) on the wire each quarter period. If we dou-
ble the frequency, we halve the period. Thus, if we double the frequency we
halve the time for the charge to flow past point on the wire, so we have
doubled the current amplitude Hence, the greater the frequency, the less
the capacitor impedes the flow of charge.

Ipeak .
PQpeak

P
Qpeak

�Qpeak

QQ
QpeakQ

VC

Q
VC

(cosvt sinvt)av � 0.sinvt,cosvt

Example 29-3 Capacitive Reactance

capacitor is placed across an ac generator that applies a potential drop which has
an amplitude (peak value) of Find the capacitive reactance and the current amplitude
when the frequency is (a) and (b)

PICTURE The capacitive reactance is and the peak current is 

SOLVE

Ipeak � VC peak >XC .XC � 1>(vC)

6000 Hz.60.0 Hz
100 V.

A 20.0-mF

(a) Calculate the capacitive reactance at and use this value
to find the peak current at 60.0 Hz:

60.0 Hz

 0.752 AI1 peak �
VC peak

XC1

�
100 V
133 Æ

�

 133 Æ�
1

2p(60.0  Hz)(20.0 � 10�6 F)
�

XC1 �
1
v1C

�
1

2pf1C

(b) Calculate the capacitive reactance at and use this value
to find the peak current at 6000 Hz:

6000 Hz

 75.2 AI2 peak �
VC peak

XC2

�
100 V
1.33 Æ

�

 1.33 Æ�
1

2p(6000 Hz)(20.0 � 10�6 F)
�

XC2 �
1
v2C

�
1

2pf2C

CHECK The current at is about 1 percent of the current at This result is ex-
pected because we expect the capacitor to be more like an open circuit at lower frequencies.

TAKING IT FURTHER Note that the capacitive reactance is inversely proportional to the fre-
quency, so increasing the frequency by two orders of magnitude decreases the reactance by
two orders of magnitude. The current is directly proportional to the frequency, as expected.

6000 Hz.60.0 Hz
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29-3 THE TRANSFORMER

A transformer is a device used to increase or decrease the voltage in a circuit
without an appreciable loss of power. Figure 29-10 shows a simple transformer
consisting of two wire coils around a common iron core. The coil carrying the
input power is called the primary, and the other coil is called the secondary. Either
coil of a transformer can be used for the primary or secondary. The transformer
operates on the principle that an alternating current in one circuit induces an
alternating emf in a nearby circuit due to the mutual inductance of the two cir-
cuits. The iron core increases the magnetic field for a given current and guides its
direction so that the flux linkage between the coils approaches . (At 
flux linkage, all the magnetic field lines through one coil also go through the other
coil.) If no power were lost, the product of the potential drop across and the
current in the secondary windings would equal the product of the potential
drop across and the current in the primary windings. Thus, if the potential differ-
ence across the secondary coil is larger than the potential difference across the pri-
mary coil, the current in the secondary coil is smaller than the current in the
primary coil, and vice versa. Power losses arise because of Joule heating, both in
the two coils and in the iron core currents,* and from hysteresis in the iron core.
We will neglect those losses and consider an ideal transformer of 100 percent
efficiency, for which all of the power supplied to the primary coil appears in the
secondary coil. Actual power distribution transformers often have efficiencies of
98 percent or more.

Consider a transformer with a potential drop across the primary coil of 
turns; the secondary coil of turns is an open circuit. Because of the iron core,
there is a large flux through each coil even when the magnetizing current in the
primary circuit is very small. (The magnetizing current is the current in the pri-
mary when the secondary circuit is open.) We can ignore the resistances of the
coils, which are negligible in comparison with their inductive reactances. The pri-
mary circuit is then a simple circuit consisting of an ac generator and a pure in-
ductance, like that discussed in Section 29-2. The magnetizing current in the pri-
mary coil and the voltage drop across the primary coil are out of phase by and
the average power dissipated in the primary coil is zero. If is the magnetic flux
per turn of the primary coil, the potential drop across the primary coil is equal to
the back emf, so

29-28

If there is no flux leakage out of the iron core, the flux through each turn is the same
for both coils. Thus, the total flux through the secondary coil is and the
potential difference across the secondary coil is

29-29

Comparing Equations 29-28 and 29-29, we can see that

29-30

If is greater than the potential difference across the secondary coil is greater
than the potential drop across the primary coil, and the transformer is called a step-
up transformer. If is less than the potential difference across the secondary
coil is less than the potential drop across the primary coil, and the transformer is
called a step-down transformer.

N1 ,N2

N1 ,N2

V2 �
N2

N1

V1

V2 � N2

dfturn

dt

N2fturn ,

V1 � N1

dfturn

dt

fturn

90°,

Im

N2

N1V1

100%100%

(a) A power box that has a transformer for
stepping down voltage for distribution to
homes. (b) A suburban power substation
where transformers step down voltage from
high-voltage transmission lines. (c) A 9-volt ac
plug-in transformer. ((a) Yaov/Phototake.
(b) Daniel S. Brody/Stock Boston. (c) Ramòn
Rivera Moret.)

* The induced currents, called eddy currents, can be greatly reduced by using a core of laminated metal to break up cur-
rent paths.

(c)

(b)

(a)

*
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When we put a resistance called a load resistance, across the secondary coil,
there will then be a current in the secondary circuit that is in phase with the
potential drop across the resistance. This current sets up an additional flux 
through each turn that is proportional to This flux opposes the original flux
set up by the original magnetizing current in the primary. However, the poten-
tial drop across the primary coil is determined by the generator emf, which is
unaffected by the secondary circuit. According to Equation 29-29, the flux in the
iron core must change at the original rate; that is, the total flux in the iron core must
be the same as when no load exists across the secondary. The primary coil thus
draws an additional current to maintain the original flux The flux through
each turn produced by this additional current is proportional to Because this
flux equals the additional current in the primary is related to the current

in the secondary by

29-31

The currents are out of phase and produce counteracting fluxes. Because is
in phase with the additional current is in phase with the potential drop across
the primary circuit. The power input from the generator is and the
power output is (The magnetizing current does not contribute to the
power input because it is out of phase with the generator voltage.) If there are
no losses,

29-32

In most cases, the additional current in the primary is much greater than the
original magnetizing current that is drawn from the generator when no load
exists. This can be demonstrated by putting a lightbulb in series with the primary
coil. The lightbulb is much brighter when there is a load across the secondary circuit
than when the secondary circuit is open. If can be neglected, Equation 29-32
relates the total currents in the primary and secondary circuits.

Im

Im

I1

V1 rmsI1 rms � V2 rmsI2 rms

90°
V2 rmsI2 rms .

V1 rmsI1 rms ,
I1V2 ,

I2180°

N1I1 � �N2I2

I2

I1�fœ
turn ,

N1I1 .
fturn .I1

Im

N2I2 .
fœ

turnV2

I2

R,

Example 29-4 Doorbell Transformer

A doorbell requires of alternating current at It is connected to a trans-
former whose primary has 2000 turns and is connected to a ac line. (a) How many
turns should there be in the secondary? (b) What is the current in the primary?

PICTURE We can find the number of turns from the turns ratio, which equals the voltage
ratio. The primary current can be found by equating the power out to the power in.

SOLVE

120-V-rms
6.0 V rms.0.40 A rms

so

 100 turnsN2 �
V2 rms

V1 rms

N1 �
6.0 V
120 V

2000 turns �

N2

N1

�
V2

V1

(b) Because we are assuming 
100 percent efficiency in power 
transmission, the input and output 
currents are related by Equation 
29-32. Solve for the current in the 
primary, I1:

so

 0.020 AI1 rms �
V2 rms

V1 rms

I2 rms �
6.0 V
120 V

(0.40 A) �

V2 rmsI2 rms � V1 rmsI1 rms

(a) The turns ratio can be 
obtained from Equation 29-30. 
Solve for the number of turns
in the secondary, N2:

CHECK To step-down the voltage requires fewer turns in the secondary than in the primary.
In addition, a transformer that steps down the voltage steps up the current. Our results re-
flect both of these attributes.
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An important use of transformers is in the transmission and distribution of elec-
trical power. To minimize the heat loss (Joule heating) in transmission lines, it
is economical to use a high voltage and a low current. On the other hand, safety
and other considerations require that power be delivered to consumers at lower
voltages and therefore with higher currents. Suppose, for example, that each per-
son in a city with a population of uses consumes electrical energy at a rate
of . (The per capita rate of consumption of electrical energy in the United
States is actually somewhat higher than this value.) At the current required
for each person would be

The total current for people would then be The transport of such
a current from a power-plant generator to a city many kilometers away would
require conductors of enormous thickness, and the power loss would be sub-
stantial. Rather than transmit the power at step-up transformers are used
at power plants to step up the voltage to values as great as For this
voltage, the current needed is only

To reduce the voltage to a safer level for transport within a city, power substations
are located just outside the city to step down the voltage to a safer value, such as

Transformers in boxes attached to the power poles outside each house
again step down the voltage to (or for distribution to the house.
Because of the ease of stepping the voltage up or down with transformers, alter-
nating current rather than direct current is in common use.

240 V)120 V
10000 V.

I �
120 V

600 000 V
(500 000 A) � 100 A

600 000 V.
120 V,

I2R

500000 A.50000

I �
1200 W
120 V

� 10 A

120 V,
1.2 kW

50000

I2R

Example 29-5 Transmission Losses

A transmission line has a resistance of Calculate the power loss due to Joule
heating if of power is transmitted from a power generator to a city away at
(a) and (b)

PICTURE First, note that the total resistance of of wire is 
In each case, begin by finding the current needed to transmit using 

then find the power loss using In the solution, the voltages and currents are rms
values and the power is the average power.

(Irms)
2R.

P � IV,200 kW0.20 Æ.
R � (0.020 Æ>km)(10 km) �10 km

4.4 kV rms.240 V rms
10 km200 kW

0.020 Æ>km.

CHECK The power loss at is less than one percent of the power loss at This result
is consistent with the reason for stepping up the voltage for transmission.

TAKING IT FURTHER Note that with a transmission voltage of almost 70 percent of
the power is wasted through heat loss. In addition, there is an (voltage) drop across the
transmission line of so the power is delivered at only However, with transmission
at only about 0.2 percent of the power is lost during transmission and there is an 
drop across the transmission line of only so the power is delivered with only a 0.2 percent
voltage drop.

9 V,
IR4.4 kV,

73 V.167 V,
IR

240 V,

240 V.4.4 kV

SOLVE

(a) 1. Find the current needed to transmit of power at 240 V:200 kW I �
P
V

�
200 kW
240 V

� 833 A

2. Calculate the power loss:  1.4 � 102 kWI2R � (833 A)2(0.20 Æ) �

(b) 1. Now, find the current needed to transmit of power at 4.4 kV:200 kW I �
P
V

�
200 kW
4.4 kV

� 45.4 A

2. Calculate the power loss:  0.41 kWI2R � (45.4 A)2(0.20 Æ) �
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LC AND RLC CIRCUITS29-4
WITHOUT A GENERATOR

Figure 29-11 shows a simple circuit that has inductance and capacitance but has no
resistance. Such a circuit is called an LC circuit. We assume that the upper capaci-
tor plate carries an initial positive charge and that the switch is initially open.
After the switch is closed at the charge begins to flow through the inductor.
Let be the charge on the upper plate of the capacitor and let the positive direc-
tion around the circuit be clockwise, as shown. Then,

Applying Kirchhoff’s loop rule to the circuit, we have

29-33

Substituting for gives

29-34

This equation is of the same form as Equation 14-2 for the acceleration of a mass
on a spring:

The behavior of an circuit is thus analogous to that of a mass on a spring
analogous to the mass analogous to the position and analogous to the
spring constant Also, the current is analogous to the velocity because

and In mechanics, the mass of an object describes the inertia
of the object. The greater the mass, the more opposition there is to change the ve-
locity of the object. Similarly, the inductance can be thought of as the inertia of
an ac circuit. The greater the inductance, the more opposition there is to changes in
the current 

If we divide each term in Equation 29-34 by and rearrange, we obtain

29-35

which is analogous to

29-36

In Chapter 14, we found that we could write the solution of Equation 29-36 for sim-
ple harmonic motion in the form

where is the angular frequency, is the displacement amplitude, and 
is the phase constant, which depends on the initial conditions. The solution to
Equation 29-35 is thus

with

29-37v �
1

2LC

Q � A cos(vt � d)

dAv � 1k>m x � A cos(vt � d)

d2x
dt2 � �

k
m
x

d2Q

dt2 � �
1
LC
Q

L
I.

L

I � dQ>dt.v � dx>dt
v,Ik.

1>Cx,m, Q
�LLC

m
d2x
dt2 � kx � 0

L
d2Q

dt2 �
1
C
Q � 0

IdQ>dt

L
dI
dt

�
Q

C
� 0

I � �
dQ
dt

Q
t � 0,

Q0

+

Q

I

L C
Q–

S +

F I G U R E  2 9 - 1 1 An circuit. When the
switch is closed, the initially charged capacitor
discharges through the inductor, producing a
back emf.

LC

*
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(b)

(a)

F I G U R E  2 9 - 1 2 Graphs of (a) versus 
and (b) versus for the circuit shown in
Figure 29-11.
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The current is found by differentiating:

If we choose our initial conditions to be and at the phase con-
stant is zero and Our solutions are then

29-38

and

29-39

where 
Figure 29-12 shows graphs of and versus time. The charge oscillates between

the values and with angular frequency The current os-
cillates between and with the same frequency. Also, the charge lags
behind the current by (see Problem 29-33). The current is maximum when the
charge is zero and the current is zero when the charge is maximum.

In our study of the oscillations of a mass on a spring, we found that the total
energy is constant, and that the total energy oscillates between potential energy and
kinetic energy. We also have two kinds of energy in the circuit—electric energy
and magnetic energy. The electric energy stored in the capacitor is

Substituting for we have for the electric energy

29-40

The electric energy oscillates between its maximum value and zero at an
angular frequency of (see Problem 29-33). The magnetic energy stored in the in-
ductor is

29-41

Substituting (Equation 29-39), we get

29-42

where we have used (Equation 29-37). The magnetic energy also oscil-
lates between its maximum value of and zero at an angular frequency of

The sum of the electrostatic energy and the magnetic energy is the total energy,
which is constant in time:

This sum equals the energy initially stored on the capacitor.

Utotal � Ue � Um �
1
2

Q2
peak

C
 cos2 vt �

1
2

Q2
peak

C
 sin2 vt �

1
2

Q2
peak

C

2v.
Q2

peak>2Cv2 � 1>LC
Um �

1
2
Lv2Q2

peak sin2vt �
1
2

Q2
peak

C
 sin2 vt

I � �vQpeak sinvt

Um �
1
2
LI2

2v
Q2

peak>(2C)

Ue �
1
2

Q2
peak

C
 cos2vt

Q,Qpeak cosvt

Ue �
1
2
QVC �

1
2
Q2

C

LC

90°
�vQpeak�vQpeak

v � 1>1LC .�Qpeak�Qpeak

IQ
Ipeak � vQpeak .

I � �vQpeak sinvt � �Ipeak sinvt

Q � Qpeak cosvt

A � Qpeak .d

t � 0,I � 0Q � Qpeak

I �
dQ
dt

� �vA sin(vt � d)

I

Example 29-6 LC Oscillator

A capacitor is charged to and the capacitor is then connected across a 
inductor. (a) What is the frequency of oscillation? (b) What is the peak value of the current?

PICTURE In (b), the current is maximum when is maximum, so the current amplitude
is Also, when where is the voltage across the capacitor.VV � Vpeak ,Q � QpeakvQpeak .

dQ>dt

6.0-mH20 V2.0-mF
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3. Substitute for 
and calculate Ipeak:

QpeakCVpeak

+

Q

I

L C
Q–

S

+
R

F I G U R E  2 9 - 1 3 An circuit.RLC

* As in Chapter 14 when we discussed mechanical oscillations, we usually omit the word angular when the omission will
not cause confusion.

SOLVE

(a) The frequency of oscillation depends
only on the values of the capacitance and the
inductance: 4.6 � 104 Hz�

f �
v

2p
�

1

2p2LC �
1

2p4(6.0 � 10�6 H)(2.0 � 10�6 F)

(b) 1. The peak value of the current 
is related to the peak value of 
the charge:

Ipeak � vQpeak �
Qpeak

2LC
2. The peak charge on the 

capacitor is related to the 
peak potential drop 
across the capacitor:

Qpeak � CVpeak

 12 A�
(20 V)

4(6.0 mH)>(2.0 mF)
�

Ipeak �
CVpeak

2LC �
Vpeak

2L>C
PRACTICE PROBLEM 29-2 A capacitor is charged and is then discharged through
an inductor. What should the value of the inductance be so that the current oscillates with
frequency 8.0 kHz?

5.0 -mF

If we include a resistor in series with the capacitor and the inductor, as in
Figure 29-13, we have an RLC circuit. Kirchhoff’s loop rule gives

29-43a

or

29-43b

where we have used as before. Equations 29-43a and 29-43b are analo-
gous to the equation for a damped harmonic oscillator (see Equation 14-38):

The first term, is analogous to the mass multiplied by the
acceleration, the second term, is analogous to
the damping term, and the third term, is analogous to the
restoring force In the oscillation of a mass on a spring, the damping constant 
leads to a dissipation of energy. In an circuit, the resistance is analogous to
the damping constant and leads to a dissipation of energy.

If the resistance is small, the charge and the current oscillate with (angular)
frequency* that is very nearly equal to which is called the natural
frequency of the circuit, but the oscillations are damped. We can understand
this qualitatively from energy considerations. If we multiply each term in
Equation 29-43a by the current we obtain

29-44LI
dI
dt

� I2R � I
Q

C
� 0

I,

v0 � 1>1LC ,

b
RRLC

bkx.
Q>C,bv � b dx>dt;

IR � R dQ>dt,m dv>dt�m d2x>dt2;L dI>dt � L d2Q>dt2,

m
d2x
dt2 � b

dx
dt

� kx � 0

I � dQ>dt

L
d2Q

dt2 � R
dQ
dt

�
1
C
Q � 0

L
dI
dt

� IR �
Q

C
� 0
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The magnetic energy in the inductor is given by (see Equation 28-21). Note that

where is the first term in Equation 29-44. If is positive, it equals
the rate at which electrical potential energy is transformed into magnetic energy.
If is negative, it equals the rate at which magnetic energy is transformed
back into electrical potential energy. Note that is positive or negative de-
pending on whether and have the same sign or different signs. The second
term in Equation 29-44 is the rate at which electrical potential energy is dissi-
pated in the resistor. is never negative. Note that

where is the third term in Equation 29-44. This result is the rate of change of
the electric potential energy of the capacitor, which may be positive or negative. The
sum of the electric and magnetic energies is not constant for this circuit because en-
ergy is continually dissipated in the resistor. Figure 29-14 shows graphs of versus

and versus for a small resistance in an circuit. If we increase the os-
cillations become more heavily damped until a critical value of is reached for
which not even one oscillation exists. Figure 29-15 shows a graph of versus in
an circuit when the value of is greater than the critical damping value.

29-5 PHASORS

Until this point, the circuits considered contained an ideal ac generator and only a
single passive element (for example, resistor, inductor, or capacitor). In those cir-
cuits, the potential drop across the passive element equaled the emf of the genera-
tor. In circuits that contain an ideal ac generator and two or more additional ele-
ments connected in series, the sum of the potential drops across the elements at a
given instant is equal to the generator emf at that instant; this is the same as with dc
circuits. However, in series ac circuits the potential drops typically are not in phase,
so the sum of their rms values does not equal the rms value of the generator emf.

Two-dimensional vectors, which are called phasors, can represent the phase re-
lations between the current and the potential drops across resistors, capacitors, or
inductors. In Figure 29-16, the potential drop across a resistor is represented by
a vector that has magnitude and makes an angle with the axis. This
potential drop is in phase with the current. The current in a steady-state ac circuit
varies with time, as

29-45

where is the angular frequency and is some phase constant. The potential drop
across a resistor is then given by

29-46VR � IR � IpeakR cos(vt � d)

dv

I � Ipeak cosu � Ipeak cos(vt � d)

xuIpeakRV
S

R

VR

RRLC
tQ

R
R,RLCRtIt
Q

IQ>C
d A 12Q2>C B

dt
�
Q

C

dQ
dt

� I
Q

C

I2R
I2R,

dI>dtI
LI dI>dt

LI dI>dt

LI dI>dtLI dI>dt

d A 12LI2 B
dt

� LI
dI
dt

1
2LI2

t

Q

t

I

(b)(a)

F I G U R E  2 9 - 1 4 Graphs of (a)
versus and (b) versus for the circuit
shown in Figure 29-13 when the value of is
small enough so that the oscillations are
underdamped.

R
RLCtIt
Q

t

Q

F I G U R E  2 9 - 1 5 A graph of versus 
for the circuit shown in Figure 29-13
when the value of is so large that the
oscillations are overdamped.

R
RLC

tQ

y

x

θ ω δ= t _

θ

VR

F I G U R E  2 9 - 1 6 The potential drop
across a resistor can be represented by a vector

which is called a phasor, that has
magnitude and makes an angle

with the axis. The phasor rotates
with an angular frequency The potential
drop is the component of V

S

R .xVR � IR
v.

xu � vt � d

IpeakR
V
S

R ,

*



The potential drop across a resistor is thus equal to the component of the pha-
sor vector which rotates counterclockwise with an angular frequency 
The current may be written as the component of a phasor having the
same direction as 

When several components are connected together in a series combination,
their potential drops add. When several components are connected in paral-
lel, their currents add. Unfortunately, adding sines or cosines of different am-
plitudes and phases algebraically is awkward. It is much easier to do this by
vector addition.*

Let us look at how phasors are used. Any ac current or any potential drop
is written in the form which in turn is treated as the com-
ponent of a phasor that makes an angle with the direction.
Instead of adding two potential drops or currents algebraically, as

we represent the quantities as phasors 
and and find the phasor sum geometrically. The resultant po-
tential drop or current is then the component of the resultant phasor,

The geometric representation conveniently shows the relative
amplitudes and phases of the phasors.

Consider an ac circuit that contains an inductor a capacitor and a resistor 
connected in series. They all carry the same current, which is represented as the 

component of the current phasor The potential drop across the resistor is
represented by a phasor that has magnitude and is in phase with the
current phasor The potential drop across the inductor is represented by a
phasor that has magnitude and leads the current phasor by 
Similarly, the potential drop across the capacitor is represented by a phasor 
that has magnitude and lags by Figure 29-17 shows the phasors

and where the component of is the potential drop across the
series combination. The phasors all rotate counterclockwise with an angular fre-
quency At any instant in time, the instantaneous value of the potential drop
across any of these elements equals the component of the corresponding phasor.

29-6 DRIVEN RLC CIRCUITS

SERIES RLC CIRCUIT

Figure 29-18 shows a series circuit being sinusoidally driven by an ac genera-
tor. If the potential drop applied by the generator to the series combination is

applying Kirchhoff’s loop rule gives

Using and rearranging, we obtain

29-47

This equation is analogous to Equation 14-53 for the forced oscillation of a mass on
a spring:

(In Equation 14-53, the force constant was written in terms of the mass and the
natural angular frequency using The capacitance in Equation 29-47
could be similarly written in terms of and the natural angular frequency using
1>C � Lv2

0 .)
L
k � mv2

0 .v0

mk

m
d2x
dt2 � b

dx
dt

� mv2
0 x � F0 cosvt

L
d2Q

dt2 � R
dQ
dt

�
1
C
Q � Vapp peak cosvt

I � dQ>dt

Vapp peak cosvt � L
dI
dt

� IR �
Q

C
� 0

Vapp � Vapp peak cosvt,
RLC

RLC

x
v.

VappxV
S

app ,V
S

R , V
S

L , V
S

C ,
90°.I

S
IpeakXC

V
S

CVC

90°.I
S

IpeakXLV
S

L

VLI
S

.
IpeakRV

S

R

VRI
S

.x

RC,L,

Cx � Ax � Bx .
x

C
S

� A
S

� B
S

B
S

A
S

A cos(vt � d1) � B cos(vt � d2),

�x(vt � d)
xAx ,A cos(vt � d),

V
S

R .
I
S

xI
v.V

S

R ,
x
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* It is also easier to do using complex numbers.

δ

ω t
ω δt _

+
y

x

VL
VR

VCVL

VC

Vapp

I

E

Vapp
–Q

R
+

C
+Q

L

+

F I G U R E  2 9 - 1 8 A series circuit with
an ac generator.

RLC

F I G U R E  2 9 - 1 7 Phasor representations
of the potential drops and Each
vector rotates in the counterclockwise
direction with an angular frequency 
At any instant, the potential drop across an
element equals the component of the
corresponding phasor, and the potential
drop across the RLC-series combination,
which equals the sum of the potential drops,
equals the component of the vector sum
V
S

R � V
S

L � V
S

C .
x

Vapp

x

v.

VC .VR , VL ,

*
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We will discuss the solution of Equation 29-47 qualitatively as we did with
Equation 14-53 for the forced oscillator. The current in the circuit consists of a tran-
sient current that depends on the initial conditions (for example, the initial phase
of the generator and the initial charge on the capacitor) and a steady-state current
that does not depend on the initial conditions. We will ignore the transient current,
which decreases exponentially with time and is eventually negligible, and concen-
trate on the steady-state current. The steady-state current obtained by solving
Equation 29-47 is

29-48

where the phase angle is given by

29-49

PHASE CONSTANT FOR A SERIES RLC CIRCUIT

The peak current is

29-50

PEAK CURRENT IN A SERIES RLC CIRCUIT

where

29-51

IMPEDANCE OF A SERIES RLC CIRCUIT

The quantity is called the total reactance, and is called the impedance.
Combining these results, we have

29-52

Equation 29-52 can also be obtained from a simple diagram using vectors
called phasors. Figure 29-19 shows the phasors representing the potential
drops across the resistance, the inductance, and the capacitance. The com-
ponent of each of these vectors equals the instantaneous potential drop across
the corresponding element. Because the sum of the components equals the

component of the sum, the sum of the components equals the sum of the
potential drops across these elements, which by Kirchhoff’s loop rule equals
the instantaneous applied potential drop.

If we represent the potential drop applied across the series combination
as a phasor that has the magnitude we have

29-53

In terms of the magnitudes,

But Thus,

Vapp peak � Ipeak4R2 � (XL � XC)
2 � IpeakZ

VR � IpeakR, VL � IpeakXL , and VC � IpeakXC .

Vapp peak � ƒ V
S

R � V
S

L � V
S

C ƒ �4V2
R peak � (VL peak � VC peak)2

V
S

app � V
S

R � V
S

L � V
S

C

Vapp peak ,V
S

appVapp � Vapp peak cosvt

xx
x

x

I �
Vapp peak

Z
 cos(vt � d)

ZXL � XC

Z �4R2 � (XL � XC)
2

Ipeak �
Vapp peak

4R2 � (XL � XC)
2

�
Vapp peak

Z

tand �
XL � XC
R

d

I � Ipeak cos(vt � d)

F I G U R E  2 9 - 1 9 Phase relations among
potential drops in a series circuit. The potential
drop across the resistor is in phase with the current.
The potential drop across the inductor leads the
current by The potential drop across the
capacitor lags the current by The sum of the
vectors representing the potential drops gives a
vector at an angle with the current representing
the applied emf. For the case shown here, is
greater than and the current lags the applied
potential drop by d.

VC ,
VL

d

90°.
90°.

VL

RLC
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The phasor makes an angle with as shown in Figure 29-19. From the
figure, we can see that

in agreement with Equation 29-49. Because makes an angle with the axis,
makes an angle with the axis. This applied potential drop is in phase

with the current, which is therefore given by

This is Equation 29-52. The relation between the impedance the resistance 
and the total reactance is best remembered by using the right triangle
shown in Figure 29-20.

RESONANCE

When and are equal, the total reactance is zero, and the impedance has its
smallest value Then has its greatest value and the phase angle is zero,
which means that the current is in phase with the applied potential drop. Let 
be the value of for which and are equal. It is obtained from

or

which equals the natural frequency When the frequency of the applied poten-
tial drop equals the natural frequency the impedance is smallest, is great-
est, and the circuit is said to be at resonance. The natural frequency is therefore
also called the resonance frequency. This resonance condition in a driven cir-
cuit is similar to that in a driven simple harmonic oscillator.

Because neither an inductor nor a capacitor dissipates energy, the average
power delivered to a series circuit is the average power supplied to the resistor.
The instantaneous power supplied to the resistor is

Averaging over one or more cycles and using we obtain for the av-
erage power

29-54

Using from Figure 29-20 and this can be written

29-55

The quantity is called the power factor of the circuit. At resonance, is
zero, and the power factor is 1.

The power can also be expressed as a function of the angular frequency Using
Equation 29-54 becomes

Pav � (Irms)
2 � (Vapp rms)

2 R
Z2

Irms � Vapp rms>Z,
v.

dRLCcosd

Pav �
1
2
Vapp peakIpeak cosd � Vapp rmsIrms cosd

Ipeak � Vapp peak>Z,R>Z � cosd

Pav �
1
2
I2peakR � (Irms)

2R

(cos2u)av � 1
2 ,

P � I2R � [Ipeak cos(vt � d)]2R

RLC

RLC
v0

Ipeakv0 ,
v0 .

vres �
1

2LC

vresL �
1
vresC

XL � XC

XCXLv

vres

dIpeakR.
ZXCXL

XL � XC

R,Z,

I � Ipeak cos(vt � d) �
Vapp peak

Z
 cos(vt � d)

xvt � dV
S

R

xvtV
S

app

tand �
ƒ V
S

L � V
S

C ƒ
ƒ V
S

R ƒ
�
IpeakXL � IpeakXC

IpeakR
�
XL � XC
R

V
S

R ,dV
S

app XL XC

δ

Z

R

_

F I G U R E  2 9 - 2 0 A right triangle
relating capacitive and inductive reactance,
resistance, impedance, and the phase angle
in an circuit.RLC
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From the definition of impedance we have

where we have used Using this expression for we obtain the
average power as a function of 

29-56

Figure 29-21 shows the average power supplied by the generator to the series
combination as a function of generator frequency for two different values of the
resistance These curves, called resonance curves, are the same as the power-
versus-frequency curves for a driven damped oscillator (see Section 14-5). The
average power is greatest when the generator frequency equals the resonance
frequency. When the resistance is small, the resonance curve is narrow; when
the resistance is large, the resonance curve is broad. A resonance curve can be
characterized by the resonance width As shown in Figure 29-21, the reso-
nance width is the frequency difference between the two points on the curve
where the power is half its maximum value. When the width is small compared
with the resonance frequency, the resonance is sharp; that is, the resonance
curve is narrow.

The factor for a mechanical oscillator is defined as 
(Equations 14-42 and 14-45), where is the mass and is the damping constant.
We then saw that for weakly-damped oscillator where is
the total energy of the system at the beginning of a cycle and is the energy
dissipated during the cycle. The Q factor for an circuit can be defined in a
similar way. Because is analogous to the mass and is analogous to the
damping constant the factor for an circuit that has a small resistance is
given by

29-57

When the resonance curve is reasonably narrow (that is, when is greater than
about 2 or 3), the factor can be approximated by

29-58

FACTOR FOR AN CIRCUIT

Resonance circuits are used in radio receivers, where the resonance frequency
of the circuit is varied either by varying the capacitance or the inductance.
Resonance occurs when the natural frequency of the circuit equals one of the fre-
quencies of the radio waves picked up at the antenna. At resonance, a relatively
large current exists in the antenna circuit. If the factor of the circuit is suffi-
ciently high, currents due to other station frequencies off resonance will be neg-
ligible compared with those currents due to the station frequency to which the
circuit is tuned.

Q

RLCQ

Qfactor �
v0

¢v
�
f0
¢f

Q
Q

Qfactor � 2p a E
ƒ¢E ƒ
b

cycle

�
v0L

R

RLCQb,
RmL

RLC
¢E

EQfactor � 2pE> ƒ¢E ƒ ,
bm

Qfactor � v0m>bQ

¢v.

R.

Pav �
(Vapp rms)

2Rv2

L2(v2 � v2
0)

2 � v2R2

v:
Z2 ,v0 � 1>2LC .

�
L2

v2(v2 � v2
0)

2 � R2

�
L2

v2 av2 �
1
LC
b 2

� R2

Z2 � (XL � XC)
2 � R2 � avL �

1
vC
b 2

� R2

Z,

Pav

ωω0

Small R,
large Qfactor

Large R,
small Qfactor

Pav max

Pav max

Pav max
œ

Pav max
œ œ

Δv

Δv

1
2

1
2

F I G U R E  2 9 - 2 1 Plot of average power
versus frequency for a series circuit. The
power is maximum when the frequency of the
generator equals the natural frequency of
the circuit If the resistance is
small, the factor is large and the resonance
is sharp. The resonance width of the
curves is measured between points where the
power is half its maximum value.

¢v
Q
v0 � 1>1LC .
v

RLC
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Example 29-7 Driven Series RLC Circuit

A series combination that has and is driven by an ideal
generator that has a peak emf of and a frequency which can be varied. Find (a) the res-
onance frequency (b) the factor, (c) the width of the resonance and (d) the current
amplitude at resonance.

PICTURE The resonance frequency is found from and the factor is found
from (Equation 29-57).

SOLVE

(a) The resonance frequency is f0 � v0 >2p:

Qfactor � v0L>R Qv0 � 1>1LC
¢f,Qf0 ,

100 V
R � 20 ÆL � 2.0 H, C � 2.0 mF,RLC

 50Qfactor �
v0L

R
�

2p(80 Hz)(2.0 H)
20 Æ

�(b) Use this result to calculate Qfactor:

 80 Hz�
1

2p2(2.0 H)(2.0 � 10�6 F)
�

f0 �
v0

2p
�

1

2p2LC

(c) Use the value of to find the width of the resonance 
where Qfactor � f0 >¢f: ¢f,Qfactor

 5.0 A�
100 V
20 Æ

�Ipeak �
Vapp peak

R
�

Epeak

R
(d) At resonance, the impedance is equal to and is
Vapp peak >R:

IpeakR

 1.6 Hz¢f �
f0
Qfactor

�
80 Hz

50
�

CHECK At resonance the inductive and capacitances each equal 
The resistance is given as Because the resistance is

much smaller than the inductive reactance at resonance, we expect the factor to be high
and the resonance to be sharp. The Part (b) and (c) results meet this expectation.

TAKING IT FURTHER The width of is about 2.0 percent of the resonance frequency
of so the resonance peak is quite sharp.80 Hz,

1.6 Hz

Q
R � 20 Æ.2p(80 Hz)(2.0 H) � 1.0 kÆ.

XL � v0L �

Example 29-8 Driven Series RLC Circuit Current,
Phase, and Power Try It Yourself

If the generator in Example 29-7 has a frequency of find (a) the peak current, (b) the
phase constant (c) the power factor, and (d) the average power delivered.

PICTURE The peak current is the peak applied potential drop divided by the total imped-
ance of the series combination. The phase angle is found from You can
use either Equation 29-54 or Equation 29-55 to find the average power delivered.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

(XL � XC)>R.tand �d

d,
60 Hz,

Steps Answers

(a) 1. Write the peak current in terms of and the impedance.Vapp peak Ipeak �
Vapp peak

Z
�

Epeak

Z

2. Calculate the capacitive and inductive reactances and the
total reactance. so

XL � XC � �572 Æ

XC � 1326 Æ, XL � 754 Æ

3. Calculate the total impedance Z. Z � 573 Æ

4. Use the results of steps 2 and 3 to calculate Ipeak . 0.17 AIpeak �

(b) Use the results of Part (a) steps 2 and 3 to calculate d. �88.0°d � tan�1
XL � XC
R

�



Example 29-9 Driven Series RLC
Circuit at Resonance Try It Yourself

Find the peak potential drop across the resistor, the inductor, and the capacitor at resonance
for the circuit in Example 29-7.

PICTURE The peak potential drop across the resistor is multiplied by Similarly, the
peak potential drop across the inductor or capacitor is multiplied by the appropriate
reactance. We found that at resonance and in Example 29-7.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

f0 � 80 HzIpeak � 5.0 A
Ipeak

R.Ipeak
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(c) Use your value of to compute the power factor.d 0.035cosd �

(d) Calculate the average power delivered from Equation 29-54. 0.29 WPav � 1
2 I2peakR �

CHECK To check our result for the average power using the power factor found in Part (c),
we have This result is in agreement

with our result for Part (d).

TAKING IT FURTHER The frequency of is well below the resonance frequency of
(Recall that the width of the resonance peak, calculated in Example 29-7, is only
As a result, the total reactance is much greater in magnitude than the resistance. This

result is always the case far from resonance. Similarly, a peak current of is much less
than the peak current at resonance, which was found to be in Example 29-7. Finally,
we see from Figure 29-19 that a negative phase angle means that the current leads the
applied potential drop.

d

5.0 A
0.17 A

1.6 Hz.)
80 Hz.

60 Hz

Pav � 1
2Vapp peakIpeak cosd � 1

2 EpeakIpeak cosd � 0.29 W.

Steps Answers

1. Calculate VR peak � IpeakR. 100 VVR peak � IpeakR �

2. Express in terms of and XL .IpeakVL peak 5.0 kVVL peak � IpeakXL � Ipeakv0L �

3. Express in terms of and XC .IpeakVC peak 5.0 kVVC peak � IpeakXC �
Ipeak

v0C
�

CHECK The inductive and capacitive reactances are equal, as we would expect at resonance.
(We solved for the resonance frequency by setting them equal.)

TAKING IT FURTHER The phasor diagram for the potential drops across the resistor, ca-
pacitor, and inductor is shown in Figure 29-22. The peak potential drop across the resistor is
a relatively safe equal to the peak emf of the generator. However, the peak potential
drops across the inductor and the capacitor are a dangerously high These potential
drops are out of phase. At resonance, the potential drop across the inductor at any in-
stant is the negative of the potential drop across the capacitor, so they always sum to zero,
leaving the potential drop across the resistor equal to the emf in the circuit.

180°
5.0 kV.

100 V,

Example 29-10 RC Low-Pass Filter

A resistor and capacitor are in series with an ideal generator, as shown in Figure 29-23.
The generator applies a potential difference across the combination given by 

Find the rms potential difference across the capacitor as a func-
tion of frequency 

PICTURE The rms potential difference across the capacitor is the product of the rms current
and the capacitive reactance. The rms current is found from the potential difference applied
by the generator and the impedance of the series combination.RC

v.
Vout rms12 Vapp rms cosvt.

Vapp �RC
CR

y

x

VR = 100 V

VC = 5000 V

VL = 5000 V

F I G U R E  2 9 - 2 2

F I G U R E  2 9 - 2 3 The peak output
voltage decreases as frequency increases.

C

R

Vapp Vout

A circuit consists of an ideal
constant-frequency generator, a
resistor, a capacitor and an induc-
tor with a moveable soft-iron
core—all connected in series. You
notice that if you nudge the soft-
iron core a bit deeper into the in-
duction coil, the rms current in-
creases slightly. Prior to the nudge,
the resonance frequency of the cir-
cuit was (a) below the generator
frequency, (b) equal to the genera-
tor frequency, (c) above the gene-
rator frequency.

CONCEPT CHECK 29-1✓
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1. The potential drop across the capacitor is multiplied by XC:Irms Vout rms � IrmsXC

2. The rms current depends on the applied rms potential
difference and the impedance:

Irms �
Vapp rms

Z

3. In this circuit, only and contribute to the total impedance:XCR Z � 2R2 � X2
C

4. Substitute those expressions and to find the output
rms potential difference:

XC � 1>(vC)
Vapp rms

21 � (vRC)2
�
Vapp rms

A1 �
R2

X2
C

�Vout rms � IrmsXC �
Vapp rmsXC

2R2 � X2
C

CHECK The dimensions of our step 4 result are correct. The dimension of is and the
dimension of is T, so the product is dimensionless.

TAKING IT FURTHER This circuit is called an low-pass filter, because it transmits low
frequencies with greater amplitude than high frequencies. In fact, the output potential dif-
ference equals the potential difference applied by the generator in the limit that but
also approaches zero for as shown in the graph of the ratio of output potential
difference to applied potential difference in Figure 29-24.

PRACTICE PROBLEM 29-3 Find the output potential difference for this circuit if the
capacitor is replaced by an inductor L.

vS ,
vS 0,

RC

vRCRC
1>Tv

SOLVE

Example 29-11 An FM Tuner

SOLVE

1. The resonant angular frequency is related to the inductance L:v

and

so

f �
1

2p2LC

v � 2pf

v � 1>2LC

2. Solving for gives:L

where

a � (4p2C)�1

L � a>f2

3. Express the fractional change in in terms of the frequencies.
When is maximum, is minimum and vice versa. The middle
frequency is halfway between the maximum and minimum
frequency and is the inductance when f � fmid:Lmid

fmid

fL
L

� �0.417

� f2
mida 1
f2

max

�
1
f2

min

b � 982a 1
1082 �

1
882 b

¢L
L

�
Lmax � Lmin

Lmid

�
a>f2

max � a>f2
min

a>f2
mid

4. The minus sign is not relevant, except as an indication that
when the inductance increases the resonant frequency
decreases. Express the step 3 result as a percentage:

The inductance varies by about 42 percent

Context-Rich

You have been tinkering with building a radio tuner using your new knowledge of physics.
You know that the FM dial gives its frequencies in megahertz, and you would like to deter-
mine what percentage of change in an inductor would allow you to tune for the whole FM
range. You decide to start at midrange and determine a percent increase and decrease
needed for inductance. A variable inductor is usually an iron-core solenoid, and the induc-
tance is increased by further inserting the core. The FM dial goes from to 

PICTURE We can relate inductance to the resonant frequency with and
Then, if we find the percent change in frequency, we can determine the percent

change in inductance. The capacitance does not vary.C
v � 11LC .

v � 2pf

108 MHz.88 MHz

0

1.0

ω

Vapp peak

Vout peak
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PARALLEL RLC CIRCUIT

Figure 29-25 shows a resistor a capacitor and an inductor connected in
parallel across an ac generator. The total current from the generator divides into
three currents: the current in the resistor, the current in the capacitor, and the
current in the inductor. The instantaneous potential drop is the same
across each element. The current in the resistor is in phase with the potential
drop and the phasor has magnitude Because the potential drop across
an inductor leads the current in the inductor by lags the potential drop by

and the phasor has magnitude Similarly, leads the potential
drop by and the phasor has magnitude These currents are repre-
sented by phasors in Figure 29-26. The total current is the component of the
vector sum of the individual current phasors as shown in the figure. The magni-
tude of the total current phasor is 

29-59

where the total impedance is related to the resistance and the capacitive and in-
ductive reactances by

29-60

At resonance, the currents in the inductor and capacitor are out of phase,
so the total current is a minimum and is just the current in the resistor. We see from
Equation 29-59 that this occurs if is maximum, so is minimum. Then, we see
from Equation 29-60 that if has its minimum value Equating 
with and solving for obtains the resonant frequency, which equals the natural
frequency v0 � 1>1LC .

vXC

XL1>R.XL � XC , 1>Z 1>ZZ

180°

1
Z2 �

1
R2 � a 1

XL
�

1
XC
b 2

Z

I �4I2R � (IL � IC)
2 � CaVpeak

R
b 2

� aVpeak

XL
�
Vpeak

XC
b 2

�
Vpeak

Z

xI
Vpeak>XC .I

S

C90°
ICVpeak>XL .I

S

L90°,
90°, IL

Vpeak>R.I
S

R

VappIL

ICIR

I
LC,R,
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A shipboard radio, circa 1920. Exposed at the operator’s left are the inductance coils and
capacitor plates of the tuning circuit. (© George H. Clark Radioana Collection-Archive Center, National
Museum of American History.)

Vapp R C L

F I G U R E  2 9 - 2 5 A parallel circuit.RLC

δ

IL

IR

Vapp

IC IL

I

IC +

F I G U R E  2 9 - 2 6 A phasor diagram for the currents in the parallel circuit shown in
Figure 29-25. The potential drop is the same across each element. The current in the resistor is
in phase with the potential drop. The current in the capacitor leads the potential drop by 
and the current in the inductor lags the potential drop by The phase difference between
the total current and the potential drop depends on the relative magnitudes of the currents,
which depend on the values of the resistance and of the capacitive and inductive reactances.

d90°.
90°

RLC



Physics Spotlight

The Electric Grid: Power to the People

All around the world, people depend on electrical distribution systems, or grids, for re-
liable electric power. Generators, substations that have transformers, and high-voltage
transmission lines are all necessary to efficiently move electrical energy from one place
to another.* As of 2002, over miles of high-voltage ac transmission lines and
more than transmission substations were part of the grid in the United States
alone.† Grids are growing in complexity‡ all over the world.#, ° Unfortunately, as grids
grow, so do the number of possible points of failure.

Most electrical grid failures are small scale, caused by local weather, by equipment
failure,§ or even by animals.¶ But these failures give clues to the causes of large-scale
power outages. Power surges within transformers and lines are the primary cause of
local outages. Damage is prevented from propagating, or cascading, by relay switches
that close off the line and act as surge suppressors for the system as a whole. Rarely, local
outages are caused when there is much more demand than local generators can supply.

Sometimes the same mechanisms meant to prevent damage from a local outage can
cause the outage to cascade. On November 9, 1965, a relay switch tripped at a hydro-
electric plant in southern Ontario. The current from that line was shunted to five other
transmission lines, which caused the relay switches for those lines to trip. Because of
this dramatic reduction in load, the generators sped up, which meant that the power
they provided was out of phase with power from other providers.** Over the course of
a few minutes, relay after relay tripped, and many generators were shut down as they
were isolated from their loads. Within four seconds, relays had tripped throughout the
northeastern United States. Within a few minutes, generators were taken off-line, and
over 30 million people were left without electricity for several hours.

That blackout prompted the formation of the National Electric Reliability Council.††

Measures put in place for coordination of electric loads‡‡, ## have prevented many large
blackouts, but blackouts have still happened. In July 1977, a lightning strike to transmis-
sion lines in New York tripped relays, and because of the slow response of the system op-
erator,°° New York City was left without power for three days.§§ On August 14, 2003, an
unfortunate combination of high demand, a transmission line shorting against an untrimmed tree, and inadequate communica-
tions led to a blackout in the northeast United States and Canada that left 50 million people without power, some for days.¶¶

To prevent future outages, technical improvements to the grid are being actively sought. One improvement is software able
to monitor and control portions of the grid with speed and flexibility.*** Other improvements may include higher capacity
transmission lines, improved transformers, and more responsive maintenance programs.†††, ‡‡‡

* The Electricity Delivery System. United States Department of Energy, Office of Electricity Delivery and Energy Reliability, Feb. 2006. http://www.energetics.com/gridworks/pdfs/fact-
sheet.pdf As of Nov. 2006.

† Ibid.
‡ Harris, J. L., et al., “Peak Demand and Energy Projection Bandwidths 2005–2014 Regional and National.” National Energy Reliability Council, Sept. 14, 2005. ftp://www.nerc.com/pub/sys/

all_updl/docs/pubs/Final_NERC_2005-2014_REGIONAL_BANDWIDTH_REPORT.pdf As of Nov. 2006.
# “Towards National Power Grid.” [sic] Power Grid Corporation of India Limited. http://www.powergridindia.com/pgnew/01-0001-003.asp As of Nov. 2006.
º Chow, J., Kopp, R., and Portney, P., “Energy Resources and Global Development.” Science, Nov. 28, 2003, Vol. 302, pp. 1528–1531.
§ Chowdhury, A., et al., “MAPP Bulk Transmission System Outage Report.” Mid-Continent Area Power Pool, Jun. 2001. http://www.mapp.org/assets/pdf/BTOR19_1.PDF As of Nov. 2006.
¶ Orso, J., “Bangor Hit with Power Outage.” La Crosse Tribune, Jul. 16, 2006.
** U.S. Federal Power Commission, “Northeast Power Failure: November 9 and 10, 1965.” Washington, DC: U.S. Government Printing Office. At http://blackout.gmu.edu/

archive/pdf/fpc_65.pdf As of Nov. 2006.
†† Central Maine Power Company, “The Great Northeast Blackout of 1965.” http://www.cmpco.com/about/system/blackout.html As of Nov. 2006.
‡‡ California Independent System Operator, “Load Reduction Programs.” California Independent System Operator Procedure E-502, Mar. 15, 2005. http://www.caiso.com/docs/2000/06/15/

200006151111359621.pdf As of Nov. 2006.
## “Emergency Manual Load Shedding.” California Independent System Operator Procedure E-502, Feb. 17, 2006. http://www.caiso.com/docs/1998/12/02/1998120218100812000.pdf

As of Nov. 2006.
ºº Boffey, P. M., “Investigators Agree N. Y. Blackout of 1977 Could Have Been Avoided.” Science, Sept. 15, 1978, Vol. 201, No. 4360, pp. 994–998.
§§ Metz, W. D., “ New York Blackout: Weak Links Tie Con Ed to Neighboring Utilities.” Science, Jul. 29, 1977, Vol. 197, No. 4302, pp. 441–442.
¶¶ U.S.–Canada Power System Outage Task Force, “Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations.” ftp://www.nerc.com/
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plan_final.pdf As of Nov. 2006.
‡‡‡ U.S.–Canada Power System Outage Task Force, “The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada to Reduce Blackout Risk.” Natural

Resources Canada and the U.S. Department of Energy, Aug. 13, 2004. ftp://www.nerc.com/pub/sys/all_updl/docs/blackout/Blackout-OneYearLater(PRINT).pdf As of Nov. 2006.  
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The pair of satellite images shows how a
power failure affected many American
and Canadian cities during the evening
of Thursday, August 14, 2003. The top
image was taken 20 hours before the
blackout while the bottom image was
taken 7 hours after the blackout.
(Courtesy of Chris Elridge/U.S. Airforce.)

http://www.energetics.com/gridworks/pdfs/factsheet.pdf
http://www.energetics.com/gridworks/pdfs/factsheet.pdf
http://www.powergridindia.com/pgnew/01-0001-003.asp
http://www.mapp.org/assets/pdf/BTOR19_1.PDF
http://www.cmpco.com/about/system/blackout.html
http://www.caiso.com/docs/2000/06/15/200006151111359621.pdf
http://www.caiso.com/docs/2000/06/15/200006151111359621.pdf
http://www.caiso.com/docs/1998/12/02/1998120218100812000.pdf
http://www.anl.gov/Media_Center/logos22-1/electricity.htm
http://www.anl.gov/Media_Center/logos22-1/electricity.htm
http://www.oe.energy.gov/DocumentsandMedia/multiyearplan_final.pdf
http://www.oe.energy.gov/DocumentsandMedia/multiyearplan_final.pdf
http://blackout.gmu.edu/archive/pdf/fpc_65.pdf
http://blackout.gmu.edu/archive/pdf/fpc_65.pdf
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Summary

1. Reactance is a frequency-dependent property of capacitors and inductors that is analo-
gous to the resistance of a resistor.

2. Impedance is a frequency-dependent property of an ac circuit or circuit loop that is anal-
ogous to the resistance in a dc circuit.

3. Phasors are two-dimensional vectors that allow us to picture the phase relations in a circuit.

4. Resonance occurs when the frequency of the generator equals the natural frequency of the
oscillating circuit.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Alternating-Current Generators An ac generator is a device that transforms mechanical energy into electrical energy. This
transformation can be accomplished by using the mechanical energy to either rotate a con-
ducting coil in a magnetic field or to rotate a magnet in a conducting coil.

Emf generated 29-1

2. Current

Rms current 29-8

Rms current and peak current 29-9

For a resistor 29-12

potential drop and current in phase

For an inductor 29-22

potential drop leads current by 

For a capacitor 29-26

potential drop lags current by 

3. Reactance

Inductive reactance 29-21

Capacitive reactance 29-27

4. Average Power 

To a resistor 29-10, 29-12

To an inductor or to a capacitor

5. *Transformers A transformer is a device used to increase or decrease the voltage in a circuit without an ap-
preciable loss in power. For a transformer with turns in the primary and turns in the
secondary, the potential difference across the secondary coil is related to the potential drop
across the primary coil by

29-30V2 �
N2

N1

V1

N2N1

Pav � 0

Pav � VR rmsIrms � (Irms)
2R

XC �
1
vC

XL � vL

90°

Irms �
VC rms

1>vC �
VC rms

XC

90°

Irms �
VL rms

vL
�
VL rms

XL

Irms �
VR rms

R

Irms �
I

22
Ipeak

Irms �4(I2)av

E � Epeak cos(vt � d)
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If there are no power losses,

29-32

6. * and Series Circuits If a capacitor is discharged through an inductor, the charge and the voltage on the capacitor
oscillate with angular frequency

29-37

The current in the inductor oscillates with the same frequency, but it is out of phase with the
charge by The energy oscillates between electric energy in the capacitor and magnetic
energy in the inductor. If the circuit also has resistance, the oscillations are damped because
energy is dissipated in the resistor.

7. *Phasors Phasors are two-dimensional vectors that represent the current the potential drop across a
resistor the potential drop across a capacitor and the potential drop across an induc-
tor in an ac circuit. These phasors rotate in the counterclockwise direction with an angular
velocity that is equal to the angular frequency of the current. is in phase with the cur-
rent, leads the current by and lags the current by The component of each pha-
sor equals the magnitude of the current or the corresponding potential drop at any instant.

8. *Driven Series Circuit 

Applied potential drop

Current 29-52

Impedance 29-51

Phase angle 29-49

Average power 29-54, 29-55, 29-56

Power factor The quantity in Equation 29-55 is called the power factor of the circuit. At reso-
nance, is zero, the power factor is 1, and

Resonance When the rms current is maximum, the circuit is said to be at resonance. The conditions for
resonance are

so

and

9. * Factor The sharpness of the resonance curve is described by the factor:

29-57

When the resonance curve is reasonably narrow, the factor can be approximated by

29-58Qfactor �
v0

¢v
�
f0
¢f

Q

Qfactor �
v0L

R

QQ

d � 0v � v0 �
1

2LC
XL � XC ,

Z �4R2 � (XL � XC)
2 � R

Pav � Vapp rmsIrms

d

RLCcosd

Pav � (Irms)
2R � Vapp rmsIrms cosd �

(Vapp rms)
2Rv2

L2(v2 � v2
0)

2 � v2R2

tand �
XL � XC
R

d

Z �4R2 � (XL � XC)
2Z

I �
Vapp peak

Z
 cos(vt � d)

Vapp � Vapp peak cosvt

RLC

x90°.V
S

C90°,V
S

L

V
S

Rv

V
S

L

V
S

C ,V
S

R ,
I
S

,

90°.

v �
1

2LC

RLCLC

V1 rmsI1 rms � V2 rmsI2 rms

TOPIC RELEVANT EQUATIONS AND REMARKS



5 • If the frequency in
the circuit in Figure 29-28 is
doubled, the capacitive reac-
tance of the circuit will (a) dou-
ble, (b) not change, (c) halve,
(d) quadruple.

6 • (a) In a circuit consist-
ing solely of an ac generator and an ideal inductor, are there any
time intervals when the inductor receives energy from the genera-
tor? If so, when? Explain your answer. (b) Are there any time inter-
vals when the inductor supplies energy back to the generator? If so
when? Explain your answer.

7 • (a) In a circuit consisting of a generator and a capacitor,
are there any time intervals when the capacitor receives energy
from the generator? If so, when? Explain your answer. (b) Are there
any time intervals when the capacitor supplies power to the gener-
ator? If so, when? Explain your answer.

8 • (a) Show that the SI unit of inductance multiplied by the
SI unit of capacitance is equivalent to seconds squared. (b) Show
that the SI unit of inductance divided by the SI unit of resistance is
equivalent to seconds.

SSM
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Answers to Concept Check

29-1 (c)

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • A coil in an ac generator rotates at How much
time elapses between successive peak emf values of the coil?

2 • If the rms voltage in an ac circuit is doubled, the peak
voltage is (a) doubled, (b) halved, (c) increased by a factor of 
(d) not changed.

3 • If the frequency in the circuit shown in Figure 29-27 is
doubled, the inductance of the inductor will (a) double, (b) not
change, (c) halve, (d) quadruple.

4 • If the frequency in the circuit shown in Figure 29-27 is
doubled, the inductive reactance of the inductor will (a) double,
(b) not change, (c) halve, (d) quadruple.

SSM

12,

60 Hz.

LE

F I G U R E  2 9 - 2 7

Problems 3 and 4

CE

F I G U R E  2 9 - 2 8 Problem 5

9 • Suppose you in-
crease the rotation rate of the
coil in the generator shown in
the simple ac circuit in Figure
29-29. Then the rms current
(a) increases, (b) does not
change, (c) may increase or de-
crease depending on the mag-
nitude of the original frequency, (d) may increase or decrease
depending on the magnitude of the resistance, (e) decreases.

10 • If the inductance value is tripled in a circuit consisting
solely of a variable inductor and a variable capacitor, how would
you have to change the capacitance so that the natural frequency of
the circuit is unchanged? (a) Triple the capacitance. (b) Decrease the
capacitance to one-third of its original value. (c) You should not
change the capacitance. (d) You cannot determine how to change
the capacitance from the data given.

11 • Consider a circuit consisting solely of an ideal inductor
and an ideal capacitor. How does the maximum energy stored in
the capacitor compare to the maximum value stored in the induc-
tor? (a) They are the same and each is equal to the total energy
stored in the circuit. (b) They are the same and each is equal to half
of the total energy stored in the circuit. (c) The maximum energy
stored in the capacitor is larger than the maximum energy stored in
the inductor. (d) The maximum energy stored in the inductor is
larger than the maximum energy stored in the capacitor. (e) You
cannot compare the maximum energies based on the data given be-
cause the ratio of the maximum energies depends on the actual ca-
pacitance and inductance values.

12 • True or false:
(a) A driven series circuit that has a high factor has a nar-

row resonance curve.
(b) A circuit consists solely of a resistor, an inductor, and a capaci-

tor, all connected in series. If the resistance of the resistor is dou-
bled, the natural frequency of the circuit remains the same.

(c) At resonance, the impedance of a driven series combina-
tion equals the resistance 

(d) At resonance, the current in a driven series circuit is in
phase with the voltage applied to the combination.

13 • True or false:
(a) Near resonance, the power factor of a driven series circuit

is close to zero.
RLC

RLC
R.

RLC

QRLC

SSM

SSM

RE

F I G U R E  2 9 - 2 9 Problem 9

Answers to Practice Problems

29-1 (a) (b) (c)

29-2

29-3 This circuit is a high-
pass filter.
Vout rms � Vin rms>41 � (R>L)2>v2 .

79 mH

1.9 � 102 W96 W,2.8 A,

Problems
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(b) The power factor of a driven series circuit does not depend
on the value of the resistance.

(c) The resonance frequency of a driven series circuit does not
depend on the value of the resistance.

(d) At resonance, the peak current of a driven series circuit
does not depend on the capacitance or the inductance.

(e) For frequencies below the resonant frequency, the capacitive re-
actance of a driven series circuit is larger than the induc-
tive reactance.

(f) For frequencies below the resonant frequency of a driven series
circuit, the phase of the current leads (is ahead of) the

phase of the applied voltage.

14 • You may have noticed that sometimes two radio stations
can be heard when your receiver is tuned to a specific frequency.
This situation often occurs when you are driving and are between
two cities. Explain how this situation can occur.

15 • True or false:
(a) At frequencies much higher than or much lower than the reso-

nant frequency of a driven series circuit, the power factor
is close to zero.

(b) The larger the resonance width of a driven series circuit is,
the larger the factor for the circuit is.

(c) The larger the resistance of a driven series circuit is, the larg-
er the resonance width for the circuit is.

16 • An ideal transformer has turns on its primary and 
turns on its secondary. The average power delivered to a load re-
sistance connected across the secondary is when the primary
rms voltage is The rms current in the primary windings can
then be expressed as (a) (b) (c)
(d)

17 • True or false:
(a) A transformer is used to change frequency.
(b) A transformer is used to change voltage.
(c) If a transformer steps up the current, it must step down the voltage.
(d) A step-up transformer steps down the current.
(e) The standard household wall-outlet voltage in Europe is 

about twice that used in the United States. If a European trav-
eler wants her hair dryer to work properly in the United States,
she should use a transformer that has more windings in its sec-
ondary coil than in its primary coil.

(f ) The standard household wall-outlet voltage in Europe is 
about twice that used in the United States. If an American trav-
eler wants his electric razor to work properly in Europe, he
should use a transformer that steps up the current.

ESTIMATION AND APPROXIMATION

18 •• ENGINEERING APPLICATION The impedances of motors,
transformers, and electromagnets include both resistance and in-
ductive reactance. Suppose that the phase of the current to a large
industrial plant lags the phase of the applied voltage by when
the plant is under full operation and using of power. The
power is supplied to the plant from a substation from the
plant; the line voltage at the plant is The resis-
tance of the transmission line from the substation to the plant is

The cost per kilowatt-hour to the company that owns the
plant is $0.14, and the plant pays only for the actual energy used.
(a) Estimate the resistance and inductive reactance of the plant’s
total load. (b) Estimate the rms current in the power lines and the
rms voltage at the substation. (c) How much power is lost in trans-
mission? (d) Suppose that the phase at which the current lags
the phase of the applied voltage is reduced to by adding a18°

5.2 Æ.

40 kV.60 Hz rms
4.5 km

2.3 MW
25°

SSM

220 V,

220 V,

(N2>N1)2(P2>V1).
(N2>N1)(P2>V1),(N1>N2)(P2 >V1),P2>V1 ,

V1 .
P2R

N2N1

RLC
Q

RLC

RLC

RLC

RLC

RLC

RLC

RLC bank of capacitors in series with the load. How much money would
be saved by the electric utility during one month of operation,
assuming the plant operates at full capacity for each day?
(e) What must be the capacitance of this bank of capacitors to
achieve this change in phase angle?

ALTERNATING CURRENT 
IN RESISTORS, INDUCTORS, 
AND CAPACITORS

19 • A 100-W lightbulb is screwed into a standard 120-V-rms.
socket. Find (a) the rms current, (b) the peak current, and (c) the
peak power.
20 • A circuit breaker is rated for a current of at a
voltage of (a) What is the largest value of peak current
that the breaker can carry? (b) What is the maximum average power
that can be supplied by this circuit?

21 • What is the reactance of a inductor at
(a) (b) and (c)
22 • An inductor has a reactance of at 
(a) What is its inductance? (b) What is its reactance at 

23 • At what frequency would the reactance of a capa-
citor equal the reactance of a inductor?
24 • What is the reactance of a 1.00-nF capacitor at (a)
(b) and (c)
25 • A 20-Hz ac generator that produces a peak emf of is
connected to a capacitor. Find (a) the peak current and (b) the
rms current.
26 • At what frequency is the reactance of a capacitor
(a) (b) and (c)
27 •• A circuit consists of two ideal ac generators and a re-
sistor, all connected in series. The potential difference across the ter-
minals of one of the generators is given by 
and the potential difference across the terminals of the other gener-
ator is given by where (a) Use
Kirchhoff’s loop rule and a trigonometric identity to find the peak
current in the circuit. (b) Use a phasor diagram to find the peak cur-
rent in the circuit. (c) Find the current in the resistor if and
the amplitude of is increased from to 

*UNDRIVEN CIRCUITS
CONTAINING CAPACITORS,
RESISTORS, AND INDUCTORS

28 • (a) Show that has units of inverse seconds by sub-
stituting SI units for inductance and capacitance into the expres-
sion. (b) Show that (the expression for the factor) is di-
mensionless by substituting SI units for angular frequency, induc-
tance, and resistance into the expression.

29 • (a) What is the period of oscillation of an circuit
consisting of a 2.0-mH coil and a capacitor? (b) A circuit
that oscillates consists solely of an capacitor and a vari-
able ideal inductor. What inductance is needed in order to tune
this circuit to oscillate at 
30 • An circuit has capacitance and inductance A
second circuit has capacitance and inductance and a
third circuit has capacitance and inductance (a) Show
that each circuit oscillates with the same frequency. (b) In which
circuit would the peak current be greatest if the peak voltage
across the capacitor in each circuit were the same?

1
2L.2C0LC

2L,1
2C0LC

L.C0LC

SSM60 Hz?

80-mF
20-mF

LC

Qv0L>R1>1LC

7.0 V.5.0 VV2

a � p>4
a � p>6.V2 � (5.0 V) cos(vt � a),

cos(vt � a),V1 � (5.0 V)

25-Æ
10.0 mÆ?100 Æ,1.00 Æ,

10-mF
SSM

20-mF
10 V

6.00 MHz?6.00 kHz,
60.0 Hz,

1.0-mH
10-mF

160 Hz?
80 Hz.100 Æ

SSM6.00 kHz?600 Hz,60 Hz,
1.00-mH

120 V rms.
15 A rms

SSM

16 h



39 •• A coil that has a resistance and an inductance has a
power factor equal to when driven at a frequency of 
What is the coil’s power factor if it is driven at 

40 •• A resistor and an in-
ductor are connected in paral-
lel across an ideal ac voltage
source whose output is given
by as shown
in Figure 29-32. Show that
(a) the current in the resistor is
given by 
(b) the current in the inductor is given by 

and (c) the current in the voltage source is
given by where Ipeak � Epeak>Z .I � IR � IL � Ipeak cos(vt � d),
(Epeak>XL) cos(vt � 90°),

IL �
IR � (Epeak>R) cosvt,

E � Emax cosvt

SSM240 Hz?
60 Hz.0.866
LR31 •• A capacitor is charged to and is then

connected across an ideal 10-mH inductor. (a) How much energy is
stored in the system? (b) What is the frequency of oscillation of the
circuit? (c) What is the peak current in the circuit?
32 •• A coil with internal resistance can be modeled as a
resistor and an ideal inductor in series. Assume that the coil has an
internal resistance of and an inductance of 
A capacitor is charged to and is then connected across
coil. (a) What is the initial voltage across the coil? (b) How much en-
ergy is dissipated in the circuit before the oscillations die out?
(c) What is the frequency of oscillation of the circuit? (Assume the
internal resistance is sufficiently small that it has no impact on the
frequency of the circuit.) (d) What is the quality factor of the circuit?
33 •• An inductor and a
capacitor are connected, as
shown in Figure 29-30.
Initially, the switch is open,
and the left plate of the
capacitor has charge The
switch is then closed. (a) Plot
both versus and versus

on the same graph, and ex-
plain how it can be seen from
these two plots that the current leads the charge by (b) The ex-
pressions for the charge and for the current are given by Equations
29-38 and 29-39, respectively. Use trigonometry and algebra to
show that the current leads the charge by 

DRIVEN RL CIRCUITS

34 •• A circuit consists of a resistor, an ideal 1.4-H inductor, and
an ideal 60-Hz generator, all connected in series. The rms voltage
across the resistor is and the rms voltage across the inductor is

(a) What is the resistance of the resistor? (b) What is the peak
emf of the generator?
35 •• A coil that has a resistance of has an impedance of

when driven at a frequency of What is the induc-
tance of the coil?
36 •• ENGINEERING APPLICATION A two-conductor transmis-
sion line simultaneously carries a superposition of two voltage
signals, so the potential difference between the two conductors
is given by where and

where and 
A 1.00-H inductor and a shunt resistor are inserted into the
transmission line as shown in Figure 29-31. (Assume that the out-
put is connected to a load
that draws only an insignifi-
cant amount of current.)
(a) What is the voltage 
at the output of the transmis-
sion line? (b) What is the ratio
of the low-frequency ampli-
tude to the high-frequency
amplitude at the output?
37 •• A coil is connected to a 120-V-rms, 60-Hz line. The aver-
age power supplied to the coil is and the rms current is 
Find (a) the power factor, (b) the resistance of the coil, and (c) the in-
ductance of the coil. (d) Does the current lag or lead the voltage?
Explain your answer. (e) Support your answer to Part (d) by deter-
mining the phase angle.
38 •• A 36-mH inductor that has a resistance of is con-
nected to an ideal ac voltage source whose output is given by

where is in seconds. Determine (a) the
peak current in the circuit, (b) the peak and rms voltages across
the inductor, (c) the average power dissipation, and (d) the peak
and average magnetic energy stored in the inductor.

tE � (345 V) cos(150pt),

40 Æ

1.5 A.60 W,

(Vout)

1.00-kÆ
v2 � 10000 rad>s.v1 � 100 rad>sV2 � (10.0 V) cos(v2t),

V1 � (10.0 V) cos(v1t)V � V1 � V2 ,

SSM

1.00 kHz.200 Æ
80.0 Æ

40 V.
30 V

SSM90°.

90°.

t
ItQ

Q0 .

24.0 V2.00-mF
400 mH.1.00 Æ

30 V5.0-mF
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42 •• An ideal ac voltage source whose emf is given by
and an ideal battery whose emf is are

connected to a combination of two resistors and an inductor
(Figure 29-34), where and 
Find the average power delivered to each resistor if the driving
frequency is (a) (b) and (c) 800 Hz.200 Hz,100 Hz,

L � 6.0 mH.R1 � 10 Æ, R2 � 8.0 Æ,

16 VE2(20 V) cos(2pft)
E1

S
L

C

+Q0

+

−Q0

F I G U R E  2 9 - 3 0 Problem 33

V1
Vout

V2

1.00 H

2ω

ω 1
1.00 kΩ

F I G U R E  2 9 - 3 1 Problem 36

LE R

F I G U R E  2 9 - 3 2 Problem 40

LE

R

RL

F I G U R E  2 9 - 3 3

Problem 41

L

R1

+_

E1

E2

R2

F I G U R E  2 9 - 3 4

Problem 42

43 •• An ac circuit contains a resistor and an ideal inductor
connected in series. The rms voltage drop across the series combi-
nation is and the rms voltage drop across the inductor alone
is What is the rms voltage drop across the resistor?

FILTERS AND RECTIFIERS

44 •• ENGINEERING APPLICATION The circuit shown in Figure
29-35 is called an high-pass filter because it transmits input voltage
signals that have high frequencies with greater amplitude than
it transmits input voltage signals that have low frequencies. If the
input voltage is given by show that the output

voltage is where VH � Vin peak>21 � (vRC)�2 .Vout � VH cos(vt � d)

Vin � Vin peak cosvt,

RC

80 V.
100 V

41 •• Figure 29-33 shows a load resistor that has a resis-
tance of connected to a high-pass filter consisting
of an inductor that has an inductance inductor
and a resistor that has resistance The output of the
ideal ac generator is given by Find
the rms currents in all three branches of the circuit if the dri-
ving frequency is (a) and (b) Find the fraction
of the total average power supplied by the ac generator that is
delivered to the load resistor if the frequency is (c) and
(d) SSM2000 Hz.

500 Hz

2000 Hz.500 Hz

E � (100 V) cos(2pft).
R � 4.00 Æ.

L � 3.20-mH
RL � 20.0 Æ



53 •• SPREADSHEET Using a spreadsheet program, make a
graph of versus input frequency and a graph of phase angle 
versus input frequency for the low-pass filter of Problems 51 and 52.
Use a resistance value of and a capacitance value of 

54 ••• A rapidly varying voltage signal is applied to the
input of the low-pass filter of Problem 51. Rapidly varying means
that during one time constant (equal to there are significant
changes in the voltage signal. Show that under those conditions the
output voltage is proportional to the integral of with respect to
time. This situation is known as an integration circuit.

55 ••• E N G I N E E R I N G

APPLICATION The circuit
shown in Figure 29-37 is a
trap filter. (Assume that the
output is connected to a load
that draws only an insignifi-
cant amount of current.)
(a) Show that the trap filter
acts to reject signals in a band
of frequencies centered at

(b) How does
the width of the frequency
band rejected depend on the
resistance 

56 ••• E N G I N E E R I N G

APPLICATION A half-wave
rectifier for transforming an
ac voltage into a dc voltage is
shown in Figure 29-38. The
diode in the figure can be
thought of as a one-way
valve for current. It allows
current to pass in the for-
ward direction (the direction
of the arrowhead) only
when is at a higher electric potential than by (i.e., when-
ever The resistance of the diode is effectively
infinite when is less than Plot two cycles of both
input and output voltages as a function of time, on the same graph, as-
suming the input voltage is given by 

57 ••• ENGINEERING APPLICATION The output of the rectifier of
Problem 56 can be further filtered by putting its output through a
low-pass filter as shown in Figure 29-39a. The resulting output is a
dc voltage with a small ac component (ripple) shown in Figure 
29-39b. If the input frequency is and the load resistance is

find the value for the capacitance so that the output volt-
age varies by less than 50 percent of the mean value over one cycle.
1.00 kÆ,

60 Hz

Vin � Vin peak cosvt.

�0.60 V.Vin � Vout

Vin � Vout � �0.60 V).
0.60 VVoutVin

SSMR?

v � 1>1LC .

V(t)

RC)

V(t)

5.0 nF.10 kÆ

dfVL

(Assume that the output is
connected to a load that draws
only an insignificant amount
of current.) Show that this re-
sult justifies calling this cir-
cuit a high-pass filter.

45 •• (a) Find an expres-
sion for the phase constant 
in Problem 44 in terms of and (b) What is the value of in
the limit that (c) What is the value of in the limit that

(d) Explain your answers to Parts (b) and (c).

46 •• SPREADSHEET Assume that in Problem 44, 
and (a) At what frequency is That
particular frequency is known as the 3-dB frequency, or for the
circuit. (b) Using a spreadsheet program, make a graph of 
versus where is the frequency. Make sure that the scale
extends from at least 10% of the 3-dB frequency to ten times the 
3-dB frequency. (c) Make a graph of versus for the same
range of frequencies as in Part (b). What is the value of the phase
constant when the frequency is equal to the 3-dB frequency?

47 •• A slowly varying voltage signal is applied to the
input of the high-pass filter of Problem 44. Slowly varying means
that during one time constant (equal to there is no significant
change in the voltage signal. Show that under those conditions the
output voltage is proportional to the time derivative of This
situation is known as a differentiation circuit.

48 •• We can describe the output from the high-pass filter
from Problem 44 using a decibel scale: 

where is the output in decibels. Show that for 

The frequency at which is known as 

(the 3-dB frequency). Show that for the output drops
by if the frequency is halved.

49 •• Show that the average power dissipated in the resistor of
the high-pass filter of Problem 44 is given by 

50 •• One application of the high-pass filter of Problem 44 is as
a noise filter for electronic circuits (a filter that blocks out low-
frequency noise). Using a resistance value of find a value for
the capacitance for the high-pass filter that attenuates a 60-Hz input
voltage signal by a factor of 10, that is, so 

51 •• ENGINEERING APPLICATION The circuit shown in
Figure 29-36 is an example of a low-pass filter. (Assume that the
output is connected to a load that draws only an insignificant
amount of current.) (a) If the input voltage is given by 

show that the output voltage is 

where (b) Discuss the trend of the out-
put voltage in the limiting cases and 

52 •• (a) Find an expression for the phase angle for the
low-pass filter of Problem 51 in terms of and (b) Find the
value of in the limit that and in the limit that 
Explain your answer.

vS .vS 0d

C.v, R,
d

SSMvS .vS 0
VL � Vin peak>21 � (vRC)2 .

Vout � VL cos(vt � d)Vin peak cos vt,
Vin �

VH � 1
10Vin peak.

20 kÆ,

SSMPav �
V2

in peak

2R[1 � (vRC)�2]
.

f6 dB
bf V f3dB ,

f3dBVH � 122
Vin peakb � 3.0 dB.

VH � 122
Vin peak,b

b � (20 dB)log10(VH>Vin peak),

SSM

V(t).

RC)

V(t)

log10(f)d

flog10(f),
log10(VH)

f3dB ,
VH � 122

Vin peak?C � 15 nF.
R �  20 kÆ

vS ?
dvS 0?

dC.v, R,
d
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C

RVin Vout

F I G U R E  2 9 - 3 5 Problem 44

R

VoutVin C

F I G U R E  2 9 - 3 6

Problems 51 and 52

C

(b)

(a)

t

Vout

RLVin Vout

F I G U R E  2 9 - 3 9

Problem 57

RLVin Vout

F I G U R E  2 9 - 3 8 Problem 56

R

LVin Vout

C

F I G U R E  2 9 - 3 7 Problem 55
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is the root-mean-square value of the emf of the generator, is the
resistance, is the capacitance, and is the inductance. [In Part (a),

in Part (b), and in Part (c), ]

64 •• A series circuit that has an inductance of a
capacitance of and a resistance of is driven by an ideal
ac voltage source that has a peak emf of Find (a) the resonant
frequency and (b) the root-mean-square current at resonance. When
the frequency is find (c) the capacitive and inductive re-
actances, (d) the impedance, (e) the root-mean-square current, and
(f) the phase angle.

65 •• Find (a) the factor and (b) the resonance width (in
hertz) for the circuit in Problem 64. (c) What is the power factor
when

66 •• ENGINEERING APPLICATION FM radio stations typically
operate at frequencies separated by Thus, when your
radio is tuned to a station operating at a frequency of 
the resonance width of the receiver circuit should be much smaller
than so that you do not receive signal from stations op-
erating at adjacent frequencies. Assume your receiving circuit has a
resonance width of When tuned in to that particular
station, what is the factor of your circuit? 

67 •• A coil is connected to a 60-Hz ac generator with a peak
emf equal to At this frequency, the coil has an impedance of

and a reactance of (a) What is the peak current in the
coil? (b) What is the phase angle between the current and the ap-
plied voltage? (c) A capacitor is put in series with the coil and the
generator. What capacitance is required so that the current is in
phase with the generator emf? (d) What is the peak voltage mea-
sured across the capacitor?

68 •• An ideal 0.25-H inductor and a capacitor are connected
in series with an ideal 60-Hz generator. A digital voltmeter is used
to measure the rms voltages across the inductor and capacitor in-
dependently. The voltmeter reading across the capacitor is and
that across the inductor is (a) Find the capacitance and the rms
current in the circuit. (b) What is the rms voltage across the series
combination of the capacitor and the inductor?

69 •• In the circuit shown
in Figure 29-42 the ideal gener-
ator produces an rms voltage
of when operated at

What is the rms voltage
between points (a) and 
(b) and (c) and (d)
and and (e) and 

70 •• When an se-
ries circuit is connected to a
120-V-rms, 60-Hz line, the rms current in the circuit is and the
current leads the line voltage by (a) Find the average power
supplied to the circuit. (b) What is the resistance in the circuit? (c) If
the inductance in the circuit is find the capacitance in the
circuit. (d) Without changing the inductance, by how much should
you change the capacitance to make the power factor equal to 1?
(e) Without changing the capacitance, by how much should you
change the inductance to make the power factor equal to 1?

71 •• SPREADSHEET Plot the circuit impedance versus the
angular frequency for each of the following circuits: (a) a driven
series circuit, (b) a driven series circuit, and (c) a driven
series circuit.

72 •• In a driven series circuit, the ideal generator has a
peak emf equal to the resistance is and the capa-
citance is The inductance can be varied from 
to by the insertion of an iron core in the solenoid. The40.0 mH

8.00 mH8.00 mF.
60.0 Æ,200 V,

RLC

RLC
RCLR

50 mH,

45°.
11 A

RLC

SSMD?BC,
AD ,CC,B
B,A

60 Hz.
115 V

50 V.
75 V

8.0 Æ.10 Æ
100 V.

Q
0.050 MHz.

0.20 MHz,

100.1 MHz,
0.20 MHz.

SSMv � 8000 rad>s?

Q

8000 rad>s,

100 V.
5.0 Æ2.0 mF,

10 mH,RLC

SSMR � C � 0.R � L � 0;C � L � 0;
LC

RErmsDRIVEN LC CIRCUITS

58 •• The generator volt-
age in Figure 29-40 is given by

(a) For
each branch, what is the peak
current and what is the phase
of the current relative to the
phase of the generator volt-
age? (b) At the resonance frequency there is no current in the gener-
ator. What is the angular frequency at resonance? (c) At the reso-
nance frequency, find the current in the inductor and the current in
the capacitor. Express your results as functions of time. (d) Draw a
phasor diagram showing the phasors for the applied voltage, the
generator current, the capacitor current, and the inductor current for
the case where the frequency is higher than the resonance frequency.

59 •• A circuit consists of an ideal ac generator, a capacitor, and
an ideal inductor, all connected in series. The charge on the capaci-
tor is given by where 
(a) Find the current in the circuit as a function of time. (b) Find the
capacitance if the inductance is (c) Write expressions for the
electrical energy the magnetic energy and the total energy

as functions of time.

60 ••• ENGINEERING APPLICATION One method for determin-
ing the compressibility of a dielectric material uses a driven 
circuit that has a parallel-plate capacitor. The dielectric is inserted
between the plates and the change in resonance frequency is
determined as the capacitor plates are subjected to a compressive
stress. In one such arrangement, the resonance frequency is

when a dielectric of thickness and dielectric con-
stant is placed between the plates. Under a compressive
stress of the resonance frequency decreases to 
Find the Young’s modulus of the dielectric material. (Assume that
the dielectric constant does not change with pressure.)

61 ••• Figure 29-41 shows
an inductor in series with a
parallel-plate capacitor. The ca-
pacitor has a width of 
and a gap of A dielec-
tric that has a dielectric con-
stant of 4.8 can be slid in and
out of the gap. The inductor
has an inductance of 
When half the dielectric is
between the capacitor plates
(when the resonant
frequency of this combination
is (a) What is the ca-
pacitance of the capacitor without the dielectric? (b) Find the reso-
nance frequency as a function of for 

DRIVEN RLC CIRCUITS

62 • A circuit consists of an ideal ac generator, a capac-
itor, and an resistor, all connected in series. The output of the
generator has a peak emf of and the armature of the genera-
tor rotates at Find (a) the power factor, (b) the rms
current, and (c) the average power supplied by the generator.

63 •• Show that the expression gives the correct
result for a circuit containing only an ideal ac generator and (a) a re-
sistor, (b) a capacitor, and (c) an inductor. In the expression

is the average power supplied by the generator,Pav � RE 2
rms>Z2, Pav

Pav � RE 2
rms>Z2

400 rad>s.
20 V,

80-Æ
20-mF

0 � x � w.x

90 MHz.

x � 1
2w),

2.0 mH.

2.0 mm.
20 cmw

116 MHz.800 atm,
k � 6.80

0.100 cm120 MHz

LC

U
Um,Ue ,

28 mH.

v � 1250 rad>s.Q � (15 mC) cos(vt � p
4),

E � (100 V) cos(2pft). E 4 H25   Fμ

F I G U R E  2 9 - 4 0 Problem 58

w x

L

F I G U R E  2 9 - 4 1 Problem 61

A
137 mH

B

CD

115 V
60 Hz 50 Ω

μ25   F

F I G U R E  2 9 - 4 2 Problem 69



Problems | 1027

angular frequency of the generator is If the capacitor
voltage is not to exceed find (a) the peak current and (b) the
range of inductances that is safe to use.

73 •• A certain electrical device draws an rms current of 
at an average power of when connected to a 120-V-rms, 
60-Hz power line. (a) What is the impedance of the device? (b) What
series combination of resistance and reactance would have the
same impedance as this device? (c) If the current leads the emf, is
the reactance inductive or capacitive?

74 •• A method for measuring inductance is to connect the in-
ductor in series with a known capacitance, a known resistance, an ac
ammeter, and a variable-frequency signal generator. The frequency
of the signal generator is varied and the emf is kept constant until
the current is maximum. (a) If the capacitance is the peak emf
is the resistance is and the rms current in the circuit is
maximum when the driving frequency is what is the
value of the inductance? (b) What is the maximum rms current?

75 •• A resistor and a ca-
pacitor are connected in par-
allel across an ac generator
(Figure 29-43) that has an emf
given by 
(a) Show that the current
in the resistor is given by

(b) Show that the current in the capacitor
branch is given by (c) Show that the
current in the generator is given by where

and

76 ••• Figure 29-44 shows a plot of average power versus
generator frequency for a series RLC circuit driven by an ac gen-
erator. The average power is given by Equation 29-56. The full
width at half-maximum, is the width of the resonance curve
between the two points, where is one-half its maximum value.
Show that for a sharply peaked resonance, and that

(Equation 29-58). Hint: The half-power points occur
when the denominator of Equation 29-56 is equal to twice the value it has
at resonance; that is, when Let and
be the solutions of this equation. Then, show that ¢v � v2 � v1 � R>L.

v2v1L2(v2 � v2
0)

2 � v2R2 � �v2
0R

2.

Qfactor � v0>¢v ¢v � R>LPav

¢v,
Pav

v

Pav

Ipeak � Epeak>Z .tand � R>XC I � Ipeak cos(vt � d),
IC � (Epeak>XC) cos(vt � 90°).

IR � (Epeak>R) cosvt.

E � Epeak cosvt.

5000 rad>s,
100 Æ,10 V,

10 mF,

720 W
10 A

150 V,
2500 rad>s. 78 ••• ENGINEERING APPLICATION One method for measuring

the magnetic susceptibility of a sample uses an circuit consisting
of an air-core solenoid and a capacitor. The resonant frequency of
the circuit without the sample is determined and then measured
again with the sample inserted in the solenoid. Suppose you have a
solenoid that is long, is in diameter, and has

of fine wire. You have a sample that is inserted in the so-
lenoid and completely fills the air space. Neglect end effects.
(a) Calculate the inductance of the empty solenoid. (b) What value
for the capacitance of the capacitor should you choose so that the
resonance frequency of the circuit without a sample is exactly

(c) When a sample is inserted in the solenoid, you de-
termine that the resonance frequency drops to Use
your data to determine the sample’s susceptibility.

*THE TRANSFORMER

79 • A rms voltage of is required for a device whose
impedance is (a) What should the turns ratio of a trans-
former be, so that the device can be operated from a 
line? (b) Suppose the transformer is accidentally connected in
reverse with the secondary winding across the line
and the load across the primary. How much rms current
will then be in the primary winding?

80 • A transformer has in the primary and 
in the secondary. (a) Is this a step-up or a step-down transformer?
(b) If the primary is connected to a 120-V-rms voltage source, what
is the open-circuit rms voltage across the secondary? (c) If the pri-
mary rms current is what is the secondary rms current,
assuming negligible magnetization current and no power loss?

81 • The primary of a step-down transformer has 
and is connected to a 120-V-rms line. The secondary is to supply

at Find (a) the rms current in the primary
and (b) the number of turns in the secondary, assuming 100 percent
efficiency.

82 •• An audio oscillator (ac source) that has an internal resis-
tance of and an open-circuit rms output voltage of is
to be used to drive a loudspeaker coil that has a resistance of 
(a) What should be the ratio of primary to secondary turns of a
transformer so that maximum average power is transferred to the
speaker? (b) Suppose a second identical speaker is connected in
parallel with the first speaker. How much average power is then
supplied to the two speakers combined?

83 • The distribution circuit of a residential power line is op-
erated at This voltage must be reduced to for
use within residences. If the secondary side of the transformer has

how many turns are in the primary?

GENERAL PROBLEMS

84 •• A resistor that has a resistance carries a current given
by where (a) What is
the rms current in the resistor? (b) If what is the average
power delivered to the resistor? (c) What is the rms voltage across
the resistor?

85 •• Figure 29-45 shows the voltage versus time for a square-
wave voltage source. If (a) what is the rms voltage of this
source? (b) If this alternating waveform is rectified by eliminating
the negative voltages, so that only the positive voltages remain,
what is the new rms voltage? SSM

V0 � 12 V,

R � 12 Æ,
f � 60 Hz.(5.0 A) sin 2pft � (7.0 A) sin 4pft,

R

400 turns,

240 V rms2000 V rms.

8.00 Æ.
12.0 V2000 Æ

9.0 V rms.20 A rms

250 turns

0.100 A,

8 turns400 turns

SSM

12-Æ
120-V-rms

120-V-rms
12 Æ.

24 V

5.9989 MHz.
6.0000 MHz?

400 turns
3.00 mm4.00 cm

LC

CRE
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Pav

ωω0

Small R,
large Qfactor

Large R,
small Qfactor

Pav max

Pav max

Pav max
œ

Pav max
œ œ

Δv

Δv

1
2

1
2
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77 ••• Show by direct substitution that 

(Equation 29-43b) is satisfied by where

and is the charge on the
capacitor at t � 0.

Q0t � 2L>R, v� � 21>(LC) � 1>t2 ,

Q � Q0e
�t>t cosv�t,

L
d2Q

dt2 � R
dQ
dt

�
1
C
Q � 0
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87 •• In the circuit shown in
Figure 29-47, 
where and

Find the maximum, mini-
mum, average, and rms values of the
current in the resistor.

88 •• Repeat Problem 87 if the
resistor is replaced by a 
capacitor.

89 ••• A circuit consists of an
ac generator, a capacitor and an
ideal inductor—all connected in series. The emf of the generator is
given by (a) Show that the charge on the capacitor

obeys the equation (b) Show by direct

substitution that this equation is satisfied by where

(c) Show that the current can be written as

where 

for and for where is the reso-
nance frequency. SSM

v0v 
 v0 ,d � 90°v 	 v0 ,d � �90°

Epeak

ƒXL � XC ƒ
,Ipeak �

vEpeak

L ƒv2 � v2
0 ƒ

�I � Ipeak cos(vt � d),

Qpeak � �
Epeak

L(v2 � v2
0)

.

Q � Qpeak cosvt

L
d2Q

dt2 �
Q

C
� Epeak cosvt.

Epeak cosvt.

2.0-mF

R � 36 Æ.
E2 � 18 V;f � 180 Hz;

E1 � (20 V) cos 2pft,

86 •• What are the average values and rms values of current
for the two current waveforms shown in Figure 29-46?

t

V
V0

F I G U R E  2 9 - 4 5 Problem 85

t

I(A)

I(A)

4.0

2.0
(a)

t

4.0

2.0
(b)
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RE1

+_
E2

F I G U R E  2 9 - 4 7

Problems 87, 88, and 89



Maxwell’s Equations
and Electromagnetic
Waves

30-1 Maxwell’s Displacement Current

30-2 Maxwell’s Equations

30-3 The Wave Equation for Electromagnetic Waves

30-4 Electromagnetic Radiation

M
axwell’s equations, first proposed by the great Scottish physicist James
Clerk Maxwell, relate the electric and magnetic field vectors and 
and their sources, which are electric charges and currents. These equa-
tions summarize the experimental laws of electricity and magnetism—
the laws of Coulomb, Gauss, Biot–Savart, Ampère, and Faraday. These
experimental laws hold in general except for Ampère´s law, which

applies only to steady continuous currents.

In this chapter, we will see how Maxwell was able to generalize Ampère’s
law with the invention of the displacement current (Section 30-1). Maxwell
was then able to show that the generalized laws of electricity and magnetism
imply the existence of electromagnetic waves.
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Did you ever wonder whether

a radio antenna generates a wave

equally in all directions?

(See Example 30-5.)

?

SET ACROSS THE DESERT NEAR
SOCORRO, NEW MEXICO, THE
NATIONAL RADIO ASTRONOMY
OBSERVATORY’S VERY LARGE ARRAY IS
A SYSTEM OF 27 RADIO ANTENNAS SET
IN A Y-SHAPED CONFIGURATION.
BECAUSE THE INFORMATION GATHERED
FROM THE ARRAY IS COMBINED
ELECTRONICALLY, THE INSTRUMENT
HAS A RESOLUTION THAT IS 22 MILES
WIDE. (NRAO/AUI.)
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F I G U R E  3 0 - 1 Two surfaces and 
bounded by the same curve The current 
passes through surface but not through
surface Ampère’s law, which relates the
line integral of the magnetic field around the
curve to the total current passing through
any surface bounded by is not valid when
the current is not continuous, as when it stops
at the capacitor plate here.
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30-1 MAXWELL’S DISPLACEMENT CURRENT

Maxwell’s equations play a role in classical electromagnetism analogous to the role
of Newton’s laws in classical mechanics. In principle, all problems in classical elec-
tricity and magnetism can be solved using Maxwell’s equations, just as all problems
in classical mechanics can be solved by using Newton’s laws. Maxwell’s equations
are considerably more complicated than Newton’s laws, however, and their appli-
cation to most problems involves mathematics beyond the scope of this book.
Nevertheless, Maxwell’s equations are of great theoretical importance. For example,
Maxwell showed that these equations can be combined to yield a wave equation for
the electric and magnetic field vectors and Such electromagnetic waves are
generated by accelerating charges (for example, the charges in an alternating cur-
rent in an antenna). Electromagnetic waves were first produced in the laboratory by
Heinrich Hertz in 1887. Maxwell showed that his equations predicted the speed of
electromagnetic waves in free space to be

B
S

.E
S

30-1

THE SPEED OF ELECTROMAGNETIC WAVES

c �
11m0P0

where the electric constant, is the constant appearing in Coulomb’s and Gauss’s
laws and the magnetic constant, is the constant appearing in the Biot–Savart
law and Ampère’s law. Maxwell noticed with great excitement the coincidence that
the measure for the speed of light equaled and Maxwell correctly sur-
mised that light itself is an electromagnetic wave. Today, the value of is defined
as the value of is defined as and the
value of is defined by Equation 30-1.

Ampère’s law (Equation 27-16) relates the line integral of the magnetic field
around some closed curve to the current that passes through any surface bounded
by that curve:

30-2

Maxwell recognized a flaw in Ampère’s law. Figure 30-1 shows two different sur-
faces, and bounded by the same curve which encircles a current carrying
wire that is connected to a capacitor plate. The current through surface is but
no current exists through surface because the charge stops on the capacitor
plate. Thus, ambiguity exists in the phrase “the current through any surface
bounded by the curve.” Such a problem arises when the current is not continuous.

Maxwell showed that the law can be generalized to include all situations if the
current in the equation is replaced by the sum of the current and another term

called Maxwell’s displacement current, defined asId ,
II

S2

I,S1

C,S2 ,S1

CCB
S # d�

S
� m0IS for any closed curve C

C

P0

4p � 10�7 N>A2,m02.997 924 58 � 108 m>s,
c

1>1m0P0 ,

m0 ,
P0 ,

30-3

DEFINITION—DISPLACEMENT CURRENT

Id � P0

dfe

dt

where is the flux of the electric field through the same surface bounded by the
curve The generalized form of Ampère’s law is thenC.

fe

30-4

GENERALIZED FORM OF AMPÈRE’S LAW

CCB
S # d�

S
� m0(I � Id) � m0I � m0P0

dfe

dt
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We can understand this generalization by considering Figure 30-1 again. Let us call
the sum * the generalized current. According to the argument just stated, the
same generalized current must cross any surface bounded by the curve The sur-
faces and together form a single closed surface. Thus, the sum of the general-
ized currents into the region enclosed by the two surfaces and is equal to the
sum of the generalized currents out of the region. If a net current into the en-
closed region exists, an equal net displacement current out of the enclosed re-
gion must exist. In the enclosed region in the figure, a net current into the region
exists that increases the charge within the region:

The net flux of the electric field out of the enclosed region is related to the charge
enclosed by Gauss’s law:

Solving for the charge gives

and taking the derivative of each side gives

The rate of increase of the enclosed charge is thus proportional to the rate of increase
of the net flux of the electric field out of the region:

Thus, the net current into the volume equals the net displacement current out of
the volume. The generalized current is thus continuous, and this is always the case.

It is interesting to compare Equation 30-4 to Equation 28-6:

30-5

FARADAY’S LAW

which in this chapter will be referred to as Faraday’s law. (Equation 30-5 is a
restricted form of Faraday’s law, a form that does include emfs associated with time-
varying magnetic fields, but does not include emfs associated with moving conduc-
tors.) According to Faraday’s law, a changing magnetic flux produces an electric field
whose line integral around a closed curve is proportional to the rate of change of
magnetic flux through any surface bounded by the curve. Maxwell’s modification of
Ampère’s law shows that a changing electric flux produces a magnetic field whose
line integral around a curve is proportional to the rate of change of the electric flux.
We thus have the interesting reciprocal result that a changing magnetic field pro-
duces an electric field (Faraday’s law) and a changing electric field produces a mag-
netic field (generalized form of Ampère’s law). Note, no magnetic analog of a cur-
rent exists. This is consistent with the observation that the magnetic monopole, the
magnetic analog of an electric charge, does not exist.†
I

E � CC E
S # d�

S
� �

dfm

dt
� ��

S

�Bn

�t
dA

dQinside

dt
� P0

dfe net

dt
� Id

dQinside

dt
� P0

dfe net

dt

Qinside � P0fe net

fe net � CS En dA �
1
P0

Qinside

I �
dQinside

dt

Qinside

I
Id

I
S2 ,S1

S2S1

C.
I � Id

* In more advanced treatments, the generalized current is taken as the sum of a conduction current and a displacement
current, where the conduction current is attributed to the motion of free (delocalized) charge carriers, and the dis-
placement current is what is referred to in this book as the displacement current and a term associated with the mo-
tion of bound (localized) charge carriers.

† The question of the existence of magnetic monopoles has theoretical importance. Numerous attempts to observe mag-
netic monopoles have been made but to date no one has been unambiguously successful.
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Example 30-1 Calculating Displacement Current

A parallel-plate capacitor has closely spaced circular plates of radius The current in the
wires connected to the plates is as shown in Figure 30-2. Compute the displacement
current through surface passing between the plates by directly computing the rate of
change of the flux of through surface 

PICTURE The displacement current is where is the electric flux through
the surface between the plates. Because the parallel plates are closely spaced, the electric
field in the region between the plates is uniform and perpendicular to the plates. Outside
the region between the plates the electric field is negligible. Thus, the electric flux is simply

where is the electric field between the plates and is the plate area.

SOLVE

AEfe � EA,

feId � P0 dfe >dt,

S.E
S

SId

2.5 A,
IR.

1. The displacement current is found by taking the time derivative
of the electric flux:

Id � P0

dfe

dt

2. The flux equals the electric field magnitude multiplied by the
plate area:

fe � EA

3. The electric field is proportional to the charge density on the
plates, which we treat as uniformly distributed:

E �
s

P0

�
Q>A

P0

4. Substitute these results to calculate Id:

2.5 A�
dQ
dt

�

Id � P0

d(EA)
dt

� P0A
dE
dt

� P0A
d
dt
a Q
AP0

b
CHECK The step-4 result is equal to the current in the wires, as expected.

1. We find from the generalized form of Ampère’s law:B

where

Id � P0

dfe

dt

CCB
S # d�

S
� m0(I � Id)

2. The line integral is multiplied by the circumference
of the circle:

B CCB
S # d�

S
� B # 2pr

Example 30-2 Calculating from Displacement Current

The circular plates in Example 30-1 have a radius of Find the magnetic field
strength at a point between the plates a distance from the axis through the cen-
ters of the plates when the current into the positive plate is 

PICTURE We find from the generalized form of Ampère’s law (Equation 30-4). We chose
a circular path of radius about the centerline joining the plates, as shown in
Figure 30-3. We then calculate the displacement current through the surface bounded by 
By symmetry, is tangent to and has the same magnitude everywhere on 

SOLVE

C.CB
S

C.S
r � 2.0 cmC

B

2.5 A.
r � 2.0 cmB

R � 3.0 cm.

B
S

I S

r

R

F I G U R E  3 0 - 3 The distance between
the plates is not drawn to scale. The plates
are much closer together than they appear.

F I G U R E  3 0 - 2 The surface between
the capacitor plates is penetrated by
electric field lines. The charge on the
positively charged plate is increasing at

The distance between
the plates is not drawn to scale. The plates
are much closer together than the plates
shown in the figure.

2.5 C>s � 2.5 A.

Q

S
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30-2 MAXWELL’S EQUATIONS

Maxwell’s equations are

30-6a

GAUSS’S LAW

30-6b

GAUSS’S LAW FOR MAGNETISM

30-6c

FARADAY’S LAW

30-6d

AMPÈRE’S LAW

MAXWELL’S EQUATIONS*

Gauss’s law (Equation 30-6a) states that the flux of the electric field through any
closed surface equals multiplied by the net charge inside the surface. As dis-
cussed in Chapter 22, Gauss’s law implies that the electric field due to a point
charge varies inversely as the square of the distance from the charge. This law de-
scribes how electric field lines diverge from a positive charge and converge on a
negative charge. Its experimental basis is Coulomb’s law.

E
S

1>P0

CCB
S # d�

S
� m0(I � Id), where Id � P0�

S

�En

�t
dA

CC E
S # d�

S
� �

d
dt �SBn dA � ��

S

�Bn

�t
dA

CS Bn dA � 0

CS En dA �
1
P0

Qinside

3. Because no charges are moving through the surface 
Thus, the generalized current through is just the
displacement current:

S
S, I � 0.

B # 2pr � 0 � m0P0

dfe

dt

CCB
S # d�

S
� m0I � m0P0

dfe

dt

4. The electric flux through equals the product of the uniform
field strength and the area of the flat surface bounded by
the curve and is equal to s>P0:EC,

SAE
S

� pr2
Q

P0pR
2 �

Qr2

P0R
2

fe � AE � pr2E � pr2
s

P0

5. Substitute these results into step 3 and solve for B:

1.11 � 10�5 T�

� (2 � 10�7 T # m>A)
0.02 m

(0.03 m)2 (2.5 A)

B �
m0

2p
r
R2

dQ
dt

�
m0

2p
r
R2 I

B # 2pr � m0P0

d
dt
a Qr2

P0R
2 b � m0

r2

R2

dQ
dt

* In all four of Maxwell’s equations, the integration paths C and the integration surfaces S are at rest and the integrations
take place at an instant in time.
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Gauss’s law for magnetism (Equation 30-6b) states that the flux of the magnetic
field through any closed surface is zero. This equation describes the experi-
mental observation that magnetic field lines do not diverge from any point in
space or converge to any point in space; that is, it implies that isolated magnetic
poles do not exist.

Faraday’s law (Equation 30-6c) states that the line integral of the electric field 
around any closed curve equals the negative of the rate of change of the flux of
the magnetic field through any surface bounded by curve ( is not a closed
surface, so the magnetic flux through is not necessarily zero.) Faraday’s law de-
scribes how electric field lines encircle any area through which the magnetic flux
is changing, and it relates the electric field vector to the rate of change of the
magnetic field vector 

Ampère’s law modified to include Maxwell’s displacement current (Equation
30-6d) states that the line integral of the magnetic field around any closed curve

equals multiplied by the sum of the current through any surface bounded
by the curve and the displacement current through the same surface. This law
describes how the magnetic field lines encircle an area through which a current or
a displacement current is passing.

In Section 30-3, we show how wave equations for both the electric field and
the magnetic field can be derived from Maxwell’s equations.

30-3 THE WAVE EQUATION FOR 
ELECTROMAGNETIC WAVES

In Section 15-1, we saw that waves on a string obey a partial differential equation
called the wave equation:

30-7

where is the wave function, which for string waves is the displacement of 
the string. The velocity of the wave is given by where is the tension
and is the linear mass density. The general solution to this equation is

where and are functions of and respectively. The general solu-
tion functions can be expressed as a superposition of harmonic wave functions of
the form

where is the wave number and is the angular frequency.
Maxwell’s equations imply that and obey wave equations similar to Equa-

tion 30-7. We consider only empty space (space in which no charges or currents
exist) and we assume that the electric and magnetic fields and are functions of
time and one space coordinate only, which we will take to be the coordinate. Such
a wave is called a plane wave, because and are uniform throughout any plane
perpendicular to the axis. For a plane electromagnetic wave traveling parallel
to the axis, the components of the fields are zero, so the vectors and are
perpendicular to the axis and each obeys the wave equation:

30-8a

WAVE EQUATION FOR E
S

�2E
S

�x2 �
1
c2

�2E
S

�t2

x
B
S

E
S

xx
x

B
S

E
S

x
B
S

E
S

B
S

E
S

v � 2pfk � 2p>ly(x, t) � y0 sin(kx � vt) and y(x, t) � y0 sin(kx � vt)

x � vt,x � vty2y1

y(x, t) � y1(x � vt) � y2(x � vt)

m

FTv � 2FT>m ,
y(x, t)

�2y(x, t)

�x2 �
1
v2

�2y(x, t)

�t2

B
S

E
S

Id

SIm0C
B
S

B
S

.
E
S

S
SC.SB

S
C

E
S

B
S
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30-8b

WAVE EQUATION FOR 

where is the speed of the waves. (Note: Dimensional analysis helps
in remembering these equations. For each equation, the numerators on both
sides are the same and the denominators on both sides have the dimension of
length squared.)

DERIVATION OF THE WAVE EQUATION

We can relate the space derivative of one of the field vectors to the time derivative
of the other field vector by applying Faraday’s law (Equation 30-6c) and the mod-
ified version of Ampère’s law (Equation 30-6d) to appropriately chosen curves in
space. We first relate the space derivative of to the time derivative of by
applying Equation 30-6c (Faraday’s law) to the rectangular curve of sides and

lying in the plane (Figure 30-4). The circulation of around for small 
and is given by

where is the value of at and is the value of at The
contributions of the type from the top and bottom of this curve are zero
because Because is very small (compared to the wavelength), we can
approximate the difference in on the left and right sides of this curve (at and
at by

Then

CC E
S # d�

S
�

�Ey
�x

¢x¢y

Ey(x2) � Ey(x1) � ¢Ey �
�Ey
�x

¢x

x2)
x1Ey

¢xEx � 0.
Ex¢x

x � x2 .EyEy(x2)x � x1EyEy(x1)

CC E
S # d�

S
� Ey(x2)¢y � Ey(x1)¢y � [Ey(x2) � Ey(x1)]¢y

¢y,
¢xC,E

S
xy¢y

¢x
BzEy

c � 1>1m0P0

B
S

�2B
S

�x2 �
1
c2

�2B
S

�t2

E

S

Ey(x1) Ey(x2)

x1 x2

Wave velocity

x

y

Δy

Δx

C

z

F I G U R E  3 0 - 4 A rectangular curve in the plane for the derivation of Equation 30-9.xy
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Faraday’s law is

The flux of through the rectangular surface bounded by this curve is given by

Faraday’s law then gives

or

30-9

Equation 30-9 implies that if there is a component of the electric field that
depends on there must be a component of the magnetic field that depends on
time or, conversely, if there is a component of the magnetic field that depends
on time, there must be a component of the electric field that depends on We
can get a similar equation relating the space derivative of the magnetic field 
to the time derivative of the electric field by applying Ampère’s law (Equation
30-6d) to the curve of sides and in the plane shown in Figure 30-5.xz¢z¢x

Ey

Bz

x.Ey

Bz

Bzx,
Ey

�Ey
�x

� �
�Bz
�t

�Ey
�x

¢x¢y � �
�Bz
�t

¢x¢y

�
S
Bn dA �

�Bz
�t

¢x¢y

�Bn>�t

CC E
S # d�

S
� ��

S

�Bn

�t
dA

S

Bz(x1) Bz(x2)

x1 x2

Wave velocity

x

y

z

Δz

Δx

C

B

F I G U R E  3 0 - 5 A rectangular curve in the plane for the derivation of Equation 30-10.y � 0

For the case of no currents Equation 30-6d is

The details of this calculation are similar to those for Equation 30-9. The result is

30-10

We can eliminate either or from Equations 30-9 and 30-10 by differentiating
both sides of either equation with respect to either or If we differentiate both
sides of Equation 30-9 with respect to we obtain

�

�x
a�Ey

�x
b � �

�

�x
a�Bz

�t
b

x,
t.x

EyBz

�Bz
�x

� �m0P0

�Ey
�t

CCB
S # d�

S
� m0P0�

S

�En

�t
dA

(I � 0),
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Interchanging the order of the time and space derivatives on the term to the right
of the equal sign gives

Using Equation 30-10, we substitute for to obtain

which yields the wave equation

30-11

Comparing Equation 30-11 with Equation 30-7, we see that obeys a wave equa-
tion for waves with speed which is Equation 30-1.

If we had instead chosen to eliminate from Equations 30-9 and 30-10 (by dif-
ferentiating Equation 30-9 with respect to for example), we would have obtained
an equation identical to Equation 30-11 except with replacing We can thus see
that both the electric field and the magnetic field obey a wave equation for
waves traveling with the velocity By substituting the measured values
for and Maxwell showed that the value of is equal to the measured
value for speed of light.

By following the same line of reasoning as used above, and applying Equation
30-6c (Faraday’s law) to the curve in the plane (Figure 30-5), we would obtain

30-12

Similarly, the application of Equation 30-6d to the curve in the plane (Figure
30-4) gives

30-13

We can use these results to show that, for a wave propagating in the direction,
the components and also obey the wave equation.

To show that the magnetic field is in phase with the electric field consider
the harmonic wave function of the form

30-14

If we substitute this solution into Equation 30-9, we have

To solve for we take the integral of with respect to time. Doing so yields

30-15

where is an arbitrary function of x.f(x)

Bz � � �Bz
�t

dt �
k
v
E0 sin(kx � vt) � f(x)

�Bz>�tBz ,

�Bz
�t

� �
�Ey
�x

� �kE0 cos(kx � vt)

Ey � E0 sin(kx � vt)

Ey ,Bz

ByEz

x

�By
�x

� m0P0

�Ez
�t

xy

�Ez
�x

�
�By
�t

xz

1>1m0P0P0 ,m0

1>1m0P0 .
BzEy

Ey .Bz

t,
Ey

v � 1>1m0P0 ,
Ey

�2Ey

�x2 � m0P0

�2Ey

�t2

�2Ey

�x2 � �
�

�t
a�m0P0

�Ey
�t
b

�Bz>�x

�2Ey

�x2 � �
�

�t
a�Bz

�x
b

PRACTICE PROBLEM 30-1

Verify Equation 30-15 by showing that is equal to
�kE0 cos(kx � vt).

�

�t
c k
v
E0 sin(kx � vt) � f(x) d
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We next substitute the solution (Equation 30-14) into Equation 30-10 and obtain

Solving for gives

30-16

where is an arbitrary function of time. Equating the right sides of Equations
30-15 and 30-16 gives

Substituting for and for gives

which implies for all values of and These remain equal only if
(independent of both and Thus, Equation 30-15

becomes

30-17

where The integration constant was dropped because it
plays no part in the wave. It merely allows for the presence of a static uniform mag-
netic field. Because the electric and magnetic fields oscillate in phase and have the
same frequency, we have the general result that the magnitude of the electric field
is multiplied by the magnitude of the magnetic field for an electromagnetic wave:

30-18

The direction of propagation of an electromagnetic wave is always the dir-
ection of the vector product For the wave described in the preceding
discussion, the electric and magnetic fields are given by and

Thus,

The term on the right is a vector in the + direction, so we have verified that 
is in the direction of propagation for this electromagnetic wave.

We see that Maxwell’s equations imply wave equations 30-8a and 30-8b for the
electric and magnetic fields; and that if varies harmonically, as in Equation 30-14,
the magnetic field is in phase with and has an amplitude related to the am-
plitude of by The electric and magnetic fields are perpendicular
to each other and to the direction of the wave propagation.

Bz � Ey>c.Ey

EyBz

Ey

E
S

� B
S

x

E
S

� B
S

� [E0 sin(kx � vt)jn] � [B0 sin(kx � vt)kn] � E0B0 sin2(kx � vt)in

B
S

� B0 sin(kx � vt)kn.
E
S

� E0 sin(kx � vt)jn
E
S

� B
S

.

E � cB

c

B0 � (k>v)E0 � (1>c)E0 .

Bz �
k
v
E0 sin(kx � vt) � constant � B0 sin(kx � vt)

t).xf(x) � g(t) � constant
t.xf(x) � g(t)

1
c
E0 sin(kx � vt) � f(x) �

1
c
E0 sin(kx � vt) � g(t)

m0P01>c2v>kc

k
v
E0 sin(kx � vt) � f(x) �

vm0P0

k
E0 sin(kx � vt) � g(t)

g(t)

Bz � � �Bz
�x

dx �
vm0P0

k
E0 sin(kx � vt) � g(t)

Bz

�Bz
�x

� �m0P0

�Ey
�t

� vm0P0E0 cos(kx � vt)

Example 30-3 for a Linearly Polarized Plane Wave

The expression for the electric field of a certain electromagnetic wave is given by 
(a) What is the direction of propagation of the wave? (b) What is the corre-

sponding expression for the magnetic field on the wave?

PICTURE The argument of the sine function gives the direction of propagation. is per-
pendicular to both and to the direction of propagation. and are in phase and 
is in the direction of propagation.

E
S

� B
S

E
S

B
S

E
S

B
S

E0 sin(ky � vt)kn.
E
S

(x, t) �

B
S

(x, t)

The direction of propagation of an
electromagnetic wave is always the

direction of the vector product E
S

� B
S

.
!
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SOLVE

(a) The argument of the sine function tells us the
direction of propagation:

(ky � vt)

(b) 1. is in phase with and is perpendicular to both and 
the direction of propagation (That is, is perpendicular
to both and This result means: kn.)jn

B
S

kn.
E
S

E
S

B
S

Either or

B
S

(y, t) � �B0 sin(ky � vt)in
B
S

(y, t) � �B0 sin(ky � vt)in

2. is in the direction of propagation, Assume 
and calculate the product E

S
� B

S
:B

S
(x, t) � �B0 sin(ky � vt)in

�jn.E
S

� B
S

� E0B0 sin2(ky � vt)jn
� E0B0 sin2(ky � vt)(kn � in)

E
S

� B
S

� E0 sin(ky � vt)kn � B0 sin(ky � vt)in

3. The step-2 result contradicts the reality that the direction of
propagation is the direction. Take the cross product 
with the other choice for the expression for the magnetic field:

E
S

� B
S

�y

� �E0B0 sin2(ky � vt) jn
� E0(�B0) sin2(ky � vt)(kn � in)

E
S

� B
S

� E0 sin(ky � vt)kn � (�B0) sin(ky � vt)in

4. The step-3 result is in the direction of propagation.
The correct expression for the magnetic field is:

where (Equation 30-18).B0 � E0 >cB
S

(x, t) � �B0 sin(ky � vt)in

CHECK The step-4 result is perpendicular to both and to the direction of propagation,
as expected.

E
S

Example 30-4 for a Circular Polarized Plane Wave

The expression for the electric field of a certain electromagnetic wave is given by 
(a) Find the corresponding magnetic field of the same

wave. (b) Compute and 

PICTURE We can solve this example by using the principle of superposition. The given elec-
tric field is the superposition of two fields, the one given in Equation 30-14 and the other
given by 

SOLVE

E0 cos(kx � vt)kn.

E
S

� B
S

.E
S # B

S
E0cos(kx � vt)kn.E0 sin(kx � vt)jn �

E
S

(x, t) �

B
S

(x, t)

(a) 1. From the arguments of the trigonometric functions we can
see that the direction of propagation is the direction:�x

The wave is traveling in the direction.�x

2. The given electric field can be considered as the superposition
of and Find the
magnetic fields and associated with these electric fields,
respectively. Use the procedure followed in Example 30-3:

B
S

2B
S

1

E
S

2 � E0 cos(kx � vt)kn.E
S

1 � E0 sin(kx � vt)jn
For

where (Equation 30-18),

and

For

where B0 � E0 >c.E
S

2 � E0 cos(kx � vt)kn, B
S

2 � �B0 cos(kx � vt)jn

B0 � E0 >cE
S

1 � E0 sin(kx � vt)jn, B
S

1 � B0 sin(kx � vt)kn

3. The superposition of magnetic fields gives the resultant
magnetic field:

B0 � E0 >cwhere

� B0 sin(kx � vt)kn � B0 cos(kx � vt)jn
B
S

(x, t) � B
S

1 � B
S

2

(b) 1. Let to simplify the notation and calculate E
S # B

S
:u � kx � vt

 0� 0 � E0B0 sinu cosu � E0B0 cosu sinu � 0 �

� E0B0 cosu sinukn # kn � E0B0 cos2u kn # jn

� E0B0 sin2u jn # kn � E0B0 sinu cosu jn # jn

E
S # B

S
� (E0 sinu jn � E0 cosu kn) # (B0 sinu kn � B0 cosu jn)

The direction of propagation is the direction, which is the
direction of �jn.

�y
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2. Calculate E
S

� B
S

:

E0B0in� 0 � E0B0 sin2u in � E0B0 cos2u in � 0 �

� E0B0 cos2u (kn � jn) � E0B0 cosu sinu (kn � kn)

� �E0B0 sinu cosu (jn � jn) � E0B0 sin2u (jn � kn)

E
S

� B
S

� (E0 sinu jn � E0 cosu kn) � (�B0 cosu jn � B0 sinu kn)

CHECK The Part (b), step 1 result verifies that and are perpendicular to one another and
the the Part (b), step 2 result verifies that the direction is the direction of propagation.

TAKING IT FURTHER This type of electromagnetic wave is said to be circularly polarized. At
a fixed value of both and rotate in a circle with angular frequency 

PRACTICE PROBLEM 30-2 Calculate and Note that the fields and are con-
stant in magnitude.

B
S

E
S

B
S # B

S
.E

S # E
S

v.B
S

E
S

x,

�x
B
S

E
S

Direction of
propagation

Electric field

Magnetic field

E

B

F I G U R E  3 0 - 6 The electric and
magnetic field vectors in an electromagnetic
wave. The fields are in phase, perpendicular
to each other, and perpendicular to the
direction of propagation of the wave.

30-4 ELECTROMAGNETIC RADIATION

Figure 30-6 shows the electric and magnetic field vectors of an electromagnetic
wave. The electric and magnetic fields are perpendicular to each other and per-
pendicular to the direction of propagation of the wave. Electromagnetic waves are
thus transverse waves. The electric and magnetic fields are in phase and, at each
point in space and at each instant in time, their magnitudes are related by

30-18

where is the speed of the wave. The direction of propagation of an
electromagnetic wave is the direction of the cross product E

S
� B

S
.

c � 1>1m0P0

E � cB

* Light whose wavelength is between 700 and can only be seen under special circumstances that include the light
intensity being very high.

780 nm

THE ELECTROMAGNETIC SPECTRUM

The various types of electromagnetic waves (for example, radio waves and gamma
rays) differ only in wavelength and frequency, which are related according to the
equation Table 30-1 lists the electromagnetic spectrum and the names usu-
ally associated with the various frequency and wavelength ranges. These ranges
are often not well defined and sometimes overlap. For example, electromagnetic
waves that have wavelengths of approximately are usually called rays,
but if the electromagnetic waves originate from nuclear radioactivity, they are
called gamma rays.

The human eye is sensitive to electromagnetic radiation that has wavelengths
between * which is the range called visible light. The shortest
wavelengths of visible light are those of violet light and the longest wavelengths are
those of red light. Electromagnetic waves that have wavelengths shorter than

but longer than (the longest wavelength in the X-rays region) are
called ultraviolet rays. Infrared waves have wavelengths longer than but780 nm

10 nm400 nm

400 and 780 nm,

X0.1 nm

fl � c.



Electromagnetic Radiation S E C T I O N  3 0 - 4 | 1041

shorter than Heat radiation emitted by objects at temperatures in the range
of room temperature is in the infrared region of the electromagnetic spectrum.
There are no limits on the wavelengths of electromagnetic radiation; that is, all
wavelengths (or frequencies) are theoretically possible.

The differences in wavelengths of the various kinds of electromagnetic waves
have important physical consequences. As you know, the behavior of waves
depends strongly on the relative sizes of the wavelengths and the objects or aper-
tures (openings) the waves encounter. Because the wavelengths of visible light are
in the rather narrow range between they are much smaller than
most obstacles. Thus, the ray approximation (introduced in Section 15-4) is often
valid. The wavelength and frequency are also important in determining the kinds
of interactions between electromagnetic waves and matter. X rays, for example,
have very short wavelengths and high frequencies. They easily penetrate many
materials that are opaque to lower-frequency light waves, which are absorbed by
the materials. Microwaves have wavelengths between Wave-
lengths in that range are used to heat food in microwave ovens. The main mecha-
nism of this heating is that molecules which have large dipole moments align them-
selves in the electric field of the radiation. This electric field flips its direction at
twice the frequency of the radiation, so the polar molecules must rotate rapidly to
keep up with the alternating electric field. These rapidly rotating molecules bump
into surrounding molecules—causing them to heat up. Bluetooth and other wireless
local-area-network protocols use wavelengths in the microwave region.

1 mm and 30 cm.

400 and 780 nm,

100 mm.

Table 30-1 The Electromagnetic Spectrum

Frequency, Hz Wavelength, m

1023 —

1022 —

1021 —

1020 —

1019 —

1018 —

1017 —

1016 —

1015 —

1014 —

1013 —

1012 —

1011 —

1010 —

109 —

108 —

107 —

106 —

105 —

104 —

103 —

102 —

10 —

400 nm

450

500

550

600

650

700

780

v f

1
4

4
2

4
4

4
4

4

6
4

4
7

4
4

4
4

4

-Gamma rays-

X rays

Ultraviolet

VISIBLE

Infrared

Microwaves

Short radio waves

Television and FM radio

AM radio

Long radio waves

1
4

4
2

4
4
3

6
4

4
7

4
4
8

r br br b

{

{

{

{

4
4

4
4

7
4
4
8

4
4

4
4

2
4
4
3

— 10�14

— 10�13

— 10�12

— 10�11

— 10�10

— 10�9 1 nm
— 10�8

— 10�7

— 10�6 1 m m
— 10�5

— 10�4

— 10�3

— 10�2 1 cm
— 10�1

— 1 1 m
— 101

— 102

— 103 1 km
— 104

— 105

— 106

— 107
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PRODUCTION OF ELECTROMAGNETIC WAVES

Electromagnetic waves are produced when free charges accelerate or when elec-
trons bound to atoms and molecules make transitions to lower energy states. Radio
waves, which have frequencies between for and between 
and are produced by electric currents oscillating in radio trans-
mission antennas. The frequency of the emitted waves equals the frequency of os-
cillation of the charges.

A continuous spectrum of X rays is produced by the deceleration of electrons when
they crash into a metal target. The radiation produced is called bremsstrahlung
(which means “braking radiation” in the German language). Accompanying the
broad, continuous bremsstrahlung spectrum is a discrete spectrum of X-ray lines
produced by transitions of core electrons in the atoms of the target material.

Synchrotron radiation arises from the circular orbital motion of charged parti-
cles (usually electrons or positrons) in nuclear accelerators called synchrotrons.
Originally considered a nuisance by accelerator scientists, X rays produced by syn-
chrotrons are now used as a medical diagnostic tool because of the ease of manip-
ulating the beams with reflection and diffraction optics. Synchrotron radiation is
also emitted by charged particles trapped in magnetic fields associated with stars
and galaxies. It is believed that most low-frequency radio waves reaching Earth
from outer space originate as synchrotron radiation.

Heat is radiated by thermally excited molecular motion. The spectrum of heat
radiation is the blackbody radiation spectrum discussed in Section 20-4.

Light waves, which have frequencies of the order of are generally pro-
duced by transitions of bound atomic charges. We discuss sources of light waves
in Chapter 31.

ELECTRIC DIPOLE RADIATION

Figure 30-7 is a schematic drawing of an electric-dipole radio antenna that consists
of two conducting rods connected to an alternating-current generator. At time 
(Figure 30-7a), the ends of the rods are charged, and an electric field parallel to the
rod exists near the rod. A magnetic field also exists, which is not shown, encircling
the rods due to the current in the rods. The fluctuations in these fields move out
away from the rods with the speed of light. After one-fourth period, at 
(Figure 30-7b), the rods are uncharged, and the electric field near the rod is zero. At

(Figure 30-7c), the rods are again charged, but the charges are opposite
those at The electric and magnetic fields at a great distance from the antenna
are quite different from the fields near the antenna. Far from the antenna, the elec-
tric and magnetic fields oscillate in phase with simple harmonic motion, perpen-
dicular to each other and to the direction of propagation of the wave. Figure 30-8
shows the electric and magnetic fields far from an electric dipole antenna.

t � 0.
t � T>2 t � T>4

t � 0

1014 Hz,

108 MHz for FM,
88AM550 and 1600 kHz

+

_
_
_
_
_
_

+
+
+
+
+

E

t = 0

+

_
_
_
_
_
_

+
+
+
+
+

E

t = T1
4

E

t = T1
2

–
–
–
–
–
–

+
+
+
+
+
+

(b) (c)(a)

F I G U R E  3 0 - 7 An electric dipole radio
antenna for radiating electromagnetic waves.
Alternating current is supplied to the antenna
by a generator (not shown). The fluctuations
in the electric field due to the fluctuations in
the charges in the antenna propagate outward
at the speed of light. There is also a fluctuating
magnetic field (not shown) perpendicular to
the paper due to the current in the antenna.
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+

–

+

–

+

–

+
–

+

–

+

–

+

– +
–

F I G U R E  3 0 - 8 Electric field lines (in red) and
magnetic field lines (in blue) produced by an
oscillating electric dipole. Each magnetic field line
is a circle with the long axis of the dipole as its axis
of revolution. The cross product is directed
away from the dipole at all points.

E
S

� B
S

Electromagnetic waves of radio or television frequencies can be detected by an
electric dipole antenna placed parallel to the electric field of the incoming wave, so
that it induces an alternating current in the antenna (Figure 30-9). These electro-
magnetic waves can also be detected by a loop antenna placed perpendicular to the
magnetic field, so that the changing magnetic flux through the loop induces a cur-
rent in the loop (Figure 30-10). Electromagnetic waves of frequencies in the visible
light range are detected by the eye or by photographic film, both of which are
mainly sensitive to the electric field.

I

I

λ

Wave velocity

B

F I G U R E  3 0 - 1 0 Loop antenna for detecting electromagnetic radiation.
The alternating magnetic flux through the loop due to the magnetic field of
the radiation induces an alternating current in the loop. The electric field
lines (not shown) are perpendicular to the plane of the page.

I

I

λ

Wave velocity

E

F I G U R E  3 0 - 9 An electric dipole antenna for detecting
electromagnetic waves. The alternating electric field of the incoming
wave produces an alternating current in the antenna. The magnetic field
lines (not shown) are perpendicular to the plane of the page.
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The radiation from a dipole antenna, such as
that shown in Figure 30-7, is called electric di-
pole radiation. Many electromagnetic waves
exhibit the characteristics of electric dipole radi-
ation. An important feature of this type of radi-
ation is that the intensity of the electromagnetic
waves radiated by a dipole antenna is zero
along the axis of the antenna and maximum in
the radial direction (away from the axis). If the
dipole is in the direction with its center at the
origin, as in Figure 30-11, the intensity is zero
along the axis and maximum in the plane.
In the direction of a line making an angle with
the axis, the intensity is proportional to sin2u.y

u

xzy

y

Example 30-5 EMF Induced in a Loop Antenna

A loop antenna consisting of a single radius loop of wire is used to detect electro-
magnetic waves for which If the plane of the loop is perpendicular to the
magnetic field, find the rms emf induced in the loop when the frequency of the plane wave
is (a) and (b)

PICTURE The induced emf in the wire is related to the rate of change of the magnetic flux
through the loop by Faraday’s law (Equation 30-5). Using Equation 30-18, we can obtain the
rms value of the magnetic field from the given rms value of the electric field.

SOLVE

60.0 MHz.600 kHz

Erms � 0.150 V>m.
10.0-cm

(a) 1. Faraday’s law relates the emf to the rate of change of the
magnetic flux through the flat stationary surface bounded
by the loop:

E � �
dfm

dt

2. The wavelength of a wave traveling at speed 
is Over the flat surface bounded by the

radius loop is quite uniform.B
S

10-cm
l � c>f � 500 m.

c600-kHz

and

Erms � pr2 a�B
�t
b

rms

fm � BA � pr2B so E � �
dfm

dt
� �pr2

�B
�t

3. Compute from a sinusoidal B:�Brms >�t

�B
�t

� �vB0 cos(kx � vt)

B � B0 sin(kx � vt)

4. Calculate the rms value of The rms value of any
sinusoidal function of time equals and the peak value
divided by equals the rms value:12

1>12,
�B>�t. a�B

�t
b

rms

� vB0[�cos(kx � vt)]rms � vB0

1

22
� vBrms

5. Using (Equation 30-18), relate the rms value of 
to Erms:

�B>�tE � cB

so

Brms �
Erms

c

E � cB

6. Substituting into the step-3 result gives: a�B
�t
b

rms

� vBrms � v
Erms

c
�

2pf

c
Erms

7. Substituting the step-6 result into the step-2 result,
calculate at f � 600 kHz:Erms

5.92 � 10�5 V � 59.2 mV�

� p(0.100 m)2
2p(6.00 � 105 Hz)

3.00 � 108 m>s (0.150 V>m)

Erms � pr2 a�B
�t
b

rms

� pr2
2pf

c
Erms

F I G U R E  3 0 - 1 1 Polar
plot of the intensity of
electromagnetic radiation
from an electric dipole
antenna versus angle. The
intensity is proportional
to the length of the arrow.
The intensity is maximum
perpendicular to the
antenna (at and
minimum along the antenna
at or .u � 180°u � 0

u � 90°)

I(u)
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(b) The induced emf is proportional to the frequency [Part (a),
step 4], so at it will be times greater than at
600 kHz:

10060 MHz
5.92 mV�

 Erms � (100)(5.92 � 10�5 V) � 0.00592 V

CHECK Step 7 of Part (a) shows that increases with increases in frequency, and
area. These results are all expected.

TAKING IT FURTHER For Part (b) the frequency is so is not
as uniform over the surface bounded by the radius loop when as it is when

as in Part (a). However, on the surface when is sufficiently uniform
that the Part (b) result is sufficiently accurate for most purposes.

l � 5.00 mB
S

l � 500 m,
l � 5.00 m10-cm

B
S

l � c>f � 5.00 m.60.0 MHz,

Erms ,Erms

ENERGY AND MOMENTUM IN AN 
ELECTROMAGNETIC WAVE

Like other waves, electromagnetic waves carry energy and momentum. The 
energy carried is described by the intensity, which is the average power per unit
area incident on a surface perpendicular to the direction of propagation. The
momentum per unit time per unit area carried by an electromagnetic wave is
called the radiation pressure.

Intensity Consider an electromagnetic wave traveling toward the right and a
cylindrical region that has a length a cross-sectional area and its central axis
from left to right. The average amount of electromagnetic energy within this
region equals where is the average energy density and is the
volume of the cylindrical region. In the time it takes the electromagnetic wave to
travel the distance all of the electromagnetic energy equal to passes
through the right end of the region. The time for the wave to travel the distance

is so the power (the energy per unit time) passing out the right end of
the region is

and the intensity (the average power per unit area) is

The total energy density in the wave u is the sum of the electric and magnetic
energy densities. The electric energy density (Equation 24-9) and magnetic ener-
gy density (Equation 28-22) are given by

and

At each point in a region where there is an electromagnetic wave in free space,
equals so we can express the magnetic energy density in terms of the elec-

tric field:

where we have used Thus, the electric and magnetic energy densi-
ties are equal. Using we may express the total energy density in several
useful ways:

30-19

ENERGY DENSITY IN AN ELECTROMAGNETIC WAVE

u � ue � um � P0E
2 �
B2

m0
�
EB
m0c

E � cB,
m0P0 � 1>c2.

um �
B2

2m0

�
(E>c)2

2m0

�
E2

2m0c
2 �

1
2

P0E
2

cB,E

um �
B2

2m0

ue �
1
2

P0E
2

um

ue

I � Pav>A � uavc

I

Pav � Uav>¢t � uavLA>(L>c) � uavAc

PavL>c,L
¢t

uavLAL,

V � LAuavuavV
Uav

A,L,
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Electric field

Magnetic field

y

z

q
+

x

Fe = qE

Wave velocity

q +
Fm = qv x B

v

B

(b)(a)

To compute the average energy density, we replace the instantaneous fields 
and by their rms values and where and are the
maximum values of the fields. The intensity is then

30-20

INTENSITY OF AN ELECTROMAGNETIC WAVE

where the vector

30-21

DEFINITION—POYNTING VECTOR

is called the Poynting vector after its discoverer, John Poynting. The average mag-
nitude of is the intensity of the wave, and the direction of is the direction of
propagation of the wave.

Radiation pressure We now show by a simple example that an electromagnetic
wave carries momentum. Consider a plane wave traveling in the direction that
is incident on a stationary charge, as shown in Figure 30-12. Let be in the 
direction and in the direction, and neglect the time dependence of the fields.
The particle experiences a force in the direction and is thus accelerated by
the electric field. At any time the velocity in the direction is

After a short time the charge has acquired kinetic energy equal to

30-22

When the charge is moving in the direction, it experiences a magnetic force

Note that this force is in the direction of propagation of the wave. Using 
we find for the momentum transferred by the wave to the particle in time 

px � �
t1

0

Fx dt � �
t1

0

q2EB

m
t dt �

1
2

q2EB

m
t21

t1:px

dpx � Fx dt,

F
S

m � qvS � B
S

� qvy jn � B kn � qvyB in �
q2EB

m
tin

y

K �
1
2
mv2

y �
1
2

mq2E2t21
m2 �

1
2

q2E2

m
t21

t1 ,

vy � ayt �
qE

m
t

�yt,
�yqE

S
�zB

S
�yE

S
�x

S
S

S
S

S
S

�
E
S

� B
S

m0

I � uavc �
ErmsBrms

m0
�

1
2

E0B0

m0
� ƒ S

S
ƒ av

B0E0Brms � 112B0 ,Erms � 112E0B
E

F I G U R E  3 0 - 1 2 An electromagnetic wave incident on a point charge that is initially at rest on the axis. (a) The
electric force accelerates the charge in the direction. (b) When the velocity of the charge is in the direction,
the magnetic force accelerates the charge in the direction of propagation (the direction) of the wave.�xqvS � B

S
�yvS�yqE

S
x
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If we use this becomes

30-23

Comparing Equations 30-22 and 30-23, we see that the momentum acquired by the
charge in the direction of the wave is multiplied by the energy. Although our
simple calculation was not rigorous, the results are correct. The magnitude of the
momentum carried by an electromagnetic wave is multiplied by the energy
carried by the wave:

30-24

MOMENTUM AND ENERGY IN AN ELECTROMAGNETIC WAVE

Because the intensity is the energy per unit area per unit time, the intensity divided
by is the momentum carried by the wave per unit area per unit time. The mo-
mentum carried per unit time is a force. The intensity divided by is thus a force
per unit area, which is a pressure. This pressure is the radiation pressure 

30-25

RADIATION PRESSURE AND INTENSITY

We can relate the radiation pressure to the electric or magnetic fields by using
Equation 30-20 to relate to and and Equation 30-18 to eliminate either or 

30-26

RADIATION PRESSURE IN TERMS OF E AND B

Consider an electromagnetic wave incident normally on some surface. If the
surface absorbs energy from the electromagnetic wave, it also absorbs momen-
tum given by Equation 30-24, and the pressure exerted on the surface equals the
radiation pressure. If the wave is reflected, the momentum transferred is be-
cause the wave now carries momentum in the opposite direction. The pressure
exerted on the surface by the wave is then twice that given by Equation 30-26.

2p
p

U

Pr �
I
c

�
E0B0

2m0c
�
ErmsBrms

m0c
�
E2

0

2m0c
2 �

B2
0

2m0

B:EB,EI

Pr �
I
c

Pr:
c

c

p �
U
c

1>c1>c
px �

1
c
a1

2

q2E2

m
t21b

B � E>c,

F

Lens

Target

Laser beam

(a) 1. Divide the power output by the area to
find the intensity:

I �
50 W
4pr2

2. Substitute r � 3.0 m:   0.44 W>m2I �
50 W

4p(3.0 m)2 �

Example 30-6 Radiation Pressure from a Lightbulb

A lightbulb emits spherical electromagnetic waves uniformly in all directions. Find (a) the
intensity, (b) the radiation pressure, and (c) the electric and magnetic field magnitudes at a dis-
tance of from the lightbulb, assuming that of electromagnetic radiation is emitted.

PICTURE At a distance from the lightbulb, the energy is spread uniformly over the sur-
face of a sphere of radius —an area equal to The intensity is the power divided by the
area. The radiation pressure can then be found from 

SOLVE

Pr � I>c.4pr2.r
r

50 W3.0 m

3.0 m

”Laser tweezers” make use of the momentum
carried by electromagnetic waves to
manipulate targets on a molecular scale. The
two rays shown are refracted as they pass
through a transparent target, such as a
biological cell or, on an even smaller scale, a
tiny transparent bead attached to a large
molecule within a cell. At each refraction, the
rays are bent downward, which increases
the downward component of momentum of
the rays. The target thus exerts a downward
force on the laser beams, and the laser beams
exert an upward force on the target, which
pulls the target toward the laser source. The
force is typically of the order of piconewtons.
Laser tweezers have been used to accomplish
such astonishing feats as stretching out coiled
molecules of DNA.
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Example 30-7 A Laser Rocket

(b) The radiation pressure is the intensity
divided by the speed of light:

 1.5 � 10�9 PaPr �
I
c

�
0.44 W>m2

3.00 � 108 m>s �

(c) 1. is related to by Equation 30-26:PrB0

� 6.1 � 10�8 T

� [2 (4p � 10�7 T # m>A)(1.5 � 10�9 Pa)]1>2B0 � 22m0Pr

2. The maximum value of the electric field 
is multiplied by B0:c

E0

� 18 V>mE0 � cB0 � (3.00 � 108 m>s)(6.1 � 10�8 T)

3. The electric and magnetic field magnitudes
at that point are of the form:

1. The time taken is related to the distance and the acceleration.
We assume that you are initially at rest relative to the spaceship:

x �
1
2
at2 t � A2x

a

2. Your acceleration is the force divided by your mass, and the
force is the power divided by c:

a �
F
m

�
P>c
m

�
P
mc

3. Use to calculate the time t:x � 1
2 at2

 9.4 h� 3.38 � 104 s �

� A2(20 m)(95 kg)(3.00 � 108 m>s)

1000 W

t � A2x
a

� A2xmc
P

CHECK You expect the time to be long because you know from experience that the pressure
from a lightbulb is very small. The step-3 result is as expected.

TAKING IT FURTHER Note that the acceleration is extremely small—only about 
Your speed when you reach the spaceship would be which is practically
imperceptible.

PRACTICE PROBLEM 30-3 How long would it take you to reach the spaceship if you took
off one of your shoelaces and threw it as fast as you could in the direction opposite the ship?
(To answer this, you must first estimate the mass of the shoelace and the maximum speed
that you can throw the shoelace.) Compare this time with the step-3 result.

v � at � 1.2 mm>s,
10�9 g.

CHECK Our Part (b) result is a very small pressure. (It is fourteen orders of magnitude less
than atmospheric pressure.) We do not perceive any pressure on us by the light from a light-
bulb, so a very small pressure is as expected.

TAKING IT FURTHER Only about 2 percent of the power consumed by incandescent bulbs
is transformed into visible light.

and B0 � 6.1 � 10�8 T

with E0 � 18 V>mE � E0 sinvt and B � B0 sinvt

Context-Rich

You are stranded in space a distance of from your spaceship. You carry a laser.
If your total mass, including your space suit and laser, is how long will it take you to
reach the spaceship if you point the laser beam directly away from the ship?

PICTURE The laser emits light, which carries with it momentum. By momentum conserva-
tion, you are given an equal and opposite momentum toward the spaceship. The momen-
tum carried by light is where is the energy of the light. If the power of the laser
is then the rate of change of momentum produced by the laser is

This force is the force exerted on you, which is constant.

SOLVE

dp>dt � (dU>dt)>c � P>c.P � dU>dt,
Up � U>c,

95 kg,
1.0-kW20 m
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Wireless: Sharing the Spectrum

One day in March 1998,* the remote heart monitors at Baylor University
Medical Center and Dallas Methodist Hospital stopped working. WFFA, a
Dallas television station, was testing its new digital broadcast system on its
licensed frequency. The heart monitors, longtime unlicensed low-power
users of the same frequency, were overwhelmed by the test. No patients
were harmed, and the station stopped further testing until the hospitals
could replace their monitors with ones that used different frequencies.†

In 2000, the Wireless Medical Telemetry Service established a set of licensed
frequencies for medical monitoring devices.‡

When Guglielmo Marconi transmitted signals on his wireless telegraph
in 1896, he used a spark-gap transmitter.# The sparks produced electromag-
netic radiation at frequencies over a range of 5 or more orders of magnitude
(from a few kilohertz up to When more than one wireless telegraph
was transmitting in the same area, they had to take turns and follow rules.
One reckless operator could wreck communications for an entire area.°

In 1903, the International Telegraph Union began to study the problems
of radiotelegraphy. In 1906, the first Radio Telegraph Convention, signed in
Berlin, assigned the frequency of to maritime distress signals.§ Ships were directed to use less than of power, un-
less they were over from the nearest shore station.¶ (These communications were still broadband, but the transmitted
power spectrum peaked at The first practical alternative to spark-gap transmitters was a continuous wave circuit in-
vented by Edwin Armstrong in 1912.** Also in 1912, the International Radiotelegraph Convention issued the first table of fre-
quency allocations,†† but spark-gap transmitters were still plentiful and could overwhelm local and regional communications.‡‡

Radio transmissions became concentrated around narrowing frequency bands. In 1927, national bodies were established to
coordinate use of the electromagnetic spectrum.## By 1934, the international body was renamed the International Telecom-
munication Union.°° The Federal Communications Commission regulates the radio frequency portions of the spectrum in the
United States.§§ Since then, the ITU and the FCC have cooperated in international frequency allocation with other regulatory bod-
ies around the world.

As new services have been added, changes and accommodations have been made to allocations of the frequency spectrum.
These changes are not always made globally. For instance, in the United States, cell phone service frequencies are at

In many other countries, cell phone bands are at ¶¶

No matter what the power, devices that have the potential of emitting electromagnetic interference have to be certified that
they do not disturb the spectrum beyond their frequency allocation outside of a small radius.*** Many applications share fre-
quency bands that do not have exclusive licenses granted to any one application. For instance, microwave ovens, wireless
computer devices, and some cordless telephones all operate at frequencies close to ††† Low-power applications that
are not the licensed users of a frequency sometimes need frequencies of their own, as demonstrated by the new medical
telemetry bands. Occasionally, wireless receivers in an area pick up broadband interference caused by the intermittent spark-
ing of a short circuit. In essence, the malfunctioning electrical equipment has become an unlicensed spark-gap transmitter.

* “Wireless Medical Telemetry—Electromagnetic Interference.” United States Food and Drug Administration Center for Devices and Radiological Health, Sept. 1, 2002. http://www.fda.gov/
cdrh/emc/wmt-emi.html#1 As of Nov. 2006.

† McClain, J. P., “Time to Upgrade.” American Society for Healthcare Engineering. www.ashe.org/ashe/wmts/pdfs/timetoupgrade.pdf As of Nov. 2006.
‡ Federal Communications Commission. FCC-00211. Washington, DC: United States Federal Communications Commission, Jun. 12, 2000. http://www.fcc.gov/Bureaus/Engineering_

Technology/Orders/2000/fcc00211.doc As of Nov. 2006.
# Thomson, E., “The Field of Experimental Research.” Science, Aug. 25, 1899, Vol. X, No. 243, pp. 236–245.
° Pitts, A., “Backgrounder: What Is Amateur Radio?” American Radio Relay League, Oct. 4, 2004. http://www.arrl.org/pio/bwhatis.html As of Nov. 2006.
§ “ARRL Granted Experimental License for Research by Radio Amateurs.” American Radio Relay League, Sep. 15, 2006. http://www.arrl.org/news/stories/2006/09/15/104/

As of Nov. 2006.
¶ “Service Regulations Affixed to the International Wireless Convention.” United States Early Radio History. http://earlyradiohistory.us/1906conv.htm#SR As of Nov. 2006.
** Lewis, T., Empire of the Air. New York: HarperCollins, 1991, pp. 70–74.
†† “History.” International Telecommunication Union, Nov. 15, 2004. http://www.itu.int/aboutitu/overview/history.html As of Nov. 2006.
‡‡ Lapin, G. D., “Lessons Learned about Frequency Sharing in the Amateur Radio Service.” American Radio Relay League. http://www.arrl.org/tis/info/HTML/plc/files/ Lessons%20

Learned%20About%20Frequency%20Sharing%20in%20the%20Amateur%20Radio%20Service%20Rev%202.ppt As of Nov. 2006.
## Radio Act of 1927. United States Public Law 632. Feb. 23, 1927. Available at http://showcase.netins.net/web/akline/ pdf/1927act.pdf As of Nov. 2006.
°° “History.” International Telecommunication Union, Nov. 15, 2004. http://www.itu.int/aboutitu/overview/history.html As of Nov. 2006.
§§ “About the FCC.” United States Federal Communications Commission, Sept. 26, 2006. http://www.fcc.gov/aboutus.html As of Nov. 2006.
¶¶ Luna, N. “Globetrotting with Cell Phones Tricky but Not Impossible.” The Orange County Register, May 4, 2005.
*** “Rule 47 CFR Part 15.” United States Federal Register, Washington, DC: Aug. 14, 2006. http://www.fcc.gov/oet/info/rules/part15/part15-8-14-06.pdf As of Nov. 2006.
††† Lowe, M., “Muting Microwaves.” Appliance Design, Jan. 2006, Vol. 54, No. 1, pp. 74–75.  

500 kHz

2.4 GHz.

900 and 1800 MHz.850 and 1900 MHz.

500 kHz.)
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Summary

1. Maxwell’s equations summarize the fundamental laws of physics that govern electricity
and magnetism.

2. Electromagnetic waves include light, radio waves, television waves, X rays, gamma rays,
microwaves, and others.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Maxwell’s Displacement Current Ampère’s law can be generalized to apply to currents that are not steady (and not continu-
ous) if the current is replaced by where is Maxwell’s displacement current:

30-3

Generalized form of Ampère’s law 30-4

2. Maxwell’s Equations The laws of electricity and magnetism are summarized by Maxwell’s equations.

Gauss’s law 30-6a

Gauss’s law for magnetism (isolated 30-6b
magnetic poles do not exist)

Faraday’s law (form that 30-6c
does not include motional emf)

Ampère’s law modified 30-6d

3. The Wave Equation for Maxwell’s equations imply that the electric and magnetic field vectors 
Electromagnetic Waves in free space obey a wave equation.

30-8a

30-8b

4. Electromagnetic Waves In an electromagnetic wave, the electric and magnetic field vectors are perpendicular to each
other and to the direction of propagation. Their magnitudes are related by

30-18

The vector product is in the direction of propagation.

Wave speed 30-1

Electromagnetic spectrum The various types of electromagnetic waves—light, radio waves, X rays, gamma rays, mi-
crowaves, and others—differ only in wavelength and frequency. The human eye is sensitive
to the range from about to 

Electric dipole radiation Electromagnetic waves are produced when free electric charges accelerate. Oscillating
charges in an electric dipole antenna radiate electromagnetic waves with an intensity that is
greatest in directions perpendicular to the antenna. There is no radiated intensity along the
long axis of the antenna. Perpendicular to the antenna and far away from it, the electric field
of the electromagnetic wave is parallel to the antenna.

Energy density in an electromagnetic wave 30-19u � ue � um � P0E
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Intensity of an electromagnetic wave 30-20

Poynting vector 30-21

Momentum and energy in an electromagnetic wave 30-24

Radiation pressure and intensity 30-25Pr �
I
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U
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TOPIC RELEVANT EQUATIONS AND REMARKS

Problems

Answers to Practice Problems

30-2 and 

30-3 About for a shoelace thrown at 
Light beam propulsion takes almost twice as long as
shoelace propulsion.

10 m>s.10-g5 h

B
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S
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0E
S # E
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In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • True or false:
(a) The displacement current has different units than the conduc-

tion current.
(b) Displacement current only exists if the electric field in the re-

gion is changing with time.
(c) In an oscillating circuit, no displacement current exists be-

tween the capacitor plates when the capacitor is momentarily
fully charged.

(d) In an oscillating circuit, no displacement current exists
between the capacitor plates when the capacitor is momentarily
uncharged.

2 • Using SI units, show that has units of current.

3 • True or false:
(a) Maxwell’s equations apply only to electric and magnetic fields

that are constant over time.
(b) The electromagnetic wave equation can be derived from Maxwell’s

equations.
(c) Electromagnetic waves are transverse waves.
(d) The electric and magnetic fields of an electromagnetic wave in

free space are in phase.

4 • Theorists have speculated about the existence of magnetic
monopoles, and several experimental searches for such monopoles
have occurred. Suppose magnetic monopoles were found and that
the magnetic field at a distance from a monopole of strength is
given by Modify the Gauss’s law for magnetism
equation to be consistent with such a discovery.

B � (m0 >4p)qm >r2. qmr

SSM

P0 dfe >dt

SSM

LC

LC

5 • (a) For each of the following pairs of electromagnetic
waves, which has the higher frequency: (1) visible light or X rays,
(2) green light or red light, (3) infrared waves or red light. (b) For
each of the following pairs of electromagnetic waves, which has the
longer wavelength: (1) visible light or microwaves, (2) green light or
ultraviolet light, (3) gamma rays or ultraviolet light.
6 • The detection of radio waves can be accomplished with
either an electric dipole antenna or a loop antenna. True or false:
(a) The electric dipole antenna works according to the Faraday’s law.
(b) If a linearly polarized radio wave is approaching you head on

such that its electric field oscillates vertically, to best detect this
wave the normal to a loop antenna’s plane should be oriented
so that it points either right or left.

(c) If a linearly polarized radio wave is approaching you such that
its electric field oscillates in a horizontal plane, to best detect
this wave using a dipole antenna the antenna should be ori-
ented vertically.

7 • A transmitter emits electromagnetic waves using an elec-
tric dipole antenna oriented vertically. (a) A receiver to detect the
waves also uses an electric dipole antenna that is one mile from the
transmitting antenna and at the same altitude. How should the
receiver’s electric dipole antenna be oriented for optimum signal
reception? (b) A receiver to detect these waves uses a loop antenna
that is one mile from the transmitting antenna and at the same alti-
tude. How should the loop antenna be oriented for optimum signal
reception?
8 • Show that the expression for the Poynting
vector (Equation 30-21) has units of watts per square meter (the
SI units for electromagnetic wave intensity).

S
S

(E
S

� B
S

)>m0
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9 • If a red light beam, a green light beam, and a violet
light beam, all traveling in empty space, have the same intensity,
which light beam carries more momentum? (a) the red light
beam, (b) the green light beam, (c) the violet light beam, (d) They
all have the same momentum. (e) You cannot determine which
beam carries the most momentum from the data given.
10 • If a red light plane wave, a green light plane wave, and
a violet light plane wave, all traveling in empty space, have the
same intensity, which wave has the largest peak electric field?
(a) the red light wave, (b) the green light wave, (c) the violet light
wave, (d) They all have the same peak electric field. (e) You can-
not determine the largest peak electric field from the data given.

11 • Two sinusoidal plane electromagnetic waves are identi-
cal except that wave A has a peak electric field that is three times the
peak electric field of wave B. How do their intensities compare?
(a) (b) (c) (d) (e) You cannot de-
termine how their intensities compare from the data given.

ESTIMATION AND APPROXIMATION

12 •• ENGINEERING APPLICATION In laser cooling and trapping,
the forces associated with radiation pressure are used to slow down
atoms from thermal speeds of hundreds of meters per second at
room temperature to speeds of a few meters per second or slower.
An isolated atom will absorb only radiation of specific frequencies.
If the frequency of the laser-beam radiation is tuned so that the tar-
get atoms will absorb the radiation, then the radiation is absorbed
during a process called resonant absorption. The cross-sectional area
of the atom for resonant absorption is approximately equal to 
where is the wavelength of the laser light. (a) Estimate the acceler-
ation of a rubidium atom (molar mass in a laser beam
whose wavelength is and intensity is (b) About
how long would it take such a light beam to slow a rubidium atom
in a gas at room temperature to near-zero speed?
13 •• ENGINEERING APPLICATION One of the first successful
satellites launched by the United States in the 1950s was essentially a
large spherical (aluminized) Mylar balloon from which radio signals
were reflected. After several orbits around Earth, scientists noticed
that the orbit itself was changing with time. They eventually deter-
mined that radiation pressure from sunlight was causing the orbit
of this object to change—a phenomenon not taken into account in
planning the mission. Estimate the ratio of the radiation-pressure
force by the sunlight on the satellite to the gravitational force by
Earth’s gravity on the satellite.
14 •• Some science fiction writers have described solar sails that
could propel interstellar spaceships. Imagine a giant sail on a space-
craft subjected to radiation pressure from our Sun. (a) Explain why this
arrangement works better if the sail is highly reflective rather than
highly absorptive. (b) If the sail is assumed highly reflective, show that
the force exerted by the sunlight on the spacecraft’s sail is given by

where is the power output of the Sun 
is the surface area of the sail, is the distance from the Sun, and is the
speed of light. (Assume the area of the sail is much larger than the area
of the spacecraft so that all the force is due to radiation pressure on the
sail only.) (c) Using a reasonable value for compare the force on the
spacecraft due to the radiation pressure and the force on the spacecraft
due to the gravitational force of the Sun on the spacecraft. Does the re-
sult imply that such a system will work? Explain your answer.

MAXWELL’S DISPLACEMENT
CURRENT

15 • A parallel-plate capacitor has circular plates and no di-
electric between the plates. Each plate has a radius equal to 
and the plates are separated by Charge is flowing onto the1.1 mm.

2.3 cm

A,

cr
(3.8 � 1026 W), APSPSA>(4pr2c)

SSM

(300 K)

10 W>m2.780 nm
85 g>mol)

l

l2,

IA � 9IB ,IA � 3IB ,IA � 1
9 IB ,IA � 1

3 IB ,

SSM

upper plate (and off of the lower plate) at a rate of (a) Find
the rate of change of the electric field strength in the region between
the plates. (b) Compute the displacement current in the region be-
tween the plates and show that it equals 
16 • In a region of space, the electric field varies with time as

where Find the peak displace-
ment current through a surface that is perpendicular to the electric
field and has an area equal to 
17 •• For Problem 15, show that the magnetic field strength be-
tween the plates a distance from the axis through the centers of
both plates is given by 
18 •• The capacitors referred to in this problem have only
empty space between the plates. (a) Show that a parallel-plate ca-
pacitor has a displacement current in the region between its plates
that is given by where is the capacitance and is
the potential difference between the plates. (b) A parallel-
plate capacitor is connected to an ideal ac generator so the potential
difference between the plates is given by where

and Find the displacement current in
the region between the plates as a function of time.
19 •• There is a current of in a resistor that is connected in
series with a parallel-plate capacitor. The plates of the capacitor have
an area of and no dielectric exists between the plates. (a) What
is the displacement current between the plates? (b) What is the
rate of change of the electric field strength between the plates? (c) Find
the value of the line integral where the integration path is
a circle that lies in a plane that is parallel with the plates
and is completely within the region between them.
20 ••• Demonstrate the
validity of the generalized
form of Ampère’s law (Equa-
tion 30-4) by showing that it
gives the same result as the
Biot–Savart law (Equation 
27-3) in a specified situation.
Figure 30-13 shows two mo-
mentarily equal but opposite
point charges and 
on the axis at and

respectively. At the
same instant there is a current

in the wire connecting them,
as shown. Point is on the axis at (a) Use the Biot–Savart
law to show that the magnitude of the magnetic field at point is

given by (b) Now consider a circular strip of

radius and width in the plane that has its center at the
origin. Show that the flux of the electric field through this strip is 

given by (c) Use the result from Part (b)

to show that the total electric flux through a circular surface of 

radius is given by (d) Find the displa-

cement current through and show that 

(e) Finally, show that the generalized form of Ampère’s law (Equation
30-4) gives the same result for the magnetic field as found in Part (a).

MAXWELL’S EQUATIONS AND THE
ELECTROMAGNETIC SPECTRUM

21 • The color of the dominant light from the Sun is in the
yellow-green region of the visible spectrum. Estimate the wave-
length and frequency of the dominant light emitted by our Sun.
Hint: See Table 30-1.
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22 • (a) What is the frequency of microwave radiation that has
a wavelength? (b) Using Table 30-1, estimate the ratio
of the shortest wavelength of green light to the shortest wavelength
of red light.

23 • (a) What is the frequency of an X ray that has a
wavelength? (b) The human eye is sensitive to light

that has a wavelength equal to What are the color and fre-
quency of this light? Comment on how this answer compares to
your answer for Problem 21.

ELECTRIC DIPOLE RADIATION

Note: All of the problems in this section are based on the
following information. Refer to Figure 30-11. It can be shown
that the intensity of radiation from a radiating electric dipole
at a field point far from the antenna is proportional to

where is the angle between the electric dipole
moment vector and the position vector of the field point
relative to the center of the antenna. The pattern of radiation
from this type of antenna is independent of the azimuthal
angle, that is, you can rotate the pattern about the antenna
axis and it does not change shape.

24 •• Suppose a radiating electric dipole lies along the axis.
Let be the intensity of the radiation at a distance of and at
angle of Find the intensity (in terms of at (a) a distance of

and an angle of (b) a distance of and an angle of 
and (c) a distance of and an angle of 

25 •• (a) For the situation described in Problem 24, at what
angle is the intensity at a distance of equal to (b) At what
distance is the intensity equal to when 

26 •• ENGINEERING APPLICATION, CONTEXT-RICH You and
your engineering crew are in charge of setting up a wireless tele-
phone network for a village in a mountainous region. The trans-
mitting antenna of one station is an electric dipole antenna located
atop a mountain above sea level. There is a nearby moun-
tain that is from the antenna and is also above sea
level. At that location, one member of the crew measures the inten-
sity of the signal to be What should be the in-
tensity of the signal at the village that is located at sea level and

from the transmitter?

27 ••• ENGINEERING APPLICATION A radio station that uses a
vertical electric dipole antenna broadcasts at a frequency of

and has a total power output of Calculate the
intensity of the signal at a horizontal distance of from
the station.

28 ••• ENGINEERING APPLICATION Regulations require that
licensed radio stations have limits on their broadcast power so
as to avoid interference with signals from distant stations. You
are in charge of checking compliance with the law. At a distance
of from a radio station that broadcasts from a single
vertical electric dipole antenna at a frequency of the
intensity of the electromagnetic wave is 
What is the total power radiated by the station?

29 ••• ENGINEERING APPLICATION A small private plane ap-
proaching an airport is flying at an altitude of above sea level.
As a flight controller at the airport, you know your system uses a ver-
tical electric dipole antenna to transmit at What is
the intensity of the signal at the plane’s receiving antenna when the
plane is from the airport? Assume the airport is at sea level.4.00 km
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ENERGY AND MOMENTUM IN AN
ELECTROMAGNETIC WAVE

30 • An electromagnetic wave has an intensity of Find
its (a) rms electric field strength, and (b) rms magnetic field strength.

31 • The amplitude of an electromagnetic wave’s electric
field is Find the wave’s (a) rms electric field strength,
(b) rms magnetic field strength, (c) intensity, and (d) radiation
pressure 
32 • The rms value of an electromagnetic wave’s electric
field strength is Find the wave’s (a) rms magnetic field
strength, (b) average energy density, and (c) intensity.

33 •• (a) An electromagnetic wave that has an intensity equal
to is normal to a black by rectangular card
that absorbs 100 percent of the wave. Find the force exerted on the
card by the radiation. (b) Find the force exerted by the same wave if
the card reflects 100 percent of the wave.
34 •• Find the force exerted by the electromagnetic wave on
the card in Part (b) of Problem 33 if both the incident and the re-
flected waves are at angles of to the normal.
35 • (a) For a given distance from a radiating electric dipole,
at what angle (expressed as and measured from the dipole axis) is
the intensity equal to 50 percent of the maximum intensity? (b) At
what angle is the intensity equal to 1 percent of the maximum
intensity?
36 •• A laser pulse has an energy of and a beam radius of

The pulse duration is and the energy density is uni-
formly distributed within the pulse. (a) What is the spatial length of
the pulse? (b) What is the energy density within the pulse? (c) Find
the rms values of the electric and magnetic fields in the pulse.
37 •• An electromagnetic plane wave has an electric field that is
parallel to the axis, and has a Poynting vector given by 

where is in meters, 
and is in seconds. (a) What is the direction of

propagation of the wave? (b) Find the wavelength and frequency of
the wave. (c) Find the electric and magnetic fields of the wave as func-
tions of and 
38 •• A parallel-plate capacitor is being charged. The capacitor
consists of a pair of identical circular parallel plates that each have a
radius and a separation distance (a) Show that the displacement
current in the capacitor gap has the same value as the conduction
current in the capacitor leads. (b) What is the direction of the
Poynting vector in the region between the capacitor plates? (c) Find
an expression for the Poynting vector in this region and show that its
flux into the region between the plates is equal to the rate of change
of the energy stored in the capacitor.

39 •• A pulsed laser fires a pulse that has a
duration at a small object that has a mass equal to
and is suspended by a fine fiber that is long.

If the radiation is completely absorbed by the object, what is
the maximum angle of deflection of this pendulum? (Think of
the system as a ballistic pendulum and assume the small object
was hanging vertically before the radiation hit it.)
40 •• The mirrors used in a particular type of laser are
99.99% reflecting. (a) If the laser has an average output power of

what is the average power of the radiation incident on one
of the mirrors? (b) What is the force due to radiation pressure on
one of the mirrors?

41 •• (a) Estimate the force on Earth due to the pressure of the
radiation on Earth by the Sun, and compare this force to the gravi-
tational force of the Sun on Earth. (At Earth’s orbit, the intensity of
sunlight is (b) Repeat Part (a) for Mars which is at an
average distance of from the Sun and has a radius of

(c) Which planet has the larger ratio of radiation
pressure to gravitational attraction? SSM
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THE WAVE EQUATION FOR
ELECTROMAGNETIC WAVES

42 • Show by direct substitution that Equation 30-8a is satis-
fied by the wave function 
where 

43 • Use the values of and in SI units to compute
and show that it is equal to 

44 •• (a) Use Maxwell’s equations to show for a plane wave, in

which and are independent of and that and

(b) Show that and also satisfy the wave equation.

45 •• Show that any function of the form or
satisfies the wave equation (Equation 30-7).

GENERAL PROBLEMS

46 • An electromagnetic wave has a frequency of 
and is traveling in a vacuum. The magnetic field is given by

(a) Find the wavelength
and the direction of propagation of this wave. (b) Find the electric
field vector (c) Determine the Poynting vector, and use it to
find the intensity of the wave.

47 •• ENGINEERING APPLICATION A circular loop of wire
can be used to detect electromagnetic waves. Suppose the signal
strength from a FM radio station distant is

and suppose the signal is vertically polarized. What
is the maximum rms voltage induced in your antenna, assuming
your antenna is a loop?

48 •• ENGINEERING APPLICATION The electric field
strength from a radio station some distance from the electric
dipole transmitting antenna is given by 

(a) What peak voltage is picked up on
a wire oriented parallel with the electric field di-
rection? (b) What is the maximum voltage that can be induced
by this electromagnetic wave in a conducting loop of radius

and what orientation of the loop does this require?

49 ••• A parallel-plate capacitor has circular plates of radius that
are separated by a distance In the gap between the two plates is a
thin straight wire of resistance that connects the centers of the two
plates. A time-varying voltage given by is applied across the
plates. (a) What is the current drawn by the capacitor? (b) What is the
magnetic field as a function of the radial distance from the centerline
within the capacitor plates? (c) What is the phase angle between the
current drawn by the capacitor and the applied voltage?

50 •• A beam of electromagnetic radiation is normal to
a surface that reflects 50 percent of the radiation. What is the force
exerted by the radiation on the surface?

51 •• The electric fields of two harmonic electromagnetic
waves of angular frequency and are given by

and by For
the resultant of these two waves, find (a) the instantaneous
Poynting vector and (b) the time-averaged Poynting vector.
(c) Repeat Parts (a) and (b) if the direction of propagation of the sec-
ond wave is reversed so that 

52 •• Show that (Equation 30-10) follows
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by integrating along a suitable curve and over a suitable surface 
in a manner that parallels the derivation of Equation 30-9.

53 •• For your backpacking excursions, you have purchased a
radio capable of detecting a signal as weak as 
This radio has a coil antenna that has a radius of 
wound on an iron core that increases the magnetic field by a factor
of 200. The broadcast frequency of the radio station is 
(a) What is the peak magnetic field strength of an electromagnetic
wave of this minimum intensity? (b) What is the peak emf that it is
capable of inducing in the antenna? (c) What would be the peak emf
induced in a straight metal wire oriented parallel to the
direction of the electric field?

54 •• The intensity of the sunlight striking Earth’s upper at-
mosphere is (a) Find the rms values of the magnetic
and electric fields of this light. (b) Find the average power output of
the Sun. (c) Find the intensity and the radiation pressure at the sur-
face of the Sun.

55 ••• A conductor in the shape of a long solid cylinder that
has a length a radius and a resistivity carries a steady cur-
rent that is uniformly distributed over its cross section. (a) Use
Ohm’s law to relate the electric field in the conductor to 
and (b) Find the magnetic field just outside the con-
ductor. (c) Use the results from Part (a) and Part (b) to com-
pute the Poynting vector at (the edge of
the conductor). In what direction is (d) Find the flux 
through the surface of the cylinder, and use the flux to show
that the rate of energy flow into the conductor equals 
where is the resistance of the cylinder.

56 ••• A long solenoid that has turns per unit length car-
ries a current that increases linearly with time. The solenoid has
radius length and the current in the windings is given by

(a) Find the induced electric field at a distance from
the central axis of the solenoid. (b) Find the magnitude and di-
rection of the Poynting vector at (just inside the sole-
noid windings). (c) Calculate the flux into the region
inside the solenoid, and show that the flux equals the rate of
increase of the magnetic energy inside the solenoid.

57 ••• Small particles are blown out of the solar system by the
radiation pressure of sunlight. Assume that each particle is spheri-
cal, has a radius has a density of and absorbs all the
radiation in a cross-sectional area of Assume the particles are
located at some distance from the Sun, which has a total power
output of (a) What is the critical value for the radius

of the particle for which the radiation force of repulsion just bal-
ances the gravitational force of attraction to the Sun? (b) Do parti-
cles that have radii larger than the critical value get ejected from the
solar system, or is it only particles that have radii smaller than the
critical value that get ejected? Explain your answer.

58 ••• When an electromagnetic wave at normal incidence on a
perfectly conducting surface is reflected, the electric field of the re-
flected wave at the reflecting surface is equal and opposite to the
electric field of the incident wave at the reflecting surface.
(a) Explain why this assertion is valid. (b) Show that the superposi-
tion of incident and reflected waves results in a standing wave.
(c) Are the magnetic fields of the incident waves and reflected
waves at the reflecting surface equal and opposite as well? Explain
your answer.

59 ••• An intense point source of light radiates 
isotropically (uniformly in all directions). The source is located

above an infinite, perfectly reflecting plane. Determine the
force that the radiation pressure exerts on the plane. SSM

1.00 m

1.00 MW

r
3.83 � 1026 W.

d
pr2.

1.00 g>cm3,r,

ASn dA
r � RS

S

r 	 RI � at.
IL,R,

n

SSMR
I2R,

ASn dAS
S

?
r � aS

S
� (E

S
� B

S
)>m0

B
S

a.
I, r,E

I
ra,L,

1.37 kW>m2.

2.00-m-long

1400 kHz.

1.00 cm2000-turn
1.00 � 10�14 W>m2.

SC



1055

How large must the angle of

incidence of the light on the wall of

the tube be so that no light

escapes? (See Example 31-4.)

?

* Wavelengths as short as 380 nm and as long as 780 nm can be seen by some individuals.

Properties of Light

31-1 The Speed of Light

31-2 The Propagation of Light

31-3 Reflection and Refraction

31-4 Polarization

31-5 Derivation of the Laws of Reflection and Refraction

31-6 Wave–Particle Duality

31-7 Light Spectra

31-8 Sources of Light

T
he human eye is sensitive to electromagnetic radiation with wavelengths
from approximately to * The shortest wavelengths in the vi-
sible spectrum correspond to violet light and the longest to red light. The
perceived colors of light are the result of the physiological and psychological
responses of the eyes and brain to the different frequencies of visible light.
Although the correspondence between perceived color and frequency is

quite good, there are many interesting deviations. For example, a mixture of red
light and green light is perceived by the eyes and brain as yellow—even in the
absence of light in the yellow region of the spectrum.

700 nm.400 nm

31

*

P A R T  V LIGHT

C H A P T E R

LIGHT IS TRANSMITTED BY TOTAL
INTERNAL REFLECTION THROUGH TINY
GLASS FIBERS. (© James L. Amos/Corbis.)
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In this chapter, we study how light is produced; how its speed is measured;
and how light is scattered, reflected, refracted, and polarized.

31-1 THE SPEED OF LIGHT

Prior to the seventeenth century the speed of visible light was thought by many peo-
ple to be infinite, and an effort to measure the speed of visible light was made by
Galileo. He and a partner stood on hilltops about three kilometers apart, each with a
lantern and a shutter to cover it. Galileo proposed to measure the time it took for vis-
ible light to travel back and forth between the experimenters. First, one would un-
cover his lantern, and when the other saw the light he would uncover his lantern. The
time between the first partner’s uncovering his lantern and his seeing the light from
the other lantern would be the time it took for light to travel back and forth between
the experimenters. Though this method is sound in principle, the speed of light is so
great that the time interval to be measured is much smaller than variations in human
response time, so Galileo was unable to obtain a value for the speed of light.

The first indication of the true magnitude of
the speed of light came from astronomical ob-
servations of the period of Io, one of the moons
of Jupiter. This period is determined by measur-
ing the time between eclipses of Io. An eclipse
occurs when Io enters the region behind Jupiter
where no direct sunlight reaches. The eclipse
period is about but measurements made
when Earth is moving away from Jupiter along
path in Figure 31-1 give a greater time for
this period than do measurements made when
Earth is moving toward Jupiter along path in the figure. Because these mea-
surements differ from the average value by only about the discrepancies were
difficult to measure accurately. In 1675, the astronomer Ole Römer attributed these
discrepancies to the fact that the speed of light is finite, and that during the be-
tween eclipses of Jupiter’s moon, the distance between Earth and Jupiter changes,
making the path for the light longer or shorter. Römer devised the following method
for measuring the cumulative effect of these discrepancies. Jupiter is moving much
more slowly than Earth, so we can neglect its motion. When Earth is at point near-
est to Jupiter, the distance between Earth and Jupiter is changing negligibly. The pe-
riod of Io’s eclipse is measured, providing the time between the beginnings of suc-
cessive eclipses. Based on this measurement, the number of eclipses during 6 months
is computed, and the time when an eclipse should begin a half-year later when Earth
is at point is predicted. When Earth is actually at point the observed beginning
of the eclipse is about later than predicted. This is the time it takes light to
travel a distance equal to the diameter of Earth’s orbit. This calculation neglects the
distance traveled by Jupiter toward Earth. However, because the orbital speed of
Jupiter is so much slower than that of Earth, the distance Jupiter moves toward (or
away from) Earth during the 6 months is much less than the diameter of Earth’s orbit.

16.6 min
C,C

A,

42.5 h

15 s,
CDA

ABC

42.5 h,

PRACTICE PROBLEM 31-1

Calculate (a) the distance traveled by Earth between successive eclipses of Io and (b) the
speed of light, given that the time between successive eclipses is longer than average
when Earth is moving directly away from Jupiter.

15 s

Earth

Sun

B

C

D

A

Jupiter

Io

F I G U R E  3 1 - 1 Römer’s method of
measuring the speed of light. The time
between eclipses of Jupiter’s moon Io appears
to be greater when Earth is moving along path

than when Earth is moving along path
The difference is due to the time it takes

light to travel the distance traveled by Earth
along the line of sight during one period of Io.

CDA.
ABC

The French physicist Armand Fizeau made the first nonastronomical measure-
ment of the speed of visible light in 1849. On a hill in Paris, Fizeau placed a light
source and a system of lenses arranged so that the light reflected from a semitrans-
parent mirror was focused on a gap in a toothed wheel, as shown in Figure 31-2.



Light source

Lens

Observer

Semitransparent
mirror

B

C
Rotating toothed wheel

A
Reflecting plane mirror

(8.63 km from light source)

Lens

Lens

Lens

F I G U R E  3 1 - 2 Fizeau’s method of measuring the speed of light. Light from the source is reflected by mirror and is transmitted
through a gap in the toothed wheel to mirror A. The speed of light is determined by measuring the angular speed of the wheel that will
permit the reflected light to pass through the next gap in the toothed wheel so that an image of the source is observed.

B
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On a distant hill (about away) Fizeau placed a
mirror to reflect the light back, to be viewed by an ob-
server as shown. The toothed wheel was rotated, and the
speed of rotation was varied. At low speeds of rotation,
no light was visible because the light that passed through
a gap in the rotating wheel and was reflected back by the
mirror was obstructed by the next tooth of the wheel. The
speed of rotation was then increased. The light suddenly
became visible when the rotation speed was such that the
reflected light passed through the next gap in the wheel.
The time for the wheel to rotate through the angle be-
tween successive gaps equals the time for the light to
make the round trip to the distant mirror and back.

Fizeau’s method was improved upon by Jean
Foucault, who replaced the toothed wheel with a rotat-
ing mirror, as shown in Figure 31-3. Light that strikes the
rotating mirror is reflected toward a distant fixed mirror,
where it is reflected back toward the rotating mirror. The
light is then reflected toward the telescope by the rotat-
ing mirror. During the time taken for the light to travel
from the rotating mirror to the distant fixed mirror and
back, the mirror rotates through a small angle . By mea-
suring the angle the time for the light to travel to the
distant mirror and back is determined. In approximately
1850, Foucault measured the speed of light in air and in
water, and he showed that the speed of light in water is
less than the speed of light in air. Using essentially the
same method, the American physicist Albert Michelson
made more precise measurements of the speed of light in
approximately 1880. A half-century later, Michelson
made even more precise measurements of the speed of
light, using an octagonal rotating mirror (Figure 31-4). In
these measurements, the mirror rotates through one-
eighth of a turn during the time it takes for the light to
travel to the fixed mirror and back. The rotation rate is
varied until another face of the mirror is in the right po-
sition for the reflected light to enter the telescope.

u,
u

8.63 km

Light source

Rotating
mirror

Viewing
telescope

Fixed
mirror

F I G U R E  3 1 - 3 Simplified drawing of Foucault’s method of measuring
the speed of light.

θ

Light
source

Rotating
mirror

Viewing
telescope

Fixed
mirror

F I G U R E  3 1 - 4 Simplified drawing of Michelson’s method of measuring
the speed of light at Mt. Wilson in the late 1920s.
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Another method of determining the speed of light involves the measurement of
the electrical constants and to determine from 

The various methods we have discussed for measuring the speed of light are all
in agreement. Today, the speed of light is defined to be exactly

31-1

DEFINITION—SPEED OF LIGHT

and the standard unit of length, the meter, is defined in terms of this speed and the
standard unit of time. The meter is the distance light travels (in a vacuum) in

The value for the speed of light is accurate enough
for nearly all calculations in this book. The speed of radio waves and all other elec-
tromagnetic waves (in a vacuum) is the same as the speed of visible light.

3.00 � 108 m>s1>299792458 s.

c � 299792458 m>s
c � 1>1P0m0 .cm0P0

1. Convert to ft>ns:m>s  1.0 ft>nsc � 3.0 � 108 m>s � a 1.0 ft
0.30 m

b � a 1.0 s
109 ns

b �

Example 31-2 Fizeau’s Determination of 

You are attempting to reproduce Fizeau’s determination of the speed of light. Using a wheel
that has 720 teeth, light is observed when the wheel rotates at If the distance
from the wheel to the distant mirror is what value do these numbers give for the
speed of light?

PICTURE The time taken for the light to travel from the wheel to the mirror and back is
the time for the wheel to rotate one of a revolution, where is the total number
of teeth.

SOLVE

N � 720Nth

8.63 km,
22.3 rev>s.

c

1. The speed is the distance divided by the time.
The distance from the wheel to the mirror is L:

c �
2L
¢t

2. The angular displacement equals the angular
speed multiplied by the time:

¢u � v¢t

3. Solve for the time: ¢t �
¢u
v

4. Substitute for and solve for c:¢t

 2.77 � 108 m>s�

c �
2Lv
¢u

�
2(8.63 � 103 m)(22.3 rev>s)

1
720

 rev

CHECK This result is slightly more than 7 percent too low for the speed of light. However,
because it is only 7 percent off, it is a plausible answer.

PRACTICE PROBLEM 31-2 Space travelers on the moon use electromagnetic waves to
communicate with the space control center on Earth. Use to calculate the
time delay for their signal to reach Earth, which is away.3.84 � 108 m

c � 3.00 � 108 m>s

Example 31-1 The Speed of Light

What is the speed of light in feet per nanosecond?

PICTURE This is an exercise in unit conversions. There are 

SOLVE

�30 cm � 0.30 m in 1.0 ft.

The step-4 result to Example 31-2
is 7 percent too low. What might
account for this discrepancy be-
tween this measured value and
the known value for the speed of
light? An error in counting the
number of teeth, in measuring
the angular speed, or in measur-
ing the distance to the mirror are
possible sources of error, but
they are unlikely sources of error.
There is a more likely source of
error. Can you find it?

CONCEPT CHECK 31-1✓
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Large distances are often given in terms of the distance traveled by light in a given
time. For example, the distance to the Sun is 8.33 light-minutes, written 
A light-year is the distance light travels in one year. We can easily find a conversion
factor between light-years and meters. The number of seconds in one year is

(Note: There are approximately multiplied by seconds per year, which is
the mechanism by which some individuals remember the approximate value of the
conversion.) The number of meters in one light-year is thus

31-2

31-2 THE PROPAGATION OF LIGHT

The propagation of light is governed by the wave equation discussed in Chapter 30.
But long before Maxwell’s theory of electromagnetic waves, the propagation of
light and other waves was described empirically by two interesting and very dif-
ferent principles attributed to the Dutch physicist Christian Huygens (1629–1695)
and the French mathematician Pierre de Fermat (1601–1665).

HUYGENS’S CONSTRUCTION

Figure 31-5 shows a portion of a spherical wavefront emanating from a point source.
The wavefront is the locus of points of constant phase. If the radius of the wavefront
is at time its radius at time where is the speed of the wave.
However, if a part of the wave is blocked by some obstacle or if the wave passes
through a different medium, as in Figure 31-6, the determination of the new wave-
front position at time is much more difficult. The propagation of any wave-
front through space can be described using a geometric construction invented by
Huygens in approximately 1678, which is now known as Huygens’s construction
or Huygens’s principle:

Each point on a primary wavefront serves as the source of spherical
secondary wavelets that advance at the wavespeed for the propagating
medium. The primary wavefront at some later time is the envelope of
these wavelets.

HUYGENS’S CONSTRUCTION

t � ¢t

ct � ¢t is r � c ¢t,t,r

1 c # y � (2.998 � 108 m>s)(3.156 � 107 s) � 9.46 � 1015 m

107p

1 y � 1 y �
365.24 d

1 y
�

24 h
1 d

�
3600 s

1 h
� 3.156 � 107 s

8.33 c # min.

Point
source

Wavefront

F I G U R E  3 1 - 5 Spherical wavefront from a point source.

Point
source

Wavefronts

Glass

F I G U R E  3 1 - 6 Wavefront from a point source before and
after passing through a piece of glass of varied thickness.
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Figure 31-7 shows the application of Huygens’s construction to
the propagation of a plane wave and the propagation of a spherical
wave. Of course, if each point on a wavefront were really a point
source, there would be waves in the backward direction as well.
Huygens ignored those back waves.

Huygens’s construction was later modified by Augustin Fresnel,
so that the new wavefront was calculated from the old wavefront by
superposition of the wavelets considering their relative amplitudes
and phases. Kirchhoff later showed that the Huygens–Fresnel con-
struction was a consequence of the wave equation (Equation 30-8a),
thus putting it on a firm mathematical basis. Kirchhoff showed that
the intensity of each wavelet depends on the angle and is zero at 
(the backward direction).

We will use Huygens’s construction to derive the laws of reflection
and refraction in Section 31-5. In Chapter 33, we apply Huygens’s
construction with Fresnel’s modification to calculate the diffraction
pattern of a single slit. Because the wavelength of light is so small, we
can often use the ray approximation to describe its propagation.

FERMAT’S PRINCIPLE

The propagation of light can also be described by Fermat’s principle:

The path taken by light traveling from one point to another is such that
the time of travel is a minimum. That is, light travels along the path of
least time.*

FERMAT’S PRINCIPLE

The path of least time is not necessarily the path of shortest distance. For example,
suppose you are a lifeguard at one end of a pool and a person needs immediate as-
sistance at the far end of the pool. You could get to the person by swimming the en-
tire length of the pool, but you would get to the person more quickly if you ran along
the perimeter of the pool and entered the water only when you are near the person.

In Section 31-5, we will use Fermat’s principle to derive the laws of reflection
and refraction.

31-3 REFLECTION AND REFRACTION

The speed of light in a transparent medium such as air, water, or glass is less
than the speed in vacuum.† A transparent medium is character-
ized by an index of refraction, which is defined as the ratio of the speed of light
in a vacuum, to the speed in the medium, 

31-3

DEFINITION—INDEX OF REFRACTION

n �
c
v

v:c,
n,

c � 3 � 108 m>s

180°

* A more complete and general statement is that the time of travel is stationary with respect to variations in path; that
is, if is expressed in terms of some parameter the path taken will be such that The important character-
istic of a stationary path is that the time taken along nearby paths will be approximately the same as that along the sta-
tionary path.

† It is not the case that the wave speed is never greater than c. In certain materials it is greater than c. However, this does
not mean that information can travel at speeds greater than c.

dt>dx � 0.x,t

Point
sources

(b)(a)

Secondary
wavelets

Primary wavefront

Secondary
wavelets

Primary wavefront

Point
sources

F I G U R E  3 1 - 7 Huygens’s construction for the
propagation from left to right of a primary wavefront of (a) a
plane wave and (b) an outgoing spherical, or circular, wave.
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For water, whereas for glass ranges from approximately 1.50 to 1.66,
depending on the type of glass. Diamond has a very high index of refraction—
approximately 2.4. The index of refraction of air is approximately 1.0003, so for
most purposes we can assume that the speed of light in air is the same as the speed
of light in vacuum.

When a beam of light strikes a boundary surface separating two different media,
such as an air–glass interface, part of the light energy is reflected and part of the
light energy enters the second medium. If the incident light is not perpendicular to
the surface, then the transmitted beam is not parallel to the incident beam. The
change in direction of the transmitted ray is called refraction. Figure 31-8 shows a
light ray striking a smooth air–glass interface. The angle between the incident ray
and the normal (the line perpendicular to the surface) is called the angle of inci-
dence, and the plane containing the incident ray and the normal is called the plane
of incidence. The reflected ray lies in the plane of incidence and makes an angle 
with the normal that is equal to the angle of incidence as shown in the figure:

31-4

LAW OF REFLECTION

This result is known as the law of reflection. The law of reflection holds for any
type of wave. Figure 31-9 illustrates the law of reflection for rays of light and for
wavefronts of ultrasonic waves.

The ray that enters the glass in Figure 31-8 is called the and the
angle is called the angle of refraction. When a wave crosses a boundary where
the wave speed is reduced, as in the case of light entering glass from air, the angle
of refraction is less than the angle of incidence as shown in
Figure 31-8; that is, the refracted ray is bent toward the normal.
If, on the other hand, the light beam originates in the glass and
is refracted into the air, then the refracted ray is bent away
from the normal.

The angle of refraction depends on the angle of incidence
and on the relative speed of light waves in the two mediums. If

is the wave speed in the incident medium and is the wave
speed in the transmission medium, the angles of incidence and
refraction are related by

31-5a

Equation 31-5a holds for the refraction of any kind of wave
incident on a boundary separating two media.

The indices of refraction of the two media are and Com-
bining Equations 31-3 and 31-5a gives

31-5b

SNELL’S LAW OF REFRACTION

n1 sinu1 � n2 sinu2

n2.n1

1
v1

 sinu1 �
1
v2

 sinu2

v2v1

u2

u1 ,

u2

refracted ray,

uœ
1 � u1

uœ
1

u1

nn � 1.33,

(b)

(a)

θ2

1’θ

1’θ

= θ1

θ1air

normal

glass

F I G U R E  3 1 - 8 The angle of reflection 
equals the angle of incidence The angle of
refraction is less than the angle of incidence
if the light speed in the second medium is less
than that in the incident medium.

u2

u1 .
uœ

1

F I G U R E  3 1 - 9 (a) Light rays reflecting from an air–glass interface
showing equal angles of incidence and reflection. (b) Ultrasonic plane
waves in water reflecting from a steel plate. ((a) Ken Kay/Fundamental
Photographs. (b) Courtesy Battelle-Northwest Laboratories.)

See

Math Tutorial for more

information on 

Trigonometry
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This result was discovered experimentally in 1621 by the Dutch scientist Wille-
brord Snell and is known as Snell’s law or the law of refraction. It was indepen-
dently discovered a few years later by the French mathematician and philosopher
René Descartes.

PHYSICAL MECHANISMS FOR REFLECTION
AND REFRACTION

The physical mechanism of the reflection and refraction of light can be under-
stood in terms of the absorption and reradiation of the light by the atoms in
the reflecting or refracting medium. When light traveling in air strikes a glass
surface, the atoms in the glass absorb the light and reradiate it at the same fre-
quency in all directions. The waves radiated backward by the glass atoms inter-
fere constructively at an angle equal to the angle of incidence to produce the
reflected wave.

The transmitted wave is the result of the interference of the incident wave and
the wave produced by the absorption and reradiation of light energy by the
atoms in the medium. For light entering glass from air, a phase lag exists be-
tween the reradiated wave and the incident wave. Therefore, a phase lag also ex-
ists between the resultant wave and the incident wave. This phase lag means
that the position of a wave crest of the transmitted wave is retarded relative to
the position of a wave crest of the incident wave in the medium. As a result, a
transmitted wave crest does not travel as far in a given time as the original inci-
dent wave crest; that is, the wave speed of the transmitted wave is less than that
of the incident wave. The index of refraction is therefore greater than 1. The fre-
quency of the light in the second medium is the same as the frequency of the in-
cident light—the atoms absorb and reradiate the light at the same frequency—
but the wave speed is different, so the wavelength of the transmitted light is
different from that of the incident light. If is the wavelength of light in a vac-
uum, then and if is the wavelength in a medium that has an index of
refraction in which the wave has speed then Combining these two
relations gives or

31-6

SPECULAR REFLECTION AND DIFFUSE REFLECTION

Figure 31-10a shows a bundle of light rays from a point source that are re-
flected from a flat surface. After reflection, the rays diverge exactly as if they
came from a point behind the surface. (The point is called the image point.
We will study the formation of images by reflecting and refracting surfaces in the
next chapter.) When the rays enter the eye, they cannot be distinguished from
rays actually diverging from a source at P�.

P�P�

P

ln �
l

c>v �
l

n

l>ln � c>v, lnf � v.v,n
lnlf � c,

l

Reflection and
refraction of a beam
of light incident on a
glass slab. (Richard
Megna/Fundamental
Photographs.)
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Reflection from a smooth surface is called specular reflection. It differs from
diffuse reflection, which is illustrated in Figure 31-11. Here, because the surface
is rough, the rays from a point reflect in random directions and do not diverge
from any point, so no image exists. The reflection of light from the page of this
book is diffuse reflection. The glass used in picture frames is sometimes ground
slightly to give diffuse reflection and thereby cut down on glare from the light
used to illuminate the picture. Diffuse reflection from the surface of a road al-
lows you to see the road when you are driving at night because some of the light
from your headlights reflects back toward you. In wet weather the reflection is
mostly specular; therefore, little light is reflected back toward you, which makes
the road difficult to see.

RELATIVE INTENSITY OF REFLECTED 
AND TRANSMITTED LIGHT

The fraction of light energy reflected at a boundary, such as an air–glass interface,
depends in a complicated way on the angle of incidence, the orientation of the
electric field vector associated with the wave, and the indices of refraction of the
two media. For the special case of normal incidence the reflected
intensity can be shown to be

31-7

where is the incident intensity and and are the indices of refraction of the
two media.* For a typical case of reflection from a clean air–glass interface for
which and Equation 31-7 gives Only about 4 percent of
the energy is reflected; the remainder of the energy is transmitted.

I � I0>25.n2 � 1.5,n1 � 1

n2n1I0

I � an1 � n2

n1 � n2

b 2

I0

(u1 � uœ
1 � 0),

P

P’

Mirror

(b)(a)

F I G U R E  3 1 - 1 0 (a) Specular reflection from a smooth surface. (b) Specular reflection of trees 
from water. (Macduff Everton/Corbis.)

(b)

(a)

F I G U R E  3 1 - 1 1 (a) Diffuse reflection
from a rough surface. (b) Diffuse reflection of
colored lights from a sidewalk. ((b) Pete
Saloutos/The Stock Market.)

* An equation for waves on a string that is similar to Equation 31-7 is presented in Section 4 of Chapter 15.
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Example 31-3 Refraction from Air to Water

Light traveling in air enters water with an angle of incidence of If the index of refrac-
tion of water is 1.33, what is the angle of refraction?

PICTURE The angle of refraction is found using Snell’s law of refraction. Let subscripts
1 and 2 refer to the air and water, respectively. Then and 
is the angle of refraction (Figure 31-12).

SOLVE

u2n1 � 1.00, u1 � 45.0°, n2 � 1.33,

45.0°.

1. Use Snell’s law of refraction to
solve for the sine of the angle
of refraction:

sinu2 , so

sinu2 �
n1

n2

 sinu1

n1 sinu1 � n2 sinu2

2. Find the angle whose sine is 0.532:

 32.1°� sin�1(0.532) �

u2 � sin�1an1

n2

 sinu1b � sin�1a1.00
1.33

 sin 45.0°b
CHECK When entering a medium in which light travels more slowly, light bends toward
the normal; so we expect to be less than The step-2 result meets this expectation.

TAKING IT FURTHER Note that the light is bent toward the normal as the light travels into
the medium with the larger index of refraction.

u1 .u2

TOTAL INTERNAL REFLECTION

Figure 31-13 shows a point source in glass and rays striking the glass–air interface
at various angles. All the rays not perpendicular to the interface are bent away from
the normal. As the angle of incidence is increased, the angle of refraction increases
until a critical angle of incidence is reached for which the angle of refraction is

For incident angles greater than the critical angle, no refracted ray exists. All
the energy is reflected. This phenomenon is called total internal reflection. The
critical angle can be found in terms of the indices of refraction of the two media by
solving Equation 31-5b for and setting equal to 90°.u2sinu1(n1 sinu1 � n2 sinu2)

90°.
uc

θ2

n
2
 = 1.33

n
1
 = 1.00

= 45°θ1

F I G U R E  3 1 - 1 2

F I G U R E  3 1 - 1 3 (a) Total
internal reflection. As the
angle of incidence is
increased, the angle of
refraction is increased until, at
a critical angle of incidence 
the angle of refraction is 
For angles of incidence
greater than the critical angle,
there is no refracted ray. (b) A
photograph of refraction and
total internal reflection from
a water–air interface. (Ken
Kay/Fundamental Photographs.)

90°.
uc,

θ2

v
1

θ1

Totally
reflected

Partially
reflected

θ2

θ1
θ1

θc

v2 > v1

(b)(a)

That is,

31-8

CRITICAL ANGLE FOR TOTAL INTERNAL REFLECTION

sinuc �
n2

n1

 sin90° �
n2

n1
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Try It YourselfExample 31-4 Total Internal Reflection

A particular glass has an index of refraction of What is the critical angle for total
internal reflection for light leaving the glass and entering air, for which ?

PICTURE Apply the law of refraction (Equation 31-5b) with the angle of refraction equal
to 90°.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

n � 1.00
n � 1.50.

Steps Answers

1. Make a diagram (Figure 31-14) showing the incident and
refracted rays. For the critical angle, the angle of refraction is 90°.

2. Apply the law of refraction (Equation 31-5b). The critical angle
is the angle of incidence.

41.8°uc �

Example 31-5 How Deep Are You?

You are spending time at the pool. While under the water, you look up and notice that
you see objects above water level in a circle of light of radius approximately and
the rest of your vision is the color of the sides of the pool. How deep are you below the
surface of the water?

PICTURE We can determine the depth of the pool from the radius of the light and the angle
at which the light is entering your eye from the edge of the circle. At the edge of the circle
the light is entering the water at so the angle of refraction at the air–water surface
is the critical angle for total internal reflection at the water–air surface. From Figure 31-15,
we see that the depth is related to this angle and the radius of the circle by tan 
The critical angle is found from Equation 31-8 with and 

SOLVE

n1 � 1.33.n2 � 1.00
uc � R>y.Ry

90.0°,

2.0 m,

1. The depth is related to the radius of the circle and the
critical angle uc:

Ry tanuc � R>y
2. Solve for the depth y: y �

R
tanuc

Context-Rich

CHECK The step-4 result seems like a plausible value. Most swimming pools are at least
that deep.

3. Find the critical angle for total internal reflection at a water–air
surface:

uc � 48.8°

sinuc �
n2

n1

�
1.00
1.33

� 0.752

4. Solve for the depth y: 1.7 my �
R

tanuc

�
2.0 m

tan 48.8°
�

Air

Water

90°

θc

θc

R

y

F I G U R E  3 1 - 1 5

Air

Glass

θ θ1 = c
θ 2 = 90°

θ 1

θ 2

F I G U R E  3 1 - 1 4

Note that total internal reflection occurs only when the incident light is in the
medium that has the higher index of refraction. Mathematically, if is greater than

Snell’s law of refraction cannot be satisfied because there is no angle whose sine
is greater than 1.
n1 ,

n2

CHECK Figure 31-13b shows that the critical angle for a water-air boundary is a bit larger
than Because the index of refraction for glass is somewhat larger than the index for
water, we expect a critical angle for a glass-water boundary to be a bit less than An angle
of meets this expectation.41.8°

45°.
45°.



Figure 31-16a shows light reaching one of the short sides of a
glass prism at normal incidence. If the index of refrac-

tion of the glass is 1.5, the critical angle for total internal reflection
is as we calculated in Example 31-4. Because the angle of in-
cidence of the ray on the glass–air interface is the light will be
totally reflected and will exit perpendicular to the other face of
the prism, as shown. In Figure 31-16b, the light is incident per-
pendicular to the hypotenuse of the prism and is totally reflected
twice so that it emerges at to its original direction. Prisms are
used to change the directions of light rays. In binoculars, two
prisms are used on each side. These prisms reflect the light, thus
shortening the required length, and reinvert the image (first in-
verted by a lens).* Diamonds have a very large index of refraction

so nearly all the light that enters a diamond is eventu-
ally reflected back out, giving the diamond its sparkle.

Fiber optics An interesting application of total internal reflec-
tion is the transmission of a beam of light down a long, narrow,
transparent glass fiber (Figure 31-17a). If the beam begins
approximately parallel to the axis of the fiber, it will strike
the walls of the fiber at angles greater than the critical angle
(if the bends in the fiber are not too sharp) and no light energy
will be lost through the walls of the fiber. A bundle of such
fibers can be used for imaging, as illustrated in Figure 31-17b.

(n � 2.4),

180°

45°,
41.8°,

45–45–90°
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θ1
45°

90° 45°

= 45° 45°

90°

45°

(b)(a)

Glass fiber

(b)(a)

Bundle of
glass fibers

(c)

F I G U R E  3 1 - 1 7 (a) A light pipe. Light inside the pipe is always incident at an angle greater than the critical angle, so
no light escapes the pipe by refraction. (b) Light from the object is transported by a bundle of glass fibers to form an image
of the object at the other end of the pipe. (c) Light emerging from a bundle of glass fibers. ((c) Ted Horowitz/The Stock Market.)

F I G U R E  3 1 - 1 6 (a) Light entering through one of the short
sides of a glass prism is totally reflected. (b) Light
entering through the long side of the prism is totally reflected twice.

45–45–90°

Fiber optics has many applications in medicine and in communications. In medi-
cine, light is transmitted along tiny fibers to visually probe various internal organs
without surgery. In communications, the rate at which information can be trans-
mitted is related to the signal frequency. A transmission system using light of
frequencies of the order of can transmit information at a much greater rate
than one using radio waves, which have frequencies of the order of In
telecommunication systems, a single glass fiber that is the thickness of a human
hair can transmit audio or video information equivalent to voices speaking
simultaneously.

32000

106 Hz.
1014 Hz

* The image produced by the objective lens of a telescope is discussed in Section 32-4.



(c)

MIRAGES

When the index of refraction of a medium
changes gradually, the refraction is contin-
uous, leading to a gradual bending of the
light. An interesting example of this is the
formation of a mirage. On a hot and sunny
day, the surface of exposed rocks, pave-
ment, and sand often gets very hot. In this
case there is often a layer of air near the
ground that is warmer, and therefore less
dense, than the air just above it. The speed
of any light wave is slightly greater in this
less dense layer, so a light beam passing
from the cooler layer into the warmer
layer is bent. Figure 31-18a shows the light
from a tree when all the surrounding air is
at the same temperature. The wavefronts
are spherical, and the rays are straight
lines. In Figure 31-18b, the air near the
ground is warmer, resulting in the wavefronts traveling faster there. The portions
of the wavefronts near the hot ground get ahead of the higher portions, creating a
nonspherical wavefront and causing a curving of the rays. Thus, the ray shown ini-
tially heading for the ground is bent upward. As a result, the viewer sees an image
of the tree looking as if it were reflected off a water surface on the ground. When
driving on a hot sunny day, you may have noticed apparent wet spots on the high-
way ahead that disappear as you approach them. These mirages are due to the re-
fraction of light from the sky by a layer of air that has been heated due to its prox-
imity to the hot pavement.
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(a) (b)

Light

Light

Air warmer near ground

(b)

(a)

F I G U R E  3 1 - 1 8 A mirage. (a) When the
air is at a uniform temperature, the
wavefronts of the light from the tree are
spherical. (b) When the air near the ground is
warmer, the wavefronts are not spherical
and the light from the tree is continuously
refracted into a curved path. (c) Apparent
reflections of motorcycles on a hot road.
(Robert Greenler.)

(a) In this demonstration at the Naval
Research Laboratory, a combination of
laser sources generates different colors that
excite adjacent fiber sensor elements, leading
to a separation of the information as
indicated by the separation of the colors.
(b) The tip of a light guide preform is
softened by heat and drawn into a long, tiny
fiber. The colors in the preform indicate a
layered structure of differing compositions,
which is retained in the fiber. ((a) Dan
Boyd/Courtesy Naval Research Laboratory.
(b) Courtesy AT&T Archives.)



Rainbows The rainbow is a familiar example of dispersion, in this case the
dispersion of sunlight. Figure 31-21 is a diagram originally drawn by Descartes,
showing parallel rays of light from the Sun entering a spherical water drop. First, the
rays are refracted as they enter the drop. The rays are then reflected from
the water–air interface on the other
side of the drop and finally are re-
fracted again as they leave the drop.

From Figure 31-21, we can see that
the angle made by the emerging rays
and the diameter (along ray 1) reaches
a maximum around ray 7 and then
decreases. The concentration of rays
emerging at approximately the maxi-
mum angle gives rise to the rainbow.
By construction, using the law of re-
fraction, Descartes showed that the
maximum angle is about To ob-
serve a rainbow, we must therefore
look at the water drops at an angle of

relative to the line back to the Sun,
as shown in Figure 31-22. The angular
radius of the rainbow is therefore 42°.

42°

42°.

DISPERSION

The index of refraction of a material has a slight dependence on wavelength.
For many materials, decreases slightly as the wavelength increases, as shown in
Figure 31-19. The dependence of the index of refraction on wavelength (and there-
fore on frequency) is called dispersion. When a beam of white light is incident at
some angle on the surface of a glass prism, the angle of refraction (which is mea-
sured relative to the normal) for the shorter wavelengths is slightly smaller than
the angle of refraction for the longer wavelengths. The light of shorter wavelength
(toward the violet end of the spectrum) is therefore bent more toward the normal
than that of longer wavelength. The beam of white light is thus spread out or
dispersed into its component colors or wavelengths (Figure 31-20).

n

Red
Orange
Yellow
Green
Blue
Violet

White

light
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400

1.7

1.6

1.5

1.4
500 600 700

n

Violet Red

, nmλ

Silicate flint glass

Borate flint glass

Quartz

Silicate crown glass

F I G U R E  3 1 - 1 9 Index of refraction
versus wavelength for various materials.

F I G U R E  3 1 - 2 0 A beam of white light incident on a glass prism is dispersed into its
component colors. The index of refraction decreases as the wavelength increases so that the
longer wavelengths (red) are bent less than the shorter wavelengths (blue). (David Parker/
Science Photo Library/Photo Researchers.)

1
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7106

1112
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F I G U R E  3 1 - 2 1 Descartes’s
construction of parallel rays of
light entering a spherical water drop. Ray
1 enters the drop along a diameter and is
reflected back along its incident path. Ray
2 enters slightly above the diameter and
emerges below the diameter at a small
angle with the diameter. The rays entering
farther and farther away from the diameter
emerge at greater and greater angles up to
ray 7, shown as the heavy line. Rays
entering above ray 7 emerge at smaller and
smaller angles with the diameter.



The separation of the colors in the rainbow results from
the fact that the index of refraction of water depends slightly
on the wavelength of light. The angular radius of the rain-
bow will therefore depend slightly on the wavelength of the
light. The observed rainbow is made up of light rays from
many different droplets of water (Figure 31-23). The color
seen at a particular angular radius corresponds to the wave-
length of light that allows the light to reach the eye from the
droplets at that angular radius. Because is smaller for
red light than for blue light, the red part of the rainbow is at
a slightly greater angular radius than the blue part of the
rainbow, so red is at the outer side of the rainbow.

When a light ray strikes a surface separating water and
air, part of the light is reflected and part of the light is re-
fracted. A secondary rainbow results from the light rays that
are reflected twice within a droplet (Figure 31-24). The sec-
ondary rainbow has an angular radius of and its color
sequence is the reverse of that of the primary rainbow; that
is, the violet is on the outside in the secondary rainbow.
Because of the small fraction of light reflected from a
water–air interface, the secondary rainbow is considerably
fainter than the primary rainbow.

51°,

nwater
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Sun

Water
droplets

Red

Violet

Observer

F I G U R E  3 1 - 2 3 The rainbow results from light rays from
many different water droplets.

From
sun

From
sun

42°

42°

F I G U R E  3 1 - 2 2 A rainbow is viewed at an angle of from the
line to the Sun, as predicted by Descartes’s construction, as shown in
Figure 31-21.

42°

Water
droplets

42° 51°

Secondary

Primary

F I G U R E  3 1 - 2 4 The secondary rainbow results from light rays
that are reflected twice within a water droplet.

(a) This halo around the Sun results from refraction by hexagonal
ice crystals that are randomly oriented in the upper atmosphere.
(b) When the ice crystals are not randomly oriented but are falling
with their flat bases horizontal, only parts of the halo to the left and
to the right of the Sun, called sun dogs, are seen. ((a) Robert Greenler.
(b) Giovanni DeAmici, NSF, Lawrence Berkeley Laboratory.)

22°

(a)

(b)
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*Calculating the angular radius of the rainbow

We can calculate the angular radius of the rainbow
from the laws of reflection and refraction. Figure 31-25
shows a ray of light incident on a spherical water
droplet at point The angle of refraction is related
to the angle of incidence by Snell’s law of refraction:

31-9

Point in Figure 31-25 is the intersection of the line
of the incident ray and the line of the emerging ray.
The angle is called the angle of deviation of the
ray, and and form a straight angle. Thus,

31-10

We wish to relate the angle of deviation to the angle
of incidence From the triangle we have

31-11

Similarly, from the triangle we have

31-12

Eliminating from Equations 31-11 and 31-12 and solving for gives

Substituting this value for into Equation 31-10 gives the angle of deviation:

31-13

Equation 31-13 can be combined with Equation 31-9 to eliminate and give the
angle of deviation in terms of the angle of incidence 

31-14

Figure 31-26 shows a plot of versus The angle of deviation has its mini-
mum value when At an angle of incidence of the angle of deviation
is This angle is called the angle of minimum deviation. At incident
angles that are slightly greater or slightly smaller than the angle of deviation
is approximately the same. Therefore, the intensity of the light reflected by the
water droplet will be a maximum at the angle of minimum deviation. We can see
from Figure 31-25 that the maximum value of corresponds to the minimum value
of Thus, the angular radius of the intensity maximum, given by is

31-15

The index of refraction of water varies slightly with wavelength. Thus, for each
wavelength (color), the intensity maximum occurs at an angular radius slightly
different than that of neighboring wavelengths.

31-4 POLARIZATION

In an electromagnetic wave, the direction of the electric field is perpendicular to
the direction of propagation of the wave. If the electric field remains parallel to a
line perpendicular to the direction of propagation, the wave is said to be linearly
polarized. A wave produced by an electric dipole antenna is polarized with the
electric field vector at any field point remaining in the plane containing the field
point and the antenna axis. Waves produced by numerous sources are usually not
polarized. An incandescent light source, for example, contains millions of atoms

2bmax � p � fd, min � 180° � 138° � 42°

2bmax ,fd .
b
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F I G U R E  3 1 - 2 5 Light ray incident on a spherical water drop. The refracted
ray strikes the back of the water droplet at point It makes an angle with the
radial line and is reflected at an equal angle. The ray is refracted again at
point where it leaves the droplet.C,

OB
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F I G U R E  3 1 - 2 6 Plot of the angle of
deviation as a function of incident angle 
The angle of deviation has its minimum value
of when the angle of incidence is 
Because at minimum deviation,
the deviation of rays with incident angles
slightly less or slightly greater than will be
approximately the same.
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acting independently. The electric field for such a wave can be resolved into and
components that vary randomly, because there is no correlation between the

individual atoms producing the light.
The polarization of electromagnetic waves can be demonstrated with mi-

crowaves, which have wavelengths on the order of centimeters. In a typical
microwave generator, polarized waves are radiated by an electric dipole antenna. In
Figure 31-27, the electric dipole antenna is vertical, so the electric field vector of
the horizontally radiated waves is also vertical. An absorber can be made of a screen
of parallel straight wires. When the wires are vertical, as in Figure 31-27a, the elec-
tric field parallel to the wires sets up currents in the wires and energy is absorbed.
When the wires are horizontal and therefore perpendicular to as in Figure 31-27b,
no currents are set up and the waves are transmitted.

There are four phenomena that produce polarized electromagnetic waves from
unpolarized waves: (1) absorption, (2) reflection, (3) scattering, and (4) birefringence
(also called double refraction), each of which is examined in the upcoming sections.

POLARIZATION BY ABSORPTION

Several naturally occurring crystals, when cut into appropriate shapes, absorb and
transmit light differently depending on the polarization of the light. These crystals
can be used to produce linearly polarized light. In 1938, E. H. Land invented a simple
commercial polarizing sheet called Polaroid. This material contains long-chain hy-
drocarbon molecules that are aligned when the sheet is stretched in one direction dur-
ing the manufacturing process. These chains become conducting at optical frequen-
cies when the sheet is dipped in a solution containing iodine. When light is incident
with its electric field vector parallel to the chains, electric currents are set up along the
chains, and the light energy is absorbed, just as the microwaves are absorbed by the
wires in Figure 31-27. If the electric field is perpendicular to the chains, the light is
transmitted. The direction perpendicular to the chains is called the transmission axis.
We will make the simplifying assumption that all the light is transmitted when the
electric field is parallel to the transmission axis and all the light is absorbed when it is
perpendicular to the transmission axis. (In reality, polarizing sheets absorb some of
the light, even when the electric field is parallel to the transmission axis.)

Consider an unpolarized light beam incident on a polarizing sheet with its
transmission axis along the direction, as shown in Figure 31-28. The beam is
incident on a second polarizing sheet, the analyzer, whose tran-
smission axis makes an angle with the axis. If is the elec-
tric field amplitude of the incident beam, the component paral-
lel with the transmission axis is and the component
perpendicular to the transmission axis is The sheet
absorbs and transmits so the transmitted beam has an
electric field amplitude of and is linearly polarized
in the direction of the transmission axis. Because the intensity of
light is proportional to the square of the magnitude of the elec-
tric field amplitude, the intensity of light transmitted by the
sheet is given by

31-16

LAW OF MALUS

where is the intensity of the incident beam. If we have an inci-
dent beam of unpolarized light of intensity incident on a po-
larizing sheet, the direction of the incident electric field varies
from location to location on the sheet, and at each location it fluc-
tuates in time. At each location, the average value of is one-
half, so applying Equation 31-16 gives 
where is the intensity of the transmitted beam.I

I � I0(cos2u)av � 1
2 I0 ,

cos2u

I0

I0

I � I0 cos2u

I

E 7 � E cosu
E 7 ,E⊥

E⊥ � E sinu.
E 7 � E cosu,

Exu

x

E
S

,

E
S

y
x

F I G U R E  3 1 - 2 7 Demonstration showing
the polarization of microwaves. The electric
field of the microwaves is vertical, parallel to
the vertical dipole antenna. (a) When the
metal wires of the absorber are vertical,
electric currents are set up in the wires and
energy is absorbed, as indicated by the low
reading on the microwave detector. (b) When
the wires are horizontal, no currents are set up
and the microwaves are transmitted, as
indicated by the high reading on the detector.
(Larry Langrill.)

(a)

(b)
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F I G U R E  3 1 - 2 8 A vertically polarized beam is incident on a
polarizing sheet with its transmission axis making an angle 
with the vertical. Only the component is transmitted
through the second sheet, and the transmitted beam is linearly
polarized in the direction of the transmission axis If the intensity
between the sheets is the intensity transmitted by the second
sheet is I0 cos2u.

I0 ,
x�.

E cosu
ux�
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When two polarizing elements are placed in succession in a beam of unpolarized
light, the first polarizing element is called the polarizer and the second polarizing
element is called the analyzer. If the polarizer and the analyzer are crossed, that is,
if their transmission axes are perpendicular to each other, no light gets through.
Equation 31-16 is known as the law of Malus after its discoverer, E. L. Malus
(1775–1812). It applies to any two polarizing elements whose transmission axes
make an angle with each other.u

Example 31-6 Intensity Transmitted

Unpolarized light of intensity is incident on two polarizing sheets
whose transmission axes make an angle of (Figure 31-29). What is the inten-
sity of light transmitted by the second sheet?

PICTURE The incident light is unpolarized, so the intensity transmitted by the
first polarizing sheet is half the incident intensity. The second sheet further re-
duces the intensity by a factor of with 

SOLVE

u � 60°.cos2 u,

60°
3.0 W>m2

1. The intensity transmitted by the first
sheet is half the intensity of unpolarized
light incident on the first sheet:

I0

I1 I1 � 1
2 I0

2. The intensity transmitted by the second
sheet is related to the intensity of the
light incident on the second sheet by
Equation 31-16:

I1

I2 I2 � I1 cos2u

3. Combine these results and substitute
the given data:

0.38 W>m2�

I2 � 1
2 I0 cos2 60° � 1

2 (3.0 W>m2)(0.500)2

CHECK The first polarizer cuts the intensity in half, so we should expect the intensity trans-
mitted through both sheets to be less than half the incident intensity of The step-3 result
meets this expectation.

TAKING IT FURTHER Note that the second sheet rotates the plane of polarization by 60°.

3.0 W.

(a) Crossed polarizers block out all of the light. (b) In a liquid crystal display, the crystal is between
crossed polarizers. Light incident on the crystal is transmitted because the crystal rotates the direction
of polarization of the light The light is reflected back out through the crystal by a mirror behind
the crystal, and a uniform background is seen. When a voltage is applied across a small segment of
the crystal, the polarization is not rotated, so no light is transmitted and the segment appears black.
((a) Fundamental Photographs. (b) 1990 PAR/NYC, Inc./Photo by Elizabeth Algieri.)

90°.

(a) (b)

I0

60°

I1

I2

E1

E2F I G U R E  3 1 - 2 9
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POLARIZATION BY REFLECTION

When unpolarized light is reflected from a plane surface boundary between two
transparent media, such as air and glass or air and water, the reflected light is par-
tially polarized. The degree of polarization depends on the angle of incidence and
on the ratio of the wave speeds in the two media. For a certain angle of incidence
called the polarizing angle the reflected light is completely polarized. At the po-
larizing angle, the reflected and refracted rays are perpendicular to each other.
David Brewster (1781–1868), a Scottish scientist and an inventor of numerous in-
struments (including the kaleidoscope), discovered this experimentally in 1812.
The polarizing angle is also referred to as the Brewster angle.

Figure 31-30 shows light incident at the polarizing angle for which the reflected
light is completely polarized. The electric field of the incident light can be resolved
into components parallel and perpendicular to the plane of incidence. The
reflected light is linearly polarized with its electric field perpendicular to the
plane of incidence. We can relate the polarizing angle to the indices of refraction of
the media using Snell’s law (the law of refraction). If is the index of refraction
of the first medium and is the index of refraction of the second medium, the law
of refraction gives

where is the angle of refraction. From Figure 31-30, we can see that the sum of
the angle of reflection and the angle of refraction is Because the angle of re-
flection equals the angle of incidence, we have

Then

or

31-17

POLARIZING ANGLE

Although the reflected light is completely polarized for this angle of incidence,
the transmitted light is only partially polarized (because only a small fraction of
the incident light is reflected). If the incident light itself is polarized with the
electric field in the plane of incidence, no reflected light exists when the angle of
incidence is We can qualitatively understand this result by using Figure 31-31.
If we consider the charges in the atoms next to the surface of the second medium
to be driven, by the electric field of the refracted light, to oscillate parallel to the
direction of electric field, no reflected ray can exist because for an electric dipole
antenna, no energy is radiated along the line of oscillation. (Each of the oscillating
atoms is a small electric dipole antenna.)

Because of the polarization of reflected light, sunglasses that contain a polariz-
ing sheet can be very effective in cutting out glare. If light is reflected from a
horizontal surface, such as a lake surface or snow on the ground, the electric field
of the reflected light will be predominantly horizontal. Polarizing sunglasses with
a vertical transmission axis will then reduce glare by absorbing much of the
reflected light. If you have polarizing sunglasses, you can observe this effect by
looking through the glasses at reflected light and then rotating the glasses 
much more of the light will be transmitted.

90°;

up .

tanup �
n2

n1

n1 sinup � n2 sin(90° � up) � n2 cosup
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90°
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reflected ray

Slightly
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refracted ray

θp

F I G U R E  3 1 - 3 0 Polarization by
reflection. The incident wave is unpolarized
and has components of the electric field
parallel to the plane of incidence (arrows) and
components perpendicular to that plane
(dots). For incidence at the polarizing angle,
the reflected wave is completely polarized,
with its electric field perpendicular to the
plane of incidence.

Normal

θ2

Polarized
incident ray No reflected

ray

Polarized
refracted ray

θp

F I G U R E  3 1 - 3 1 Polarized light incident
at the polarizing angle. When the incident
light is polarized with in the plane of
incidence, there is no reflected ray.
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z

Linearly
polarized
scattered
light

Unpolarized
incident
light

F I G U R E  3 1 - 3 2 Polarization by
scattering. Unpolarized light propagating in
the direction is incident on a scattering
center at the origin. The light scattered in the

plane along the direction is
polarized parallel with the axis (and the
light scattered in the direction is polarized
parallel with the axis).x

�y
y

� xz � 0

�z

F I G U R E  3 1 - 3 3 (a) A narrow beam of light incident on a birefringent crystal such as
calcite is split into two beams, called the ordinary ray (o ray) and the extraordinary ray (e ray),
that have mutually perpendicular polarizations. If the crystal is rotated, the extraordinary ray
rotates in space. (b) A double image of the cross-hatching is produced by this birefringent crystal
of calcium carbonate. (Paul Silverman Photographs.)

e ray

Optic
axis

o ray

(b)

(a)

POLARIZATION BY SCATTERING

The phenomenon of absorption and reradiation is called scattering. Scattering
can be demonstrated by passing a light beam through a container of water to
which a small amount of powdered milk has been added. The milk particles scat-
ter the light, making the light beam visible. Similarly, laser beams can be made
visible by introducing chalk or smoke particles into the air to scatter the light.
A familiar example of light scattering is that from air molecules, which tend to
scatter short wavelengths more than long wavelengths, thereby giving the sky
its blue color.

We can understand polarization by scattering if we think of the charges in a
scattering atom as electric dipole antennas that radiate waves that have maxi-
mum intensities in directions perpendicular to the antenna axes and intensities of
zero in the direction along the antenna axis. The electric field vector of the scat-
tered light perpendicular to the direction of propagation is in the plane of the
long axis of the antenna and the field point. Figure 31-32 shows a beam of unpo-
larized light that initially travels along the axis, striking a particle at the origin.
The electric field in the light beam has components in both the and directions
perpendicular to the direction of motion of the light beam. These fields set up os-
cillations of the charges within the molecule in the plane, and no oscillation
exists along the direction. These oscillations can be thought of as a superposi-
tion of an oscillation along the axis and another along the axis, and each of
these oscillations produce dipole radiation. Thus, the oscillation along the axis
produces no radiation along the axis, which means the light radiated along the

axis is produced only by the oscillation along the axis. It follows that the light
radiated along the axis is polarized with its electric field parallel with the axis.
There is nothing special about the choice of axes for this discussion, so the result
can be generalized. That is, the light scattered in a direction perpendicular to the
incident light beam is polarized with its electric field perpendicular to both the
incident beam and the direction of propagation of the scattered light. This can be
seen easily by examining the scattered light with a piece of polarizing sheet.

POLARIZATION BY BIREFRINGENCE

Birefringence is a complicated phenomenon that occurs in calcite and other non-
cubic crystals and in some stressed plastics, such as cellophane. Most materials
are isotropic, that is, the speed of light passing through the material is indepen-
dent of the polarization of the light. Because of their microscopic structure, bire-
fringent materials are anisotropic. The speed of light depends on the polarization
and on the direction of propagation of the light. When a light ray is incident on
such materials, it may be separated into two rays called the ordinary ray and the
extraordinary ray. These rays are polarized in mutually perpendicular directions,
and they travel with different speeds. Depending on the relative orientation be-
tween the material and the incident light beam, the two rays may also travel in
different directions.

There is one particular direction in a birefringent material in which both rays
propagate with the same speed. This direction is called the optic axis of the mate-
rial. (The optic axis is actually a direction rather than a line in the material.) Nothing
unusual happens when light travels in the direction of the optic axis. However,
when light is incident at an angle to the optic axis, as shown in Figure 31-33, the

yx
yx

x
x

yx
z

z � 0

yx
z
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rays travel in different directions and emerge separated in space. If the material is
rotated, the extraordinary ray (the e ray in the figure) revolves in space around the
ordinary ray (o ray).

If light is incident on a birefringent plate perpendicular to its crystal face and
perpendicular to the optic axis, the two rays travel in the same direction but at dif-
ferent speeds. The number of wavelengths in the two rays in the plate is different
because the wavelengths of the rays differ. The rays emerge with a phase
difference that depends on the thickness of the plate and on the wavelength of
the incident light. In a quarter-wave plate, the thickness is such that a phase
difference exists between the waves of a particular wavelength when they emerge.
In a half-wave plate, the rays emerge with a phase difference of 

Suppose that the incident light is linearly polarized so that the electric field
vector is at to the optic axis, as illustrated in Figure 31-34. The ordinary and
extraordinary rays start out in phase and have equal amplitudes. With a quarter-
wave plate, the waves emerge with a phase difference of so the resultant electric
field has components and The elec-
tric field vector thus rotates in a circle and has constant magnitude. Such a wave is
said to be circularly polarized.

With a half-wave plate, the waves that emerge have a phase difference of 
so the resultant electric field is linearly polarized with components 
and The net effect is that the direction of pola-
rization of the wave is rotated by relative to that of the incident light, as shown
in Figure 31-35.

90°
Ey � E0 sin(vt � 180°) � �E0 sinvt.

Ex � E0 sinvt
180°,
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90°,

45°
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45°

E for e ray

E for o ray

E

Optic
axis

Crystal plate

E for o ray
E for e ray

E

E for o ray

E for e ray

E

F I G U R E  3 1 - 3 5 If the birefringent crystal
in Figure 31-34 is a half-wave plate, and if the
electric field vector of the incident light makes
an angle of with the optic axis, then the
direction of polarization of the emerging light
is rotated by 90°.

45°

F I G U R E  3 1 - 3 4 Polarized light emerging from the polarizer is incident on a
birefringent crystal so that the electric field vector makes a angle with the
optic axis, which is perpendicular to the light beam. The ordinary and
extraordinary rays travel in the same direction but at different speeds. The
polarization of the emerging light depends on the thickness of the crystal and the
wavelength of the light.

45°

Interesting and beautiful patterns can be observed by placing birefringent
materials, such as cellophane or stressed plastic, between two polarizing sheets
with their transmission axes perpendicular to each other. Ordinarily, no light is
transmitted through crossed polarizing sheets. However, if we place a birefrin-
gent material between the crossed polarizing sheets, the material acts as a half-
wave plate for light of a certain color depending on the material’s thickness. The
direction of polarization is rotated and some light gets through both sheets.
Various glasses and plastics become birefringent when under stress. The stress
patterns can be observed when the material is placed between crossed polariz-
ing sheets.«



(a) (b)

(d)

(e)

(c)
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When the transmission axes of two
polarizing sheets are perpendicular, the
polarizers are said to be crossed and no light
is transmitted. However, many materials are
birefringent or become so under stress. Such
materials rotate the direction of polarization of
the light so that light of a particular
wavelength is transmitted through both
polarizers. When a birefringent material is
viewed between crossed polarizers,
information about its internal structure is
revealed. (a) A shocked quartz grain from the
site of a meteorite crater. The layered
structure, evidenced by the parallel lines,
arises from the shock of the impact of the
meteor. (b) A grain of quartz typically found in
silicic volcanic rocks. No shock lines are seen.
(c) Thin sections of an ice core from the
Antarctic ice sheet reveal bubbles of trapped

which appear amber-colored. The
sample was taken from a depth of 
corresponding to air trapped 1600 years ago,
whereas the sample in (d) is from a depth of

corresponding to air trapped 450 years
ago. Ice core measurements have replaced the
less reliable technique of analyzing carbon in
tree rings to compare current atmospheric

levels with those of the recent past.
(e) Robert Mark of the Princeton School of
Architecture examines the stress patterns in a
plastic model of the nave structure of
Chartres Cathedral. ((a, b) Glen A. Izett, US
Geological Survey. (c, d) Dr. Anthony J Gow/Cold
Regions Research and Engineering Laboratory,
Hanover New Hampshire. (e) Sepp Seitz/Woodfin
Camp and Associates.)
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31-5 DERIVATION OF THE LAWS OF
REFLECTION AND REFRACTION

The laws of reflection and refraction can be derived from either
Huygens’s principle or Fermat’s principle.

HUYGENS’S CONSTRUCTION
Reflection Figure 31-36 shows a plane wavefront striking a
mirror at point As can be seen from the figure, the angle be-
tween the wavefront and the mirror is the same as the angle of in-
cidence which is the angle between the normal to the mirror and
the rays (which are perpendicular to the wavefronts). According to Huygens’s
construction, each point on a given wavefront can be considered a point source of
secondary wavelets. The position of the wavefront after a time is found by con-
structing wavelets of radius with their centers on the wavefront Wavelets
that have not yet reached the mirror form the portion of the new wavefront 
Wavelets that have already reached the mirror are reflected and form the portion of
the new wavefront By a similar construction, the wavefront is obtained
from the Huygens’s wavelets originating on the wavefront Figure 31-37 is an
enlargement of a portion of Figure 31-36 showing which is part of the initial po-
sition of the wavefront. During the time the wavelet from point reaches the mir-
ror at point and the wavelet from point reaches point The reflected wave-
front makes an angle with the mirror that is equal to the angle of reflection

between the reflected ray and the normal to the mirror. The triangles and
are both right triangles that have a common side and equal sides

Hence, these triangles are congruent, and the angles and are
equal, implying that the angle of reflection equals the angle of incidence 

Refraction Figure 31-38 shows a plane wave incident on an air–glass interface.
We apply Huygens’s construction to find the wavefront in the transmitted wave.
Line indicates a portion of the wavefront in medium 1 that strikes the glass sur-
face at an angle In time the wavelet from travels the distance and
reaches the point on the line separating the two media, while the wavelet
from point travels a shorter distance into the second medium. The new wave-
front is not parallel to the original wavefront because the speeds and 
are different. From the triangle 

or

using the fact that the angle equals the angle of incidence Similarly, from tri-
angle

or

where is the angle of refraction. Equating the reciprocals of the two values
for we obtain

31-18

Multiplying both sides by and then substituting for and for we
obtain which is Snell’s law.n1 sinu1 � n2 sinu2 ,

c>v2,n2c>v1n1c,

1
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F I G U R E  3 1 - 3 8 Application of
Huygens’s principle to the refraction of plane
waves at the surface separating a medium in
which the wave speed is from a medium
in which the wave speed is less than 
The angle of refraction is less than the angle
of incidence u1 .
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F I G U R E  3 1 - 3 6 Plane wave reflected at
a plane mirror. The angle between the
incident ray and the normal to the mirror is the
angle of incidence. It is equal to the angle 
between the incident wavefront and the mirror.
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F I G U R E  3 1 - 3 7 Geometry of Huygens’s
construction for the calculation of the law of
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FERMAT’S PRINCIPLE

Reflection Figure 31-39 shows two paths in which light leaves point strikes the
plane surface, which we can consider to be a mirror, and travels to point The prob-
lem for the application of Fermat’s principle to reflection can be stated as follows: At
what point in the figure must the light strike the mirror so that it will travel from
point to point in the least time? Because the light is traveling in the same
medium for this problem, the time will be minimum when the distance is minimum.
In Figure 31-39 the distance is the same as the distance where point 
lies along the perpendicular from to the mirror and is equidistant behind the mir-
ror. As we vary point the distance is least when the points and lie
on a straight line. We can see from the figure that this occurs when the angle of inci-
dence equals the angle of reflection.

Refraction The derivation of Snell’s law of refraction from Fermat’s principle is
slightly more complicated. Figure 31-40 shows several possible paths for light travel-
ing from point in air to point in glass. Point is on the straight line between 
and but this path is not the one for the shortest travel time because light travels at a
slower speed in the glass. If we move slightly to the right of the total path length is
longer, but the distance traveled in the slower medium is less than for the path through

It is not apparent from the figure which path is the path of least time. However, it
is not surprising that a path slightly to the right of the straight-line path takes less time
because the time gained by traveling a shorter distance in the glass more than com-
pensates for the time lost traveling a longer distance in the air. As we move the point
of intersection of the possible path to the right of point the total time of travel
from point to point decreases until we reach a minimum at point Beyond this
point, the time saved by traveling a shorter distance in the glass is not enough to com-
pensate for the additional time spent by traveling the greater distance in the air.

Figure 31-41 shows the geometry for finding the path of least time. If is the dis-
tance traveled in medium 1 that has an index of refraction and is the distance
traveled in medium 2 that has an index of refraction the time for light to travel
the total path is

31-19

We wish to find the point for which this time is a minimum. We do this by ex-
pressing the time in terms of a single parameter as shown in the figure, indicating
the position of point In terms of the distance 

and 31-20

Figure 31-42 shows the time as a function of At the value of for which the time
is a minimum, the slope of the graph of versus is zero:

Differentiating each term in Equation 31-19 with respect to and setting the result
equal to zero, we obtain

31-21

We can compute these derivatives from Equations 31-20. We have

or

where is just and where is the angle of incidence. Thus,
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F I G U R E  3 1 - 3 9 Geometry for deriving
the law of reflection from Fermat’s principle.
The time it takes for the light to travel from
point to the surface and then on to point 
is a minimum for the light striking the surface
at point Pmin .
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Snell’s law from Fermat’s principle. The point
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* The photoelectric effect is discussed in Chapter 34.
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F I G U R E  3 1 - 4 2 Graph of the time it
takes for light to travel from point to point 
versus measured along the refracting
surface. The time is a minimum at the point at
which the angles of incidence and refraction
obey Snell’s law.
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Similarly,

or

31-23

where is the angle of refraction. From Equation 31-21,

31-24

Substituting the results of Equations 31-22 and 31-23 for and gives

or

which is Snell’s law.

31-6 WAVE–PARTICLE DUALITY

The wave nature of light was first demonstrated by Thomas Young, who in 1801
observed the interference pattern of two coherent light sources produced by illu-
minating a pair of narrow, parallel slits with a single source. (Young’s experiment
is presented in Section 3 of Chapter 33.) The wave theory of light culminated in
1860 with Maxwell’s prediction of electromagnetic waves. The particle nature of
light was first proposed by Albert Einstein in 1905 in his explanation of the photo-
electric effect.* A particle of light called a photon has energy that is related to the
frequency and wavelength of the light wave by the Einstein equation

31-25

EINSTEIN’S EQUATION FOR PHOTON ENERGY

where c is the speed of light and is Planck’s constant:

Because energies are often given in electron volts and wavelengths are given in
nanometers, it is convenient to express the combination in We have

or

31-26

The propagation of light is governed by its wave properties, whereas the ex-
change of energy between light and matter is governed by its particle properties.
This wave–particle duality is a general property of nature. For example, the prop-
agation of electrons (and other so-called particles) is also governed by wave prop-
erties, whereas the exchange of energy between the electrons and other particles is
governed by particle properties.
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31-7 LIGHT SPECTRA

Newton was the first to recognize that white light is a mix-
ture of light of all colors of approximately equal intensity.
He demonstrated this by letting sunlight fall on a glass
prism and observing the spectrum of the refracted light
(Figure 31-43). Because the angle of refraction produced by
a glass prism depends on the wavelength of the light, the
refracted beam is spread out in space into its component col-
ors or wavelengths, like a rainbow. Figure 31-44 shows a
spectroscope, which is a device for analyzing the spectra of
light sources. Light from the source passes through a nar-
row slit, traverses a lens that makes the beam parallel, and
falls on a glass prism, where it is refracted twice (once as it
enters the glass and again as it leaves the glass). The re-
fracted beam is viewed with a telescope, which is mounted
on a rotating platform so that the angle of the refracted
beam, which depends on the wavelength of the light, can be
measured. The spectrum of the light source can thus be an-
alyzed in terms of its component wavelengths. The spec-
trum of sunlight has a continuous range of wavelengths and
is therefore called a continuous spectrum. The light emitted
by the atoms in low-pressure gases, such as mercury atoms
in a fluorescent lamp, contains only a discrete set of wave-
lengths. Each wavelength emitted by the source produces a
separate image of the collimating slit in the spectroscope.
Such a spectrum is called a line spectrum. The continuous
visible spectrum and the line spectra from several elements
are shown in the photograph.
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F I G U R E  3 1 - 4 3 Newton demonstrating the spectrum of sunlight
with a glass prism. (Corbis/Bettmann.)

The continuous visible spectrum (top) and the line spectra of (from top to bottom) hydrogen,
helium, barium, and mercury. (Adapted from Eastman Kodak and Wabash Instrument Corporation.)

F I G U R E  3 1 - 4 4 A late
nineteenth-century
spectroscope belonging to
Gustav Kirchhoff. Modern
student spectroscopes usually
have the same general design.
(Corbis/Bettmann.)
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31-8 SOURCES OF LIGHT

LINE SPECTRA

The most common sources of visible light are transitions of the valence electrons in
atoms. Normally, an atom is in its ground state where its electrons are at their low-
est allowed energy levels consistent with the exclusion principle. (The exclusion
principle, which was first proposed by Wolfgang Pauli in 1925 to explain the elec-
tronic structure of atoms, states that no two electrons in an atom can have the same
quantum state.) The lowest energy electrons are tightly bound to the nucleus, form-
ing a stable core of electrons. The one or two electrons in the highest energy states
are much less tightly bound to the nucleus and are relatively easily excited to va-
cant higher energy states. These outer electrons are responsible for the energy
changes in the atom that result in the emission or absorption of visible light.

When an atom collides with another atom or with a free electron, or when the
atom absorbs electromagnetic energy, the valence electrons can be excited to higher
energy states. After a time of approximately the valence
electrons spontaneously make transitions to lower energy states with the emission
of a photon. This process, called spontaneous emission, is random; the photons
emitted from two different atoms are not correlated. The emitted light is thus
incoherent. By conservation of energy, the energy of an emitted photon is the
energy difference between the initial state and the final state of the atom. The
frequency of the light wave is related to the energy by the Einstein equation,

(Equation 31-25). The wavelength of the emitted light is then

31-27

The photon energies corresponding to shortest wavelengths and longest
wavelengths in the visible spectrum are

31-28a

and

31-28b

Because the energy levels in atoms form a discrete set, the emission spectrum of
light from single atoms or from atoms in low-pressure gases consists of a set of
sharp discrete lines that are characteristic of the element. These narrow lines are
broadened somewhat by Doppler shifts, due to the motion of the atom relative to
the observer and by collisions with other atoms; generally, however, if the gas den-
sity is low enough, the lines are narrow and well separated from one another. The
study of the line spectra of hydrogen and other atoms led to the first understand-
ing of the energy levels of atoms.

Continuous spectra When atoms are close together and interact strongly, as in
liquids and solids, the energy levels of the individual atoms are spread out into en-
ergy bands, resulting in essentially continuous bands of energy levels. When the
bands overlap, as they often do, the result is a continuous spectrum of possible en-
ergies and a continuous emission spectrum. In an incandescent material such as a
hot metal filament, electrons are randomly accelerated by frequent collisions, re-
sulting in a broad spectrum of thermal radiation. The rate at which an object radi-
ates thermal energy is proportional to the fourth power of its absolute temperature.*
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* This is known as the Stefan–Boltzmann law. This property and other properties of thermal radiation, such as Wien’s
displacement law, are discussed more fully in Section 20-4.

*
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The radiation emitted by an object at temperatures below approximately is
concentrated in the infrared and is not visible. As an object is heated, the energy ra-
diated extends to shorter and shorter wavelengths. Between approximately 
and enough of the radiated energy is in the visible spectrum for the object to
glow a dull red. At higher and higher temperatures, the object becomes bright red
and then white. For a given temperature, the wavelength at which the emitted
power is a maximum varies inversely with the temperature, a result known as
Wien’s displacement law. The surface of the Sun at emits a continuous
spectrum of approximately constant intensity over the visible range of wavelengths.

ABSORPTION, SCATTERING, SPONTANEOUS EMISSION,
AND STIMULATED EMISSION

When radiation is emitted, an atom (the words atom and molecule are used inter-
changeably in this section) makes a transition from an excited state to a state of
lower energy; when radiation is absorbed, an atom makes a transition from a lower
state to a higher state. When atoms are irradiated with a continuous spectrum of
radiation, the transmitted spectrum shows dark lines corresponding to the ab-
sorption of light at discrete wavelengths. The absorption spectra of atoms were the
first line spectra observed. Because atoms at normal temperatures are in either
their ground states or low-energy excited states, only transitions from a ground
state (or a near ground state) to a more highly excited state are observed. Thus, ab-
sorption spectra usually have far fewer lines than do emission spectra.

Figure 31-45 illustrates several interesting phenomena that can occur when a pho-
ton is incident on an atom. In Figure 31-45a, the energy of the incoming photon is too
small to excite the atom to an excited state, so the atom remains in its ground state
and the photon is said to be scattered. Because the incoming and outgoing or
scattered photons have the same energy, the scattering is said to be elastic. If the
wavelength of the incident light is large compared with the size of the atom, the
scattering can be described in terms of classical electromagnetic theory and is called
Rayleigh scattering after Lord Rayleigh, who worked out the theory in 1871. The
probability of Rayleigh scattering varies as This means that blue light is
scattered much more readily than red light, which accounts for the bluish color of the
sky. The removal of blue light by Rayleigh scattering also accounts for some of the
reddish color of the light transmitted through the atmosphere at sunrise and sunset.

Inelastic scattering, also called Raman scattering, occurs when an incident
photon that has just the right amount of energy is absorbed and the atom under-
goes a transition to a more energetic state. Then, the atom emits a photon as it
undergoes a transition to a less energetic state, whose energy differs from that of
the initial state. If the energy of the scattered photon is less than that of the
incident photon (Figure 31-45b), it is called Stokes Raman scattering. If the
energy of the scattered photon is greater than that of the incident photon (Figure
31-45c), it is called anti-Stokes Raman scattering.

In Figure 31-45d, the energy of the incident photon is just equal to the difference
in energy between the initial state and a more energetic state. The atom absorbs
the photon and makes a transition to the more excited state in a process called
resonance absorption.

In Figure 31-45e, an atom in an excited state spontaneously undergoes a transition
to a less energetic state, in a process called spontaneous emission. Often an atom in
an excited state undergoes transitions to one or more intermediate states as it returns
to the ground state. A common example occurs when an atom is excited by ultravi-
olet light and emits visible light as it returns to its ground state by multiple transi-
tions. This process, often called fluorescence, occurs in a thin film lining on the
inside of the glass tubes of fluorescent lightbulbs. Because the lifetime of a typical
excited atomic energy state is of the order of this process appears to occur
instantaneously. However, some excited states have much longer lifetimes—of the
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F I G U R E  3 1 - 4 5 Photon–atom and
photon–molecule interactions. (a) Elastic
scattering. (b) Stokes Raman scattering.
(c) Anti-Stokes Raman scattering.
(d) Resonance absorption. (e) Spontaneous
emission. (f) Photoelectric effect.
(g) Stimulated emission. (h) Compton
scattering.



order of milliseconds or occasionally
seconds or even minutes. Such a
state is called a metastable state.
Materials that have very long-lived
metastable states and emit light long
after the original excitation are called
phosphorescent materials.

Figure 31-45f illustrates the pho-
toelectric effect, in which the ab-
sorption of the photon ionizes the
atom by causing the emission of an
electron. Figure 31-45g illustrates
stimulated emission. This process
occurs if the atom is initially in an
excited state of energy and the
energy of the incident photon is
equal to where and 
are the energies of higher and lower
energy states, respectively. In this
case, the oscillating electromagnetic
field associated with the incident
photon can stimulate the excited
atom, which then emits a photon in the same direction as the incident photon and
in phase with it. The photons from the stimulated atoms can stimulate the emis-
sion of additional photons propagating in the same direction with the same phase.
This process amplifies the initially emitted photon, yielding a beam of light origi-
nating from different atoms that is coherent. As a result, interference of the light
from a large number of atoms can easily be observed.

Figure 31-45h illustrates Compton scattering, which occurs if the energy of the
incident photon is much greater than the ionization energy. Note that in Compton
scattering, a photon is absorbed and a photon is emitted, whereas in the photo-
electric effect, a photon is absorbed with none emitted.
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EH,
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A collection of minerals in (a) daylight
and in (b) ultraviolet light (sometimes
called black light). Identified by number
in the schematic (c), they are 1,
powerllite; 2, willemite; 3, scheelite; 4,
calcite; 5, calcite and willemite
composite; 6, optical calcite; 7, willemite;
and 8, opal. The change in color is due to
the minerals fluorescing under the
ultraviolet light. In optical calcite, both
fluorescence and phosphorescence occur.
(Paul Silverman/Fundamental Photographs.)

(a)

(b)

(c)

Example 31-7 Resonant Absorption and Emission

The energy level of the first excited state of a potassium atom is above the energy
level of the ground state. The energy levels and of the second and third excited states
of a potassium atom are and respectively, above the ground state energy 
(a) What is the longest wavelength of radiation that can be absorbed by a potassium atom in
its ground state? Calculate the wavelength of the emitted photon when the atom makes a
transition from (b) the third excited state to the ground state and from (c) the third ex-
cited state to the second excited state 

PICTURE The ground state and the first three excited energy levels are shown in Figure 31-46.
(a) Because the wavelength is related to the energy of a photon by longer wave-
lengths correspond to smaller energy differences, and the smallest energy difference for a
transition originating at the ground state is from the ground state to the first excited state.
(b) The wavelengths of the photons emitted when the atom transitions to lower energy states
are related to the energy differences by 

SOLVE

l � hc> ƒ¢E ƒ .

l � hc>¢E,

(E2).(E3)
(E3)

E0 .3.07 eV,2.61 eV
E3E2E0

1.62 eVE1

(a) Calculate the wavelength of radiation absorbed in a transition
from the ground state to the first excited state:

 765 nml �
hc
¢E

�
hc

E1 � E0

�
1240 eV # nm
1.62 eV � 0

�

(b) For the transition from to the ground state, the photon
energy is Calculate the wavelength of radiation
emitted in this transition:

E3 � E0 � E3 .
E3

 404 nml �
hc

ƒ¢E ƒ
�

hc
E3 � E0

�
1240 eV # nm
3.07 eV � 0

�

E3 = 3.07 eV
E2 = 2.61 eV

E1 = 1.62 eV

E0 = 0
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LASERS

The laser (light amplification by stimulated emission of ra-
diation) is a device that produces a strong beam of coher-
ent photons by stimulated emission. Consider a system
consisting of atoms that have a ground state of energy 
and an excited metastable state of energy If the atoms
are irradiated by photons of energy those atoms
in the ground state can absorb a photon and make the
transition to state whereas those atoms already in
the excited state may be stimulated to decay back to the
ground state. The relative probabilities of absorption and
stimulated emission, first worked out by Einstein, are equal. Ordinarily, nearly all the
atoms of the system at normal temperature will initially be in the ground state, so ab-
sorption will be the main effect. To produce more stimulated-emission transitions
than absorption transitions, we must arrange to have more atoms in the excited state
than in the ground state. This condition, called population inversion, can be achieved
by a method called optical pumping in which atoms are pumped up to levels of en-
ergy greater than by the absorption of an intense auxiliary radiation. The atoms
then decay down to state either by spontaneous emission or by nonradiative tran-
sitions, such as those transitions due to collisions.

Figure 31-47 shows a schematic diagram of the first laser, a ruby laser built by
Theodore Maiman in 1960. The laser consists of a ruby rod a few centimeters long
surrounded by a helical gaseous flashtube that emits a broad spectrum of light. The
ends of the ruby rod are flat and perpendicular to the axis of the rod. Ruby is a
transparent crystal of Al2O3 that has a small amount (about 0.05 percent) of
chromium. It appears red because the chromium ions have strong absorption
bands in the blue and green regions of the visible spectrum, as
shown in Figure 31-48. The energy levels of chromium—impor-
tant for the operation of a ruby laser–are shown in Figure 31-49.
When the flashtube is fired, there is an intense burst of light that
lasts several milliseconds. Photon absorption excites many of the
chromium ions to the bands of energy levels indicated by the
shading in Figure 31-49. The excited chromium ions then rapidly
drop down to a closely spaced pair of metastable states labeled

in the figure. The metastable states are approximately 1.79 eVE1

(Cr3�)

E1

E1

E1 ,

E1 � E0 ,
E1 .

E0
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CHECK The Part (b) result is smaller than the Part (a) result. This result is expected because
the more energy a photon has, the shorter the wavelength.

TAKING IT FURTHER The wavelength of radiation emitted in the transition from to the
ground state is the same as the wavelength for radiation absorbed in the transi-
tion from the ground state to This transition and the transition from to the ground state
both result in photons in the visible spectrum. The photon emitted during the transition from

to is in the infrared region of the electromagnetic spectrum.E2E3

E3E1 .
765 nm,E0

E1

300 400 500 600 700

A
bs

or
pt

io
n

λ, nm

F I G U R E  3 1 - 4 8 Absorption versus
wavelength for in ruby. Ruby appears
red because of the strong absorption of green
and blue light by the chromium ions.
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Beam

(c) For the transition from to the photon energy is 
Calculate the wavelength of radiation emitted in this transition:

E3 � E2 .E2 ,E3
2.70 mml �

hc

ƒ¢E ƒ
�

hc
E3 � E2

�
1240 eV # nm

3.07 eV � 2.61 eV
�

F I G U R E  3 1 - 4 7 Schematic diagram of the first ruby laser.
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F I G U R E  3 1 - 4 9 Energy levels in a ruby laser. To make the population
of the metastable states greater than that of the ground state, the ruby
crystal is subjected to intense radiation that contains energy in the green
and blue wavelengths. This excites atoms from the ground state to the
bands of energy levels indicated by the shading, from which the atoms
decay to the metastable states by nonradiative transitions. Then, by
stimulated emission, the atoms undergo the transition from the metastable
states to the ground state.



above the ground state. The expected lifetime for a chromium ion to remain in one
of the metastable states is about after which the chromium ion spontaneously
emits a photon and decays to the ground state. A millisecond is a long time for an
atomic process. Consequently, if the flash is intense enough, the number of
chromium ions populating the two metastable states will exceed the population
of chromium ions in the ground state. It follows that during the time the flashtube is
firing, the populations of ions in the ground state and in the metastable states are
inverted. When the chromium ions in the state decay to the ground state by spon-
taneous emission, they emit photons of energy and wavelength 
The photons have just the right energy to stimulate chromium ions in the metastable
states to emit photons of the same energy (and wavelength) as they undergo the
transition to the ground state. The photons also have just the right energy to stimu-
late chromium ions in the ground state to absorb a photon as they undergo the tran-
sition to one of the metastable states. These processes are competing processes, but
the stimulated emission process dominates as long as the population of chromium
ions in the metastable states exceeds the population in the ground state.

In the ruby laser, one end of the crystal is fully silvered, so it is 100 percent* reflec-
ting; the other end of the crystal, called the output coupler, is partially silvered, leav-
ing it about 85 percent reflecting. When photons traveling parallel to the axis of the
crystal strike the silvered ends, all are reflected from the back face and 85 percent are
reflected from the front face, with 15 percent of the photons escaping through the
partially silvered front face. During each pass through the crystal, the photons stim-
ulate more and more atoms so that an intense beam is emitted from the partially sil-
vered end (Figure 31-50). Because the duration of each flash of the flashtube is be-
tween two and three seconds, the laser beam is produced in pulses lasting a few mil-
liseconds. Modern ruby lasers generate intense light beams with energies ranging
from to per pulse. The beam can have a diameter as small as and an
angular divergence as small as to about 

Population inversion is achieved somewhat differently in the continuous
helium–neon laser. The energy levels of helium and neon that are important for the
operation of the laser are shown in Figure 31-51. Helium has an excited energy state

that is above its ground state. Helium atoms are excited to state by
an electric discharge. Neon has an excited state that is above its ground
state. This is just above the first excited state of helium. The neon atoms are
excited to state by collisions with excited helium atoms. The kinetic energy of the
helium atoms provides the extra of energy needed to excite the neon atoms.
Another excited state of neon exists that is above its ground state
and below state Because state is normally unoccupied, populationE1 NeE2 Ne .1.96 eV

18.70 eVE1 Ne

0.05 eV
E2 Ne

0.05 eV
20.66 eVE2 Ne

E1 He20.61 eVE1 He

7 mrad.0.25 mrad
1 mm100 J50 J

694.3 nm.1.79 eV
E1

5 ms,
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F I G U R E  3 1 - 5 0 Buildup of a
photon beam in a laser. (a) When
irradiated, some atoms spontaneously
emit photons, some of which travel to
the right and stimulate other atoms to
emit photons parallel to the axis of the
crystal. (b) Of the four photons that
strike the right face, one is transmitted
and three are reflected. As the reflected
photons traverse the lasing material,
they stimulate other atoms to emit
photons, and the beam builds up. By
the time the beam reaches the right face
again (c), it comprises many photons.
(d) Some of the photons are
transmitted, and the rest of the photons
are reflected.
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F I G U R E  3 1 - 5 1 Energy levels of helium
and neon that are important for the
helium–neon laser. The helium atoms are
excited by electrical discharge to an energy
state above the ground state. They
collide with neon atoms, exciting some neon
atoms to an energy state above the
ground state. Population inversion is thus
achieved between this level and one 
below it. The spontaneous emission of
photons of energy stimulates other
atoms in the upper state to emit photons of
energy 1.96 eV.

1.96 eV

1.96 eV

20.66 eV

20.61 eV

* In actuality, the light is only 99.7 percent reflected by a “fully silvered” end. In addition, the reflective coating consists
of multiple dielectric layers, not silver.
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Rear

Flat mirror:
100% reflective

Laser tube Front Parallel
laser beam

Concave mirror:
reflects 99%, transmits 1%

F I G U R E  3 1 - 5 2 Schematic drawing of a helium–neon laser. The use of a concave mirror rather than a second plane mirror
makes the alignment of the mirrors less critical than it is for the ruby laser. The concave mirror on the right also serves as a lens
that focuses the emitted light into a parallel beam.

inversion between states and is obtained immediately. The stimulated emis-
sion that occurs between these states results in photons of energy and wave-
length which produces a bright red light. After stimulated emission, the
neon atoms in state decay to the ground state by spontaneous emission.

Note that stimulated emission involves transitions between two excited states of
the neon atom in the helium–neon laser, whereas stimulated emission involves tran-
sitions between an excited state and the ground state of the chromium ion in the ruby
laser. For stimulated emission between an excited state and a ground state, popula-
tion inversion is difficult to achieve because more than half the atoms in the ground
state must be excited. However, for stimulated emission between two excited states,
population inversion is easily achieved because the state after stimulated emission is
not the ground state but an excited state that is normally unpopulated.

Figure 31-52 shows a schematic diagram of a helium–neon laser commonly
used for physics demonstrations. The helium–neon laser consists of a gas tube that
contains 15 percent helium gas and 85 percent neon gas. A totally reflecting flat
mirror is mounted at one end of the gas tube and a 99 percent reflecting concave
mirror is placed at the other end of the gas tube. The concave mirror focuses par-
allel light at the flat mirror and also acts as a lens that transmits part of the light,
so that the light emerges as a parallel beam.

A laser beam is coherent, very narrow, and intense. Its coherence makes the laser
beam useful in the production of holograms, which we discuss in Chapter 33. The
precise direction and small angular spread of the laser beam make it useful as a sur-
gical tool for destroying cancer cells or reattaching a detached retina. Lasers are also
used by surveyors for precise alignment over large distances. Distances can be ac-
curately measured by reflecting a laser pulse from a mirror and measuring the time
the pulse takes to travel to the mirror and back. The distance to the moon has been
measured to within a few centimeters using an array of mirrors placed on the moon
for that purpose. Laser beams are also used in fusion research. An intense laser
pulse is focused on tiny pellets of deuterium–tritium in a combustion chamber.
The beam heats the pellets to temperatures of the order of in a very short time,
causing the deuterium and tritium to fuse and release energy.

Laser technology is advancing so quickly that it is possible to mention only a few
of the recent developments. In addition to the ruby laser, many other solid-state
lasers exist that have output wavelengths which range from approximately 
to Lasers that generate more than of continuous power have been
constructed. Pulsed lasers can now deliver nanosecond pulses of power exceeding

Various gas lasers can now produce beams of wavelengths that range from
the far infrared to the ultraviolet. Semiconductor lasers (also known as diode lasers
or junction lasers) have shrunk in just 10 years from the size of a pinhead to mere
billionths of a meter. Liquid lasers that use chemical dyes can be tuned over a range
of wavelengths (approximately for continuous lasers and more than 
for pulsed lasers). A relatively new laser, the free-electron laser, extracts light energy
from a beam of free electrons moving through a spatially varying magnetic field.

170 nm70 nm

1014 W.

1 kW3900 nm.
170 nm

108 K

E0 NeE1 Ne

632.8 nm,
1.96 eV

E1 NeE2 Ne
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The free-electron laser has the potential to have very high power and large effi-
ciency and can be tuned over a large range of wavelengths. There appears to be no
limit to the variety and uses of modern lasers.«

(b) (c)

(d) (e)

(a) Beams from a krypton laser and an argon laser, split into their
component wavelengths. In these gas lasers, krypton and argon atoms
have been stripped of multiple electrons, forming positive ions. The
light-emitting energy transitions occur when excited electrons in the ions
decay from one upper energy level to another. Here, several energy
transitions are occurring at once, each corresponding to emitted light of a
different wavelength. (b) A femtosecond pulsed laser. By a technique
known as modelocking, different excited modes within a laser’s cavity can
be made to interfere with one another and create a series of ultrashort
pulses, which are picoseconds long, that correspond to the time it takes
light to bounce back and forth once within the cavity. Ultrashort pulses
have been used as probes to study the behavior of atoms and molecules
during chemical reactions. (c) A carbon dioxide laser takes just 2 minutes

to cut out a steel saw blade. (d) A groove etched in the zona pellucida
(protective outer covering) of a mouse egg by a laser scissor facilitates
implantation. This technique has already been applied in human fertility
therapies. Several effects contribute to the ability of the finely focused
laser to cut on such a delicate scale—photon absorption may heat the
target, break molecular bonds, or drive chemical reactions. (e) The so-
called nanolasers shown are semiconductor disks mere microns in
diameter and fractions of a micron in width. These tiny lasers work like
their larger counterparts. Exploiting quantum effects that prevail on the
microscopic scale, nanolasers promise great efficiency and they are being
explored as ultrafast, low-energy switching devices. ((a, c) Chuck O’rear/
West Light. (b) Courtesy of Ahmed H. Zewail. (d) Michael W. Berns/Scientific
American. (e) David Scharf.)
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Physics Spotlight

Optical Tweezers and Vortices: Light at Work

Light pressure has been used to measure the force exerted by biological molecules,* to
unfold and refold proteins,† and even to assist in the trapping and study of atoms.‡

Using the radiation pressure of light to hold microscopic particles in place is called op-
tical trapping. Some optical traps, often called optical tweezers, can move and manipu-
late particles.

In the 1970s, a research group led by Arthur Ashkin at Bell Laboratories used
radiation pressure of light to levitate droplets of water from 1 to 40 micrometers in di-
ameter.# After many years of experimentation, this group demonstrated that a single
laser could control the position of a virus in a solution on a microscope slide.°
Molecular biologists and microbiologists quickly began to use optical tweezers in their
studies.

Often, optical trapping is done using lasers that transmit light which has a wave-
length near 1000 nanometers,§ because many biological materials are relatively trans-
parent to such near-infrared wavelengths. The liquid used for holding biological spec-
imens absorbs scattered light near this wavelength.¶,** (This means that the trapped
object is less likely to be cooked by the light.) Other wavelengths of light may be used,
depending on the items to be trapped. The force used in optical traps for examining
biological molecules is a few piconewtons.††

Optical trapping works both by light pressure and by taking advantage of the gradient of light intensity of a tightly focused
laser beam. If a beam of light shines through a small translucent spherical object within the beam, the light will refract. The av-
erage of the pressure of refraction of an intense beam will act to keep the object centered in the beam. The more tightly the beam
of light is focused, the closer a particle is trapped along the beam near the focus by the strength of the gradient of light inten-
sity.‡‡,## This allows for positional control of an object in three dimensions. During the study of biological molecules, a molecule
is usually attached to a polystyrene sphere that can be anywhere from to in diameter. Moving the sphere allows
the molecule to be stretched, folded, and brought into focus with the help of optical tweezers. Much larger objects, such as entire
cells, can also be moved by optical tweezers.°°

Specialized digital lenses can give laser light carefully calculated twists. The twisted light is called an optical vortex. Although
they have many other potential uses, optical vortices can be used as specialized optical tweezers that have angular momentum.§§

Different twists have different amounts of angular momentum and can be used to spin and rotate particles. Optical vortices have
even been used to spin particles into one another to combine particles.

Physicists at the University of Chicago have come up with a method of generating hundreds of different optical tweezers from
the same beam by passing laser beams through a digitally controlled lens.¶¶ These tweezers can include optical vortices that exert
different amounts of torque on particles. The holographic optical tweezers (HOT) method of creating optical vortices has been
patented for manipulating particles, and for pumping, mixing, and sorting fluids and objects on a microscopic scale.***,††† Makers
of miniature machines are enthusiastic about this technology because, unlike delicate tiny machines, light does not wear out.‡‡‡

2 mm100 nm

Silicon spheres in water are caught in a
three by three array of optical vortices.
The optical vortices trap the spheres and
exert torques on them. (Courtesy David
G. Grier, from E. Curtis, B. A. Koss and D. G.
Grier, “Dynamic holographic optical tweezers,”
Optics Communications 207, 169-175 (2002).)

* Mehta, A. D., et al., “Single-Molecule Biomechanics with Optical Methods.” Science, Mar. 12, 1999, Vol. 283, No. 5408, pp. 1689–1695.
† Cecconi, C., et al., “Direct Observation of the Three-State Folding of a Single Protein Molecule.” Science, Sept. 23, 2005, Vol. 309, No. 5743, pp. 2057–2060.
‡ Nagel, B., “Presentation Speech for 1997 Nobel Prize in Physics.” Les Prix Nobel. The Nobel Prizes 1997, Ed. Tore Frängsmyr [Nobel Foundation], Stockholm, 1998, at http://nobel-

prize.org/nobel_prizes/physics/laureates/1997/presentation-speech.html As of Dec. 2006.
# Ashkin, A., and Dziedzic, J., M., “Optical Levitation of Liquid Drops by Radiation Pressure.” Science, Mar. 21, 1975, Vol. 187, No. 4181, pp. 1073–1075.
° Ashkin, A., and Dziedzic, J., M., “Optical Trapping and Manipulation of Viruses and Bacteria.” Science, Mar. 20, 1987, Vol. 235, No. 4795, pp. 1517–1520.
§ Mohanty, S. K., Dasgupta, R., and Gupta, P. K., “Three-Dimensional Orientation of Microscopic Objects Using Combined Elliptical and Point Optical Tweezers.” Applied Physics B,

Dec. 2005, Vol. 81, No. 8, pp. 1063–1066.
¶ Molloy, J. E., and Padgett, M. E., “Lights, Action: Optical Tweezers.” Contemporary Physics, Jul./Aug. 2002, Vol. 43, No. 4, pp. 241–258.
** Block, S. M., “Construction of Optical Tweezers.” Cells: A Laboratory Manual. Vol. 2, Sect. 7, Eds. D. L. Spector, R. D. Goldman, and L. A. Leinwand. Cold Spring Harbor: Cold Spring

Harbor Laboratory Press, 1998. At http://www.cshlpress.com/chap_cells.tpl#intro As of Dec. 2006.
†† Mehta, A. D., et al., op. cit.
‡‡ Block, S. M., op. cit.
## Molloy, J. E., and Padgett, M. J., op. cit.
°° Pool, R., “Trapping with Optical Tweezers.” Science, Aug. 26, 1988, Vol. 241, No. 4869, p. 1042.
§§ Dholakia, K., Spalding, G., and MacDonald, M., “Optical Tweezers: The Next Generation.” Physics World, Oct. 2002, Vol. 15, No. 9, pp. 31–35.
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TOPIC RELEVANT EQUATIONS AND REMARKS

1. Speed of Light The SI unit of length, the meter, is defined so that the speed of light in vacuum is exactly

31-1

in a transparent medium 31-3

where is the index of refraction.

2. Reflection and Refraction When light is incident on a surface separating two media in which the speed of light differs,
part of the light energy is transmitted and part of the light energy is reflected.

Law of reflection The reflected ray lies in the plane of incidence and makes an angle with the normal that is
equal to the angle of incidence.

31-4

Reflected intensity, normal incidence 31-7

Index of refraction 31-3

Law of refraction (Snell’s law) 31-5b

Total internal reflection When light is traveling in a medium that has an index of refraction and is incident on the
boundary of a second medium that has a lower index of refraction the light is totally
reflected if the angle of incidence is greater than the critical angle given by

Critical angle 31-8

Dispersion The speed of light in a medium, and therefore the index of refraction of that medium, de-
pends on the wavelength of light. Because of dispersion, a beam of white light incident on a
refracting prism is dispersed into its component colors. Similarly, the reflection and refrac-
tion of sunlight by raindrops produce a rainbow.

3. Polarization Transverse waves can be polarized. The four phenomena that produce polarized electro-
magnetic waves from unpolarized waves are (1) absorption, (2) scattering, (3) reflection, and
(4) birefringence.

Malus’s law When two polarizers have their transmission axes at an angle the intensity transmitted by
the second polarizer is reduced by the factor 

31-16

4. Huygens’s Construction Each point on a primary wavefront serves as the source of spherical secondary wavelets that
advance with a speed and frequency equal to that of the primary wave. The primary wave-
front at some later time is the envelope of these wavelets.

5. Wave-Particle Duality Light propagates like a wave, but interacts with matter like a particle.

Photon energy 31-25

Planck’s constant

31-26hc � 1240 eV # nmhc

h � 6.626 � 10�34 J # s � 4.136 � 10�15 eV # s

E � hf �
hc
l

I � I0 cos2u

cos2u:
u,

n1 sinuc � n2 sin90° n1 
 n2

uc

n2 	 n1 ,
n1

n1 sinu1 � n2 sinu2

n �
c
v

I � an1 � n2

n1 � n2

b 2

I0

uœ
1 � u1

uœ
1

n

v �
c
n

v

c � 299 792 458 m>s
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6. Emission of Light Light is emitted when a valence electron makes a transition from an excited state to a state
of lower energy.

Line spectra Atoms in dilute gases emit a discrete set of wavelengths called a line spectrum. The photon
energy equals the difference in energy of the initial and final states of the atom.

Continuous spectra Atoms in high-density gases, liquids, or solids have continuous bands of energy levels, so
they emit a continuous spectrum of light. Thermal radiation is visible if the temperature of
the emitting object is above approximately 

Spontaneous emission An atom in an excited state will spontaneously make a transition to a lower state with the
emission of a photon. This process is random, with a characteristic lifetime of about 
The photons from two or more atoms are not correlated, so the light is incoherent.

Stimulated emission Stimulated emission occurs if an atom is initially in an excited state and a photon of energy
equal to the energy difference between that state and a lower state is incident on the atom.
The oscillating electromagnetic field of the incident photon stimulates the excited atom to
emit another photon in the same direction and in phase with the incident photon. The emit-
ted light is coherent with the incident light.

7. Visible Light The human eye is sensitive to electromagnetic radiation that has wavelengths from approx-
imately (violet) to (red). The photon energies range from approximately

to A uniform distribution of wavelengths, such as the wavelengths emitted by
the Sun, appears white to our eyes.

8. Lasers A laser produces an intense, coherent, and narrow beam of photons as the result of stimu-
lated emission. The operation of a laser depends on population inversion, in which there are
more atoms in an excited state than in the ground state or a lower state.

3.1 eV.1.8 eV
700 nm400 nm

10�8 s.

600°C.

E � hf � hc>l

CONCEPTUAL PROBLEMS

1 • A ray of light reflects from a plane mirror. The
angle between the incoming ray and the reflected ray is 
What is the angle of reflection? (a) (b) (c) (d) Not
enough information is given to determine the reflection
angle. SSM

35°,140°,70°,
70°.

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

TOPIC RELEVANT EQUATIONS AND REMARKS

Answers to Concept Check

31-1 There are 720 teeth, but there are also 720 gaps, so the
width of a tooth is less than of the circumference of
the wheel. Consequently, the wheel actually has to
rotate through less than rev for the light from the
distant mirror to be again observed.

1
720

1
720

2 • A ray of light in air is incident on the surface of a
piece of glass. The angle between the normal to the surface and
the incident ray is and the angle between the normal and
the refracted ray is . What is the angle between the incident
ray and the refracted ray? (a) (b) (c) (d) 68°40°,28°,12°,

28°
40°,

Answers to Practice Problems

31-1 (a) (b)

31-2 each way1.28 s

3.05 � 108 m>s4.57 � 106 km
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10 • Let be the angle between the transmission axes of two
polarizing sheets. Unpolarized light of intensity is incident on the
first sheet. What is the intensity of the light transmitted through
both sheets? (a) (b) (c) (d)
(e) (f) none of the above

11 •• Draw a diagram to explain how Polaroid sunglasses
reduce glare from sunlight reflected from a smooth horizontal sur-
face, such as the surface found on a pool of water. Your diagram
should clearly indicate the direction of polarization of the light as it
propagates from the Sun to the reflecting surface and then through
the sunglasses into the eye.

12 • BIOLOGICAL APPLICATION Why is it far less dangerous to
stand in front of an intense beam of red light than in front of a very
low-intensity beam of gamma rays?

13 • Three energy states of an atom are A, B, and C. State B is
above state A and state C is above state B. Which

atomic transition results in the emission of the shortest wavelength
of light? (a) (b) (c) (d)

14 • In Problem 13, if the atom is initially in state A, which
transition results in the emission of the longest wavelength of light?
(a) (b) (c) (d)

15 • What role does the helium play in a helium–neon
laser?

16 • When a beam of visible white light that passes through
a gas of atomic hydrogen at room temperature is viewed with a
spectroscope, dark lines are observed at the wavelengths of the
hydrogen atom emission series. The atoms that participate in the
resonance absorption then emit light of same wavelength as they
return to the ground state. Explain why the observed spectrum
nevertheless exhibits pronounced dark lines.

17 • Which of the following types of light would have the
highest energy photons? (a) red, (b) infrared, (c) blue, (d) ultraviolet

ESTIMATION AND 
APPROXIMATION

18 • Estimate the time required for light to make the round
trip during Galileo’s experiment to measure the speed of light.
Compare the time of the round trip to typical human response
times. How accurate do you think this experiment is?

19 • Estimate the time delay in receiving a light on your retina
when you are wearing eyeglasses compared to when you are not
wearing your eyeglasses.

20 •• BIOLOGICAL APPLICATION Estimate the number of pho-
tons that enter your eye if you look for a tenth of a second at the
Sun. What energy is absorbed by your eye during that time, as-
suming that all the photons are absorbed? The total power output
of the Sun is 

21 •• Römer was observing the eclipses of Jupiter’s moon Io
with the hope that they would serve as a highly accurate clock that
would be independent of longitude. (Prior to GPS, such a clock was
needed for accurate navigation.) Io eclipses (enters the umbra of
Jupiter’s shadow) every Assuming an eclipse of Io is ob-
served on Earth on June 1 at midnight when Earth is at location A

42.5 h.

4.2 � 102 W.

SSM

SSM

B S AA S C,B S C,A S B,

A S CC S A,C S B,B S A,

3.00 eV2.0 eV

SSM

(I cosu)>4,
I cosu,(I cos2u)>4,(I cos2u)>2,I cos2u,

I
u

S E
D

C

B
A L

Shore

Water Sand
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3 • ENGINEERING APPLICATION During a physics experi-
ment, you are measuring refractive indices of different transparent
materials using a red helium–neon laser beam. For a given angle of
incidence, the beam has an angle of refraction equal to in mate-
rial A, and an angle of refraction equal to in material B. Which
material has the larger index of refraction? (a) A, (b) B, (c) The in-
dices of refraction are the same. (d) You cannot determine the rela-
tive magnitudes of the indices of refraction from the data given.

4 • A ray of light passes from air into water, striking the sur-
face of the water at an angle of incidence of Which, if any, of the
following four quantities changes as the light enters the water:
(a) wavelength, (b) frequency, (c) speed of propagation, (d) direction
of propagation, (e) none of the above?

5 • Earth’s atmosphere decreases in density as the altitude
increases. As a consequence, the index of refraction of the atmos-
phere also decreases as altitude increases. Explain how one can see
the Sun when it is below the horizon. (The horizon is the extension
of a plane that is tangent to the Earth’s surface.) Why does the set-
ting Sun appear flattened?

6 • A physics student playing pocket billiards wants to
strike her cue ball so that it hits a cushion and then hits the eight
ball squarely. She chooses several points on the cushion and then
measures the distances from each point to the cue ball and to the
eight ball. She aims at the point for which the sum of these dis-
tances is least. (a) Will her cue ball hit the eight ball? (b) How is her
method related to Fermat’s principle? Neglect any effects due to
ball rotation.

7 • A swimmer at point S in Figure 31-53 develops a leg
cramp while swimming near the shore of a calm lake and calls for
help. A lifeguard at point hears the call. The lifeguard can run

and swim She knows physics and chooses a path
that will take the least time to reach the swimmer. Which of the
paths shown in the figure does the lifeguard take? SSM

3.0 m>s.9.0 m>s L

45°.

26°
28°

8 • Material A has a higher index of refraction than material B.
Which material has the larger critical angle for total internal reflec-
tion when the material is in air? (a) A, (b) B, (c) The angles are the
same. (d) You cannot compare the angles based on the data given.

9 • BIOLOGICAL APPLICATION A human eye perceives color
using a structure which is called a cone that is located on the retina.
Three types of molecules compose these cones and each type of
molecule absorbs either red, green, or blue light by resonance ab-
sorption. Use this fact to explain why the color of an object that ap-
pears blue in air appears blue underwater, in spite of the fact that
the wavelength of the light is shortened in accordance with
Equation 31-6. SSM



(as shown in Figure 31-54), predict the expected
time of observation of an eclipse one-quarter of a
year later when Earth is at location assuming
(a) the speed of light is infinite and (b) the speed of
light is .

22 •• If the angle of incidence is small enough,
the small angle approximation may be used
to simplify Snell’s law of refraction. Determine the
maximum value of the angle that would make the
value for the angle differ by no more than one percent
from the value for the sine of the angle. (This approx-
imation will be used in connection with image forma-
tion by spherical surfaces in Chapter 32.)

THE SPEED OF LIGHT

23 • Mission Control sends a brief wake-up call to astronauts
in a spaceship that is far from Earth. At a time after the call is
sent, Mission Control can hear the groans of the astronauts. How
far from Earth is the spaceship? (a) (b)
(c) (d) (e) The spaceship is on the moon.

24 •• ENGINEERING APPLICATION The distance from a point on
the surface of Earth to a point on the surface of the moon is mea-
sured by aiming a laser light beam at a reflector on the surface of the
moon and measuring the time required for the light to make a round
trip. The uncertainty in the measured distance is related to the
uncertainty in the measured time by If the time in-
tervals can be measured to (a) find the uncertainty of the
distance. (b) Estimate the percentage uncertainty in the distance.

25 •• Ole Römer discovered the finiteness of the speed of light
by observing Jupiter’s moons. Approximately how sensitive would
the timing apparatus need to be in order to detect a shift in the pre-
dicted time of the moon’s eclipses that occur when the moon hap-
pens to be at perigee and those that occur when the
moon is at apogee Assume that an instrument
should be able to measure to at least one-tenth the magnitude of the
effect it is to measure.

REFLECTION AND REFRACTION

26 • Calculate the fraction of light energy reflected from an
air–water interface at normal incidence.

27 • A ray of light is incident on one of two mirrors that are
set at right angles to each other. The plane of incidence is perpen-
dicular to both mirrors. Show that after reflecting from each mirror,
the ray will emerge traveling in the direction opposite to the inci-
dent direction, regardless of the angle of incidence.

28 •• SPREADSHEET (a) A ray of light in air is incident on an
air–water interface. Using a spreadsheet or graphing program, plot
the angle of refraction as a function of the angle of incidence from

to (b) Repeat Part (a), but for a ray of light in water that is
incident on a water–air interface. [For Part (b), there is no reflected
ray for angles of incidence that are greater than the critical angle.]

29 •• The red light from a helium–neon laser has a wavelength
of in air. Find the (a) speed, (b) wavelength, and (c) fre-
quency of helium–neon laser light in air, water, and glass. (The
glass has an index of refraction equal to 1.50.)

632.8 nm

90°.0°

SSM

(4.06 � 105 km)?
(3.63 � 105 km)

�1.00 ns,
¢x � 1

2 c ¢t.¢t
¢x

45 � 108 m,30 � 108 m,
15 � 108 m,7.5 � 108 m,

5.0 s

sinu � u

2.998 � 108 m>s B,
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30 •• The index of refraction for silicate flint glass is 1.66 for
violet light that has a wavelength in air equal to and for
red light that has a wavelength in air equal to A ray of

red light and a ray of 400-nm-wavelength vio-
let light both have angles of refraction equal to upon entering
the glass from air. (a) Which is greater, the angle of incidence of the
ray of red light or the angle of incidence of the ray of violet light?
Explain your answer. (b) What is the difference between the angles
of incidence of the two rays?

31 •• A slab of glass that has an index of refraction of 1.50 is
submerged in water that has an index of refraction of 1.33. Light
in the water is incident on the glass. Find the angle of refraction
if the angle of incidence is (a) (b) and (c)

32 •• Repeat Problem 31 for a beam of light initially in the
glass that is incident on the glass–water interface at the same angles.

33 •• A beam of light in air strikes a glass slab at normal inci-
dence. The glass slab has an index of refraction of 1.50. (a) Appro-
ximately what percentage of the incident light intensity is transmit-
ted through the slab (in one side and out the other)? (b) Repeat
Part (a) if the glass slab is immersed in water.

34 •• This problem is a refraction analogy. A band is marching
down a football field with a constant speed About midfield, the
band comes to a section of muddy ground that has a sharp boundary
making an angle of with the line, as shown in Figure 31-55.
In the mud, each marcher moves at a speed equal to in a direction
perpendicular to the row of marchers they are in. (a) Diagram how
each line of marchers is bent as it encounters the muddy section of
the field so that the band is eventually marching in a different direc-
tion. Indicate the original direction by a ray and the final direction by
a second ray. (b) Find the angles between these rays and the line nor-
mal to the boundary. Is their direction of motion “bent” toward the
normal or away from it? Explain your answer in terms of refraction.

35 •• In Figure 31-56, light is initially in a medium that has an

1
2 v1

50-yd30°

v1 .

SSM30°.45°,60°,

30°
700-nm-wavelength

700 nm.
1.61400 nm

Earth

Sun

B

C

D

A

Jupiter

Io
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Marching
band

50-yd
line

30°
Mud
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36 •• On a safari, you are spearfishing while wading in a river.
You observe a fish gliding by you. If your line of sight to the fish is

below the horizontal in air, and assuming the spear follows a
straight-line path through the air and water after it is released, de-
termine the angle below the horizontal that you should aim your
spear gun in order to catch dinner. Assume the spear gun barrel is

above the water surface, the fish is below the surface,
and the spear travels in a straight line all the way to the fish.

37 ••• You are standing on the edge of a swimming pool and
looking directly across at the opposite side. You notice that the bot-
tom edge of the opposite side of the pool appears to be at an angle
of below the horizontal. However, when you sit on the pool
edge, the bottom edge of the opposite side of the pool appears to be
at an angle of only below the horizontal. Use these observations
to determine the width and depth of the pool. Hint: You will need to
estimate the height of your eyes above the surface of the water when stand-
ing and sitting.

38 ••• Figure 31-57 shows a beam of light incident on a glass
plate of thickness and index of refraction (a) Find the angle of
incidence so that the separation b between the ray reflected from the
top surface and the ray reflected from the bottom surface and exit-
ing the top surface is a maximum. (b) What is this angle of incidence
if the index of refraction of the glass is 1.60? (c) What is the separa-
tion of the two beams if the thickness of the glass plate is 4.0 cm?

n.d

14°

28°

1.20 m1.50 m

64.0°

40 • A glass surface has a layer of water
on it. Light in the glass is incident on the glass–water

interface. Find the critical angle for total internal reflection. 

41 • A point source of light is located below the surface
of a large pool of water. Find the area of the largest circle on the
pool’s surface through which light coming directly from the source
can emerge.

42 •• Light traveling in air strikes the largest face of an
isosceles-right-triangle prism at normal incidence. What is the
speed of light in this prism if the prism is just barely able to produce
total internal reflection?

43 •• A point source of light is located at the bottom of a steel
tank, and an opaque circular card of radius is placed hori-
zontally over it. A transparent fluid is gently added to the tank so that
the card floats on the fluid surface with its center directly above the
light source. No light is seen by an observer above the surface until
the fluid is deep. What is the index of refraction of the fluid?

44 •• ENGINEERING APPLICATION An optical fiber allows rays
of light to propagate long distances by using total internal reflec-
tion. Optical fibers are used extensively in medicine and in digital
communications. As shown in Figure 31-58 the fiber consists of a
core material that has an index of refraction and radius b sur-
rounded by a cladding material that has an index of refraction

The numerical aperture of the fiber is defined as 
where is the angle of incidence of a ray of light that impinges
on the center of the end of the fiber and then reflects off the core-
cladding interface just at the critical angle. Using the figure as
a guide, show that the numerical aperture is given by

assuming the ray is initially in air. Hint: Use of the
Pythagorean theorem may be required.
sinu1 � 2n2

2 � n2
3

u1

sinu1 ,n3 	 n2 .

n2

5.00 cm

6.00 cm

5.0 m

(n � 1.33)
(n � 1.50)

θ 1

θ 2

θ 3

n1

n2

n3
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d

bAir

Glass

Air
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θcθ2

θ1 a

n1
bc

Incident ray
n3

n2

F I G U R E  3 1 - 5 8 Problems 44, 45, and 46

45 •• ENGINEERING APPLICATION Find the maximum angle of
incidence of a ray that would propagate through an optical fiber
that has a core index of refraction of 1.492, a core radius of

and a cladding index of 1.489. See Problem 44.

46 •• ENGINEERING APPLICATION Calculate the difference in
time needed for two pulses of light to travel down of the
fiber that is described in Problem 44. Assume that one pulse enters
the fiber at normal incidence and the second pulse enters the fiber
at the maximum angle of incidence calculated in Problem 45. In
fiber optics, this effect is known as modal dispersion.

47 ••• Investigate how a thin film of water on a glass surface
affects the critical angle for total reflection. Use for glass
and for water. (a) What is the critical angle for total inter-
nal reflection at the glass–water interface? (b) Does a range of inci-
dent angles exist such that the angles are greater than for glass-
to-air refraction and for which the light rays will leave the glass,
travel through the water, and then pass into the air?

uc

n � 1.33
n � 1.50

15.0 km

SSM50.00 mm,

u1

index of refraction It is incident at angle on the surface of a liq-
uid that has an index of refraction The light passes through the
layer of liquid and enters glass that has an index of refraction If 
is the angle of refraction in the glass, show that 
That is, show that the second medium can be neglected when find-
ing the angle of refraction in the third medium. SSM

n1 sin u1 � n3 sin u3 .
u3n3 .

n2 .
u1n1 .

TOTAL INTERNAL REFLECTION

39 • What is the critical angle for light traveling in water
that is incident on a water–air interface? SSM



1094 | C H A P T E R  3 1 Properties of Light

48 •• A laser beam is incident on a plate of glass that is 
thick (Figure 31-57). The glass has an index of refraction of 1.5 and
the angle of incidence is The top and bottom surfaces of the
glass are parallel. What is the distance b between the beam formed
by reflection off the top surface of the glass and the beam reflected
off the bottom surface of the glass.

DISPERSION

49 • A beam of light strikes the plane surface of silicate flint
glass at an angle of incidence of The index of refraction of the
glass varies with wavelength (see Figure 31-59). How much smaller
is the angle of refraction for violet light of wavelength than
the angle of refraction for red light of wavelength 700 nm?

400 nm

45°.

40°.

3.0 cm 55 •• The polarizing angle for light in air that is incident on
a certain substance is (a) What is the angle of refraction of
light incident at this angle? (b) What is the index of refraction of this
substance?

56 •• Two polarizing sheets have their transmission axes
crossed so that no light is transmitted. A third sheet is inserted so
that its transmission axis makes an angle with the transmission
axis of the first sheet. (a) Derive an expression for the intensity of
the transmitted light as a function of (b) Show that the intensity
transmitted through all three sheets is maximum when 

57 •• If the middle polarizing sheet in Problem 56 is rotating at
an angular speed about an axis parallel with the light beam, find
an expression for the intensity transmitted through all three sheets
as a function of time. Assume that at time 

58 •• SPREADSHEET A stack of ideal polarizing sheets is
arranged so that each sheet is rotated by an angle of 
with respect to the preceding sheet. A linearly polarized light wave
of intensity is incident normally on the stack. The incident light is
polarized along the transmission axis of the first sheet and is there-
fore perpendicular to the transmission axis of the last sheet in the
stack. (a) Show that the intensity of the light transmitted through
the entire stack is given by (b) Using a spreadsheet
or graphing program, plot the transmitted intensity as a function
of for values of from 2 to 100. (c) What is the direction of po-
larization of the transmitted beam in each case?

59 •• SPREADSHEET, ENGINEERING APPLICATION The device
described in Problem 58 could serve as a polarization rotator, which
changes the linear plane of polarization from one direction to an-
other. The efficiency of such a device is measured by taking the ratio
of the output intensity at the desired polarization to the input inten-
sity. The result of Problem 58 suggests that the highest efficiency is
achieved by using a large value for the number A small amount
of intensity is lost regardless of the input polarization when using a
real polarizer. For each polarizer, assume the transmitted intensity is
98 percent of the amount predicted by the law of Malus and use a
spreadsheet or graphing program to determine the optimum num-
ber of sheets you should use to rotate the polarization 

60 •• Show mathematically that a linearly polarized wave can
be thought of as a superposition of a right and a left circularly po-
larized wave.

61 •• Suppose that the middle sheet in Problem 53 is replaced
by two polarizing sheets. If the angles between the transmission axes
of the second, third and fourth sheets in the stack make angles of 

and respectively, with the transmission axis of the first sheet,
(a) what is the intensity of the transmitted light? (b) How does this in-
tensity compare with the intensity obtained in part (a) of Problem 53?

62 •• Show that the electric field of a circularly polarized wave
propagating parallel to the axis can be expressed by 

.

63 •• A circularly polarized wave is said to be right circu-
larly polarized if the electric and magnetic fields rotate clockwise
when viewed along the direction of propagation and left circularly
polarized if the fields rotate counterclockwise. (a) What is the sense
of the circular polarization for the wave described by the expres-
sion in Problem 62? (b) What would be the expression for the elec-
tric field of a circularly polarized wave traveling in the same direc-
tion as the wave in Problem 60, but with the fields rotating in the
opposite sense?

SOURCES OF LIGHT

64 • A helium–neon laser emits light that has a wavelength
equal to and has a power output of How many
photons are emitted per second by this laser?

4.00 mW.632.8 nm
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50 •• ENGINEERING APPLICATION In many transparent materi-
als, dispersion causes different colors (wavelengths) of light to
travel at different speeds. This can cause problems in fiber-optic
communications systems where pulses of light must travel very
long distances in glass. Assuming a fiber is made of silicate crown
glass (see Figure 31-59), calculate the difference in travel times that
two short pulses of light take to travel in the fiber if the first
pulse has a wavelength of and the second pulse has a wave-
length of 

POLARIZATION

51 • What is the polarizing angle for light in air that is in-
cident on (a) water and (b) glass 

52 • Light that is horizontally polarized is incident on a po-
larizing sheet. It is observed that only 15 percent of the intensity
of the incident light is transmitted through the sheet. What angle
does the transmission axis of the sheet make with the horizontal?

53 • Two polarizing sheets have their transmission axes
crossed so that no light gets through. A third sheet is inserted
between the first two so that its transmission axis makes an angle 
with the transmission axis of the first sheet. Unpolarized light of in-
tensity is incident on the first sheet. Find the intensity of the light
transmitted through all three sheets if (a) and (b)

54 • A horizontal laser beam that is vertically polar-
ized is incident on a polarizing sheet that is oriented with its trans-
mission axis vertical. Behind the first sheet is a second sheet that is
oriented so that its transmission axis makes an angle of with re-
spect to vertical. What is the power of the beam transmitted through
the second sheet?

27°

5.0 mW

u � 30°.u � 45°
I0

u

SSM(n � 1.50)?(n � 1.33)

500 nm.
700 nm

15.0 km
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65 •• The first excited state of an atom of a gas is above
the ground state. (a) What is the maximum wavelength of radiation
for resonance absorption by atoms of the gas that are in the ground
state? (b) If the gas is irradiated with monochromatic light that has
a wavelength of what is the wavelength of the Raman scat-
tered light?
66 •• A gas is irradiated with monochromatic ultraviolet light
that has a wavelength of Scattered light that has a wave-
length equal to is observed, and scattered light that has a
wavelength of is also observed. Assuming that the gas
atoms were in their ground state prior to irradiation, find the en-
ergy difference between the ground state and the excited state ob-
tained by the irradiation.
67 •• Sodium has excited states and 
above the ground state. Assume that the atoms of the gas are all in
the ground state prior to irradiation. (a) What is the maximum
wavelength of radiation that will result in resonance fluorescence?
What is the wavelength of the fluorescent radiation? (b) What
wavelength will result in excitation of the state above the
ground state? If that state is excited, what are the possible wave-
lengths of resonance fluorescence that might be observed?
68 •• Singly ionized helium is a hydrogen-like atom that has a
nuclear charge of Its energy levels are given by 
where and If a beam of visible white light
is sent through a gas of singly ionized helium, at what wavelengths
will dark lines be found in the spectrum of the transmitted radia-
tion? (Assume that the ions of the gas are all in the state with en-
ergy prior to irradiation.)
69 • A pulse from a ruby laser has an average power of

and lasts (a) What is the total energy of the pulse?
(b) How many photons are emitted in the pulse?

GENERAL PROBLEMS

70 • A beam of red light that has a wavelength of in
air travels in water. (a) What is the wavelength in water? (b) Does a
swimmer underwater observe the same color or a different color for
this light?
71 • The critical angle for total internal reflection for a sub-
stance is What is the polarizing angle for the substance?
72 •• Show that when a flat mirror is rotated through an
angle about an axis in the plane of the mirror, a reflected beam of
light (from a fixed incident beam) that is perpendicular to the ro-
tation axis is rotated through 
73 •• Use Figure 31-59 to calculate the critical angles for light
initially in silicate flint glass that is incident on a glass–air interface
if the light is (a) violet light of wavelength and (b) red light
of wavelength 
74 •• Light is incident on a slab of transparent material at an
angle as shown in Figure 31-60. The slab has a thickness 
and an index of refraction Show that 
where is the distance shown in the figure.d

n � sin (u1)>sin[tan�1(d>t)],n.
tu1 ,

SSM700 nm.
400 nm

2u.

u

SSM48°.

700 nm

SSM

1.5 ns.10 MW

E1

E0 � 13.6 eV.n � 1, 2, Á
En � �4E0>n2,�2e.

SSM

4.35 eV

4.35 eV2.11 eV, 3.20 eV,

658 nm
368 nm

368 nm.

320 nm,

2.85 eV

77 •• From the data provided in Figure 31-59, calculate the
polarization angle for an air–glass interface, using light of wave-
length in each of the four types of glass shown.

78 •• A light ray passes through a prism with an apex angle of
as shown in Figure 31-62. The ray and the bisector of the apex

angle intersect at right angles. Show that the angle of deviation is
related to the apex angle and the index of refraction of the prism 

material by sin C 12 (a � d) D � n sin A 12a B . d

a,

SSM550 nm

θP1
θP2

n1

n2

F I G U R E  3 1 - 6 1 Problem 76

α
d

F I G U R E  3 1 - 6 2 Problems 78 and 84

79 •• (a) For light rays inside a transparent medium that is sur-
rounded by a vacuum, show that the polarizing angle and the criti-
cal angle for total internal reflection satisfy tan (b) Which
angle is larger, the polarizing angle or the critical angle for total in-
ternal reflection?

80 •• Light in air is incident on the surface of a transparent
substance at an angle of with the normal. The reflected and re-
fracted rays are observed to be mutually perpendicular. (a) What is
the index of refraction of the transparent substance? (b) What is the
critical angle for total internal reflection in this substance?

81 •• A light ray in dense flint glass that has an index of refrac-
tion of 1.655 is incident on the glass surface. An unknown liquid
condenses on the surface of the glass. Total internal reflection on the
glass–liquid interface occurs for a minimum angle of incidence on
the glass–liquid interface of (a) What is the refractive index of53.7°.

58°

SSM

up � sinuc .

t

d

θ 1

F I G U R E  3 1 - 6 0

Problem 74

75 •• A ray of light begins at the point 
strikes a mirror in the plane at some point 

0, 0), and reflects through the point 
(a) Find the value of that makes the total distance traveled by the ray
a minimum. (b) What is the angle of incidence on the reflecting plane?
(c) What is the angle of reflection?

76 •• ENGINEERING APPLICATION To produce a polarized laser
beam, a plate of transparent material (Figure 31-61) is placed in the
laser cavity and oriented so the light strikes it at the polarizing
angle. Such a plate is called a Brewster window. Show that if is
the polarizing angle for the to interface, then is the polar-
izing angle for the to interface.n1n2

uP2n2n1

uP1

x
(2.00 m, 6.00 m, 0.00 m).(x,

y � 00.00 m),
 2.00 m,(�2.00 m,
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the unknown liquid? (b) If the liquid is removed, what is the mini-
mum angle of incidence for total internal reflection? (c) For the
angle of incidence found in Part (b), what is the angle of refraction
of the ray into the liquid film? Does a ray emerge from the liquid
film into the air above? Assume the glass and liquid have parallel
planar surfaces.

82 ••• (a) Show that for normally incident light, the inten-
sity transmitted through a glass slab that has an index of refraction
of and is surrounded by air is approximately given by 

(b) Use the Part (a) result to find the ratio of the
transmitted intensity to the incident intensity through parallel
slabs of glass for light of normal incidence. (c) How many slabs of
a glass that has an index of refraction of 1.5 are required to reduce
the intensity to 10 percent of the incident intensity?

N
I0[4n>(n � 1)2]2.

IT �n

83 ••• Equation 31-14 gives the relation between the angle of
deviation of a light ray incident on a spherical drop of water in
terms of the incident angle and the index of refraction of water.
(a) Assume that and derive an expression for Hint:
If then (b) Use the result to show
that the angle of incidence for minimum deviation is given by

(c) The index of refraction for a certain red 
light in water is 1.3318 and the index of refraction for a certain blue
light in water is 1.3435. Use the result of Part (a) to find the angular
separation of these colors in the primary rainbow.

84 ••• Show that the angle of deviation is a minimum if the
angle of incidence is such that the ray and the bisector of the apex
angle (Figure 31-62) intersect at right angles.a

d

cosulm � 21
3(n2 � 1).

ulm

dy>dx � (1 � x2)�1>2.y � sin�1x,
dfd>du1 .nair � 1

u1

fd
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B
ecause the wavelength of light is very small compared with most obstacles
and openings, diffraction—the bending of waves around corners—is often
negligible, and the ray approximation, in which waves are considered to
propagate in straight lines, accurately describes observations.

In this chapter, we apply the laws of reflection and refraction to the forma-
tion of images by mirrors and lenses.

32-1 MIRRORS

PLANE MIRRORS

Figure 32-1 shows a bundle of light rays emanating from a point source and
reflected from a plane mirror. After reflection, the rays diverge exactly as if they
came from a point behind the plane of the mirror. The point is called the image
of the object P. When the reflected rays enter the eye, they cannot be distinguished
from rays diverging from a source at when no mirror is present. This image at 
is called a virtual image, virtual because the light does not really emanate from it.

P�P�

P�P�

P
F I G U R E  3 2 - 1 Image formed by a
plane mirror. The rays from point that
strike the mirror and enter the eye appear
to come from the image point behind
the mirror. The image can be seen by an
eye located anywhere in the shaded region.

P�

P

How do you determine the

magnifying power of a compound

microscope? (See Example 32-15.)
?

*

*

THIS IMAGE IS OF A FEMALE MOSQUITO
AND WAS PRODUCED BY A
MICROSCOPE. (Nuridsany & Perennou/
Photo Researchers.)



The plane of the mirror is the perpendicular bisector of the line from the object
point to the image point as shown. The image can be seen by an eye located
anywhere in the shaded region indicated, in which a straight line from the image
to the eye passes through the mirror. The object need not be directly in front of the
mirror. As long as the object is not located behind the plane of the mirror, some
location exists at which the eye can be positioned so as to view the image.

If you stand in front of a mirror and hold up your right hand, the image you see
is neither magnified nor reduced, but it looks like a left hand (Figure 32-2). This
right-to-left reversal is a result of depth inversion—the hand is transformed from
a right hand to a left hand because the front and the back of the hand are reversed
by the mirror. Depth inversion is also illustrated in Figure 32-3. Figure 32-4 shows
the image of a simple rectangular coordinate system. The mirror transforms a
right-handed coordinate system, for which into a left-handed coor-
dinate system, for which 

Figure 32-5 shows an arrow of height standing parallel to a plane mirror a dis-
tance from the mirror. We can locate the image of the tip of the arrowhead (and of
any other point on the arrow) by drawing two rays. One ray, drawn perpendicular
to the mirror, hits the mirror at point and is reflected back onto itself. The other
ray, making an angle with the normal to the mirror, is reflected, making an equal
angle with the axis. The extension of these two rays back behind the mirror
locates the image of the arrowhead, as shown by the dashed lines in the figure.
We can see from this figure that the image is the same distance behind the mirror
as the object is in front of the mirror, and that the image is upright (the image of the
arrow points in the same direction as the object) and is the same size as the object.

The formation of multiple images by two flat mirrors whose planes make an
angle with each other is illustrated in Figure 32-6. We frequently see multiple
images like this in clothing stores that provide mirrors for this purpose. The light
from source point that is reflected from mirror 1 strikes mirror 2 just as if it came
from the image point The image is the object for mirror 2. Its image is behind
the plane of mirror 2 at point This image will be formed as long as the image
point is in front of the plane of mirror 2. The image at point is due to rays from

that reflect directly from mirror 2. Because is behind the plane of mirror 1, it
cannot serve as an object point for an additonal image in mirror 1. The image at
point cannot serve as an object for mirror 1 because the geometry dictates that
none of the rays from that reflect directly from mirror 2 can then strike mirror 1.P
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F I G U R E  3 2 - 2 The image of a right
hand in a plane mirror is transformed
to a left hand. This right-to-left reversal
is a result of depth inversion. (Demitrios
Zangos.)

L
R

R

L

P P’

Mirror

θy

s

y’

s’

θ

A

F I G U R E  3 2 - 5 Ray diagram for
locating the image of an arrow in a
plane mirror.
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F I G U R E  3 2 - 3 A person lying down
with her feet against the mirror. The image is
depth inverted.

F I G U R E  3 2 - 4 Image of a rectangular coordinate system in a plane mirror. The
arrow along the axis is reversed in the image. The image of the original right-handed
coordinate system, for which is a left-handed coordinate system, for which
in � jn � �kn.

in � jn � kn,
z

Do not make the mistake of
thinking that a mirror is an

inversion in the left to right direction.
Instead, it is an inversion in the front
to back direction.

!



An alternative way of stating this is that because is behind the plane of
mirror 1, the image at cannot serve as an object for mirror 1. The num-
ber of images formed by two mirrors depends on the angle between the
mirrors and the position of the object.

Suppose your friend Ben is standing at point (Figure 32-6) and is
wearing a sweatshirt with BEN printed on it. In addition, suppose Ben is
facing the intersection of the two mirrors and waving his right hand. Also,
suppose that you are standing at the location of the eye. You can see an
image of Ben at all three image locations. For the images at and Ben
is waving his left hand and the printing on his sweatshirt appears as .
However, for the image at Ben is waving his right hand and the print-
ing appears as BEN. For the image at depth inversion occurs twice,
once for each reflection, so the result is as if no depth inversion occurs.

Figure 32-7 illustrates the fact that a horizontal ray reflected from two
mutually perpendicular vertical mirrors is reflected back along a parallel
path no matter what angle the ray makes with the mirrors. If three mir-
rors are mutually perpendicular to each other, like the sides of an inside
corner of a box, any ray incident on any one of the mirrors from any
direction is reflected back on a path parallel to the incident ray. A set of
three mirrors arranged in this manner is called a corner-cube reflector.
An array of corner-cube reflectors was placed on the moon in the Sea of
Tranquility by the Apollo 11 astronauts in 1969. A laser beam from Earth
that is directed at the mirrors is reflected back to the same place on Earth.
Such a beam has been used to measure the distance from the laser to the
mirrors to within a few centimeters by measuring the time it takes for
the light to travel to the mirrors and return.

SPHERICAL MIRRORS

Figure 32-8 shows a bundle of rays from a point source on the axis of a
concave spherical mirror reflecting from the mirror and converging at point

(A concave mirror is shaped like a cave when you look into it.) The rays
then diverge from point just as if there were an object at the point .
This image is called a real image, because light really does emanate from
the image point. The image can be seen by an eye at the left of the image
looking into the mirror. It can also be observed on a small viewing
screen* or on a small piece of photographic film placed at the image point.

PœPœ,
P�.

P

Pfl
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Pfl
12

Pœ
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Mirror

Mirror

F I G U R E  3 2 - 7 A ray striking one of two
perpendicular plane mirrors is reflected from the second
mirror in the direction opposite the original direction for
any angle of incidence. The plane of the rays is
perpendicular to both mirrors.

Which of the images of himself
can Ben see?

CONCEPT CHECK 32-2
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P’1

Mirror 2

Mirror 1

P’’1 2

P’2

F I G U R E  3 2 - 6 Images formed
by two plane mirrors. is the
image of the object in mirror 1,
and is the image of the object in
mirror 2. Point is the image of

in mirror 2, which is seen when
light rays from the object reflect
first from mirror 1 and then from
mirror 2. The image does not
have an image in mirror 1 because
it is behind that mirror.

Pœ
2

Pœ
1

Pfl
12

Pœ
2

P
Pœ

1

A

P (object)
P’ (image)
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F I G U R E  3 2 - 8 Rays from a point object on the
axis of a concave spherical mirror form an image at

The image is sharp if the rays strike the mirror near
the axis and if the rays are almost parallel with the axis.
P�.
AV

P

* A viewing screen must produce either diffuse reflection or diffuse transmission of the light. Ground glass
is commonly used for this purpose. The screen must be relatively small, so that some of the light from
the source reaches the mirror without being blocked by the screen.

Show that a source point and all
consequent image points formed
by two flat mirrors are equidistant
from the intersection of the planes
of the two mirrors. (The circle
shown in Figure 32-6 is equidis-
tant from such an intersection.)  

CONCEPT CHECK 32-1✓
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F I G U R E  3 2 - 1 0 (a) Geometry for
calculating the image distance from the
object distance and the radius of curvature 
The angle is an exterior angle to the triangle

therefore, Similarly, from
the triangle Eliminating 
from these equations gives 
Equation 32-1 follows directly, if we assume
the following small-angle approximations:

and (b) All paraxial
rays from object point pass through image
point after reflecting off the mirror.P�

P
g � �>s�.a � �>s, b � �>r,

2b � a � g.
uPAP�, g � a � 2u.

b � a � u.PAC;
b

r.s
s�

A virtual image, such as that formed by a plane mirror as discussed in the
previous section, cannot be observed on a screen at the image point be-
cause no light from the object point exists at the image point. Despite this
distinction between real and virtual images, the eye makes no distinction
between them. The light rays diverging from a real image and those ap-
pearing to diverge from a virtual image are the same to the eye.

From Figure 32-9, we can see that only rays that strike the spherical mir-
ror at points near the axis (line ) are reflected through the image point.
Rays that are almost parallel with the axis and are near to the axis are called
paraxial rays. Rays that strike the mirror at points far from the axis upon re-
flection pass near the image point, but not through it. Such rays cause the
image to appear blurred, an effect called spherical aberration. The image
can be sharpened by blocking off all but the central part of the mirror, so
that rays far from the axis do not strike it. The image is then sharper, but its
brightness is reduced because less light is reflected to the image point.

In order to describe image formation, we wish to obtain an equation
relating the position of the image point to the position of the object point. To do this,
we draw two rays (Figure 32-10a) from an arbitrarily positioned object point 
One ray passes through point the center of curvature of the mirror, and the other
ray strikes point an arbitrarily positioned point on the mirror. The image point 
is where these two rays intersect after reflecting off the mirror. Using the law of
reflection, we obtain the location of The ray passing through point strikes the
mirror at normal incidence, so the ray reflects back upon itself. The ray striking
the mirror at makes angle with the normal, so, as shown, the reflected ray also
makes angle with the normal. (Any line normal to a spherical surface passes
through the center of curvature.) The image distance and object distance are
measured from the plane tangent to the mirror at its vertex The angle is an ex-
terior angle to the triangle therefore, Similarly, from the triangle

Eliminating from these equations gives
a � g � 2b

uPAP�, g � a � 2u.
b � a � u.PAC,

bV.
ss�

u

uA

CP�.

P�A,
C,

P.

AV

See

Math Tutorial for more

information on 

Geometry and
Trigonometry
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F I G U R E  3 2 - 9 Spherical aberration of a mirror.
Nonparaxial rays that strike the mirror at points far from
the axis are not reflected through the image point 
formed by the paraxial rays. The nonparaxial rays blur
the image.

P�AV
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By assuming all rays are paraxial, we can substitute using the small-angle approx-
imations: and Equation 32-1 follows directly:

32-1

This equation relates the object and image distances with the radius of curvature.
The striking thing about this equation is that it has absolutely no information
about the location of point Therefore, the equation is valid for any choice for
the location of point as long as point is on the surface of the mirror and all
rays are paraxial. That is, as shown in Figure 32-10b, all paraxial rays emanating
from an object point will, upon reflection, pass through a single image point.

Equation 32-1 specifies the image position in terms of its distance from the mirror.
We now specify the image position in terms of its distance from the axis. We first
draw a single ray (Figure 32-11) that reflects off the mirror at its vertex. The two right
triangles formed are similar. Corresponding sides of similar triangles are equal, so

32-2

The minus sign takes into account that is negative as and are on opposite
sides of the axis. Thus, if is positive, is negative and if is negative, is positive.y�yy�y
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� �
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Axis

F I G U R E  3 2 - 1 1 Geometry for calculating
the position of the image point with respect
to its distance from the axis.

y�

PRACTICE PROBLEM 32-1

For the image point and object point shown in Figure 32-11, show that

Hint: Solve Equation 32-1 for and substitute your result into Equation 32-2.s�

y�

y
� �

r>2
s � (r>2)

When the object distance is large compared with the radius of curvature of the
mirror, the term in Equation 32-1 is much smaller than and can be ne-
glected. That is, as where is the image distance. This distance is
called the focal length of the mirror, and the plane on which parallel rays inci-
dent on the mirror are focused is called the focal plane. The intersection of the axis
with the focal plane is called the focal point as illustrated in Figure 32-12a.
(Again, only paraxial rays are focused at a single point.)

32-3

FOCAL LENGTH FOR A MIRROR

f � 1
2 r

F,

f
s�sS , s� S 1

2 r,
2>r1>s
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(b)

(a)

F I G U R E  3 2 - 1 2 (a) Parallel rays strike a
concave mirror and are reflected to a point on
the focal plane a distance to the left of the
mirror. (b) The incoming wavefronts are
planes; upon reflection, they become spherical
wavefronts that converge to, and then diverge
from, the image point.

1
2 r

The focal length of a spherical mirror is half the radius of curvature. In terms of the
focal length Equation 32-1 is

32-4

MIRROR EQUATION

Equation 32-4 is called the mirror equation.
When an object point is very far from the mirror, the rays reaching the mirror

are approximately parallel, and the wavefronts are approximately planes
(Figure 32-12b). In Figure 32-12b, note that the last part of each wavefront to reflect
from the concave mirror surface is the part just below the vertex This results in
a spherical wavefront upon reflection. Figure 32-13 shows both the wavefronts and
the rays for plane waves striking a convex mirror. In this case, the central part of the
wavefront strikes the mirror first, and the reflected waves appear to come from
the focal point behind the mirror.

V.
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1
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PRACTICE PROBLEM 32-2

Show that solving Equation 32-1 for gives

Then show that as sS , s� S 1
2 r.
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Axis F I G U R E  3 2 - 1 4 Reversibility. Rays
diverging from a point source on the focal
plane of a concave mirror are reflected from
the mirror as parallel rays. The rays follow
the same paths as in Figure 32-12a but in the
reverse direction.

F I G U R E  3 2 - 1 3 Reflection of plane
waves from a convex mirror. The outgoing
wavefronts are spherical, as if emanating from
the focal point behind the mirror. The rays
are normal to the wavefronts and appear to
diverge from F.

F

Figure 32-14 illustrates a property of waves called reversibility. If we reverse the
direction of a reflected ray, the law of reflection assures us that the reflected ray will
be along the original incoming ray, but in the opposite direction. (Reversibility also
holds for refracted rays, which are discussed in later sections.) Thus, if we have a
real image of an object formed by a reflecting (or refracting) surface, we can place
an object at the image point and a new, real image will be formed at the position of
the original object.

Example 32-1 Image in a Concave Mirror

A point source is from a concave mirror and above the axis of the mirror. The
radius of curvature of the mirror is Find (a) the focal length of the mirror and (b) the
image distance. (c) Find the position of the image relative to the axis.

PICTURE The focal length of a spherical mirror is half the radius of curvature. Once the focal
length is known, the image distance can be found using the mirror equation (Equation 32-4),
and the distance of the image from the axis can be found using Equation 32-2. The image dis-
tance from the mirror is the distance from the plane tangent to the mirror at its vertex.

SOLVE

6.0 cm.
3.0 cm12 cm

(a) The focal length is half the
radius of curvature:

3.0 cmf � 1
2 r � 1

2 (6.0 cm) �

(b) 1. Use the mirror equation
to find a relation for the
image distance s�: or

1
12 cm

�
1
s�

�
1

3.0 cm

1
s

�
1
s�

�
1
f
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CHECK In Figure 32-15, two rays from the tip of the arrow have been drawn
to locate the corresponding point on the image. By choosing to draw the ray
that passes through and the ray that reflects off the mirror at we have
chosen to draw two rays that are easy to trace. From this figure, we can see
that the results of the solution are very plausible.

PRACTICE PROBLEM 32-3 A concave mirror has a focal length of 
(a) What is the mirror’s radius of curvature? (b) Find the image distance for
an object from the mirror.2.0 cm

4.0 cm.

V,C

FC

F I G U R E  3 2 - 1 7 Ray diagrams are easier
to construct if the curved surface is replaced
by a plane tangent to the surface at the vertex.

2. Solve for s�:

4.0 cms� �

1
s�

�
4

12 cm
�

1
12 cm

�
3

12 cm

(c) 1. Use Equation 32-2 to find
the distance of image
from the axis:

y�

y�

y
� �

s�
s

2. Solve for y�:

�1.0 cm�

y� � �
s�
s
y � �

4.0 cm
12 cm

(3.0 cm) �

RAY DIAGRAMS FOR MIRRORS

A useful method to locate images is by geometric construction of a ray diagram, as
illustrated in Figure 32-16, where the object is a human figure perpendicular to
the axis a distance from the mirror. By the judicious choice of rays from the head
of the figure, we can quickly locate the image. Of the infinitely many rays, there
are three rays, principal rays, that are particularly convenient to use:

1. The parallel ray, drawn parallel to the axis. This ray is reflected through
the focal point.

2. The focal ray, drawn through the focal point. This ray is reflected parallel
to the axis.

3. The radial ray, drawn through the center of curvature. This ray strikes the
mirror perpendicular to its surface and is thus reflected back on itself.

PRINCIPAL RAYS FOR A MIRROR

These rays are shown in Figure 32-16. The intersection of any two paraxial rays lo-
cates the image point of the head. The three principal rays are easier to draw than
any of the other rays. Typically, you draw two of the principal rays to locate the
image, and then draw the third principal ray as a check to verify the result. Ray di-
agrams are best drawn with
the mirror replaced by a
straight line that extends as
far as necessary to intercept
the rays, as shown in Figure
32-17. (Note that the image
in this case is real, inverted,
and smaller than the object.)

When the object is be-
tween the mirror and its
focal point, the rays from an
object point reflected from
the mirror do not converge
but appear to diverge from
a point behind the mirror,

s

C F

F I G U R E  3 2 - 1 6 Ray diagram for the location of
the image by geometric construction.
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F I G U R E  3 2 - 1 5

What is the radius of curvature of
a plane mirror?

CONCEPT CHECK 32-3✓
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as illustrated in Figure 32-18. In this case, the image is virtual and upright (upright
meaning not inverted relative to the object). For an object between the mirror and
the focal point, is less than so the image distance calculated from Equation
32-1 turns out to be negative. We can apply Equations 32-1, 32-2, 32-3, and 32-4 to
this case and to convex mirrors if we adopt a convenient sign convention. Whether
the mirror is convex or concave, real images can be formed only in front of the mir-
ror, that is, on the same side of the mirror as the reflected light (and the object).
Virtual images are formed behind the mirror where there is no actual light from the
object. Our sign convention is as follows:

1. is positive if the object is on the incident-light side of the mirror.
2. is positive if the image is on the reflected-light side of the mirror.
3. (and thus is positive if the mirror is concave so the center of curvature

is on the reflected-light side of the mirror.

SIGN CONVENTIONS FOR REFLECTION

The incident-light side and the reflected-light side are, of course, the same side of
the mirror. The parameters and are all positive if a real object* is in front
of a concave mirror that forms a real image. A parameter is negative if it does not
meet the stated condition for being positive.

The ratio of the image height to the object height is defined as the lateral
magnification of the image. From Figure 32-19 and Equation 32-2, we see that
the lateral magnification is

32-5

LATERAL MAGNIFICATION

A negative magnification, which occurs when both and are positive, indicates
that the image is inverted.

For plane mirrors, the radius of curvature is infinite. The focal length given by
Equation 32-3 is then also infinite. Equation 32-4 then gives indicating that
the image is behind the mirror at a distance equal to the object distance. The mag-
nification given by Equation 32-5 is then indicating that the image is upright
and the same size as the object.

Although the preceding equations, coupled with our sign conventions, are rel-
atively easy to use, we often need to know only the approximate location and mag-
nification of the image and whether it is real or virtual and upright or inverted.
This knowledge is usually easiest to obtain by constructing a ray diagram. It is al-
ways a good idea to use both this graphical method and the algebraic method to
locate an image, so that one method serves as a check on the results of the other.

�1,

s� � �s,

s�s

m �
y�

y
� �

s�
s

m

fs, s�, r,

f)r
s�
s

s�r>2,s

P

Q

P'

y'

Q'

VC

y

Axis

(image)(object)

F I G U R E  3 2 - 1 9 Geometry for
showing the lateral magnification. Rays from
the top of the object at upon reflection,
intersect at and rays from the bottom of
the object at intersect at where points 
and have vertical positions and 
respectively. The lateral magnification is
given by the ratio In accord with
Equation 32-2, The minus sign
results from the fact that is negative
when and are both positive. A negative 
means the image is inverted.

ms�s
y�>yy�>y � �s�>s.y�>y. m

y�,yP�

PQ�,Q
P�;

P,

* An object is real if it is on the same side of the mirror as the incident light.

C F s s’

F I G U R E  3 2 - 1 8 A virtual image is
formed by a concave mirror when the object is
inside the focal point. Here the image is located
by the radial ray, which is reflected back on
itself, and the focal ray, which is reflected
parallel to the axis. The two reflected rays
appear to diverge from an image point behind
the mirror. This image point is found by
constructing extensions to the reflected rays.
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Convex mirrors Figure 32-20 shows a ray diagram for an object in front of a con-
vex mirror. The central ray heading toward the center of curvature is perpendic-
ular to the mirror and is reflected back on itself. The parallel ray is reflected as if it
came from the focal point behind the mirror. The focal ray (not shown) would be
drawn toward the focal point and would be reflected parallel to the axis. We can
see from the figure that the image is behind the mirror and is therefore virtual. The
image is also upright and smaller than the object.

F

C

CFs’s

F I G U R E  3 2 - 2 0 Ray diagram for
an object in front of a convex mirror.Example 32-2 Image in a Convex Mirror

An object that is high is from a convex mirror that has a radius of curvature
equal to (a) Locate the image and (b) find the height of the image.

PICTURE The ray diagram for this problem is the same as shown in Figure 32-20. From the
figure, we see that the image is upright, virtual, and smaller than the object. To find the exact
location and height of the image, we use the mirror equation, with and 

SOLVE

r � �10 cm.s � 10 cm

10 cm.
10 cm2.0 cm

(a) 1. The image distance is related to the object distance and
the focal length by the mirror equation:f

ss�
1
s

�
1
s�

�
1
f

2. Calculate the focal length of the mirror: f � 1
2 r � 1

2 (�10 cm) � �5.0 cm

3. Substitute and into the mirror
equation to find the image distance:

f � �5.0 cms � 10 cm
1

10 cm
�

1
s�

�
1

�5.0 cm

4. Solve for s�: �3.3 cms� �

(b) 1. The height of the image is multiplied by the height of
the object:

m y� � my

2. Calculate the magnification m: m � �
s�
s

� �
�3.3 cm

10 cm
� �0.33

3. Use to find the height of the image:m 0.67 cmy� � my � (0.33)(2.0 cm) �

10 cm s'

5 cm

10 cm

CF

(object)y (image)
y'

F I G U R E  3 2 - 2 1

CHECK The image distance is negative, indicating a virtual
image behind the mirror. The magnification is positive and less
than one, indicating that the image is upright and smaller than the
object. The results are in agreement with the information obtained
from the ray diagram (Figure 32-21).

PRACTICE PROBLEM 32-4 Find the image distance and lateral
magnification for an object away from the mirror in
Example 32-2.

5.0 cm



Example 32-3 Determining the Range

You have a part-time job at Pleasant Hills Golf Course. The fairway of the 16th hole is hori-
zontal for the first and then goes down a not-too-steep hill (Figure 32-22), so the people
on the tee cannot see the party in front. To prevent people from driving off the tee into the
party in front, a convex mirror is mounted on a pole, enabling golfers on the tee to see whether
or not the party in front is out of range.* Your boss says that a range finder that works by
triangulation could be placed facing the
mirror, so the golfers could measure how
far the image of the party in front is behind
the mirror. Then the golfers could be given
a chart telling them how far the next party
is from the tee. Your boss knows you are
taking a physics course, so he asks you to
calculate the distance of the image behind
the mirror if the next party is from
the tee. The radius of curvature of the mir-
ror has a magnitude of 20.0 yd.

250 yd

50 yd

Context-Rich

Mirrors S E C T I O N  3 2 - 1 | 1107

* The mirror was not replaced after it was knocked down during a storm a couple of years ago.

Mirror
12–15 ft

pole
250 yd

Tee

F I G U R E  3 2 - 2 2

PICTURE The image distance is related to the object distance by the mirror formula, and the
focal length of the lens is half the radius of curvature.

SOLVE

(a) A convex mirror resting on
paper that has equally spaced parallel
stripes. Note the large number of lines
imaged in a small space and
the reduction in size and distortion
in shape of the image. (b) A convex
mirror is used for security in a store.
(Richard Megna/Fundamental Photographs.)

1. Use the mirror equation. For a convex mirror,
the radius of curvature is negative:

and

so

1
250 yd

�
1
s�

�
2

�20.0 yd

f �
2
r

1
s

�
1
s�

�
1
f

2. The image is behind the mirror:9.62 yd �9.62 yds� �

CHECK That the step-2 result is negative is as expected. That is, it was expected that the
image would be behind the mirror.

PRACTICE PROBLEM 32-5 What is the distance to the party in front if the image is
behind the mirror?9.75 yd

(a) (b)
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P

P'

n1 n2

C

A

β
φ γ

α

s
s'

r

1θ
2θ

�

F I G U R E  3 2 - 2 4 Geometry for relating
the image position to the object position for
refraction at a single spherical surface.

32-2 LENSES

IMAGES FORMED BY REFRACTION

One end of a long transparent cylinder is machined and polished
to form a convex spherical surface. Figure 32-23 illustrates the for-
mation of an image by refraction at such a surface. Suppose the
cylinder is submerged in a transparent liquid that has an index of
refraction and suppose the cylinder is made of a plastic mate-
rial that has an index of refraction where is greater than 
Again, only in the paraxial limit do rays from an object point con-
verge to one point. An equation relating the image distance to the
object distance, the radius of curvature, and the indices of refrac-
tion can be derived by applying Snell’s law of refraction to the
rays and using small-angle approximations. The geometry is
shown in Figure 32-24. The angles and are related by Snell’s
law of refraction: Using the small-angle ap-
proximation Snell’s law becomes From triangle we
have and from triangle we have 
Eliminating from these two equations gives Substituting
for and using the small-angle approximations and

givesg � �>s� a � �>s, b � �>r,a, b and g
n1a � n2g � (n2 � n1)b.u1

u1 � a � b.PAC,b � u2 � g � (n1>n2)u1 � g;
ACP�,n1u1 � n2u2 .(sinu � u),

n1 sinu1 � n2 sinu2 .
u2u1

n1 .n2n2 ,
n1 ,

C

θ1
θ2

s

P

n1 n2

s’

P’

F I G U R E  3 2 - 2 3 Image formed by refraction at a spherical
surface between two media where the waves move slower in the
second medium.

* The sign convention of choice for advanced work on optical design is the Cartesian sign convention. It can readily be
found on the Internet.

32-6

REFRACTION AT A SINGLE SURFACE

n1

s
�
n2

s�
�
n2 � n1

r

In refraction, real images are formed in back of the surface, which we will call
the refracted-light side, whereas virtual images occur on the incident-light side, in
front of the surface. The sign conventions we use for refraction are similar to those
for reflection:

1. is positive for objects on the incident-light side of the surface.
2. is positive for images on the refracted-light side of the surface.
3. is positive if the center of curvature is on the refracted-light side.

SIGN CONVENTIONS FOR REFRACTION*

r
s�
s
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Try It YourselfExample 32-4 Magnification by a Refracting Surface

Derive an expression for the magnification of an image formed by a spherical refrac-
ting surface.

PICTURE The magnification is the ratio of to Using Figure 32-19 and Figure 32-24 as
guides, draw a ray diagram suitable for this derivation. The heights are related to the tan-
gents of the angles and as shown in Figure 32-25. The angles are related by Snell’s law.
For paraxial rays, you can use the approximations and 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

cosu � 1.tanu � sinu � u,
u2 ,u1

y.y�

m � y�>y

θ1
θ2s

n1 n2

s’

y’

y

Steps: Answers

1. Using Figure 32-19 and Figure 32-24 as guides, draw a ray diagram
suitable for this derivation. The drawing should include an object, a
real image, a refracting surface, and an axis. Then draw an incident
ray from the top of the object to the intersection of the axis with the
refracting surface, and draw the refracted ray to the corresponding
image point (Figure 32-25).

F I G U R E  3 2 - 2 5

We see that parameters and are all positive if a real object is in front of a con-
vex refracting surface that forms a real image. A parameter is negative if it does not
meet the stated condition for being positive.

rs, s�,

2. Write expressions for tan and tan in terms of the heights 
and and the object and image distances and (Because

is negative, use so that is positive.)tanu2�y�,y�
s�.s�y�

yu2u1 tanu1 �
y

s
; tanu2 �

�y�

s�

3. Apply the small-angle approximation to your
expressions.

tanu � u u1 �
y

s
; u2 �

�y�

s�

4. Write Snell’s law of refraction relating the angles and using
the small-angle approximation sinu � u

u2u1

n1u1 � n2u2

n1 sinu1 � n2 sinu2

5. Substitute the expressions for and found in step 3.u2u1 n1ays b � n2a�y�

s�
b

6. Solve for the magnification m � y�>y. m �
y�

y
� �

n1s�

n2s

CHECK The step-6 result for the lateral magnification is dimensionless, as expected.

We see from Example 32-4 that the magnification due to refraction at a spherical
surface is

32-7

MAGNIFICATION FOR A REFRACTING BOUNDARY

m �
y�

y
� �

n1s�

n2s
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Example 32-6 Image Seen from an Overhead Branch

During the summer months, Goldie the fish spends much of her time in a small pond in
her owner’s backyard. While enjoying a rest at the bottom of the pond, Goldie
is being watched by Fluffy the cat, who is perched on a tree limb above the surface
of the pond. How far below the surface is the image of the fish that Fluffy sees? (The index
of refraction of water is 1.33.)

PICTURE The surface of the pond is a spherical refracting surface that has a radius of curva-
ture equal to the radius of Earth. (Neglecting the curvature of the surface of Earth, we use

.) Thus, Equation 32-6 applies. Because the light reaching Fluffy originates in the water,
use and n2 � 1.00.n1 � 1.33
r � 

3.00 m
1.00-m-deep

Example 32-5 Image Seen from a Goldfish Bowl

Goldie the goldfish is in a spherical bowl of water
that has an index of refraction of 1.33. Fluffy the cat is sitting on the
table with her nose from the surface of the bowl (Figure 
32-26). The light from Fluffy’s nose is refracted by the air–water
boundary to form an image. Find (a) the image distance and (b) the
magnification of the image of Fluffy’s nose. Neglect any effect of
the bowl’s thin glass wall.

PICTURE We find the image distance using Equation 32-6 and the
magnification using Equation 32-7. Because we are interested in
light that goes from Fluffy’s nose to the bowl, it follows that the
air–water boundary is convex, and that air is the incident-light side
of boundary and water is the refracted-light side of boundary. With
these identifications, we have 
and

SOLVE

r � �15.0 cm.
n2 � 1.33, s � �10.0 cm,n1 � 1.00,

s�

10.0 cm

15.0-cm-radius

2. Identify and assign signs to the parameters in the previous step: and r � �15.0 cmn1 � 1.00, n2 � 1.33, s � �10.0 cm,

3. Substitute numerical values and solve for s�:

so

�17.1 cms� �

1.00
10.0 cm

�
1.33
s�

�
1.33 � 1.00

15.0 cm

(b) Substitute numerical values into Equation 32-7 to find
the magnification m:

1.29m � �
n1s�

n2s
� �

(1.00)(�17.1 cm)
(1.33)(10.0 cm)

�

CHECK Because is negative, the image is virtual; that is, the image is on the side of the
refracting surface opposite the refracted light, as shown in Figure 32-26. The fish, Goldie,
would see Fluffy to be slightly farther away than she actually is, and larger 
than she actually is. That is positive indicates the image is upright.

PRACTICE PROBLEM 32-6 If Goldie is from the side of the bowl nearest Fluffy, find
(a) the location and (b) the magnification of Goldie’s image, as seen by Fluffy.

PRACTICE PROBLEM 32-7 The bowl is replaced by an aquarium that has flat sides and
Goldie is from the side where Fluffy is. Use Equation 32-6 to find the location of the
image of Goldie that Fluffy sees.

7.5 cm

7.5 cm

m
( ƒm ƒ 
 1)( ƒs� ƒ 
 s)

s�

(a) 1. The equation relating the object distance to the image
distance is Equation 32-6:

n1

s
�
n2

s�
�
n2 � n1

r

10.0 cm
s ’

F I G U R E  3 2 - 2 6 Goldie sees Fluffy’s image farther from the
bowl than Fluffy actually is.
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1. Draw a picture of the situation.
Label the object distance and the
indices of refraction of the media.
Goldie is the object (Figure 32-27):

2. Using Equation 32-6, relate the
image position to the other
relevant parameters:

s�

n1

s
�
n2

s�
�
n2 � n1

r

3. The refracting surface is virtually
flat. Using solve for s�:r � ,

s� � �
n2

n1

s

4. Using the given values
and

substitute to obtain s�:
s � 1.00 m,n1 � 1.33, n2 � 1.00

That the image is negative means that
the image is on the side of the surface
opposite the refracted light. That is, it
is below the surface.0.752 m

s� � �
1

1.33
(1.00 m) � �0.752 m

CHECK The image is between the location of the fish and the surface of the water. This result
is expected. Recall that if you dip an oar into the water at an angle, the part of the oar that is
underwater appears above where you know it has to be.

TAKING IT FURTHER (1) This image can be seen at the calculated position only when the
object is viewed from directly overhead, or nearly so. From that observation point the rays
are paraxial, a condition necessary for Equation 32-6 to be valid. If Fluffy is standing on the
edge of the pond, the rays will not satisfy the paraxial approximation and Equation 32-6 will
not correctly predict the location of the image. (2) The distance multiplied by is
called the apparent depth of the submerged object. If the apparent depth equals s>n1 .n2 � 1,

s(n2>n1)

3.00 m

s = 1.00 m

n2

n1

F I G U R E  3 2 - 2 7

SOLVE

THIN LENSES

An important application of Equation 32-6 for refraction at a single
surface is finding the position of the image formed by a lens. This
determination is done by considering the refraction at each surface
of the lens separately to derive an equation relating the image dis-
tance to the object distance, the radius of curvature of each surface
of the lens, and the index of refraction of the lens material.

We will consider a thin lens that has an index of refraction and
air on both sides. Let the radii of curvature of the surfaces of the
lens be and If an object is at a distance from the first surface
(and therefore from the lens), the distance of the image due to
refraction at the first surface can be found using Equation 32-6:

32-8

The light refracted at the first surface is again refracted at the sec-
ond surface. Figure 32-28 shows the case when the image distance

for the first surface is negative, indicating a virtual image to the
left of the surface. Rays in the glass refracted from the first surface
diverge as if they came from the image point The rays strike
the second surface at the same angles as if there were an object at
image point The image for the first surface therefore becomesPœ

1 .

Pœ
1 .

sœ1

nair

s
�
n
sœ1

�
n � nair

r1

sœ1

sr2 .r1

n

s
P

s’

P’

s2

s’1

P’1

F I G U R E  3 2 - 2 8 Refraction occurs at both surfaces of a
lens. Here, the refraction at the first surface leads to a virtual
image at The rays strike the second surface as if they came
from Image distances are negative when the image is on
the incident-light side of the surface, whereas object distances
are positive for objects located on that side. Thus, is
the object distance for the second surface of the lens.

s2(� �sœ1)

Pœ
1 .
Pœ

1 .

Draw a ray diagram for the image
of Goldie, as described in Example
32-6. That is, draw several rays di-
verging from an object point on
Goldie, and show that after re-
fracting the rays appear to diverge
from an image point somewhat
above the object point.

P�

P

CONCEPT CHECK 32-4✓
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the object for the second surface. Because the lens is of negligible thickness, the
object distance is equal in magnitude to Object distances for objects on the
incident-light side of a surface are positive, whereas image distances for images
located on the incident-light side are negative. Thus, the object distance for the
second surface is * We now write Equation 32-6 for the second surface,
where and The image distance for the second surface
is the final image distance for the lens:

32-9

We can eliminate the image distance for the first surface by adding Equations
32-8 and 32-9. We obtain

32-10

Equation 32-10 gives the image distance in terms of the object distance and
the properties and of the thin lens. As with mirrors, the focal length of
a thin lens is defined as the image distance when the object distance is infinite.
Setting equal to infinity and writing for the image distance we obtain

32-11

LENS-MAKER’S EQUATION

Equation 32-12 is called the lens-maker’s equation. Substituting for the right
side of Equation 32-10, we obtain

32-12

THIN-LENS EQUATION

This thin-lens equation is the same as the mirror equation (Equation 32-4).
Recall, however, that the sign conventions for refraction are somewhat different
from the sign conventions for reflection. For refraction, the image distance is
positive when the image is on the refracted-light side of the refracting surface(s),
that is, when it is on the side opposite the incident-light side. The sign of the focal
length of a lens (see Equation 32-11) is determined by the sign convention for a
single refracting boundary. That is, is positive if the center of curvature is on
the same side of the surface as the refracted light. For a lens like that shown in
Figure 32-28, is positive and is negative, so is positive.

Figure 32-29a shows the wavefronts of plane waves incident on a double con-
vex lens. The central part of the wavefront strikes the lens first. Because the
wave speed in the lens is less than that in air (assuming the central part
of the wavefront lags behind the outer parts, resulting in a spherical wavefront
that converges at the focal point The rays for this situation are shown in
Figure 32-29b. Such a lens is called a converging lens. Because its focal length
as calculated from Equation 32-2 is positive, it is also called a positive lens.

F�.

n 
 1),

fr2r1

r

s�

1
s

�
1
s�

�
1
f

1>f
1
f

� a n
nair

� 1b a 1
r1

�
1
r2
b

s�,fs

fnr1 , r2 ,
ss�

1
s

�
1
s�

� a n
nair

� 1b a 1
r1

�
1
r2
b

�sœ1

n
�sœ1

�
nair

s�
�
nair � n

r2

s�
s � �sœ1 .n1 � n, n2 � nair ,

sœ2 � �sœ1 .

sœ1 .s2

* If were positive, the rays would be converging as they strike the second surface. The object for the second surface
would then be a virtual object located to the right of the second surface. This object would be a virtual object. Again,
s2 � �sœ1 .

sœ1



Lenses S E C T I O N  3 2 - 2 | 1113

F’ F’

(b)(a)

F I G U R E  3 2 - 2 9 (a) Top: Wavefronts for plane waves striking a converging lens. The central part of the wavefront is
retarded more by the lens than the outer part, resulting in a spherical wave that converges at the focal point 
Bottom: Wavefronts passing through a lens, shown by a photographic technique called light-in-flight recording that uses a
pulsed laser to make a hologram of the wavefronts of light. (b) Top: Rays for plane waves striking a converging lens. The rays
are bent at each surface and converge at the focal point. Bottom: A photograph of rays focused by a converging lens. 
((a) Nils Abramson, (b) Fundamental Photographs.)

F�.

Any lens that is thicker in the middle than at the edges is a converging lens (pro-
viding that the index of refraction of the lens is greater than that of the sur-
rounding medium). Figure 32-30 shows the wavefronts and rays for plane
waves incident on a double concave lens. In this case, the outer part of the wave-
fronts lag behind the central parts, resulting in outgoing spherical waves that
diverge from a focal point on the incident-light side of the lens. The focal length
of this lens is negative. Any lens that is thinner in the middle than at the edges
is a diverging, or negative, lens.

F�

(b) (c)(a)

F’

F I G U R E  3 2 - 3 0 (a) Wavefronts for plane waves striking a diverging lens. Here, the outer part of the wavefront is retarded
more than the central part, resulting in a spherical wave that diverges as it moves out, as if it came from the focal point to the
left of the lens. (b) Rays for plane waves striking the same diverging lens. The rays are bent outward and diverge, as if they
came from the focal point (c) A photograph of rays passing through a diverging lens. (Fundamental Photographs.)F�.

F�



Example 32-7 The Lens-Maker’s Formula

A double convex, thin glass lens that has an index of refraction has radii
of curvature whose magnitudes are and as shown in Figure 32-31.
Find its focal length in air.

PICTURE We can find the focal length using the lens-maker’s equation
(Equation 32-11). Here, light is incident on the surface that has the smaller ra-
dius of curvature. The center of curvature of this surface is on the refracted-
light side of the lens; thus, For the second surface, the center of
curvature is on the incident-light side; therefore, 

SOLVE

r2 � �15 cm.C2

r1 � �10 cm.
C1

15 cm,10 cm
n � 1.50

CHECK The calculated focal length is positive, as expected. The lens is thicker in the middle
than at the edges, so the focal length is expected to be positive.

PRACTICE PROBLEM 32-8 A double convex thin lens has an index of refraction 
and its surfaces have radii of curvature of equal magnitude. If the focal length of the lens is

what is the magnitude of the radii of curvature of the surfaces?

PRACTICE PROBLEM 32-9 Show that if you reverse the direction of the incoming light
for the lens shown in Example 32-7, so that the incoming light is incident on the surface that
has the greater radius of curvature, you get the same result for the focal length.

15 cm,

n � 1.6

1114 | C H A P T E R  3 2 Optical Images

F’F
f

Focal plane

F I G U R E  3 2 - 3 3 Parallel rays incident on the lens
at an angle to its axis are focused at a point in the focal
plane of the lens.

F’F

F I G U R E  3 2 - 3 2 Light rays
diverging from the focal point of a
positive lens emerge parallel to the axis.

If parallel light strikes the lens of Example 32-7 from the left, it is focused at a
point to the right of the lens; whereas if parallel light strikes the lens from
the right, it is focused at to the left of the lens. Both of these points are focal
points of the lens. Using the reversibility property of light rays, we can see that
light diverging from a focal point and striking a lens will leave the lens as a paral-
lel beam, as shown in Figure 32-32. Incident rays parallel to the axis emerge di-
rected either toward or away from the first focal point Incident rays directed
either toward or away from the second focal point emerge parallel with the
axis. For a converging lens, the first focal point is on the incident-light side and the
second focal point is on the refracted-light side. (For a diverging lens the opposite
is true.) If parallel light is incident on the lens at a small angle with the axis, as in
Figure 32-33, it is focused at a point in the focal plane a distance from the lens.f

F�

F.

12 cm
12 cm

Incident light

r1 = +10 cm

r2 = –15 cm

C1C2

Numerical substitution in Equation 32-11
yields the focal length f:

 12 cm‹ f �

� a1.50
1.00

� 1b a 1
10 cm

�
1

�15 cm
b � 0.50a 5.0

30 cm
b

1
f

� a n
nair

� 1b a 1
r1

�
1
r2
b F I G U R E  3 2 - 3 1
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The reciprocal of the focal length is called the power of a lens. When the focal
length is expressed in meters, the power is given in reciprocal meters, called
diopters (D):

32-13

The power of a lens measures its ability to focus parallel light at a short distance
from the lens. The shorter the focal length, the greater the power. For example, a
lens that has a focal length of has a power of A lens that has
a focal length of has a power of Because the focal length of a
diverging lens is negative, its power is negative.

10 D.10 cm � 0.10 m
4.0 D.25 cm � 0.25 m

P �
1
f

10.0 cm

13.0 cm
Incident light

C 2C 1

F I G U R E  3 2 - 3 4

PICTURE For the orientation of the lens relative to the incident light shown in Figure 32-34,
the radius of curvature of the first surface is and that of the second surface is

SOLVE

r2 � �13.0 cm.
r1 � �10.0 cm

(a) Calculate from the lens-maker’s equation using the given
value of and the values of and for the orientation shown:r2r1n

f

 87 cm‹ f �

� a1.50
1.00

� 1b a 1
10.0 cm

�
1

13.0 cm
b

1
f

� a n
nair

� 1b a 1
r1

�
1
r2
b

(b) The power is the reciprocal of the focal length expressed
in meters:

 1.2 DP �
1
f

�
1

0.867 m
�

Example 32-8 Power of a Lens

The lens shown in Figure 32-34 has an index of refraction of 1.50 and radii of curvature
whose magnitudes are and Find (a) its focal length in air and (b) its power.13.0 cm.10.0 cm

CHECK The values for the focal length and the power are positive. That is what is ex-
pected for a lens that is thicker in the middle than at the edges.

TAKING IT FURTHER We obtain the same result no matter which surface the light
strikes first.

During laboratory experiments involving lenses, it is usually much easier to
measure the focal length than to measure the radii of curvature of the surfaces.
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RAY DIAGRAMS FOR LENSES

As with images formed by mirrors, it is convenient to locate the images of lenses
by graphical methods. Figure 32-35 illustrates the graphical method for a thin con-
verging lens. In the thin lens approximation, we consider the rays to bend at the
plane through the center of the lens and perpendicular to the optic axis. The three
principal rays are as follows:

1. The parallel ray, drawn parallel to the axis. The emerging ray is directed
toward the second focal point of the lens.

2. The central ray, drawn through the center (the vertex) of the lens. This ray is
undeflected. (The faces of the lens are parallel at the center, so the ray
emerges in the same direction but displaced slightly. Because the lens is thin,
the displacement is negligible.)

3. The focal ray, drawn through the first focal point.* This ray emerges parallel
to the axis.

PRINCIPAL RAYS FOR A THIN LENS

These three rays converge to the image point, as shown in Figure 32-35. In this case,
the image is real and inverted. From the figure, we have tan 
The lateral magnification is then

32-14

This expression is the same as the expression for mirrors. Again, a negative mag-
nification indicates that the image is inverted. The ray diagram for a diverging lens
is shown in Figure 32-36.

m �
y�

y
� �

s�
s

u � y>s � �y�>s�.

* The focal ray is drawn toward the first focal point for a diverging lens.F

s’

s

F

y F’

y’θ

Object

Image

θ

F I G U R E  3 2 - 3 5 Ray diagram for a thin converging lens. We draw the rays as if
all the bending of light takes place at the central plane. The ray through the center is
undeflected because the lens surfaces there are parallel and close together.

s’
s

F

y

F’
y’

The weight and bulk of a large-diameter
lens can be reduced by constructing the
lens from annular segments at different
angles so that light from a point is
refracted by the segments into a parallel
beam. Such an arrangement is called a
Fresnel lens. Several Fresnel lenses are
used in this lighthouse to produce
intense parallel beams of light from a
source at the focal point of the lenses.
The illuminated surface of an overhead
projector is a Fresnel lens. (Bohdan
Hrynewych/Stock Boston.)

F I G U R E  3 2 - 3 6 Ray diagram for a
diverging lens. The parallel ray is bent away
from the axis, as if it came from the second
focal point The ray toward the first focal
point emerges parallel to the axis. For a
diverging lens the first focal point is on the
refracted-light side of the lens.

F
F

F�.



Lenses S E C T I O N  3 2 - 2 | 1117

1. Draw the parallel ray. This ray leaves the object parallel to the axis, then is
bent by the lens to pass through the second focal point, (Figure 32-37):F�

4.0 cm F’F

1.2 cm

F I G U R E  3 2 - 3 7

2. Draw the central ray, which passes undeflected through the center of the lens.
Because the two rays are diverging on the refracted-light side, we extend
them back to the incident-light side to find the image (Figure 32-38 here):

F’F Parallel
ray

Central
ray

Focal
ray

F I G U R E  3 2 - 3 9

F’F Parallel
ray

Central
ray

F I G U R E  3 2 - 3 8

Example 32-9 Image Formed by a Lens

An object that is high is placed from a double convex lens that has a focal
length of Locate the image both graphically and algebraically, state whether the
image is real or virtual, and find its height. Place an eye on the figure positioned and ori-
ented so as to view the image.

PICTURE Locate the image by graphical methods. That means by drawing the three princi-
pal rays. The eye is positioned and oriented so the light from the image enters the eye.

SOLVE

12 cm.
4.0 cm1.2 cm

3. As a check, we also draw the focal ray. This ray leaves the object on a line
passing through the first focal point, then emerges parallel to the axis.
Note that the image is virtual, upright, and enlarged (Figure 32-39):
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CHECK Note the agreement between the algebraic and ray diagram results. Algebraically,
we find that the image is from the lens on the incident-light side (because that
is, the image is to the left of the object. Because it follows that the image is up-
right, and because the image is enlarged. It is good practice to process lens problems
both graphically and algebraically and to compare the results.

PRACTICE PROBLEM 32-10 An object is placed from a thin lens that has a focal
length equal to Find the image distance and the magnification. Is the image real or
virtual? Is the image upright or inverted?

PRACTICE PROBLEM 32-11 An object is placed from a double convex lens that
has a focal length equal to Find the image distance and the magnification. Is the image
real or virtual? Is the image upright or inverted?

10 cm.
5.0 cm

10 cm.
15 cm

m 
 1,
m 
 0,2.0 cm

s� 	 0);6.0 cm

5. We now verify the results of the ray diagram algebraically. First, find
the image distance using Equation 32-12:

s� � �6.0 cm

1
s�

�
1

12 cm
�

1
4.0 cm

� �
1

6.0 cm

1
4.0 cm

�
1
s�

�
1

12 cm

6. The height of the image is found from the height of the object and
the magnification:

h� � mh

7. The magnification is given by Equation 32-14:m � 1.5m � �
s�
s

� �
�6.0 cm
4.0 cm

�

8. Using this result, we find the height of the image, h�:  1.8 cmh� � mh � (1.5)(1.2 cm) �

1. Use and to calculate sœ2:f � 6 cms2 � 18 cm

sœ2 � 9 cm

1
18 cm

�
1
sœ2

�
1

6 cm

1
s2

�
1
sœ2

�
1
f2

COMBINATIONS OF LENSES

If we have two or more thin lenses, we can find the final image produced by the
system by finding the image distance for the first lens and then using it, along with
the distance between the lenses, to find the object distance for the second lens. That
is, we consider each image, whether it is real or virtual—and whether it is actually
formed or not—as the object for the next lens.

4. The eye must be positioned so the light from the image enters the eye.

Example 32-10 Image Formed by a Second Lens

A second lens that has a focal length equal to is placed to the right of the lens
in Example 32-9. Locate the final image.

PICTURE The principal rays used to locate the image of the first lens will not necessarily be
principal rays for the second lens. In this example, however, we have chosen the position of
the second lens (Figure 32-40a) so that the parallel ray for the first lens turns out to be the
central ray for the second lens. Also, the focal ray for the first lens emerges parallel to the axis
and is therefore the parallel ray for the second lens. If additional principal rays for the sec-
ond lens are needed, we simply draw them from the image formed by the first lens. For ex-
ample, in Figure 32-40b we added such a ray, drawn from the first image through the first
focal point of the second lens.

Algebraically we use because the first image is to the left of the first lens
and therefore to the left of the second lens.

SOLVE

18 cm
6 cms2 � 18 cm,

F2

12 cm�6 cm

The final image is on the refracted-light side of
the second lens and is 9 cm from the second lens.
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Example 32-11 A Combination of Two Lenses 

Two lenses, each having a focal length equal to are apart. Find the final image
location for an object from one of the lenses and 30 cm from the other.

PICTURE Use a ray diagram to find the location of the image formed by lens 1. When these
rays strike lens 2 they are further refracted, leading to the final image. More accurate results
are obtained algebraically using the thin-lens equation for both lens 1 and lens 2.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

15 cm
15 cm10 cm,

F1
F’1

I1

a

b

c

1 2

F I G U R E  3 2 - 4 1

F1 F2

s2

F’1
4 cm

6 cm

12 cm 12 cm

6 cm 6 cm

s’
   2

F’
   2

F’
   1

F1 F2 F’1

F’
   2

F’
   1

F I G U R E  3 2 - 4 0 b

F I G U R E  3 2 - 4 0 a

Steps Answers

1. Draw the (a) parallel, (b) central, and
(c) focal rays for lens 1 (Figure 32-41). 
If lens 2 did not alter these rays, they would
form the image I1 .

2.

CHECK The ray diagram in step 2 checks the calculation in step 1. In addition, to check the
ray diagram in step 2, we draw the focal ray for the second lens.
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2. To locate the final image, add three principal
rays ( and ) for lens 2. The intersection
of these rays gives the location of image 
(Figure 32-42).

I2

fd, e,

F1

a

b

c

1 2

d

f

F2
F’2I2

I1

F’1
e

F I G U R E  3 2 - 4 2

CHECK From the step-2 ray diagram we see that the final image is about six tenths of the
focal length of lens 2. The focal length of lens 2 is 10 cm, so step-2 result and the step-4 result
are in agreement.

3. To proceed algebraically, use the thin-lens equation to find the image
distance produced by lens 1.sœ1

sœ1 � 30 cm

4. For lens 2, the image, is from the lens on the refracted-light side;
hence, Use this to find the final image distance sœ2 .s2 � �15 cm.

15 cmI1 6 cmsœ2 �

Example 32-12 Two Lenses in Contact

For two lenses very close together, derive the relation 

PICTURE Apply the thin-lens equation to each lens using the fact that the distance between
the lenses is negligible, so the object distance for the second lens is the negative of the image
distance for the first lens.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

1
feff

�
1
f1

�
1
f2

.

Steps Answers

1. Write the thin-lens equation for lens 1.
1
s1

�
1
sœ1

�
1
f1

2. Using write the thin-lens equation for lens 2.s2 � �sœ1 ,
1

�sœ1
�

1
sœ2

�
1
f2

3. Add your two resulting equations to eliminate sœ1 .
1
s1

�
1
sœ2

�
1
f1

�
1
f2

�
1
feff

COMPOUND LENSES

When two thin lenses of focal lengths and are placed together, the effective
focal length of the combination is given by

32-15

as is shown in the following example (Example 32-12). The power of two lenses in
contact is given by

32-16Peff � P1 � P2

1
feff

�
1
f1

�
1
f2

feff

f2f1



32-3 ABERRATIONS

When all the rays from a point object are not focused at a
single image point, the resultant blurring of the image is
called aberration. Figure 32-43 shows rays from a point
source on the axis traversing a thin lens with spherical
surfaces. Rays that strike the lens far from the axis are
bent much more than are the rays near the axis, with the
result that not all the rays are focused at a single point.
Instead, the image appears as a circular disk at point 
where the diameter is minimum. This type of aberration
in a lens is called spherical aberration; it is the same as
the spherical aberration of mirrors discussed in Section
32-1. Similar but more complicated aberrations called
coma and astigmatism occur when objects are off axis.
The aberration in the shape of the image of an extended
object that occurs, because the magnification depends on
the distance of the object point from the axis, is called
distortion. We will not discuss these aberrations further,
except to point out that they do not arise from any defect
in the lens or mirror but instead result from the applica-
tion of the laws of refraction and reflection to spherical
surfaces. These aberrations are not evident in our simple
equations, because we used small-angle approximations
in the derivation of the equations.

Some aberrations can be eliminated or partially cor-
rected by using nonspherical surfaces for mirrors or
lenses, but nonspherical surfaces are usually much more
difficult and costly to produce than spherical surfaces.
One example of a nonspherical reflecting surface is the
parabolic mirror illustrated in Figure 32-44. Rays that are
parallel to the axis of a parabolic surface are reflected and
focused at a common point, no matter how far the rays
are from the axis. Parabolic reflecting surfaces are some-
times used in large astronomical telescopes, which need
a large reflecting surface to gather as much light as pos-
sible to make the image as intense as possible (reflecting
telescopes are described in the upcoming optional Sec-
tion 32-4). Satellite dishes use parabolic surfaces to focus
microwaves from communications satellites. A parabolic
surface can also be used in a searchlight to produce a
parallel beam of light from a small source placed at the
focal point of the surface.

An important aberration found with lenses but not found with mirrors is
chromatic aberration, which is due to variations in the index of refraction with
wavelength. From Equation 32-11, we can see that the focal length of a lens depends
on its index of refraction and is therefore different for different wavelengths.
Because is slightly greater for blue light than for red light, the focal length for blue
light will be shorter than the focal length for red light.

Chromatic aberration and other aberrations can be partially corrected by using
combinations of lenses instead of a single lens. For example, a positive lens and a
negative lens of greater focal length can be used together to produce a converging
lens system that has much less chromatic aberration than a single lens of the same
focal length. A high quality camera lens typically contains six elements to correct the
various aberrations that are present.

n

C,
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F I G U R E  3 2 - 4 4 A parabolic mirror focuses all rays parallel to
the axis to a single point with no spherical aberration.

C

(b)

(a)

C

stop

F I G U R E  3 2 - 4 3 Spherical aberration in a lens. (a) Rays from a
point object on the axis are not focused at a point. (b) Spherical
aberration can be reduced by using a stop to block off the outer
parts of the lens, but this also reduces the amount of light reaching
the image.

*
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32-4 OPTICAL INSTRUMENTS

*THE EYE

The optical system of prime importance is the eye, which is shown in Figure 32-45.
Light enters the eye through a variable aperture, the pupil. The light is converged
by the cornea, with assistance from the lens, to form an image on the retina, which
has a film of nerve fibers covering the back surface of the eye. The retina contains
tiny sensing structures called rods and cones, which detect the light and transmit
the information along the optic nerve to the brain. The shape of the crystalline lens
can be altered slightly by the action of the ciliary muscle. When the eye is focused
on an object far away, the muscle is relaxed and the cornea-lens system has its max-
imum focal length, about which is the distance from the cornea to the retina.
When the object is brought closer to the eye, the ciliary muscle increases the cur-
vature of the lens slightly, thereby decreasing its focal length, so that the image is
again focused on the retina. This process is called accommodation. If the object is too
close to the eye, the lens cannot focus the light on the retina and the image is
blurred. The closest point for which the lens can focus the image on the retina
is called the near point. The distance from the eye to the near point varies greatly
from one person to another and changes with age. At 10 years, the near point may
be as close as whereas at 60 years it may recede to because of the loss
of flexibility of the lens. The standard value taken for the near point is 

If the eye underconverges, resulting in the images being focused behind the
retina, the person is said to be farsighted. A farsighted person can see distant objects
clearly where little convergence is required, but has trouble seeing close objects
clearly. Farsightedness is corrected with a converging (positive) lens (Figure 32-46).

On the other hand, the eye of a
nearsighted person overconverges
and focuses light from distant objects
in front of the retina. A nearsighted
person can see nearby objects clearly
(objects for which the widely diverg-
ing incident rays can be focused on
the retina), but has trouble seeing
distant objects clearly. Nearsight-
edness is corrected with a diverging
(negative) lens (Figure 32-47).

Another common defect of vision
is astigmatism, which is caused by the
cornea being not quite spherical but
having a different curvature in one
plane than in another. This results in a
blurring of the image of a point object
into a short line. Astigmatism is cor-
rected by glasses using lenses of cylin-
drical rather than spherical shape.

The apparent size of an object is de-
termined by the actual size of the
image on the retina. The larger the
image on the retina, the larger the ap-
parent size and the greater the num-
ber of rods and cones that are illumi-
nated by the light from the object.
From Figure 32-48, we see that the size
of the image on the retina is greater

25 cm.
200 cm7 cm,

2.5 cm,

Ciliary
muscle

Cornea

Pupil

Iris

Retina

Lens
Optic
nerve

F I G U R E  3 2 - 4 5 The human eye. The
amount of light entering the eye is controlled
by the iris, which regulates the size of the
pupil. The lens thickness is controlled by the
ciliary muscle. The cornea and lens together
converge the light to focus the image on
the retina, which contains approximately
125 million receptors, called rods and cones,
and approximately 1 million optic-nerve fibers.

P’

P’

(b)

(a)

P P’

P P’

(b)

(a)

F I G U R E  3 2 - 4 7 (a) A nearsighted
eye focuses rays from a distant object
to a point in front of the retina. (b) A
diverging lens corrects this defect.

F I G U R E  3 2 - 4 6 (a) A farsighted
eye focuses rays from a nearby object
to a point behind the retina. (b) A
converging lens corrects this defect by
bringing the image onto the retina.
These diagrams, and those following,
are drawn as if all the focusing of the
eye is done at the cornea; in fact, the
lens and cornea system act more like a
spherical refracting surface than a
thin lens.

*
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when the object is close than it is when the object is far away. The ap-
parent size of an object is thus greater when the object is closer to
the eye. The image size is proportional to the angle subtended by
the object at the eye. For Figure 32-48,

32-17

for small angles. Applying the law of refraction gives 
where and is the refractive index inside the

eye. For small angles this becomes

32-18

Combining Equations 32-17 and 32-18 gives

32-19

The size of the image on the retina is proportional to the size of the
object and inversely proportional to the distance from the cornea to
the object. Because the near point is the closest point to the eye for
which a sharp image can be formed on the retina, the distance from
the cornea to the near point is called the distance of most distinct vision.

y

s
� n

y�

2.5 cm
or y� �

2.5 cm
n

y

s

u � nf

nnair � 1.00n sinf,
nair sinu �

f �
y�

2.5 cm
 and u �

y

s

u 2.5 cm
y

s1

1

y’1
1

2.5 cm
y

s2

2

y’22

θ

φ

θ

φ

(b)

(a)

F I G U R E  3 2 - 4 8 (a) A distant object of height y looks small
because the image on the retina is small. (b) When the same object
is closer, it looks larger because the image on the retina is larger.

Example 32-13 Reading Glasses

The near-point distance of a person’s eye is Using a reading glasses lens placed a neg-
ligible distance from the eye, the near-point distance of the lens-eye system is That is,
the image on the retina is blurry if an object is placed less than in front of the lens.
(a) What power is the reading glasses lens and (b) what is the lateral magnification of the
image formed by the lens? (c) Which produces the bigger image on the retina, (1) the object
at the near point of, and viewed by, the unaided eye or (2) the object at the near point of the
lens-eye system and viewed through the lens that is immediately in front of the eye?

PICTURE A near-point distance of the lens-eye system of means the lens forms a
virtual image in front of the lens if an object is placed in front of the lens.
Figure 32-49a shows a diagram of an object from a converging lens that produces a
virtual, upright image at Figure 32-49b shows the image on the retina formed
by the focusing power of the eye.

s� � �75 cm.
25 cm

25 cm75 cm
25 cm

25 cm
25 cm.

75 cm.

25 cm

75 cm

F’

(b)

(a)

25 cm

75 cm

F’

F I G U R E  3 2 - 4 9



1124 | C H A P T E R  3 2 Optical Images

*THE SIMPLE MAGNIFIER

We saw in Example 32-13 that the apparent size of an object can be increased by
using a converging lens placed next to the eye. A converging lens is called a simple
magnifier if it is placed next to the eye and if the object is placed closer to the lens
than its focal length, as was the case for the lens in Example 32-13. In that example,
the lens formed a virtual image at the near point of the eye, the same location
that the object must be placed for best viewing by the unaided eye. So, with the lens
in place, the magnitude of the image distance was greater than the object
distance so the image seen by the eye is magnified by If the actual
height of the object is then the height of the image formed by the lens is 
To the eye, this image subtends an angle (Figure 32-50) given approximately by

which is the very same angle the object would
subtend if the lens were removed while the
object and the eye are left in place. That is, the
apparent size of the image seen by the eye
through the lens is the same as the apparent
size of the object that would be seen by the
eye were the lens removed (assuming the eye
could focus at that distance). Thus, the appar-
ent size of the object seen through the lens is
inversely proportional to the distance from
the object to the eye with the lens in place. The
smaller is, the larger the subtended angle 
and the larger the apparent size of the object.

us

u �
my

ƒs� ƒ
� m

y

ƒs� ƒ
�

ƒs� ƒ
s

y

ƒs� ƒ
�
y

s

u

my.y�y,
m � ƒs� ƒ>s.s,

ƒs� ƒ

TAKING IT FURTHER (1) If your near point is you are farsighted. To read a book you
must hold it at least from your eye to be able to focus on the print. The image of the
print on your retina is then very small. The reading glasses lens produces an image also

from your eye, and this image is three times larger than the actual print. Thus, look-
ing through the lens, the image of the print on the retina is larger by a factor of 3. (2) In this
example, the distance from the lens to the eye was negligible. The results are slightly differ-
ent if this distance is not negligible, which is factored into the calculations.

PRACTICE PROBLEM 32-12 Calculate the power of the eye for which the near point is
and the cornea-retina distance is and calculate the combined power of the lens

and eye when they are in contact. Compare this result with the power of a lens for which
when s � 25 cm.s� � 2.5 cm,

2.5 cm,75 cm

75 cm

75 cm
75 cm,

y

y’

s

θ

m = =
y
y

’ ’s
s

s’

F I G U R E  3 2 - 5 0

(a) Use the thin-lens equation, and 
to calculate the power, 1>f: s� � �75 cms � 25 cm,

 2.7 D�
2

75 cm
�

2
0.75 m

�

1
f

�
1
s

�
1
s�

�
1

25 cm
�

1
�75 cm

(b) Using find m:m � �s�>s,  3.0m � �
s�
s

� �
�75 cm
25 cm

�

(c) In both cases, the rays entering the eye appear to diverge from
points on an image in front of the eye. However, with the
lens in place, the image in front of the eye is larger than
the object by a factor of 3:

75 cm
75 cm

Option 2

SOLVE
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xnp

oθy θy

f

(b)(a)

F I G U R E  3 2 - 5 1 (a) An object at the near
point subtends an angle at the naked eye.
(b) When the object is at the focal point of the
converging lens, the rays emerge from the lens
parallel and enter the eye as if they came from
an object a very large distance away. The
image can thus be viewed at infinity by the
relaxed eye. When is less than the near-point
distance, the converging lens allows the object
to be brought closer to the eye. This increases
the angle subtended by the object to thereby
increasing the size of the image on the retina.

u,

f

uo

In Figure 32-51a, a small object of height is at the near point of the eye at a
distance The angle subtended, is given approximately by

In Figure 32-51b, a converging lens of focal length that is smaller than is
placed a negligible distance in front of the eye, and the object is placed in the focal
plane of the lens. The rays emerge from the lens parallel, indicating that the image
is located an infinite distance in front of the lens. The parallel rays are focused by
the relaxed eye on the retina. The angle subtended by this image is equal to the
angle subtended by the object (assuming that the lens is a negligible distance from
the eye). The angle subtended by the object is approximately

The ratio is called the angular magnification or magnifying power M of the lens:

32-20

Simple magnifiers are used as eyepieces (called oculars) in microscopes and tele-
scopes to view a real image formed by another lens or lens system. To correct aber-
rations, combinations of lenses that result in a short positive focal length may be
used in place of a single lens, but the principle of the simple magnifier is the same.

M �
u

uo

�
xnp

f

u>uo

u �
y

f

xnpf

uo �
y

xnp

uo ,xnp .
y

Try It YourselfExample 32-14 Angular Magnification of a Simple Magnifier

A person who has a near point of uses a lens as a simple magnifier. What angu-
lar magnification is obtained?

PICTURE The angular magnification is found from the focal length (Equation 32-20),
which is the reciprocal of the power.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

f

40-D25 cm

Steps Answers

1. Calculate the focal length of the lens using 
(Equation 32-13).

P � 1>f f � 2.5 cm

2. Use your result from step 1 and incorporate the result into
Equation 32-20 to calculate the angular magnification.

10M �

TAKING IT FURTHER Looking through the lens, the object appears 10 times larger because
it can be placed at rather than at from the eye, thus increasing the size of the
image on the retina tenfold.

PRACTICE PROBLEM 32-13 What is the angular magnification in this example if the near
point of the person is rather than 25 cm?30 cm

25 cm2.5 cm



*THE COMPOUND MICROSCOPE

The compound microscope (Figure 32-52) is used to look at very small objects at
short distances. In its simplest form, it consists of two converging lenses. The lens
nearest the object, called the objective, forms a real image of the object. This image
is enlarged and inverted. The lens nearest the eye, called the eyepiece or ocular, is
used as a simple magnifier to view the image formed by the objective. The eyepiece
is placed so that the image formed by the objective falls at the first focal point of
the eyepiece. The light from each point on the object thus emerges from the eye-
piece as a parallel beam, as if it were coming from a point a great distance in front
of the eye. (This is commonly called viewing the image at infinity.)

The distance between the second focal point of the objective and the first focal
point of the eyepiece is called the tube length The tube length is fixed at 
The object is placed just outside the first focal point of the objective so that an
enlarged image is formed at the first focal point of the eyepiece a distance 
from the objective, where is the focal length of the objective. From Figure 32-52,

The lateral magnification of the objective is therefore

32-21mo �
y�

y
� �

L
fo

tanb � y>fo � �y�>L.
fo

L � fo

16 cm.L.

(c)
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y

fo feL

y’
β

β

Objective Eyepiece

F I G U R E  3 2 - 5 2 Schematic diagram of
a compound microscope consisting of two
positive lenses, the objective of focal length 
and the eyepiece of focal length The real
image of the object formed by the objective is
viewed by the eyepiece, which acts as a
simple magnifier. The final image is at infinity.

fe .
fo

(a)

(d)

(b)

(a) The human eye in profile. (b) The lens of the
eye is kept in place by the ciliary muscle (shown
here in the upper left), which rings the lens. When
the ciliary muscle contracts, the lens tends to
bulge. The greater lens curvature enables the eye
to focus on nearby objects. (c) Some of the
120 million rods and 7 million cones in the eye,
magnified approximately 5000 times. The rods
(the more slender of the two) are more sensitive
in dim light, whereas the cones are more sensitive
to color. The rods and cones form the bottom layer
of the retina and are covered by nerve cells,
blood vessels, and supporting cells. Most of the
light entering the eye is reflected or absorbed
before reaching the rods and cones. The light that
does reach them triggers electrical impulses
along nerve fibers that ultimately reach the brain.
(d) A neural net used in the vision system of
certain robots. Loosely modeled on the human
eye, it contains 1920 sensors. ((a), (b) and (c) Lennart
Nilsson, (d) Courtesy IMEC and University of
Pennsylvania Department of Electrical Engineering.)



*THE TELESCOPE

A telescope is used to view objects that are far away and are often
large. The telescope works by creating a real image of the object
that is much closer than the object. The astronomical telescope,
illustrated schematically in Figure 32-53, consists of two con-
verging lenses—an objective lens that forms a real, inverted
image and an eyepiece that is used as a simple magnifier to view
that image. Because the object is very far away, the image of the
objective lies in the focal plane of the objective, and the image dis-
tance equals the focal length The image formed by the objec-
tive is much smaller than the object (because the object distance is

fo .
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The angular magnification of the eyepiece (from Equation 32-20) is

where is the near-point distance of the viewer and is the focal length of the eye-
piece. The magnifying power of the compound microscope is the product of the lat-
eral magnification of the objective and the angular magnification of the eyepiece:

32-22

MAGNIFYING POWER OF A MICROSCOPE

M � moMe � �
L
fo

xnp

fe

fexnp

Me �
xnp

fe

(a) 1. The magnifying power is given by Equation 32-22: M � �
L
fo

xnp

fe

2. The tube length is the distance between the lenses minus
the focal distances:

L L � 20.0 cm � 2.0 cm � 1.2 cm � 16.8 cm

3. Substitute this value for and the given values of 
and to calculate M:fe

xnp , fo ,L �180�M � �
L
fo

xnp

fe
� �

16.8 cm
1.2 cm

25.0 cm
2.0 cm

(b) 1. Calculate the object distance in terms of the image distance
for the objective and the focal length fo:s�

s
1
s

�
1
s�

�
1
fo

2. From Figure 32-52, the image distance for the image of the
objective is fo � L:

 1.3 cms �

1
s

�
1

18.0 cm
�

1
1.2 cm

� 18.0 cms� � fo � L � 1.2 cm � 16.8 cm

3. Substitute to calculate s:

CHECK The magnifying power is very large, which is the purpose of a compound microscope.

TAKING IT FURTHER The object should thus be placed at from the objective or
outside its first focal point.0.1 cm

1.3 cm

Example 32-15 The Compound Microscope

A microscope has an objective lens that has a focal length equal to and an eyepiece that
has a focal length equal to These lenses are separated by (a) Find the magni-
fying power if the near point of the viewer is (b) Where should the object be placed
if the final image is to be viewed at infinity?

PICTURE To calculate the magnifying power, we use Equation 32-22. To calculate the object
distance for the objective, we use the lens equation.

SOLVE

25.0 cm.
20.0 cm.2.0 cm.
1.2 cm

fo fe

y’

Objective Eyepiece

θo
θeθo

F I G U R E  3 2 - 5 3 Schematic diagram of an astronomical telescope.
The objective lens forms a real, inverted image of a distant object near
its second focal point, which coincides with the first focal point of the
eyepiece. The eyepiece serves as a simple magnifier to view the image.
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much larger than the focal length of the objective). For example, if we are looking at
the moon, the image of the moon formed by the objective is much smaller than the
moon itself. The function of the objective is not to magnify the object, but to produce
an image that is close enough to us so it can be magnified by the eyepiece acting as a
simple magnifier. The eyepiece is placed a distance from the image, where is the
focal length of the eyepiece, so the final image can be viewed at infinity. Because this
image is at the second focal plane of the objective and at the first focal plane of the
eyepiece, the objective lens and the eyepiece must be separated by the sum of the focal
lengths of the objective lens and eyepiece, 

The magnifying power of the telescope is the angular magnification where
is the angle subtended by the virtual image produced by the eyepiece as viewed

through the eyepiece, and is the angle subtended by the object when it is viewed
directly by the unaided eye. The angle is the same as that subtended by the object
at the objective shown in Figure 32-53. (The distance from a distant object, such as
the moon, to the objective is essentially the same as the distance to the eye.) From
this figure, we can see that

where we have used the small-angle approximation The angle in the
figure is that subtended by the image at infinity formed by the eyepiece:

Because is negative, is negative, indicating that the image is inverted. The mag-
nifying power of the telescope is then

32-23

MAGNIFYING POWER OF A TELESCOPE

From Equation 32-23, we can see that a large magnifying power is obtained with an
objective of large focal length and an eyepiece of short focal length.
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Objective
mirror

F I G U R E  3 2 - 5 4 A reflecting telescope
uses a concave mirror instead of a lens for its
objective. Because the viewer compartment
blocks off some of the incoming light, the
arrangement shown here is used only in
telescopes with very large objective mirrors.

Objective
mirror

Secondary
mirror

Viewing
area

F I G U R E  3 2 - 5 5 This reflecting telescope
has a secondary mirror to redirect the light
through a small hole in the objective mirror,
thus providing more room for auxiliary
instruments in the viewing area.

PRACTICE PROBLEM 32-14

The world’s largest refracting telescope is at the Yerkes Observatory of the University of
Chicago at Williams Bay, Wisconsin. The telescope’s objective has a diameter of 
and a focal length of The focal length of the eyepiece is What is its mag-
nifying power?

10.0 cm.19.5 m.
1.02 m

The main consideration with an astronomical telescope is not its magnifying
power but its light-gathering power, which depends on the size of the objective. The
larger the objective, the brighter the image. Very large lenses without aberrations are
difficult to produce. In addition, there are mechanical problems in supporting very
large, heavy lenses by their edges. A reflecting telescope (Figure 32-54 and Figure
32-55) uses a concave mirror instead of a lens for its objective. The mirror offers
several advantages. For example, a mirror does not produce chromatic aberration.
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In addition, mechanical support is much simpler, because the mirror weighs far less
than a lens of equivalent optical quality, and the mirror can be supported over its
entire back surface. In modern Earth-based telescopes, the objective mirror consists
of several dozen adaptive mirror segments that can be adjusted individually to cor-
rect for minute variations in gravitational stress when the telescope is tilted, and to
compensate for thermal expansions and contractions and other changes caused by
climatic conditions. In addition, they can adjust to nullify the distortions produced
by atmospheric fluctuations.

(a)

(d) (e)

(b) (c)

Astronomy at optical wavelengths began with Galileo approximately
400 years ago. In the twentieth century, astronomers began to explore the
electromagnetic spectrum at other wavelengths; beginning with radio
astronomy in the 1940s, satellite-based X-ray astronomy in the early
1960s, and more recently, ultraviolet, infrared, and gamma-ray astronomy.
(a) Galileo’s seventeenth-century telescope, with which he discovered
mountains on the moon, sunspots, Saturn’s rings, and the bands and
moons of Jupiter. (b) An engraving of the reflector telescope built in the
1780s and used by the great astronomer Friedrich Wilhelm Herschel,
who was the first to observe galaxies outside our own. (c) Because it is
difficult to make large, flaw-free lenses, refractor telescopes like this

telescope at Lick Observatory have been superseded in light-
gathering power by reflector telescopes. (d) The great astronomer Edwin
91.4-cm

Powell Hubble, who discovered the apparent expansion of the universe,
is shown seated in the observer’s cage of the Hale reflecting
telescope, which is large enough for the observer to sit at the prime focus
itself. (e) This optical reflector at the Whipple Observatory in
southern Arizona is the largest instrument designed exclusively for use
in gamma-ray astronomy. High-energy gamma rays of unknown origin
strike the upper atmosphere and create cascades of particles. Among
these particles are high-energy electrons that emit Cerenkov radiation
observable from the ground. According to one hypothesis, high-energy
gamma rays are emitted as matter is accelerated toward ultradense
rotating stars called pulsars. ((a) Scala/Art Resource, (b) Royal Astronomical
Society Library, (c) Lick Observatory, courtesy of the University of
California Regents, (d) California Institute of Technology, (e) Gary Ladd.)

10-m

5.08-m



1130 | C H A P T E R  3 2 Optical Images

(a) The Keck Observatory, atop the inactive volcano of Mauna Kea,
Hawaii, houses the world’s largest optical telescope. The clear, dry
air and lack of light pollution make the remote heights of Mauna
Kea an ideal site for astronomical observations. (b) The Keck
telescope is composed of 36 hexagonal mirror segments
performing together as if they were a single mirror wide—
roughly twice as large as the largest single-mirror telescope
presently in operation. (c) Beneath each Keck mirror is a system
of computer-controlled sensors and motor-driven actuators that
can continuously vary the mirror’s shape. These variations,
which are sensitive to within enable the system to correct
for variations in the alignments of the segments due to minute
variations in gravitational stress when the telescope is tilted and
to compensate for thermal expansions and contractions and
fluctuations caused by gusts of wind on the mountaintop.
(California Association for Research in Astronomy.)

100 nm,

10 m

The Hubble Space Telescope is high above the atmospheric turbulence
that limits the ability of ground-based telescopes to resolve images at
optical wavelengths. (NASA.)

(a)

(c)

(b)
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Physics Spotlight

Eye Surgery: New Lenses for Old

The first documented eye surgery took place over 2000 years ago and
was performed by a surgeon in India known today as Susruta.*, † The lens
of the human eye is susceptible to clouding with age and exposure to ul-
traviolet light or with exposure to some diseases or chemicals. This opac-
ity is called a cataract. In the Susruta Samhita, the surgeon wrote of diag-
nosing and removing cataract-clouded lenses.

In 2005, more than two million cataract surgeries were performed in
the United States.‡ Most involved removing the lens and implanting
an artificial lens inside the eye. Although permanent intraocular lenses
(IOLs) were pioneered in 1951,# they did not gain widespread accep-
tance until the 1980s. Before then, patients had to wear strong external
corrective lenses (eyeglasses or contact lenses after the 1960s) after cata-
ract surgery.

Cataract patients who have had IOLs implanted have had to wear
external corrective lenses, because the IOLs are fixed focus lenses.
However, several different IOLs that have variable focus have been re-
cently introduced.°, § These accommodative, multifocal lenses are flexed and focused by the eye muscles. Some patients have
had such good results with accommodative IOLs that they do not need supplemental glasses.

Many people without cataracts wear external corrective lenses. In the United States alone, over 150 million people spend
at least $15 billion on external corrective lenses each year.¶ In addition, nearly a million get refractive surgery each year that
promises to reduce their need for external corrective lenses.** Refractive surgery reshapes the cornea to minimize refractive
errors. It was pioneered in the 1930s, but did not become popular until techniques that use lasers were developed in the late
1980s.†† Refractive surgery can be done by using chemicals or mechanical abrasion, but it is most commonly done by using
lasers that vaporize minute pieces of the cornea. Some refractive surgeries involve cutting a thin flap in the outer layers of the
cornea, shaping the stroma, the thickest layer of the cornea underneath, and then replacing the flap. Other surgeries just in-
volve shaping the outer surface of the cornea.‡‡

Refractive surgeries work best on patients who have medium to low refractive error. In those patients, however, the results
are promising. Up to 72% of the patients who have low to moderate nearsightedness ended up with postsurgical uncorrected
vision that is considered or normal.## Recently, customized wavefront-guided laser surgery has been used to minimize
refractive errors that are not fixed by earlier techniques of eye surgery.°° A light is bounced off of the retina through many
locations on the cornea. The returning wavefront is mapped, and very tiny refractive errors are located for elimination. With
custom wavefront-guided laser surgery, up to 89% of patients ended up with uncorrected vision.

But even with the best surgeons, there can be complications with refractive surgeries.§§, ¶¶ The most common is dry eyes,
but in up to 2% of patients vision can actually be worse after surgery.*** Complications are more likely in people who have
large refractive errors, and refractive surgery is not recommended for them. But those people may also eventually be able to
not wear external corrective lenses. Recently, accommodative IOLs have been tested on people who have high refractive errors.
Many were able to have near-normal vision after surgery without additional corrective lenses.†††

* Raju, V. K., “Susruta of Ancient India.” Indian Journal of Ophthalmology, Feb. 2003, Vol. 51, No. 2, pp. 119–122. http://www.ijo.in/article.asp?issn�0301-4738;year�2003;volume�51;
issue�2;spage�119;epage�122;aulast�Raju As of Nov. 2006.

† Hellemans, A., and Bunch, B., The Timetables of Science. New York: Simon & Schuster, 1988, p. 28.
‡ American Academy of Ophthalmology, “Industry News.” Academy Express, Vol. 5, No. 14, http://www.aao.org/news/academy_express/20060405.cfm#asc As of Nov. 2006.
# Apple, D. J., “Sir Harold Ridley.” Journal of Cataract and Refractive Surgery, Mar. 2004, Vol. 30, No. 3, pp. 47–52.
° Cummings, J. S., et al., “Clinical Evaluation of the Crystalens AT-45 Accommodating Intraocular Lens: Results of the U.S. Food and Drug Administration Clinical Trial.” Journal of

Cataract and Refractive Surgery, May 2006, Vol. 32, No. 5, pp. 812–825.
§ Charters, L., “Dual-Optic IOL Effective Answer to Presbyopia.” Ophthalmology Times, Feb. 1, 2006, pp. 20–21.
¶ Rados, C., “A Focus on Vision.” FDA Consumer, Jul.–Aug. 2006, pp. 10–17.
** American Academy of Ophthalmology, “Industry News.” Academy Express, Vol. 5, No. 14, http://www.aao.org/news/academy_express/20060405.cfm#asc As of Nov. 2006.
†† Kornmehl, E., “The Start of Something Big.” Ophthalmology Times, Nov. 1, 2006, Vol. 31, No. 21, p. 24.
‡‡ Sakimoto, T., Rosenblatt, M., and Azar, D., “Laser Eye Surgery for Refractive Errors.” The Lancet, Apr. 29, 2006, Vol. 367, No. 9520, pp. 1432–1447.
## Sakimoto, T., Rosenblatt, M., and Azar, D., op. cit.
°° Mackenzie, D., “Coming Soon: ‘Wavefront Eye Surgery’?” Science, Mar. 14, 2003, Vol. 299, No. 5613, p. 1655.
§§ Potter, J., “Do What’s Right When Refractive Surgery Goes Wrong.” Review of Optometry, Oct. 15, 2006, pp. 52–62.
¶¶ Guttman, C., “DLK a Lifelong Risk in Post-LASIK eyes.” Ophthalmology Times, Nov. 1, 2006, Vol. 31, No. 21, pp. 
*** Sakimoto, T., Rosenblatt, M., and Azar, D., op. cit.
††† Charters, L., “Accommodating IOL Improves Vision for High Refractive Errors in Analysis.” Ophthalmology Times, Jun. 1, 2006, Vol. 31, No. 11, p. 43.  

1� .

20>20

20>20,

Unfortunately, this person has a cataract affecting the entire
lens of her right eye. The presence of the cataract
is associated with the severe eczema that can be seen on her
forehead. (Western Ophthalmic Hospital/Photo Researchers.)

http://www.ijo.in/article.asp?issn=0301-4738;year=2003;volume=51;issue=2;spage=119;epage=122;aulastRaju
http://www.ijo.in/article.asp?issn=0301-4738;year=2003;volume=51;issue=2;spage=119;epage=122;aulastRaju
http://www.aao.org/news/academy_express/20060405.cfm#asc
http://www.aao.org/news/academy_express/20060405.cfm#asc
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Virtual and Real Images and Objects

Images An image is real if actual light rays converge to each image point. This can occur on the
reflected-light side of a mirror or on the refracted-light side of a thin lens or refracting sur-
face. An image is virtual if only the extensions of the actual light rays converge to each
image point. This can occur behind a mirror or on the incident-light side of a lens or
refracting surface.

Objects A real object is either a physical object or a real image. An object is real if actual light rays
diverge from each object point. This can occur only on the incident-light side of a mirror,
lens, or refracting surface. An object is virtual if only extensions of actual light rays diverge
from each object point. This can occur only behind a mirror or on the refracted-light side of
a lens or refracting surface.

2. Spherical Mirrors

Focal length The focal length is the image distance when the object is at infinity, so the incident light is
parallel to the axis.

Mirror equation (for locating an image) 32-4

where

32-3

Lateral magnification 32-5

Ray diagrams Images can be located by a ray diagram using any two paraxial rays. The parallel, focal, and
radial rays are the easiest to draw:

1. The parallel ray, drawn parallel to the axis, is reflected through the focal point.

2. The focal ray, drawn through the focal point, is reflected parallel to the axis.

3. The radial ray, drawn through the center of curvature, is reflected back on itself.

Sign conventions for reflection 1. is positive if the object is on the incident-light side of the mirror.

2. is positive if the image is on the reflected-light side of the mirror.

3. and are positive if the mirror is concave so the center of curvature is on the reflected-
light side of the mirror.

3. Images Formed by Refraction

Refraction at a single surface 32-6

where is the index of refraction of the medium on the incident-light side of the surface.

Magnification 32-7

Sign conventions for refraction 1. is positive for objects on the incident-light side of the surface.

2. is positive for images on the refracted-light side of the surface.

3. is positive if the center of curvature is on the refracted-light side of the surface.r
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4. Thin Lenses

Focal length (lens-maker’s equation) 32-11

A positive lens is a converging lens. A negative lens is a diverging lens.

First and second focal points Incident rays parallel to the axis emerge directed either toward or away from the first focal
point Incident rays directed either toward or away from the second focal point emerge
parallel with the axis.

Power 32-13

Thin-lens equation (for locating image) 32-12

Magnification 32-14

Ray diagrams Images can be located by a ray diagram using any two paraxial rays. The parallel, central,
and focal rays are the easiest to draw:

1. The parallel ray, drawn parallel to the axis, emerges directed toward (or away from) the
second focal point.

2. The central ray, drawn through the center of the lens, is not deflected.

3. The focal ray, drawn through (or toward) the first focal point, emerges parallel to the axis.

Sign conventions for lenses The sign conventions are the same as for refraction at a spherical surface.

5. *Aberrations Blurring of the image of a single object point is called aberration. Spherical aberration results
from the fact that a spherical surface focuses only paraxial rays (those that travel close to the
axis) to a single point. Nonparaxial rays are focused at nearby points depending on the angle
made with and distance from the axis. Spherical aberration can be reduced by blocking 
the rays farthest from the axis. This, of course, reduces the amount of light reaching the image.

Chromatic aberration, which occurs with lenses but not mirrors, results from the variation
in the index of refraction with wavelength. Lens aberrations are most commonly reduced by
using a series of lens elements.

6. *The Eye The cornea–lens system of the eye focuses light on the retina, where it is sensed by the rods
and cones that send information along the optic nerve to the brain. When the eye is relaxed,
the focal length of the cornea-lens system is about which is the distance to the retina.
When objects are brought near the eye, the lens changes shape to decrease the overall focal
length so that the image remains focused on the retina. The closest distance for which the
image can be focused on the retina is called the near point, typically about The
apparent size of an object depends on the size of the image on the retina. The closer the object,
the larger the image on the retina and therefore the larger the apparent size of the object.

7. *The Simple Magnifier A simple magnifier consists of a lens with a positive focal length that is smaller than the
near point.

Magnifying power 
(angular magnification)

32-20

8. *The Compound Microscope The compound microscope is used to look at very small objects that are nearby. It consists of
two converging lenses (or lens systems), an objective and an eyepiece. The object to be
viewed is placed just outside the focal point of the objective, which forms an enlarged image
of the object at the focal plane of the eyepiece. The eyepiece acts as a simple magnifier to
view the final image.
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Magnifying power 

(angular magnification)
32-22

where is the tube length, the distance between the second focal point of the objective and
the first focal point of the eyepiece.

9. *The Telescope The telescope is used to view objects that are far away. The objective of the telescope forms
a real image of the object that is much smaller than the object but much closer. The eyepiece
is then used as a simple magnifier to view the image. A reflecting telescope uses a mirror for
its objective.

Magnifying power 
(angular magnification)
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Answers to Concept Checks

32-2 Ben can see only the image at 

32-3 Infinity

32-4

Pœ
1 .

Answers to Practice Problems

32-3 (a) (b)

32-4 the image is upright, virtual,
and reduced in size.

32-5

32-6 (a) and (b) Fluffy sees Goldie
to be closer and 14 percent larger than she
actually is.

32-7 The image is from the near side of the aquarium.

32-8

32-10

32-11

32-12
the two powers are equal

32-13

32-14 M � �195

M � 12

Peye � 41.33 D; Pc � 41.33 D � 2.67 D � 44 D;

s� � �10 cm, m � 2.0; virtual, upright

s� � 30 cm, m � �2.0; real, inverted

18 cm

5.6 cm

1.1 cm
m � 1.14.s� � �6.44 cm

390 yd

s� � �2.5 cm, m � �0.50;

s� � �4.0 cm8.0 cm

s

P

Air

Waters’

P’

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Can a virtual image be photographed? If so, give an
example. If not, explain why.

2 • Suppose the and axes of a coordinate system
are painted different colors. One photograph is taken of the coordi-
nate system and another is taken of its image in a plane mirror. Is it
possible to tell that one of the photographs is of a mirror image?
Or could both photographs be of the real coordinate system from
different angles?

3-Dzx, y,

3 • True or False
(a) The virtual image formed by a concave mirror is always smaller

than the object.
(b) A concave mirror always forms a virtual image.
(c) A convex mirror never forms a real image of a real object.
(d) A concave mirror never forms an enlarged real image of an

object.
4 • An ant is crawling along the axis of a concave mirror
that has radius of curvature At what object distances, if any, will
the mirror produce (a) an upright image, (b) a virtual image, (c) an
image smaller than the object, and (d) an image larger than the object?

R.

SSM

TOPIC RELEVANT EQUATIONS AND REMARKS

F I G U R E  3 2 - 5 6 Ray diagram for the image of an
object in water as viewed from directly overhead. The
depth of the image is less than the depth of the object.



ESTIMATION AND APPROXIMATION

16 • Estimate the location and size of the image of your face
when you hold a shiny new tablespoon a foot in front of your face
and with the convex side toward you.
17 • Estimate the focal length of the “mirror” produced by the
surface of the water in the reflection pool in front of the Lincoln
Memorial on a still night.
18 •• Estimate the maximum value that could be obtained for
the magnifying power of a simple magnifier, using Equation 32-20.
Hint: Think about the smallest focal length lens that could be made from
glass and still be used as a magnifier.

PLANE MIRRORS

19 • The image of the
object point in Figure 32-57
is viewed by an eye, as shown.
Draw two rays from the object
point that reflect from the mir-
ror and enter the eye. If the
object point and the mirror are
fixed in their locations, indicate the range of locations where the eye
can be positioned and still see the image of the object point.
20 • You are tall and want to be able to see your full
image in a vertical plane mirror. (a) What is the minimum height of
the mirror that will meet your needs? (b) How far above the floor
should the bottom of mirror in (a) be placed, assuming that the top
of your head is above your eye level? Use a ray diagram to
explain your answer.
21 •• (a) Two plane mirrors make an angle of The light
from a point object that is arbitrarily positioned in front of the mir-
rors produces images at three locations. For each image location,
draw two rays from the object that, after one or two reflections,
appear to come from the image location. (b) Two plane mirrors make
an angle of with each other. Draw a sketch to show the location
of all the images formed of an object on the bisector of the angle be-
tween the mirrors. (c) Repeat Part (b) for an angle of 
22 •• Show that the mirror equation (Equation 32-4 where

yields the correct image distance and magnification for a
plane mirror.
23 •• When two plane mirrors are parallel, such as on opposite
walls in a barber shop, multiple images arise because each image in
one mirror serves as an object for the other mirror. An object is
placed between parallel mirrors separated by The object is

in front of the left mirror and in front of the right mir-
ror. (a) Find the distance from the left mirror to the first four images
in that mirror. (b) Find the distance from the right mirror to the first
four images in that mirror. (c) Explain why each more distant image
becomes fainter and fainter.

SPHERICAL MIRRORS

24 •• A concave mirror has a radius of curvature equal to
Use ray diagrams to locate the image, if it exists, for an ob-

ject near the axis at distances of (a) (b) (c) and
(d) from the mirror. For each case, state whether the image is
real or virtual; upright or inverted; and enlarged, reduced, or the
same size as the object.
25 • (a) Use the mirror equation (Equation 32-4 where

to calculate the image distances for the object distances
and mirror of Problem 24. (b) Calculate the magnification for each
given object distance. SSM

f � r>2)

8.0 cm
12 cm,24 cm,55 cm,

24 cm.

20 cm10 cm
30 cm.

f � r>2)

SSM120°.

60°

90°.

14 cm

1.62 m
SSM

P
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5 • An ant is crawling along the axis of a convex mirror
that has radius of curvature At what object distances, if any,
will the mirror produce (a) an upright image, (b) a virtual image,
(c) an image smaller than the object, and (d) an image larger than
the object?
6 •• Convex mirrors are often used for rearview mirrors
on cars and trucks to give a wide-angle view. “Warning, objects
are closer than they appear” is written below the mirrors. Yet,
according to a ray diagram, the image distance for distant ob-
jects is much shorter than the object distance. Why then do they
appear more distant?

7 • As an ant on the axis of a concave mirror crawls from a
great distance to the focal point of a concave mirror, the image of the
ant moves (a) from a great distance toward the focal point and is
always real, (b) from the focal point to a great distance from the mirror
and is always real, (c) from the focal point to the center of curvature of
the mirror and is always real, (d) from the focal point to a great distance
from the mirror and changes from a real image to a virtual image.
8 • A kingfisher bird that is perched on a branch a few feet
above the water is viewed by a scuba diver submerged beneath the
surface of the water directly below the bird. Does the bird appear to
the diver to be closer to or farther from the surface than the actual
bird? Explain your answer using a ray diagram.
9 • An object is placed on the axis of a diverging lens whose
focal length has a magnitude of The distance from the object to
the lens is The image is (a) real, inverted, and diminished,
(b) real, inverted, and enlarged, (c) virtual, inverted, and diminished,
(d) virtual, upright, and diminished, (e) virtual, upright, and enlarged.
10 • If an object is placed between the focal point of a conver-
ging lens and the optical center of the lens, the image is (a) real,
inverted, and enlarged, (b) virtual, upright, and diminished, (c) vir-
tual, upright, and enlarged, (d) real, inverted, and diminished.
11 • A converging lens is made of glass that has an index of
refraction of 1.6. When the lens is in air, its focal length is 
When the lens is immersed in water, its focal length (a) is greater
than (b) is between zero and (c) is equal to 
(d) has a negative value.
12 • True or false:
(a) A virtual image cannot be displayed on a screen.
(b) A negative image distance implies that the image is virtual.
(c) All rays parallel to the axis of a spherical mirror are reflected

through a single point.
(d) A diverging lens cannot form a real image from a real object.
(e) The image distance for a converging lens is always positive.
13 • BIOLOGICAL APPLICATION Both the human eye and the
digital camera work by forming real images on light-sensitive sur-
faces. The eye forms a real image on the retina and the camera
forms a real image on a CCD array. Explain the difference between
the ways in which these two systems accommodate. That is, the dif-
ference between how an eye adjusts and how a camera adjusts (or
can be adjusted) to form a focused image for objects at both large
and short distances from the camera.
14 • BIOLOGICAL APPLICATION If an object is in front of
the naked eye of a farsighted person, an image (a) would be formed
behind the retina if it were not for the fact that that the light is blocked
(by the back of the eyeball) and the corrective contact lens should be
convex, (b) would be formed behind the retina if it were not for the fact
that that the light is blocked (by the back of the eyeball) and the cor-
rective contact lens should be concave, (c) is formed in front of the
retina and the corrective contact lens should be convex, (d) is formed
in front of the retina and the corrective contact lens should be concave.
15 •• Explain the following statement: A microscope is an ob-
ject magnifier, but a telescope is an angle magnifier. Hint: Take a look
at the ray diagram for each magnifier and use it to explain the difference
in adjectives.

25 cm

30 cm,30 cm,30 cm,

30 cm.

40 cm.
10 cm.

SSM

R.

P

Mirror

Eye
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26 • A convex mirror has a radius of curvature that has a
magnitude equal to Use ray diagrams to locate the image,
if it exists, for an object near the axis at distances of (a)
(b) (c) (d) and (e) from the mirror.
For each case, state whether the image is real or virtual; upright or
inverted; and enlarged, reduced, or the same size as the object.

27 • (a) Use the mirror equation (Equation 32-4 where
to calculate the image distances for the object distances

and mirror of Problem 26. (b) Calculate the magnification for each
given object distance.

28 •• Use the mirror equation (Equation 32-4 where to
prove that a convex mirror cannot form a real image of a real object,
no matter where the object is placed.

29 • A dentist wants a small mirror that will produce an
upright image that has a magnification of 5.5 when the mirror is
located from a tooth. (a) Should the mirror be concave or con-
vex? (b) What should the radius of curvature of the mirror be?

30 •• CONTEXT-RICH Convex mirrors are used in many stores
to provide a wide angle of surveillance for a reasonable mirror size.
Your summer job is at a local convenience store that uses the mirror
shown in Figure 32-58. This setup allows you (or the clerk) to survey
the entire store when you are from the mirror. The mirror has
a radius of curvature equal to Assume all rays are paraxial.
(a) If a customer is from the mirror, how far from the mirror is
his image? (b) Is the image in front of or behind the mirror? (c) If the
customer is tall, how tall is his image?2.0 m

10 m
1.2 m.

5.0 m

SSM

2.1 cm

f � r>2)

f � r>2)

1.0 cm8.0 cm,12 cm,24 cm,
55 cm,

24 cm.

IMAGES FORMED BY REFRACTION

34 •• A very long glass rod has one end
ground and polished to a convex spherical surface that has a

radius. The glass material has an index of refraction of 1.68.
(a) A point object in air is on the axis of the rod and from
the spherical surface. Find the location of the image and state
whether the image is real or virtual. (b) Repeat Part (a) for a point
object in air, on the axis, and from the spherical surface.
Draw a ray diagram for each case.

35 • A fish is from the front surface of a spherical fish
bowl of radius (a) How far behind the surface of the bowl
does the fish appear to someone viewing the fish from in front of
the bowl? (b) By what distance does the fish’s apparent location
change (relative to the front surface of the bowl) when it swims
away to from the front surface?

36 •• A very long glass rod has one end
ground and polished to a concave spherical surface that has a

radius. The glass material has an index of refraction of 1.68.
A point object in air is on the axis of the rod and from the
spherical surface. Find the location of the image and state whether
the image is real or virtual. Draw a ray diagram.

37 •• Repeat Problem 34 for when the glass rod and the object
are immersed in water, and (a) the object is 6.00 cm from the spherical
surface, and (b) the object is 12.0 cm from the spherical surface.

38 •• Repeat Problem 36 for when the glass rod and the object
are immersed in water and the object is 20 cm from the spherical
surface.

39 •• A rod that is long is made of glass that has an
index of refraction equal to 1.60. The rod has its ends ground to con-
vex spherical surfaces that have radii equal to and 
An object is in air on the long axis of the rod from the end
that has the radius. (a) Find the image distance due to re-
fraction at the surface. (b) Find the position of the
final image due to refraction at both surfaces. (c) Is the final image
real or virtual?

40 •• Repeat Problem 39 for an object in air on the axis of the
glass rod from the end that has the radius.

THIN LENSES AND 
THE LENS-MAKER’S EQUATION

41 • A double concave lens that has an index of refraction
equal to 1.45 has radii whose magnitudes are equal to 
and An object is located to the left of the lens.
Find (a) the focal length of the lens, (b) the location of the image,
and (c) the magnification of the image. (d) Is the image real or
virtual? Is the image upright or inverted? SSM

80.0 cm25.0 cm.
30.0 cm

16.0-cm20.0 cm

8.00-cm-radius
8.00-cm

20.0 cm
16.0 cm.8.00 cm

96.0 cm

SSM

15.0 cm
7.20-cm

1.75-cm-diameter
SSM30 cm

20 cm.
10 cm

5.00 cm

30.0 cm
7.20-cm

1.75-cm-diameter

5.0 m

10 m

Customer

Clerk
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Problem 30

31 •• A certain telescope uses a concave spherical mirror that
has a radius equal to Find the location and diameter of the
image of the moon formed by this mirror. The moon has a diameter
of and is from Earth.

32 •• A piece of a thin spherical shell that has a radius of curva-
ture of is silvered on both sides. The concave side of the piece
forms a real image from the piece. The piece is then turned
around so that its convex side faces the object. The piece is moved so
that the image is now from the piece on the concave side.
(a) How far was the piece moved? (b) Was it moved toward the object
or away from the object?

33 •• Two light rays parallel to the optic axis of a concave mir-
ror strike that mirror as shown in Figure 32-59. The mirror has a ra-
dius of curvature equal to They then strike a small spherical
mirror that is from the large mirror. The light rays finally
meet at the vertex of the large mirror. Note: The small mirror is

2.0 m
5.0 m.

35 cm

75 cm
100 cm

3.8 � 108 m3.5 � 106 m

8.0 m.

2.0 m 

r = 5.0 m 
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Problem 33

shown as planar, so as not to give away the answer, but it is not
actually planar. (a) What is the radius of curvature of the small
mirror? (b) Is that mirror convex or concave? Explain your answer.
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object distance. (c) What type of image is produced for this range
of object distances—real or virtual, upright or inverted? (d) Discuss
the significance of any asymptotic limits your graphs have.

53 •• SPREADSHEET A converging lens has a focal length of
(a) Using a spreadsheet program or graphing calculator,

plot the image distance as a function of the object distance, for object
distances ranging from to where is the focal length.
(b) On the same graph used in Part (a), but using a different axis,
plot the magnification of the lens as a function of the object distance.
(c) What type of image is produced for this range of object dis-
tances—real or virtual, upright or inverted? (d) Discuss the signifi-
cance of any asymptotic limits your graphs have.

54 •• An object is in front of a converging lens that has
a focal length equal to A second converging lens that also
has a focal length equal to is located in back of the
first. (a) Find the location of the final image and describe its prop-
erties (for example, real and inverted) and (b) draw a ray diagram
to corroborate your answers to Part (a).

55 •• An object is in front of a converging lens that has
a focal length equal to A diverging lens that has a focal
length whose magnitude is equal to is located in
back of the first. (a) Find the location of the final image and describe
its properties (for example, real and inverted) and (b) draw a ray
diagram to corroborate your answers to Part (a).

56 ••• In a convenient form of the thin-lens equation used by
Newton, the object and image distances and are measured from
the focal points and and not from the center of the lens.
(a) Indicate and on a sketch of a lens and show that if 
and the thin-lens equation (Equation 32-12) can be
rewritten as (b) Show that the lateral magnification is given
by

57 ••• In Bessel’s method for finding the focal length f of a
lens, an object and a screen are separated by distance where

It is then possible to place the lens at either of two loca-
tions, both between the object and the screen, so that there is an
image of the object on the screen, in one case magnified and in
the other case reduced. Show that if the distance between those
two lens locations is then the focal length is given by

Hint: Refer to Figure 32-60.

58 ••• ENGINEERING APPLICATION, CONTEXT-RICH You are
working for an optician during the summer. The optician needs
to measure an unknown focal length and you suggest using
Bessel’s method (see Problem 57), which you used during a
physics lab. You set the object-to-image distance at The
lens position is adjusted to get a sharp image on the screen. A
second sharp image is found when the lens is moved a distance
of from its first location. (a) Sketch the ray diagram for the
two locations. (b) Find the focal length of the lens using Bessel’s
method. (c) What are the two locations of the lens with respect
to the object? (d) What are the magnifications of the images
when the lens is in the two locations?

72 cm

1.70 m.

SSMf � 1
4(L2 � D2)>L.

D,

L 
 4f.
L,

m � �x�>f � �f>x.xx� � f2.
x� � s� � f,

x � s � fx�x
F�,F

x�x

SSM

20.0 cm15.0 cm
15.0 cm.

15.0 cm

20.0 cm15.0 cm
15.0 cm.

15.0 cm

y
f0.90f,0.010f

12.0 cm.

42 • The following thin lenses are made of glass that has an
index of refraction equal to 1.60. Make a sketch of each lens and
find each focal length in air: (a) and 
(b) and and (c) and

43 • The following four thin lenses are made of glass that has
an index of refraction of 1.5. The radii given are magnitudes. Make a
sketch of each lens and find each focal length in air: (a) double-
convex that has radii of curvature equal to and 
(b) plano-convex that has a radius of curvature equal to 
(c) double concave that has radii of curvature equal to and
(d) plano-concave that has a radius of curvature equal to 

44 • Find the focal length of a glass lens that has an index of
refraction equal to 1.62, a concave surface that has a radius of cur-
vature of magnitude and a convex surface that has a radius
of curvature of magnitude 

45 •• (a) An object that is high is placed in
front of a thin lens that has a power equal to Draw a ray di-
agram to find the position and the size of the image and check your
results using the thin-lens equation. (b) Repeat Part (a) if the object
is placed in front of the lens. (c) Repeat Part (a) for an object
placed in front of a thin lens that has a power equal to

46 •• The lens-maker’s equation has three design parameters.
They consist of the index of refraction of the lens and the radii of
curvature for its two surfaces. Thus, there are many ways to design
a lens that has a particular focal length in air. Use the lens-maker’s
equation to design three different thin converging lenses, each hav-
ing a focal length of and each made from glass that has an
index of refraction of 1.60. Sketch each of your designs.

47 •• Repeat Problem 46, but for a diverging lens that has a
focal length in air of the same magnitude.

48 •• (a) What is meant by a negative object distance? Describe
a specific situation in which a negative object distance can occur.
(b) Find the image distance and the magnification for a thin lens in
air when the object distance is and the lens is a converging
lens that has a focal length of Describe the image—is it vir-
tual or real, upright or inverted? (c) Repeat Part (b) if the object
distance is, instead, and the lens is diverging and has a
focal length (magnitude) of 

49 •• Two converging lenses, each having a focal length
equal to are separated by An object is to the
left of the first lens. (a) Find the position of the final image using
both a ray diagram and the thin-lens equation. (b) Is the final
image real or virtual? Is the final image upright or inverted?
(c) What is the overall lateral magnification?

50 •• Repeat Problem 49, but with the second lens replaced
by a diverging lens that has a focal length equal to 

51 •• (a) Show that to obtain a magnification of magnitude 
using a converging thin lens of focal length the object distance
must be equal to . (b) You want to use a digital camera
which has a lens whose focal length is to take a picture of
a person tall. How far from the camera lens should you
have that person stand so that the image size on the light-receiving
sensors of your camera is 

52 •• SPREADSHEET A converging lens has a focal length of
(a) Using a spreadsheet program or graphing calculator,

plot the image distance as a function of the object distance, for
object distances ranging from to where is the focal
length. (b) On the same graph used in Part (a), but using a differ-
ent axis, plot the magnification of the lens as a function of they

f10.0f,1.10f
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59 ••• An object is to the left of a lens that has a focal
length of A second lens, which has a focal length of

is to the right of the first lens. (a) Find the dis-
tance between the object and the final image formed by the second
lens. (b) What is the overall magnification? (c) Is the final image real
or virtual? Is the final image upright or inverted?

*ABERRATIONS

60 • Chromatic aberration is a common defect of (a) concave
and convex lenses, (b) concave lenses only, (c) concave and convex
mirrors, (d) all lenses and mirrors.

61 • ENGINEERING APPLICATION Discuss some of the reasons
why most telescopes that are used by astronomers are reflecting
rather than refracting telescopes.

62 • A symmetric double-convex lens has radii of curvature
equal to It is made from glass that has an index of refrac-
tion equal to 1.530 for blue light and equal to 1.470 for red light.
Find the focal length of this lens for (a) red light and (b) blue light.

*THE EYE

63 • BIOLOGICAL APPLICATION Find the change in the focal
length of the eye when an object originally at is brought to

from the eye.

64 • BIOLOGICAL APPLICATION A farsighted person requires
lenses that have powers equal to to read comfortably from a
book that is from his eyes. What is that person’s near point
without the lenses?

65 • BIOLOGICAL APPLICATION If two point objects close to-
gether are to be seen as two distinct objects, the images must fall on
the retina on two different cones that are not adjacent. That is, there
must be an unactivated cone between them. The separation of the
cones is about Model the eye as a uniform 
sphere that has a refractive index of 1.34. (a) What is the smallest angle
the two points can subtend? (See Figure 32-61.) (b) How close together
can two points be if they are from the eye? SSM20.0 m
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25.0 cm
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Problem 65

66 • BIOLOGICAL APPLICATION Suppose the eye were de-
signed like a camera that has a lens of fixed focal length equal to

that could move toward or away from the retina, has air on
both sides of the lens, and has no cornea. Approximately how far
would the lens have to move to focus the image of an object 
from the eye onto the retina? Hint: Find the distance from the retina to
the image behind it for an object at

Note: Problems 67 through 69 refer to the model of the eye
shown in Figure 32-62.

67 •• BIOLOGICAL APPLICATION A simple model for the eye
is a lens that has a variable power located a fixed distance in
front of a screen, with the space between the lens and the screen
filled by air. This “eye” can focus for all values of object dis-
tance such that where the subscriptson the vari-
ables refer to “near point” and “far point,” respectively. This
“eye” is said to be normal if it can focus on very distant objects.

xnp � s � xfps

dP

25.0 cm.

25.0 cm

2.50 cm

(a) Show that for a normal “eye” of this type, the required mini-
mum value of is given by (b) Show that the maxi-
mum value of is given by (c) The difference
between the maximum and minimum powers, symbolized by 
is defined as and is called the accommodation.
Find the minimum power and accommodation for this model eye
that has a screen distance of a far point distance of infin-
ity, and a near point distance of 

68 •• BIOLOGICAL APPLICATION (This problem refers to the
model eye described in Problem 67.) In an eye that exhibits near-
sightedness, the eye cannot focus on distant objects. (a) Show that
for a nearsighted model eye capable of focusing out to a maximum
distance the minimum value of the power is greater than that
of a normal eye (that has a far point at infinity) and is given by

(b) To correct for nearsightedness, a contact
lens may be placed directly in front of the lens of the model eye.
What power contact lens would be needed to correct the vision of
a nearsighted model eye that has a far-point distance of 

69 •• BIOLOGICAL APPLICATION (This problem refers to the
model eye described in Problem 67.) In an eye that exhibits far-
sightedness, the eye may be able to focus on distant objects but cannot
focus on close objects. (a) Show that for a farsighted model eye capable
of focusing only as close as a distance the maximum value of the
power is given by (b) Show that, compared to a
model eye capable of focusing as close as a distance (where

the maximum power of the farsighted lens is too small by
(c) What power contact lens would be needed to correct

the vision of a farsighted model eye, with so that the eye
may focus on objects as close as 15 cm?

xœ
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1>xnp � 1>xœ
np .

xnp 	 xœ
np),

xnp
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70 •• BIOLOGICAL APPLICATION A person who has a near point
of needs to read from a computer screen that is only 
from her eye. (a) Find the focal length of the lenses in reading glasses
that will produce an image of the screen at a distance of from
her eye. (b) What is the power of the lenses?

71 •• BIOLOGICAL APPLICATION A nearsighted person cannot
focus clearly on objects that are more distant than from her eye.
What power lenses are required for her to see distant objects clearly?

72 •• BIOLOGICAL APPLICATION Because the index of refraction
of the lens of the eye is not very different from that of the surround-
ing material, most of the refraction takes place at the cornea, where
the index changes abruptly from 1.00 (air) to approximately 1.38.
(a) Modeling the cornea, aqueous humor, lens and vitreous humor
as a transparent homogeneous solid sphere that has an index of re-
fraction of 1.38, calculate the sphere’s radius if it focuses parallel
light on the retina a distance away. (b) Do you expect your re-
sult to be larger or smaller than the actual radius of the cornea?
Explain your answer.

2.50 cm

2.25 m

80 cm

45 cm80 cm
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73 •• BIOLOGICAL APPLICATION The near point of a certain per-
son’s eyes is Reading glasses are prescribed so that he can
read a book at from his eye. The glasses are from the
eye. What diopter lenses should be used in the glasses?
74 ••• BIOLOGICAL APPLICATION At age 45, a person is fitted for
reading glasses that have a power equal to in order to read
at By the time she reaches the age of 55, she discovers her-
self holding her newspaper at a distance of in order to see it
clearly with her glasses on. (a) Where was her near point at age 45?
(b) Where is her near point at age 55? (c) What power is now re-
quired for the lenses of her reading glasses so that she can again
read at Assume the glasses are placed from her eyes.

*THE SIMPLE MAGNIFIER

75 • What is the magnifying power of a lens that has a
focal length equal to when the image is viewed at infin-
ity by a person whose near point is at 
76 •• A lens that has a focal length equal to is used as
a simple magnifier by one person whose near point is and
by another person whose near point is (a) What is the ef-
fective magnifying power of the lens for each person? (b) Com-
pare the sizes of the images on the retinas when each person
looks at the same object with the magnifier. 

77 •• In your botany class, you examine a leaf using a convex
lens as a simple magnifier. What is the angular magnification

of the leaf if the image formed by the lens is (a) at infinity and (b) at

*THE MICROSCOPE

78 •• Your laboratory microscope objective has a focal length of
It forms an image of a tiny specimen at from its

second focal point. (a) How far from the objective is the specimen lo-
cated? (b) What is the magnifying power for you if your near point
distance is and the focal length of the eyepiece is 

79 •• A microscope has an objective that has a focal length
equal to The eyepiece provides an angular magnification
of 10 for a person whose near point distance is The tube
length is (a) What is the lateral magnification of the objec-
tive? (b) What is the magnifying power of the microscope?
80 •• A crude, symmetric handheld microscope consists of
two lenses fastened at the ends of a tube long.
(a) What is the tube length of this microscope? (b) What is the lat-
eral magnification of the objective? (c) What is the magnifying
power of the microscope? (d) How far from the objective should
the object be placed?

81 •• A compound microscope has an objective lens that has a
power of and an eyepiece that has a power of The lenses
are separated by Assuming that the final image formed by the
microscope is from the eye, what is the magnifying power?
82 ••• A microscope has a magnifying power of 600. The eye-
piece has an angular magnification of 15.0. The objective lens is

from the eyepiece. Calculate (a) the focal length of the eye-
piece, (b) the location of the object so that it is in focus for a normal
relaxed eye, and (c) the focal length of the objective lens.

*THE TELESCOPE

83 • You have a simple telescope that has an objective
which has a focal length of and an eyepiece which has a
focal length of You are using it to look at the moon,5.00 cm.

100 cm

22.0 cm

25 cm
28 cm.

80 D.45 D

30 cm20-D

SSM

16 cm.
25 cm.

8.5 mm.

51.0 mm?25.0 cm

16.0 cm17.0 mm.

SSM25 cm?

12-D

40 cm.
25 cm

6.0 cm
SSM35 cm?

7.0 cm

2.2 cm25 cm?

40 cm
25 cm.

2.10 D

2.0 cm25 cm
80 cm.

which subtends an angle of about (a) What is the di-
ameter of the image formed by the objective? (b) What angle is
subtended by the image formed at infinity by the eyepiece?
(c) What is the magnifying power of your telescope?

84 • The objective lens of the refracting telescope at the
Yerkes Observatory has a focal length of The moon sub-
tends an angle of about When the telescope is used to
look at the moon, what is the diameter of the image of the moon
formed by the objective?

85 •• The diameter mirror of the reflecting tele-
scope at Mt. Palomar has a focal length of (a) By what fac-
tor is the light-gathering power increased over the 
diameter refracting lens of the Yerkes Observatory telescope? (b) If
the focal length of the eyepiece is what is the magnifying
power of the telescope?

86 •• An astronomical telescope has a magnifying power of 7.0.
The two lenses are apart. Find the focal length of each lens.

87 •• A disadvantage of the astronomical telescope for terrestrial
use (for example, at a football game) is that the image is inverted.
A Galilean telescope uses a converging lens as its objective, but a
diverging lens as its eyepiece. The image formed by the objective is at
the second focal point of the eyepiece (the focal point on the refracted-
light side of the eyepiece), so that the final image is virtual, upright,
and at infinity. (a) Show that the magnifying power is given by

where is the focal length of the objective and is that
of the eyepiece (which is negative). (b) Draw a ray diagram to show
that the final image is indeed virtual, upright, and at infinity.

88 •• A Galilean telescope (see Problem 87) is designed so that
the final image is at the near point, which is (rather than at
infinity). The focal length of the objective is and the focal
length of the eyepiece is (a) If the object distance is 
where is the image of the objective? (b) What is the object distance
for the eyepiece so that the final image is at the near point? (c) How
far apart are the lenses? (d) If the object height is what is the
height of the final image? What is the angular magnification?

89 ••• If you look into the wrong end of a telescope, that is, into
the objective, you will see distant objects reduced in angular size.
For a refracting telescope that has an objective with a focal length
equal to and an eyepiece with a focal length equal to

by what factor is the angular size of the object changed?

GENERAL PROBLEMS

90 • To focus a camera, the distance between the lens and the
image-sensing surface is varied. A wide-angle lens of a camera has
a focal length of By how much must the lens move to
change from focusing on an object at infinity to an object at a dis-
tance of in front of the camera?

91 • A converging lens that has a focal length equal to 
is used to obtain an image that is twice the height of the object. Find
the object and image distances if (a) the image is to be upright and
(b) the image is to be inverted. Draw a ray diagram for each case.

92 •• You are given two converging lenses that have focal
lengths of and (a) Show how the lenses should be
arranged to form a telescope. State which lens to use as the objec-
tive, which lens to use as the eyepiece, how far apart to place the
lenses, and what angular magnification you expect. (b) Draw a ray
diagram to show how rays from a distant object are refracted by the
two lenses.

93 •• (a) Show how the same two lenses in Problem 92 should
be arranged to form a compound microscope that has a tube length
of State which lens to use as the objective, which lens to
use as the eyepiece, how far apart to place the lenses, and what

160 mm.

25 mm.75 mm

10 cm

5.00 m

28 mm.

1.50 cm,
2.25 m

1.5 m,

30.0 m,�5.0 cm.
100 cm
25 cm

SSM

fefoM � �fo>fe ,

32 cm

200-in
1.25 cm,

40.0-in (1.02-m)
16.8 m.

200-in (5.10-m)

9.00 mrad.
19.5 m.

SSM

9.00 mrad.



101 ••• An object is in front of a thin converging lens
that has a focal length equal to A concave mirror that has
a radius equal to is in back of the lens. (a) Find the
position of the final image formed by the mirror–lens combina-
tion. (b) Is the image real or virtual? Is the image upright or
inverted? (c) On a diagram, show where your eye must be to see
this image.
102 ••• When a bright light source is placed in front of a
lens, there is an upright image from the lens. There is also a
faint inverted image from the lens on the incident-light side
due to reflection from the front surface of the lens. When the lens is
turned around, this weaker, inverted image is in front of the
lens. Find the index of refraction of the lens.
103 ••• A concave mirror that has a radius of curvature equal to

is oriented with its axis vertical. The mirror is filled with
water that has an index of refraction equal to 1.33 and a maximum
depth of At what height above the vertex of the mirror
must an object be placed so that its image is at the same position as
the object?
104 ••• The concave side of a lens has a radius of curvature that
has a magnitude equal to and the convex side of the lens
has a radius of curvature that has a magnitude equal to 
The focal length of the lens in air is When the lens is placed
in a liquid that has an unknown index of refraction, the focal length
increases to What is the index of refraction of the liquid?
105 ••• A solid glass ball of radius has an index of re-
fraction equal to 1.500. The right half of the ball is silvered so that it
acts as a concave mirror
(Figure 32-63). Find the po-
sition of the final image
formed for an object lo-
cated at (a) and
(b) to the left of the
center of the ball.
106 ••• (a) Show that a small change in the index of refraction
of a lens material produces a small change in the focal length 
given approximately by (b) Use this result to
estimate the focal length of a thin lens for blue light, for which

if the focal length for red light, for which is

107 ••• The lateral magnification of a spherical mirror or a thin
lens is given by Show that for objects of small horizon-
tal extent, the longitudinal magnification is approximately 
Hint: Show that SSMds�>ds � �s�2>s2. �m2.

m � �s�>s.20.0 cm.
n � 1.470,n � 1.530,

df>f � �dn>(n � nair).
df

dn

30.0 cm
40.0 cm

10.0 cm
109 cm.

27.5 cm.
8.00 cm.

17.0 cm,

1.00 cm.

50.0 cm

10 cm

6.0 cm
7.5 cm

30 cm
SSM

25.0 cm10.0 cm
10.0 cm.

15.0 cm
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overall magnification you expect to get, assuming the user has a
near point of (b) Draw a ray diagram to show how rays from
a close object are refracted by the lenses.

94 •• CONTEXT-RICH On a vacation, you are scuba diving and
using a diving mask that has a face plate that bulges outward with
a radius of curvature of As a result, a convex spherical sur-
face exists between the water and the air in the mask. A fish swims
by you in front of your mask. (a) How far in front of the mask
does the fish appear to be? (b) What is the lateral magnification of
the image of the fish?

95 •• A digital camera has a rectangular array of
CCDs (light sensors) that is by It is used to take a
picture of a person tall so that the image just fills the height

of the CCD array. How far should the person stand from
the camera if the focal length of the lens is 

96 •• A camera that has interchangeable lenses is
used to take a picture of a hawk that has a wingspan of 
The hawk is away. What would be the ideal focal length of
the lens used so that the image of the wings just fills the width
of the light-sensitive area of the camera, which is 

97 •• An object is placed in front of a lens that has a
focal length equal to A second lens that has a focal length
equal to is placed in back of the first lens. (a) Find
the position of the final image. (b) What is the magnification of the
image? (c) Sketch a ray diagram showing the final image.

98 •• (a) Show that if is the focal length of a thin lens in air, its
focal length in water is given by 
where is the index of refraction of water, is that of the lens ma-
terial and is that of air. (b) Calculate the focal length in air and in
water of a double concave lens that has an index of refraction of 1.50
and radii of magnitudes and 

99 •• While parked in your car, you see a jogger in your rear
view mirror, which is convex and has a radius of curvature whose
magnitude is equal to The jogger is from the mirror
and is approaching at How fast is the image of the jogger
moving relative to the mirror?

100 •• A layer of water floats on top of
a layer of carbon tetrachloride in a tank.
How far below the top surface of the water does the bottom of the
tank appear, according to an observer looking down from above at
normal incidence?

(n � 1.46)4.00-cm-thick
(n � 1.33)2.00-cm-thick

3.50 m>s.
5.00 m2.00 m.

35 cm.30 cm

na

nnw

fw � �(nw>na)(n � na)>(n � nw)fa,
fa
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12.0 cm
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30 m
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35-mm

SSM50 mm?
(24 mm)

175 cm
36 mm.24 mm
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SSM
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I
nterference and diffraction are the important phenomena that distinguish
waves from particles.* Interference is the formation of a lasting intensity pat-
tern by two or more waves that superpose in space. Diffraction is the bending
of waves around corners that occurs when a portion of a wavefront is cut off
by a barrier or obstacle.

In this chapter, we will see how the pattern of the resulting wave can be cal-
culated by treating each point on the original wavefront as a point source,
according to Huygens’s principle, and calculating the interference pattern
resulting from these sources.

33
C H A P T E R

Have you ever wondered

if the phenomenon that produces

the bands that you see in

the light reflected off a soap bubble

has any practical applications?

(See Example 33-2.)

?

1141

WHITE LIGHT IS REFLECTED OFF A SOAP
BUBBLE. WHEN LIGHT OF ONE
WAVELENGTH IS INCIDENT ON A THIN
SOAP-AND-WATER FILM, LIGHT IS
REFLECTED FROM BOTH THE FRONT AND
THE BACK SURFACES OF THE FILM.
IFTHE ORDER OF MAGNITUDE OF THE
THICKNESS OF THE FILM IS ONE
WAVELENGTH OF THE LIGHT, THE TWO
REFLECTED LIGHT WAVES INTERFERE.
IFTHE TWO REFLECTED WAVES ARE 
OUT OF PHASE, THE REFLECTED WAVES
INTERFERE DESTRUCTIVELY, SO THE NET
RESULT IS THAT NO LIGHT IS
REFLECTED. IF WHITE LIGHT, WHICH
CONTAINS A CONTINUUM OF
WAVELENGTHS, IS INCIDENT ON THE
THIN FILM, THEN THE REFLECTED WAVES
WILL INTERFERE DESTRUCTIVELY
ONLY FOR CERTAIN WAVELENGTHS,
AND FOR OTHER WAVELENGTHS THEY
WILL INTERFERE CONSTRUCTIVELY.
THIS PROCESS PRODUCES THE
COLORED FRINGES THAT YOU SEE IN
THE SOAP BUBBLE. (Aaron Haupt/
Photo Researchers.)

180°

* Before you study this chapter, you may wish to review Chapter 15 and Chapter 16, where the general topics of inter-
ference and diffraction of waves are first discussed.

*

*
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33-1 PHASE DIFFERENCE AND COHERENCE

When two harmonic sinusoidal waves of the same frequency and wavelength but of
different phase combine, the resultant wave is a harmonic wave whose amplitude de-
pends on the phase difference. If the phase difference is zero, or an integer multiplied
by the waves are in phase and interfere constructively. The resultant amplitude
equals the sum of the two individual amplitudes, and the intensity (which is pro-
portional to the square of the amplitude) is maximum. (If the amplitudes are equal
and the waves are in phase, the intensity is four times that of either individual wave.)
If the phase difference is or any odd integer multiplied by the waves are
out of phase and interfere destructively. The resultant amplitude is then the differ-
ence between the two individual amplitudes, and the intensity is a minimum. (If the
amplitudes are equal and the waves are out of phase, the intensity is zero.)

A phase difference between two waves is often the result of a difference in path
lengths. When a light wave reflects from a thin transparent film, such as a soap bubble,
the reflected light is a superposition of the light reflected from the front surface of the
film and the light reflected from the back surface of the film. The additional distance
traveled by the light reflected from the back surface is called the path-length difference
between the two reflected waves. A path-length difference of one wavelength pro-
duces a phase difference of which is equivalent to no phase difference at all. A
path-length difference of one-half wavelength produces a phase difference.
In general, a path-length difference of contributes a phase difference given by

33-1

PHASE DIFFERENCE DUE TO A PATH-LENGTH DIFFERENCE

d �
¢r
l

2p �
¢r
l

360°

d¢r
180°

360°,

180°

180°,180°

360°,

Example 33-1 Phase Difference

(a) What is the minimum path-length difference that will produce a phase difference of 
for light of wavelength (b) What phase difference will that path-length difference
produce in light of wavelength 

PICTURE The phase difference is to as the path-length difference is to the wavelength.

SOLVE

360°

700 nm?
800 nm?

180°

(a) The phase difference is to as the path-length difference
is to the wavelength We know that 

180°:
l � 800 nm and d �l.¢r

360°d

 400 nm¢r �
d

360°
l �

180°
360°

(800 nm) �

d

360°
�

¢r
l

(b) Set and solve for d:l � 700 nm, ¢r � 400 nm,  206° � 3.59 radd �
¢r
l

360° �
400 nm
700 nm

360° �

Another cause of phase difference is the phase change a wave sometimes
undergoes upon reflection from a surface. This phase change is analogous to the
inversion of a pulse on a string when it reflects from a point where the density
suddenly increases, such as when a light string is attached to a heavier string or
rope. The inversion of the reflected pulse is equivalent to a phase change of 
for a sinusoidal wave (which can be thought of as a series of pulses). When light
traveling in air strikes the surface of a medium in which light travels more
slowly, such as glass or water, there is a phase change in the reflected light.180°

180°

180°

CHECK The Part (b) result is somewhat larger than This result is expected because
400 nm is longer than half of the 700-nm wavelength.

180°.



Interference in Thin Films S E C T I O N  3 3 - 2 | 1143

When light is traveling in the liquid wall of a soap bubble, there is no phase change
in the light reflected from the surface between the liquid and the air. This situation is
analogous to the reflection without inversion of a pulse on a heavy string at a point
where the heavy string is attached to a lighter string.

If light traveling in one medium strikes the surface of a medium in which
light travels more slowly, there is a phase change in the reflected light.

PHASE DIFFERENCE DUE TO REFLECTION

As we saw in Chapter 16, interference of waves is observed when two or more co-
herent waves overlap. Interference of overlapping waves from two sources is not ob-
served unless the sources are coherent. Because the light from each source is usually
the result of millions of atoms radiating independently, the phase difference between
the waves from such sources fluctuates randomly many times per second, so two light
sources are usually not coherent. Coherence in optics is often achieved by splitting the
light beam from a single source into two or more beams that can then be combined to
produce an interference pattern. The light beam can be split by reflecting the light
from the two surfaces of a thin film (Section 33-2), by diffracting the beam through two
small openings or slits in an opaque barrier (Section 33-3), or by using a single point
source and its image in a plane mirror for the two sources (Section 33-3). Today, lasers
are the most important sources of coherent light in the laboratory.

Light from an ideal monochromatic source is a sinusoidal wave of infinite dura-
tion, and light from certain lasers approaches this ideal. However, light from conven-
tional monochromatic sources, such as gas discharge tubes designed for this purpose,
consists of packets of sinusoidal light that are only a few million wavelengths long.
The light from such a source consists of many such packets, each approximately the
same length. The packets have essentially the same wavelength, but the packets differ
in phase in a random manner. The length of the individual packets is called the
coherence length of the light, and the time it takes one of the packets to pass a point
in space is the coherence time. The light emitted by a gas discharge tube designed to
produce monochromatic light has a coherence length of only a few millimeters.
By comparison, some highly stable lasers produce light that has a coherence length
many kilometers long.

33-2 INTERFERENCE IN THIN FILMS

You have probably noticed the colored bands in a soap bubble or in the film on the
surface of oily water. These bands are due to the interference of light reflected from
the top and bottom surfaces of the film. The different colors arise because of varia-
tions in the thickness of the film, causing interference for different wavelengths at
different points.

When waves traveling in a medium cross a surface where the wave speed
changes, part of the wave is reflected and part is transmitted. In addition, the re-
flected wave undergoes a phase shift upon reflection if the transmitted wave
travels at a slower speed than do the incident and reflected waves. (This phase
shift is established for waves on a string in Section 15-4 of Chapter 15.) The reflected
wave does not undergo a phase shift upon reflection if the transmitted wave travels
at a faster speed than do the incident and reflected waves.

Consider a thin film of water (such as a small section of a soap bubble) of uniform
thickness viewed at small angles with the normal, as shown in Figure 33-1. Part of
the light is reflected from the upper air–water interface where it undergoes a 
phase change. Most of the light enters the film and part of it is reflected by the bot-
tom water–air interface. There is no phase change in this reflected light. If the light is
nearly perpendicular to the surfaces, both the light reflected from the top surface
and the light reflected from the bottom surface can enter the eye. The path-length

180°

180°
180°

180°

Water

1 2

t

F I G U R E  3 3 - 1 Light rays reflected from
the top and bottom surfaces of a thin film are
coherent because both rays come from the same
source. If the light is incident almost normally,
the two reflected rays will be very close to each
other and will produce interference.



difference between these two rays is where is the thickness of the film. This path-
length difference produces a phase difference of where is the
wavelength of the light in the film, is the index of refraction of the film, and is
the wavelength of the light in vacuum. The total phase difference between the two
rays is thus plus the phase difference due to the path-length difference.
Destructive interference occurs when the path-length difference is zero or a whole
number of wavelengths (in the film). Constructive interference occurs when the
path-length difference is an odd number of half-wavelengths.

When a thin film of water lies on a glass surface, as in Figure 33-2, the ray that re-
flects from the lower water–glass interface also undergoes a phase change, be-
cause the index of refraction of glass (approximately 1.50) is greater than that of water
(approximately 1.33). Thus, both the rays shown in the figure have undergone a 
phase change upon reflection. The phase difference between these rays is due solely
to the path-length difference and is given by 

When a thin film of varying thickness is viewed with monochromatic light, such
as the yellow light from a sodium lamp, alternating bright and dark bands or lines,
called interference fringes, are observed. The distance between a bright fringe and a
dark fringe is that distance over which the film’s thickness changes so that the path-
length difference changes by Figure 33-3a shows the interference pattern ob-
served when light is reflected from an air film between a spherical glass surface and
a plane glass surface in contact. These circular interference fringes are known as
Newton’s rings. Typical rays reflected at the top and bottom of the air film are
shown in Figure 33-3b. Near the
point of contact of the surfaces,
where the path-length difference be-
tween the ray reflected from the
upper glass–air interface and the ray
reflected from the lower air–glass
interface is approximately zero (it is
small compared with the wave-
length of light) the interference is
destructive because of the 
phase shift of the ray reflected from
the lower air–glass interface. This
central region in Figure 33-3a is
therefore dark. The first bright
fringe occurs at the radius at which
the path-length difference is 
which contributes a phase differ-
ence of This adds to the phase
shift due to reflection to produce a
total phase difference of which
is equivalent to a zero phase differ-
ence. The second dark region occurs
at the radius at which the path-
length difference is and so on.l,

360°,

180°.

l>2,

180°

l�>2.2t
t

d � (2t>l�)360°.
d

180°

180°

l�

2t
180°

ln
l� � l>n(2t>l�)360°,

t2t,

Air film Extra path
length

Glass
Glass

(b)(a)

F I G U R E  3 3 - 3 (a) Newton’s rings observed when light is reflected from a thin film of air
between a plane glass surface and a spherical glass surface. At the center, the thickness of the air film
is negligible and the interference is destructive because of the phase change of one of the rays
upon reflection. (b) Glass surfaces for the observation of Newton’s rings shown in Figure 33-3a.
The thin film in this case is the film of air between the glass surfaces. (Courtesy of Bausch & Lomb.)

180°

Air n = 1.00

Water n = 1.33

Glass n = 1.50

F I G U R E  3 3 - 2 The interference of light
reflected from a thin film of water resting on a
glass surface. In this case, both rays undergo
a change in phase of upon reflection.180°
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Example 33-2 A Wedge of Air

A wedge-shaped film of air is made by placing a small slip of paper
between the edges of two flat pieces of glass, as shown in Figure 
33-4. Light of wavelength is incident normally on the glass,
and interference fringes are observed by reflection. If the angle 
made by the plates is how many dark inter-
ference fringes per centimeter are observed?

3.0 � 10�4 rad (0.017°),
u

500 nm

Glass

Glass

θ

Slip
of
paper

To edge x

t

1 2

F I G U R E  3 3 - 4 The angle which is less than is
exaggerated. The incoming and outgoing rays are virtually
perpendicular to all air–glass interfaces.

0.02°,u,
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SOLVE

m �
2t
l

 2t � ml� � ml

2. The thickness is related to the angle u:t u �
t
x

3. Substitute into the equation for m:t � xu m �
2xu
l

4. Calculate m>x:  12 cm�1�
m
x

�
2u
l

�
2(3.0 � 10�4)
5.0 � 10�7 m

� 1200 m�1

CHECK The expression for the number of dark fringes per unit length in step 4 shows that
the number per centimeter would decrease if light of a longer wavelength is used. This result
is as expected.

TAKING IT FURTHER We observe 12 dark fringes per centimeter. In practice, the number
of fringes per centimeter, which is easy to count, can be used to determine the angle. Note
that if the angle of the wedge is increased, the fringes become more closely spaced.

PRACTICE PROBLEM 33-1 How many dark fringes per centimeter are observed if light of
wavelength is used?650 nm

Figure 33-5a shows interference fringes produced by a wedge-shaped air film be-
tween two flat glass plates, as in Example 33-2. Plates that produce straight fringes,
such as those in Figure 33-5a, are said to be optically flat. To be optically flat, a sur-
face must be flat to within a small fraction of a wavelength. A similar wedge-shaped
air film formed by two ordinary glass plates yields the irregular fringe pattern in
Figure 33-5b, which indicates that these plates are not optically flat.

One application of interference effects in thin films is in nonreflecting lenses,
which are made by coating the surface of a lens with a thin film of a material that
has an index of refraction equal to approximately 1.38, which is between the index
of refraction of glass and that of air. The intensities of the light reflected from the
top and bottom surfaces of the film are approximately equal, and because the re-
flected rays undergo a phase change at both surfaces there is no phase differ-
ence due to reflection between the two rays. The thickness of the film is chosen to
be where is the wavelength, in vacuum, that is in the middle of the
visible spectrum, so that there is a phase change of due to the path-length dif-
ference of for light of normal incidence. Reflection from the coated surface is
thus minimized, which means that transmission through the surface is maximized.

33-3 TWO-SLIT INTERFERENCE PATTERN

Interference patterns of light from two or more sources can be observed only if the
sources are coherent. The interference in thin films discussed previously can be
observed because the two beams come from the same light source but are sepa-
rated by reflection. In Thomas Young’s famous 1801 experiment, in which he
demonstrated the wave nature of light, two coherent light sources are produced

l�>2 180°
l1

4l� � 1
4ln,

180°

1. The dark fringe from the contact point occurs when
the path-length difference equals wavelengths:m2t
mth

F I G U R E  3 3 - 5 (a) Straight-line fringes
from a wedge-shaped film of air, like that
shown in Figure 33-4. The straightness of the
fringes indicates that the glass plates are
optically flat. (b) Fringes from a wedge-shaped
film of air between glass plates that are not
optically flat. (Courtesy T. A. Wiggins.)

PICTURE We find the number of fringes per centimeter by finding the horizontal distance 
to the fringe and solving for Because the ray reflected from the bottom plate un-
dergoes a phase shift, the point of contact (where the path-length difference is zero) will
be dark. The dark fringe after the contact point occurs when where is
the wavelength in the air film, and is the plate separation at as shown in Figure 33-4.
Because the angle is small, we can use the small-angle approximation u � tanu � t>x.u

x,t
l� � l2t � ml�,mth

180°
m>x.mth

x

(a)

(b)
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P
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S1
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S2

S1
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S2

Screen

θ

θ

d sin θ

Interference
maxima

(b)(a)

F I G U R E  3 3 - 7 (a) Two slits act as coherent sources of light for the observation of interference in Young’s experiment.
Cylindrical waves from the slits overlap and produce an interference pattern on a screen. (b) Geometry for relating the distance 
measured along the screen to and When the screen is very far away compared with the slit separation, the rays from the slits
to a point on the screen are approximately parallel, and the path-length difference between the two rays is d sinu.

u.L
y

F I G U R E  3 3 - 6 Plane water waves in a
ripple tank encountering a barrier that has a
small opening. The waves to the right of the
barrier are circular waves that are concentric
about the opening, just as if there were a point
source at the opening. (From PSSC Physics,
2nd Edition, 1965. D. C. Heath & Co. and
Education Development Center, Newton MA.)
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by illuminating two very narrow parallel slits using a single light source. We saw
in Chapter 15 that when a wave encounters a barrier that has a very small open-
ing, the opening acts as a point source of waves (Figure 33-6).

During Young’s experiment, diffraction causes each slit to act as a line source
(which is equivalent to a point source in two dimensions). The interference pattern
is observed on a screen far from the slits (Figure 33-7a). At very large distances
from the slits, the lines from the two slits to some point on the screen are
approximately parallel, and the path-length difference is approximately 
where is the separation of the slits, as shown in Figure 33-7b. When the path-
length difference is equal to an integral number of wavelengths, the interference is
constructive. We thus have interference maxima at an angle given by

33-2

TWO-SLIT INTERFERENCE MAXIMA

where is called the order number. The interference minima occur at

33-3

TWO-SLIT INTERFERENCE MINIMA

The phase difference at a point is related to the path-length difference by

33-4

We can relate the distance measured along the screen from the central point to
the bright fringe (see Figure 33-7b) to the distance from the slits to the screen:

For small angles, Substituting for in Equation 33-2 and
solving for gives

33-5

From this result, we see that for small angles the fringes are equally spaced on the
screen.

ym � m
lL
d

ym

sinumym >Ltanu � sinu.

tanum �
ym

L

Lmth
ym

d �
¢r
l

2p �
d sinu
l

2p

d sinuPd

d sinum � Am � 1
2 Bl  m � 1, 2, 3, Á

m

d sinum � ml  m � 0, 1, 2, Á

um

d
d sinu,

P
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Example 33-3 Fringe Spacing from Slit Spacing Try It Yourself

Two narrow slits separated by are illuminated by yellow light from a sodium lamp
that has a wavelength equal to Find the spacing of the bright fringes observed on a
screen away.

PICTURE The distance measured along the screen to the bright fringe is given by
Equation 33-5, where and 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

l � 589 nm.L � 3.00 m, d � 1.50 mm,
mthym

3.00 m
589 nm.

1.50 mm

Steps Answers

1. Make a sketch of the situation (Figure 33-8).

3

2

1

0

Bright fringes

y3 << L

L

y3

d

3 << 1θ

3θ

m

F I G U R E  3 3 - 8 The vertical
scale of the figure is expanded.

2. The fringe spacing is the distance between
the bright fringe and the 
bright fringe. Using the sketch, obtain an
expression for the spacing between fringes.

(m � 1)thmth
fringe spacing � ym�1 � ym

3. Apply Equation 33-5 to the and
fringe.(m � 1)th

mth

4. Substitute into the step-2 result and simplify.

ym � m
lL
d
 and ym�1 � (m � 1)

lL
d

5. Substitute into the step-4 result and solve for
the fringe spacing.

ym�1 � ym �
lL
d

TAKING IT FURTHER The fringes are uniformly spaced only to the degree that the small-angle
approximation is valid, that is, to the degree that In this example, 
(1.50 mm) � 0.0004.

l>d � (589 nm)>l>d V 1.

1.18 mmfringe spacing �

Conceptual ExampleExample 33-4 How Many Fringes?

Two narrow slits are illuminated by monochromatic light. If the distance between the slits is
equal to 2.75 wavelengths, what is the maximum number of bright fringes that can be seen
on a screen? (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6 or more

PICTURE A bright fringe (constructive interference) exists at points on the screen for which
the distance to the two slits differs by an integer multiplied by the wavelength. However, the
maximum difference in distance possible is equal to the distance between the two slits.

SOLVE

1. Find the maximum difference in
distance from points on the screen to
the two slits:

At all points on the screen, the difference
in distance from the two slits is 2.75
wavelengths or less.

2. A bright fringe (constructive
interference) exists at points on the
screen for which the distance to the
two slits differs by an integer
multiplied by the wavelength:

Bright fringes exist on the screen at
places where the difference in distance to
the slits is 2 wavelengths, 1 wavelength,
or zero wavelengths.

3. Count up the bright fringes. There is
the central maximum and two on
either side of the central maximum:

(e) 5

CONCEPT CHECK 33-1

What is the maximum number
of dark fringes that can be seen
on a screen?

✓

See

Math Tutorial for more

information on 

Trigonometry



sin θ

4I0

Iav = 2I0

Intensity

d
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λ

(b)

(a)
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* We did this in Chapter 16 where we first discussed the superposition of two waves.

CALCULATION OF INTENSITY

To calculate the intensity of the light on the screen at a general point we need to
add two harmonic wave functions that differ in phase.* The wave functions for elec-
tromagnetic waves are the electric field vectors. Let be the electric field at some
point on the screen due to the waves from slit 1, and let be the electric field at
that point due to waves from slit 2. Because the angles of interest are small, we can
treat the fields as though they are parallel. Both electric fields oscillate with the same
frequency (they result from a single source that illuminates both slits) and they have
the same amplitude. (The path-length difference is only of the order of a few wave-
lengths of light at most.) They have a phase difference given by Equation 33-4.
If we represent the wave functions by

and

the resultant wave function is

33-6

By making use of the identity

the resultant wave function is given by

33-7

The amplitude of the resultant wave is thus It has its maximum value of
when the waves are in phase and is zero when they are out of phase.

Because the intensity is proportional to the square of the amplitude, the intensity at
any point is

33-8
INTENSITY IN TERMS OF PHASE DIFFERENCE

where is the intensity of the light reaching the screen from either slit separately.
The phase angle is related to the position on the screen by 
(Equation 33-4).

Figure 33-9a shows the intensity pattern as seen on a screen. A graph of the in-
tensity as a function of is shown in Figure 33-9b. For small this graph is equiv-
alent to a plot of intensity versus (because The intensity is
the intensity from each slit separately. The dashed line in Figure 33-9b shows the av-
erage intensity which is the result of averaging over a distance containing many
interference maxima and minima. This is the intensity that would arise from the two
sources if they acted independently without interference, that is, if they were not co-
herent. Then, the phase difference between the two sources would fluctuate ran-
domly, so that only the average intensity would be observed.

Figure 33-10 shows another method of producing the two-slit interference pattern,
an arrangement known as Lloyd’s mirror. A monochromatic horizontal line source is
placed at a distance above the plane of a mirror. Light striking the screen directly
from the source interferes with the light that is reflected from the mirror. The reflected
light can be considered to come from the virtual image of the line source formed by
the mirror. Because of the change in phase upon reflection at the mirror, the in-
terference pattern is that of two coherent line sources that differ in phase by The
pattern is the same as that shown in Figure 33-9 for two slits, except that the maxima
and minima are interchanged. Constructive interference occurs at points for which the
path-length difference is a half-wavelength or any odd number of half-wavelengths.
At those points, the phase difference due to the path-length difference combines
with the phase difference of the sources to produce constructive interference.180°

180°

180°.
180°

1
2 d

2I0 ,

I0y � L tanu � L sinu).y
u,sinu

d � (d sinu>l)2pd

I0

I � 4I0 cos2 1
2 d

P

180°2A0

2A0 cos 1
2 d.

E � C2A0 cos 1
2 d D  sin Avt � 1

2 d B
sina � sinb � 2 cos 1

2(a � b) sin 1
2(a � b)

E � E1 � E2 � A0 sinvt � A0 sin(vt � d)

E2 � A0 sin(vt � d)

E1 � A0 sinvt

d

E2P
E1

P,

F I G U R E  3 3 - 9 (a) The interference pattern
observed on a screen far away from the two slits
shown in Figure 33-7. (b) Plot of intensity versus

The maximum intensity is where is
the intensity due to each slit separately. The
average intensity (dashed line) is 
(Courtesy of Michael Cagnet.)

2I0 .

I04I0 ,sinu.
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PRACTICE PROBLEM 33-2

A point source of light is placed above the surface of a glass
mirror. Interference fringes are observed on a screen away, and the interference is
between the light reflected from the front surface of the glass and the light traveling from
the source directly to the screen. Find the spacing of the fringes on the screen.

The physics of Lloyd’s mirror was used in the early days of radio astronomy to
determine the location of distant radio sources on the celestial sphere. A radio-wave
receiver was placed on a cliff overlooking the sea, and the surface of the sea served
as the mirror.

33-4 DIFFRACTION PATTERN OF A SINGLE SLIT

In our discussion of the interference patterns produced by two or more slits, we as-
sumed that the slits were very narrow so that we could consider the slits to be line
sources of cylindrical waves, which in our two-dimensional diagrams are point
sources of circular waves. We could therefore assume that the value of the intensity
due to one slit acting alone was the same at any point on the screen, indepen-
dent of the angle made between the ray to point and the normal line between the
slit and the screen. When the slit is not narrow, the intensity on a screen far away is
not independent of angle but decreases as the angle increases. Consider a slit of
width Figure 33-11 shows the intensity pattern on a screen far away from the slit
of width as a function of We can see that the intensity is maximum in the
forward direction and de-
creases to zero at an angle that depends
on the slit width and the wavelength 

Most of the light intensity is concen-
trated in the broad central diffraction
maximum, although there are minor sec-
ondary maxima bands on either side of
the central maximum. The first zeroes in
the intensity occur at angles specified by

33-9

Note that for a given wavelength 
Equation 33-9 describes how variations
in the slit width result in variations in the
angular width of the central maximum.
If we increase the slit width the angle 
at which the intensity first becomes zero
decreases, giving a more narrow central
diffraction maximum. Conversely, if we
decrease the slit width, the angle of the
first zero increases, giving a wider central
diffraction maximum. When is smaller
than then would have to exceed 1sinu1l,

a

u1a,

l,

sinu1 � l>a

l.a

(sinu � 0)
sinu.a

a.

Pu

P(I0)

6.0 m
0.40 mm(l � 589 nm)

F I G U R E  3 3 - 1 0 Lloyd’s mirror for
producing a two-slit interference pattern. The
two sources (the source and its virtual image)
are coherent and are out of phase.180°

Intensity

sin θ2
 a

λ
a
λ

(b)

(a)

F I G U R E  3 3 - 1 1 (a) Diffraction pattern of a single slit as observed on a screen far away.
(b) Plot of intensity versus for the pattern in Figure 33-11a. (Courtesy of Michael Cagnet.)sinu



θ
a

y1

1

L

Screen

F I G U R E  3 3 - 1 3 The distance 
measured along the screen from the central
maximum to the first diffraction minimum is
related to the angle by 
where is the distance to the screen.L

tanu1 � y1>L,u1

y1

θ
θ

1
2 a
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to satisfy Equation 33-9. Thus, for less than there are no points of zero intensity
in the pattern, and the slit acts as a line source (a point source in two dimensions) ra-
diating light energy essentially equal in all directions.

Multiplying both sides of Equation 33-9 by gives

33-10

The quantity is the path-length difference between a light ray leaving the
middle of the upper half of the slit and one leaving the middle of the lower half of
the slit. We see that the first diffraction minimum occurs when these two rays are 
out of phase, that is, when their path-length difference equals a half-wavelength. We
can understand this result by considering each point on a wavefront to be a point
source of light in accordance with Huygens’s principle. In Figure 33-12, we have
placed a line of dots on the wavefront at the slit to represent these point sources
schematically. Suppose, for example, that we have 100 such dots and that we look at
an angle for which Let us consider the slit to be divided into two
halves, with sources 1 through 50 in the upper half and sources 51 through 100 in the
lower half. When the path-length difference between the middle of the upper half
and the middle of the lower half of the slit equals a half-wavelength, the path-length
difference between source 1 (the first source in the upper half) and source 51 (the first
source in the lower half) is also The waves from those two sources will be out of
phase by and will thus cancel. Similarly, waves from the second source in each
region (source 2 and source 52) will cancel. Continuing this argument, we can see
that the waves from each pair of sources separated by will cancel. Thus, there
will be no light energy at that angle. We can extend this argument to the second and
third minima in the diffraction pattern of Figure 33-11. At an angle where

we can divide the slit into four regions, two regions for the top half and
two regions for the bottom half. Using this same argument, the light intensity from
the top half is zero because of the cancellation of pairs of sources; similarly, the light
intensity from the bottom half is zero. The general expression for the points of zero
intensity in the diffraction pattern of a single slit is thus

33-11

POINTS OF ZERO INTENSITY FOR A SINGLE-SLIT DIFFRACTION PATTERN

Usually, we are just interested in the first occurrence of a minimum in the light in-
tensity because nearly all of the light energy is contained in the central diffraction
maximum.

In Figure 33-13, the distance from the central maximum to the first diffraction
minimum is related to the angle and the distance from the slit to the screen by

tanu1 �
y1

L

Lu1

y1

a sinum � ml  m � 1, 2, 3, Á

a sinu2 � 2l,
u2

a>2180°

1
2l.

a sinu1 � l.u1

180°

1
2 a sinu1

1
2 a sinu1 � 1

2l

a>2
l,a

Example 33-5 Width of the Central Diffraction Maximum

During a lecture demonstration of single-slit diffraction, a laser beam that has a wavelength
equal to passes through a vertical slit wide and hits a screen away. Find
the width of the central diffraction maximum on the screen; that is, find the distance between
the first minimum on the left and the first minimum on the right of the central maximum.

PICTURE Referring to Figure 33-13, the width of the central diffraction maximum is 

SOLVE

2y1 .

6.0 m0.20 mm700 nm

1. The half-width of the central maximum is related to the
angle by:u1

y1 tanu1 �
y1

L

F I G U R E  3 3 - 1 2 A single slit is represented
by a large number of point sources of equal
amplitude. At the first diffraction minimum of a
single slit, the waves from each point source in
the upper half of the slit are out of phase
with the wave from the point source a distance

lower in the slit. Thus, the interference from
each such pair of point sources is destructive.
a>2 180°



3. Solve the step-2 result for substitute into the step-1 result,
and solve for 2y1:

u1 ,

 4.2 cm� 4.2 � 10�2 m �

� 2(6.0 m) tanasin�1 700 � 10�9 m
0.00020 m

b
 2y1 � 2L tanu1 � 2L tanasin�1 l

a
b

CHECK Because we can use the small-angle
approximation to evaluate In this approximation, so and

(This approximate value is in agree-
ment with the exact value to within 0.0006 percent.)
2y1 � 2Ll>a � 2(6.0 m)(700 nm)>(0.20 mm) � 4.2 cm.

l>a � y1>Lsinu1 � tanu1 ,2y1 .
sinu1 � l>a � (700 nm)>(0.20 mm) � 0.0035,
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2. The angle is related to the slit width by Equation 33-11:au1 sinu1 � l>a

INTERFERENCE–DIFFRACTION PATTERN OF TWO SLITS

When there are two or more slits, the intensity pattern on a screen far away
is a combination of the single-slit diffraction pattern of the individual slits
and the multiple-slit interference pattern we have studied. Figure 33-14
shows the intensity pattern on a screen far from two slits whose separation

is where is the width of each slit. The pattern is the same as the two-
slit pattern that has very narrow slits (Figure 33-11) except that it is modu-
lated by the single-slit diffraction pattern; that is, the intensity due to each
slit separately is now not constant but decreases with angle, as shown in
Figure 33-14b.

Note that the central diffraction maximum in Figure 33-14 has 19 interfer-
ence maxima—the central interference maximum and 9 maxima on either
side. The tenth interference maximum on either side of the central one is at
the angle given by because This coincides
with the position of the first diffraction minimum, so this interference maxi-
mum is not seen. At these points, the light from the two slits would be in
phase and would interfere constructively, but there is no light coming from
either slit because the points are at diffraction minima of each slit. In general,
we can see that if the interference maximum will fall at the first
diffraction minimum. Because the fringe is not seen, there will be 
fringes on each side of the central fringe for a total of fringes in the central
maximum, where is given by

33-12N � 2(m � 1) � 1 � 2m � 1

N
N

m � 1mth
mthm � d>a,

d � 10a.sinu10 � 10l>d � l>a,u10 ,

a10a,d

4I0

I

0 sin θ2
 d
λ 4

 d
λ 6

 d
λ 8

 d
λ 10

  d
λ

(b)

(a)

sinu1 �
l

a
 (first diffraction minimum)

2. Relate the angle of the interference maxima to the slit
separation :d

mthum
sinum �

ml
d
 (mth interference maxima)

Example 33-6 Interference and Diffraction

Two slits that each have a width are separated by a distance 
and are illuminated by light of wavelength How many bright fringes are seen
in the central diffraction maximum?

PICTURE We need to find the value of for which the interference maximum coincides
with the first diffraction minimum. Then there will be fringes in the central
maximum.

SOLVE

N � 2m � 1
mthm

l � 650 nm.
d � 0.060 mma � 0.015 mm

F I G U R E  3 3 - 1 4 (a) Interference–diffraction
pattern for two slits whose separation is equal
to 10 times their width The tenth interference
maximum on either side of the central
interference maximum is missing because it falls
at the first diffraction minimum. (b) Plot of
intensity versus for the central band of the
pattern in Figure 33-14a. (Courtesy of Michael Cagnet.)

sinu

a.
d

1. Relate the angle of the first diffraction minimum to the slit
width :a

u1



Try It Yourself

A2 sin (   +   ) δ α
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A
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F I G U R E  3 3 - 1 5 Phasor representation of
wave functions.
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3. Set the angles equal and solve for m:

Example 33-7 Wave Superposition Using Phasors

Use the phasor method of addition to derive (Equation 33-7)
for the superposition of two waves of the same amplitude.

PICTURE Represent the waves by vectors (phasors)
of length making an angle with one another. The resultant wave is
represented by the sum of these vectors, which form an isosceles triangle, as shown in
Figure 33-16.

yr � A sin(a � d�)dA0

y1 � A0 sina and y2 � A0 sin(a � d)

E � C2A0 cos 1
2 d D  sin Avt � 1

2 d B

m �
d
a

�
0.060 mm
0.015 mm

� 4.0

ml
d

�
l

a

4. The first diffraction minimum coincides with the fourth bright
fringe. Therefore, there are 3 bright fringes visible on either side
of the central diffraction maximum. These 6 maxima, plus the
central interference maximum, combine for a total of 7 bright
fringes in the central diffraction maximum:

 7 bright fringesN �

33-5 USING PHASORS TO ADD

HARMONIC WAVES

To calculate the interference pattern produced by three, four, or more coherent
light sources and to calculate the diffraction pattern of a single slit, we need to
combine several harmonic waves of the same frequency that differ in phase. A sim-
ple geometric interpretation of harmonic wave functions leads to a method of
adding harmonic waves of the same frequency by geometric construction.

Let the wave functions for two waves at some point be 
where Our problem is then to find the sum:

We can represent each wave function by the component of a two-dimensional
vector, as shown in Figure 33-15. The geometric method of addition is based on
the fact that the component of the sum of two or more vectors equals the sum of
the components of the vectors, as illustrated in the figure. The wave function 
is represented by the component of the vector As the time continues on,
this vector rotates in the plane with angular frequency The vector is called
a phasor. (We encountered phasors in our study of ac circuits in Section 29-5.)
The wave function is the component of a phasor of magnitude that makes
an angle with the axis. By the laws of vector addition, the sum of the 
components of the individual phasors equals the component of the resultant pha-
sor as shown in Figure 33-15. The component of the resultant phasor,

is a harmonic wave function that is the sum of the two original wave
functions. That is,

33-13

where (the amplitude of the resultant wave) and (the phase of the resultant
wave relative to the phase of the first wave) are found by adding the phasors rep-
resenting the waves. As time varies, varies. The phasors representing the two
wave functions and the resultant phasor representing the resultant wave function
rotate in space, but their relative positions do not change because they all rotate
with the same angular velocity v.

a

d�A

A1 sina � A2 sin(a � d) � A sin(a � d�)

A sin(a � d�),
yA

S
,

y
yxa � d

A2yE2

A
S

1v.xy
A
S

1 .y
E1y

y

y

E1 � E2 � A1 sina � A2 sin(a � d)

a � vt.A2 sin(a � d),
E1 � A1 sina and E2 �

*



*THE INTERFERENCE PATTERN OF THREE OR
MORE EQUALLY SPACED SOURCES

We can apply the phasor method of addition to calculate the interference pattern
of three or more coherent sources that are equally spaced and in phase. We are
most interested in the location of the interference maxima and minima. Figure 33-
17 illustrates the case of three such sources. The geometry is the same as for two
sources. At a great distance from the sources, the rays from the sources to a point

on the screen are approximately parallel. The path-
length difference between the first and second source is
then as before, and the path-length difference be-
tween the first and third source is The wave at
point is the sum of the three waves. Let be the
phase of the first wave at point We thus have the prob-
lem of adding three waves of the form

33-14

where

33-15

as in the two-slit problem.
At so all the waves are in phase. The am-

plitude of the resultant wave is 3 times that of each indi-
vidual wave and the intensity is 9 times that due to each
source acting separately. As the angle increases from

the phase angle increases and the intensity de-
creases. The position is thus a position of maximum
intensity.

u � 0
du � 0,

u

u � 0, d � 0,

d �
2p
l
d sinu �

2p
l

yd

L

E3 � A0 sin(a � 2d)

E2 � A0 sin(a � d)

E1 � A0 sina

P.
a � vtP

2d sinu.
d sinu,

P

3. Write in terms of and A0 .Acosd� cosd� �

1
2A

A0

4. Solve for in terms of d.A A � 2A0 cosd� � 2A0 cos 12 d

5. Use your results for and to write the resultant
wave function.

d�A C2A0 cos 12 d Dsin Aa � 1
2 d B�

yr � A sin(a � d�)

CHECK The step-5 result is identical to Equation 33-7 (see Problem statement).

PRACTICE PROBLEM 33-3 Find the amplitude and phase constant of the resultant
wave function produced by the superposition of the two waves and
E2 � (3.0 V>m) sin(vt � 90°).

E1 � (4.0 V>m) sin(vt)
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Steps Answers

1. Relate and using the theorem: “An external
angle to a triangle is equal to the sum of the two non-
adjacent internal angles.”

d�d d� � d� � d

2. Solve for d�. d� � 1
2 d

A0α

y

x

α
δ

A0

1
2 A

1
2 A

’δ

’δ

F I G U R E  3 3 - 1 6

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

θd
y

L

Screen

d

S1
S2
S3

P

d

d

θ

θ

θd sin

θ2d sin

(b)

(a)

F I G U R E  3 3 - 1 7 Geometry for calculating the intensity pattern far
away from three equally spaced, coherent sources that are in phase.



α

A0

A0

A0

δ = 90°

δ = 90°

δ = 90°

A0

α

A0

A0

A0

δ = 120°

δ = 120°

α

δ

A0

A
A0

A0

δ

1154 | C H A P T E R  3 3 Interference and Diffraction

Figure 33-18 shows the phasor addition of three waves for a phase angle
This corresponds to a point on the screen for which is given

by The resultant amplitude is considerably less than
3 times the amplitude of each source. As increases, the resultant amplitude
decreases until the amplitude is zero at For this value of the three pha-
sors form an equilateral triangle (Figure 33-19). This first interference minimum for
three sources occurs at a smaller value of (and therefore at a smaller angle ) than
it does for only two sources (for which the first interference minimum occurs at

As increases from the resultant amplitude increases, reaching a
secondary maximum at At the phase angle the amplitude is the
same as that from a single source, because the waves from the first two sources
cancel each other, leaving only the third. The intensity of the secondary maximum
is one-ninth that of the maximum at As increases beyond the ampli-
tude again decreases and is zero at For greater than 
the amplitude increases and is again 3 times that of each source when 
This phase angle corresponds to a path-length difference of 1 wavelength for the
waves from the first two sources and 2 wavelengths for the waves from the first
and third sources. Hence, the three waves are in phase at this point. The largest
maxima, called the principal maxima, are at the same positions as for just two
sources, which are those points corresponding to the angles given by

33-16

These maxima are stronger and narrower than those for two sources. They occur
at points for which the path-length difference between adjacent sources is zero or
an integral number of wavelengths.

These results can be generalized to more than three sources. For four coherent
sources that are equally spaced and in phase, the principal interference maxima
are again given by Equation 33-16, but the maxima are even more intense, they are
narrower, and there are two small secondary maxima between each pair of prin-
cipal maxima. At the intensity is 16 times that due to a single source. The
first interference minimum occurs when is as can be seen from the phasor
diagram of Figure 33-20. The first secondary maximum is near The in-
tensity of the secondary maximum is about one-fourteenth that of the central
maximum. There is another minimum at another secondary maximum
near and another minimum at before the next principal maxi-
mum at 

Figure 33-21 shows the intensity patterns for two, three, and four equally
spaced coherent sources. Figure 33-22 shows a graph of where is the in-
tensity due to each source acting separately. For three sources, there is a very
small secondary maximum between each pair of principal maxima, and the prin-
cipal maxima are sharper and more intense than those due to just two sources.
For four sources, there are two small secondary maxima between each pair of
principal maxima, and the principal maxima
are even more narrow and intense.

From this discussion, we can see that as we in-
crease the number of sources, the intensity be-
comes more and more concentrated in the princi-
pal maxima given by Equation 33-16, and these
maxima become narrower. For sources, the in-
tensity of the principal maxima is times that
due to a single source. The first minimum occurs
at a phase angle of for which the 
phasors form a closed polygon of sides. There
are secondary maxima between each pair
of principal maxima. These secondary maxima are
very weak compared with the principal maxima.

N � 2
N

Nd � 360°>N,

N2
N

I0I>I0 ,

d � 360°.
d � 270°d � 228°,
d � 180°,

d � 132°.
90°,d

u � 0,

d sinum � ml m � 0, 1, 2, Á

u

d � 360°.
240°,dd � 180° � 60° � 240°.

180°,du � 0.

d � 180°,d � 180°.
120°,dd � 180°).

ud

d,d � 120°.
dA0

Asinu � ld>(2pd) � l>(12d).
uPd � 30° � p>6 rad.

F I G U R E  3 3 - 2 1 Intensity patterns for
two, three, and four coherent sources that are
equally spaced and in phase. There is a
secondary maximum between each pair of
principal maxima for three sources, and two
secondary maxima between each pair of
principal maxima for four sources. (Courtesy of
Michael Cagnet.)

F I G U R E  3 3 - 1 8 Phasor diagram for
determining the resultant amplitude due
to three waves, each of amplitude that
have phase differences of and due to
path-length differences of and 
The angle varies with time, but this
does not affect the calculation of A.

a � vt
2d sinu.d sinu

2dd

A0 ,
A

F I G U R E  3 3 - 1 9 The resultant amplitude
for the waves from three sources is zero when

is This interference minimum occurs at
a smaller angle than does the first minimum
for two sources, which occurs when is 180°.d

u

120°.d

F I G U R E  3 3 - 2 0 Phasor diagram for the
first minimum for four coherent sources that
are equally spaced and in phase. The
amplitude is zero when the phase difference
of the waves from adjacent sources is 90°.
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As the number of sources is increased, the principal maxima become sharper and
more intense, and the intensities of the secondary maxima become negligible
compared to those of the principal maxima.

*CALCULATING THE SINGLE-SLIT DIFFRACTION PATTERN

We now use the phasor method for the addition of harmonic waves to calculate the
intensity pattern shown in Figure 33-11. We assume that the slit of width is di-
vided into equal intervals and that there is a point source of waves at the mid-
point of each interval (Figure 33-23). If is the distance between two adjacent
sources and is the width of the opening, we have Because the screen on
which we are calculating the intensity is far from the sources, the rays from the
sources to a point on the screen are approximately parallel. The path-length dif-
ference between any two adjacent sources is and the phase difference is
related to the path-length difference by

If is the amplitude due to a single source, the amplitude at the central maxi-
mum, where and all the waves are in phase, is (Figure 33-24).

We can find the amplitude at some other point at an angle by using the pha-
sor method for the addition of harmonic waves. As in the addition of two, three, or
four waves, the intensity is zero at any point where the phasors representing the
waves form a closed polygon. In this case, the polygon has sides (Figure 33-25).
At the first minimum, the wave from the first source just below the top of the open-
ing and the wave from the source just below the middle of the opening are out
of phase. In this case, the waves from the source near the top of the opening differ

180°

N

u

Amax � NA0u � 0
A0

d �
d sinu
l

2p

dd sinu,
P

d � a>N.a
d

N
a

I/I0

0

Four sources

Three sources

Two sources

d
λ

d
λ sin θ

–

F I G U R E  3 3 - 2 2 Plot of relative intensity
versus for two, three, and four coherent
sources that are equally spaced and in phase.

sinu

θ

a

F I G U R E  3 3 - 2 3 Diagram for calculating
the diffraction pattern far away from a narrow
slit. The slit width is assumed to contain a
large number of in-phase, equally spaced
point sources separated by a distance The
rays from the sources to a point far away are
approximately parallel. The path-length
difference for the waves from adjacent sources
is d sinu.

d.

a

Screen

Amax = NA0

A0

N
sources

F I G U R E  3 3 - 2 4 A single slit is represented by sources, each of amplitude At the
central maximum point, where the waves from the sources add in phase, giving a resultant
amplitude Amax � NA0 .

u � 0,
A0 .N

360°
Nδ =

F I G U R E  3 3 - 2 5 Phasor diagram for
calculating the first minimum in the single-slit
diffraction pattern. When the waves from
the sources completely cancel, the 
phasors form a closed polygon. The phase
difference between the waves from adjacent
sources is then When is very
large, the waves from the first and last sources
are approximately in phase.

Nd � 360°>N.

NN



φ

r

A0

A

A0

A0

A0

A0

A0

A0
A0

A0A0

r

2
φ

2
φ

F I G U R E  3 3 - 2 6 Phasor diagram for
calculating the resultant amplitude due to
the waves from sources in terms of the
phase difference between the wave from
the first source just below the top of the slit
and the wave from the last source just
above the bottom of the slit. When is very
large, the resultant amplitude is the chord
of a circular arc of length NA0 � Amax .

A
N

f

N
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from those from the bottom of the opening by nearly [The phase difference
is, in fact, ] Thus, if the number of sources is very large, is
negligible and we get complete cancellation if the waves from the first and last
sources are out of phase by corresponding to a path-length difference of one
wavelength, in agreement with Equation 33-11.

We will now calculate the amplitude at a general point at which the waves from
two adjacent sources differ in phase by Figure 33-26 shows the phasor diagram
for the addition of waves, where the subsequent waves differ in phase from
the first wave by When is very large and is very small, the
phasor diagram approximates the arc of a circle. The resultant amplitude is 
the length of the chord of this arc. We will calculate this resultant amplitude in
terms of the phase difference between the first wave and the last wave. From
Figure 33-26, we have

or

33-17

where is the radius of the arc. Because the length of the arc is and
the angle subtended is we have

33-18

or

Substituting this into Equation 33-17 gives

Because the amplitude at the center of the central maximum is 
the ratio of the intensity at any other point to that at the center of the central
maximum is

or

33-19

INTENSITY FOR A SINGLE-SLIT DIFFRACTION PATTERN

The phase difference between the first and last waves is related to the path-
length difference between the top and bottom of the opening by

33-20

Equation 33-19 and Equation 33-20 describe the intensity pattern shown in Figure
33-11. The first minimum occurs at which is the point where the waves
from the middle of the upper half and the middle of the lower half of the slit have
a path-length difference of and are out of phase. The second minimum oc-
curs at where the waves from the upper half of the upper half of the
slit and those from the lower half of the upper half of the slit have a path-length
difference of and are out of phase.180°l>2a sinu � 2l,

180°l>2 a sinu � l,

f �
a sinu
l

2p

a sinu
f

I � I0a sin 1
2f

1
2f

b 2

I
I0

�
A2

A2
max

� a sin 1
2f

1
2f

b 2

Amax ,(u � 0)

A �
2Amax

f
 sin 12f � Amax

sin 1
2f

1
2f

r �
Amax

f

f �
Amax

r

f,
Amax � NA0r

A � 2r sin 12f

sin 1
2f �

A>2
r

f

A
dNd, 2d, Á , (N � 1)d.

N
d.

360°,

360°>N360° � (360°>N).
360°.
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There is a secondary maximum approximately midway between the first and sec-
ond minima at Figure 33-27 shows the phasor diagram for determining
the approximate intensity of this secondary maximum. The phase difference 
between the first and last waves is approximately The phasors thus com-
plete circles. The resultant amplitude is the diameter of a circle that has a circum-
ference which is two-thirds the total length If is the circumference,
the diameter is

and

The intensity at this point is

33-21

*CALCULATING THE INTERFERENCE–DIFFRACTION
PATTERN OF MULTIPLE SLITS

The intensity of the two-slit interference–diffraction pattern can be calculated
from the two-slit pattern (Equation 33-8) where the intensity of each slit in that
equation) is replaced by the diffraction pattern intensity due to each slit, given
by Equation 33-19. The intensity for the two-slit interference–diffraction pattern
is thus

33-22

INTERFERENCE–DIFFRACTION INTENSITY FOR TWO SLITS

where is the difference in phase between rays from the top and bottom of each
slit, which is related to the width of each slit by

and is the difference in phase between rays from the centers of two adjacent slits,
which is related to the slit separation by

In Equation 33-22, the intensity is the intensity at due to one slit alone.u � 0I0

d �
d sinu
l

2p

d

f �
a sinu
l

2p

f

I � 4I0a sin 1
2f

1
2f

b 2

 cos2 1
2d

I,
(I0

I �
4

9p2 I0 �
1

22.2
I0

A2 �
4

9p2A
2
max

A �
C
p

�

2
3Amax

p
�

2
3p
Amax

A
C � 2

3AmaxAmax .
1 1

2

2p � p.
f

a sinu � 3
2l.

A

Circumference C = NA0
2
3

= Amax = A
2
3 π

A = Amax
 2
3π

A2 = A2
max

  4
9 2π

F I G U R E  3 3 - 2 7 Phasor diagram for
calculating the approximate amplitude of the
first secondary maximum of the single-slit
diffraction pattern. The secondary maximum
occurs near the midpoint between the first
and second minima when the phasors
complete circles.1 1

2

N

Example 33-8 Five-Slit Interference–Diffraction Pattern

Find the interference–diffraction intensity pattern for five equally spaced slits, where is the
width of each slit and is the distance between adjacent slits.

PICTURE First, find the interference intensity pattern for the five slits, assuming no angular
variations in the intensity due to diffraction. To do this, first construct a phasor diagram to
find the amplitude of the resultant wave in an arbitrary direction Intensity is proportional
to the square of the amplitude. Next, correct for the variation of intensity with by using the
single-slit diffraction pattern intensity relation (Equation 33-20 and Equation 33-20).

u

u.

d
a



'δ

'π − δ

'δ

'π − δ

β

δ

β δ

δ

δ

A

A0

A0

A0

A0

A0
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1. The diffraction pattern intensity due to a slit of width is
given by Equation 33-19 and Equation 33-20:

aI�

where

f �
2p
l
a sinu

I� � I0 a sin 1
2f

1
2f

b 2

2. The interference pattern intensity is proportional to the square
of the amplitude of the superposition of the wave functions
for the light from the five slits:

A
I

where

and where a � vt and d �
d sinu
l

2p

� A0 sin(a � 3d) � A0 sin(a � 4d)

A sin(a � d�) � A0 sina � A0 sin(a � d) � A0 sin(a � 2d)

I � A2

3. To solve for we construct a phasor diagram (Figure 33-28).
The amplitude equals the sum of the projections of the
individual phasors onto the resultant phasor:

A
A,

4. To find we add the exterior angles. The sum of the exterior
angles equals (if you walk the perimeter of any polygon you
rotate through the sum of the exterior angles, and you rotate
through radians):2p

2p
d�, d� � 2d⇒2(p � d�) � 4d � 2p

5. Solve for from the figure:A A � 2A0 cosd� � 2A0 cos b � A0

6. Substitute for using the step-4 result, and substitute for using
the relation (That and are equal follows from the
theorem “If two parallel lines are cut by a transversal, the interior
and exterior angles on the same side of the transversal are equal.”):

dbb � d.
bd� A � A0(2 cos 2d � 2 cosd � 1)

CHECK If both and So, for step 5 becomes and step 8
becomes as expected.I � 52I0 � 25I0

A � 5A0u � 0,d � 0.f � 0u � 0,

7. Square both sides to relate the intensities. Recall, is
the intensity from a single slit, and is the amplitude from
a single slit:

A0

I�

so

I � I�(2 cos 2d � 2 cosd � 1)2

A2 � A2
0(2 cos 2d � 2 cosd � 1)2

8. Substitute for using the step-1 result:I�

where f �
a sinu
l

2p and d �
d sinu
l

2p

I � I0a sin 1
2f

1
2f

b 2

(2 cos 2d � 2 cosd � 1)2

SOLVE

so

b � d� � d � 2d � d � d

d� � b � d
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As the screen is moved closer,

the Fraunhofer
pattern observed
far from the slit . . .

gradually
changes
into . . .

the Fresnel pattern
observed near
the slit.

* See Richard E. Haskel, “A Simple Experiment on Fresnel Diffraction,” American Journal of Physics 38 (1970): 1039.

33-6 FRAUNHOFER AND
FRESNEL DIFFRACTION

Diffraction patterns, like the single-slit pattern shown in Figure 33-11, that are ob-
served at points for which the rays from an aperture or an obstacle are nearly paral-
lel are called Fraunhofer diffraction patterns. Fraunhofer patterns can be observed
at great distances from the obstacle or the aperture so that the rays reaching any
point are approximately parallel, or they can be observed using a lens to focus par-
allel rays on a viewing screen placed in the focal plane of the lens.

The diffraction pattern observed near an aperture or an obstacle is called a
Fresnel diffraction pattern. Because the rays from an aperture or an obstacle close
to a screen cannot be considered parallel, Fresnel diffraction is much more difficult
to analyze. Figure 33-29 illustrates the difference between the Fresnel and the
Fraunhofer patterns for a single slit.*

Figure 33-30a shows the Fresnel diffraction pattern of an opaque disk. Note the
bright spot at the center of the pattern caused by the constructive interference of the
light waves diffracted from the edge of the disk. This pattern is of some historical in-
terest. In an attempt to discredit Augustin Fresnel’s wave theory of light, Siméon
Poisson pointed out that it predicted a bright spot at the center of the shadow, which
he assumed was a ridiculous contradiction of fact. However, Fresnel immediately
demonstrated experimentally that such a spot does, in fact, exist. This demonstration
convinced many doubters of the validity of the wave theory of light. The Fresnel dif-
fraction pattern of a circular aperture is shown in Figure 33-30b. Comparing this with
the pattern of the opaque disk in Figure 33-30a, we can see that the two patterns are
complements of each other.

Figure 33-31a shows the Fresnel diffraction pattern of a
straightedge illuminated by light from a point source. A
graph of the intensity versus distance (measured along a line
perpendicular to the edge) is shown in Figure 33-31b. The
light intensity does not fall abruptly to zero in the geometric
shadow, but it decreases rapidly and is negligible within a
few wavelengths of the edge. The Fresnel diffraction pattern

(b)

(a)

Intensity

Geometric
shadow

Edge Distance

F I G U R E  3 3 - 3 1 (a) The Fresnel diffraction of a straightedge. (b) A
graph of intensity versus distance along a line perpendicular to the edge.
(Courtesy Battelle-Northwest Laboratories.)

(a) (b)

F I G U R E  3 3 - 2 9 Diffraction patterns for a
single slit at various screen distances.

F I G U R E  3 3 - 3 0 (a) The Fresnel diffraction pattern of an opaque
disk. At the center of the shadow, the light waves diffracted from the
edge of the disk are in phase and produce a bright spot called the
Poisson spot. (b) The Fresnel diffraction pattern of a circular aperture.
Compare this with Figure 33-30a. ((a) and (b) M. Cagnet, M. Fraçon, 
J. C. Thrierr, Atlas of Optical Phenomena.)
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F I G U R E  3 3 - 3 3 The Fraunhofer
diffraction pattern of a circular aperture.
(Courtesy of Michael Cagnet.)

α
α

Circular aperture
of diameter D

Two incoherent
point sources Screen far

from opening

1.22 λ
D

F I G U R E  3 3 - 3 4 Two distant
sources that subtend an angle If is
much greater than where 
is the wavelength of light and is the
diameter of the aperture, the diffraction
patterns have little overlap and the
sources are easily seen as two distinct
sources. If is not much greater than

the overlap of the diffraction
patterns makes it difficult to
distinguish two sources from one.

1.22l>D,
a

D
l1.22l>D,
aa.

(b)

(a)

F I G U R E  3 3 - 3 2 The Fresnel diffraction
pattern of a rectangular aperture. (Courtesy of
Michael Cagnet.)

F I G U R E  3 3 - 3 5 The diffraction patterns
for a circular aperture and two incoherent
point sources when (a) is a factor of 2 or so
greater than and (b) when is
equal to the limit of resolution, 
((a) and (b) Courtesy of Michael Cagnet.)

ac � 1.22l>D.
aac � 1.22l>Da

of a rectangular aperture is shown in Figure 33-32. These patterns cannot be seen
using extended light sources like an ordinary lightbulb, because the dark fringes of
the pattern produced by light from one point on the source overlap the bright
fringes of the pattern produced by light from another point.

33-7 DIFFRACTION AND RESOLUTION

Diffraction due to a circular aperture has important implications for the resolution of
many optical instruments. Figure 33-33 shows the Fraunhofer diffraction pattern of
a circular aperture. The angle subtended by the first diffraction minimum is related
to the wavelength and the diameter of the opening by

33-23

Equation 33-23 is similar to Equation 33-9 except for the factor 1.22, which arises
from the mathematical analysis, and is similar to the equation for a single slit but
more complicated because of the circular geometry. In many applications, the angle

is small, so can be replaced by The first diffraction minimum is then at an
angle given by

33-24

Figure 33-34 shows two point sources that subtend an angle at a circular aperture
far from the sources. The intensities of the Fraunhofer diffraction pattern are also in-
dicated in this figure. If is much greater than the sources will be seen as
two sources. However, as is decreased, the overlap of the diffraction patterns
increases, and it becomes difficult to distinguish the two sources from one source.
At the critical angular separation, given by

33-25

the first minimum of the diffraction pattern of one source falls on the central maxi-
mum of the other source. These objects are said to be just resolved by Rayleigh’s
criterion for resolution. Figure 33-35 shows the diffraction patterns for two sources
when is greater than the critical angle for resolution and when is just equal to the
critical angle for resolution.

Equation 33-25 has many applications. The resolving power of an optical instrument,
such as a microscope or telescope, is the ability of the instrument to resolve two ob-
jects that are close together. The images of the objects tend to overlap because of dif-
fraction at the entrance aperture of the instrument. We can see from Equation 33-25
that the resolving power can be increased either by increasing the diameter of
the lens (or mirror) or by decreasing the wavelength Astronomical telescopes use
large objective lenses or mirrors to increase their resolution as well as to increase their
light-gathering power. An array of 27 radio antennas (Figure 33-36) mounted on
rails can be configured to form a single telescope that has a resolution distance of

In a microscope, a film of transparent oil that has an index of refraction36 km (22 mi).
D

l.
D

aa

ac � 1.22
l

D

ac ,

a

1.22l>D,a

a

u � 1.22
l

D

u

u.sinuu

sinu � 1.22
l

D

D
u
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* The wave properties of electrons are discussed
in Chapter 34.

Context-RichExample 33-9 Physics in the Library

While studying in the library, you lean back in your chair and ponder the small holes you
notice in the ceiling tiles. You notice that the holes are approximately apart. You can
clearly see the holes directly above you, about up, but the tiles far away do not appear
to have the holes. You wonder if the reason you cannot see the distant holes is because they
are not within the criteria for resolution established by Rayleigh. Is this a feasible explana-
tion for the disappearance of the holes? You notice the holes disappear about from you.

PICTURE We will need to make assumptions about the situation. If we use Equation 33-25,
we will need to know the wavelength of light and the aperture diameter. Assuming our pupil
is the aperture, we can assume approximately for the diameter. (This is the value used
in this physics textbook.) The wavelength of the light is probably about or so.

SOLVE

500 nm
5.0 mm

20 m

2 m
5.0 mm

1. The angular limit for resolution by the eye depends on the ratio of the wavelength and
the diameter of the pupil:

uc � 1.22
l

D

2. The angle subtended by two holes depends on their separation distance and their
distance from your eye:L

d u �
d
L

3. Equating the two angles and putting in the numbers give:

5.0 mm
L

� 1.22
500 nm
5.0 mm

d
L

� 1.22
l

D

4. Solving for gives:L L � 41 m

of approximately 1.55 is sometimes used under
the objective to decrease the wavelength of the
light The wavelength can be reduced
further by using ultraviolet light and photo-
graphic film; however, ordinary glass is opaque to
ultraviolet light, so the lenses in an ultraviolet mi-
croscope must be made from quartz or fluorite. To
obtain very high resolutions, electron microscopes
are used—microscopes that use electrons rather
than light. The wavelengths of electrons vary in-
versely with the square root of their kinetic energy
and can be made as small as desired.*

(l� � l>n).

5. By a factor of is too large. However, you are suspect of the value given for the
pupil diameter in your physics textbook. You know the pupil is smaller when the light is
bright, and the library ceiling is very bright and colored white. An online search for eye
pupil diameter soon yields the information you need. The pupil diameter ranges from

up to 7 mm:2 to 3 mm

2, 41 m Sucess. If the pupil diameter is 
2.5 mm, the value of L is 20 m.

It is instructive to compare the limitation on resolution of the eye due to diffrac-
tion, as seen in Example 33-9, with the limitation on resolution due to the separation
of the receptors (cones) on the retina. To be seen as two distinct objects, the images
of the objects must fall on the retina on two nonadjacent cones. (See Problem 65 in
Chapter 32.) Because the retina is about from the cornea, the distance on the
retina corresponding to an angular separation of is found from

or

The actual separation of the cones in the fovea centralis, where the cones are the most
tightly packed, is about Outside this region, they are about to apart.5 mm3 mm1 mm.

y � 3.8 � 10�4 cm � 3.8 � 10�6 m � 3.8 mm

ac � 1.5 � 10�4 rad �
y

2.5 cm

1.5 � 10�4 rad
y2.5 cm

F I G U R E  3 3 - 3 6 The very large array
(VLA) of radio antennas is located near
Socorro, New Mexico. The 25-m-diameter
antennas are mounted on rails, which can
be arranged in several configurations, and
can be extended over a diameter of 
The data from the antennas are combined
electronically, so the array is really a single
high-resolution telescope. (Courtesy of
National Radio Astronomy Observatory/
Associated Universities, Inc./National Science
Foundation. Photographer: Kelly Gatlin.
Digital composite: Patricia Smiley.)

36 km.

CONCEPT CHECK 33-2

True or False:
Fraunhofer diffraction is a limiting
case of Fresnel diffraction.

✓
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33-8 DIFFRACTION GRATINGS

A widely used tool for measuring the wavelength of light is the diffraction grating,
which consists of a large number of equally spaced lines or slits on a flat surface.
Such a grating can be made by cutting parallel, equally spaced grooves on a glass
or metal plate with a precision ruling machine. With a reflection grating, light is re-
flected from the ridges between the lines or grooves. Phonograph records and com-
pact disks exhibit some of the properties of reflection gratings. In a transmission
grating, the light passes through the clear gaps between the rulings. Inexpensive,
optically produced plastic gratings that have or more slits per centimeter are
common items in teaching laboratories. The spacing of the slits in a grating that has

slits per centimeter is 
Consider a plane wave of monochromatic light that is incident normally on a

transmission grating (Figure 33-37). Assume that the width of each slit is very small
so that it produces a widely diffracted beam. The interference pattern produced on
a screen a large distance from the grating is due to a large number of coherent, equally
spaced light sources. Suppose we have slits that have separation between adja-
cent slits. At the light from each slit is in phase with that from all the other slits,
so the amplitude of the wave is where is the amplitude from each slit, and
the intensity is where is the intensity due to a single slit alone. At an angle 
where the path-length difference between any two successive slits is
so again the light from each slit is in phase with that from all the other slits and the
intensity is The interference maxima are thus at angles given by

33-26

The positions of the interference maxima do not depend on the number of sources,
but the more sources there are, the sharper (narrower) and more intense the max-
ima will be.

To see that the interference maxima will be sharper when there are many slits,
consider the case of illuminated slits, where is large The distance
from the first slit to the slit is When the path-length difference
for the light from the first slit and that from the slit is the resulting intensity
will be zero because the light from any two slits separated by interferes de-
structively. (We saw this in our discussion of single-slit diffraction in Section 33-4.)
Because the first and slits are separated by approximately the intensity will
be zero at angle given by

so

The angular width of the interference maximum, which is equal to , is thus in-
versely proportional to Therefore, the greater the number of illuminated slits 
the sharper the maximum. Because the intensity in the maximum is proportional
to the intensity in the maximum multiplied by the width of the maximum is
proportional to The intensity multiplied by the width is a measure of power
per unit length in the maximum.

Figure 33-38a shows a student spectroscope that uses a diffraction grating to
analyze light. In student laboratories, the light source is typically a glass tube con-
taining atoms of a gas (for example, helium or sodium vapor) that are excited by a
bombardment of electrons accelerated by high voltage across the tube. The light
emitted by such a source contains only certain wavelengths that are characteristic
of the atoms in the source. Light from the source passes through a narrow colli-
mating slit and is made parallel by a lens. Parallel light from the lens is incident on
the grating. Instead of falling on a screen a large distance away, the parallel light
from the grating is focused by a telescope and viewed by the eye. The telescope is

NI0 .
N2I0 ,

N,N.
2umin

umin � sinumin �
l

Nd

Nd sinumin � l

umin

Nd,Nth

1
2Nd

l,Nth
(N � 1)d � Nd.Nth

(NW 1).NN

m � 0, 1, 2, Ád sinum � ml

uN2I0 .

l1,d sinu1 � l1,
u1,I0N2I0 ,

A0NA0 ,
u � 0,

dN

d � (1 cm)>10000 slits � 10�4 cm slit.10000

10000

θ
θ

θd sin

d

F I G U R E  3 3 - 3 7 Light incident normally
on a diffraction grating. At an angle the
path-length difference between rays from
adjacent slits is d sinu.

u,

Compact disks act as reflection gratings.
(Kevin R. Morris/Corbis.)

*
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mounted on a rotating platform that has been calibrated so that the angle can be
measured. In the forward direction the central maximum for all wave-
lengths is seen. If light of a particular wavelength is emitted by the source, the
first interference maximum is seen at the angle given by (Equation
33-26) with Each wavelength emitted by the source produces a separate
image of the collimating slit in the spectroscope called a spectral line. The set of
lines corresponding to is called the first-order spectrum. The second-order
spectrum corresponds to for each wavelength. Higher orders may be seen,
providing the angle given by is less than Depending on the
wavelengths, the orders may be mixed; that is, the third-order line for one wave-
length may occur at a smaller value of than does the second-order line for an-
other wavelength. If the spacing of the slits in the grating is known, the wave-
lengths emitted by the source can be determined by measuring the angles.

u

90°.d sinum � mlu

m � 2
m � 1

m � 1.
d sinum � mlu

l

(u � 0),
u

F I G U R E  3 3 - 3 8 (a) A typical student
spectroscope. Light from a collimating slit
near the source is made parallel by a lens and
falls on a grating. The diffracted light is
viewed with a telescope at an angle that can
be accurately measured. (b) Aerial view of the
very large array (VLA) radio telescope in New
Mexico. Radio signals from distant galaxies
add constructively when Equation 33-26 is
satisfied, where is the distance between two
adjacent telescopes. ((a) Clarence Bennett/
Oakland University, Rochester, Michigan.
(b) NRAO/AUI/Science Photo Library/
Photo Researchers.)

d

Example 33-10 Sodium D Lines

Sodium light is incident on a diffraction grating with 12 000 lines per centimeter. At what an-
gles will the two yellow lines (called the sodium lines) of wavelengths and

be seen in the first order?

PICTURE Apply to each wavelength, with and 

SOLVE

d � (1>12 000) cm.m � 1d sinum � ml

589.59 nm
589.00 nmD

1. The angle is given by with m � 1:d sinum � mlum sinu1 �
l

d

3. Repeat the calculation for l � 589.59 nm: 45.03°�u1 � sin�1 c589.59 � 10�9 m
(1>12 000) cm

� a100 cm
1 m

b d
CHECK The first-order intensity maximum for the longer wavelength appears at the larger
angle, as expected.

PRACTICE PROBLEM 33-4 Find the angles for the first-order intensity maxima of the two
yellow lines if the grating has lines per centimeter.15 000

2. Calculate for l � 589.00 nm:u1 44.98°�u1 � sin�1 c589.00 � 10�9 m
(1>12 000) cm

� a100 cm
1 m

b d

An important feature of a spectroscope is its ability to resolve spectral lines of
two nearly equal wavelengths and For example, the two prominent yellow
lines in the spectrum of sodium have wavelengths These
can be seen as two separate wavelengths if their interference maxima do not
overlap. According to Rayleigh’s criterion for resolution, these wavelengths are
resolved if the angular separation of their interference maxima is greater than the
angular separation between an interference maximum and the first interference
minimum on either side of it. The resolving power of a diffraction grating is de-
fined to be where is the smallest observable difference between twoƒ¢l ƒl> ƒ¢l ƒ ,

589.00 and 589.59 nm.
l2 .l1

(a) (b)
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nearby wavelengths, each approximately equal to that
may be resolved. The resolving power is proportional to the
number of slits illuminated because the more slits illumi-
nated, the sharper the interference maxima. The resolving
power can be shown to be

33-27

where is the number of illuminated slits and is the order
number (see Problem 78). We can see from Equation 33-27
that to resolve the two yellow lines in the first order 
of the sodium spectrum the resolving power must be

Thus, to resolve the two yellow sodium lines in the first order,
we need a grating containing 998 or more slits in the area
illuminated by the light.

*HOLOGRAMS

An interesting application of diffraction gratings is the pro-
duction of a three-dimensional photograph called a hologram
(Figure 33-39). In an ordinary photograph, the intensity of re-
flected light from an object is focused on a light-sensitive sur-
face. As a result, a two-dimensional image is recorded. In a
hologram, a beam from a laser is split into two beams, a refer-
ence beam and an object beam. The object beam reflects from
the object to be photographed, and the interference pattern be-
tween it and the reference beam is recorded on a transparent
film coated with a photosensitive emulsion. This can be done
because the laser beam is coherent so that the relative phase
difference between the reference beam and the object beam can
be kept constant during the exposure. The film can be used to produce a holographic
image after the emulsion is developed (chemically processed). The interference fringes
on the film act as a diffraction grating. When the developed film is illuminated with a
laser, a three-dimensional holographic image of the object is produced.

Holograms that you see on credit cards or postage stamps, called rainbow holo-
grams, are more complicated. A horizontal strip of the original hologram is used to
make a second hologram. The three-dimensional image can be seen as the viewer
moves from side to side, but if viewed using monochromatic light, the image disap-
pears when the viewer’s eyes move above or below the slit image. When viewed
using white light, the image is seen in different colors as the viewer moves in the
vertical direction.

R � 1 �
589.00 nm

589.59 nm � 589.00 nm
� 998

(m � 1)

mN

R �
l

ƒ¢l ƒ
� mN

R

l,

Laser

Beam
splitter

Reference
beam

Point of
constructive
interference

Object
being
imaged

Object beam

Exposed
photographic
plate

(b)

(a)

Virtual
image

Developed
photographic
plate (hologram)

Viewer

Focused
image

F I G U R E  3 3 - 3 9 (a) The production of a
hologram. The interference pattern produced
by the reference beam and object beam is
recorded on a photographic film. (b) When the
film is developed and illuminated by coherent
laser light, a three-dimensional image is seen.

(a) (b)

A hologram viewed
from two different
angles. Note that
different parts of the
circuit board appear
behind the front
magnifying lens. (© 1981
by Ronald R. Erickson,
Hologram by Nicklaus
Phillips, 1978, for Digital
Equipment Corporation.)
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Holograms: Guided Interference

Holography was invented by Dennis Gabor in 1948 when he tried to improve the resolution
of electron microscopy.* He reconstructed wavefronts using interference on the photographic
plate to make a picture that contained phase information as well as intensity information. He
named this type of imagery holography, after the Greek words for “whole” and “writing,”
for he felt that including the phase information gave a complete picture.†

It was extremely difficult to create those first few holograms, and they did not achieve
the desired resolution. He used mercury vapor lamps as a light source. The light was
highly monochromatic, but incoherent. (The phase of the light fluctuated randomly.) A
decade or so later, after the laser was invented, the use of coherent laser light made holog-
raphy practical for many purposes.

Embossed holograms are frequently used because they are inexpensive. Embossed holo-
grams are made by hot-stamping a metallized plastic film‡ with a die that is a negative copy
of the extremely shallow (around interference lines present in a holo-
gram.# The plastic film is then a duplicate of the very tiny interference lines in the original
hologram. When light shines through the film and reflects from the metallic backing, the
holographic image is reconstructed. Almost all embossed holograms are rainbow holograms—able to be viewed without a laser.
Creating the master of a rainbow hologram is a complex process involving multiple exposures at precise angles.°

Embossed holograms are highly visible, easy to recognize, and difficult to forge.§ Because they can take the place of paper
labels or be added to paper or plastic, they are used on credit cards, pharmaceutical packaging, currency, and traveler’s checks
as a quick method for authentication.¶,**

In January 1999, the Ford Motor Company used a series of digital holograms to create a 10 foot by 4 foot hologram of a concept
car. The holograms were printed directly from computer design data.†† Digital holography is now used to help physicians visu-
alize the results of either computed tomography scans or magnetic resonance scans.‡‡ The output from a series of MR or CT slices
is collected, digitally processed, and then printed onto a single hologram, which can be viewed on a portable viewer. The re-
sulting hologram allows surgeons to prepare for difficult surgeries## and may also have biomedical and industrial engineering
applications.°° Digital holography is beginning to be used in holographic video applications.§§

Holograms have also been used as substitutes for traditional lenses. Holographic optical elements allow smaller and more
compact displays to be built. Heads-up displays for airplane pilots are created using holographic optical elements.¶¶ An ex-
tremely compact system that uses digitally calculated holograms as the optical element has been tested for use as a cell-phone
based projector.*** The use of holograms as optical elements and in optical data storage depends on advances in materials that
are lightweight, tough, and have the desired optical properties.†††

Recently, holograms have been used to measure the electrostatic potential‡‡‡ and magnetic fields### of very small objects. They
have also been used to create higher resolution optics for X-ray lenses.°°° More than fifty years after holograms were invented,
they are used to improve the resolution of microscopic images.

* Gabor, D., “Nobel Lecture.” Nobel Prize Lectures, 1971, Dec. 11, 1971, at http://nobelprize.org/nobel_prizes/physics/laureates/1971/gabor-lecture.pdf As of Nov. 2006.
† Scanlon, L., “The Whole Picture.” Technology Review, Dec. 2002/Jan. 2003, Vol. 105, No. 10, p. 88.
‡ Ruschmann, H. W., “Apparatus for Embossing Holograms on Metallized Thermoplastic Films.” United States Patent 4,547,141, Oct. 15, 1985.
# Abraham, N. C., “Optical Data Storage Disc.” United States Patent 5,452,282, Sept. 19, 1995.
° Benton, S., Houde-Walter, W., and Mingace, Jr., H., “Methods of Making Holographic Images.” United States Patent 4,415,225., Nov. 15, 1983.
§ Cross, L., “Brand Security.” Graphic Arts Monthly, Jan. 2006, Vol. 78, No. 1, pp. 32–33.
¶ “MasterCard Renews Hologram Contract.” American Banker, Mar. 3, 2003, Vol. 168, No. 44, p. 18.
** Miller, H. I., “Fear and Pharmaceutical Failure.” The Washington Times, Oct. 5, 2006, p. A16.
†† Mahoney, D. P., “Ford Drives Holography Development.” Computer Graphics World, Feb. 1999, Vol. 22, No. 2, pp. 12–13.
‡‡ Samudhram, A., “Digital Holography Opens New Frontiers.” New Straits Times (Malaysia), Nov. 23, 2000, p. 2W.
## Penrod, S., “3D Imaging Assisting Surgeons in Separation Surgery.” Local News, KSL, Salt Lake City, Aug. 7, 2006. At http://www.ksl.com/?nid�148&sid�408002 As of Dec. 2006.
°° Liu, C., Yan, C., and Gao, S., “Digital Holographic Method for Tomography Reconstruction.” Applied Physics Letters, Feb. 9, 2004, Vol. 84, No. 6, pp. 1010–1012.
§§ Freedman, D. H., “Holograms in Motion.” Technology Review, Nov. 2002, Vol. 105, No. 9, pp. 48–55.
¶¶ Stevens, T., “Holograms: More than Pretty Pictures.” Industry Week, Oct. 4, 1993, Vol. 242, No. 19, pp. 34–46.
*** Buckley, E., “Miniature Projectors Based on LBO Technology.” SID Mobile Displays Conference, San Diego: Oct. 3–5. 2006. At http://www.lightblueoptics.com/images/news/

SID_Mobile_Displays_2006.pdf As of Nov. 2006.
††† Huang, G. T., “Holographic Memory.” Technology Review, Sept. 2005, Vol. 108, No. 9, pp. 64–67.
‡‡‡ Chou, L.-J., Chang, M.-T., and Chueh, Y.-L., “Electron Holography for Improved Measurement of Microfields in Nanoelectrode Assemblies.” Applied Physics Letters, Jul. 10, 2006,

Vol. 89, No. 2, Letter 023112, 3 pp.
### Nepijko, S., and Wiesendanger, R., “Studies of Magnetic Properties of Small Particles by Electron Holography.” Applied Physics A, Materials Science and Processing, 1997, Vol. 65,

No. 4/5, pp. 361–366.
°°° “Solak, H. H., David, C., and Gobrecht, J., “Fabrication of High-Resolution Zone Plates with Wideband Extreme-Ultraviolet Holography.” Applied Physics Letters, Oct. 4, 2004, Vol. 85,

No. 14, pp. 2700–2702.

0.3–0.5 micron deep)
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The machine is using heat to
emboss holograms on plastic cards
(perhaps credit cards). Such
holograms serve as both a security
feature and aesthetic enrichment.
(Pascal Goetgheluck/Photo Researchers.)

http://www.ksl.com/?nid=148&sid=408002
http://www.lightblueoptics.com/images/news/SID_Mobile_Displays_2006.pdf
http://www.lightblueoptics.com/images/news/SID_Mobile_Displays_2006.pdf
http://nobelprize.org/nobel_prizes/physics/laureates/1971/gabor-lecture.pdf
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Interference Two superposing light waves interfere if their phase difference remains constant for a time
long enough to observe. They interfere constructively if their phase difference is zero or an in-
teger multiplied by They interfere destructively if their phase difference is or an odd
integer multiplied by 

Phase difference due to 33-1
a path-length difference

Phase difference due to reflection A phase difference of is introduced when a light wave is reflected from a boundary between
two media for which the wave speed is greater on the incident-wave side of the boundary.

Thin films The interference of light waves reflected from the front and back surfaces of a thin film
produces interference fringes, commonly observed in soap films or oil films. The difference in
phase between the two reflected waves results from the path-length difference of twice the
thickness of the film plus any phase change due to reflection of one or both of the rays.

Two slits The path-length difference at an angle on a screen far away from two narrow slits separated
by a distance is If the intensity due to each slit separately is the intensity at points
of constructive interference is and the intensity at points of destructive interference is zero.

Two slit interference maxima 33-2
(sources in phase)

Two slit interference maxima 33-3
(sources out of phase)

2. Diffraction Diffraction occurs whenever a portion of a wavefront is limited by an obstacle or an aperture. The
intensity of light at any point in space can be computed using Huygens’s construction by taking
each point on the wavefront to be a point source and computing the resulting interference pattern.

Fraunhofer patterns Fraunhofer patterns are observed at great distances from the obstacle or aperture so that the rays
reaching any point are approximately parallel, or they can be observed using a lens to focus par-
allel rays on a viewing screen placed in the focal plane of the lens.

Fresnel patterns Fresnel patterns are observed at points not necessarily far from the source.

Single slit When light is incident on a single slit of width the intensity pattern on a screen far away
shows a broad central diffraction maximum that decreases to zero at an angle given by

33-9

The width of the central maximum is inversely proportional to the width of the slit. The zeros
in the single-slit diffraction pattern occur at angles given by

33-11

The maxima on either side of the central maximum have intensities that are much smaller than
the intensity of the central maximum.

Two slits The interference-diffraction pattern of two slits is the two-slit interference pattern modulated by
the single-slit diffraction pattern.

Resolution of two sources When light from two point sources that are close together passes through an aperture, the dif-
fraction patterns of the sources may overlap. If the overlap is too great, the two sources cannot
be resolved as two separate sources. When the central diffraction maximum of one source falls
at the diffraction minimum of the other source, the two sources are said to be just resolved by
Rayleigh’s criterion for resolution. For a circular aperture of diameter the critical angular sep-
aration of two sources for resolution by Rayleigh’s criterion is given by

Rayleigh’s criterion 33-25ac � 1.22
l

D
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*Gratings A diffraction grating consisting of a large number of equally spaced lines or slits is used to
measure the wavelength of light emitted by a source. The positions of the -order inter-
ference maxima from a grating are at angles given by

33-26

The resolving power of a grating is

33-27

where is the number of slits of the grating that are illuminated and is the order number.

3. *Phasors Two or more harmonic waves can be added by representing each wave as the component
of a two-dimensional vector called a phasor. The phase difference between two harmonic
waves is represented as the angle between the phasors.

y

mN

R �
l

ƒ¢l ƒ
� mN

d sinum � ml  m � 0, 1, 2, Á

mth

Answers to Concept Checks

33-1 6
33-2 True. Fresnel diffraction is the name that describes the

observations when the observing screen is any distance
from the source of the diffraction. Fraunhofer
diffraction is the name that describes the observations
in the limit that the observing screen is far from the
source of the diffraction.

Answers to Practice Problems

33-1

33-2

33-3

33-4 and 62.18°62.07°

A � 5.0 V>m, d � 37°

4.4 mm

9.2 cm�1

Problems

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

CONCEPTUAL PROBLEMS

1 • A phase difference due to a path-length difference is
observed for monochromatic visible light. Which phase difference
requires the least (minimum) path-length difference? (a) (b)
(c) (d) The answer depends on the wavelength of the light.

2 • Which of the following pairs of light sources are coher-
ent: (a) two candles, (b) one point source and its image in a plane
mirror, (c) two pinholes uniformly illuminated by the same point
source, (d) two headlights of a car, (e) two images of a point source
due to reflection from the front and back surfaces of a soap film?

3 • The spacing between Newton’s rings decreases rapi-
dly as the diameter of the rings increases. Explain why this re-
sult occurs.

4 • If the angle of a wedge-shaped air film such as the
angle in Example 33-2 is too large, fringes are not observed. Why?

5 • Why must a film that is used to observe interference
colors be thin?
6 • A loop of wire is dipped in soapy water and held up so
that the soap film is vertical. (a) Viewed by reflection using white

SSM

270°,
180°,90°,

light, the top of the film appears black. Explain why. (b) Below the
black region are colored bands. Is the first band red or violet?

7 • A two-slit interference pattern is formed using
monochromatic laser light that has a wavelength of 
At the second maximum from the central maximum, what is the
path-length difference between the light coming from each of
the slits? (a) (b) (c) (d)

8 • A two-slit interference pattern is formed using mono-
chromatic laser light that has a wavelength of At the first
minimum from the central maximum, what is the path-length
difference between the light coming from each of the slits?
(a) (b) (c) (d)

9 • A two-slit interference pattern is formed using monochro-
matic laser light that has a wavelength of What happens to
the distance between the first maximum and the central maximum as
the two slits are moved closer together? (a) The distance increases.
(b) The distance decreases. (c) The distance remains the same.

10 • A two-slit interference pattern is formed using two
different monochromatic lasers, one green and one red. Which color
light has its first maximum closer to the central maximum?
(a) green, (b) red, (c) Both maxima are at the same location.

450 nm.

1280 nm960 nm,320 nm,640 nm,

640 nm.

SSM1280 nm960 nm,320 nm,640 nm,

640 nm.

TOPIC RELEVANT EQUATIONS AND REMARKS
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11 • A single-slit diffraction pattern is formed using mono-
chromatic laser light that has a wavelength of What
happens to the distance between the first maximum and the central
maximum as the slit is made narrower? (a) The distance increases.
(b) The distance decreases. (c) The distance remains the same.
12 • Equation 33-2, which is and Equation 
33-11, which is are sometimes confused. For each
equation, define the symbols and explain the equation’s application.
13 • When a diffraction grating is illuminated by white light,
the first-order maximum of green light (a) is closer to the central
maximum than the first-order maximum of red light, (b) is closer
to the central maximum than the first-order maximum of blue light,
(c) overlaps the second-order maximum of red light, (d) overlaps
the second-order maximum of blue light.
14 • A double-slit interference experiment is set up in a cham-
ber that can be evacuated. Using light from a helium–neon laser, an
interference pattern is observed when the chamber is open to air.
As the chamber is evacuated, one will note that (a) the interference
fringes remain fixed, (b) the interference fringes move closer toge-
ther, (c) the interference fringes move farther apart, (d) the interfer-
ence fringes disappear completely.
15 • True or false:
(a) When waves interfere destructively, the energy is converted

into heat.
(b) Interference patterns are observed only if the relative phases of

the waves that superpose remain constant.
(c) In the Fraunhofer diffraction pattern for a single slit, the nar-

rower the slit, the wider the central maximum of the diffraction
pattern.

(d) A circular aperture can produce both a Fraunhofer diffraction
pattern and a Fresnel diffraction pattern.

(e) The ability to resolve two point sources depends on the wave-
length of the light.

16 • You observe two very closely spaced sources of white
light through a circular opening using various filters. Which color
filter is most likely to prevent your resolving the images on your
retinas as coming from two distinct sources? (a) red, (b) yellow,
(c) green, (d) blue, (e) The filter choice is irrelevant.
17 •• Explain why the ability to distinguish the two headlights
of an oncoming car at a given distance is easier for a human eye at
night than during the daytime. Assume the headlights of the on-
coming car are on both during both daytime and nighttime hours.

ESTIMATION AND APPROXIMATION

18 • It is claimed that the Great Wall of China is the only
human-made object that can be seen from space using no equip-
ment. Check to see if this claim is true, based on the resolving
power of the human eye. Assume the observers are in a low-Earth
orbit that has an altitude of about 
19 •• (a) Estimate how close an approaching car at night on a
flat, straight part of a highway must be before its headlights can be
distinguished from the single headlight of a motorcycle. (b) Esti-
mate how far ahead of you a car is if its two red taillights merge to
look as if they were one.
20 •• A small loudspeaker is located at a large distance to the
east from you. The loudspeaker is driven by a sinusoidal current
whose frequency can be varied. Estimate the lowest frequency for
which one of your ears would receive the sound waves exactly out of
phase with that received by your other ear when you are facing north.
21 •• Estimate the maximum distance at which a binary star
system could be resolvable by the human eye. Assume the two stars
are about fifty times farther apart than Earth and the Sun are.
Neglect any atmospheric effects. (A test similar to this “eye test”
was used in ancient Rome to test for eyesight acuity before entering

SSM

250 km.

SSM

a sinum � ml,
d sinum � ml,

450 nm.
the army. A person who had normal eyesight could just barely re-
solve two well-known stars that appear close in the sky. Anyone
who could not tell there were two stars failed the test.)

PHASE DIFFERENCE AND
COHERENCE

22 • Light that has a wavelength of is incident
normally on a film of water thick. (a) What is the wave-
length of the light in the water? (b) How many wavelengths are
contained in the distance where is the thickness of the film?
(c) The film has air on both sides. What is the phase difference
between the wave reflected from the front surface and the wave re-
flected from the back surface in the region where the two reflected
waves superpose?
23 •• Two coherent microwave sources both produce waves
that each have a wavelength equal to The sources are
located in the plane, one at and the other
at If the sources are in phase, find the dif-
ference in phase between the two waves for a receiver located at
the origin.

INTERFERENCE IN THIN FILMS

24 • A wedge-shaped film of air is made by placing a small slip
of paper between the edges of two flat plates of glass. Light that has
a wavelength of is incident normally on the glass plates, and
interference fringes are observed by reflection. (a) Is the first fringe
near the point of contact of the plates dark or bright? Why? (b) If there
are five dark fringes per centimeter, what is the angle of the wedge?

25 •• The diameters of fine fibers can be accurately
measured using interference patterns. Two optically flat pieces
of glass that each have a length are arranged with the fiber
between them, as shown in Figure 33-40. The setup is illumi-
nated by monochromatic light, and the resulting interference
fringes are observed. Suppose that is and that yellow
sodium light is used for illumination. If 19 bright
fringes are seen along this distance, what are the limits
on the diameter of the fiber? Hint: The nineteenth fringe might not
be right at the end, but you do not see a twentieth fringe at all.
26 •• Light that has a wavelength equal to is used
to illuminate two glass plates at normal incidence. The plates are

in length, touch at one end, and are separated at the other
end by a wire that has a radius equal to How many
bright fringes appear along the total length of the plates? 
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27 •• A thin film having an index of refraction of 1.50 is sur-
rounded by air. It is illuminated normally by white light. Analysis of
the reflected light shows that the wavelengths 
are the only missing wavelengths in or near the visible portion of the
spectrum. That is, for those wavelengths, there is destructive inter-
ference. (a) What is the thickness of the film? (b) What visible wave-
lengths are brightest in the reflected interference pattern? (c) If this
film were resting on glass that has an index of refraction of 1.60,
what wavelengths in the visible spectrum would be missing from
the reflected light?
28 •• A drop of oil (refractive index of 1.22) floats on water
(refractive index of 1.33). When reflected light is observed from
above, as shown in Figure 33-41, what is the thickness of the drop at

360, 450, and 602 nm



35 • Using a conventional two-slit apparatus and light that
has a wavelength, 28 bright fringes per centimeter are
observed near the center of a screen away. What is the slit
separation?

36 • Light that has a wavelength and is from a
helium–neon laser is shone normal to a plane having two slits. The
first interference maximum is from the central maximum on
a screen away. (a) Find the separation of the slits. (b) How
many interference maxima is it, in principle, possible to observe? 

37 •• Two narrow slits are separated by a distance Their in-
terference pattern is to be observed on a screen a large distance 
away. (a) Calculate the spacing between successive maxima near
the center fringe for light that has a wavelength, when is

and is (b) Would you expect to be able to observe
the interference of light on the screen for this situation? (c) How
close together should the slits be placed for the maxima to be sepa-
rated by for this wavelength and screen distance?

38 •• Light is incident at an angle with the normal to a
vertical plane that has two slits of separation (Figure 33-43). Show
that the interference maxima are located at
angles given by 

39 •• White light falls at an angle of
to the normal of a plane that has a

pair of slits separated by What
visible wavelengths give a bright inter-
ference maximum in the transmitted light
in the direction normal to the plane?
(See Problem 38.)

40 •• Two small loudspeakers are
separated by a distance of as
shown in Figure 33-44. The speakers are
driven in phase with a sine wave signal of
frequency A small microphone is
placed a distance away from the
speakers on the axis running through the
middle of the two speakers, and the micro-
phone is then moved perpendicular to the
axis. Where does the microphone record
the first minimum and the first maximum
of the interference pattern from the speak-
ers? The speed of sound in air is 

DIFFRACTION PATTERN
OF A SINGLE SLIT

41 • Light that has a wavelength is incident on a long
narrow slit. Find the angle of the first diffraction minimum if the
width of the slit is (a) (b) and (c)

42 • Plane microwaves are incident on a thin metal sheet that
has a long, narrow slit of width in it. The microwave radia-
tion strikes the sheet at normal incidence. The first diffraction
minimum is observed at What is the wavelength of the
microwaves?

43 ••• Measuring the distance to the moon (lunar ranging) is
routinely done by firing short-pulse lasers and measuring the time
it takes for the pulses to reflect back from the moon. A pulse is fired
from Earth. To send the pulse out, the pulse is expanded so that it
fills the aperture of a telescope. Assuming the only
thing spreading the beam out is diffraction and that the light wave-
length is how large will the beam be when it reaches the
moon, away? SSM3.82 � 105 km
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the point where the second red
fringe, counting from the edge
of the drop, is observed?
Assume red light has a wave-
length of 
29 •• A film of oil that has
an index of refraction of 1.45
rests on an optically flat piece
of glass that has an index of re-
fraction of 1.60. When illumi-
nated by white light at normal
incidence, light of wavelengths

and is predom-
inant in the reflected light.
Determine the thickness of the oil film.
30 •• A film of oil that has an index of refraction equal to 1.45
floats on water. When illuminated by white light at normal inci-
dence, light of wavelengths and is predominant in
the reflected light. Determine the thickness of the oil film.

NEWTON’S RINGS

31 •• A Newton’s ring apparatus consists of a plano-convex
glass lens that has a radius of curvature and rests on a flat glass
plate, as shown in Figure 33-42. The thin film is air of variable
thickness. The apparatus is illuminated from above by light from
a sodium lamp that has a wavelength equal to The pat-
tern is viewed by reflected light. (a) Show that for a thickness 
the condition for a bright (constructive) interference ring is

where (b) Show that for 
the radius of a fringe is related to by (c) For a radius
of curvature of and a lens diameter of how many
bright fringes would you see in the reflected light? (d) What would
be the diameter of the sixth bright fringe? (e) If the glass used in the
apparatus has an index of refraction and water replaces
the air between the two pieces of glass, explain qualitatively the
changes that will take place in the bright-fringe pattern.
32 •• A plano-convex glass lens of radius of curvature

rests on an optically flat glass plate. The arrangement is
illuminated from above using monochromatic light that has a

wavelength. The indices of refraction of the lens and
plate are 1.60. Determine the radii of the first and second bright
fringe from the center in the reflected light.
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Problems 38 and 39

33 ••• Suppose that before the lens of Problem 32 is placed on
the plate, a film of oil that has a refractive index equal to 1.82 is de-
posited on the plate. What will then be the radii of the first and sec-
ond bright fringes?

TWO-SLIT INTERFERENCE PATTERNS

34 • Two narrow slits separated by are illuminated by
light that has a wavelength, and the interference pattern is
viewed on a screen away. Calculate the number of bright
fringes per centimeter on the screen in the region near the center fringe.
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INTERFERENCE–DIFFRACTION
PATTERN OF TWO SLITS

44 • How many interference maxima will be contained in the
central diffraction maximum in the interference–diffraction pattern
of two slits if the separation of the slits is exactly 5 times their
width? How many will there be if the slit separation is an integral
multiple of the slit width (that is, for any value of 

45 •• A two-slit Fraunhofer interference–diffraction pattern
is observed using light that has a wavelength equal to 
The slits have a separation of and an unknown width.
(a) Find the width if the fifth interference maximum is at the
same angle as the first diffraction minimum. (b) For that case,
how many bright interference fringes will be seen in the central
diffraction maximum?
46 •• A two-slit Fraunhofer interference–diffraction pattern
is observed using light that has a wavelength equal to 
The slits have widths of and are separated by

How many bright fringes will be seen in the central
diffraction maximum? 

47 •• Suppose that the central diffraction maximum for two
slits has 17 interference fringes for some wavelength of light. How
many interference fringes would you expect in the diffraction max-
imum adjacent to one side of the central diffraction maximum?
48 •• Light that has a wavelength equal to illuminates
two slits that both have widths equal to and separations
equal to (a) How many interference maxima fall within
the full width of the central diffraction maximum? (b) What is the
ratio of the intensity of the third interference maximum to one side
of the center interference maximum to the intensity of the center in-
terference maximum?

*USING PHASORS 
TO ADD HARMONIC WAVES

49 • Find the resultant of the two waves whose electric
fields at a given location vary with time as follows:

and
50 • Find the resultant of the two waves whose electric
fields at a given location vary with time as follows:

and

51 •• Monochromatic light is incident on a sheet with a long
narrow slit (Figure 33-45). Let be the intensity at the central maxi-
mum of the diffraction pattern on a distant screen, and let I be the in-
tensity at the second intensity maximum from the central intensity
maximum. The distance from this second intensity maximum to the
far edge of the slit is longer than the distance from the second inten-
sity maximum to the near edge of the slit by approximately 2.5 wave-
lengths. What is the ratio of to I0?I
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52 •• Monochromatic light is incident on a sheet that has three
long narrow parallel equally spaced slits a distance apart. (a) Show
that the positions of the interference minima on a screen a large dis-
tance away from the sheet that has the three equally spaced slits
(spacing with are given approximately by 
where that is, is not a multiple of 3.
(b) For a screen distance of a light wavelength of 
and a source spacing of calculate the width of the prin-
cipal interference maxima (the distance between successive min-
ima) for three sources.

53 •• Monochromatic light is incident on a sheet that has four
long narrow parallel equally spaced slits a distance apart. (a) Show
that the positions of the interference minima on a screen a large dis-
tance away from the sheet that has the four equally spaced slits
(spacing with are given approximately by 
where that is, is not a multiple of 4.
(b) For a screen distance of a light wavelength of 
and a source spacing of calculate the width of the princi-
pal interference maxima (the distance between successive minima)
for four sources. Compare the width with that for two sources with
the same spacing.

54 •• Light that has a wavelength equal to falls nor-
mally on four slits. Each slit is wide and the center-to-center
separation between it and the next slit is (a) Find the angu-
lar width of the central intensity maximum of the single-slit diffrac-
tion pattern on a distant screen. (b) Find the angular position of all
interference intensity maxima that lie inside the central diffraction
maximum. (c) Find the angular width of the central interference
maximum. That is, find the angle between the first interference in-
tensity minima on either side of the central interference maximum.
(d) Sketch the relative intensity as a function of the sine of the angle.

55 ••• Three slits, each separated from its neighbor by 
are illuminated at the central intensity maximum by a coherent
light source that has a wavelength equal to The slits are ex-
tremely narrow. A screen is located from the slits. The inten-
sity is Consider a location from the central
maximum. (a) Draw a phasor diagram suitable for the addition of
the three harmonic waves at that location. (b) From the phasor dia-
gram, calculate the intensity of light at that location.

56 ••• In single-slit Fraunhofer diffraction, the intensity pattern
(Figure 33-11) consists of a broad central maximum with a sequence
of secondary maxima to either side of the central maximum. The 

intensity is given by where is the phase difference

between the wavelets arriving from the opposite edges of the slits.
Calculate the values of for the first three seconday maxima to one
side of the central maximum by finding the values of for which

is equal to zero. Check your results by comparing your an-
swers with approximate values for of and . (That these
values for are approximatly correct at the secondary intensity
maxima is discussed in the discussion surrounding Figure 33-27.)

DIFFRACTION AND RESOLUTION

57 • Light that has a wavelength equal to is inci-
dent on a pinhole of diameter (a) What is the angle
between the central maximum and the first diffraction mini-
mum for a Fraunhofer diffraction pattern? (b) What is the dis-
tance between the central maximum and the first diffraction
minimum on a screen away?

58 • Two sources of light that both have wavelengths equal
to are away from the pinhole of Problem 57.
How far apart must the sources be for their diffraction patterns
to be resolved by Rayleigh’s criterion? 

10.0 m700 nm

SSM8.00 m

0.100 mm.
700 nm

f

7p5p3p,f

dI>df f

f

fI � I0 a sin 1
2f

1
2f
b 2

,

SSM

1.72 cm50.0 mW>m2.
2.50 m

550 nm.

60.0 mm,

6.00 mm.
2.00 mm

480 nm

SSM

0.100 mm,
600 nm,2.00 m,

mm � 1, 2, 3, 5, 6, 7, 9, 10, Á ,
ym � mlL>4d,dW l)d,

L

d

0.100 mm,
500 nm,1.00 m,

mm � 1, 2, 4, 5, 7, 8, 10, Á ,
ym � mlL>3d,dW l)d,

L

d

5
2l

F I G U R E  3 3 - 4 5

Problem 51



Problems | 1171

59 • Two sources of light that both have wavelengths equal to
are separated by a horizontal distance They are 

from a vertical slit of width What is the smallest value of
for which the diffraction pattern of the sources can be resolved by

Rayleigh’s criterion?
60 •• The ceiling of your lecture hall is probably covered with
acoustic tile, which has small holes separated by about 
(a) Using light that has a wavelength of how far could you
be from this tile and still resolve the holes? Assume the diameter of
the pupil of each of your eyes is about (b) Could you resolve
the holes better using red light or violet light? Explain your answer.
61 •• The telescope on Mount Palomar has a diameter of

Suppose a double star were 4.00 light-years away. Under
ideal conditions, what must be the minimum separation of the two
stars for their images to be resolved using light that has a wave-
length equal to 
62 •• The star Mizar in Ursa Major is a binary system of stars
that have nearly equal magnitudes. The angular separation be-
tween the two stars is 14 seconds of arc. What is the minimum di-
ameter of the pupil that allows resolution of the two stars using
light that has a wavelength equal to 

*DIFFRACTION GRATINGS

63 • A diffraction grating that has 2000 slits per centimeter
is used to measure the wavelengths emitted by hydrogen gas.
(a) At what angles in the first-order spectrum would you expect
to find the two violet lines that have wavelengths of and

(b) What are the angles if the grating has per
centimeter?
64 • Using a diffraction grating that has 2000 slits per cen-
timeter, two lines in the first-order hydrogen spectrum are found
at angles of and What are the
wavelengths of the lines?

65 • The colors of many butterfly wings and beetle carapaces
are due to the effects of diffraction. The Morpho butterfly has
structural elements on its wings that effectively act as a diffraction
grating that has an spacing. At what angle will the first
diffraction maximum occur for normally incident light diffracted
by the butterfly’s wings? Assume the light is blue and has a wave-
length of 
66 •• A diffraction grating that has 2000 slits per centimeter is
used to analyze the spectrum of mercury. (a) Find the angular sep-
aration in the first-order spectrum of the two lines that have wave-
lengths equal to and (b) How wide must the beam
on the grating be for the lines to be resolved?
67 •• A diffraction grating that has 4800 lines per centimeter is
illuminated at normal incidence using white light (wavelength
range of to How many orders of complete spectra
can one observe in the transmitted light? Do any of these orders
overlap? If so, describe the overlapping regions.
68 •• A square diffraction grating that has an area of 
has a resolution of in the fourth order. At what angle should
you look to see a wavelength of in the fourth order?
69 •• Sodium light that has a wavelength equal to falls
normally on a diffraction grating ruled with 4000 lines
per centimeter. The Fraunhofer diffraction pattern is projected onto a
screen a distance of from the grating by a focal-length
lens that is placed immediately in front of the grating. Find (a) the dis-
tances of the first and second order intensity maxima from the central
intensity maximum, (b) the width of the central maximum, and (c) the
resolution in the first order. (Assume the entire grating is illuminated.)
70 •• The spectrum of neon is exceptionally rich in the visible
region. Among the many lines are two lines at wavelengths of

and If light from a neon discharge tube is519.322 nm.519.313 nm
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normally incident on a transmission grating that has 8400 lines per
centimeter and the spectrum is observed in second order, what must
be the width of the grating that is illuminated, so that the two lines
can be resolved?
71 •• Mercury has several stable isotopes, among them 
and The strong spectral line of mercury, at about is
a composite of spectral lines from the various mercury isotopes. The
wavelengths of the line for and are and

respectively. What must be the resolving power of a
grating capable of resolving the two isotopic lines in the third-order
spectrum? If the grating is illuminated over a region,
what must be the number of lines per centimeter of the grating?
72 ••• A diffraction grating has lines per unit length. Show
that the angular separation of two lines of wavelengths and

is approximately where is the
order number.
73 ••• For a diffraction grating in which all the surfaces are
normal to the incident radiation, most of the energy goes into the
zeroth order, which is useless from a spectroscopic point of view,
because in zeroth order all the wavelengths are at Therefore,
modern reflection gratings have shaped, or blazed, grooves, as
shown in Figure 33-46. This shifts the specular reflection, which
contains most of the energy, from the zeroth order to some higher
order. (a) Calculate the blaze angle in terms of the groove separa-
tion the wavelength and the order number in which specu-
lar reflection is to occur for (b) Calculate the proper
blaze angle for the specular reflection to occur in the second order
for light of wavelength incident on a grating with 
lines per centimeter. SSM
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74 ••• In this problem, you will derive the relation 
(Equation 33-27) for the resolving power of a diffraction grating

having slits separated by a distance To do this, you will calcu-
late the angular separation between the intensity maximum and
intensity minimum for some wavelength and set it equal to the an-
gular separation of the maximum for two nearby wave-
lengths. (a) First show that the phase difference waves between 

the waves from two adjacent slits is given by 

(b) Next, differentiate that expression to show that a small change
in angle results in a change in phase of given by 

(c) Then for slits, the angular separation 

between an interference maximum and an interference minimum
corresponds to a phase change of Use that to show
that the angular separation between the intensity maximum
and intensity minimum for some wavelength is given by

(d) Next, use the fact that the angle of the 

interference maximum for wavelength is specified by
(Equation 33-26). Compute the differential of each side

of the equation to show that angular separation of the mth-order
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84 •• A mica sheet that is thick is suspended in air. In
reflected light, there are gaps in the visible spectrum at 421, 474,
542, and 633 nm. Find the index of refraction of the mica sheet.
85 •• A camera lens is made of glass that has an index of
refraction of 1.60. This lens is coated with a magnesium fluoride
film (index of refraction equal to 1.38) to enhance its light transmis-
sion. The purpose of this film is to produce zero reflection for light
that has a wavelength of Treat the lens surface as a flat
plane and the film as a uniformly thick flat film. (a) What minimum
thickness of this film will accomplish its objective? (b) Would there
be destructive interference for any other visible wavelengths? (c) By
what factor would the reflection for light of wavelength be
reduced by the presence of this film? Neglect the variation in the re-
flected light amplitudes from the two surfaces.
86 •• In a pinhole camera, the image is fuzzy because of geome-
try (rays arrive at the film after passing through different parts of the
pinhole) and because of diffraction. As the pinhole is made smaller,
the fuzziness due to geometry is reduced, but the fuzziness due to
diffraction is increased. The optimum size of the pinhole for the
sharpest possible image occurs when the spread due to diffraction
equals the spread due to the geometric effects of the pinhole. Estimate
the optimum size of the pinhole if the distance from the pinhole to the
film is and the wavelength of the light is 
87 •• The Impressionist painter Georges Seurat used a tech-
nique called pointillism, in which his paintings are composed of
small, closely spaced dots of pure color, each about in di-
ameter. The illusion of the colors blending together smoothly is pro-
duced in the eyes of the viewer by diffraction effects. Calculate the
minimum viewing distance for this effect to work properly. Use the
wavelength of visible light that requires the greatest distance be-
tween dots, so that you are sure the effect will work for all visible
wavelengths. Assume the pupil of the eye has a diameter of
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550 nm.10.0 cm

SSM

400 nm

540 nm.

1.20 mm

1172 | C H A P T E R  3 3 Interference and Diffraction

maximum for two nearly equal wavelengths differing by

is given by (e) According to Rayleigh’s criterion,

two wavelengths will be resolved in the order if the angular
separation of the wavelengths, given by the Part (d) result, equals the
angular separation of the interference maximum and the interference
minimum given by the Part (c) result. Use this to arrive at 

(Equation 33-27) for the resolving power of a grating.

GENERAL PROBLEMS

75 • Naturally occuring coronas (brightly colored rings)
are sometimes seen around the moon or the Sun when viewed
through a thin cloud. (Warning: When viewing a Sun corona, be
sure that the entire Sun is blocked by the edge of a building, a
tree, or a traffic pole to safeguard your eyes.) These coronas are
due to diffraction of light by small water droplets in the cloud.
A typical angular diameter for a coronal ring is about From
this, estimate the size of the water droplets in the cloud. Assume
that the water droplets can be modeled as opaque disks that
have the same radius as the droplet, and that the Fraunhofer dif-
fraction pattern from an opaque disk is the same as the pattern
from an aperture of the same diameter. (This last statement is
known as Babinet’s principle.)
76 • An artificial corona (see Problem 75) can be made by
placing a suspension of polystyrene microspheres in water.
Polystyrene microspheres are small, uniform spheres that are
made of plastic and have indices of refraction equal to 1.59.
Assuming that the water has an index of refraction equal to 1.33,
what is the angular diameter of such an artificial corona if

particles are illuminated by light from a 
helium–neon laser that has a wavelength in air of 

77 • Coronas (see Problem 75) can be caused by pollen grains,
typically of birch or pine. Such grains are irregular in shape, but
they can be treated as if they had an average diameter of about

What is the angular diameter (in degrees) of the corona for
blue light? What is the angular diameter (in degrees) of the corona
for red light?
78 • Light from a He–Ne laser is directed upon a
human hair, in an attempt to measure its diameter by examining the
diffraction pattern. The hair is mounted in a frame from a
wall, and the central diffraction maximum is measured to be

wide. What is the diameter of the hair? (The diffraction
pattern of a hair that has a diameter is the same as the diffraction
pattern of a single slit that has a width See Babinet’s princi-
ple discussed in Problem 75.)
79 • A long, narrow horizontal slit lies above a plane
mirror, which is in the horizontal plane. The interference pattern
produced by the slit and its image is viewed on a screen 
from the slit. The wavelength of the light is (a) Find the dis-
tance from the mirror to the first maximum. (b) How many dark
bands per centimeter are seen on the screen?
80 • A radio telescope is situated at the edge of a lake. The
telescope is looking at light from a radio galaxy that is just rising
over the horizon. If the height of the antenna is above the sur-
face of the lake, at what angle above the horizon will the radio
galaxy be when the telescope is centered in the first intensity inter-
ference maximum of the radio waves? Assume the wavelength of
the radio waves is Hint: The interference is caused by the light
reflecting off the lake and remember that this reflection will result in a

phase shift.
81 • The diameter of the radio telescope at Arecibo, Puerto
Rico, is What is the smallest angular separation of two objects
that this telescope can detect when it is tuned to detect microwaves
of wavelength?3.2-cm

300 m.

180°

20 cm.

20 m

SSM

600 nm.
1.00 m

1.00 mm

a � d.
d

14.6 cm

7.5 m

(632.8 nm)

25 mm.

632.8 nm?
5.00-mm-diameter

SSM

10°.

l> ƒ¢l ƒ � mN
R �

mth

du �
m dl
d cosu

.dl

82 •• A thin layer of a transparent material that has an index
of refraction of 1.30 is used as a nonreflective coating on the surface
of glass that has an index of refraction of 1.50. What should the min-
imum thickness of the material be for the material to be nonreflecting
for light that has a wavelength of 
83 •• A Fabry–Perot interferometer (Figure 33-47) consists of two
parallel, half-silvered mirrors that face each other and are separated by
a small distance A half-silvered mirror is one that transmits of
the incident intensity and reflects of the incident intensity. Show
that when light is incident on the interferometer at an angle of inci-
dence the transmitted light will have maximum intensity when

SSM2a � ml cosu.
u,

50%
50%a.

600 nm?

a

Half-silvered
surfaces

Transparent
plates

θ
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ELECTRON INTERFERENCE PATTERN
PRODUCED BY ELECTRONS INCIDENT
ON A BARRIER CONTAINING TWO SLITS:
(A) 10 ELECTRONS, (B) 100 ELECTRONS,
(C) 3000 ELECTRONS, AND (D) 70,000
ELECTRONS. THE MAXIMA AND MINIMA
DEMONSTRATE THE WAVE NATURE OF
THE ELECTRON AS IT TRAVERSES THE
SLITS. INDIVIDUAL DOTS ON THE
SCREEN INDICATE THE PARTICLE
NATURE OF THE ELECTRON AS IT
EXCHANGES ENERGY WITH THE
DETECTOR. THE PATTERN IS THE SAME
WHETHER ELECTRONS OR PHOTONS
(PARTICLES OF LIGHT) ARE USED.
(Courtesy of Akira Tononmura, Advanced
Research Laboratory, Hitachi, Ltd.)
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A
t the beginning of the twentieth century, it was thought that sound, light,
and other electromagnetic radiation (such as radio waves) were waves,
and electrons, protons, atoms, and similar units were particles. The first 30
years of that century revealed startling developments in theoretical and
experimental physics, such as the finding that light actually exchanges en-
ergy in discrete lumps or quanta, just like particles, and the finding that an

electron exhibits diffraction and interference as it propagates through space, just
like a wave. The fact that light exchanges energy like a particle implies that light
energy is not continuous but is quantized. Similarly, the wave nature of the electron,
along with the fact that the standing wave condition requires a discrete set of fre-
quencies, implies that the energy of an electron in a confined region of space is not
continuous, but is quantized to a discrete set of values.

In this chapter, we begin by discussing some basic properties of light and
electrons, examining their wave and particle characteristics. We then consider
some of the detailed properties of matter waves, showing, in particular, how
standing waves imply the quantization of energy. Finally, we discuss some of
the important features of the theory of quantum physics, which was devel-
oped in the 1920s and which has been extremely successful in describing na-
ture. Quantum physics is now the basis of our understanding of both atomic
and subatomic systems and systems that have very low temperatures.

34-1 WAVES AND PARTICLES

We have seen that the propagation of waves through space is quite different from
the propagation of particles. Waves bend around corners (diffraction) and interfere
with one another, producing interference patterns. If a wave encounters a small
aperture, the wave spreads out on the other side as if the aperture were a point
source. The propagation of particles is quite unlike the propagation of waves.
Particles travel in straight lines until they collide with something, after which the
particles again travel in straight lines. If two particle beams meet in space, they
never produce an interference pattern.

Particles and waves also exchange energy differently. Particles exchange energy
in collisions that occur at specific points in space and in time. The energy of waves,
on the other hand, is spread out in space and deposited continuously as the wave
fronts interact with matter.

Sometimes the propagation of a wave cannot be distinguished from the propaga-
tion of a beam of particles. If the wavelength is very small compared to distances
from the edges of objects, diffraction effects are negligible and the wave travels in
straight lines. Also, interference maxima and minima are so close together in space
as to be unobservable. The result is that the wave interacts with a detector, like a
beam of numerous small particles each exchanging a small amount of energy; the ex-
change cannot distinguish particles from waves. For example, you do not observe
the individual air molecules bouncing off your face if the wind blows on it. Instead,
the interaction of billions of particles appears to be continuous, like that of a wave.

34-2 LIGHT: FROM NEWTON TO MAXWELL

The question of whether light consists of a beam of particles or waves in motion is
one of the most interesting in the history of science (see Chapter 31). Isaac Newton
used a particle theory of light to explain the laws of reflection and refraction;
however, for refraction, Newton needed to assume that light travels faster in water
or glass than in air, an assumption later shown to be incorrect. The chief early
proponents of the wave theory were Robert Hooke and Christian Huygens, who

l
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* See Section 5 of Chapter 31.
† See Section 3 of Chapter 33.
‡ See Section 4 of Chapter 33.
# See Section 3 of Chapter 30

explained refraction by assuming that light travels more
slowly in glass or water than it does in air.* Newton favored
the theory that light consists of particles and does not con-
sist of waves because, in his time, light was believed to
travel through a medium only in straight lines—diffraction
had not yet been observed.

Because of Newton’s great reputation and authority, his
particle theory of light was accepted for more than a century.
Then, in 1801, Thomas Young demonstrated the wave nature
of light in a famous experiment in which two coherent light
sources are produced by illuminating a pair of narrow, par-
allel slits with a single source (Figure 34-1a).† In Chapter 33,
we saw that when light encounters a small opening, the
opening acts as a point source of waves (Figure 33-7). In
Young’s experiment, each slit acts as a line source, which is
equivalent to a point source in two dimensions.‡ The inter-
ference pattern is observed on a screen placed behind the
slits. Interference maxima occur at angles so that the path
difference is an integral number of wavelengths. Similarly,
interference minima occur if the path difference is one-half
the wavelength or any odd number of half wavelengths.
Figure 34-1b shows the intensity pattern as seen on the
screen. Remember that if two coherent waves of equal inten-
sity meet in space, the result can be a wave of intensity 
(constructive interference), an intensity of zero (destructive interference), or a wave
of intensity between zero and depending on the phase difference between the
waves at the observation point. Young’s experiment and many other experiments
demonstrate that light propagates like a wave.

In the early nineteenth century, the French physicist Augustin Fresnel
(1788–1827) performed extensive experiments on interference and diffraction and
put the wave theory on a rigorous mathematical basis. Fresnel showed that the
observed straight-line propagation of light is a result of the very short wave-
lengths of visible light.

The classical wave theory of light culminated in 1860 when James Clerk
Maxwell published his mathematical theory of electromagnetism. This theory
yielded a wave equation that predicted the existence of electromagnetic waves
that propagate with a speed that can be calculated from the laws of electricity and
magnetism.# The fact that the result of this calculation was the
same as the speed of light, suggested to Maxwell that light is an electromagnetic
wave. The eye is sensitive to electromagnetic waves that have wavelengths in the
range from approximately to approximately 
This range is called visible light. Other electromagnetic waves (for example,
microwave waves, radio waves, and X rays) differ from visible light waves only
in wavelength and in frequency.

34-3 THE PARTICLE NATURE OF LIGHT: PHOTONS

The diffraction of light and the existence of an interference pattern in the two-slit
experiment give clear evidence that light has wave properties. However, early in
the twentieth century, it was found that light energy comes in discrete amounts.

700 nm.400 nm (1 nm � 10�9 m)

c � 3 � 108 m>s,

4I0 ,

4I0I0

Intensity

4I0

Iav = 2I0

S1 S2

λλ 2 θ
dd

sin

(a)

(b)

F I G U R E  3 4 - 1 (a) Two slits act as
coherent sources of light for the observation of
interference in Young’s experiment.
Cylindrical waves from the slits overlap and
produce an interference pattern on a screen far
away. (b) The intensity pattern produced in
Figure 34-1a. The intensity is maximum at
points where the path difference is an even
number of half wavelengths, and the intensity
is zero where the path difference is an odd
number of half wavelengths.



THE PHOTOELECTRIC EFFECT

The quantum nature of light and the quantization of energy
were suggested by Albert Einstein in 1905 in his explanation of
the photoelectric effect. Einstein’s work marked the beginning
of quantum theory, and for his work, Einstein received the
Nobel Prize in Physics. Figure 34-2 shows a schematic diagram
of the basic apparatus for studying the photoelectric effect. Light
of a single frequency enters an evacuated chamber and falls on
a clean metal surface C (C for cathode), causing electrons to be
emitted. Some of these electrons strike the second metal plate A
(A for anode), constituting an electric current between the plates.
Plate A is negatively charged, so the electrons are repelled by it,
with only the most energetic electrons reaching plate A. The
maximum kinetic energy of the emitted electrons is measured
by slowly increasing the voltage until the current becomes zero.
Experiments give the surprising result that the maximum ki-
netic energy of the emitted electrons is independent of the intensity
of the incident light. Classically, we would expect that increas-
ing the rate at which light energy falls on the metal surface
would increase the energy absorbed by individual electrons
and, therefore, would increase the maximum kinetic energy of
the electrons emitted. Experiments show that this classical result
does not happen. The maximum kinetic energy of the emitted electrons is the same
for a given wavelength of incident light, no matter how intense the light is. Einstein
demonstrated that this experimental result can be explained if light energy is quan-
tized in small bundles called photons. The energy of each photon is given by

34-1

EINSTEIN EQUATION FOR PHOTON ENERGY

where is the frequency, and is a constant now known as Planck’s constant.* The
measured value of this constant is

34-2

PLANCK’S CONSTANT

Equation 34-1 is sometimes called the Einstein equation.
A light beam consists of a beam of particles—photons—each having energy 

The intensity (power per unit area) of a monochromatic light beam is the number
of photons per unit area per unit of time, multiplied by the energy per photon. The
interaction of the light beam with the metal surface consists of collisions between
photons and electrons. During each of these collisions, the photon gives all its en-
ergy to an electron and the photon no longer exists. The electron is emitted from
the surface after it receives the energy from a single photon. If the intensity of light
is increased, more photons fall on the surface per unit time, and more electrons are
emitted per unit time. However, each photon still has the same energy so the
energy absorbed by each electron is unchanged.

hf,

hf.

h � 6.626 � 10�34 J # s � 4.136 � 10�15 eV # s

hf

E � hf �
hc
l

E
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F I G U R E  3 4 - 2 A schematic drawing of the apparatus for
studying the photoelectric effect. Light of a single frequency enters an
evacuated chamber and strikes the cathode C, which then ejects
electrons (electron in figure is not drawn to scale). The current in the
ammeter measures the number of these electrons that reach the
anode A per unit time. The anode is made electrically negative with
respect to the cathode to repel the electrons. Only those electrons that
have enough initial kinetic energy to overcome the repulsion can
reach the anode. The voltage between the two plates is slowly
increased until the current becomes zero, which happens when even
the most energetic electrons do not make it to plate A.

* In 1900, the German physicist Max Planck introduced this constant to explain discrepancies between the theoretical
curves and experimental data on the spectrum of blackbody radiation. Planck also assumed that the radiation was
emitted and absorbed by a blackbody in quanta of energy but he considered his assumption to be just a computa-
tional device rather than a fundamental property of electromagnetic radiation. (Blackbody radiation is discussed in
Chapter 20.)

hf,



If is the minimum energy necessary to remove an electron from a metal sur-
face, the maximum kinetic energy of the electrons emitted is given by

34-3

EINSTEIN’S PHOTOELECTRIC EQUATION

where is the frequency of the photons. The quantity called the work function,
is a characteristic of the particular metal. (Some electrons will have kinetic energies
less than because of the loss of energy from traveling through the metal.)

According to Einstein’s photoelectric equation, a plot of versus frequency
should be a straight line that has the slope This was a bold prediction, because,

at the time, no evidence existed that Planck’s constant had any application outside
of blackbody radiation. In addition, there was no experimental data on versus
frequency because no one before had even suspected that the frequency of the
light was related to This prediction was difficult to verify experimentally, but
careful experiments by R. A. Millikan approximately 10 years later
showed that Einstein’s equation was correct. Figure 34-3 shows a plot
of Millikan’s data.

Photons that have frequencies less than a threshold frequency
and therefore have wavelengths greater than a threshold wavelength

do not have enough energy to eject an electron from a
particular metal. The threshold frequency and the corresponding
threshold wavelength can be related to the work function by set-
ting the maximum kinetic energy of the electrons equal to zero in
Equation 34-3. Then

34-4

Work functions for metals are typically a few electron volts. Because
wavelengths are usually given in nanometers and energies in electron
volts, it is useful to have the value of in electron volt–nanometers:

or
34-5hc � 1240 eV # nm

hc � (4.1357 � 10�15 eV # s)(2.9979 � 108 m>s) � 1.240 � 10�6 eV # m

hc

f � hft �
hc
lt

f

lt � c>ft ,
ft ,

Kmax .
f,

Kmax

h.f
Kmax

hf � f,

f,f

Kmax � A 12mv2 Bmax � hf � f

f
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F I G U R E  3 4 - 3 Millikan’s data for the maximum kinetic
energy versus frequency for the photoelectric effect.
The data fall on a straight line that has a slope as predicted
by Einstein approximately a decade before the experiment
was performed.

h,
fKmax

Example 34-1 Photon Energies for Visible Light

Calculate the photon energies for light that has a wavelength equal to (violet) and
light that has a wavelength equal to (red). (The wavelengths of and 
are the approximate wavelengths for the two extremes of the visible light spectrum.)

PICTURE Photon energies are related to photon frequencies and wavelengths by 
(Equation 34-1).

SOLVE

hc>l E � hf �

700 nm400 nm700 nm
400 nm

1. The energy is related to the wavelength by Equation 34-1: E � hf �
hc
l

2. For the energy isl � 400 nm,  3.10 eVE �
hc
l

�
1240 eV # nm

400 nm
�

3. For the energy isl � 700 nm,  1.77 eVE �
hc
l

�
1240 eV # nm

700 nm
�

CHECK The shorter the wavelength of light, the greater the energy and for 
is greater than for 700 nm.1.77 eV

400 nm3.10 eV
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TAKING IT FURTHER We can see from these calculations that visible light has photons
that have energies which range from approximately X rays, which have
much shorter wavelengths, have photons that have energies of the order of Gamma
rays emitted by nuclei have even shorter wavelengths and photons that have energies of the
order of 

PRACTICE PROBLEM 34-1 Find the energy of a photon corresponding to electromagnetic
radiation in the FM radio band of wavelength 

PRACTICE PROBLEM 34-2 Find the wavelength of a photon whose energy is (a)
(b) and (c) 1.00 MeV.1.00 keV,

0.100 eV,

3.00 m.

MeV.

keV.
1.8 eV to 3.1 eV.

Example 34-2 The Number of Photons per Second in Sunlight Try It Yourself

The intensity of sunlight at Earth’s surface is approximately Assuming the av-
erage photon energy is (corresponding to a wavelength of approximately ),
calculate the number of photons that strike an area of each second.

PICTURE The intensity (power per unit area) is given, as is the area. From these given quan-
tities, we can calculate the power, which is the energy per unit time.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

1.00 cm2
600 nm2.00 eV

1400 W>m2.

Steps Answers

1. The energy is related to the number of photons and the
energy per photon hf � 2.00 eV:

N¢E ¢E � Nhf

2. The intensity (power per unit area) and the area are given,
so we can find the power:

AI I �
P
A

3. Knowing the power (energy per unit time) and the time, we can
find the energy:

¢E � P¢t

4. Combine the results from steps 1–3 and solve for (take care
to get the units to cancel):

N 4.38 � 1017N �

CHECK This is an enormous number of photons. However, in everyday situations we do
not notice that the energy of sunlight arrives in discrete amounts. Thus, an enormous num-
ber is expected.

PRACTICE PROBLEM 34-3 Calculate the photon density (in photons per cubic centimeter)
of the sunlight in Example 34-2. The number arriving on an area of in one second is
the number in a column whose cross section is and whose height is the distance
light travels in one second.

1.00 cm2
1.00 cm2

COMPTON SCATTERING

The first use of the photon concept was to explain the results of photoelectric-effect
experiments. In the photoelectric effect, all the energy of the photon is transferred
to an electron. However, in Compton scattering only some of the energy of the pho-
ton is transferred to an electron. The photon concept was also used by Arthur H.
Compton to explain the results of his measurements of the scattering of X rays by
free electrons in 1923. According to classical theory, if an electromagnetic wave of
frequency is incident on material containing free charges, the charges will oscil-
late with this frequency and reradiate electromagnetic waves of the same frequency.

fi
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Compton considered these reradiated waves as scattered photons, and he pointed
out that if the scattering process were a collision between a photon and an electron
(Figure 34-4), the electron would recoil and thus absorb energy. The scattered pho-
ton would then have less energy, and therefore a lower frequency and longer
wavelength, than the incident photon.

According to classical electromagnetic theory (see Section 30-3), the energy and
momentum of an electromagnetic wave are related by

34-6

The momentum of a photon is thus related to its wavelength by 

34-7

MOMENTUM OF A PHOTON

Compton applied the laws of conservation of momentum and energy to the colli-
sion of a photon and an electron to calculate the momentum and thus the wave-
length of the scattered photon (see Figure 34-4). Applying conservation
of momentum to the collision gives

34-8

where is the momentum of the incident photon and is the momentum of the
electron after the collision. The initial momentum of the electron is zero.
Rearranging Equation 34-8, we have Taking the dot product of each
side with itself gives

34-9

where is the angle the direction of motion of the scattered photon makes with
the direction of motion of the incident photon. Because the kinetic energy of the
electron after the collision can be a significant fraction of the rest energy of an elec-
tron, the relativistic expression relating the total energy of the electron to its
momentum is used (see Chapter R). This expression (Equation R-17) is

where is the mass of the electron. Applying conservation of energy to the colli-
sion gives

34-10

where (Equation 34-6) has been used to express the energies of the photons.
Eliminating from Equations 34-9 and 34-10 gives

and substituting for and using Equation 34-7, gives

34-11

COMPTON EQUATION

The increase in wavelength is independent of the wavelength of the incident
photon. The quantity has dimensions of length and is called the Compton
wavelength Its value is

34-12lC �
h
mec

�
hc
mec

2 �
1240 eV # nm

5.110 � 105 eV
� 2.426 � 10�12 m � 2.426 pm

lC.
h>(mec)

li

ls � li �
h
mec

(1 � cosu)

ps ,pi

1
ps

�
1
pi

�
1
mec

(1 � cosu)

p2
e

pc

pic � mec
2 � psc �4p2

ec
2 � (mec

2)2

me

E �4p2
ec

2 � (mec
2)2

E

u

p2
e � p2

i � p2
s � 2pips cosu

pSe � pSi � pSs .

pSepSi

pSi � pSs � pSe

ls � h>ps

ps

p �
h
l

hf>c � h>l. p � E>c �l

E � pc

φ

pe
m

θpi  = h
iλ

ps = h
sλ

F I G U R E  3 4 - 4 The scattering of light by
an electron is considered as a collision of a
photon of momentum and a stationary
electron. The scattered photon has less energy
and therefore has a longer wavelength than
does the incident photon.

h>li
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Because is small, it is difficult to observe unless is so small that the frac-
tional change is appreciable.

Compton used X rays that have wavelengths equal to 
The energy of a photon of this wavelength is 

The electrons in the experiment can be considered essen-
tially free because the energy of the X rays is much greater than the binding energies
of the valence electrons in atoms (which are of the order of a few ). Compton’s mea-
surements of as a function of scattering angle agreed with Equation 
34-11, thereby confirming the correctness of the photon concept (the particle nature
of light).

uls � li

eV

(0.0711 nm) � 17.4 keV.
E � hc>l � (1240 eV # nm)>10�3 nm).
71.1 pm (1 pm � 10�12 m �

(ls � li)>li

lils � li

Example 34-3 Finding the Increase in Wavelength

An X-ray photon of wavelength makes a head-on collision with an
electron, so that the scattered photon goes in a direction opposite to that of
the incident photon. The electron is initially at rest. (a) How much longer
is the wavelength of the scattered photon than the wavelength of the inci-
dent photon? (b) What is the kinetic energy of the recoiling electron?

PICTURE We can calculate the increase in wavelength, and thus the new
wavelength, from the Compton equation (Equation 34-11). We then use the
new wavelength to find the energy of the scattered photon and then to find
the kinetic energy of the recoiling electron from conservation of energy
(Figure 34-5).

6.00 pm

SOLVE

(a) Use Equation 34-11 to calculate the increase in wavelength:

 4.86 pm� (2.43 pm)(1 � cos 180°) �

¢l � ls � li �
h
mec

(1 � cosu)

(b) 1. The kinetic energy of the recoiling electron equals the energy of the
incident photon minus the energy of the scattered photon Es:Ei

Ke � Ei � Es � hfi � hfs �
hc
li

�
hc
ls

2. Calculate from the given wavelength of the incident photon and
the change found in Part (a):

ls

� 10.86 pm

ls � li � ¢l � 6.00 pm � 4.86 pm

3. Substitute the values of and into the Part (b), step-1 result to
find the energy of the recoiling electron:

lsli

 93 keV� 207 keV � 114 keV �

�
1.240 keV # nm
6.00 � 10�3 nm

�
1.240 keV # nm

10.86 � 10�3 nm

�
1240 eV # nm

6.00 pm
�

1240 eV # nm
10.86 pm

Ke �
hc
li

�
hc
ls

TAKING IT FURTHER The kinetic energy of the scattered electron is and the rest en-
ergy of an electron is so the kinetic energy is 18 percent of the rest energy. Thus, the
nonrelativistic formula for the kinetic energy is not valid.

PRACTICE PROBLEM 34-4 What is the speed of the scattered electron given by the non-
relativistic formula for the kinetic energy (1

2mev
2)?

(1
2mev

2)
511 keV,

93 keV

34-4 ENERGY QUANTIZATION IN ATOMS

Ordinary white light has a continuous spectrum; that is, it contains all the wave-
lengths in the visible spectrum. But if atoms in a gas at low pressure are excited by
an electric discharge, they emit light of specific wavelengths that are characteristic
of the element or the compound. Because the energy of a photon is related to its

pe

pi  = h
iλ

ps = h
sλ

me

F I G U R E  3 4 - 5
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wavelength by a discrete set of wavelengths implies a discrete set
of energies. Conservation of energy then implies that if an atom absorbs a photon,
its internal energy increases by a discrete amount, an amount equal to the energy
of the photon. (It also implies that if an atom emits a photon, its internal energy de-
creases by a discrete amount that is equal to the energy of the photon.) In 1913, this
led Niels Bohr to postulate that the internal energy of an atom can have only a dis-
crete set of values. That is, the internal energy of an atom is quantized. If an excited
atom radiates light of frequency the atom makes a transition from one allowed
level to another level that has less energy by Bohr was able to construct
a semiclassical model of the hydrogen atom that had a discrete set of energy levels
consistent with the observed spectrum of emitted light.* However, the reason for
the quantization of energy levels in atoms and other systems remained a mystery
until the wave nature of electrons was discovered a decade later.

34-5 ELECTRONS AND MATTER WAVES

In 1897, J. J. Thomson showed that the rays of a cathode-
ray tube (Figure 34-6) can be deflected by electric and mag-
netic fields and therefore must consist of electrically
charged particles. By measuring the deflections of these
particles, Thomson showed that all the particles have the
same charge-to-mass ratio He also showed that parti-
cles with this charge-to-mass ratio can be obtained using
any material for the cathode, which means that these par-
ticles, now called electrons, are a fundamental constituent
of all matter.

THE DE BROGLIE HYPOTHESIS

Because light seems to have both wave and particle prop-
erties, it is natural to ask whether matter (for example,
electrons and protons) might also have both wave and
particle characteristics. In 1924, a French physics student,
Louis de Broglie, suggested this idea in his doctoral dissertation. de Broglie’s
work was highly speculative, because no evidence existed at that time of any
wave aspects of matter.

For the wavelength of electron waves, de Broglie chose

34-13

DE BROGLIE RELATION FOR THE WAVELENGTH OF ELECTRON WAVES

where is the momentum of the electron. Note that this is the same as
Equation 34-7 for a photon. For the frequency of electron waves, de Broglie chose
the Einstein equation relating the frequency and energy of a photon.

34-14

DE BROGLIE RELATION FOR THE FREQUENCY OF ELECTRON WAVES

f �
E
h

p

l �
h
p

q>m.

ƒ¢E ƒ � hf.
f,

E � hf � hc>l,

* The Bohr model is reviewed in Chapter 36.

C
A B

D

F
S–

+

F I G U R E  3 4 - 6 Schematic diagram of the cathode-ray tube Thomson
used to measure for the particles that comprise cathode rays
(electrons). Electrons from the cathode C pass through the slits at A and B
and strike a phosphorescent screen S. The beam can be deflected by an
electric field between plates D and F or by a magnetic field (not shown).

q>m
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These equations are thought to apply to all matter. However, for macroscopic
objects, the wavelengths calculated from Equation 34-13 are so small that it is im-
possible to observe the usual wave properties of interference or diffraction. Even a
dust particle that has a mass as small as is much too massive for any wave
characteristics to be noticed, as we see in the following example.

1 mg

Because the wavelength found in Example 34-4 is so small, much smaller than
any possible apertures or obstacles, diffraction or interference of such waves can-
not be observed. In fact, the propagation of waves of very small wavelengths is
indistinguishable from the propagation of particles. The momentum of the particle
in Example 34-4 is only A macroscopic particle that has a greater
momentum would have an even smaller de Broglie wavelength. We therefore do
not observe the wave properties of such macroscopic objects as baseballs and
billiard balls.

10�15 kg # m>s.

Example 34-4 The de Broglie Wavelength Try It Yourself

Find the de Broglie wavelength of a particle moving with a speed of

PICTURE The wavelength and the momentum of a particle are related by 

SOLVE

Cover the column to the right and try this on your own before looking at the answers.

l � h>p.pl

1.00 � 10�6 m>s.
1.00 � 10�6 g

Steps Answers

Write the definition of the de Broglie wavelength and substitute
the given data.

6.63 � 10�19 m�l �
h
p

�
h
mv

�
6.63 � 10�34 J # s

(1.00 � 10�9 kg)(1.00 � 10�6 m>s)

CHECK As expected, this wavelength, which is four or five orders of magnitude smaller
than the diameter of an atomic nucleus, is too small to be observed.

PRACTICE PROBLEM 34-5

Find the de Broglie wavelength of a baseball of mass moving at 100 km>h.0.17 kg

The situation is different for low-energy electrons and other subatomic particles.
Consider a particle with kinetic energy Its momentum is found from

or

Its wavelength is then

If we multiply the numerator and the denominator by we obtain

34-15

WAVELENGTH ASSOCIATED WITH A PARTICLE OF MASS 

where we have used For electrons, Then,mc2 � 0.5110 MeV.hc � 1240 eV # nm.

m

l �
hc

22mc2K
�

1240 eV # nm

32mc2K

c,

l �
h
p

�
h

22mK

p � 22mK

K �
p2

2m

K.
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Electron gun

Detector

Incident
beam

I

Imax

50°

0°

90°

φ

φ

y

x

(a) (b)

F I G U R E  3 4 - 7 The Davisson–Germer
experiment. (a) Electrons are scattered from a
nickel crystal into a detector. (b) A polar plot
of the intensity I of scattered electrons versus
scattering angle. The maximum intensity 
is at the angle predicted by the diffraction of
waves of wavelength given by the de
Broglie formula.

l

Imax

or

34-16

ELECTRON WAVELENGTH

Equation 34-15 and Equation 34-16 do not hold for relativistic particles whose
kinetic energies are a significant fraction of their rest energies (Rest energies
are discussed in Chapter 7 and in Chapter R.)

PRACTICE PROBLEM 34-6

Find the wavelength of an electron whose kinetic energy is 

ELECTRON INTERFERENCE AND DIFFRACTION

The observation of diffraction and interference of electron waves would provide
the crucial test of the existence of wave properties of electrons. This observation
was first seen serendipitously in 1927 by C. J. Davisson and L. H. Germer as they
were studying electron scattering from a nickel target at the Bell Telephone
Laboratories. After heating the target to remove an oxide coating that had accu-
mulated during an accidental break in the vacuum system, they found that the
scattered electron intensity as a function of the scattering angle showed maxima
and minima. Their target had crystallized, and they had observed electron diffrac-
tion by accident. Davisson and Germer then prepared a target consisting of a sin-
gle crystal of nickel and investigated this phenomenon extensively. Figure 34-7a il-
lustrates their experiment. Electrons from an electron gun are directed at a crystal
and detected at some angle that can be varied. Figure 34-7b shows a typical pat-
tern observed. There is a strong scattering maximum at an angle of The angle
for maximum scattering of waves from a crystal depends on the wavelength of the
waves and the spacing of the atoms in the crystal. Using the known spacing of
atoms in their crystal, Davisson and Germer calculated the wavelength that could

50°.
f

10.0 eV.

mc2.

l �
1.226

2K
 nm (K in electron volts)

l �
1240 eV # nm

32mc2K
�

1240 eV # nm

42(0.5110 � 106 eV)K



produce such a maximum and found that it agreed with the de Broglie equation
(Equation 34-16) for the electron energy they were using. By varying the energy of
the incident electrons, they could vary the electron wavelengths and produce max-
ima and minima at different locations in the diffraction patterns. In all cases, the
measured wavelengths agreed with de Broglie’s hypothesis.

Another demonstration of the wave nature of electrons was provided in the same
year by G. P. Thomson (son of J. J. Thomson) who observed electron diffraction in the
transmission of electrons through thin metal foils. A metal foil consists of tiny, ran-
domly oriented crystals. The diffraction pattern resulting from such a foil is a set of
concentric circles. Figure 34-8a and Figure 34-8b show the diffraction pattern ob-
served using X rays and electrons on an aluminum foil target. Figure 34-8c shows the
diffraction patterns of neutrons on a cop-
per foil target. Note the similarity of the
patterns. The diffraction of hydrogen and
helium atoms was observed in 1930. In all
cases, the measured wavelengths agree
with the de Broglie predictions. Figure 34-
8d shows a diffraction pattern produced by
electrons incident on two narrow slits. This
experiment is equivalent to Young’s fa-
mous double-slit experiment with light.
The pattern is identical to the pattern ob-
served with photons of the same wave-
length. (Compare with Figure 34-1.)

Shortly after the wave properties of the
electron were demonstrated, it was sug-
gested that electrons rather than light
might be used to see small objects. As dis-
cussed in Chapter 33, reflected waves or
transmitted waves can resolve details of
objects only if the details are larger than
the wavelength of the reflected wave.
Beams of electrons, which can be focused
by electric and magnetic fields, can have
very small wavelengths—much shorter
than visible light. Today, the electron mi-
croscope (Figure 34-9) is an important re-
search tool used to visualize specimens at
scales far smaller than those possible with
a light microscope.
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Electron
gun

Object
Magnetic
lenses

Image on screen(a)

F I G U R E  3 4 - 9 (a) An electron microscope. Electrons from a heated filament
(the electron gun) are accelerated by a large potential difference. The electron beam is made
parallel by a magnetic focusing lens. The electrons strike a thin target and are then focused
by a second magnetic lens. The third magnetic lens projects the electron beam onto a
fluorescent screen to produce the image. (b) An electron micrograph of an amoeba
(Hartmannella vermiformis) that uses an extended pseudopod to entrap a bacterium 
(Legionella pneumophila). ((b) CDC/Dr. Barry S. Fields.)

(a) (b) (c) (d)

F I G U R E  3 4 - 8 (a) The diffraction pattern produced by X rays of wavelength on an aluminum
foil target. (b) The diffraction pattern produced by electrons on an aluminum foil
target. (c) The diffraction of neutrons incident on a copper foil. (d) A two-slit
electron diffraction–interference pattern. ((a) and (b) PSSC Physics, 2nd ed., 1965. D.C. Heath & Co., and
Education Development Center, Inc., Newton, MA, (c) C.G. Shull, (d) Claus Jönsson.)

(l � 0.12 nm)0.0568 eV
(l � 0.050 nm)600-eV

0.071 nm

(b)



Do not think energy is always
quantized. It is not unless the

system is bound. The energy of
a system consisting of a proton and an
electron is quantized only if the
electron is bound to the proton—as it
is in the hydrogen atom. If the electron
is not bound to the proton, then the
energy of the system is not quantized.
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!

STANDING WAVES AND ENERGY QUANTIZATION

Given that electrons have wavelike properties, it should be possible to produce
standing electron waves. If energy is associated with the frequency of a standing
wave, as in (Equation 34-14), then standing waves imply quantized energies.

The idea that the discrete energy states in atoms could be explained by stand-
ing waves led to the development of a detailed mathematical theory known
as quantum theory, quantum mechanics, or wave mechanics by Erwin
Schrödinger and others in 1926. In this theory, the electron is described by a wave
function that obeys a wave equation called the Schrödinger equation. The
form of the Schrödinger equation of a particular system depends on the forces
acting on the particle, which are described by the potential energy functions as-
sociated with those forces. In Chapter 35, we discuss this equation, which is
somewhat similar to the classical wave equations for sound or for light.
Schrödinger solved the standing wave problem for the hydrogen atom, the sim-
ple harmonic oscillator, and other systems of interest. He found that the allowed
frequencies, combined with resulted in the set of energy levels found ex-
perimentally for the hydrogen atom, thereby demonstrating that quantum the-
ory provides a general method of finding the quantized energy levels for a given
system. Quantum theory is the basis for our modern understanding of the
world—from the inner workings of the atomic nucleus to the radiation spectra of
distant galaxies.

34-6 THE INTERPRETATION
OF THE WAVE FUNCTION

The wave function for waves on a string is the string displacement The wave
function for sound waves can be either the displacement of the air molecules or
the pressure The wave function for electromagnetic waves is the electric field 
and the magnetic field What is the wave function for electron waves? The sym-
bol we use for this wave function is (the Greek letter psi). When Schrödinger
published his wave equation, neither he nor anyone else knew just how to inter-
pret the wave function We can get a hint about how to interpret by consider-
ing the quantization of light waves. For classical waves, such as sound or light, the
energy per unit volume in the wave is proportional to the square of the wave func-
tion. Because the energy of a light wave is quantized, the energy per unit volume
is proportional to the number of photons per unit volume. We might therefore ex-
pect the square of the photon’s wave function to be proportional to the number of
photons per unit volume in a light wave. But suppose we have a very low-energy
source of light that emits just one photon at a time. In any unit volume, there is ei-
ther one photon or none. The square of the wave function must then describe the
probability of finding a photon in some unit volume.

The Schrödinger equation describes a single particle. The square of the wave
function for a particle must then describe the probability density, which is the prob-
ability per unit volume, of finding the particle at a location. The probability of find-
ing the particle in some volume element must also be proportional to the size of
the volume element Thus, in one dimension, the probability of finding a parti-
cle in a region of length at the position is If we call this probability

where is the probability density, we have

34-17

PROBABILITY DENSITY

P(x) � c2(x)

P(x)P(x) dx,
c2(x) dx.xdx

dV.

cc.

c

B
S

.
E
S

P.
s,

y.

E � hf,

c

E � hf
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Generally the wave function depends on time as well as position, and is written
However, for standing waves, the probability density is independent of

time. Because we will be concerned mostly with standing waves in this chapter, we
omit the time dependence of the wave function and write it or just 

The probability of finding the particle either in the region between and
or in the region between and is the sum of the separate proba-

bilities If we have a particle at all, the probability of finding
the particle somewhere must be 1. Then the sum of the probabilities over all the
possible values of must equal 1. That is,

34-18

NORMALIZATION CONDITION

Equation 34-18 is called the normalization condition. If is to satisfy the normal-
ization condition, it must approach zero as approaches infinity. This condition
places restrictions on the possible solutions of the Schrödinger equation. There are
mathematical solutions to the Schrödinger equation that do not approach zero as 
approaches infinity. However, these solutions are not acceptable as wave functions.

ƒx ƒ

ƒx ƒ
c

�
q

�q
c2 dx � 1

x

P(x1) dx � P(x2) dx.
x2 � dxx2x1 � dx

x1

c.c(x)

c(x,t).

Example 34-5 Probability Calculation for a Classical Particle

It is known that a classical point particle moves back and forth with constant speed between
two walls at and (Figure 34-10). No additional information about the loca-
tion of the particle is known. (a) What is the probability density (b) What is the probabil-
ity of finding the particle at the point where equals exactly (c) What is the probability
of finding the particle between and 

PICTURE We do not know the initial position of the particle. Because the particle moves
with constant speed, it is equally likely to be anywhere in the region The
probability density is therefore independent of for and zero outside
of this range. We can find for by normalization, that is, by requiring
that the probability that the particle is somewhere between and is 1.

SOLVE

x � 8.0 cmx � 0
0 	 x 	 8.0 cm,P(x),

0 	 x 	 8.0 cm,x,P(x)
0 	 x 	 8.0 cm.

x � 3.4 cm?x � 3.0 cm
2 cm?x
P(x)?

x � 8.0 cmx � 0 P(x)

P0

8.00 cm x

F I G U R E  3 4 - 1 0 The probability
function P(x).

P(x) � c 0  x 	 0
P0  0 	 x 	 8.0 cm
0  x 
 8.0 cm

2. Apply the normalization condition:

� 0 � �
8.0 cm

0
P0 dx � 0 � P0 (8.0 cm) � 1

�
�q

�q
P(x) dx � �

0

�q
P(x) dx � �

8.0 cm

0
P(x) dx � �

q

8.0 cm
P(x) dx

3. Solve for P0:
1

8.0 cmP0 �

(b) On the interval the probability of
finding the particle in some range is
proportional to The
probability of finding the particle at the point

is zero because is zero (no range
exists). Alternatively, because an infinite number
of points exists between and and
the particle is equally likely to be at any point,
the chance that the particle will be at any one
particular point must be zero.

x � 8 cm,x � 0

¢xx � 2 cm

P0¢x � ¢x>(8 cm).
¢x

0 	 x 	 8.0 cm, The probability of finding the particle
at the point where x equals exactly 2 cm is 0.

(a) 1. The probability density is uniform
between the walls and zero elsewhere:

P(x)



Wave–Particle Duality S E C T I O N  3 4 - 7 | 1187

(c) Because the probability density is uniform, the
probability of a particle being in some range 
in the region is The
probability of the particle being in the region

is thus:3.0 cm 	 x 	 3.4 cm

P0¢x.0 	 x 	 8.0 cm
¢x

0.05P0 ¢x � a 1
8.0 cm

b0.4 cm �

CHECK The length of the interval is which is 5 percent of
Because the particle is moving at constant speed we expect it to be in the in-

terval during 5 percent of the time, provided the total time is much
much longer than the time (the time required for the particle to travel ). Our Part
(c) result meets this expectation.

8.0 cmL>v3.0 cm 	 x 	 3.4 cm
v,L � 8.0 cm.
0.4 cm,3.0 cm 	 x 	 3.4 cm

34-7 WAVE–PARTICLE DUALITY

We have seen that light, which we ordinarily think of as a wave, exhibits particle
properties when it interacts with matter, as in the photoelectric effect or in Compton
scattering. Electrons, which we usually think of as particles, exhibit the wave prop-
erties of interference and diffraction when they pass near the edges of obstacles.
All carriers of momentum and energy (for example, electrons, atoms, or photons)
exhibit both wave and particle characteristics. It might be tempting to say that an
electron, for example, is both a wave and a particle, but what does this mean?
In classical physics, the concepts of waves and particles are mutually exclusive.
A classical particle behaves like a piece of shot; it can be localized and scattered,
it exchanges energy suddenly at a point in space, and it obeys the laws of conser-
vation of energy and momentum in collisions. It does not exhibit interference or
diffraction. A classical wave, on the other hand, behaves like a sound or light wave;
it exhibits diffraction and interference, and its energy is spread out continuously in
space and time. A classical wave and a classical particle are mutually exclusive.
Nothing can be both a classical particle and a classical wave at the same time.

After Thomas Young observed the two-slit interference pattern by using light in
1801, light was thought to be a classical wave. On the other hand, the electrons dis-
covered by J. J. Thomson were thought to be classical particles. We now know that
these classical concepts of waves and particles do not adequately describe the com-
plete behavior of any phenomenon.

Everything propagates like a wave and exchanges energy like a particle.

Often the concepts of the classical particle and the classical wave give the same re-
sults. If the wavelength is very small, diffraction effects are negligible, so the waves
travel in straight lines like classical particles. Also, interference is not seen for waves
of very short wavelength, because the interference fringes are too closely spaced to
be observed. It then makes no difference which concept we use. If diffraction is neg-
ligible, we can think of light as a wave propagating along rays, as in geometrical op-
tics, or as a beam of photon particles. Similarly, we can think of an electron as a
wave propagating in straight lines along rays or, more commonly, as a particle.

We can also use either the wave or particle concept to describe exchanges of en-
ergy if we have a large number of particles and we are interested only in the aver-
age values of energy and momentum exchanges.

THE TWO-SLIT EXPERIMENT REVISITED

The wave–particle duality of nature is illustrated by the analysis of the experi-
ment in which a single electron is incident on a barrier that has two slits. The
analysis is virtually the same whether we use an electron or a photon (light). To
describe the propagation of an electron, we must use wave theory. Let us assume
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the source is a point source, such as a needle point, so we have spherical waves
spreading out from the source. After passing through the two slits, the wavefronts
spread out—as if each slit were a source of wavefronts. The wave function at a
point on a screen or film far from the slits depends on the difference in path lengths
from the source to the point, one path through one slit, and the other path through
the other slit. At points on the screen for which the difference in path lengths is
either zero or an integral number of wavelengths, the amplitude of the wave func-
tion is a maximum. Because the probability of detecting the electron is pro-
portional to the electron is very likely to arrive near these points. At points
for which the path difference is an odd number of half wavelengths, the wave
function is zero, so the electron is very unlikely to arrive near these points. The
chapter opening photos show the interference pattern produced by 10 electrons,
100 electrons, 3000 electrons, and 70,000 electrons. Note that, although the electron
propagates through the slits like a wave, the electron interacts with the screen at a
single point—like a particle.

THE UNCERTAINTY PRINCIPLE

An important principle consistent with the wave–particle duality of nature is the
uncertainty principle. It states that, in principle, it is impossible to simultane-
ously measure both the position and the momentum of a particle with unlimited
precision. A common way to measure the position of an object is to look at the ob-
ject by using light. If we do this, we scatter light from the object and determine the
position by the direction of the scattered light. If we use light of wavelength we
can measure the position only to an uncertainty of the order of because of
diffraction effects.

To reduce the uncertainty in position, we therefore use light of very short wave-
length, perhaps even X rays. In principle, there is no limit to the accuracy of
such a position measurement, because there is no limit on how small the wave-
length can be.

We can determine the momentum of the object if we know the mass and can
determine its velocity. The momentum of the object can be found by measuring
the object’s position at two nearby times and computing its velocity. If we use
light of wavelength the photons carry momentum If these photons are scat-
tered by the object we are looking at, the scattering changes the momentum of the
object in an uncontrollable way. Each photon carries momentum so the un-
certainty in the momentum of the object is of the order of 

If the wavelength of the radiation is small, the momentum of each photon will be
large and the momentum measurement will have a large uncertainty. Reducing
the intensity of light cannot eliminate this uncertainty; such a reduction merely re-
duces the number of photons in the beam. To see the object, we must scatter at
least one photon. Therefore, the uncertainty in the momentum measurement of
the object will be large if is small, and the uncertainty in the position measure-
ment of the object will be large if is large.

Of course, we could always look at the objects by scattering electrons instead
of photons, but the same difficulty remains. If we use low-momentum electrons to
reduce the uncertainty in the momentum measurement, we have a large uncer-
tainty in the position measurement because of diffraction of the electrons. The re-
lation between the wavelength and momentum is the same for electrons
as it is for photons.

l � h>px
l

l

¢px �
h
l

h>l:¢px

h>l,h>l.l,

px

l

¢x � l

l¢xx
l,

c

c2,

c



The product of the intrinsic uncertainties in position and momentum is

This relation between the uncertainties in position and momentum is called the un-
certainty principle. If we define precisely what we mean by uncertainties in mea-
surement, we can give a precise statement of the uncertainty principle. If and 
are defined to be the standard deviations in the measurements of position and mo-
mentum, it can be shown that their product must be greater than or equal to 

34-19

where *
Equation 34-19 provides a statement of the uncertainty principle first given by

Werner Heisenberg in 1927. In practice, the experimental uncertainties are usually
much greater than the intrinsic lower limit that results from wave–particle duality.

34-8 A PARTICLE IN A BOX

We can illustrate many of the important features of quantum physics without
solving the Schrödinger equation by considering a simple problem of a particle
of mass confined to a one-dimensional box of length like the particle in
Example 34-5. This can be considered a crude description of an electron that is con-
strained to be within an atom or a proton that is constrained to be within a nucleus.
If a classical particle bounces back and forth between the walls of the box, the parti-
cle’s energy and momentum can have any values. However, according to quantum
theory, the particle is described by a wave function whose square describes the
probability of finding the particle in some region. Because we are assuming that
the particle is indeed inside the box, the wave function must be zero everywhere
outside the box. If the box is between and we have

for and for 

In particular, if we assume the wave function to be continuous
everywhere, it must be zero at the end points of the box and

This is the same condition as the condition for standing
waves on a string fixed at and and the results are the
same. The allowed wavelengths for a particle in the box are those
where the length equals an integral number of half wavelengths
(Figure 34-11).

34-20

STANDING-WAVE CONDITION FOR 
A PARTICLE IN A BOX OF LENGTH 

The total energy of the particle is its kinetic energy

Substituting the de Broglie relation 

En �
p2
n

2m
�

(h>ln)2

2m
�
h2

2ml2
n

pn � h>ln ,
E �

1
2
mv2 �

p2

2m

E

L

L � n
ln

2
 n � 1, 2, 3, Á

L

x � L,x � 0
x � L.

x � 0

x � Lx � 0c � 0

x � L,x � 0

c,

L,m

U � h>2p.

¢x¢px � 1
2 U

U>2.

¢p¢x

¢x¢px � l �
h
l

� h
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L

n = 5

n = 2

n = 3

n = 4

n = 1

F I G U R E  3 4 - 1 1 Standing waves on a string fixed at
both ends. The standing-wave condition is the same as for
standing electron waves in a box.

* The combination occurs so often it is given a special symbol, somewhat analogous to giv-
ing the special symbol for which occurs often in oscillations.2pf,v

h>2p
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Then the standing-wave condition gives the allowed energies.

34-21

ALLOWED ENERGIES FOR A PARTICLE IN A BOX

where

34-22

GROUND-STATE ENERGY FOR A PARTICLE IN A BOX

is the energy of the lowest state, which is the ground state.
The condition at and is called a boundary condition.

Boundary conditions in quantum theory lead to energy quantization. Figure 34-12
shows the energy-level diagram for a particle in a box. Note that the lowest energy
is not zero. This result is a general feature of quantum theory. If a particle is con-
fined to some region of space, the particle has a minimum kinetic energy, called the
zero-point energy that is greater than zero. The smaller the region of space the par-
ticle is confined to, the greater its zero-point energy. In Equation 34-22, this is
indicated by the fact that varies as 

If an electron is confined (bound to an atom) in some energy state the electron
can make a transition to another energy state by the emission of a photon if is
less than . (If is greater than the system absorbs a photon.) The transition
from state 3 to the ground state is indicated in Figure 34-12 by the vertical arrow.
The frequency of the emitted photon is found from the conservation of energy*

34-23

The wavelength of the photon is then

34-24

STANDING-WAVE FUNCTIONS

The amplitude of a vibrating string that is fixed at and is given by
Equation 16-15:

where is a constant, is the wave number, and The wave
functions for a particle in a box (which can be obtained by solving the Schrödinger
equation, as we will see in Chapter 35) are the same:

where Using we have

The wave functions can thus be written

cn(x) � An sinanp x
L
b

kn �
2p
ln

�
2p

2L>n �
np
L

ln � 2L>n,kn � 2p>ln . cn(x) � An sin knx n � 1, 2, 3, Á

ln � 2L>n.kn � 2p>lnAn

An(x) � An sin knx n � 1, 2, 3, Á

x � Lx � 0

l �
c
f

�
hc
Ei � Ef

hf � Ei � Ef

Ei ,EfEi

EfEf

Ei ,
1>L2 .E1

x � Lx � 0c � 0

E1 �
h2

8mL2

En � n2 h
2

8mL2 � n2E1

ln � 2L>n

* This equation was first proposed by Niels Bohr in his semiclassical model of the hydrogen atom in 1913, about 10 years
before de Broglie’s suggestion that electrons have wave properties. The Bohr model is presented in Chapter 36.

E

x
L0

0

n = 5
E5 = 25E1

n = 4
E4 = 16E1

n = 3
E3 = 9E1

n = 2
E2 = 4E1

n = 1
E1

F I G U R E  3 4 - 1 2 Energy-level diagram
for a particle in a box. Classically, a particle
can have any energy value. Quantum
mechanically, only those energy values given
by Equation 34-21 are allowed. A transition
between the state and the ground state

is indicated by the vertical arrow.n � 1
n � 3
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The constant is determined by the normalization condition (Equation 34-18):

Note that we need integrate only from to because is zero every-
where else. The result of evaluating the integral and solving for is

which is independent of The normalized standing-wave functions for a particle
in a box are thus

34-25

STANDING-WAVE FUNCTIONS FOR A PARTICLE IN A BOX

The standing-wave functions for and are shown in Figure 34-13.n � 3n � 1, n � 2,

cn(x) � A 2
L

 sinanp x
L
b n � 1, 2, 3, Á

n.

An � A 2
L

An

c(x)x � Lx � 0

�
q

�q
c2 dx � �

L

0
A2
n sin2anp x

L
b dx � 1

An

Lx

A

(x)

n = 1

1
(x)

2
(x)

3

L

x

A
n = 2

Lx

A
n = 3

c c c

F I G U R E  3 4 - 1 3 Standing-wave functions
for and n �  3.n � 1, n � 2,

2
10

O L x

n = 10

Quantum-mechanical
distribution

Classical
distribution

2
3

O L x

n = 3

2
2

O L x

n = 2

2
1

O L x

n = 1

c c c

c

(a)

(d)

(b) (c)

F I G U R E  3 4 - 1 4 versus for a particle in a box of length for
(a) the ground state, (b) the first excited state, (c) the
second excited state, and (d) the state For the
maxima and minima of are so close together that individual maxima
may be hard to distinguish. The dashed line indicates the average
value of It gives the classical prediction that the particle is equally
likely to be found near any point in the box.

c2.

c2
n � 10,n � 10.n � 3;

n � 2;n � 1;
Lxc2

The number is called a quantum number. It characterizes the wave function
for a particular state and for the energy of that state. In our one-dimensional prob-
lem, a quantum number arises from the boundary condition on the wave function
that it must be zero at and In three-dimensional problems, three quan-
tum numbers arise, one associated with a boundary condition in each dimension.

Figure 34-14 shows plots of for the ground state the first excited state
the second excited state and the state In the ground state,

the particle is most likely to be found near the center of the box, as indicated by
n � 10.n � 3,n � 2,
n � 1,c2

x � L.x � 0

n
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the maximum value of at In the first excited state, the particle is least
likely to be found near the center of the box because is small near For
very large values of the maxima and minima of are very close together, as il-
lustrated for The average value of is indicated in this figure by the
dashed line. For very large values of the maxima and minima are so closely
spaced that cannot be distinguished from its average value. The fact that 
is constant across the whole box means that the particle is equally likely to be
found anywhere in the box—the same as in the classical result. This is an example
of Bohr’s correspondence principle:

In the limit of very large quantum numbers, the classical calculation and
the quantum calculation must yield the same results.

BOHR’S CORRESPONDENCE PRINCIPLE

The region of very large quantum numbers is also the region of very large energies.
For large energies, the percentage change in energy between adjacent quantum
states is very small, so energy quantization is not important (see Problem 71).

We are so accustomed to thinking of the electron as a classical particle that we
tend to think of an electron in a box as a particle bouncing back and forth between
the walls. But the probability distributions shown in Figure 34-14 are stationary;
that is, they do not depend on time. A better picture for an electron in a bound state
is a cloud of charge that has the charge density proportional to Figure 34-14 can
then be thought of as plots of the charge density versus for the various states.
In the ground state, the electron cloud is centered in the middle of the box
and is spread out over most of the box, as indicated in Figure 34-14a. In the first
excited state, the charge density of the electron cloud has two maxima, as
indicated in Figure 34-14b. For very large values of there are many closely
spaced maxima and minima in the charge density resulting in an average charge
density that is approximately uniform throughout the box. This electron-cloud
picture of an electron is very useful in understanding the structure of atoms and
molecules. However, it should be noted that whenever an electron is observed to
interact with matter or radiation, it is always observed as a whole unit charge.

n,
n � 2,

n � 1,
x
c2.

(c2)avc2
n,

c2n � 10.
c2n,

x � L>2.c2
x � L>2.c2

Example 34-6 Photon Emission by a Particle in a Box

An electron is in a one-dimensional box of length (a) Find the ground-state energy.
(b) Find the energies of the four lowest-energy states that have energies above the ground-
state energy, and then sketch an energy-level diagram. (c) Find the wavelength of the pho-
ton emitted for each transition from the state to a lower-energy state.

PICTURE For Part (a) the ground state is the state, and (Equation 34-22).
For Part (b), the energies are given by (Equation 34-21), where, and 5.
For Part (c), the photon wavelengths are given by (Equation 34-24).

SOLVE

l � hc>(Ei � Ef)
n � 2, 3, 4,En � n2E1

E1 � h2>8mL2n � 1

n � 3

0.100 nm.

(a) Use and to calculate E1:mc2 � 0.5110 MeVhc � 1240 eV # nm

37.6 eV�
(1240 eV # nm)2

8(5.110 � 105 eV)(0.100 nm)2 �

E1 �
h2

8mL2 �
(hc)2

8(mc2)L2

(b) 1. Calculate for and 5:n � 2, 3, 4,En � n2E1

940 eVE5 � (5)2(37.6 eV) �

602 eVE4 � (4)2(37.6 eV) �

338 eVE3 � (3)2(37.6 eV) �

150 eVE2 � (2)2(37.6 eV) �
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n = 5 E5 = 940 eV

n = 4 E4 = 602 eV

n = 3 E3 = 338 eV

n = 2 E2 = 150 eV

n = 1 E1 = 37.6 eV

2. Sketch an energy-level diagram using the values for the five
energy states (Figure 34-15).

F I G U R E  3 4 - 1 5

(c) 1. Use the energies found in Part (b) to calculate the
wavelength for a transition from state 3 to state 2:

6.60 nm�
1240 eV # nm

338 eV � 150 eV
�l �

hc
E3 � E2

2. Then use the energies in Part (a) and Part (b) to calculate the
wavelength for a transition from state 3 to state 1:

4.13 nm�
1240 eV # nm

338 eV � 37.6 eV
�l �

hc
E3 � E1

CHECK The wavelength of the photon emitted during the transition from the to the
state is shorter than the wavelength of the photon emitted during the transition from

the to the state. This result is expected—the greater the energy of the photon the
shorter its wavelength.

TAKING IT FURTHER The energy-level diagram is shown in Figure 34-15. The transitions
from to and from to are indicated by the vertical arrows. The
ground-state energy of is on the same order of magnitude as the kinetic energy of
the electron in the ground state of the hydrogen atom, which is In the hydrogen
atom, the electron has potential energy of in the ground state, giving it a total
ground-state energy (potential energy plus kinetic energy) of 

PRACTICE PROBLEM 34-7 Calculate the wavelength of the photon emitted if the electron
in the box makes a transition from to n � 3.n � 4

�13.6 eV.
�27.2 eV

13.6 eV.
37.6 eV

n � 1n � 3n � 2n � 3

n � 2n � 3
n � 1

n � 3

34-9 EXPECTATION VALUES

The solution of a classical mechanics problem is typically specified by giving the
position of a particle as a function of time. But the wave nature of matter prevents us
from doing this for microscopic systems. The most that we can know is the relative
probability of measuring a certain value of the position If we measure the position
for a large number of identical systems, we get a range of values corresponding to the
probability distribution. The average value of obtained from such measurements is
called the expectation value and is written The expectation value of is the same
as the average value of that we would expect to obtain from a measurement of the
positions of a large number of particles that have the same wave function 

Because is the probability of finding a particle in the region the ex-
pectation value of is

34-26

EXPECTATION VALUE OF DEFINED

The expectation value of any function is given by

34-27

EXPECTATION VALUE OF DEFINEDF (x )

8F(x)9 � �
�q

�q
F(x)c2(x) dx

F(x)

x

8x9 � �
�q

�q
xc2(x) dx

x
dx,c2(x) dx
c(x).

x
x8x9.x

x.

See

Math Tutorial for more

information on 

Integrals
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CALCULATING PROBABILITIES AND EXPECTATION VALUES

PROBLEM-SOLVING STRATEGY

Probabilities and Expectations

SOLVE

1. To calculate the probability of finding a particle in the region of
infinitesimal length between and we multiply the length by
the probability per unit length at where the probability per unit length
(called the probability density function) is given by 

2. To calculate the probability of finding a particle in the region
we, in principle, divide the region into an infinite number of

regions of infinitesimal length calculate the probability of finding
the particle in each infinitesimal length, and then sum the probabilities. 

That is, we evaluate the integral 

3. To calculate the expected value of a function 

we evaluate the integral The result of this 

calculation is called the expected value of F(x).

�
�q

�q
F(x)c2(x) dx.

F(x),

�
x2

x1

c2 dx.

Pdx,
x1 	 x 	 x2 ,

P

c2.
x,

dxx � dx,x
P

The problem of a particle in a box allows us to illustrate the calculation of the
probability of finding the particle in various regions of the box and the expectation
values for various energy states. We give two examples, using the wave functions
given by Equation 34-25.

Example 34-7 The Probability of the Particle Being Found 
in a Specified Region of a Box

A particle in a one-dimensional box of length is in the ground state. Find the probability of
finding the particle (a) in the region that has a length and is centered at 
and (b) in the region 

PICTURE The probability of finding the particle in some infinitesimal range is 
For a particle in the state, the wave function is given by 
(Equation34-25). For a particle in the ground state, and is illustrated in Figure 34-14.
The probability of finding in some region is just the area under this curve for the region.
For Part (a) , the region is centered at and the area under the versus

curve is shown in Figure 34-16a. This area is For Part (b) , the region is 
and the area under the curve is shown in Figure 34-16b. To calculate this area, we must
integrate from to x � L>4.x � 0c2

1

0 	 x 	 L>4,�c2
1¢x.x

c2
1x � L>2,¢x � 0.01L,

x
c2

1n � 1;
cn � 12>L sin(npx>L)nth

c2 dx.dxP

0 	 x 	 1
4L.

x � 1
2L¢x � 0.01L

L

2

L x

2

L
x

1
4

L 1
2

LO O

0.0L

c c

(a) (b) F I G U R E  3 4 - 1 6
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SOLVE

(a) 1. The probability of finding the particle is the area under
the curve shown in Figure 34-16a. To calculate this area,
we need to calculate the height of curve at x � 1

2L: so

c2(1
2L) �

2
L

 sin2 p

2
�

2
L

c(x) � c1(x) � A 2
L

 sinap x
L
b

2. The area is the height multiplied by the width, and the
width is ¢x � 0.01L:

0.02P � c2 A 12L B¢x �
2
L

� 0.01L �

(b) 1. The probability of finding the particle is the area under
the curve shown in Figure 34-16b. To calculate this area,
we need to integrate from to x � L>4:x � 0

P � �
L>4

0
c2(x) dx � �

L>4
0

2
L

 sin2 px
L

dx

2. The integral can be evaluated a number of ways. If a table
of integrals is used, a change in the integration variable in
required. Changing the integration variable to 
gives:

u � px>L P �
2
p �

p>4
0

 sin2u du

CHECK If were uniformly distributed on the interval the step-4 result would
be 0.25. However, instead of being uniformly distributed, it is relatively small on the
interval so a step-4 result that is less than 0.25 is expected.

TAKING IT FURTHER An integral was not necessary for Part (a) because the area of inter-
est could be well approximated by a rectangle of height and width The chance of find-
ing the particle in the region at is approximately 2 percent. The chance of
finding the particle in the region is about 9.1 percent.0 	 x 	 1

4L
x � 1

2L¢x � 0.01L
¢x.c2

0 	 x 	 1
4L,

c2
1

0 	 x 	 L,c2
1

3. The integral can be found in tables: �
p>4

0
 sin2u du � a u

2
�

sin 2u
4
b ` p>4

0

� ap
8

�
1
4
b

4. Use the result from Part (b), step 3 to calculate
the probability:

0.091P �
2
p
ap

8
�

1
4
b �

Example 34-8 Calculating Expectation Values

Find (a) and (b) for a particle in its ground state in a box of length 

PICTURE We use with 

SOLVE

cn(x) � A 2
L

 sin 
npx
L

.8F(x)9 � �F(x)c2(x) dx,

L.8x298x9

A fair six-sided die has the num-
ber 1 printed on four faces and
the number 6 printed on the
other two faces. What is the prob-
ability that a 1 comes up when
the die is thrown? Hint: The prob-
ability that a specific value comes up
for one throw is the fraction of the
throws that that value comes up
after a large number of throws.

CONCEPT CHECK 34-1✓

(a) 1. Write using the ground-state wave function given by
Equation 34-25, with n � 1:

8x9 8x9 � �
�q

�q
xc2(x) dx �

2
L �

L

0
x sin2apx

L
b dx

2. To evaluate this integral by using a table of integrals, first
change the integration variable to u � px>L:

�
2L
p2 �

p

0
u sin2u du

8x9 �
2
L
a L
p
b 2

�
p

0
u sin2u du

3. The table of integrals gives: �
p

0
u sin2u du � c u2

4
�
u sin 2u

4
�

cos 2u
8
dp

0
�
p2

4

4. Substitute this value into the expression in step 2:
L
28x9 �

2L
p2 �

p

0
u sin2u du �

2L
p2

p2

4
�
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(b) 1. Repeat step 1 and step 2 of Part (a) for 8x29:
�

2
L
a L
p
b 3

�
p

0
u2 sin2u du �

2L2

p3 �
p

0
u2 sin2u du

8x29 � �
�q

�q
x2c2(x) dx � �

L

0
x2 2
L

 sin2(px>L) dx

2. Evaluating the integral using a table of integrals gives:

�
p3

6
�
p

4

�
p

0
u2 sin2u du � c u3

6
� a u2

4
�

1
8
b  sin 2u �

u cos 2u
4

d ` p
0

3. Substitute this value into the expression in step 1 of Part (b): 0.283L28x29 �
2L2

p3 ap3

6
�
p

4
b � a1

3
�

1
2p2 bL2 �

CHECK The expectation value of is as we would expect, because the probability dis-
tribution is symmetric about the midpoint of the box.

TAKING IT FURTHER Note that is greater than 8x92.8x29
L>2,x

34-10 ENERGY QUANTIZATION
IN OTHER SYSTEMS

The quantized energies of a system are generally determined by solving the
Schrödinger equation for that system. The form of the Schrödinger equation
depends on the potential energy of the particle. The potential energy for a one-
dimensional box from to is shown in Figure 34-17. This potential
energy function is called an infinite square-well potential, and it is described
mathematically by

34-28

The particle moves freely inside the box, so the potential energy is uniform. For con-
venience, we choose the value of this potential energy to be zero. Outside the box
the potential energy is infinite, so the particle cannot exist outside the box no matter
what its energy. We did not need to solve the Schrödinger equation for this poten-
tial because the wave functions and quantized frequencies are the same as for a
string fixed at both ends, which we studied in Chapter 16. Although this problem
seems artificial, actually it is useful for some physical problems, such as a neutron
that is constrained to a nucleus that has a large number of protons and neutrons.

THE HARMONIC OSCILLATOR

More realistic than the particle in a box is the harmonic oscillator, which applies
to an object of mass on a spring that has a force constant or to any system
undergoing small oscillations about a stable equilibrium. Figure 34-18 shows the
potential energy function

where is the natural frequency of the oscillator. Classically, the object
oscillates between and Its total energy is which can
have any nonnegative value, including zero.

In quantum theory, the particle is represented by the wave function which
is determined by solving the Schrödinger equation for this potential. Normalizable
wave functions occur only for discrete values of the energy given by

34-29En � (n � 1
2)hf0 n � 0, 1, 2, 3, Á

Encn(x)

c(x),

E � 1
2mv2

0A
2,x � �A.x � �A

v0 � 2k>m U(x) � 1
2 kx2 � 1

2mv2
0 x

2

km

U(x) � c   x 	 0
0  0 	 x 	 L
  x 
 L

x � Lx � 0

U(x)

O L x

F I G U R E  3 4 - 1 7 The infinite square-well
potential energy. For and the
potential energy is infinite. The particle is
confined to the region in the well (0 	 x 	 L).

U(x)
x 
 L,x 	 0

A fair six-sided die has the num-
ber 1 printed on four faces and
the number 6 printed on the other
two faces. Let be the number
that comes up when the die is
thrown. What is the expectation
value of What is the expec-
tation value of Hint: The ex-
pectation value of a quantity is the
average value of that quantity after
a large number of throws.

N2?
N?

N

CONCEPT CHECK 34-2✓
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U(x)

O x

E5 = (5 +n = 5

E4 = (4 +n = 4

E3 = (3 +   n = 3

E2 = (2 +   n = 2

E1 = (1 + n = 1

E0 = hf0n = 0

U(x) = 1
2

1
2

1
2

kx
2 2 2= mω0 x

hf0)

1
2

1
2

hf0)

1
2 hf0)

1
2 hf0)

1
2 hf0)

F I G U R E  3 4 - 1 8 Harmonic oscillator
potential energy function. The allowed energy
levels are indicated by the equally spaced
horizontal lines. Also, v0 � 2pf0.

1 13.6

2

3
4

∞
n eV

0.00
0.85
1.51

3.40

–
–

–

–

En ,

F I G U R E  3 4 - 1 9 Energy-level diagram
for the hydrogen atom. The energy of the
ground state is As approaches
infinity, the energy approaches 0, which is the
highest energy state for which an electron is
bound to the nucleus.

n�13.6 eV.

where is the classical frequency of the oscillator. Note that the energy
levels of a harmonic oscillator are evenly spaced with separation as indicated
in Figure 34-18. Compare this with the uneven spacing of the energy levels for the
particle in a box, as shown in Figure 34-12. If a harmonic oscillator makes a transi-
tion from energy level to the next lowest energy level the frequency of
the photon emitted is given by (Equation 34-23). Applying this equa-
tion gives

The frequency of the emitted photon is therefore equal to the classical frequency
of the oscillator.

THE HYDROGEN ATOM

In the hydrogen atom, an electron is bound to a proton by the electrostatic force of
attraction (discussed in Chapter 21). This force varies inversely as the square of the
separation distance (exactly like the gravitational attraction of Earth and the Sun).
The potential energy of the electron–proton system therefore varies inversely with
separation distance (Equation 23-9). As in the case of gravitational potential energy,
the potential energy of the electron–proton system is chosen to be zero if the elec-
tron is an infinite distance from the proton. Then for all finite distances, the potential
energy is negative. Like the case of an object orbiting Earth, the electron–proton
system is a bound system if its total energy is negative. Like the energies of a parti-
cle in a box and of a harmonic oscillator, the energies are described by a quantum
number As we will see in Chapter 36, the allowed energies of the hydrogen atom
are given by

34-30

The lowest energy corresponds to The ground-state energy is thus 
The energy of the first excited state is Figure 34-19
shows the energy-level diagram for the hydrogen atom. The vertical arrows indi-
cate transitions from a higher state to a lower state that accompany the emission of
electromagnetic radiation. Only those transitions ending at the first excited state

involve energy differences in the range of visible light of to 
as calculated in Example 34-1.

Other atoms are more complicated than the hydrogen atom, but their energy
levels are similar in many ways to those of hydrogen. Their ground-state energies
are of the order of to and many transitions involve energies corre-
sponding to photons in the visible range.

�10 eV,�1 eV

3.10 eV,1.77 eV(n � 2)

�(13.6 eV)>22 � �3.40 eV.
�13.6 eV.n � 1.

En � �
13.6 eV
n2 n � 1, 2, 3, Á

n.

f0

f

hf � En � En�1 � (n � 1
2)hf0 � (n � 1 � 1

2)hf0 � hf0

hf � Ei � Ef

fn � 1,n

hf0 ,
f0 � v0>2p

Do not think an electron orbits
a proton in a classical orbit like

Earth’s orbit around the Sun. It doesn’t.
!
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Summary

1. All phenomena propagate like waves and interact like particles.

2. The quantum of light is called a photon and has energy where is Planck’s constant.

3. The relation between wavelength and momentum of electrons, photons, and other parti-
cles is given by the de Broglie relation 

4. Energy quantization in bound systems arises from standing-wave conditions, which are
equivalent to boundary conditions on the wave function.

5. The uncertainty principle is a fundamental law of nature that places theoretical restric-
tions on the precision of a simultaneous measurement of the position and momentum of
a particle. It follows from the general properties of waves.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Constants and Values

Planck’s constant 34-2

34-5

2. The Particle Nature of Light: Photons Energy is quantized.

Photon energy and momentum 34-1 and 34-6

3. Frequency–Wavelength
(Energy–Momentum) Relations

Photons and material particles 34-14 and 34-13
(de Broglie relations)

Nonrelativistic particles 34-15

Photoelectric effect 34-3

where is the work function of the cathode.

Compton scattering 34-11

4. Quantum Mechanics The state of a particle, such as an electron, is described by its wave function which is the
solution of the Schrödinger wave equation.

Probability density The probability of finding the particle in some region of space is given by

34-17

Normalization condition 34-18

Quantum number The wave function for a particular energy state is characterized by a quantum number 
In three dimensions there are three quantum numbers—one associated with a boundary con-
dition in each dimension.

Expectation value The expectation value of is the same as the average value of that we would expect to ob-
tain from a measurement of the positions of a large number of particles with the same wave
function

34-26

34-278F(x)9 � �
�q

�q
F(x)c2(x) dx

8x9 � �
�q

�q
xc2(x) dx

c(x).

xx

n.

�
q

�q
c2 dx � 1

P(x) � c2(x) dx

dx

c,

ls � li �
h
mec

(1 � cosu) � lC(1 � cosu) � 2.426 pm(1 � cosu)

f

Kmax � A 12mv2 Bmax � hf � f

K �
p2

2m
 so l �

hc

32mc2K

E � hf and p �
h
l

E � hf and E � pc

hc � 1240 eV # nmhc

h � 6.626 � 10�34 J # s � 4.136 � 10�15 eV # s

l � h>p.
hE � hf,
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5. Wave–Particle Duality Photons, electrons, neutrons, and all other carriers of momentum and energy exhibit both
wave and particle properties. Everything propagates like a classical wave, exhibiting dif-
fraction and interference, but exchanges energy in discrete lumps like a classical particle.
Because the wavelength of macroscopic objects is so small, diffraction and interference are
not observed. Also, if a macroscopic amount of energy is exchanged, so many quanta are in-
volved that the particle nature of the energy is not evident.

6. Uncertainty Principle The wave–particle duality of nature leads to the uncertainty principle, which states that the
product of the uncertainty in a measurement of position and the uncertainty in a measurement
of momentum must be greater than or equal to where is Planck’s constant divided by 

34-19¢x ¢px � 1
2 U

2p.U1
2 U,

Answers to Concept Checks

34-1

34-2

Answers to Practice Problems

34-1

34-2 (a) (b) (c) 1.24 pm1.24 nm,12.4 mm,

4.13 � 10�7 eV

8N29 � 38>38N9 � 8>32>3 34-3

34-4

34-5

34-6 From this result, we see that a electron
has a de Broglie wavelength of about 0.4 nm. This
quantity is of the same order of magnitude as the size
of the atom and the spacing of atoms in a crystal.

34-7 4.70 nm

10-eV0.388 nm.

1.4 � 10�34 m

0.6c

1.46 � 107 cm�3

Problems

TOPIC RELEVANT EQUATIONS AND REMARKS

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • The quantized character of electromagnetic radiation is
observed by (a) the Young double-slit experiment, (b) diffraction of
light by a small aperture, (c) the photoelectric effect, (d) the J. J.
Thomson cathode-ray experiment.

2 •• Two monochromatic light sources, A and B, emit the
same number of photons per second. The wavelength of A is

and the wavelength of B is The power
radiated by source B (a) is equal to the power of source A, (b) is less
than the power of source A, (c) is greater than the power of source
A, (d) cannot be compared to the power from source A using the
available data.

3 • The work function of a surface is The threshold
wavelength for emission of photoelectrons from the surface is
equal to (a) (b) (c) (d) none of the above. SSMhf>f,f>hf,hc>f,

f.

lB � 600 nm.lA � 400 nm

SSM

4 •• When light of wavelength is incident on a certain
photoelectric cathode, no electrons are emitted, no matter how
intense the incident light is. Yet, when light of wavelength

is incident, electrons are emitted, even when the incident
light has low intensity. Explain this observation.

5 • True or false: (a) The wavelength of an electron’s matter
wave varies inversely with the momentum of the electron. (b) Elec-
trons can undergo diffraction. (c) Neutrons can undergo diffraction.
6 • If the wavelength of an electron is equal to the wave-
length of a proton, then (a) the speed of the proton is greater than
the speed of the electron, (b) the speeds of the proton and the elec-
tron are equal, (c) the speed of the proton is less than the speed of
the electron, (d) the energy of the proton is greater than the energy
of the electron, (e) both (a) and (d) are correct.
7 • A proton and an electron have equal kinetic energies. It
follows that the wavelength of the proton is (a) greater than the
wavelength of the electron, (b) equal to the wavelength of the elec-
tron, (c) less than the wavelength of the electron.

l2 	 l1

l1
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8 • The parameter represents the position of a particle. Can
the expectation value of ever have a value such that the probabil-
ity density function is zero? Give a specific example.

9 •• It was once believed that if two identical experiments are
done on identical systems under the same conditions, the results
must be identical. Explain how this statement can be modified so
that it is consistent with quantum physics.

10 •• A six-sided die has the numeral 1 painted on three sides
and the numeral 2 painted on the other three sides. (a) What is the
probability of a 1 coming up when the die is thrown? (b) What is the
expectation value of the numeral that comes up when the die is
thrown? (c) What is the expectation value of the cube of the nu-
meral that comes up when the die is thrown?

ESTIMATION AND APPROXIMATION

11 •• During an advanced physics lab, students measure the
Compton wavelength, The students obtain the following wave-
length shifts as a function of scattering angle 

Use their data to estimate the value for the Compton wavelength.
Compare this number with the accepted value.

12 •• SPREADSHEET Students in a physics lab are trying to
determine the value of Planck’s constant using a photoelectric
apparatus similar to the one shown in Figure 34-2. The students are
using a helium–neon laser that has a tunable wavelength as the
light source. The data that the students obtain for the maximum
electron kinetic energies are

(a) Using a spreadsheet program or graphing calculator, plot 
versus light frequency. (b) Use the graph to estimate the value of
Planck’s constant. (Note: You may wish to use a feature of your
spreadsheet program or graphing calculator to obtain the best
straight-line fit to the data.) (c) Compare your result with the ac-
cepted value for Planck’s constant.

13 •• SPREADSHEET The cathode that was used by the stu-
dents in the experiment described in Problem 12 is constructed
from one of the following metals:

Metal Tungsten Silver Potassium Cesium
Work function

Determine which metal composes the cathode by using the same data
given in Problem 12. (a) Using a spreadsheet program or graphing
calculator, plot versus frequency. (b) Use the graph to estimate
the value of the work function based on the students’ data. (Note: You
may wish to use a feature of your spreadsheet program or graphing
calculator to obtain the best straight-line fit to the data.) (c) Which
metal was most likely used for the cathode in their experiment?

THE PARTICLE NATURE OF LIGHT:
PHOTONS

14 • Find the photon energy in electron volts for light of
wavelength (a) (b) and (c)

15 • Find the photon energy in electron volts for an electro-
magnetic wave of frequency (a) in the FM radio band and
(b) in the AM radio band.

16 • What are the frequencies of photons that have the fol-
lowing energies: (a) (b) and (c) 1.00 MeV?1.00 keV,1.00 eV,

900 kHz
100 MHz

650 nm.550 nm,450 nm,

Kmax

1.9 eV2.1 eV2.4 eV4.58 eV

Kmax

0.062 eV0.117 eV0.156 eV0.199 eV0.360 eVKmax

633 mn612 nm604 mn594 nm544 nmL

h,

SSM

4.95 pm3.98 pm2.45 pm1.67 pm0.647 pmLs � Li

180°135°90°75°45°U

u.ls � li

lC.

P(x)
x
x 17 • Find the photon energy in electron volts if the wave-

length is (a) (about 1 atomic diameter) and (b)

18 •• The wavelength of red light emitted by a 
helium–neon laser is If the diameter of the laser beam is

what is the density of photons in the beam? Assume
that the intensity is uniformly distributed across the beam.
19 • ENGINEERING APPLICATION Lasers used in a telecommu-
nications network typically produce light that has a wavelength
near How many photons per second are being transmitted
if such a laser has an output power of 

THE PHOTOELECTRIC EFFECT

20 • The work function for tungsten is (a) Find the
threshold frequency and wavelength for the photoelectric effect to
occur when monochromatic electromagnetic radiation is incident
on the surface of a sample of tungsten. Find the maximum kinetic
energy of the electrons if the wavelength of the incident light is
(b) and (c)
21 • When monochromatic ultraviolet light that has a wave-
length equal to is incident on a sample of potassium, the
emitted electrons have maximum kinetic energy of 
(a) What is the energy of an incident photon? (b) What is the work
function for potassium? (c) What would be the maximum kinetic
energy of the electrons if the incident electromagnetic radiation had
a wavelength of 430 nm? (d) What is the maximum wavelength of
incident electromagnetic radiation that will result in the photoelec-
tric emission of electrons by a sample of potassium?
22 • The maximum wavelength of electromagnetic radiation
that will result in the photoelectric emission of electrons from a
sample of silver is (a) Find the work function for silver.
(b) Find the maximum kinetic energy of the electrons if the incident
radiation has a wavelength of 
23 • The work function for cesium is (a) Find the min-
imum frequency and maximum wavelength of electromagnetic
radiation that will result in the photoelectric emission of electrons
from a sample of cesium. Find the maximum kinetic energy of the
electrons if the wavelength of the incident radiation is (b)
and (c)
24 •• When a surface is illuminated with electromagnetic radi-
ation of wavelength the maximum kinetic energy of the
emitted electrons is What is the maximum kinetic energy if
the surface is illuminated using radiation of wavelength 

COMPTON SCATTERING

25 • Find the shift in wavelength of photons scattered by free
stationary electrons at (Assume that the electrons are ini-
tially moving with negligible speed and are virtually free of (unat-
tached to) any atoms or molecules.)
26 • When photons are scattered by electrons in a carbon sam-
ple, the shift in wavelength is Find the scattering angle.
(Assume that the electrons are initially moving with negligible speed
and are virtually free of (unattached to) any atoms or molecules.)
27 • The photons in a monochromatic beam are scattered by
electrons. The wavelength of the photons that are scattered at
an angle of with the direction of the incident photon beam is
2.3 percent less than the wavelength of the incident photons. What
is the wavelength of the incident photons?
28 • Compton used photons of wavelength 
(a) What is the energy of one of those photons? (b) What is the
wavelength of the photons scattered in the direction opposite to the
direction of the incident photons? (c) What is the energy of the pho-
ton scattered in that direction?

0.0711 nm.

135°

0.33 pm.

u � 60°.

410 nm?
0.37 eV.

780 nm,

350 nm.
250 nm

1.90 eV.
175 nm.

262 nm.

2.03 eV.
300 nm

250 nm.200 nm

4.58 eV.

SSM2.50 mW?
1.55 mm.

1.00 mm,
633 nm.

3.00-mW
(1 fm � 10�15 m, about 1 nuclear diameter).

1.00 fm0.100 nm
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(a) (b) and (c) (Because is very small you
need not do any integration.)
44 •• A particle is in the second excited state ( ) of a one-
dimensional box that has length (The box has one end at the ori-
gin and the other end on the positive axis.) Determine the proba-
bility of finding the particle in the interval of length 
and centered at (a) (b) and (c) (Because is
very small you need not do any integration.)
45 •• A particle is in the first excited ( ) state of a one-
dimensional box that has length (The box has one end at the ori-
gin and the other end on the positive axis.) Find (a) and (b)
46 •• A particle in a one-dimensional box that has length is
in the first excited state ( ). (The box has one end at the origin
and the other end on the positive axis.) (a) Sketch versus 
for this state. (b) What is the expectation value for this state?
(c) What is the probability of finding the particle in some small re-
gion centered at (d) Are your answers for Part (b) and
Part (c) contradictory? If not, explain why your answers are not
contradictory.
47 •• A particle of mass has a wave function given by

where and are positive constants. (a) Find the
normalization constant (b) Calculate the probability of finding
the particle in the region 
48 •• A one-dimensional box is on the axis in the region of

A particle in this box is in its ground state. Calculate the
probability that the particle will be found in the region
(a) (b) and (c)
49 •• A one-dimensional box is on the axis in the region of

A particle in this box is in its first excited state. Calculate
the probability that the particle will be found in the region
(a) (b) and (c)
50 •• The classical probability distribution function for a parti-
cle in a one-dimensional box on the axis in the region of 
is given by Use this expression to show that 
and for a classical particle in the box.
51 •• A one-dimensional box is on the axis in the region of

(a) The wave functions for a particle in the box are given
by

For a particle in the state, show that and
(b) Compare these expressions for and

for with the expressions for and for the classi-
cal distribution of Problem 50.
52 •• SPREADSHEET (a) Use a spreadsheet program or graph-
ing calculator to plot as a function of the quantum number 
for the particle in the box described in Problem 48 and for values of

from 1 to 100. Assume for your graph. Refer to
Problem 51. (b) Comment on the significance of any asymptotic
limits that your graph shows.
53 •• The wave functions for a particle of mass in a one-
dimensional box of length centered at the origin (so that the ends
are at ) are given by

and

Calculate and for the ground state 
54 •• Calculate and for the first excited state of
the box described in Problem 53.

(n � 2)8x298x9 (n � 1).8x298x9
c(x) � A 2

L
 sin 
npx
L

n � 2, 4, 6, 8, Á

c(x) � A 2
L

 cos 
npx
L

n � 1, 3, 5, 7, Á

x � � 1
2L

L
m

L � 1.00 mn

n8x29
8x298x9nW 1,8x29, 8x98x29 � L2>3 � L2>(2n2p2).
8x9 � 1

2Lnth

cn(x) � A 2
L

 sin 
npx
L

n � 1, 2, 3, Á

0 � x � L.
x

8x29 � 1
3L2

8x9 � 1
2LP(x) � 1>L.

0 	 x 	 Lx

0 	 x 	 3
4L.0 	 x 	 1

3L,0 	 x 	 1
2L,

0 � x � L.
x

0 	 x 	 3
4L.0 	 x 	 1

3L,0 	 x 	 1
2L,

0 � x � L.
x

�a � x � a.
A.

aAc(x) � Ae� ƒx ƒ >a, m

x � L>2?dx

8x9 xc2(x)x
n � 2

L

8x29.8x9x
L.

n � 2

¢xx � 2
3L.x � 1

2L,x � 1
3L,

¢x � 0.002L
x

L.
n � 3

¢xx � 3
4L.x � 1

2L,1
4 x � L,29 • For the photons used by Compton (see Problem 28), find

the momentum of the incident photon and the momentum of the
photon scattered in the direction opposite to the direction of the in-
cident photons. Use the conservation of momentum to find the mo-
mentum of the recoil electron in this case.

30 •• A beam of photons that have a wavelength equal to
is scattered by electrons initially at rest. A photon in the

beam is scattered in a direction perpendicular to the direction of
the incident beam. (a) What is the change in wavelength of the
photon? (b) What is the kinetic energy of the electron?

ELECTRONS AND MATTER WAVES

31 • An electron is moving at Find the electron’s
wavelength.

32 • An electron has a wavelength of Find (a) the
magnitude of its momentum and (b) its kinetic energy.

33 •• An electron, a proton, and an alpha particle each have a
kinetic energy of Find (a) the magnitudes of their mo-
menta and (b) their de Broglie wavelengths.

34 • A neutron in a reactor has a kinetic energy of approxi-
mately Calculate the wavelength of the neutron.

35 • Find the wavelength of a proton that has a kinetic energy
of

36 • What is the kinetic energy of a proton whose wavelength
is (a) and (b)

37 • The kinetic energy of the electrons in the electron beam
in a run of Davisson and Germer’s experiment was Calculate
the wavelength of the electrons in the beam.

38 • The distance between and ions in a LiCl crystal
is Find the energy of electrons that have a wavelength
equal to that spacing.

39 • An electron microscope uses electrons that have energies
equal to Find the wavelength of the electrons.

40 • What is the wavelength of a neutron that has a speed of

A PARTICLE IN A BOX

41 •• (a) Find the energy of the ground state and the
first two excited states of a neutron in a one-dimensional box of
length (about the diameter of an
atomic nucleus). Make an energy-level diagram for the system.
Calculate the wavelength of electromagnetic radiation emitted
when the neutron makes a transition from (b) to 
(c) to and (d) to 

42 •• (a) Find the energy of the ground state and the
first two excited states of a neutron in a one-dimensional box of
length (about the diameter of a molecule). Calculate
the wavelength of electromagnetic radiation emitted when the neu-
tron makes a transition from (b) to (c) to 
and (d) to 

CALCULATING PROBABILITIES AND
EXPECTATION VALUES

43 •• A particle is in the ground state of a one-dimensional box
that has length (The box has one end at the origin and the other
end on the positive axis.) Determine the probability of finding the
particle in the interval of length and centered at¢x � 0.002L

x
L.

n � 1.n � 3
n � 2,n � 3n � 1,n � 2

H20.200 nm

(n � 1)

n � 1.n � 3n � 2,n � 3
n � 1,n � 2

L � 1.00 � 10�15 m � 1.00 fm

(n � 1)

1.00 � 106 m>s?

SSM70 keV.

0.257 nm.
Cl�Li�

54 eV.

1.00 fm?1.00 nm

2.00 MeV.

0.020 eV.

150 keV.

200 nm.

2.5 � 105 m>s.

6.00 pm
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GENERAL PROBLEMS

55 • Photons in a uniform light beam have
wavelengths equal to and the beam has an intensity of

(a) What is the energy of each photon in the beam?
(b) How much energy strikes an area of perpendicular to the
beam in (c) How many photons strike this area in 

56 • A particle is moving with a speed of approximately
in a one-dimensional box that has a length equal to 

Calculate the approximate value of the quantum number of the
state occupied by the particle.

57 • (a) For the particle and box of Problem 56, find and
assuming that these uncertainties are given by 

percent and percent. (b) What is 

58 • In 1987, a laser at Los Alamos National Laboratory pro-
duced a flash that lasted and had a power of 
Estimate the number of emitted photons, assuming they all had
wavelengths equal to 

59 • ENGINEERING APPLICATION You cannot “see” anything
smaller than the wavelength of the wave used to make the obser-
vation. What is the minimum energy of an electron needed in an
electron microscope to “see” an atom that has a diameter of about

60 • A common flea that has a mass of can jump ver-
tically as high as Estimate the wavelength for the flea imme-
diately after takeoff.

61 •• BIOLOGICAL APPLICATION A source radiates
light of wavelength uniformly in all directions. An eye
that has been adapted to the dark has a pupil and
can detect the light if at least 20 photons per second enter the
pupil. How far from the source can the light be detected under
these rather extreme conditions? 

62 •• BIOLOGICAL APPLICATION The diameter of the pupil
of an eye under room-light conditions is approximately 
Find the intensity of light that has a wavelength equal to 
so that 1 photon per second passes through the pupil.

63 •• A incandescent lightbulb radiates of visible
light uniformly in all directions. (a) Find the intensity of the light
from the bulb at a distance of (b) If the average wavelength
of the visible light is and counting only those photons in
the visible spectrum, find the number of photons per second that
strike a surface that has an area equal to is oriented so that
the line to the bulb is perpendicular to the surface, and is a distance
of from the bulb.

64 •• When light of wavelength is incident on the cathode of
a photoelectric tube, the maximum kinetic energy of the emitted elec-
trons is If the wavelength is reduced to the maximum
kinetic energy of the emitted electrons is Find the work
function of the cathode material.

65 •• An incident photon of energy undergoes Compton
scattering at an angle of Show that the energy of the scattered
photon is given by

Es �
Ei

1 � (Ei >mec
2)(1 � cosu)

Esu.
Ei

f

5.5 eV.

1
2l1 ,1.8 eV.

l1

1.5 m

1.0 cm2,

650 nm,
1.5 m.

2.6 W100-W

600 nm
5 mm.

SSM

7-mm-diameter
600 nm

100-W

20 cm.
0.008 g

0.1 nm?

400 nm.

5 � 1015 W.1 � 10�12 s

(¢x¢px)>U?¢px >px � 0.01
¢x>L � 0.01¢px ,

¢x

n
1 cm.1 mm>s 1-mg

SSM1.00 s?1.00 s?
1.00 cm2

100 W>m2.
400 nm

4.00-cm-diameter

66 •• A particle is confined to a one-dimensional box. While
the particle makes a transition from the state to the state 
radiation of is emitted. While the particle makes the tran-
sition from the state to the state radiation of wave-
length is emitted. The ground-state energy of the particle is

Determine

67 •• The Pauli exclusion principle states that no more than
one electron may occupy a particular quantum state at a time. Elect-
rons intrinsically occupy two spin states. Therefore, if we wish to
model an atom as a collection of electrons trapped in a one-
dimensional box, no more than two electrons in the box can have the
same value of the quantum number Calculate the energy that
the most energetic electron(s) would have for the uranium atom that
has an atomic number 92. Assume the box has a length of 
and the electrons are in the lowest possible energy states. How does
this energy compare to the rest energy of the electron?

68 •• A beam of electrons that each have the same kinetic
energy illuminates a pair of slits separated by a distance 
The beam forms bright and dark fringes on a screen located a dis-
tance beyond the two slits. The arrangement is otherwise
identical to that used in the optical two-slit interference experiment
described in Chapter 33 and in Figure 33-7 and the fringes have the
appearance shown in Figure 34-8d. The bright fringes are found to
be separated by a distance of What is the kinetic energy of
the electrons in the beam?

69 •• When a surface is illuminated by light of wavelength 
the maximum kinetic energy of the emitted electrons is If
the wavelength is used, the maximum kinetic energy
increases to For wavelength the maximum ki-
netic energy of the emitted electrons is Determine the
work function of the surface and the wavelength 

70 •• A simple pendulum has a length equal to and has
a bob that has a mass equal to The energy of this oscillator
is quantized, and the allowed values of the energy are given by

where is an integer and is the frequency of
the pendulum. (a) Find if the angular amplitude is (b) Find 
such that exceeds by 0.010 percent.

71 •• (a) Show that for large the fractional difference in energy
between state and state for a particle in a one-dimensional
box is given approximately by

(b) What is the approximate percentage energy difference between
the states and (c) Comment on how this result
is related to Bohr’s correspondence principle.

72 •• A mode-locked, titanium–sapphire laser has a wave-
length of and produces pulses of light each sec-
ond. Each pulse has a duration of 
and consists of photons. What is the average power pro-
duced by the laser?

73 •• This problem estimates the time lag in the photoelectric
effect that is expected classically but not observed. Let the intensity
of the incident radiation falling on an atom be (a) If the
area presented by an atom is find the energy per second
falling on an atom. (b) If the work function is how long
would it take for this much energy to fall on the atom if the radia-
tion energy was distributed uniformly rather than in compact
packets (photons)?

2.0 eV,
0.010 nm2,

0.010 W>m2.

5 � 109
125 femtoseconds (1 fs � 10�15 s)

100 million850 nm

SSM

n2 � 1001?n1 � 1000

(En�1 � En)>En � 2>n
n � 1n

n,

EnEn�1

n1.0°.n
f0nEn � An � 1

2 B hf0 ,

0.30 kg.
1.0 m

l.
2.676 eV.

l� � 0.600l,1.76 eV.
l� � 0.800l

1.20 eV.
l,

0.68 mm.

1.5 m

54 nm.

SSM

0.050 nm

n.

n.1.2 eV.
147 nm

n � 2,n � 1
114.8 nm

n � 1,n



Applications of the
Schrödinger Equation

35-1 The Schrödinger Equation

35-2 A Particle in a Finite Square Well

35-3 The Harmonic Oscillator

35-4 Reflection and Transmission of Electron Waves:

Barrier Penetration

35-5 The Schrödinger Equation in Three Dimensions

35-6 The Schrödinger Equation for Two Identical Particles

I
n Chapter 34, we found that electrons and other particles have wave proper-
ties and are described by wave functions in the form We also men-
tioned that the wave function is a solution of the Schrödinger equation, and
we discussed some solutions qualitatively without reference to the equation
itself. In particular, we showed how the standing-wave conditions lead to
quantization of energy for a particle confined to a one-dimensional box.

In this chapter we continue our discussion of the material introduced in
Chapter 34. We discuss the Schrödinger equation and apply the equation to
the particle-in-the-box problem and to several other situations in which a
particle is confined to a region of space to illustrate how boundary conditions
lead to energy quantization. We then show how the Schrödinger equation
leads to barrier penetration and discuss the extension of the Schrödinger
equation to more than one dimension and to more than one particle.

°(x, t).

35
C H A P T E R

Could the phantom cobalt atom

described above be caused by

reflections of waves from the corral

of cobalt atoms? (See Section 35-4).

?
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A QUANTUM MIRAGE. THE SCANNING
TUNNELING MICROSCOPE (STM)
ALLOWS ONE TO PUSH INDIVIDUAL
ATOMS AROUND ON A SURFACE AND
TO IMAGE THEM. ESPECIALLY
INTRIGUING ARE IMAGES OF QUANTUM
CORRALS, WHICH ARE CIRCULAR OR
ELLIPTICAL ARRANGEMENTS ON A
SURFACE INSIDE OF WHICH THE WAVES
CORRESPONDING TO ELECTRONS NEAR
THE SUBSTRATE SURFACE CAN BE
REVEALED. THIS IMAGE COMES FROM
IBM, WHERE PHYSICISTS PLACED THIRTY-
SIX COBALT ATOMS IN AN ELLIPTICAL
“STONEHENGE” PATTERN ON A COPPER
SURFACE. AN EXTRA MAGNETIC
COBALT ATOM WAS PLACED AT ONE OF
THE TWO FOCI OF THE ELLIPSE, CAUSING
VISIBLE INTERACTIONS WITH THE
SURFACE ELECTRON WAVES. BUT THE
WAVES ALSO SEEM TO BE INTERACTING
WITH A PHANTOM COBALT ATOM AT THE
OTHER FOCUS, AN ATOM THAT IS NOT
REALLY THERE. (Courtesy of IBM and
the IBM Almadin Laboratories.)
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See

Math Tutorial for more

information on 

Complex Numbers

* Although we simply state the Schrödinger equation, Schrödinger himself had a vast knowledge of classical wave theory
that led him to this equation.

† Every complex number can be written in the form where and are real numbers and The com-
plex conjugate of is so z*z � (a � bi)(a � bi) � a2 � b2 � ƒ z ƒ 2.z* � a � bi,z

i � 2�1.baz � a � bi,

35-1 THE SCHRÖDINGER EQUATION

Like the classical wave equation (Equation 15-10b), the Schrödinger equation is a par-
tial differential equation in space and time. Like Newton’s laws of motion, the
Schrödinger equation cannot be derived. Its validity, like that of Newton’s laws,
lies in its agreement with experiment. In one dimension, the Schrödinger equation is*

35-4

TIME- INDEPENDENT SCHRÖDINGER EQUATION

�
U2

2m
d2c(x)
dx2 � U(x)c(x) � Ec(x)

35-1

TIME-DEPENDENT SCHRÖDINGER EQUATION

�
U2

2m
�2°(x, t)

�x2 � U°(x, t) � iU
�°(x, t)

�t

where is the potential energy function and is a wave function. Equation
35-1 is called the time-dependent Schrödinger equation. Unlike the classical wave
equation, it relates the second space derivative of the wave function to the first time
derivative of the wave function, and it contains the imaginary number 
The wave functions that are solutions of this equation are not necessarily real.

is not a measurable function like the classical wave functions for sound or
electromagnetic waves. The probability of finding a particle in some region of
space certainly has a real value, though. We can modify slightly the equation for
probability density given in Chapter 34 (Equation 34-17) to determine the proba-
bility of finding a particle in some region 

35-2

where the complex conjugate of is identical to except that is substi-
tuted for wherever appears in the expression for †

In classical mechanics, the standing-wave solutions to the wave equation
(Equation 16-16) are of great interest and value. Not surprisingly, standing-wave
solutions to the Schrödinger wave equation are also of great interest and value. The
wave function for the standing-wave motion of a uniform taut string is

which is representative of all standing waves. A standing
wave function can always be expressed as a function of position multiplied by a
function of time, where the function of time is one that varies sinusoidally with
time. Standing-wave solutions to the one-dimensional Schrödinger wave equation
are thus expressed

35-3

where The right side of Equation 35-1 is then

where is the energy of the particle.
The Schrödinger wave equation has standing-wave solutions only if the poten-

tial energy function depends on position alone. Substituting into
Equation 35-1 and canceling the common factor we obtain an equation for

called the time-independent Schrödinger equation:c(x),
e�ivt,

c(x)e�ivtxU

E � Uv

iU
�°(x, t)

�t
� iU(�iv)c(x)e�ivt � Uvc(x)e�ivt � Ec(x)e�ivt

e�ivt � cos(vt) � i sin(vt).

°(x, t) � c(x)e�ivt

A sin(kx) cos(vt � d),

°.ii
�i°,°,°*,

P(x, t) dx � ƒ °(x, t) ƒ 2 dx � °*° dx

dx

dx

°(x, t)

i � 2�1.

°(x, t)U



The Schrödinger Equation S E C T I O N  3 5 - 1 | 1205

where we have written as to emphasize that while may depend 
on position, does not depend on time. The function represents the in-
teraction between the environment and the particle being observed. Different
environments require different expressions for the potential energy function in
the Schrödinger equation.

The calculation of the allowed energy levels in a system involves only the time-
independent Schrödinger equation, whereas finding the probabilities of transition
between these levels requires the solution of the time-dependent equation. In this
book, we will be concerned only with the time-independent Schrödinger equation
(Equation 35-4).

The solution of Equation 35-4 depends on the form of the potential energy func-
tion When is such that the particle is confined to some region of space,
only certain discrete energies give solutions that can satisfy the normaliza-
tion condition (Equation 34-18):

The complete time-dependent wave functions are then given, from Equation 35-3, by

35-5

A PARTICLE IN AN INFINITE SQUARE-WELL POTENTIAL

We will illustrate the use of the time-independent Schrödinger equation by solving
it for the problem of a particle in a box. The potential energy for a one-dimensional
box from to is shown in Figure 35-1. It is called an infinite square-well
potential and is described mathematically by

35-6

Inside the box, the potential energy is zero, whereas outside the box it is infinite.
Because we require the particle to be in the box, we have everywhere out-
side the box. We then need to solve the Schrödinger equation inside the box for
wave functions that must be zero at and at 

Inside the box so the Schrödinger equation is written

or

35-7

where

35-8

The general solution of Equation 35-7 can be written as

35-9

where and are constants. At we have

c(0) � A sin (0) � B cos (0) � 0 � B

x � 0,BA

c(x) � A sinkx � B coskx

k2 �
2mE

U2

d2c(x)
dx2 � k2c(x) � 0

�
U2

2m
d2c(x)
dx2 � Ec(x)

U(x) � 0,
x � L.x � 0c(x)

c(x) � 0

x 	 0
0 	 x 	 L
x 
 L

U(x) � c 

0


x � Lx � 0

°n(x, t) � cn(x) e
�ivnt � cn (x)e

�i(En>h)t

�


�

ƒcn ƒ 2dx � 1

cnEn

U(x)U(x).

U

U(x)U
UU(x)U

U(x)

O L x

F I G U R E  3 5 - 1 The infinite square-well
potential energy function. For both and

the potential energy is infinite.
The particle is confined to the region in the
well 0 	 x 	 L.

U(x)x 
 L,
x 	 0
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U(x)

U

O L x

0

F I G U R E  3 5 - 2 The finite square-well
potential energy function.

* See Equation 34-18.

The boundary condition at thus gives and Equation 35-9
becomes

35-10

The wave function is thus a sine wave where the wavelength is related to the wave
number in the usual way, The boundary condition at 
restricts the possible values of and therefore the values of the wavelength and
(from Equation 35-8) the energy We have

35-11

This condition is satisfied if is or any integer multiplied by that is, if is
restricted to the values given by

35-12

The condition (Equation 35-11) is also satisfied for The function
for all values of , in the interval is also a solution to

the wave equation. However, if the wave function has a value of zero everywhere
inside the box, then the box is empty. Furthermore, the wave function cannot be
normalized and cannot be a wave function for a particle. Substituting for 
into Equation 35-8 and solving for gives us the allowed energy values:

35-13

where

35-14

Equation 35-14 is the same as Equation 34-22, which we obtained by fitting an in-
tegral number of half-wavelengths into the box.

For each value of there is wave function given by

35-15

which is the same as Equation 34-25, where the constant is determined
by normalization.*

35-2 A PARTICLE IN A FINITE SQUARE WELL

The quantization of energy that we found for a particle in an infinite square well is
a result that follows from the general solution of the Schrödinger equation for any
particle confined to some region of space. We will illustrate this by considering the
qualitative behavior of the wave function for a slightly more general potential en-
ergy function, the finite square well, which is shown in Figure 35-2. This potential
energy function is described mathematically by

35-16
x 	 0
0 	 x 	 L
x 
 L

U(x) � c U0

0
U0

An � 22>L
x 	 0

0 	 x 	 L

x 
 L

cn(x) � d 0

An sin
npx
L

0

cn(x)n,

E1 �
h2

8mL2

En �
U2k2

n

2m
�

U2

2m
anp
L
b 2

� n2 a h2

8mL2 b � n2E1

E
knnp>L

0 	 x 	 L,xc(x) � A sin0 � 0
n � 0.

kn � n
p

L
n � 1, 2, 3, Á

kn

kp,pkL

c(L) � A sinkL � 0

E � 1
2 U2k2>m.

l,k
x � Lc(x) � 0l � 2p>k.k

l

c(x) � A sinkx

B � 0,x � 0c(x) � 0

The function below is not an accep-
table wave function. What makes
the function unacceptable?

Ansin
npx
L

 � 	 x 	 cn(x) �

CONCEPT CHECK 35-1✓
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(x)

x

c

(x)

x

c

(a)

(b)

F I G U R E  3 5 - 3 (a) A function that has
both a positive value and a positive concavity
throughout the region shown. (Concavity is
the sign of ) (b) A function that has
both a negative value and a negative
concavity throughout the region shown.

cdc>dx.
c

This potential energy function is discontinuous at and but it is finite
everywhere. The solutions of the Schrödinger equation for this type of potential
energy function depend on whether the total energy is greater or less than 
We will not discuss the case of except to remark that in that case the
particle is not confined and any value of the energy is allowed. That is, there is no
energy quantization when Here, we assume that 

Inside the well, and the time-independent Schrödinger equation is the
same as for the infinite well (Equation 35-7):

or

where The general solution is of the form

In this case, is not required to be zero at (the particle is not required to
be inside the box), so is not zero. Outside the well, the time-independent
Schrödinger equation is

or

35-17

where

35-18

The wave functions and allowed energies for the particle can be found by solving
Equation 35-17 for outside the well and then requiring that both and

be continuous at the boundaries and The solution of
Equation 35-17 is not difficult [in the region it is of the form 
and in the region it is of the form but applying the boundary
conditions involves much tedious algebra and is not important for our purpose.
The important feature of Equation 35-17 is that has the same sign as 
Thus, if is positive, is also positive and the wave function curves away
from the axis as approaches either or as shown in Figure 35-3a. Similarly,
if is negative, is negative and again curves away from the axis as ap-
proaches either or as shown in Figure 35-3b. This behavior is very differ-
ent from the behavior inside the well, where and have opposite signs so
that always curves toward the axis like a sine or cosine function. Because of this
behavior outside the well, for most values of the energy in Equation 35-17, 
becomes infinite as approaches that is, most wave functions are not well
behaved outside the well. Though they satisfy the Schrödinger equation, such
functions are not proper wave functions because they cannot be normalized. The
solutions of the Schrödinger equation are well behaved (that is, they approach

becomes very large) only for certain values of the energy. These energy val-
ues are the allowed energies for the finite square well.
0 as ƒ x ƒ

c(x)�;x
c(x)E

c

d2c>dx2c

�,�

xcd2c>dx2c

�,�x
d2c>dx2c

c.d2c>dx2

c(x) � Ce�ax],x 	 L
c(x) � Ce�axx 
 L,

x � L.x � 0dc(x)>dx c(x)c(x)

a2 �
2m
U2 (U0 � E) U0 
 E

d2c(x)
dx2 � a2c(x) � 0

�
U2

2m
d2c(x)
dx2 � U0c(x) � Ec(x) x 	 0 and x 
 L

B
x � 0c(x)

c(x) � A sinkx � B coskx

k2 � 2mE>U2.

d2c(x)
dx2 � k2c(x) � 0

�
U2

2m
d2c(x)
dx2 � Ec(x) 0 � x � L

U(x) � 0,
0 � E 	 U0 .E 
 U0 .

E 
 U0 ,
U0 .E

x � L,x � 0
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Figure 35-4 shows a well-behaved wave function, a wave function that has a
wavelength inside the well that corresponds to the ground-state energy. The be-
havior of the wave functions corresponding to nearby wavelengths and energies is
also shown. Figure 35-5 shows the wave functions and probability distributions for
the ground state and first two excited states. From this figure, we can see that the
wavelengths inside the well are slightly longer than the corresponding wave-
lengths for the infinite well (Figure 34-14), so the corresponding energies are
slightly less than those for the infinite well. Another feature of the finite-well prob-
lem is that there are only a finite number of allowed energies. For very small val-
ues of there is only one allowed energy.

Note that the wave function penetrates beyond the edges of the well at and
indicating that there is some small probability of finding the particle in the re-

gion in which its total energy is less than its potential energy This region is
called the classically forbidden region because the kinetic energy, would be
negative when Because negative kinetic energy has no meaning in classical
physics, it is interesting to speculate on the result of an attempt to observe the par-
ticle in the classically forbidden region. It can be shown from the uncertainty prin-
ciple that if an attempt is made to localize the particle in the classically forbidden
region, such a measurement introduces an uncertainty in the momentum of the par-
ticle corresponding to a minimum kinetic energy that is greater than This is
just great enough to prevent us from measuring a negative kinetic energy. The pen-
etration of the wave function into a classically forbidden region does have impor-
tant consequences in barrier penetration, which will be discussed in Section 35-4.

Much of our discussion of the finite-well problem applies to any problem in
which in some region and outside that region, as we see in the
next section.

35-3 THE HARMONIC OSCILLATOR

The potential energy for a particle that has mass and is attached to a spring that
has force constant is

35-19U(x) � 1
2 kx2 � 1

2mv2
0 x

2

k
m

E 	 U(x)E 
 U(x)

U0 � E.

U0 
 E.
E � U0 ,
U0 .E

x � 0,
x � L

U0 ,

l1

O L x

1c

O L x

1
2c

O

L

x

2c

O L x

2
2c

O L x

3c

O L x

3
2c

(a)

(c)

(b)

(d)

(e)

(f)

F I G U R E  3 5 - 5 Graphs of the wave
functions and probability distributions

for and for the finite
square well. Compare these graphs with those
of Figure 34-14 for the infinite square well,
where the wave functions are zero at 
and The wavelengths here are slightly
longer than the corresponding wavelengths
for the infinite well, so the allowed energies
are somewhat smaller.

x � L.
x � 0

n � 3n � 1, n � 2,c2(x)
cn(x)

L xO

λ

λ

1

λ 1
<~

λ λ 1
>~

(x)c

F I G U R E  3 5 - 4 Functions satisfying the Schrödinger equation that have a wavelength that
is almost equal to the wavelength which is the wavelength that corresponds to the ground-
state energy in the finite well. If is slightly greater than the function
approaches plus infinity as approaches infinity, like the function in Figure 35-3a. At the critical
wavelength the function and its slope approach zero together as approaches infinity. If is
slightly less than the function crosses the axis while the slope is still negative. The slope then
becomes more negative because its rate of change is now negative. This function
approaches negative infinity as approaches infinity.ƒ x ƒ

d2c>dx2
xl1 ,

lƒx ƒl1 ,
ƒ x ƒ

l1 ,lE1 � U2>2ml1
2

l1 ,
l
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2 kx 2

E

– +A A x

1
2 m 2

0
2xω

F I G U R E  3 5 - 6 Harmonic oscillator
potential.
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where is the natural frequency of the oscillator. Classically, the object
oscillates between and The object’s total energy is 
which can have any positive value or zero.

This potential energy function, shown in Figure 35-6, applies to virtually any
system undergoing small oscillations about a position of stable equilibrium. For
example, it could apply to the oscillations of the atoms of a diatomic molecule
(such as or ) in which the atoms are oscillating about their equilibrium
positions. Between the classical turning points the total energy is
greater than the potential energy, and the Schrödinger equation can be written

35-20

where now depends on The solutions of this equation are
no longer simple sine or cosine functions because the wave number now
varies with but because and have opposite signs throughout the region

will always curve toward the axis and the solutions will oscillate.
Outside the classical turning points the potential energy is greater

than the total energy and the Schrödinger equation is similar to Equation 35-17:

35-21

except that here where depends on For
and have the same sign, so will curve away from the axis and

there will be only certain values of for which solutions exist that approach zero
as approaches infinity.

For the harmonic oscillator potential energy function, the Schrödinger equation is

35-22

WAVE FUNCTIONS AND ENERGY LEVELS

Rather than pursue a general solution to the Schrödinger equation for this system,
we simply present the solution for the ground state and the first excited state.

The ground-state wave function is found to be a Gaussian function centered
at the origin:

35-23

where and are positive constants. This wave function and the wave function
for the first excited state are shown in Figure 35-7.
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F I G U R E  3 5 - 7 (a) The ground-state and first excited state wave functions for the
harmonic oscillator potential. Classically, the motion of a harmonic oscillator with the ground-
state energy would be restricted to the region and the motion of a harmonic
oscillator with the first excited state energy would be restricted to the region 
(b) The ground-state and first excited state probability density functions for the harmonic
oscillator potential.
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Example 35-1 Verifying the Ground-State Wave Function

Verify that where and are positive constants, is a solution of the
Schrödinger equation for the harmonic oscillator.

PICTURE We calculate the second derivative of with respect to and substitute into
Equation 35-22. Because this expression is the ground-state wave function, we write for
the energy 

SOLVE

E.
E0

xc0

aA0c0(x) � A0e
�ax2,

1. Compute dc0>dx:
2. Compute d2c0>dx2:

3. Substitute into the Schrödinger equation
(Equation 35-22):

dc0(x)

dx
�

d
dx

(A0e
�ax2) � �2axA0e

�ax2

�
U2

2m
(4a2x2 � 2a)A0e

�ax2
�

1
2
mv2

0x
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�ax2
� E0A0e

�ax2

�
U2

2m
d2c(x)
dx2 �

1
2
mv2

0x
2c(x) � Ec(x)

4. Cancel the common factor and show
the result in standard polynomial form:

A0e
�ax2

soa1
2
mv2
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2U2a2

m
bx2 � a U2a

m
� E0b � 0

�
U2

2m
(4a2x2 � 2a) �

1
2
mv2

0x
2 � E0

5. The equation in step 4 must hold for all 
Set and solve for E0:x � 0

x.

so

E0 �
U2a
m

0 � a U2a
m

� E0b � 0

6. Substitute this result for into the equation
in step 4 and simplify:

E0 a�
2U2a2

m
�

1
2
mv2

0bx2 � 0 � 0

7. It follows that the coefficient of must
equal zero:

x2 �
2U2a2

m
�

1
2
mv2

0 � 0

8. Solve for a: a �
mv0

2U

9. Substitute this result into the equation for 
in step 5:

E0 E0 �
U2a
m

�
1
2

Uv0

CHECK Planck’s constant has units of joules multiplied by seconds, and angular frequency
has units of reciprocal seconds, so the step-9 expression has the dimensions of energy,
as expected.

TAKING IT FURTHER The step-4 equation is a polynomial that is equal to zero. A theorem
that would have simplified the solution is “If a polynomial is equal to zero over a continuous
range of values of then each of the polynomial coefficients is equal to zero. For example,
if on the interval then ”A � B � C � D � 0.1 	 x 	 2,Ax3 � Bx2 � Cx � D � 0

x,

1
2 Uv0

We have shown that the given function, satisfies the Schrödinger
equation for any value of as long as the energy is given by E0 � 1

2 Uv0 .A0,
c0(x) � A0e

�ax2,

� (4a2x2 � 2a)A0e
�ax2

d2c0(x)

dx2 � �2aA0e
�ax2

� 4a2x2A0e
�ax2



* Each higher-energy state has one additional node in the wave function.

We see from this example that the ground-state en-
ergy is given by

35-24

The first excited state has a node in the center of the po-
tential well, just as with the particle in a box.* The wave
function is

35-25

where as in Example 35-1. This function
is also shown in Figure 35-7. Substituting into
the Schrödinger equation, as was done for in
Example 35-1, yields the energy of the first excited
state,

In general, the energy of the th excited state of the harmonic oscillator is

35-26

as indicated in Figure 35-8. The fact that the energy levels are evenly spaced by the
amount is a peculiarity of the harmonic oscillator potential. As we saw in
Chapter 34, the energy levels for a particle in a box, or for the hydrogen atom, are
not evenly spaced. The precise spacing of energy levels is closely tied to the par-
ticular form of the potential energy function.

35-4 REFLECTION AND TRANSMISSION

OF ELECTRON WAVES:

BARRIER PENETRATION

In Sections 35-2 and 35-3, we were concerned with bound-state problems in which
the potential energy is larger than the total energy for large values of In this sec-
tion, we consider some simple examples of unbound states for which is greater
than For these problems, and have opposite signs, so curves
toward the axis and does not become infinite as approaches either or 

STEP POTENTIAL

Consider a particle of energy moving in a region in which the potential energy is
the step function

as shown in Figure 35-9. We are interested in what happens when a particle moving
from left to right encounters the step.

The classical answer is simple. To the left of the step, the particle moves with
a speed At an impulsive force acts on the particle. If the initial
energy is less than the particle will be turned around and will then move
to the left at its original speed; that is, the particle will be reflected by the step. 
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F I G U R E  3 5 - 8 Energy levels in the harmonic oscillator potential.

U(x)

x

U0

F I G U R E  3 5 - 9 Step potential. A classical
particle that is incident from the left and has
total energy is always transmitted.
The change in potential energy at 
merely provides an impulsive force that
reduces the speed of the particle. A wave
incident from the left is partially transmitted
and partially reflected because the
wavelength changes abruptly at x � 0.

x � 0
E 
 U0
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If is greater than the particle will continue to move to the right but with re-
duced speed given by We can picture this classical problem
as a ball rolling along a level surface and coming to a steep hill of height given
by If the initial kinetic energy of the ball is less than the ball will
roll part way up the hill and then back down and to the left along the lower sur-
face at its original speed. If is greater than the ball will roll up the hill and
proceed to the right at a lesser speed.

The quantum-mechanical result is similar when is less than Figure 35-10
shows the wave function for the case The wave function does not go to
zero at but rather decays exponentially, like the wave function for the bound
state in a finite square-well problem. The wave penetrates slightly into the classi-
cally forbidden region but it is eventually completely reflected. This prob-
lem is somewhat similar to that of total internal reflection in optics.

For the quantum-mechanical result differs markedly from the classical
result. At the wavelength changes abruptly from to

We know from our study of waves that when the
wavelength changes suddenly, part of the wave is reflected and part of the wave is
transmitted. Because the motion of an electron (or other particle) is governed by a
wave equation, the electron sometimes will be transmitted and sometimes will be
reflected. The probabilities of reflection and transmission can be calculated by solv-
ing the Schrödinger equation in each region of space and comparing the ampli-
tudes of the transmitted waves and reflected waves with the amplitudes of the in-
cident wave. These calculations and their results are similar to finding the fraction
of light reflected from an air–glass interface. If is the probability of reflection,
called the reflection coefficient, this calculation gives

35-27

where is the wave number for the incident wave and is the wave number for
the transmitted wave. This result is the same as the result in optics for the reflection
of light at normal incidence from the boundary between two media having different
indexes of refraction (Equation 31-17). The probability of transmission called
the transmission coefficient, can be calculated from the reflection coefficient, be-
cause the probability of transmission plus the probability of reflection must equal 1:

35-28T � R � 1

T,n

k2k1

R �
(k1 � k2)

2

(k1 � k2)
2

R

l2 � h>p2 � h>22m(E � U0) .
l1 � h>p1 � h>22mEx � 0,

E 
 U0 ,

x 
 0,

x � 0
E 	 U0 .

U0 .E

mgh,E

mgh,mgh � U0 .
h

v � 22(E � U0)>m.
U0 ,E (x)

O x

c

F I G U R E  3 5 - 1 0 When the total energy 
is less than the wave function penetrates
slightly into the region However, the
probability of reflection for this case is 1, so no
energy is transmitted.

x 
 0.
U0 ,

E

Example 35-2 Reflection and Transmission at a Step Barrier

A particle that has kinetic energy and is traveling in a region in which the potential energy
is zero is incident on a potential-energy barrier of height Find the probability
that the particle will be reflected.

PICTURE We need to calculate the wave numbers and and use them to calculate the re-
flection coefficient from Equation 35-27. The wave numbers are related to the momentum
by the de Broglie relation (Equation 34-13), where Combining these two
equations gives Thus, the kinetic energy is related to the wave number by

SOLVE

K � 1
2 p2>m � 1

2 U2k2>m.
Kp � Uk.

k � 2p>l.p � h>lR
k2k1

U0 � 0.20E0 .
E0

1. The probability of reflection is the reflection coefficient: R �
(k2 � k1)

2

(k1 � k2)
2

2. Calculate from the initial kinetic energy E0:k1

k1 � 22mE0>U2

E0 �
U2k2

1

2m
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3. Relate the final kinetic energy to the initial kinetic energy
and the potential energy in the region x 
 0:U0E0

K2 K2 � E0 � U0 � E0 � 0.2E0 � 0.8E0

4. Relate to the final kinetic energy and solve for k2:K2k2

so

� 20.8022mE0>U2

k2 � 22mK2>U2 � 22m(0.8E0)>U2

K2 �
Uk2

2

2m

5. Substitute these values into Equation 35-27 to calculate R:  0.0031R �
(k1 � k2)

2

(k1 � k2)
2 � £1 � 20.80

1 � 20.80
≥ 2

�

CHECK Classically, the particle would not be reflected by such a low barrier. The step-5
result gives a probability of 0.31 percent that the particle will be reflected. Such a low prob-
ability approaches being in agreement with our classical expectations.

TAKING IT FURTHER The probability of reflection is only 0.31 percent. This probability is
small because the barrier height reduces the kinetic energy by only 20 percent. Because is
proportional to the square root of the kinetic energy, the wave number and therefore the
wavelength is changed by only 10 percent.

PRACTICE PROBLEM 35-1 Express the index of refraction of light in terms of the wave
number and the frequency and show that the expression (Equation
31-7) for the reflection coefficient of light at normal incidence is the same as Equation 35-27.
Hint: Express the index of refraction n of light in terms of the wave number k and the angular
frequency v.

(n1 � n2)
2>(n1 � n2)

2v,k
n

k

In quantum mechanics, a localized particle is represented by a wave packet,
which has a maximum at the most probable position of the particle. Figure 35-11
shows a wave packet representing a particle of energy incident on a step poten-
tial of height which is less than After the encounter, there are two wave
packets. The relative heights of the transmitted packet and reflected packet indi-
cate the relative probabilities of transmission and reflection. For the situation
shown here, is much greater than and the probability of transmission is
much greater than that of reflection.

U0 ,E

E.U0 ,
E

   (x,t) 2

t

x

⎥⎥Ψ

F I G U R E  3 5 - 1 1 Time development of a one-dimensional wave packet representing a
particle incident on a step potential for The position of a classical particle is indicated by
the dot. Note that part of the packet is transmitted and part is reflected.

E 
 U0 .
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BARRIER PENETRATION

Figure 35-12a shows a rectangular potential-energy barrier of height and
width given by

We consider a particle of energy which is slightly less than that is incident
on the barrier from the left. Classically, the particle would always be reflected.
However, a wave incident from the left does not decrease immediately to zero at
the barrier, but it will instead decay exponentially in the classically forbidden re-
gion On reaching the far wall of the barrier the wave function
must join smoothly to a sinusoidal wave function to the right of the barrier, as
shown in Figure 35-12b This implies that there is some probability of the particle
(which is represented by the wave function) being found on the far side of the bar-
rier even though, classically, it should never pass through the barrier. For the case
in which the quantity is much greater than 1 the
transmission coefficient is equal to e�2aa:T

[where a2 � 2m(U0 � E)>U2]aa

(x � a),0 	 x 	 a.

U0 ,E,

x 	 0
0 	 x 	 a
x 
 a

U(x) � c 0
U0

0

a
U0

35-29

TRANSMISSION THROUGH A BARRIER

T � e�2aa  aaW 1

Do not think it might be possible
to detect a particle in the classically

forbidden region. It cannot. A proof
shows this claim to be a consequence
of the uncertainty principle.

!

The probability of penetration of the barrier thus decreases exponentially with
both the barrier thickness and the square root of the relative barrier height

This phenomenon, the penetrating of a classically forbidden region, is
called quantum tunneling.
(U0 � E).

a

U(x)
U0

E

x0 a

(x)

0 a x

c

(a)

(b)

F I G U R E  3 5 - 1 2 (a) A rectangular potential-energy barrier. (b) The penetration of the barrier
by a wave that has a total energy less than the barrier energy. Part of the wave is transmitted by
the barrier even though, classically, the particle cannot enter the region in which the
potential energy is greater than the total energy. To the left of the barrier, there is both an incident
wave and a reflected wave. These waves form a resultant wave so that is a superposition of a
standing wave and a traveling wave (traveling toward the barrier). Only the transmitted wave
exists in the region and it is traveling away from the barrier.x 
 a,

c

0 	 x 	 a
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Ψ(x,t) 2

t

x

⎥ ⎥

(a) (b)

Ψ(x,t) 2

x

t

⎥⎥

Figure 35-13a shows a wave packet incident on a potential-energy barrier of
height that is considerably greater than the energy of the particle. The proba-
bility of penetration is very small, as indicated by the relative sizes of the re-
flected and transmitted packets. In Figure 35-13b, the barrier is just slightly
greater than the energy of the particle. In this case, the probability of penetration
is about the same as the probability of reflection. Figure 35-14 shows a particle
incident on two potential-energy barriers of height just slightly greater than the
energy of the particle.

As we have mentioned, the penetration of a barrier is not unique to quantum
mechanics. When light is totally reflected from a glass–air interface, the light wave
can penetrate the air barrier if a second piece of glass is brought within a few

U0

Ψ(x,t) 2

x

t

⎥ ⎥

F I G U R E  3 5 - 1 4 A wave packet representing a particle incident on two barriers. At each
encounter, part of the packet is transmitted and part reflected, resulting in part of the packet
being trapped between the barriers for some time.

F I G U R E  3 5 - 1 3 Barrier penetration. (a) The same particle
incident on a barrier of height much greater than the energy of the
particle. A very small part of the packet tunnels through the
barrier. In both drawings, the position of a classical particle is
indicated by a dot. (b) A wave packet representing a particle

incident on a barrier of height just slightly greater than the energy
of the particle. For this particular choice of energies, the probability
of transmission is approximately equal to the probability of
reflection, as indicated by the relative sizes of the transmitted
and reflected packets.



Scanning
probe

Surface of Sample

F I G U R E  3 5 - 1 8 The tiny probe of a
scanning tunneling microscope travels along
the surface of a sample. A constant potential
difference is maintained between the probe
and the sample and electrons tunnel through
the potential-energy barrier at the surface. A
feedback mechanism maintains a constant
tunneling current by moving the probe up and
down as it travels along the surface.
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F I G U R E  3 5 - 1 5 The penetration of an
optical barrier. If the second prism is close
enough to the first, part of the wave
penetrates the air barrier even when the angle
of incidence in the first prism is greater than
the critical angle.

wavelengths of the first. This effect can be demonstrated with a laser beam and
two prisms (Figure 35-15). Similarly, water waves in a ripple tank can pene-
trate a gap of deep water (Figure 35-16).

The theory of barrier penetration was used by George Gamow in 1928 to ex-
plain the enormous variation in the half-lives for decay of radioactive nuclei.
(Alpha particles are emitted from atoms during radioactive decay and consist of
two protons and two neutrons tightly bound together.) In general, the smaller the
energy of the emitted particle, the longer the half-life of the particle is. The en-
ergies of particles from natural radioactive sources range from approximately

to whereas the half-lives range from approximately seconds
to years. Gamow represented a radioactive nucleus by a potential well of fi-
nite depth containing an particle, as shown in Figure 35-17. Without knowing
very much about the nuclear force that is exerted by the nucleus on the particle,
Gamow represented it by a square well. Just outside the well, the particle that
has a charge of is repelled by the nucleus that has a charge where is
the remaining nuclear charge. This force is represented by the Coulomb potential
energy The energy is the measured kinetic energy of the emitted

particle, because when it is far from the nucleus its potential energy is zero.
After the particle is formed from the radioactive nucleus, it bounces back and
forth inside the nucleus, hitting the barrier at the nuclear radius Each time the

particle strikes the barrier, some small probability exists of the particle pene-
trating the barrier and appearing outside the nucleus. We can see from Figure 35-17
that a small increase in reduces the relative height of the barrier and also
the barrier’s thickness. Because the probability of penetration is so sensitive to the
barrier thickness and relative height, a small increase in leads to a large increase
in the probability of transmission and therefore to a shorter lifetime. Gamow was
able to derive an expression for the half-life as a function of that is in excellent
agreement with experimental results.

In the scanning tunneling microscope (STM), developed in the 1980s, a thin
space between the surface of a sample and the tip of a tiny needle-like probe
(Figure 35-18) acts as a potential-energy barrier to electrons bound in the sample.
(The height of the barrier is the work function of the surface.) A small voltage
applied between the probe and the sample causes the electrons to tunnel through
the vacuum separating the tip of the probe and the surface of the sample if the
surfaces are close enough together. The tunneling current is extremely sensitive
to the size of the gap between the probe and sample. A constant tunneling cur-
rent is maintained as the probe scans (travels along) the surface by a feedback

E

E

U � EE

a

R.
a

a

E�k(2e)(Ze)>r. Ze�Ze,�2e
a

a

1010
10�57 MeV,4 MeV

a

a

a

45°

F I G U R E  3 5 - 1 6 The penetration of a barrier by water waves in a ripple tank. In Figure 
35-16a, the waves are totally reflected from a gap of deeper water. When the gap is very narrow,
as in Figure 35-16b, a transmitted wave appears. The dark circles are spacers that are used to
support the prisms from below. (Education Development Center.)

R r1

r

U(r)

E

Coulomb
potential
energy 

F I G U R E  3 5 - 1 7 Model of a potential
energy function for an particle of a
radioactive nucleus. The strong attractive
nuclear force when is approximately equal
to the nuclear radius can be approximately
described by the potential well shown. The
nuclear force is negligible outside the nucleus,
and the potential there is given by Coulomb’s
law, where is the
nuclear charge and is the charge of the 

particle. The wave function of the alpha
particle, shown in red, is placed on the graph.
a

2e
ZeU(r) � �k(2e)(Ze)>r,

R
r

a

(a) (b)
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mechanism that moves the probe up and down (farther from or closer to the sur-
face). The surface of the sample is mapped out by the tracking of the motions of
the probe. In this way, the surface features of the sample can be measured with a
resolution of the order of the size of an atom.

35-5 THE SCHRÖDINGER EQUATION

IN THREE DIMENSIONS

The one-dimensional time-independent Schrödinger equation is easily extended to
three dimensions. In rectangular coordinates, it is

35-30

where the wave function and the potential energy are generally functions of
all three coordinates, and To illustrate some of the features of problems in
three dimensions, we consider a particle in a three-dimensional infinite square well
given by for and Outside this cu-
bical region, For this problem, the wave function must be zero at the
edges of the well.

There are standard methods in partial differential equations for solving Equation
35-30. We can guess the form of the solution from our knowledge of probability. For
a one-dimensional box along the axis, we have found the probability that a parti-
cle is in the region between and to be (from Equation 35-10),
where is a normalization constant and is the wave number. Similarly,
for a box along the axis, the probability of a particle being in a region between 
and is The probability of two independent events occurring
is the product of the probabilities of each event occurring.* So the probability of a
particle being in region between and and in region between and 
is The probability of
a particle being in the region between and and and and 
is where is the solution of Equation 35-30. This solution
is of the form

35-31

where the constant is determined by normalization. Inserting this solution into
Equation 35-30, we obtain for the energy

which is equivalent to where and
The wave function (Equation 35-31) will be zero at if 

where is an integer. Similarly, the wave function will be zero at if
and the wave function will be zero at (It is also zero

at ) The energy is thus quantized to the values

35-32

where and are positive integers and is the ground-state
energy of the one-dimensional well. Note that the energy and wave function are
characterized by three quantum numbers, each arising from the boundary condi-
tions for one of the coordinates and z.x, y,

E1 � U2p2>(2mL2)n3n1, n2 ,

En1n2n3
�

U2p2

2mL2 (n1
2 � n2

2 � n3
2) � E1(n1

2 � n2
2 � n3

2)

x � 0, y � 0, and z � 0.
z � L if k3 � n3p>L.k2 � n2p>L,

y � Ln1

k1 � n1p>L,x � Lpz � Uk3 .
px � Uk1, py � Uk2,E � 1

2 (p2
x � p2

y � p2
z)>m,

E �
U2

2m
(k1

2 � k2
2 � k3

2)

A

c(x, y, z) � A sin(k1x) sin(k2y) sin(k3z)

c(x, y, z)c2 (x, y, z) dx dy dz,
z � dzzy � dy,x � dx, yx

A1
2 sin2 (k1x) A2

2 sin2 (k2y) dx dy.A1
2 sin2 (k1x) dx A2

2 sin2 (k2y) dy �

y � dyyx � dxx

A2
2 sin2 (k2y)dy.y � dy

yy
k1 � np>LA1

A1
2 sin2(k1x) dxx � dxx

x

U(x, y, z) � .
0 	 z 	 L.0 	 x 	 L, 0 	 y 	 L,U(x, y, z) � 0

z.x, y,
Uc

�
U2

2m
a�2c

�x2 �
�2c

�y2 �
�2c

�z2 b � Uc � Ec

* For example, if you throw two dice, the probability of the first die coming up 6 is and the probability of the second
die coming up an odd number is The probability of the first die coming up 6 and the second die coming up an odd
number is (1>6)(1>2) � 1>12.

1>2.
1>6
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The lowest energy state (the ground state) for the cubical well occurs when
and has the value

The first excited energy level can be obtained in three different ways: 
or Each has a different wave

function. For example, the wave function for is

35-33

There are thus three different quantum states as described by the three different
wave functions corresponding to the same energy level. An energy level with which
more than one wave function is associated is said to be degenerate. In this case,
there is threefold degeneracy. Degeneracy is related to the spatial symmetry of the
system. If, for example, we consider a noncubic well, where for

and the boundary conditions at the edges
would lead to the quantum conditions and 
and the total energy would be

35-34

These energy levels are not degenerate if and are all different. Figure 35-19
shows the energy levels for the ground state and first two excited states for an infinite
cubic well in which the excited states are degenerate and for a noncubic infinite well
in which and are all slightly different so that the excited levels are slightly
split apart and the degeneracy is removed. The ground state is the state where the
quantum numbers and all equal 1. None of the three quantum numbers can
be zero. If any one of and were zero, the corresponding wave number 
would also equal zero and the corresponding wave function (Equation 35-31) would
equal zero for all values of and z.x, y,

kn3n1, n2 ,
n3n1, n2 ,

L3L1, L2 ,

L3L1, L2 ,

En1n2n3
�

U2p2

2m
an1

2

L1
2 �
n2

2

L2
2 �
n3

2

L3
2 b

k3L3 � n3p,k2L2 � n2p,k1L1 � n1p,
0 	 z 	 L3 ,0 	 x 	 L1, 0 	 y 	 L2 ,

U � 0

c211 � A sin
2px
L

sin
py

L
sin
pz
L

n1 � 2 and n2 � n3 � 1
n3 � 2, n1 � n2 � 1.n2 � 2, n1 � n3 � 1;n2 � n3 � 1;

n1 � 2,

E111 �
3U2p2

2mL2 � 3E1

n1 � n2 � n3 � 1

L =

= =

L = L1

11 2 2 2 1 2

2 3

E E =2 2 1E 9E

= = 12 1 1 1 2 1E E =1 1 2E 6E

1=1 1 1E 3E

L1 L2< L3<

E2 2 1

E2 1 2

E1 2 2

E2 1 1

E1 2 1

E1 1 2

E1 1 1

(a) (b)

F I G U R E  3 5 - 1 9 Energy-level diagrams for (a) a cubic infinite well and (b) a noncubic
infinite well. In Figure 35-19a the energy levels are degenerate; that is, there are two or more
wave functions having the same energy. The degeneracy is removed when the symmetry of the
potential is removed, as in Figure 35-19b.
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Example 35-3 Energy Levels for a Particle in 
a Three-Dimensional Box

A particle is in a three-dimensional box where Give the quantum numbers
and that correspond to the state(s) in each of the seven lowest energy levels of this box.

PICTURE We can use Equation 35-34 to write the energy in terms of and the quantum
numbers and Then we can find by inspection the values of the quantum numbers
that give the lowest energies.

SOLVE

n3 .n1, n2 ,
L1

n3n1, n2 ,
L3 � L2 � 2L1 .

1. The energy of a level is given by Equation 35-34: En1n2n3
�

U2p2

2m
an1

2

L1
2 �
n2

2

L2
2 �
n3

2

L3
2 b

2. Factor out 1>L1
2: En1n2n3

�
U2p2

2m
an1

2

L1
2 �

n2
2

4L1
2 �

n3
2

4L1
2 b �

U2p2

8mL1
2 (4n1

2 � n2
2 � n3

2)

3. The lowest energy is E111: (1st)

where E1 � U2p2>8mL1
2.

 6E1E111 � E1(4 # 12 � 12 � 12) �

4. The energy increases the least when we increase or 
Trying various values of the quantum numbers:

n3 .n2 (2nd)

(3rd)

(4th)

(5th)

(6th)

(7th)
 21E1E141 � E114 � E1(4 # 12 � 42 � 12) �

 21E1E221 � E212 � E1(4 # 22 � 22 � 12) �

 18E1E211 � E1(4 # 22 � 12 � 12) �

 17E1E132 � E123 � E1(4 # 12 � 32 � 22) �

 14E1E131 � E113 � E1(4 # 12 � 32 � 12) �

 12E1E122 � E1(4 # 12 � 22 � 22) �

 9E1E121 � E112 � E1(4 # 12 � 22 � 12) �

CHECK Because two of the lengths are equal, degenerate energy levels are expected. Our
results meet this expectation.

TAKING IT FURTHER Energies and are exactly equal because and are exactly
equal. However, energies and are exactly equal because is exactly half of 

PRACTICE PROBLEM 35-2 Find the quantum numbers and energies of the next two energy
levels in step 4.

L2 .L1E141E221

L3L2E212E221

Example 35-4 Wave Functions for a Particle in 
a Three-Dimensional Box Try It Yourself

Write the degenerate wave functions for the fourth and fifth excited states (the 5th and 6th
levels) of the results in step 4 of Example 35-3.

PICTURE Use (a generalized version of Equation 
35-31) with ki � nip>Li .c(x, y, z) � A sin(k1x) sin(k2y) sin(k3z)

¸
˚

˝
˚

˛
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35-6 THE SCHRÖDINGER EQUATION FOR

TWO IDENTICAL PARTICLES

Our discussion of quantum mechanics has thus far been limited to situations in
which a single particle moves in some force field characterized by a potential en-
ergy function The most important physical problem of this type is the hydro-
gen atom, in which a single electron moves in the Coulomb potential of a proton.
This problem is actually a two-body problem, because the proton also moves in
the field of the electron. However, the motion of the much more massive proton
requires only a very small correction to the energy of the atom that is easily made
in both classical and quantum mechanics. When we consider more complicated
problems, such as the helium atom, we must apply quantum mechanics to two or
more electrons moving in an external field. Such problems are complicated, not
only by the interaction of the electrons with each other, but also by the fact that
the electrons are identical.

The interaction of two electrons with each other is electromagnetic and is es-
sentially the same as the classical interaction of two charged particles. The
Schrödinger equation for an atom that has two or more electrons cannot be solved
exactly, so approximation methods must be used. This situation is not very dif-
ferent from the situation in which a classical expression describes three or more
particles. However, the complications arising from the identity of electrons are
purely quantum mechanical and have no classical counterpart. They are due to
the fact that it is impossible to keep track of which electron is which. Classically,
identical particles can be identified by their positions, which in principle can be
determined with unlimited accuracy. This is impossible quantum mechanically
because of the uncertainty principle. Figure 35-20 offers a schematic illustration of
the problem.

U.

1

1

2

2

(a) (c)(b)

2

21

1

1

1

2

2or ? 1 2or ?

F I G U R E  3 5 - 2 0 (a, b) Two possible classical electron paths. If electrons were classical
particles, they could be distinguished by the paths followed. (c) However, because of the
quantum-mechanical wave properties of electrons, the paths are spread out, as indicated by the
shaded region. It is impossible to distinguish which electron is which after they separate.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

Write the wave functions corresponding to the
energies and E113E131

c113 � A sin
px
L1

sin
py

2L1

sin
3pz
2L1

c131 � A sin
px
L1

 sin 
3py

2L1

 sin 
pz
2L1
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The indistinguishability of identical particles has important consequences. For
instance, consider the very simple case of two identical, noninteracting particles
in a one-dimensional infinite square well. The time-independent Schrödinger
equation for two particles, each of mass is

35-35

where and are the coordinates of the two particles. If the particles interact,
the potential energy is described by terms that have both and and cannot
be separated into separate terms having only or For example, the electro-
static repulsion of two electrons in one dimension is represented by the potential
energy function However, if the particles do not interact (as we are
assuming here), we can write For the infinite square well,
we need only solve the Schrödinger equation inside the well where and re-
quire that the wave function be zero at the walls of the well. With 
Equation 35-35 looks just like the expression for a particle in a two-dimensional
well (Equation 35-30, but no terms exist and is replaced by 

Solutions of this equation can be written in the form*

35-36

where and are the single-particle wave functions for a particle in an infinite
well and and are the quantum numbers of particles 1 and 2, respectively. For
example, for and the wave function is

35-37

The probability of finding particle 1 in the region between and 
and particle 2 in the region between and is 
which is just the product of the separate probabilities and 
However, even though we have labeled the particles 1 and 2, we cannot distin-
guish which is between and and which is between and if
they are identical. The mathematical descriptions of identical particles must be the
same if we interchange the labels. The probability density must therefore
be the same as 

35-38

Equation 35-38 is satisfied if is either symmetric or antisymmetric on the
exchange of particles—that is, if either

35-39

or

35-40

Note that the wave functions given by Equations 35-36 and 35-37 are neither sym-
metric nor antisymmetric. If we interchange and in these wave functions, we
get a different wave function, which implies that the particles can be distinguished.

x2x1

c(x2, x1) � �c(x1, x2) antisymmetric

c(x2, x1) � c(x1, x2) symmetric

c(x2, x1)

c2(x2, x1) � c2(x1, x2)

c2(x2, x1):
c2(x1, x2)

x2 � dx2x2x1 � dx1x1

c2
m(x2) dx2 .c2

n(x1) dx1

c2
nm(x1, x2) dx1 dx2 ,x � x2 � dx2x � x2

x � x1 � dx1x � x1

c12 � A sin
px1

L
sin

2px2

L

m � 2,n � 1
mn
cmcn

cnm � cn(x1)cm(x2)

x2).yz

U � 0,
U � 0

U � U1(x1) � U2(x2).
ke2> ƒx2 � x1 ƒ .

x2 .x1

x2x1U
x2x1

�
U2

2m

�2c(x1, x2)

�x1
2 �

U2

2m

�2c(x1, x2)

�x2
2 � Uc(x1, x2) � Ec(x1, x2)

m,

* Again, this result can be obtained by solving Equation 35-35, but it also can be understood in terms of our knowledge
of probability. The probability of electron 1 being between and and electron 2 being between 
and is the product of the individual probabilities.x � x2 � dx2

x � x2x � x1 � dx1x � x1
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No two identical fermions can simultaneously occupy the same quantum state.

PAULI  EXCLUSION PRINCIPLE

The wave function for two or more identical fermions must be an antisymmet-
ric wave function. Other particles (for example, particles, deuterons, photons,
and mesons) have integer spin and symmetric wave functions. These particles are
called bosons.

A wave function that is a solution to the multiparticle time-independent wave
equation (Equation 35-35) is called a spatial state. A bound system that contains
fermions has either one or two identical fermions in each occupied spatial state.
However, for a bound system that contain bosons there is no limit to the number
of identical bosons in each spatial state.

a

We can find symmetric and antisymmetric wave functions that are solutions of the
Schrödinger equation by adding or subtracting and Adding them, we obtain

35-41

and subtracting them, we obtain

35-42

For example, the symmetric and antisymmetric wave functions for the first excited
state of two identical particles in an infinite square well would be

35-43

and

35-44

There is an important difference between antisymmetric and symmetric wave
functions. If the antisymmetric wave function is identically zero for all val-
ues of and whereas the symmetric wave function is not. Thus, if the wave
function describing two identical particles is antisymmetric, the quantum numbers

and of two particles cannot be the same. The idea that no two electrons in an
atom can occupy the same quantum state, and thus have the same quantum num-
bers, was first stated by Wolfgang Pauli in 1925. This idea was soon generalized to
include systems other than atoms and particles other than electrons. For example,
no two protons of a nucleus can occupy the same quantum state, and no two
neutrons of a nucleus can occupy the same quantum state. Electrons, protons, neu-
trons, neutrinos, and quarks all have a spin quantum number equal to one-half,
and all particles that have half-integer spin are called fermions. The two allowed
values for the secondary spin quantum number are plus and minus one half.
Pauli’s idea is called the Pauli exclusion principle:

ms

s

mn

x2 ,x1

n � m,

cA � A�asin
px1

L
sin

2px2

L
� sin

px2

L
sin

2px1

L
b

cS � A�asin
px1

L
sin

2px2

L
� sin

px2

L
sin

2px1

L
b

cA � A�[cn(x1)cm(x2) � cn(x2)cm(x1)] antisymmetric

cS � A�[cn(x1)cm(x2) � cn(x2)cm(x1)] symmetric

cmn .cnm
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* An exception to this claim is for the infinite well potential (where is equal to zero inside the well and to infinity out-
side the well). For this potential function is not continuous at the boundary of the well (see Figure 34-17).dc>dx U

Summary

1. The Schrödinger equation is a partial differential equation that relates the second space
derivative of a wave function to its first time derivative. Wave functions that describe
physical situations are solutions of this differential equation.

2. Because a wave function must satisfy the normalization condition, it must be well
behaved; this means, among other things, that it must approach zero as approaches
infinity. For bound systems such as a particle in a box, a simple harmonic oscillator, or an
electron in an atom, this requirement leads to energy quantization.

3. The well-behaved wave functions for bound systems describe standing waves.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Time-Independent 
Schrödinger Equation 35-4

Allowable solutions In addition to satisfying the Schrödinger equation, a wave function must be continuous
and must have a continuous first derivative * Because the probability of finding an
electron somewhere must be 1, the wave function must obey the normalization condition

This condition implies the boundary condition that must approach approaches 
Such boundary conditions lead to the quantization of energy.

2. Confined Particles When the total energy is greater than the potential energy in some region (the classi-
cally allowed region) and less than outside that region, the wave function oscillates
within the classically allowed region and decreases exponentially outside that region.
The wave function approaches zero as approaches only for certain values of the total
energy The energy is thus quantized.

In a finite square well In a finite well of height there are only a finite number of allowed energies, and these are
slightly less than the corresponding energies in an infinite well.

In the simple harmonic oscillator For the oscillator with potential energy function the allowed energies are
equally spaced and given by

35-26

The ground-state wave function is given by

35-23

where is the normalization constant and

3. Reflection and Barrier Penetration When the potential changes abruptly over a small distance, a particle may be reflected even
though A particle may penetrate a region in which Reflection and pen-
etration of matter waves are similar to those for other kinds of waves.

4. The Schrödinger Equation The wave function for a particle in a three-dimensional box can be written
in Three Dimensions

where and are wave functions for a one-dimensional box.

Degeneracy When more than one wave function is associated with the same energy level, the energy level
is said to be degenerate. Energy-level degeneracy occurs because of spatial symmetry.

c3c1, c2 ,

c(x, y, z) � c1(x)c2(y)c3(z)

E 	 U(x).E 
 U(x).

a � 1
2mv0>U.

A0

c0(x) � A0e
�ax2

En � An � 1
2 BUv0 n � 0, 1, 2, Á

U(x) � 1
2mv2

0 x
2,

U0 ,

E.
ƒ x ƒ

ƒc ƒ
cU(x)

U(x)E

.0 as ƒ x ƒc

�


�

ƒc ƒ 2 dx � 1

dc>dx. c(x)

�
U2

2m
d2c(x)
dx2 � U(x)c(x) � Ec(x)

ƒ x ƒ
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5. The Schrödinger Equation for A wave function that describes two identical particles must be either symmetric or 
Two Identical Particles antisymmetric when the coordinates of the particles are exchanged. Fermions (which in-

clude electrons, protons, and neutrons) are described by antisymmetric wave functions and
obey the Pauli exclusion principle, which states that no two identical particles can simul-
taneously have the same values for their quantum number. Bosons (which include parti-
cles, deuterons, photons, and mesons) have symmetric wave functions and do not obey the
Pauli exclusion principle.

a

Answers to Concept Checks

35-1 The wave function cannot be normalized.

Answers to Practice Problems

35-2 E133 � 22E1, E142 � E124 � E222 � 24E1

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Sketch (a) the wave function and (b) the probability den-
sity function for the state of the finite square-well potential.

2 • Sketch (a) the wave function and (b) the probability den-
sity function for the state of the finite square-well potential.

THE SCHRÖDINGER EQUATION

3 •• Show that if and are each solutions to the time-
independent Schrödinger equation (Equation 35-4), then 

is also a solution. This result, known as the superposi-
tion principle, applies to the solutions of all linear equations.

THE HARMONIC OSCILLATOR

4 •• The harmonic oscillator problem may be used to de-
scribe the vibrations of molecules. For example, the hydrogen mol-
ecule is found to have equally spaced vibrational energy levels
separated by J. What value of the force constant of the
spring would be needed to get this energy spacing, assuming that
half the molecule can be modeled as a hydrogen atom attached to
one end of a spring that has its other end fixed? Hint: The spacing for
the energy levels of this half-molecule would be half of the spacing for the
energy levels of the complete molecule. In addition, the force constant of a
spring is inversely proportional to its relaxed length, so if half of the
spring has force constant the entire spring has a force constant that is
equal to

5 •• Use the procedure of Example 35-1 to verify that the en-
ergy of the first excited state of the harmonic oscillator is 

(Note: Rather than solve for a again, use the step-8 result
obtained in Example 35-1) SSMa � 1

2mv0>UE1 � 3
2 Uv0 .

1
2 k.

k,

8.7 � 10�20
H2

c1(x) � c2(x)
c3(x) �

c2(x)c1(x)

n � 4

n � 5

6 •• Show that the expectation value is
zero for both the ground state and the first excited state of the har-
monic oscillator.

7 •• Verify that the normalization constant in the ground-
state harmonic-oscillator wave function (Equation
35-23) is given by 

8 •• Using the result of Problem 7, show that for the ground
state of the harmonic oscillator 

Use this result to show that the average potential energy
equals half the total energy.

9 •• The quantity is a measure of the average
spread in the location of a particle. (a) Consider an electron trapped
in a harmonic oscillator potential. Its lowest energy level is found

to be Calculate for this electron. (See 
Problems 6 and 8.) (b) Now consider an electron trapped in an infi-
nite square-well potential. If the width of the well is equal to 

what would be the lowest energy level for this
electron?

10 ••• Classically, the average kinetic energy of the harmonic
oscillator equals the average potential energy. Assume that this re-
sult is also true for the quantum-mechanical harmonic oscillator,
and use this result, along with the result of Problem 8, to determine
the expectation value of (where ) for the ground state of
the one-dimensional harmonic oscillator.

11 ••• We know that for the classical harmonic oscillator,
It can be shown that for the quantum-mechanical har-

monic oscillator, Use the results of Problems 6, 8, and
10 to determine the uncertainty product for the ground
state of the harmonic oscillator. The uncertainties are defined by

and (¢px)
2 � 8(px � 8px9)29.(¢x)2 � 8(x � 8x9)29 ¢x ¢px

8px9 � 0.
px av � 0.

px � mvxpx
2

28x29 � 8x92,
28x29 � 8x922.1 � 10�4 eV.

28x29 � 8x92
1>(4a). 8x29 � �x2 ƒc ƒ 2 dx � U/(2mv0) �

A0 � (2mv0>h)1>4. c0(x) � A0e
�ax2

A0

8x9 � � 

�
x ƒc ƒ 2 dx

TOPIC RELEVANT EQUATIONS AND REMARKS
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REFLECTION AND TRANSMISSION
OF ELECTRON WAVES: 
BARRIER PENETRATION

12 •• A particle of energy approaches a step barrier of height
What should be the ratio so that the reflection coefficient

is

13 •• SPREADSHEET A particle that has mass is traveling
in the direction of increasing The potential energy of the particle
is equal to zero everywhere in the region and is equal to 
everywhere in the region where (a) Show that if the
total energy is where then the wave number in
the region is given by where is the
wave number in the region (b) Using a spreadsheet program
or graphing calculator, graph the reflection coefficient and the
transmission coefficient as functions of for 

14 •• Suppose that the potential energy in Problem 13 is equal
to zero everywhere in the region and is equal to every-
where in the region where The wave number for the
incident particle is again and the total energy is (a) What is
the wave number for the particle in the region where 
(b) What is the reflection coefficient (c) What is the transmission
coefficient (d) If each of one million particles that are in the re-
gion are traveling with wave number in the direction of in-
creasing and are incident upon the potential energy drop at 
how many of these particles are expected to continue along in
the direction of increasing How does this compare with the clas-
sical prediction?

15 •• A electron (an electron with a kinetic energy of
) is incident on a potential-energy barrier that has a height

equal to and a width equal to (a) Use Equation 35-
29 to calculate the order of magnitude of the probability that the
electron will tunnel through the barrier. (b) Repeat your calcula-
tion for a width of 

16 •• Use Equation 35-29 to calculate the order of magni-
tude of the probability that a proton will tunnel out of a nu-
cleus in one collision with the nuclear barrier if the proton has
an energy below the top of the potential-energy bar-
rier and the barrier thickness is 

17 ••• To understand how a small change in energy can
dramatically change the probability of the particle tunneling from a
nucleus, consider an particle emitted by a uranium nucleus 
(a) Referring to Figure 35-17, calculate the center-to-center distance of
closest approach that particles that have kinetic energies of

and could make to the uranium nucleus. (b) Use the
result from Part (a) to calculate the relative transmission coefficient

for the same particles. (Note: The actual half-lives of uranium
nuclei vary over nine orders of magnitude. Your calculation will show
a smaller range than this; however, to find half-life, you must also
include the frequency with which the particle strikes the barrier.)

THE SCHRÖDINGER EQUATION
IN THREE DIMENSIONS

18 •• (a) A particle is confined to a three-dimensional box that
has sides and Give the quantum numbers

and that correspond to the ten lowest-energy quantum
states of this box. Hint: A spreadsheet can be helpful. (b) What quan-
tum numbers, if any, correspond to degenerate energy levels?
(c) Give a wave function for the fifth excited state. (There are only
five states that have energy levels below the energy level of the fifth
excited state.)

n3n1, n2

L3 � 3L1 .L1, L2 � 2L1 ,

a

ae�2aa

7.0 MeV4.0 MeV
ar1

(Z � 92).a

a

a-particle

1.2 � 10�15 m.
6.0 MeV

SSM0.10 nm.

1.0 nm.25 eV
10 eV

10-eV

x?

x � 0,x
k1x 	 0

T?
R?

x 
 0?
2U0 .k1 ,

U0 
 0.x 
 0,
�U0x 	 0

SSM1 � a � 5.a,T
R

x 	 0.
k1k2 � k12(a � 1)>a,x 
 0
k2a � 1,E � aU0 ,

U0 
 0.x 
 0,
U0x 	 0

x.
m

1
2?

E>U0U0 .
E

19 •• (a) A particle is confined to a three-dimensional box that
has sides and Give the quantum numbers

and that correspond to the ten lowest-energy quantum
states of this box. Hint: A spreadsheet can be helpful. (b) What combi-
nations of these quantum numbers, if any, correspond to degenerate
energy levels? (c) Give the wave function for the fourth excited en-
ergy state. (There are only four states that have energy levels below
the energy level of the fourth excited state.)

20 • A particle moves in a potential well given by 
for and outside
these ranges. (a) Write an expression for the ground-state wave
function for the particle. (b) How do the allowed energies compare
with those for a well having for rather than for

Explain your answer.

21 •• A particle is constrained to the two-dimensional region
defined by and and moves freely throughout
that region. (a) Find the wave functions that meet these conditions
and are solutions of the Schrödinger equation. (b) Find the energies
that correspond to the wave functions in part (a). (c) Find the quan-
tum numbers of the two lowest states that have the same energy
(that are degenerate). (d) Find the quantum numbers of the three
lowest states that have the same energy.

THE SCHRÖDINGER EQUATION 
FOR TWO IDENTICAL PARTICLES

22 • Show that the two-particle wave function 
and (Equation 

35-37), is a solution of

(Equation 35-35), if and find the energy of the state
represented by this wave function.

23 • What is the ground-state energy of ten noninteracting
bosons in a one-dimensional box of length 

24 •• What is the ground-state energy of seven identical non-
interacting fermions in a one-dimensional box of length (Because
the quantum number associated with spin can have two values,
each spatial state can be occupied by two fermions.)

ORTHOGONALITY 
OF WAVE FUNCTIONS

The integral of two functions over some space interval is somewhat
analogous to the dot product of two vectors. If this integral is zero, the
functions are said to be orthogonal, which is analogous to two vectors
being perpendicular. The following problems illustrate the general
principle that any two wave functions corresponding to different
energy levels in the same potential are orthogonal. A general hint for
all these problems is that the integral is equal to zero if is
equal to and if is equal to

25 •• Show that the ground-state and the first excited state wave
functions of the harmonic oscillator are orthogonal; that is, show that

26 •• The wave function for the state of the harmonic
oscillator is where is the normaliza-
tion constant and a is a positive constant. Show that the wave func-
tions for the states and of the harmonic oscillator are
orthogonal.

n � 2n � 1

A2c2(x) � A2 A2ax2 � 1
2 Be�ax2,

n � 2

� 

�
c0(x)c1(x) dx � 0.

�f(�x).f(x)�x2

x1�x2
x1
f(x) dx

L?

L?

U(x1, x2) � 0,

�
U2

2m

�2c(x1, x2)

�x2
1

�
U2

2m

�2c(x1, x2)

�x2
2

� Uc(x1, x2) � Ec(x1, x2)

0 	 x2 	 L,0 	 x1 	 LA sin(px1>L)sin(2px2>L),
c12 �

0 � y � L0 � x � L

�L>2 	 x 	 L>2?
0 	 x 	 L,U � 0

U � 0 	 z 	 L;�L>2 	 x 	 L>2, 0 	 y 	 L,
U(x, y, z) � 0

n3n1, n2

L3 � 4L1 .L1, L2 � 2L1 ,
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27 •• For the wave functions

corresponding to a particle in an infinite square-well potential from 0
to show that for all positive integers and 
where that is, show that the wave functions are orthogonal.

GENERAL PROBLEMS

28 •• Consider a particle in an infinite one-dimensional box that
has a length and is centered at the origin. (a) What are the values
of and (b) What are the values of for the and

states? (c) Evaluate for the and states.

29 •• Eight identical noninteracting fermions are confined to
an infinite two-dimensional square box of side length 
Determine the energies of the three lowest energy states. (See
Problem 22.)

30 •• A particle is confined to a two-dimensional box defined
by the following boundary conditions: for

and and outside
these ranges. (a) Determine the energies of the three lowest energy
states. Are any of these states degenerate? (b) Identify the quantum
numbers of the two lowest energy degenerate states and determine
the energy of these states.

31 ••• The classical probability distribution function for a par-
ticle in an infinite one-dimensional well of length is 
(See Example 34-5.) (a) Show that the classical expectation value of

for a particle in an infinite one-dimensional well of length that
is centered at the origin is (b) Find the quantum expectation
value of for the nth state of a particle in the one-dimensional
box and show that it approaches the classical limit as ap-
proaches infinity.

32 •• Show that Equations 35-27 and 35-28 imply that the
transmission coefficient for particles of energy incident on a step
barrier is given by

where 

33 •• (a) Show that for the case of a particle of energy inci-
dent on a step barrier the wave numbers and are re-
lated by

(b) Use this result to show that 

34 •• SPREADSHEET (a) Using a spreadsheet program or
graphing calculator and the results of Problem 32 and Problem 33,
graph the transmission coefficient and reflection coefficient asRT

R � (1 � r)2>(1 � r)2.

k2

k1

� r � C1 �
U0

E

k2k1U0 	 E,
E

r � k2>k1 .

T �
4k1k2

(k1 � k2)
2 �

4r
(1 � r)2

U0 	 E
E

nL2>12
x2

L2>12.
Lx2

P � 1>L.L

U(x, y) � �3L>2 � y � 3L>2,�L>2 � x � L>2 U(x, y) � 0

SSM

L.

n � 2n � 18x29n � 2
n � 18x9c2(0)?c1(0)

L

m � n;
n,m�L0 cm(x)cn(x) dx � 0L,

cn(x) � A sin(npx>L) n � 1, 2, 3, Á

a function of incident energy for values of ranging from 
to (b) What limiting values do your graphs indicate?

35 ••• The wave function for the state of the harmonic os-
cillator is where Determine
the normalization constant 

36 ••• Consider the time-independent, one-dimensional
Schrödinger equation when the potential function is symmetric
about the origin, that is, when is even.* (a) Show that if is
a solution of the Schrödinger equation and has energy then

is also a solution that has the same energy Furthermore,
and can differ by only a multiplicative constant.

(b) Write and show that Note that 
means that is an even function of and means that

is an odd function of 

37 ••• In this problem, you will derive the ground-state energy of
the harmonic oscillator using the precise form of the uncertainty
principle, where and are defined to be the
standard deviations and 

Proceed as follows:

1. Write the total classical energy in terms of the position and
momentum using and 

2. Show that and 
Hint: See Equations 17-34a and 17-34b.

3. Use the symmetry of the potential energy function to argue that
and must be zero, so that and 

4. Assume that to eliminate from the average
energy and write

as where 

5. Set to find the value of for which is a minimum.

6. Show that the minimum energy is given by 

38 ••• A particle that has mass and is near Earth’s surface, at
which can be described by the potential energy function

in the region and by in the region 
Sketch a graph of versus For some positive value of total
energy indicate the classically allowed region on the graph and
plot the classical kinetic energy versus on the graph. The
Schrödinger equation for this problem is quite difficult to solve.
Using arguments similar to those in Section 35-2 about the conca-
vity of the wave function as given by the Schrödinger equation,
sketch the shape of the wave function for the ground state and for
the first two excited states.

z
E,

z.U(z)
z 	 0.U � z 
 0,U � mgz

z � 0,
m

SSM8E9min � �1
2 Uv0.

8E9Zd8E9>dZ � 0

Z � 8x29.8E9 � U2>(8mZ) � 1
2mv2Z,8E9 8E9 � 812 p2

x>m � 1
2mv2

0 x
29 � 1

28p2
x9>m � 1

2mv2
08x298p2

x9¢px¢x � U>2 (¢px)
2 � 8p2

x9.(¢x)2 � 8x298px98x9
8(px � 8px9)29 � 8p2

x9 � 8px92. (¢px)
2 �(¢x)2 � 8(x � 8x9)29 � 8x29 � 8x92K � 1

2 p2
x>m.U(x) � 1

2mv2
0x

2px

x

(¢px)
2 � 8(px � 8px9)29.(¢x)2 � 8(x � 8x9)29 ¢px¢x¢x ¢px � U>2,

x.c(x)
C � �1x,c(x)

C � �1C � �1.c(x) � Cc(�x),
c(�x)c(x)

E.c(�x)
E,
c(x)U(x)

A2 .
a � 1

2mv0>U.c2(x) � A2(2ax2 � 1
2) e�ax2,

n � 2

E � 10.0U0 .
E � U0EE

* A function is even if for all and a function is odd if
for all x.f(x) � �f(�x)

f(x)x,f(x) � f(�x)f(x)



Atoms

36-1 The Atom

36-2 The Bohr Model of the Hydrogen Atom

36-3 Quantum Theory of Atoms

36-4 Quantum Theory of the Hydrogen Atom

36-5 The Spin–Orbit Effect and Fine Structure

36-6 The Periodic Table

36-7 Optical Spectra and X-Ray Spectra

O
ne hundred eleven chemical elements have been discovered, and several
additional chemical elements recently have been reported but not authenti-
cated. Each element is characterized by an atom that has a number of
protons and an equal number of electrons. The number of protons is
called the atomic number. The atom that has the fewest protons is called
hydrogen (H) and has A helium (He) atom has two protons 

a lithium (Li) atom has three protons and so forth. Nearly all the mass of an
atom is concentrated in its tiny nucleus, which is made up of protons and neutrons.
An atom’s nuclear radius is approximately 1 fm to and the
radius of an atom is approximately 

The chemical properties and physical properties of an element are determined
by the number and arrangement of the electrons in an atom of the element.
Because each proton has a positive charge the nucleus has a total positive
charge The electrons are negatively charged so they are attracted to the
nucleus and repelled by each other. Because electrons and protons have equal but

(�e),�Ze.
�e,

0.1 nm � 100 000 fm.
10 fm (1 fm � 10�15 m)

(Z � 3),
(Z � 2),Z � 1.

ZZ

C H A P T E R

How is the atomic number

obtained from the spectral analysis?

(See Example 36-8.)
?
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AT A DISTANCE OF 6,000 LIGHT YEARS
FROM EARTH, THE STAR CLUSTER
RCW 38 IS A RELATIVELY CLOSE 
STAR-FORMING REGION. THIS IMAGE
COVERS AN AREA ABOUT 5 LIGHT YEARS
ACROSS AND CONTAINS THOUSANDS
OF HOT, VERY YOUNG STARS FORMED
LESS THAN A MILLION YEARS AGO.
X RAYS FROM THE HOT UPPER
ATMOSPHERES OF 190 OF THESE
STARS WERE DETECTED BY CHANDRA,
AN X-RAY OBSERVATORY ORBITING
EARTH. THE MECHANISMS GENERATING
THESE X RAYS ARE NOT KNOWN. ON
EARTH, X-RAY MACHINES PRODUCE 
X RAYS BY BOMBARDING A TARGET
WITH HIGH-ENERGY ELECTRONS. THE
ATOMIC NUMBER OF THE ATOMS
THAT MAKE UP THE TARGET CAN BE
DETERMINED BY ANALYZING THE
RESULTING X-RAY SPECTRA.
(NASA/CXC/CfA/S.Wolk et al.)

36
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(a)

(b)
F I G U R E  3 6 - 1 (a) Line spectrum of
hydrogen and (b) line spectrum of mercury.
((a) and (b) adapted from Eastern Kodak and Wabash
Instrument Corporation.)

opposite charges and an atom has equal numbers of electrons and protons, atoms
are electrically neutral. Atoms that lose or gain one or more electrons are then elec-
trically charged and are called ions.

We will begin our study of atoms by discussing the Bohr model, a semiclas-
sical model developed by Niels Bohr in 1913 to explain the electromagnetic
spectra produced by hydrogen atoms. Although this pre-quantum mechan-
ics model has many shortcomings, it provides a useful framework for the
discussion of atomic phenomena. After discussing the Bohr model, we will
then apply our knowledge of quantum mechanics from Chapter 35 to give
a much more productive model of the hydrogen atom. We will then discuss
the structure of other atoms and the periodic table of the elements. Finally,
we will discuss both optical and X-ray spectra.

36-1 THE ATOM

ATOMIC SPECTRA

By the beginning of the twentieth century, a large body of data had been collected
on the emission of light by atoms in a gas when the atoms are excited by an elec-
tric discharge. Viewed through a spectroscope that has a narrow-slit aperture, light
that has been emitted by atoms of a particular element appears as a discrete set of
lines of different colors or wavelengths. The spacing and relative intensities of the
lines are characteristic of the element. The wavelengths of these spectral lines
could be accurately determined, and much effort went into finding regularities in
the spectra. Figure 36-1 shows line spectra for hydrogen and for mercury.

In 1885, Johann Balmer determined that the wavelengths of the lines in the vis-
ible spectrum of hydrogen can be represented by the formula

36-1

Balmer suggested that this expression might be a special case of a more general
expression that would be applicable to the spectra of other elements. Such an expres-
sion, found by Johannes R. Rydberg and Walter Ritz and known as the Rydberg–
Ritz formula, gives the reciprocal wavelength as

36-2
1
l

� Ra 1
n2

2

�
1
n2

1

b

l � (364.6 nm)
m2

m2 � 4
m � 3, 4, 5, Á
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F I G U R E  3 6 - 2 J. J. Thomson’s plum
pudding model of the atom. In this model the
electrons, which have a negative charge, are
embedded in a fluid of positive charge. For a
given configuration in such a system, the
resonance frequencies of oscillations of the
electrons can be calculated. According to
classical theory, the atom should radiate light
of frequency equal to the frequency of
oscillation of the electrons. Thomson could not
find any configuration that would give
frequencies in agreement with the measured
frequencies of the spectrum of any atom.

–e
v

F

r

F = =

+Ze

kZe2 2

2
mv

r r

F I G U R E  3 6 - 3 Electron of charge 
traveling in a circular orbit of radius r around
the nuclear charge The attractive
electrical force keeps the electron in
its orbit.

kZe2>r2�Ze.

�e

where and are integers, and R is the Rydberg constant. The Rydberg
constant does vary slightly, and in a regular way, from element to element. For hy-
drogen, has the value

RYDBERG CONSTANT FOR HYDROGEN

The Rydberg–Ritz formula gives the wavelengths for all the lines in the spectra
of hydrogen, as well as alkali elements such as lithium and sodium. The hy-
drogen Balmer series given by Equation 36-1 is also given by Equation 36-2,
with and 

Many attempts were made to construct a model of the atom that would yield
these formulas for an atom’s radiation spectrum. The most popular model, created
by J. J. Thomson, considered various arrangements of electrons embedded in some
kind of fluid that had most of the mass of the atom and had enough positive charge
to make the atom electrically neutral. Thomson’s model, called the “plum pud-
ding” model, is illustrated in Figure 36-2. Because classical electromagnetic theory
predicted that a charge oscillating with frequency would radiate electromagnetic
energy of that frequency, Thomson searched for configurations that were stable
and that had normal modes of vibration of frequencies equal to those of the spec-
trum of the atom. A difficulty of this model and all other models was that, accord-
ing to classical physics, electric forces alone cannot produce stable equilibrium.
Thomson was unsuccessful in finding a model that predicted the observed fre-
quencies for any atom.

The Thomson model was essentially ruled out by a set of experiments by H. W.
Geiger and E. Marsden, under the supervision of E. Rutherford in approximately
1911, in which alpha particles from radioactive radium were scattered by atoms in
a gold foil. Rutherford showed that the number of alpha particles scattered at large
angles could not be accounted for by an atom in which the positive charge was dis-
tributed throughout the atom (known to be about 0.1 nm in diameter). Instead, the
results suggested that the positive charge and most of the mass of an atom is con-
centrated in a very small region, now called the nucleus, which has a diameter of
the order of 

36-2 THE BOHR MODEL OF THE

HYDROGEN ATOM

Niels Bohr, working in the Rutherford laboratory in 1912, proposed a model of
the hydrogen atom that extended the work of Planck, Einstein, and Rutherford
and successfully predicted the observed spectra. According to Bohr’s model, the
electron of the hydrogen atom moves in either a circular or an elliptical orbit
around the positive nucleus according to Coulomb’s law and classical mechanics
like the planets orbit the Sun. For simplicity, Bohr chose a circular orbit, as shown
in Figure 36-3.

ENERGY FOR A CIRCULAR ORBIT

Consider an electron of charge moving in a circular orbit of radius about a pos-
itive charge such as the nucleus of a hydrogen atom or of a singly
ionized helium atom The total energy of the electron can be related to the(Z � 2).

(Z � 1)�Ze
r�e

10�6 nm � 1 fm.

f

n1 � m.R � RH, n2 � 2,

RH � 1.097776 � 107 m�1

R

n1 
 n2,n2n1



1230 | C H A P T E R  3 6 Atoms

radius of the orbit. The potential energy of the electron of charge at a distance 
from a positive charge is

36-3

where is the Coulomb constant. The kinetic energy can be obtained as a func-
tion of by using Newton’s second law, Setting the Coulomb attractive
force equal to the mass multiplied by the centripetal acceleration gives

36-4a

Multiplying both sides by gives

36-4b

Thus, the kinetic energy and the potential energy vary inversely with Note that
the magnitude of the potential energy is twice that of the kinetic energy:

36-5

Equation 36-5 a general result for particles orbiting under the influence of forces
that vary inversely with the square of the distance from a fixed point. [It also
holds for circular orbits in a gravitational field (see Example 11-6 in Section 11-3)].
The total energy is the sum of the kinetic energy and the potential energy:

or

E � K � U �
1
2
kZe2

r
�
kZe2

r

U � �2K

r.

K �
1
2
mv2 �

1
2
kZe2

r

r>2
kZe2

r2
� m

v2

r

Fnet � ma.r
Kk

U �
kq1q2
r

�
k(Ze)(�e)
r

� �
kZe2

r

Ze
r�e

36-6

ENERGY IN A CIRCULAR ORBIT FOR A FORCE1>r 2

E � �
1
2
kZe2

r

Although mechanical stability is achieved because the Coulomb attractive force
provides the centripetal force necessary for the electron to remain in orbit, classical
electromagnetic theory says that such an atom would be electrically unstable. The
atom would be unstable because the electron must accelerate when moving in a
circle and therefore radiate electromagnetic energy of frequency equal to that of its
motion. According to the classical theory, such an atom would quickly collapse as
the electron spiraled into the nucleus and radiated away the energy.

BOHR’S POSTULATES

Bohr circumvented the difficulty of the collapsing atom by postulating that only
certain orbits, called stationary states, are allowed and that an atom with an elec-
tron in one of these orbits does not radiate. An atom radiates only when the elec-
tron makes a transition from one allowed orbit (stationary state) to another.

The electron in the hydrogen atom can move only in certain nonradiating,
circular orbits called stationary states.

BOHR’S FIRST POSTULATE—NONRADIATING ORBITS

Bohr’s second postulate relates the frequency of radiation to the energies of the
stationary states. If and are the initial and final energies of the atom, the fre-
quency of the emitted radiation during a transition is given by

EfEi

36-7

BOHR’S SECOND POSTULATE—PHOTON FREQUENCY FROM ENERGY CONSERVATION

f �
Ei � Ef

h
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where is Planck’s constant. This postulate is equivalent to the assumption of con-
servation of energy when a photon of energy is emitted. Combining Equation
36-6 and Equation 36-7, we obtain for the frequency

36-8

where and are the radii of the initial and final orbits.
To obtain the frequencies implied by the Rydberg–Ritz formula, 

it is evident that the radii of stable orbits must be proportional to
the squares of integers. Bohr searched for a quantum condition for the radii of the
stable orbits that would yield this result. After much trial and error, Bohr found
that he could obtain the desired result if he postulated that the magnitude of the
angular momentum of the electron in a stable orbit equals an integer multiplied
by Because the magnitude of the angular momentum of a circular orbit is just

this postulate ismvr,
U.

cR(1>n2
2 � 1>n2

1),
f � c>l �

rfri

f �
Ei � Ef

h
�

1
2
kZe2

h
a 1
rf

�
1
ri
b

hf
h

where 
Equation 36-9 relates the speed to the radius of the orbit that has angular

momentum Equation 36-4a gives us another equation relating the speed to
the radius:

or

36-10

We can determine by first solving for in Equation 36-9. Squaring the result
then gives

Equating this expression for with the expression given by Equation 36-10, we get

Solving for we obtainrn,

n2 U2

m2r2n
�
kZe2

mrn

v2
n

v2
n � n2 U2

m2r2n

vnrn

v2
n �
kZe2

mrn

kZe2

r2n
� m

v2
n

rn

nU.
rnvn

U � h>2p � 1.055 � 10�34 J # s � 6.582 � 10�16 eV # s.

where is called the first Bohr radius. According to the Bohr model, is the or-
bital radius of the electron in a hydrogen atom that has n � 1.

a0a0

36-9

BOHR’S THIRD POSTULATE—QUANTIZED ANGULAR MOMENTUM

mvnrn � nU n � 1, 2, 3, Á

36-11

RADII  OF THE BOHR ORBITS

rn � n2 U2

mkZe2
� n2

a0
Z

36-12

FIRST BOHR RADIUS

a0 �
U2

mke2
�

P0h
2

pme2
� 0.0529 nm
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Substituting the expressions for in Equation 36-11 into Equation 36-8 for the fre-
quency gives

36-13

If we compare this expression where and with the empirical
Rydberg–Ritz formula (Equation 36-2), we obtain for the Rydberg constant

36-14

Using the values of and known in 1913, Bohr calculated and found
his result to agree (within the limits of the uncertainties of the constants) with the
value obtained from spectroscopy.

RUk,c,e,m,

R �
mk2e4

4pcU3 �
me4

8P0
2ch3

f � c>lZ � 1

f �
1
2
kZe2

h
a 1
rf

�
1
ri
b � Z2mk

2e4

4pU3 a 1
n2

f

�
1
n2

i

b
rn

Example 36-1 Standing-Wave Condition Implies Quantization
of Angular Momentum

For waves in a circle, the standing-wave condition is that there is an integral number of
wavelengths in the circumference. That is, where and so on. Show
that this condition for electron waves implies quantization of angular momentum.

PICTURE The wavelength and the momentum are related by the de Broglie relation 
(Equation 34-13). Using this relation and the standing wave condition to relate
the momentum to the radius.

SOLVE

nln � 2prn

p � h>l
n � 1, 2, 3,nln � 2prn,

1. Write the standing-wave condition: nln � 2prn

2. Use the de Broglie relation (Equation 34-13) to relate the
momentum to ln:p

p �
h
ln

�
nh

2prn
� n

U
rn

3. Solve for The angular momentum of an electron in a
circular orbit is where p � mv:mvrn � prn,

prn. mvrn � nUprn �

CHECK The step-3 result is the check. It is what the problem statement asks us to show.

ENERGY LEVELS

The total mechanical energy of the electron in the hydrogen atom is related to the
radius of the circular orbit by Equation 36-6. If we substitute the quantized values
of as given by Equation 36-11, we obtain

or

En � �
1
2
kZe2

rn
� �

1
2
kZ2e2

n2a0

� �
1
2
mk2Z2e4

n2U2

r

36-15

ENERGY LEVELS IN THE HYDROGEN ATOM

En � �Z2
E0

n2

where

36-16E0 �
mk2e4

2U2 �
1
2
ke2

a0

� 13.6 eV
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∞
n

4

En ,

3

2

1

0.00
eV

–0.85

–1.51

–3.40

Paschen

Balmer

Lyman series
–13.6

F I G U R E  3 6 - 4 Energy-level diagram for
hydrogen showing the first few transitions in
each of the Lyman, Balmer, and Paschen
series. The energies of the levels are given by
Equation 36-15.

The energies corresponding to are the quantized allowed energies for the
hydrogen atom.

Transitions between these allowed energies result in the emission or absorption
of a photon whose frequency is given by and whose wavelength is

36-17

As we found in Chapter 34, it is convenient to have the value of in electron-volt
nanometers:

36-18

Because the energies are quantized, the frequencies and wavelengths of the radia-
tion emitted by the hydrogen atom are quantized in agreement with the observed
line spectrum.

Figure 36-4 shows the energy-level diagram for hydrogen. The energy of the
hydrogen atom in the ground state is As approaches infinity the
energy approaches zero. The process of removing an electron from an atom is
called ionization, and the minimum amount of energy required to remove the
electron is the ionization energy. The ionization energy of the ground-state hy-
drogen atom, which is also its binding energy, is 13.6 eV. A few transitions from a
higher state to a lower state are indicated in Figure 36-4. When Bohr published his
model of the hydrogen atom, the Balmer series (corresponding to and

) and the Paschen series (corresponding to and
) were known. In 1916, T. Lyman found the series corresponding to

F. Brackett in 1922 and H. A. Pfund in 1924 found the series corresponding
to and respectively. Only the Balmer series lies in the visible portion
of the electromagnetic spectrum.

nf � 5,nf � 4
nf � 1.
ni � 4, 5, 6, Á

nf � 3ni � 3, 4, 5, Á
nf � 2

nE1 � �13.6 eV.

hc �  1240 eV # nm

hc

l �
c
f

�
hc

Ei � Ef

f � (Ei � Ef)>h,
Z � 1En

Example 36-2 Longest Wavelength in the Lyman Series

Find (a) the energy and (b) the wavelength of the spectral line that has the longest wave-
length in the Lyman series.

PICTURE For the Lyman series From Figure 36-4, we can see that the Lyman series
corresponds to transitions ending at the ground-state energy, Because
the photon wavelength varies inversely with energy, the transition that has the longest
wavelength is the transition that has the lowest energy, which is from the first excited state

to the ground state 

SOLVE

n � 1.n � 2

l

Ef � E1 � �13.6 eV.
nf � 1.

1. The energy of the photon is the difference in the energies
of the initial and final atomic states:

10.2 eV� �3.40 eV � 13.6 eV �

� E2 � E1 �
�13.6 eV

22 �
�13.6 eV

12

Ephoton � ¢Eatom � Ei � Ef

2. The wavelength of the photon is 122 nml �
hc

E2 � E1

�
1240 eV # nm

10.2 eV
�

CHECK The step-1 result of 10.2 eV is less than 13.6 eV (the binding energy of ground-state
hydrogen). This result is expected.

TAKING IT FURTHER This photon has a wavelength that corresponds to the ultraviolet region
of the electromagnetic spectrum. Because all the other lines in the Lyman series have even greater
energies and shorter wavelengths, the Lyman series is completely in the ultraviolet region.

PRACTICE PROBLEM 36-1 Find the shortest wavelength for a line in the Lyman series.

Do not think the in Equation 
36-17 is the wavelength of the

electron. It is not. It is the wavelength
of the emitted or absorbed photon.

l!



Despite its spectacular successes, the Bohr model of the hydrogen atom had
many shortcomings. There was no justification for the postulates of stationary
states or for the quantization of angular momentum other than the fact that these
postulates led to energy levels that agreed with spectroscopic data. Furthermore,
attempts to apply the model to atoms that have more electrons and protons had lit-
tle success. The quantum-mechanical model resolves these difficulties. The sta-
tionary states of the Bohr model are replaced by the standing-wave solutions of the
Schrödinger equation analogous to the standing electron waves for a particle in a
box discussed in Chapter 34 and Chapter 35. Energy quantization is a direct con-
sequence of the standing-wave solutions of the Schrödinger equation. For hydro-
gen, these quantized energies agree with those obtained from the Bohr model and
with experiment. The quantization of angular momentum that had to be postu-
lated in the Bohr model is predicted by the quantum theory.

36-3 QUANTUM THEORY OF ATOMS

THE SCHRÖDINGER EQUATION IN SPHERICAL COORDINATES

In quantum theory, an electron in an atom is described by its wave function The
probability of finding the electron in some volume of space equals the square
of the absolute value of the wave function multiplied by Boundary condi-
tions on the wave function lead to the quantization of the wavelengths and fre-
quencies and thereby to the quantization of the electron energy.

Consider a single electron of mass moving in three dimensions in a region in
which the potential energy is The time-independent Schrödinger equation for
such a particle is given by Equation 35-30:

36-19

For a single isolated atom, the potential energy depends only on the radial dis-
tance of the electron from the center of the nucleus. The prob-
lem is then most conveniently treated using the spherical coordinates and 
which are related to the rectangular coordinates and by

36-20

These relations are shown in Figure 36-5. The transformation of Equation
36-19 from rectangular to spherical coordinates is a straightforward, but
tedious, calculation, which we will omit. The result of this transformation
can be found in Problem 42. We will discuss qualitatively some of the in-
teresting features of the wave functions that satisfy this equation.

The transformed version of Equation 36-19 can be solved using the
technique called separation of variables. This is accomplished by express-
ing the wave function as a product of three functions, each of
which is a function of only one of the three spherical coordinates:

36-21

where is a function that depends only on the radial coordinate is a
function that depends only on the polar coordinate and is a function
that depends only on the azimuth coordinate When this form of

is substituted into the Schrödinger equation, the Schrödinger
equation can be transformed into three ordinary differential equations,
one for one for and one for The potential energy ap-
pears only in the equation for which is called the radial equation.R(r),

U(r)g(f).f(u),R(r),

c(r, u, f)
f.

gu,
r, fR

c(r, u, f) � R(r)f(u)g(f)

c(r, u, f)

y � r sinu sinf

x � r sinu cosf

z � r cosu

zy,x,
f,r, u,

r � 2x2 � y2 � z2
U

�
U2

2m
a�2c

�x2 �
�2c

�y2 �
�2c

�z2 b � U(x, y, z)c � Ec

U.
m

dV.ƒc ƒ 2
dV

c.
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r sin u

x = r sin u cos f
y = r sin u sin f
z = r cos u

r z

u

x

x

y

f y

z

F I G U R E  3 6 - 5 Geometric relations between
spherical coordinates and rectangular coordinates.



Because the potential energy depends only on the coordinate the potential energy
has no effect on the solutions of the equations for and and therefore has
no effect on the angular dependence of the wave function These solutions
are applicable to any problem in which the potential energy depends only on 

QUANTUM NUMBERS IN SPHERICAL COORDINATES

In three dimensions, the requirement that the wave function be continuous and nor-
malizable introduces three quantum numbers, one associated with each spatial di-
mension. In spherical coordinates, the quantum number associated with is labeled 
that associated with is labeled and that associated with is labeled * The quan-
tum numbers and that we found in Chapter 35 for a particle in a three-
dimensional square well in rectangular coordinates and were independent
of one another, but the quantum numbers associated with wave functions in spheri-
cal coordinates are dependent on each other. The possible values of these quantum
numbers are

zx, y,
n3n1, n2,

m�.f�,u

n,r

r.
c(r, u, f).
g(f),f(u)
r,
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* For simplicity, is sometimes written as m.m�

36-22

QUANTUM NUMBERS IN SPHERICAL COORDINATES

m� � ��, �� � 1, �� � 2, Á , 0, Á , � � 2, � � 1, �

� � 0, 1, 2, 3, Á , n � 1
n �  1, 2, 3, Á

That is, can be any positive integer; can be 0 or any positive integer up to 
and can have possible values, ranging from to in integral steps.

The number is called the principal quantum number. It is associated with the
dependence of the wave function on the distance and therefore with the proba-
bility of finding the electron at various distances from the nucleus. The quantum
numbers and are associated with the orbital angular momentum of the elec-
tron and with the angular dependence of the electron wave function. The quantum
number is called the orbital quantum number. The magnitude of the orbital
angular momentum is related to the orbital quantum number by

36-23

The quantum number is called the magnetic quantum number. It is related to
the component of the orbital angular momentum along some direction in space.
All spatial directions are equivalent for an isolated atom, but placing the atom in a
magnetic field results in the direction of the magnetic field being separated out
from the other directions. The convention is that the direction is chosen for the
magnetic-field direction. Then the component of the orbital angular momentum
of the electron is given by the quantum condition

36-24

This quantum condition arises from the boundary condition on the azimuth coor-
dinate that the probability of finding the electron at some arbitrary angle must
be the same as that of finding the electron at angle because these
two values of represent the same point in space.

If we measure the angular momentum of the electron in units of we see that the
magnitude of the orbital angular momentum is quantized to the value 
units, and that its component along any direction can have only the values
ranging from to units. Figure 36-6 shows a vector-model diagram illustrating
the possible orientations of the angular-momentum vector for Note that only
specific values of are allowed; that is, the directions in space are quantized.u

� � 2.
����

2� � 1
1�(� � 1)

U,
f

f2 � f1 � 2p,
f1f

Lz � m�U

z
�z

m�

L �4�(� � 1)U

�L
S

L�

m��

r
n

����2� � 1m�

n � 1;�n

h2

h1

0

h–1

h–2

z(a)

L =   6

+z

Lz = 2

minθ

h
h

(b)

F I G U R E  3 6 - 6 (a) Vector-model diagram
illustrating the possible values of the 
component of the orbital angular-momentum
vector for the case The magnitude of
the orbital angular momentum is

(b) The values of the component of the
orbital angular-momentum vector for the case

and The value of the 
component of the orbital angular momentum
is Lz � 2U.

zm� � 2.� � 2

z
L � U2�(� � 1) � U22(2 � 1) � U26.

� � 2.

z
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36-4 QUANTUM THEORY OF THE 

HYDROGEN ATOM

We can treat the simplest atom, the hydrogen atom, as a stationary nucleus (a pro-
ton) and a single moving particle, an electron, which has linear momentum and
kinetic energy The potential energy due to the electrostatic attraction
between the electron and the proton* is

36-25

For this potential-energy function, the Schrödinger equation can be solved exactly.
In the lowest energy state, which is the ground state, the principal quantum num-
ber has the value 1, is 0, and is 0.

ENERGY LEVELS

The allowed energies of the hydrogen atom that result from the solution of the
Schrödinger equation are

36-26

ENERGY LEVELS FOR HYDROGEN

En � �Z2
E0

n2 n � 1, 2, 3, Á

m��n

U(r) �
kZe2

r

U(r)p2>2m.
p

* We include the factor which is 1 for hydrogen, so that we can apply our results to other one-electron “atoms,” such
as singly ionized helium for which Z � 2.He�,

Z,

Example 36-3 The Directions of the Angular Momentum

If the orbital angular momentum is characterized by the quantum number what are
the possible values of and what is the smallest possible angle between and the direc-
tion of increasing 

PICTURE The possible orientations of and the axis are shown in Figure 36-6. The direc-
tion of increasing is the direction of the external magnetic field in the vicinity of the atom.

SOLVE

z
zL

S

z?
L
S

Lz,
� � 2,

1. Write the possible values of Lz: Lz � m�U where m� � �2, �1, 0, 1, 2

2. Express the angle between and the direction in
terms of and Lz:L

�zL
S

u

3. The smallest angle occurs when and m� � 2:� � 2

cosu �
Lz
L

�
m�U

4�(� � 1)U
�

m�

4�(� � 1)

 35.3°umin �

 cos umin �
2

42(2 � 1)
�

2

26
� 0.816

CHECK The angle in Figure 36-6b looks to be between about and so the step-3 result
of is plausible.

TAKING IT FURTHER We note the somewhat strange result that the orbital angular-
momentum vector cannot be parallel to the axis.

PRACTICE PROBLEM 36-2 An atom is in a region that has a magnetic field. An electron in
the atom has an angular momentum characterized by the quantum number What are
the possible values of for this electron?m�

� � 4.

z

35.3°
40°,30°



where
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These energies are the same as those obtained using the Bohr model. Note
that the energies are negative, indicating that the electron is bound to the
nucleus (thus the term bound state), and that the energies depend only on
the principal quantum number The fact that the energy does not depend
on the orbital quantum number is a peculiarity of the inverse-square
force and holds only for an inverse potential such as Equation 36-25. For
atoms having multiple electrons, the interaction of the electrons leads to a
dependence of the energy on In general, the lower the value of the
lower the energy for such atoms. Because there is usually no preferred di-
rection in space, the energy for any atom does not ordinarily depend on
the magnetic quantum number which is related to the component of
the angular momentum. However, the energy does depend on if the
atom is in a magnetic field.

Figure 36-7 shows an energy-level diagram for hydrogen. This diagram
is similar to Figure 36-4, except that the states which have the same value
of but different values of are shown separately. These states (called
terms) are referred to by giving the value of along with a code letter: s for

p for d for and f for * (Lowercase letters s, p, d,
f, and so on, are used to specify the orbital angular momentum of an in-
dividual electron, whereas uppercase letters S, P, D, F, and so on, are used
to identify the orbital angular momentum for the entire multielectron
atom. For a single-electron atom, like hydrogen, either uppercase or low-
ercase letters will suffice.) When an atom makes a transition from one al-
lowed energy state to another, electromagnetic radiation in the form of a
photon is emitted or absorbed. Such transitions result in spectral lines that
are characteristic of the atom. The transitions obey the selection rules:

36-28

These selection rules are related to the conservation of angular momentum and to
the fact that the photon itself has an intrinsic angular momentum that has a maxi-
mum angular-momentum component of in any direction. The wavelengths of the
light emitted by hydrogen (and by other atoms) are related to the energy levels by

36-29

where and are the energies of the initial and final states.

WAVE FUNCTIONS AND PROBABILITY DENSITIES

The solutions of the Schrödinger equation in spherical coordinates are character-
ized by the quantum numbers and and are written The principal
quantum number can take on any of the values In addition, for each
value of can take on any of the values and for each value
of can take on any of the values Thus, for any
given value of there are possible values of and for any given value of there
are possible values of For hydrogen, the energy depends only on
so there are generally many different wave functions that correspond to the same

n,m�.2� � 1
�,�,nn,

��, �� � 1, �� � 2, Á , ��.�, m�

0, 1, Á , n � 1,n, �
1, 2, 3, Á .n

cn�m�
.m�,n, �,

EfEi

hf �
hc
l

� Ei � Ef

1U

¢� � �1 or � 1

¢m� � �1, 0, or � 1

� � 3.� � 2,� � 1,� � 0,
n

�n

m�

zm�,

�,�.

r
�

n.

En

E0 �
mk2e4

2U2 � 13.6 eV
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∞

F I G U R E  3 6 - 7 Energy-level diagram for hydrogen.
The diagonal lines show transitions that involve
emission or absorption of radiation and obey the
selection rule States that have the same value
of but with different values of have the same energy

where as in the Bohr model.E0 � 13.6 eV�E0>n2,
�n

¢� � �1.

* These code letters for the values of are remnants of spectroscopists’ descriptions of various spectral lines as sharp,
principal, diffuse, and fundamental. For values greater than 3, the letters follow alphabetically, starting with g for � � 4.
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energy (except at the lowest energy level, for which and
therefore and must both equal 0). These energy levels are
therefore degenerate (see Section 35-5). The origins of this de-
generacy are the dependence of the potential energy and the
fact that, in the absence of any external fields, there is no
preferred direction in space.*

The ground state In the lowest energy state, the ground state of
hydrogen, the principal quantum number has the value 1, 

is 0, and is 0. The energy is –13.6 eV, and the angular mo-
mentum is zero. (In the Bohr model of the atom the angular
momentum in the ground state is equal to not zero.) The wave
function for the ground state is

36-30
where

is the first Bohr radius and is a constant that is determined
by normalization. In three dimensions, the normalization condi-
tion is

where is a volume element and the integration is performed
over all space. In spherical coordinates, the volume element
(Figure 36-8) is

We integrate over all space by integrating over from to over 
from to and over from to The normalization condition
is thus

Because there is no or dependence in the triple integral can be factored
into the product of three integrals. This gives

The remaining integral is of the form where a positive integer and
Using successive integration-by-parts operations† yields the result

so

�


0
r2e�2Zr>a0 dr �

a30
4Z3

�


0
xne�ax dx �

n!
an�1

a 
 0.
n� 

0 xne�ax dx,

� 2p # 2 # C2
100a �

0
e�2Zr>a0 r2 drb � 1

� ƒc ƒ 2 dV � a �2p

0
dfb a �p

0
sinu dub a �

0
C2

100e
�2Zr>a0 r2 drb

c100,fu

� �


0
c �p

0
a �2p

0
C2

100e
�2Zr>a0 r2 sinu dfbdu ddr � 1

� ƒc ƒ 2 dV � �


0
c �p

0
a �2p

0
ƒc ƒ 2r2 sinu dfbdu ddr

r � .r � 0ru � p,u � 0
uf � 2p,f � 0f

dV � (r sinu df)(r du)dr � r2 sinu du df dr

dV

� ƒc ƒ 2dV � 1

C100

a0 �
U2

mke2
� 0.0529 nm

c100 � C100e
�Zr>a0

U,

m��
n

1>rm��
n � 1
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See

Math Tutorial for more

information on 

Integrals

* If spin, relativistic effects, the spin of the nucleus, and quantum electrodynamics are considered, the degeneracy is broken.

dV = (r du)(r sin u df) dr

      = r2 sin u du df dr

r du

du

dr

ru

f

r sin u df df

y

x

z

r sin u

F I G U R E  3 6 - 8 Volume element in spherical coordinates.

† This integral can also be looked up in a table of integrals.



Quantum Theory of the Hydrogen Atom S E C T I O N  3 6 - 4 | 1239

Then

so

36-31

The normalized ground-state wave function is thus

36-32

The probability of finding the electron in a volume is The
probability density is shown in Figure 36-9. Note that this proba-
bility density is spherically symmetric; that is, the probability density
depends only on and is independent of or The probability den-
sity is maximum at the origin.

We are more often interested in the probability of finding the elec-
tron at some radial distance between and This radial prob-
ability is the probability density multiplied by the volume
of the spherical shell of thickness which is The prob-
ability of finding the electron in the range from to is thus

and the radial probability density isP(r) dr � ƒc ƒ 2 4pr2 dr,
r � drr

dV � 4pr2 dr.dr,
ƒc ƒ 2P(r) dr

r � dr.rr

f.ur,

ƒc ƒ 2
ƒc ƒ 2 dV.dV

c1 0 0 �
11p a Za0

b 3>2
e�Zr>a0

C1 0 0 �
11p a Za0

b 3>2
4pC2

1 0 0 a a3
0

4Z3 b � 1

z

x

P(r)

P(r)r r

r

2

a0

2

1 2 3 4 5 6 /

c

F I G U R E  3 6 - 1 0 Radial probability
density versus for the ground state
of the hydrogen atom. is proportional
to The value of for which is
maximum is the most probable
distance r � a0.

P(r)rr2c2.
P(r)

r>a0P(r)

Example 36-4 Probability That the Electron Is in a
Thin Spherical Shell

Consider a hydrogen atom that is in the ground state. Estimate the probability of finding the
electron in a thin spherical shell of inner radius and outer radius where 
at (a) and (b)

PICTURE Because is so small compared to the variation in the radial probability den-
sity in the shell can be neglected. The probability of finding the electron in some small
range is then P(r) ¢r.¢r
P(r)

r,¢r

r � 2a0.r � a0

¢r � 0.06a0r � ¢r,r

36-33

RADIAL PROBABILITY DENSITY

P(r) � 4pr2 ƒc ƒ 2

For the hydrogen atom in the ground state, the radial probability density is

36-34

Figure 36-10 shows the radial probability density as a function of The max-
imum value of occurs at which for is the first Bohr radius. In
contrast to the Bohr model, in which the electron stays in a well-defined orbit at

we see that it is possible for the electron to be found at any distance from
the nucleus. However, the most probable distance is (assuming and the
chance of finding the electron at a much different distance is small. It is often use-
ful to think of the electron in an atom as a charged cloud of charge density

but we should remember that when it interacts with matter, an electron
is always observed as a single charge.
r � �e ƒc ƒ 2,

Z � 1),a0

r � a0 ,

Z � 1r � a0>Z,P(r)
r.P(r)

P(r) � 4pr2 ƒc ƒ 2 � 4pC2
1 0 0 r

2e�2Zr>a0 � 4a Z
a0

b 3

r2e�2Zr>a0

F I G U R E  3 6 - 9 Computer-generated picture of the
probability density for the ground state of hydrogen.
The quantity can be thought of as the electron charge
density in the atom. The density is spherically symmetric,
is greatest at the origin, and decreases exponentially with r.

�e ƒc ƒ 2
ƒc ƒ 2
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The first excited state In the first excited state of a hydrogen atom, is equal to
2 and can equal either 0 or 1. For and we again have a spherically
symmetric wave function, this time given by

36-35

For can be or The corresponding wave functions are

36-36

36-37

where and are normalization constants. The probability densities
are given by

36-38

36-39

36-40

The wave functions and probability densities for are not spherically sym-
metric, but instead depend on the angle The probability densities do not depend
on Figure 36-11 shows the probability density for and 
(Figure 36-11a); for and (Figure 36-11b); and for 
and (Figure 36-11c). An important feature of these plots is that the
electron cloud is spherically symmetric for and is not spherically symme-
tric for These angular distributions of the electron charge density depend
only on the values of and and not on the radial part of the wave function.
Similar charge distributions for the valence electrons of more complicated atoms
play an important role in the chemistry of molecular bonding. (Electrons in the
outermost shell are called valence electrons.)

m��
� � 0.

� � 0
m� � �1

n � 2, � � 1,m� � 0n � 2, � � 1,
m� � 0n � 2, � � 0,ƒc ƒ 2f.

u.
� � 0

ƒc21�1 ƒ2 � C2
211 aZra0 b2

e�Zr>a0 sin2u

c2
210 � C2

210 aZra0

b 2

e�Zr>a0 cos2u

c2
200 � C2

200 a2 �
Zr
a0

b 2

e�Zr>a0
C211C200 , C210 ,

c21�1 � C211

Zr
a0

e�Zr>(2a0) sinu e� if

c210 � C210

Zr
a0

e�Zr>(2a0) cosu

�1.�1, 0,� � 1, m�

c200 � C200 a2 �
Zr
a0

be�Zr>(2a0)
� � 0, m� � 0,�

n

1. Substitute and into Equation 36-34 :r � a0Z � 1

SOLVE

2. Substitute and into Equation 36-34:r � 2a0Z � 1

 0.0325P(a0)(0.06a0) � c4a 1
a0

b 3

a2
0e

�2 d (0.06a0) �

P(r)¢r � c4a 1
a0
b 3

r2e�2r>a0 d¢r

 0.0176P(2a0)(0.06a0) � c4a 1
a0

b 3

4a2
0e

�4 d (0.06a0) �

P(r)¢r � c4a 1
a0
b 3

r2e�2r>a0 d¢r
CHECK The probability of finding the electron between and is larger
than the probability of finding the particle between and , as expected.

TAKING IT FURTHER The volume of the spherical shell that has an inner radius and
outer radius is almost four times larger than the volume of the spherical shell
that has an inner radius and outer radius In spite of this there is approximately
a 3 percent chance of finding the electron in this range at but at the chance is
slightly less than 2 percent.

r � 2a0r � a0 ,
a0 � 0.06a0.a0

2a0 � 0.06a0

2a0

r � 2a0 � 0.06a0r � 2a0

r � a0 � 0.06a0r � a0
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Figure 36-12 shows the probability density for finding the elec-
tron at a distance from the nucleus for when and
when We can see from the figure that this radial probability
density depends on as well as on 

For we found that the most likely distance between the
electron and the nucleus is which is the first Bohr radius,
whereas for and the most probable distance between
the electron and the nucleus is These are the orbital radii for the
first and second Bohr orbits (Equation 36-11). For (and

* the most likely distance between the electron and nucleus
is which is the radius of the third Bohr orbit.9a0,
� � 2),

n � 3
4a0.

� � 1,n � 2
a0,

n � 1,
n.�

� � 0.
� � 1n � 2,r

z z z

n = 2

= 0
m = 0

n = 2
= 1

= 0

n = 2
= 1

= +– 1m m

(a) (b) (c)

F I G U R E  3 6 - 1 1 Computer-
generated picture of the
probability densities for the
electron in the states of
hydrogen. All three images
represent figures of revolution
about the axis. (a) For 
is spherically symmetric. (b) For

and is
proportional to (c) For 
and or is
proportional to sin2 u.

�1, ƒc ƒ 2m� � �1
� � 1cos2 u.

m� � 0, ƒc ƒ 2� � 1

� � 0, ƒc ƒ 2z

n � 2
ƒc ƒ 2

P(r)
P(r)n = 2

= 1

n = 2
= 0

r ⎟ ⎟r2 2

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 r/a

c

F I G U R E  3 6 - 1 2 Radial probability
density versus for the states of
hydrogen. For is maximum at
the Bohr value For there is
a maximum near this value and a much
smaller maximum near the origin.

� � 0,r2 � 22a0.
� � 1, P(r)

n � 2r>a0P(r)

36-5 THE SPIN–ORBIT EFFECT AND

FINE STRUCTURE

The orbital magnetic moment of an electron in an atom can be derived semi-
classically, even though it is quantum mechanical in origin.† Consider a particle of
mass and charge moving with speed in a circle of radius The magnitude
of the orbital angular momentum of the particle is and the magnitude of
the magnetic moment is the product of the current and the area of the circle

If is the time for the charge to complete one revolution, the cur-
rent (charge passing a point per unit time) is Because the period is the
distance divided by the velocity the current is The mag-
netic moment is then

where we have substituted for If the charge is positive, the orbital angu-
lar momentum and orbital magnetic moment vectors are in the same direction. We
can therefore write

36-41M
S

�
q

2m
L
S

qvr.L>mm � IA �
qv

2pr
pr2 �

1
2
qvr �

q

2m
L

I � q>T � qv>(2pr).v,2pr
Tq>T.

Tm � IA � Ipr2.

L � mvr,
r.vqm

* The correspondence with the Bohr model is closest for the maximum value of which is 
† This topic was first presented in Section 27-5.

n � 1.�,
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Equation 36-41 is the general classical relation between magnetic moment and an-
gular momentum. It also holds in the quantum theory of the atom for orbital
angular momentum, but not for the intrinsic spin angular momentum of the
electron. For electron spin, the magnetic moment is twice that predicted by
Equation 36-41.* The extra factor of 2 is a result from quantum theory that has no
analog in classical mechanics.

The quantum of angular momentum is so we express the magnetic moment
in terms of 

For an electron, and so the magnetic moment of the electron
due to its orbital motion is

where is the quantum unit of magnetic moment
called a Bohr magneton. The magnetic moment of an electron due to its intrinsic
spin angular momentum is

In general, an electron in an atom has both orbital angular momentum character-
ized by the quantum number and spin angular momentum characterized by the
quantum number Analogous classical systems that have two kinds of angular
momentum are Earth, which is spinning about its axis of rotation in addition to
revolving about the Sun, and a precessing gyroscope that has angular momentum
of precession in addition to its spin. The total angular momentum is the sum
of the orbital angular momentum and the spin angular momentum where

36-42

Classically is an important quantity because the resultant torque on a system
equals the rate of change of the total angular momentum, and in the case of only
central forces, the total angular momentum is conserved. For a classical system, the
direction of the total angular momentum is without restrictions and the magni-
tude of can take on any value between and In quan-
tum mechanics, however, the directions of both and are more restricted and
the magnitudes and are both quantized. Furthermore, like and the direc-
tion of the total angular momentum is restricted and the magnitude of is
quantized. For an electron that has an orbital angular momentum characterized by
the quantum number and spin the total angular-momentum magnitude 
is equal to where the quantum number is given by

and either
36-43

Figure 36-13 is a vector model illustrating the two possible combinations and
for the case of . The lengths of the vectors are proportional to

and The spin angular momentum and the
orbital angular momentum are said to be parallel when and antiparallel
when j � � � s.

j � � � s
1j(j � 1)U.1�(� � 1)U, 1s(s � 1)U,

� � 1j � 1
2

j � 3
2

j � � � 1
2 or j � � � 1

2 if � 
 0

j � � 1
2 if � � 0

j1j(j � 1) U,
Js � 1

2 ,�

J
S

J
S

S
S

,L
S

SL
S
S

L
S

Jmin � ƒL � S ƒ .Jmax � L � SJ
S

J
S

J
S

J
S

� L
S

� S
S

S
S

,L
S

J
S

s.
�

M
S

S � �2
eU

2me

S
S

U
� �2mB

S
S

U

S
S

mB � eU>(2me) � 5.79 � 10�5 eV>TM
S

� � �
eU

2me

L
S

U
� �mB

L
S

U

q � �e,m � me

M
S

�
qU
2m

L
S

U

L
S>U:

U,

* This result and the phenomenon of electron spin itself, was predicted in 1927 by Paul Dirac, who combined special rel-
ativity and quantum mechanics into a relativistic wave equation called the Dirac equation. Precise measurements indi-
cate that the magnetic moment of the electron due to its spin is 2.00232 times that predicted by Equation 36-42. The fact
that the intrinsic magnetic moment of the electron is approximately twice what we would expect makes it clear that
the simple model of the electron as a spinning ball is not to be taken literally.

S

JL

j = 3
2

(a) (b)
S

J

L

j = 1
2

F I G U R E  3 6 - 1 3 Vector diagrams
illustrating the addition of orbital angular
momentum and spin angular momentum for
the case and There are two
possible values of the quantum number for
the total angular momentum: 
and j � � � s � 1

2.
j � � � s � 3

2

s � 1
2.� � 1



* Transferring the energy of the dipole to the frame of the proton gives a factor of 2, which is
included in this result.

Atomic states that have the same and values but with dif-
ferent values have slightly different energies because of the
interaction of the spin of the electron with its orbital motion.
This effect is called the spin–orbit effect. The resulting splitting
of spectral lines is called fine-structure splitting.

In the notation the ground state of the hydrogen atom is
written where the 1 indicates that the s indicates
that and the indicates that The states
can have either or and the state can have
either or These states are thus denoted by 
and Because of the spin–orbit effect, the and 
states have slightly different energies resulting in the fine-struc-
ture splitting of the transitions and 

We can understand the spin–orbit effect qualitatively from
a simple Bohr-model picture, as shown in Figure 36-14. In
this figure, the electron moves in a circular orbit around a
fixed proton. In Figure 36-14a, the orbital angular momentum

is up. In an inertial reference frame in which the electron is
momentarily at rest (see Figure 36-14b), the proton is moving
at right angles to the line connecting the proton and the
electron. The moving proton produces a magnetic field at
the position of the electron. The direction of is up, paral-
lel to The energy of the electron depends on its spin
because of the magnetic moment associated with the elec-
tron’s spin. The energy is lowest when is parallel to and
the energy is highest when it is antiparallel. This energy is
given by (Equation 36-16)

36-44*

Because is directed opposite to its spin (because the electron
has a negative charge), the energy is lowest when the spin is
antiparallel to and thus to The energy of the state in
hydrogen, in which and are antiparallel (Figure 36-15), is
therefore slightly lower than that of the state, in which 
and are parallel.S

S
L
S

2p3>2S
S

L
S

2p1>2L
S

.B
S

S
S

M
S

s

U � �M
S

s
# B

S
� �msz

B � �mBB

B
S

M
S

s

M
S

s

L
S

.
B
S

B
S

L
S

2p1>2 S 2s1>2.2p3>2 S 2p1>2
2p1>22p3>22p1>2. 2s1>2 , 2p3>2 ,j � 1

2.j � 3
2

� � 1� � 1,� � 0
n � 2j � 1

2.1>2� � 0,
n � 1,1s1>2, n�j ,

j
�n
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p

e B

v

L

p

e

v

(a) (b)

F I G U R E  3 6 - 1 4 (a) An electron moving about a proton in a
circular orbit in the horizontal plane with angular momentum up.
(b) In an inertial reference frame in which the electron is momentarily
at rest there is, at the location of the electron, a magnetic field 
due to the motion of the proton that is also directed up. When the
electron spin is parallel to its magnetic moment is antiparallel
to and so the spin–orbit energy is at its greatest.B

S
,L

S
M
S

sL
S

,S
S

B
S

L
S

Example 36-5 Determining B by Fine-Structure Splitting

As a consequence of fine-structure splitting, the energies of the and levels in
hydrogen differ by If the 2p electron sees an internal magnetic field of magni-
tude the spin–orbit energy splitting will be of the order of where is the Bohr
magneton. From this, estimate the magnetic field that the 2p electron in hydrogen experiences.

PICTURE Use the equation along with the given value of the energy difference
and known value of 

SOLVE

mB.
¢E � 2mBB

mB¢E � 2mBB,B,
4.5 � 10�5 eV.

2p1>22p3>2

1. Write the spin–orbit energy splitting in terms of the
magnetic moment:

¢E � 4.5 � 10�5 eV

where

¢E � 2mBB

2. Solve for the magnetic field B:  0.389 TB �
¢E
2mB

�
4.5 � 10�5 eV

2(5.79 � 10�5 eV>T)
�

2p

1s

2p3/2

2p1/2

ΔU

ΔU

μ +  B

μ

μ

– B

 B

B

B L

S

L S

= 2

Ms

Ms

B

B

B

F I G U R E  3 6 - 1 5 Fine-structure energy-level diagram. On the
left, the levels in the absence of a magnetic field are shown. The effect
of the field is shown on the right. Because of the spin-orbit
interaction, the magnetic field splits the 2p level into two energy
levels, with the level having slightly greater energy than the

level. The spectral line due to the transition 1s is therefore
split into two lines of slightly different wavelengths.

2p Sj � 1
2

j � 3
2
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36-6 THE PERIODIC TABLE

For atoms that have more than one electron, the Schrödinger equation cannot be
solved exactly. However, powerful approximation methods allow us to calculate
the energy levels of the atoms and wave functions of the electrons to a high degree
of accuracy. As a first approximation, the electrons in an atom are assumed to be
noninteracting. The Schrödinger equation can then be solved, and the resulting
wave functions used to calculate the interaction of the electrons, which in turn can
be used to better approximate the wave functions. Because the spin of an electron
can have two possible components along an axis, there is an additional quantum
number which can have the possible values or The state of each electron
is thus described by the four quantum numbers and and such states are
called stationary states. The energy of the electron is determined mainly by the
principal quantum number (which is related to the radial dependence of the
wave function) and by the orbital angular-momentum quantum number 
Generally, the lower the values of the lower the energy; and for a given value of 
the lower the value of the lower the energy. The dependence of the energy on 
is due to the interaction of the electrons in the atom with each other. In hydrogen,
of course, there is only one electron, and the energy is independent of The spec-
ification of and for each electron in an atom is called the electron
configuration. Customarily, is specified according to the same code used to label
the states of the hydrogen atom rather than by its numerical value. The code is

s p d f g h
0 1 2 3 4 5

The values are sometimes referred to as shells, which are identified by another
letter code: denotes the shell*; the shell; and so on.

The electron configuration of atoms is constrained by the Pauli exclusion
principle—no two electrons in an atom can be in the same quantum state. That is,
no two electrons can have the same set of values for the quantum numbers 
and Using the exclusion principle and the restrictions on the quantum num-
bers discussed in the previous sections ( is a positive integer, is an integer that
ranges from 0 to can have values from to in integral steps,
and can be either or ), we can understand much of the structure of the pe-
riodic table.

We have already discussed the lightest element, hydrogen, which has just one
electron. In the ground (lowest energy) state, the electron has and 
with and or We call this a 1s electron. The 1 signifies that

and the s signifies that 
Electrons of atoms whose atomic numbers are greater than 1 will have states

that will give the lowest total energy consistent with the Pauli exclusion principle.

HELIUM

The next element after hydrogen in the periodic table is helium a helium
atom has two electrons. In its ground state, both electrons are in the shell, where

and one electron has and the other has 
This configuration is lower in energy than any other two-electron configuration.
The resultant spin of the two electrons is zero. Because the orbital angular mo-
mentum is also zero, the total angular momentum is zero. The electron configura-
tion for helium is written The 1 signifies that the s signifies that 
and the superscript 2 signifies that there are two electrons in this state. Because �

� � 0,n � 1,1s2.

ms � �1
2.ms � �1

2m� � 0;n � 1, � � 0,
K

(Z � 2);

(Z � 2)

� � 0.n � 1,
�1

2.ms � �1
2m� � 0

� � 0,n � 1

�1
2�1

2ms

���2� � 1n � 1, m�

�n
ms.

n, �, m�,

Ln � 2,Kn � 1
n

� value

�
msn, �, m�,

�.

��,
n,n,
�.

n

ms,n, �, m�,
�1

2.�1
2ms,

Z

* The designation of the shell as is usually found when dealing with X-ray levels where the final shell in an inner
electron transition is labeled as and so on.K, L,M,

Kn � 1

CONCEPT CHECK 36-1

The following table lists candidates
for the quantum numbers of an
electron in an atom. Which of these
candidates are not found in nature?

✓

(a) 2 2

(b) 3 2

(c) 2

(d) 3 0 1

(e) 3 1 1 �1
2

�1
2

�1
2�1�1

�1
2�1

�1
2�1

msm��n



The Periodic Table S E C T I O N  3 6 - 6 | 1245

can be only 0 for these two electrons fill the shell. The energy re-
quired to remove the most loosely bound electron from an atom in the ground state
is called the first ionization energy. For a helium atom, the first ionization energy
is 24.6 eV, which is relatively large. Helium is therefore basically inert.

K (n � 1)n � 1,

Example 36-6 Electron Interaction Energy in Helium

(a) Use the measured first ionization energy to calculate the energy of interaction of the two
electrons in the ground state of the helium atom. (b) Use your result to estimate the average
separation of the two electrons.

PICTURE The energy of one electron in the ground state of helium is given by
(Equation 36-26), where and If the electrons did not inter-

act, the energy of the second electron would also be the same as that of the first elec-
tron. Thus, for an atom that has noninteracting electrons, the ionization energy of the
first electron removed would be and the ground-state energy would be 
This is represented by the lowest level in Figure 36-16. Because of the interaction energy,
the ground-state energy is greater than which is represented by the higher level
labeled in the figure. The measured first ionization energy of helium is 24.6 eV.
When we add to ionize He, we obtain ionized helium, written 
which has just one electron and therefore energy 

SOLVE

E1.
He�,Eion � 24.6 eV

Eg

2E1,

Enon � 2E1.ƒE1 ƒ

E1,
Z � 2.n � 1En � �Z2E0>n2

(a) 1. The sum of the energy of interaction and the energy
of two noninteracting electrons equals the ground-
state energy of helium:

Enon

Eint
Eint � Enon � Eg

2. Solve for and substitute Enon � 2E1:Eint Eint � Eg � Enon � Eg � 2E1

3. Use Equation 36-26 to calculate the energy of one
electron in the ground state:

E1

so

E1 � �(2)2 13.6 eV
12 � �54.4 eV

En � �Z2
E0

n2

4. Substitute this value for E1:

� Eg � 108.8 eV

Eint � Eg � 2E1 � Eg�2(�54.4 eV)

5. The sum of the ground-state energy of He and the
ionization energy equals the ground-state energy of

which is E1:He�,
Eion

Eg Eg � Eion � E1 � �54.4 eV

6. Substitute to calculate Eg:Eion � 24.6 eV

� �79.0 eV

Eg � E1 � Eion � �54.4 eV � 24.6 eV

7. Substitute this result for to obtain Eint:Eg

29.8 eV�

Eint � Eg � 108.8 eV � �79.0 eV � 108.8 eV

(b) 1. The energy of interaction of two electrons separated by
distance is the potential energy:rs

U � �
ke2

rs

2. Set equal to 29.8 eV, and solve for It is convenient to
express in terms of the radius of the first Bohr orbit
in hydrogen, and to use 
(Equation 36-16):

E0 � ke2>(2a0) � 13.6 eV
a0,r

r.U

0.913a0� 2
13.6 eV
29.8 eV

a0 �

rs �
ke2

U
�
ke2

a0

a0

U
� 2
ke2

2a0

a0

U
� 2
E0

U
a0

CHECK This separation is approximately the size of the diameter of the first Bohr orbit
for an electron in helium, which is d1 � 2r1 � 2a0>Z � a0.

d1

E Eg +

=

1

Eion

Eion

EEnon 12

=

E Eg = intEnon +

He He+

F I G U R E  3 6 - 1 6
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LITHIUM

The next element, lithium, has an atom that has three electrons. Because the shell
of a ground-state lithium atom is completely filled with two electrons, the

third electron occupies a higher energy shell. The next lowest energy shell after
is the or shell. This electron has a greater probability of being

much farther from the nucleus than the two electrons. It is most likely to be
found at a radius near that of the second Bohr orbit, which is four times the radius
of the first Bohr orbit.

The nuclear charge is partially screened from the electron by the two
electrons. Recall that the electric field outside a spherically symmetric charge

density is the same as if all the charge were at the center of the sphere. If the 
electron were completely outside the charge cloud of the two electrons, the
electric field the electron would see would be that of a single charge at
the center due to the nuclear charge of and the charge of the two 
electrons. However, the radial probability distribution (Equation 36-33) of the

electron overlaps with the radial probability distributions of the elec-
trons, so the electron has a small but finite probability of being closer to the
nucleus than one or both of the electrons. Because of this, the effective nu-
clear charge seen by the electron is somewhat greater than 
Consequently, the energy of the electron at a distance from a point charge

is given by Equation 36-6, where the nuclear charge replaced by 

36-45

The greater the overlap of the radial probability distributions of a higher energy
electron with lower energy electrons, the greater is the effective nuclear charge 
seen by the higher energy electron and the lower is the energy of the higher energy
electron. Because the overlap is greater for values closer to zero (see Figure 36-12),
the energy of the electron in lithium is lower for the s state than for the
p state The electron configuration of a lithium atom in the ground state is
therefore The first ionization energy of a lithium atom is only 
Because its electron is so loosely bound to the atom, lithium is very active
chemically. It behaves like a one-electron atom, similar to hydrogen.

n � 2
5.39 eV.1s22s.

(� � 1).
(� � 0)n � 2

�

Z�e

E � �
1
2
kZ�e2

r

�Z�.�Z�Z�e
rn � 2

�1e.n � 2Z�e
n � 1

n � 2
n � 1n � 2

n � 1�2e�3e
�en � 2

n � 1
n � 2

n � 1
n � 2

n � 1
n � 2Ln � 2n � 1

(n � 1)
K

(Z � 3)

(a) (b)

(a) A diamond anvil cell, in which the facets of two diamonds (approximately each) are used to compress a sample
substance, subjecting it to very high pressure. (b) Samarium monosulfide (SmS) is normally a black, dull-looking
semiconductor. When it is subjected to pressure above 7000 atm, an electron from the 4f state moves into the 5d state.
The resulting compound glitters like gold and behaves like a metal. ((a) and (b) A. Jayaraman/AT&T Bell Labs.)

1 mm2
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Example 36-7 Effective Nuclear Charge for an Electron of
a Lithium Atom

Suppose the radial probability distribution of the electron in the lithium atom in the
ground state did not overlap the probability distribution of the two electrons; the nuclear
charge would be shielded by the two electrons and the effective nuclear charge would be

where Then the energy of the electron would be 
However, the first ionization energy of lithium is not Use this fact to calculate
the effective nuclear charge seen by the electron in lithium.

PICTURE Because the electron is in the shell, we will take for its av-
erage distance from the nucleus. We can then calculate from Equation 36-45. Because

is given in terms of it will be convenient to use the fact that 
(Equation 36-16).

SOLVE

E0 � ke2>(2a0) � 13.6 eVa0,r
Z�

r � 4a0n � 2n � 2

n � 2Z�

3.4 eV.5.39 eV,
�(13.6 eV)>22 � �3.4 eV.n � 2Z� � 1.Z�e,

n � 1
n � 1

n � 2

1. Equation 36-45 relates the energy of the
electron to its average distance 

from the nucleus and the effective nuclear
charge Z�:

rn � 2
E � �

1
2
kZ�e2

r

2. Substitute the given values and
E � �5.39 eV:

r � 4a0 �5.39 eV � �
1
2
kZ�e2

4a0

CHECK We expected to be larger than one and certainly less than 3. Our step-3 result
meets these expectations.

TAKING IT FURTHER This calculation is interesting but not very rigorous. We essentially
used the radius for the circular orbit from the semiclassical Bohr model and the
measured first ionization energy to calculate the effective nuclear charge seen by the 
electron. We know, of course, that this electron does not move in a circular orbit of con-
stant radius, but is better represented by a probability density that overlaps the proba-
bility distributions of the electrons.n � 1

ƒc ƒ 2
n � 2

n � 2
(r � 4a0)

Z�

3. Use and solve 
for Z�:
ke2>(2a0) � E0 � 13.6 eV

so

1.59Z� � 4
5.39 eV
13. 6 eV

�

�5.39 eV � �
Z�

4
ke2

2a0
� �

Z�

4
(13.6 eV)

BERYLLIUM 

The energy of the beryllium atom is a minimum if both electrons are in the
2s state. There can be two electrons that have and because of
the two possible values for the spin quantum number The configuration of a
beryllium atom is thus 

BORON TO NEON TO

If the 2s subshell of a ground-state boron atom is filled, the fifth electron must be
in the next available (lowest energy) subshell, which is the 2p subshell, where

and Because there are three possible values of and and
two values of for each value of there can be six electrons in this subshell.m�,ms

�1)m� (�1, 0,� � 1.n � 2

Z � 10)(Z � 5

1s22s2.
ms.

m� � 0n � 2, � � 0,
n � 2

(Z � 4)

Europium

Silver

Iron

Silicon

Carbon

Hydrogen

A schematic depiction of the electron configurations in atoms. The spherically symmetric s
states can have 2 electrons and are shown as white and blue. The dumbbell-shaped p states can
have up to 6 electrons and are shown as orange. The d states can have up to 10 electrons and are
shown as yellow-green. The f states can have up to 14 electrons and are shown as purple.
(David Parker/Photo Researchers.)



The electron configuration for a boron atom is The electron configura-
tions for carbon atoms to neon atoms differ from that for boron
atoms only in the number of electrons in the 2p subshell. The first ionization
energy increases with for these elements, reaching the value of for the
last element in the group, neon. A neon atom has the maximum number of elec-
trons allowed in the shell and its electron configuration is 
Because of its very large first ionization energy, neon, like helium, basically is
chemically inert. The atom whose atomic number is one less than neon’s atomic
number is fluorine, which has an unoccupied electron state in the 2p subshell;
that is, a fluorine atom can have one more electron in its 2p subshell. Fluorine
readily combines with elements such as lithium that have one electron in its high-
est energy shell (that is, an electron in an unfilled highest energy shell of an atom
in the ground state). Lithium, for example, will donate its single valence electron
to the fluorine atom to make an and a These ions then bond to-
gether to form lithium fluoride.

SODIUM TO ARGON TO 

The eleventh electron of a ground-state sodium atom must be the shell.
Because this electron is shielded from the nucleus by and electrons,
it is weakly bound in the sodium atom. The first ionization energy of
sodium is only Sodium atoms therefore combine readily with atoms such
as fluorine. With the value of can be 0, 1, or 2. A 3s electron has a lower
energy than a 3p or 3d electron because its probability density overlap with the
probability densities of and electrons is greatest. This energy differ-
ence between subshells of the same value becomes greater as the number of
electrons increases. The electron configuration of a sodium atom is 
For elements whose atoms have larger values of the 3s subshell and then the
3p subshell are occupied. These two subshells can accommodate elec-
trons. The configuration of an argon atom is One might
expect the nineteenth electron of potassium would occupy the third subshell (the
d subshell where but the overlap effect is now so strong that the energy
of the nineteenth electron is lower in the 4s subshell than in the 3d subshell. There
is thus another large energy difference between the eighteenth and nineteenth
electrons of a potassium atom, and so an argon atom, with its full 3p subshell, is
basically stable and inert.

ELEMENTS WITH 

The nineteenth electron in a potassium 
atom and the twentieth electron in a calcium

atom occupy the 4s subshell rather
than the 3d subshell. The electron configura-
tions of the atoms of the next ten elements, scan-
dium through zinc differ
only in the number of electrons in the 3d shell,
except for a chromium atom and a
copper atom, each of which has only
one 4s electron. These ten elements are called
transition elements.

Figure 36-17 shows a plot of the first ioniza-
tion energies versus for to 
The peaks in first ionization energy at 10,
18, 36, and 54 mark a filled shell or subshell.
Table 36-1 gives the ground-state electron con-
figurations of atoms up to atomic number 111.

Z � 2,
Z � 60.Z � 1Z

(Z � 29)
(Z � 24)

(Z � 30),(Z � 21)

(Z � 20)

(Z � 19)

Z>18

� �  2),

1s22s22p63s23p6.(Z � 18)
2 � 6 � 8

Z,
1s22s22p63s1.

n
n � 1n � 2

�n � 3,
5.14 eV.

(Z � 11)
n � 1n � 2
n � 3

Z � 18)(Z � 11

Li� ion.F� ion

1s22s22p6.n � 2

21.6 eVZ

(Z � 10)(Z � 6)
1s22s22p.
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F I G U R E  3 6 - 1 7 First ionization energies versus for to The first
ionization energy increases with until a shell is filled at and 54.
An atom that has a filled shell and a single valence electron, such as sodium 

has a very low ionization energy because the valence electron is shielded
by the core electrons.
(Z � 11),

Z � 2, 10, 18, 36,Z
Z � 60.Z � 1Z
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Table 36-1 Electron Configurations of the Atoms in Their Ground States

For some of the rare-earth elements and the heavy elements 

the configurations are not firmly established.

Shell (n): K (1) L (2) M (3) N (4) O (5) P (6) Q (7)
s s p s p d s p d f s p d f s p d s

Z Element Subshell (0) (0) (1) (0) (1) (2) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (1)

1 H hydrogen 1

2 He helium 2

3 Li lithium 2 1

4 Be beryllium 2 2

5 B boron 2 2 1

6 C carbon 2 2 2

7 N nitrogen 2 2 3

8 O oxygen 2 2 4

9 F fluorine 2 2 5

10 Ne neon 2 2 6

11 Na sodium 2 2 6 1

12 Mg magnesium 2 2 6 2

13 Al aluminum 2 2 6 2 1

14 Si silicon 2 2 6 2 2

15 P phosphorus 2 2 6 2 3

16 S sulfur 2 2 6 2 4

17 Cl chlorine 2 2 6 2 5

18 Ar argon 2 2 6 2 6

19 K potassium 2 2 6 2 6 . 1

20 Ca calcium 2 2 6 2 6 . 2

21 Sc scandium 2 2 6 2 6 1 2

22 Ti titanium 2 2 6 2 6 2 2

23 V vanadium 2 2 6 2 6 3 2

24 Cr chromium 2 2 6 2 6 5 1

25 Mn manganese 2 2 6 2 6 5 2

26 Fe iron 2 2 6 2 6 6 2

27 Co cobalt 2 2 6 2 6 7 2

28 Ni nickel 2 2 6 2 6 8 2

29 Cu copper 2 2 6 2 6 10 1

30 Zn zinc 2 2 6 2 6 10 2

31 Ga gallium 2 2 6 2 6 10 2 1

32 Ge germanium 2 2 6 2 6 10 2 2

33 As arsenic 2 2 6 2 6 10 2 3

34 Se selenium 2 2 6 2 6 10 2 4 

35 Br bromine 2 2 6 2 6 10 2 5

36 Kr krypton 2 2 6 2 6 10 2 6

37 Rb rubidium 2 2 6 2 6 10 2 6 . . 1

38 Sr strontium 2 2 6 2 6 10 2 6 . . 2

(�):

(Z>89)(Z � 57 to 71)

Continued on next page



1250 | C H A P T E R  3 6 Atoms

39 Y yttrium 2 2 6 2 6 10 2 6 1 . 2

40 Zr zirconium 2 2 6 2 6 10 2 6 2 . 2

41 Nb niobium 2 2 6 2 6 10 2 6 4 . 1

42 Mo molybdenum 2 2 6 2 6 10 2 6 5 . 1

43 Tc technetium 2 2 6 2 6 10 2 6 6 . 1

44 Ru ruthenium 2 2 6 2 6 10 2 6 7 . 1

45 Rh rhodium 2 2 6 2 6 10 2 6 8 . 1

46 Pd palladium 2 2 6 2 6 10 2 6 10 . .

47 Ag silver 2 2 6 2 6 10 2 6 10 . 1

48 Cd cadmium 2 2 6 2 6 10 2 6 10 . 2

49 In indium 2 2 6 2 6 10 2 6 10 . 2 1

50 Sn tin 2 2 6 2 6 10 2 6 10 . 2 2

51 Sb antimony 2 2 6 2 6 10 2 6 10 . 2 3

52 Te tellurium 2 2 6 2 6 10 2 6 10 . 2 4

53 I iodine 2 2 6 2 6 10 2 6 10 . 2 5

54 Xe xenon 2 2 6 2 6 10 2 6 10 . 2 6

55 Cs cesium 2 2 6 2 6 10 2 6 10 . 2 6 . . 1

56 Ba barium 2 2 6 2 6 10 2 6 10 . 2 6 . . 2

57 La lanthanum 2 2 6 2 6 10 2 6 10 . 2 6 1 . 2

58 Ce cerium 2 2 6 2 6 10 2 6 10 1 2 6 1 . 2

59 Pr praseodymium 2 2 6 2 6 10 2 6 10 3 2 6 . . 2

60 Nd neodymium 2 2 6 2 6 10 2 6 10 4 2 6 . . 2

61 Pm promethium 2 2 6 2 6 10 2 6 10 5 2 6 . . 2

62 Sm samarium 2 2 6 2 6 10 2 6 10 6 2 6 . . 2

63 Eu europium 2 2 6 2 6 10 2 6 10 7 2 6 . . 2

64 Gd gadolinium 2 2 6 2 6 10 2 6 10 7 2 6 1 . 2

65 Tb terbium 2 2 6 2 6 10 2 6 10 9 2 6 . . 2

66 Dy dysprosium 2 2 6 2 6 10 2 6 10 10 2 6 . . 2

67 Ho holmium 2 2 6 2 6 10 2 6 10 11 2 6 . . 2

68 Er erbium 2 2 6 2 6 10 2 6 10 12 2 6 . . 2

69 Tm thulium 2 2 6 2 6 10 2 6 10 13 2 6 . . 2

70 Yb ytterbium 2 2 6 2 6 10 2 6 10 14 2 6 . . 2

71 Lu lutetium 2 2 6 2 6 10 2 6 10 14 2 6 1 . 2

72 Hf hafnium 2 2 6 2 6 10 2 6 10 14 2 6 2 . 2

73 Ta tantalum 2 2 6 2 6 10 2 6 10 14 2 6 3 . 2

74 W tungsten (wolfram) 2 2 6 2 6 10 2 6 10 14 2 6 4 . 2

75 Re rhenium 2 2 6 2 6 10 2 6 10 14 2 6 5 . 2

76 Os osmium 2 2 6 2 6 10 2 6 10 14 2 6 6 . 2

77 Ir iridium 2 2 6 2 6 10 2 6 10 14 2 6 7 . 2

78 Pt platinum 2 2 6 2 6 10 2 6 10 14 2 6 9 . 1

79 Au gold 2 2 6 2 6 10 2 6 10 14 2 6 10 . 1

Table 36-1 Continued

Shell (n): K (1) L (2) M (3) N (4) O (5) P (6) Q (7)
s s p s p d s p d f s p d f s p d s

Z Element Subshell (0) (0) (1) (0) (1) (2) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (1)(�):

Continued on next page
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Shell (n): K (1) L (2) M (3) N (4) O (5) P (6) Q (7)
s s p s p d s p d f s p d f s p d s

Z Element Subshell (0) (0) (1) (0) (1) (2) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (1)(�):
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80 Hg mercury 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2

81 Tl thallium 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 1

82 Pb lead 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 2

83 Bi bismuth 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 3

84 Po polonium 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 4

85 At astatine 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 5

86 Rn radon 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6

87 Fr francium 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 . 1

88 Ra radium 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 . 2

89 Ac actinium 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 1 2

90 Th thorium 2 2 6 2 6 10 2 6 10 14 2 6 10 . 2 6 2 2

91 Pa protactinium 2 2 6 2 6 10 2 6 10 14 2 6 10 2 2 6 1 2

92 U uranium 2 2 6 2 6 10 2 6 10 14 2 6 10 3 2 6 1 2

93 Np neptunium 2 2 6 2 6 10 2 6 10 14 2 6 10 4 2 6 1 2

94 Pu plutonium 2 2 6 2 6 10 2 6 10 14 2 6 10 6 2 6 . 2

95 Am americium 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 . 2

96 Cm curium 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 1 2

97 Bk berkelium 2 2 6 2 6 10 2 6 10 14 2 6 10 9 2 6 . 2

98 Cf californium 2 2 6 2 6 10 2 6 10 14 2 6 10 10 2 6 . 2

99 Es einsteinium 2 2 6 2 6 10 2 6 10 14 2 6 10 11 2 6 . 2

100 Fm fermium 2 2 6 2 6 10 2 6 10 14 2 6 10 12 2 6 . 2

101 Md mendelevium 2 2 6 2 6 10 2 6 10 14 2 6 10 13 2 6 . 2

102 No nobelium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 . 2

103 Lr lawrencium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 1 2

104 Rf rutherfordium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 2 2

105 Db dubnium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 3 2

106 Sg seaborgium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 4 2

107 Bh bohrium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 5 2

108 Hs hassium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 6 2

109 Mt meitnerium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 7 2

110 Ds darmstadtium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 9 1

111 Rg roentgenium 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 10 1

36-7 OPTICAL SPECTRA AND X-RAY SPECTRA

When an atom is in an excited state (when it is in an energy state above the ground
state), it makes transitions to lower energy states, and in doing so emits electromag-
netic radiation. The wavelength of the electromagnetic radiation emitted is related to
the initial and final states by the Bohr formula (Equation 36-17), 
where and are the initial and final energies and is Planck’s constant. The atom
can be excited to a higher energy state by bombarding the atom with a beam of

hEfEi

l � hc>(Ei � Ef),
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electrons, as in a spectral tube that has a high voltage across it. Because the excited
energy states of an atom form a discrete (rather than continuous) set, only certain
wavelengths are emitted. These wavelengths of the emitted radiation constitute the
emission spectrum of the atom.

OPTICAL SPECTRA
To understand atomic spectra we need to understand the excited states of the atom.
The situation for an atom that has many electrons is, in general, much more compli-
cated than that of a hydrogen atom that has just one electron. An excited state of the
atom may involve a change in the state occupied by any one of the electrons, or even
two or more electrons. Fortunately, in most cases, an excited state of an atom involves
the excitation of just one of the electrons in the atom. The energies of excitation of the
valence electrons of an atom are of the order of a few electron volts. Transitions in-
volving these electrons result in photons in or near the visible or optical spectrum.
(Recall that the energies of visible photons range from approximately to 
The excitation energies can often be calculated from a simple model in which the
atom is pictured as a single electron plus a stable core consisting of the nucleus plus
the other electrons. This model works particularly well for the alkali metals: Li, Na,
K, Rb, and Cs. These elements are in the first column of the periodic table. The opti-
cal spectra of these elements are similar to the optical spectra of hydrogen.

Figure 36-18 shows an energy-level diagram for the optical transitions of a
sodium atom, whose electrons form a neon core plus one electron. Because the total
spin angular momentum of the core adds up to zero, the spin of each state of the
sodium atom is (the spin of the valence electron). Because of the spin–orbit effect,
the atomic states for which have a slightly different energy than those for
which (except for states with Each state (except for the 
states) is therefore split into two states, called a doublet. The doublet splitting is very
small and not evident on the energy scale of this diagram. The usual spectroscopic
notation is that the states of these atoms are labeled with a superscript given by

followed by a letter denoting the orbital angular momentum, followed by a
subscript denoting the total angular momentum For states that have a total spin
angular momentum the superscript is 2, indicating the state is a doublet. Thus,

read as “doublet P three halves,” denotes a state in which and 
(The or S, states are customarily labeled as if they were doublets even though
they are not.) For a sodium atom in the first excited state, the electron is excited from
the 3s level to the 3p level, which is approximately above the ground state.
The energy difference between the and states due to the spin–orbit effect is
about Transitions from these states to the ground state give the familiar
sodium yellow doublet:

The energy levels and spectra of other alkali metal atoms are similar to those for
sodium. The optical spectrum for atoms such as helium, beryllium, and magne-
sium that have two valence electrons is considerably more complex because of the
interaction of the two electrons.

X-RAY SPECTRA

X rays are usually produced in the laboratory by bombarding a target element with
a high-energy beam of electrons in an X-ray tube. The result (Figure 36-19) consists
of a continuous spectrum that depends only on the energy of the bombarding elec-
trons and a line spectrum that is characteristic of the target element. The charac-
teristic spectrum results from excitation of the core electrons in the target element.

The energy needed to excite a core electron—for example, an electron in the
state —is much greater than the energy required to excite a valence(K shell)n � 1

3p(2P3>2) S 3s(2S1>2)  l � 589.0 nm

3p(2P1>2) S 3s(2S1>2)  l � 589.6 nm

0.002 eV.
P1>2P3>2 2.1 eV

L � 0,
J � 3

2.L � 12P3>2, S � 1
2

J.
2S � 1,

L � 0L � 0).J � L � 1
2

J � L � 1
2

1
2

3 eV.)1.5 eV

A neon sign outside a Chinatown restaurant
in Paris. Neon atoms in the tube are excited by
an electron current passing through the tube.
The excited neon atoms emit light in the
visible range as they decay toward their
ground states. The colors of neon signs result
from the characteristic red-orange spectrum of
neon plus the color of the glass tube itself.
(Robert Landau/Westlight.)
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electron. A core electron cannot be excited to any of the filled states (for example,
the states in an atom with because of the exclusion principle. The en-
ergy required to excite a core electron to an unoccupied state is typically of the
order of several thousand electron volts. If an electron is knocked out of the 
shell (the shell), there is a vacancy left in that shell. The vacancy can be filled if
an electron in a higher energy shell makes a transition into the shell. The pho-
tons emitted by electrons making such transitions also have energies of the order
of several thousand electron volts and produce the sharp peaks in the X-ray spec-
trum, as shown in Figure 36-19. The spectral line arises from transitions from
the shell (the shell) to the shell (the shell). The spectral line
arises from transitions from the shell to the shell. These and other lines
arising from transitions ending at the shell make up the series of the
characteristic X-ray spectrum of the target element. Similarly, a second series, the
series, is produced by transitions from higher energy states to a vacated place in
the shell. The letters and so on, designate the final shell of the
electron making the transition and the series and so on, designates the num-
ber of shells above the final shell for the initial state of the electron.

In 1913, the English physicist Henry Moseley measured the wavelengths of the
characteristic X-ray spectra for approximately forty elements. Using this data,
Moseley showed that a plot of versus the order in which the elements
appeared in the periodic table resulted in a straight line (with a few gaps and a few
outliers). From his data, Moseley was able to accurately determine the atomic

l�1>2K
a

a, b,
K, L,M,n � 2 (L)

L
Kn � 1

n � 1n � 3
K
b

Kn � 1Ln � 2
K
a

K
K

n � 1
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0 3s
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5p 4d

5d6p
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7p 6d
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F I G U R E  3 6 - 1 8 Energy-level diagram
for sodium. The diagonal lines show observed
optical transitions, where wavelengths are
given in nanometers. The energy of the
ground state has been chosen as the zero point
for the scale on the left.
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wavelength is independent of the target
element and is related to the voltage of the
X-ray tube by lm � hc>eV.
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number for each known element, and to predict the existence of some elements
that were later discovered. The equation of the straight line of his plot is given by

The work of Bohr and Moseley can be combined to obtain an equation relating
the wavelength of the emitted photon and the atomic number. According to the Bohr
model of a single-electron atom (see Equation 36-13), the wavelength of the emitted
photon when the electron makes the transition from to is given by

where is the binding energy of the ground-state hydrogen atom.
Taking the square root of both sides gives

Moseley’s equation and this equation are in agreement if is substituted for in
Bohr’s equation and if This result raises the question, why a factor of

instead of a factor of Part of the explanation is that the formula from the
Bohr theory ignores the shielding of the nuclear charge. In a multielectron atom, elec-
trons in the states are electrically shielded from the nuclear charge by the two
electrons in the state, so the state electrons are attracted by an effective
nuclear charge of about However, when there is only one electron in the 

shell, the electrons are attracted by an effective nuclear charge of about
When an electron from state drops into the vacated state in the shell,

a photon of energy is emitted. For the wavelength of this photon is

36-46

which is obtained from the previous equation with substituted for Z.Z � 1

lKa
�

hc

(Z � 1)2 E0a1 �
1
22 b

n � 2,En � E1

n � 1n(Z � 1)e.
n � 2K

(Z � 2)e.
n � 2n � 1

n � 2

Z?Z � 1
a � 3E0>(4hc). ZZ � 1

1

2lKa � cE0

hc
a1 �

1
22 b d 1>2Z

E0 � 13.6 eV

1
l

� Z2
E0

hc
a1 �

1
22 b n � 1n � 2

1

2lKa � a(Z � 1)

Z

Example 36-8 Identifying the Element from the 

The wavelength of the for a certain element is What is the element?

PICTURE The line corresponds to a transition from to The wavelength is re-
lated to the atomic number by Equation 36-46.

SOLVE

Z
n � 1.n � 2K

a

l � 0.0721 nm.K
a
 X-ray line

K
A
 X-Ray Line

1. Solve Equation 36-46 for (Z � 1)2:

so

(Z � 1)2 �
4hc

3lKaE0

lKa
�

hc

(Z � 1)2E0a1 �
1
22 b

2. Substitute the given data and solve for Z:

so

Z � 1 � 21686 � 42.06

(Z � 1)2 �
4(1240 eV # nm)

3(0.0721 nm)(13.6 eV)
� 1686

CHECK The naturally occurring atom that has the largest atomic number is uranium, which has
an atomic number That our step-3 result is greater than 0 and less than 93 is as expected.Z � 92.

3. Because is an integer, we round to the nearest integer:Z

 The element is molybdenum.

Z � 42
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Summary

1. The Bohr model is important because it was the first model to succeed at explaining the
discrete optical spectrum of atoms in terms of the quantization of energy. It has been su-
perceded by the quantum-mechanical model.

2. The quantum theory of atoms results from the application of the Schrödinger equation to a
bound system consisting of nucleus of charge and electrons of charge 

3. For the hydrogen atom, an atom that consists of one proton and one electron, the time-
independent Schrödinger equation can be solved exactly to obtain the wave functions 
which depend on the quantum numbers and 

4. The electron configuration of atoms is governed by the Pauli exclusion principle—no two
electrons in an atom can have the same set of values for the quantum numbers 
and Using the exclusion principle and the restrictions on the quantum numbers, we
can understand much of the structure of the periodic table.

TOPIC RELEVANT EQUATIONS AND REMARKS

1. The Bohr Model of the Hydrogen Atom

Postulates for the hydrogen atom

Nonradiating orbits The idea that an electron moves in a circular nonradiating orbit around the proton.

Photon frequency from 36-7
energy conservation

Quantized angular momentum 36-9

First Bohr radius 36-12

Radii of the Bohr orbits 36-11

Energy levels in hydrogen-like atoms 36-15

where

36-16

Wavelengths emitted by 36-17, 36-18

the hydrogen atom

2. Quantum Theory of Atoms The electron is described by a wave function that is a solution of the Schrödinger equation.
Energy quantization arises from standing-wave conditions. is described by the principal,
orbital, and magnetic quantum numbers and and the spin quantum number 

Time-independent Schrödinger equation 36-19

For an isolated atom, the solutions 36-21
can be written as products of functions 
of and separately

Quantum numbers in 
spherical coordinates

Principal quantum number

Orbital quantum number

Magnetic quantum number 36-22

Orbital angular momentum 36-23L �4�(� � 1)U

m� � ��, (�� � 1), Á , 0, Á , (� � 1), �

� � 0, 1, 2, 3, Á , n � 1

n � 1, 2, 3, Á

fr, u,

c(r, u, f) � R(r)f(u)g(f)

�
U2

2m
a�2c

�x2 �
�2c

�y2 �
�2c

�z2 b � Uc � Ec

ms � �1
2.m�,n, �,

c

c

l �
c
f

�
hc

Ei � Ef

�
1240 eV # nm
Ei � Ef

E0 � �
mk2e4

2U2 �
1
2
ke2

a0

� 13.6 eV

En � �Z2
E0

n2

rn � n2
a0
Z

a0 �
U2

mke2
� 0.0529 nm

Ln � mvnrn � nU n � 1, 2, 3, . . .

f �
Ei � Ef

h

ms.
n, �, m�,

ms.n, �, m�,
c,

�e.Z�Ze
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component of orbital 
angular momentum

36-24

3. Quantum Theory of the Hydrogen Atom

Energy levels for hydrogen-like atoms 36-26
(same as for the Bohr model)

where

36-27

Wavelengths emitted by the hydrogen 
atom (same as for Bohr model)

36-17, 36-18

Wave functions

The ground state 36-30, 36-32

The first excited state 36-35

36-36

36-37

Probability densities For is spherically symmetric. For depends on the angle 

Radial probability density 36-33

The radial probability density is maximum at the distances corresponding roughly to the
Bohr orbits.

4. The Spin–Orbit Effect and The total angular momentum of an electron in an atom is a combination of the orbital 
Fine Structure angular momentum and spin angular momentum. It is characterized by the quantum num-

ber which can be either or Because of the interaction of the orbital and spin
magnetic moments, the state has lower energy than the state for 
This small splitting of the energy states gives rise to a small splitting of the spectral lines
called fine structure.

5. The Periodic Table An atom of an element has electrons, where is the atomic number of the element. For an atom
in the ground state, the electrons are in those states that will give the lowest energy consistent
with the Pauli exclusion principle. The state of an atom is described by its electron configuration,
which gives the values of and for each electron. The values are specified by a code:

s p d f g h
0 1 2 3 4 5

Pauli exclusion principle No two electrons in an atom can have the same set of values for the quantum numbers
and

6. Atomic Spectra Atomic spectra include optical spectra and X-ray spectra. Optical spectra result from transi-
tions between energy levels of a single valence electron moving in the field of the nucleus
and core electrons of the atom. Characteristic X-ray spectra result from the excitation of a
core electron and the subsequent filling of the vacancy by other electrons in the atom.

Selection rules Transitions between energy states with the emission of a photon are governed by the fol-
lowing selection rules

36-28

¢� � �1

¢m� � 0 or ¢m� � �1

ms.n, �, m�,

� value

��n

ZZ

� 
 0.j � � � 1
2,j � ƒ� � 1

2 ƒ
� � 1

2.ƒ� � 1
2 ƒj,

P(r) � 4pr2 ƒc ƒ 2

u.� 
 0, ƒc ƒ 2� � 0, ƒc ƒ 2

c21�1 � C21�1

Zr
a0

e�Zr>2a0 sinu e� if

c210 � C210

Zr
a0

e�Zr>2a0 cosu

c200 � C200 a2 �
Zr
a0

be�Zr>2a0
c100 � C100e

�Zr>a0 �
1
1p a Za0

b 3>2
e�Zr>a0

l �
c
f

�
hc

Ei � Ef

�
1240 eV # nm
Ei � Ef

E0 � �
mk2e4

2U2 � 13.6 eV

En � �Z2
E0

n2  n � 1, 2, 3, Á

Lz � m�Uz

TOPIC RELEVANT EQUATIONS AND REMARKS
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Answers to Concept Checks

36-1 (a), (c), and (d)

Answers to Practice Problems

36-1 91.2 nm

36-2 �4, �3, �2, �1, 0, 1, 2, 3, 4

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • For the hydrogen atom, as increases, does the spacing
of adjacent energy levels on an energy-level diagram increase or
decrease?

2 • The energy of the ground state of doubly ionized lithium
is _______, where (a) (b) (c)

(d)

3 • Bohr’s quantum condition on electron orbits requires
(a) that the orbital angular momentum of the electron about the hy-
drogen nucleus equals where is an integer, (b) that no more
than one electron occupy a given state, (c) that the electrons spiral
into the nucleus while radiating electromagnetic waves, (d) that the
energies of an electron in a hydrogen atom be equal to where

is a constant and is an integer, (e) none of the above.

4 • According to the Bohr model, if an electron moves to a
larger orbit, does the electron’s total energy increase or decrease?
Does the electron’s kinetic energy increase or decrease?

5 • According to the Bohr model, the kinetic energy of the
electron in the ground state of hydrogen is where 
The kinetic energy of the electron in the state is (a) (b)
(c) (d)

6 • According to the Bohr model, the radius of the 
orbit in the hydrogen atom is What is the radius of
the orbit? (a) (b) (c) (d) (e)

7 • For the principal quantum number how many
different values can the orbital quantum number have? (a) 4,
(b) 3, (c) 7, (d) 16, (e) 25

8 • For the principal quantum number how many
different combinations of and can occur? (a) 4, (b) 3, (c) 7,
(d) 16, (e) 25

9 •• Why is the energy of the 3s state considerably lower than
the energy of the 3p state for sodium, whereas in hydrogen 3s and
3p states have essentially the same energy?

10 • The d state of an electron configuration corresponds to
(a) (b) (c) (d) (e)

11 •• Why are three quantum numbers inadequate to describe
the states of the electrons in atoms that have more than one electron?

12 •• Group the following six atoms—potassium, calcium,
titanium, chromium, manganese, and copper—according to their
ground-state electron configurations for the shell.n � 4

� � 0.n � 3,� � 2,� � 3,n � 2,

SSM

m��
n � 4,

SSM

�
n � 4,

a0>25.a0>5,a0,5a0,25a0,n � 5
a0 � 0.053 nm.

n � 1

E0>4.E0>2,
2E0,4E0,n � 2

E0 � 13.6 eV.E0,

nE0

nE0,

nnU,

�E0>9 �E0>3,�3E0 ,�9E0 ,E0 � 13.6 eV.(Z � 3)

SSM

n

13 • What element has the electron configuration
(a) and (b)

14 • For the principal quantum number what are the
possible combinations of the quantum numbers and 

15 • An electron in the shell means that the electron is rep-
resented by (a) (b) (c) (d) or (e)

16 •• The Bohr model and the quantum-mechanical model of
the hydrogen atom give the same results for the energy levels.
Discuss the advantages and disadvantages of each model.

17 •• The Sommerfeld–Hosser displacement theorem states
that the optical spectrum of any atom is very similar to the spectrum
of the singly charged positive ion of the element immediately fol-
lowing it in the periodic table. Discuss why this theorem is accurate.

18 • Using the triplet of numbers to represent an elec-
tron that has the principal quantum number orbital quantum num-
ber and magnetic quantum number which of the following
transitions is allowed? (a) (b)
(c) (d) (e)

19 •• The Ritz combination principle states that for any atom,
one can find different spectral lines and so that

Show why this is true using an energy-
level diagram.

ESTIMATION AND APPROXIMATION

20 •• (a) We can define a thermal de Broglie wavelength for
an atom in a gas at temperature as being the de Broglie wave-
length for an atom moving at the rms speed appropriate to that
temperature. (The average kinetic energy of an atom is equal to 
where is the Boltzmann constant. Use this value to calculate
the rms speed of the atoms.) Show that where is
the mass of the atom. (b) Cooled atoms can form a Bose condensate
(a new state of matter) when their thermal de Broglie wavelength
becomes larger than the average interatomic spacing. From this cri-
terion, estimate the temperature needed to create a Bose condensate
in a gas of whose number density is 

21 •• In laser cooling and trapping, a beam of atoms traveling
in one direction is slowed by interaction with an intense laser beam
in the opposite direction. The photons scatter off the atoms by reso-
nance absorption, a process by which the incident photon is

1012 atoms>cm3.85Rb atoms

mlT � h>13mkT
k

3
2 kT,

T
lT

SSM

1>l1 � 1>l2 � 1>l3 � 1>l4.
l4,l1, l2, l3,

(3, 1, 0).
(2, 1, 0) S(1, 0, 0) S (2, 1, �1),(4, 3, �2) S (3, 2, �1),

(2, 1, 0) S (3, 0, 0),(5, 2, 2) S (3, 1, �2),
m�,�,
n,

(n, �, m�)

m� � 2.n � 2,n � 1,� � 1,� � 0,
L

m�?�
n � 3,

1s22s22p63s23p63d54s1?1s22s22p63s23p3
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absorbed by the atom, and a short time later a photon of equal en-
ergy is emitted in a random direction. The net result of a single such
scattering event is a transfer of momentum to the atom in a direction
opposite to the motion of the atom, followed by a second transfer of
momentum to the atom in a random direction. Thus, during photon
absorption the atom loses speed, but during photon emission the
change in speed of the atom is, on average, zero (because the direc-
tions of the emitted photons are random). An analogy often made to
this process is that of slowing down a bowling ball by bouncing
ping-pong balls off of it. (a) Given that the typical photon energy
used in these experiments is about 1 eV, and that the typical kinetic
energy of an atom in the beam is the typical kinetic energy of the
atoms in a gas that has a temperature of about 500 K (a typical tem-
perature for an oven that produces an atomic beam), estimate the
number of photon–atom collisions that are required to bring an atom
to rest. (The average kinetic energy of an atom is equal to where

is the Boltzmann constant and T is the temperature. Use this to es-
timate the speed of the atoms.) (b) Compare the Part (a) result with
the number of ping-pong ball–bowling ball collisions that are re-
quired to bring the bowling ball to rest. (Assume the typical speed
of the incident ping-pong balls are all equal to the initial speed of
the bowling ball.) (c) is a type of atom often used during cool-
ing experiments. The wavelength of the light resonant with the
cooling transition of the atoms is Estimate the num-
ber of photons needed to slow down an atom from a typical
thermal velocity of to a stop.

THE BOHR MODEL OF
THE HYDROGEN ATOM

22 • The first Bohr radius is given by 
(Equation 36-12). Use the known values of the constants

in the equation to show that is equal to 

23 • The longest wavelength in the Lyman series for the
hydrogen atom was calculated in Example 36-2. Find the wavelengths
for the transitions (a) and (b)

24 • Find the photon energies for the three longest wave-
lengths in the Balmer series for the hydrogen atom, and calculate
the three wavelengths.

25 •• Find the photon energy and wavelength for the series
limit (shortest wavelength) in the Paschen series for the
hydrogen atom. (b) Calculate the wavelength for the three longest
wavelengths in Paschen series.

26 •• (a) Find the photon energy and wavelength for the series
limit (shortest wavelength) in the Brackett series for the
hydrogen atom. (b) Calculate the wavelength for the three longest
wavelengths in Brackett series.

27 ••• In the center-of-mass reference frame of a hydrogen atom,
the electron and nucleus have momenta that have equal magnitudes

and opposite directions. (a) Using the Bohr model, show that the
total kinetic energy of the electron and nucleus can be written

where is called the reduced mass,
is the mass of the electron, and M is the mass of the nucleus.

(b) For the equations for the Bohr model of the atom, the motion of
the nucleus can be taken into account by replacing the mass of the
electron with the reduced mass. Use Equation 36-14 to calculate
the Rydberg constant for a hydrogen atom that has a nucleus of
mass Find the approximate value of the Rydberg constant
by letting go to infinity in the reduced mass formula. To how
many figures does this approximate value agree with the actual
value? (c) Find the percentage correction for the ground-state energy
of the hydrogen atom by using the reduced mass in Equation 36-16.

M
M � mp.

me

m � meM>(M � me)K � p2>(2m)

p

(nf � 4)

(nf � 3)

ni � 4 to nf � 1.ni � 3 to nf � 1

0.0529 nm.a0

0.0529 nm
a0 � U2>1mke22 �

SSM300 m>s 85Rb
l � 780.24 nm.

85Rb

k

3
2 kT,

Note: In general, the reduced mass for a two-body problem with
masses and is given by

28 •• The Pickering series of the spectrum of (singly
ionized helium) consists of spectral lines due to transitions to the

state of Every other line of the Pickering series is very
close to a spectral line in the Balmer series for hydrogen transitions
to (a) Show that this statement is accurate. (b) Calculate the
wavelength of the photon during a transition from the level
to the level of and show that it corresponds to one of the
Balmer series lines.

QUANTUM NUMBERS IN 
SPHERICAL COORDINATES

29 • For an electron in an atom that has an orbital quantum
number find (a) the magnitude of the angular momentum 
and (b) the possible values of the magnetic quantum number 
(c) Draw a vector diagram to scale showing the possible orienta-
tions of relative to the direction.

30 • For an electron in an atom that has an orbital quantum
number find (a) the magnitude of the angular momentum 
and (b) the possible values of (c) Draw a vector diagram to scale
showing the possible orientations of relative to the direction.

31 • An electron in an atom has principal quantum number
(a) What are the possible values of (b) What are the pos-

sible combinations of and (c) Using the fact that there are two
quantum states for each combination of and because of
electron spin, find the total number of electron states for 

32 • In an atom, find the total number of electron states that
have (a) and (b) (See Problem 31.)

33 •• Find the minimum value of the angle between and
the direction for an electron in an atom that has (a)
(b) and (c)

34 •• What are the possible values of and for an electron
in an atom that has (a) (b) and (c)

35 •• For an electron in an atom that is in an state, find
(a) the magnitude of the angular momentum squared (b) the
maximum value of and (c) the smallest value of 

QUANTUM THEORY OF
THE HYDROGEN ATOM

36 • For the ground state of the hydrogen atom, find the val-
ues of (a) at (b) at and (c) the radial prob-
ability density at Give your answers in terms of 

37 • (a) If electron spin is not included, how many different
wave functions are there corresponding to the first excited energy
level for a hydrogen atom? (b) Specify the quantum numbers
for each of these wave functions.

38 •• For the ground state of the hydrogen atom, calculate the
probability of finding the electron in the region between and

where and (a) and (b)

39 •• The value of the constant in the equation

c200 � C200 a2 �
Zr
a0

be�Zr>(2a0)

C2 0 0

r � 2a0.r � a0¢r � 0.03a0r � ¢r,
r

SSM

n � 2

a0.r � a0.P(r)
r � a0,c2(r)r � a0,c(r)

L2
x � L2

y.L2
z,

L2,
� � 2

� � 0?� � 4,� � 3,
m�n

SSM� � 50.� � 4,
� � 1,�z
L
S

u

n � 2.n � 4

n � 3.
m��

m�?�
�?n � 3.

�zL
S

m�.
L� � 3,

�zL
S

m�.
L� � 1,

He�,n � 4
n � 6

n � 2.

He�.n � 4

He�

SSMm �
m1m2

m1 � m2

m2m1



Problems | 1259

(Equation 36-35) is given by

Find the values of (a) at (b) at and (c) the ra-
dial probability density at for the state and

of a hydrogen atom. Give your answers in terms of 
40 ••• Show that the radial probability density for the

and state of a one-electron atom can be writ-
ten as where is a constant.
41 ••• Calculate the probability of finding the electron in the re-
gion between and where and (a) and
(b) for the state and in hydrogen.
(See Problem 39 for the value of )
42 •• Show that the ground-state hydrogen atom wave func-
tion (Equation 36-32) is a solution to
Schrödinger’s equation in spherical coordinates:

c100 � p�1>21Z>a023>2e�Zr>a0
C200.

m� � 0n � 2, � � 0,r � 2a0
r � a0¢r � 0.02a0r � ¢r,r

AP(r) � A cos2 u r4e�Zr>a0,m� � 0n � 2, � � 1,

a0.m� � 0
� � 0,n � 2,r � a0P(r)

r � a0,c2(r)r � a0,c(r)

C200 �
1

422p
a Z
a0

b 3>2 53 • How many of the eight electrons in an oxygen atom in
the ground state are in a p state? (a) 0, (b) 2, (c) 4, (d) 6, (e) 8

54 • Write the ground-state electron configuration of (a) an
atom of carbon and (b) an atom of oxygen.

55 • Give the possible values of the component of the orbital
angular momentum of (a) a d electron and (b) an f electron.

OPTICAL SPECTRA AND 
X-RAY SPECTRA

56 • The optical spectra of atoms that have two electrons in the
same highest energy shell are similar, but they are quite different
from the spectra of atoms that have just one electron in the highest
energy shell because of the interaction of the two electrons. Group
the elements according to similar spectra: lithium, beryllium,
sodium, magnesium, potassium, calcium, chromium, nickel, cesium,
and barium.

57 • Write down the possible electron configurations for the
first excited state of (a) a hydrogen atom, (b) a sodium atom, and
(c) a helium atom.

58 • Indicate which of the following atoms should have opti-
cal spectra similar to a hydrogen atom and which of the following
atoms should have optical spectra similar to a helium atom: Li, Ca,
Ti, Rb, Hg, Ag, Cd, Ba, Fr, and Ra.

59 • (a) Calculate the next two longest wavelengths in the 
series (after the line) of molybdenum. (b) What is the wavelength
of the shortest wavelength in this series?

60 • The wavelength of the line for a certain element is
0.3368 nm. What is the element?

61 • Calculate the wavelength of the line in (a) a magne-
sium atom and (b) a copper atom.

GENERAL PROBLEMS

62 • What is the energy of the shortest wavelength photon emit-
ted by the hydrogen atom?

63 • The wavelength of a spectral line of hydrogen is 97.254 nm.
Identify the transition that results in this line, assuming that the tran-
sition is to the ground state.

64 •• The wavelength of a spectral line of hydrogen is 1093.8 nm.
Identify the transition that results in this line.

65 •• Spectral lines of the following wavelengths are emitted
by a singly ionized helium atom: 164 nm, 230.6 nm, and 541 nm.
Identify the transitions that result in those spectral lines.

66 •• The combination of physical constants where
is the Coulomb constant, is known as the fine-structure constant. It

appears in numerous relations in atomic physics. (a) Show that is
dimensionless. (b) Show that in the Bohr model of the hydrogen
atom where is the speed of the electron in the state of
quantum number 

67 •• The wavelengths of the photons emitted by a potassium
atom corresponding to transitions from the and states to
the ground state are 766.41 nm and 769.90 nm. (a) Calculate the en-
ergies of the photons in electron volts. (b) The difference in the en-
ergies of the photons equals the difference in energy between
the and states in potassium. Calculate (c) Estimate the
magnetic field that the 4p electron in potassium experiences.

¢E.4P1>24P3>2 ¢E

4P1>24P3>2
n.

vnvn � ca>n, a

k
a � e2k>Uc,

(Z � 29)(Z � 12)
K
a

K
a

K
a

K

z

U(r)c � Ec
�U

2mr2
e �

�r
ar2 �c

�r
b � c 1

sinu
�

�u
asinu

�c

�u
b �

1
sin2u

�2c

�f2 d f �

where (Equation 36-25).
43 •• Show by dimensional analysis that the expression for
the hydrogen atom ground-state energy given by 
(Equation 36-27) has the dimensions of energy.
44 •• By dimensional analysis, show that the expression for the
first Bohr radius given by (Equation 36-12) has the di-
mensions of length.
45 •• The radial probability distribution function for a one-
electron atom in its ground state can be written where

is a constant. Show that has its maximum value at 
46 ••• Show that the number of states in the hydrogen atom for
a given is 
47 ••• Calculate the probability that the electron in the ground
state of a hydrogen atom is in the region 

THE SPIN–ORBIT EFFECT AND
FINE STRUCTURE

48 • The potential energy of a magnetic moment in an external
magnetic field is given by (a) Calculate the difference in
energy between the two possible orientations of an electron in a
magnetic field (b) If the electrons are bombarded with
photons of energy equal to that energy difference, “spin flip” transi-
tions can be induced. Find the wavelength of the photons needed for
such transitions. This phenomenon is called electron spin resonance.
49 • The total angular momentum of a hydrogen atom in a
certain excited state has the quantum number What can you
say about the value of the orbital angular-momentum quantum
number
50 • A hydrogen atom is in the state What are
the possible values of 
51 • Using a scaled vector diagram, show how the orbital an-
gular momentum combines with the spin angular momentum 
to produce the two possible values of total angular momentum 
for the state of the hydrogen atom.

THE PERIODIC TABLE

52 • The total number of states of a hydrogen atom that has
principal quantum number is (a) 4, (b) 16, (c) 32, (d) 36, (e) 48n � 4

� � 3
J
S
S
S

L
S

j?
n � 3, � � 2.

�?

j � 1
2.

B
S

� 1.50 Tkn.

U � �M
S # B

S
.

0 	 r 	 a0.

2n2.n

r � a0>Z.P(r)C
P(r) � Cr2e�2Zr>a0,

a0 � U2>(mke2)
E0 � 1

2mk2e4>U2

U(r) � kZe2>r
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68 •• To observe the characteristic lines of the X-ray spec-
trum, one of the electrons must be ejected from the atom. This
is generally accomplished by bombarding the target material with
electrons of sufficient energy to eject this tightly bound electron.
What is the minimum energy required to observe the lines of (a) a
tungsten atom, (b) a molybdenum atom, and (c) a copper atom?

69 •• We are often interested in finding the quantity in
electron volts when is given in nanometers. Show that

70 •• The positron is a particle that has the same mass as the
electron and carries a charge equal to Positronium is a bound
state of an electron–positron combination. (a) Calculate the energies
of the five lowest energy states of positronium using the reduced
mass, as given in Problem 27. (b) Do transitions between any of
the levels found in Part (a) fall in the visible range of wavelengths?
If so, which transitions are they?

71 • In 1947, Lamb and Retherford showed that there is a very
small energy difference between the and the states of the
hydrogen atom. They measured this difference essentially by caus-
ing transitions between the two states using very long wavelength
electromagnetic radiation. The energy difference (the Lamb shift) is

and is explained by quantum electrodynamics as
being due to fluctuations in the energy level of the vacuum.
(a) What is the frequency of a photon whose energy is equal to the
Lamb shift energy? (b) What is the wavelength of that photon? In
what spectral region does it belong?

72 • A Rydberg atom is one in which an electron is in a very
high excited state Such atoms are useful for ex-
periments that probe the transition from quantum-mechanical be-
havior to classical. Furthermore, these excited states have extremely
long lifetimes (i.e., the electron will stay in this high excited state for

(n � 40 or higher).

4.372 � 10�6 eV

2P1>22S1>2

�e.

SSMke2 � 1.44 eV # nm.
r

ke2>r
K

n � 1
K a very long time). A hydrogen atom is in the state. (a) What is

the ionization energy of the atom when it is in that state? (b) What is
the energy level separation (in electron volts) between that state and
the state? (c) What is the wavelength of a photon resonant
with the transition between these two states? (d) What is the radius
of the atom when it is in the state?

73 •• The deuteron, the nucleus of deuterium (heavy hydrogen),
was first recognized from the spectrum of hydrogen. The deuteron
has a mass that is approximately twice the mass of the proton.
(a) Calculate the Rydberg constant for hydrogen and for deuterium
using the reduced mass as given in Problem 27. (b) Using the result
obtained in Part (a), determine the difference between the longest
wavelength Balmer line of hydrogen (protium) and the longest
wavelength Balmer line of deuterium.

74 •• The muonium atom is a hydrogen atom that has the elec-
tron replaced by a particle. The has a mass 207 times as great
as the electron. (a) Calculate the energies of the five lowest energy
levels of muonium using the reduced mass as given in Problem 27.
(b) Do transitions between any of the levels found in Part (a) fall in
the visible range of wavelengths (for example, between 
and If so, which transitions are they?

75 •• The triton, a nucleus consisting of a proton and two
neutrons, is unstable and has a half-life of approximately 12 years.
Tritium is an atom consisting of an electron and a triton.
(a) Calculate the Rydberg constant of tritium using the reduced
mass as given in Problem 27. (b) Determine the difference between
the longest wavelength of the Balmer lines of tritium and the
longest wavelength of the Balmer lines of deuterium (see Problem
73). In addition, (c) determine the difference between the longest
wavelength of the Balmer lines of tritium and the longest wave-
length of the Balmer lines of hydrogen (protium).

l � 400 nm)?
l � 700 nm

m�m�

n � 45

n � 44

n � 45



Molecules

37-1 Bonding

37-2 Polyatomic Molecules

37-3 Energy Levels and Spectra of Diatomic Molecules

M
ost atoms bond together to form molecules or solids. Molecules may
exist as separate entities, as in gaseous or or they may bond to-
gether to form liquids or solids. A molecule is the smallest constituent of
a substance that retains its chemical properties.

In this chapter, we use our understanding of quantum mechanics to discuss
bonding and the energy levels and spectra of diatomic molecules. Much
of our discussion will be qualitative because, as in atomic physics, the
quantum-mechanical calculations are very difficult.

37-1 BONDING

Consider a hydrogen molecule We can think of either as two H atoms
joined together or as a quantum-mechanical system of two protons and two elec-
trons. The latter picture is more useful in this case because neither of the electrons
in the molecule is confined to the region surrounding either one of the two
protons. Instead, each electron is equally shared by both protons. For more com-
plicated molecules, however, an intermediate picture is useful. For example, the

H2

H2(H2).

N2,O2

37
C H A P T E R

How much energy is needed 

to form sodium fluoride?

(See Example 37-1).
?
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*

A MICROGRAPH OF SODIUM FLUORIDE
CRYSTALS. SODIUM FLUORIDE IS
OFTEN ADDED TO PUBLIC WATER
SUPPLIES AS A TOOTH-DECAY
PREVENTATIVE. (National Institutes of
Health/Photo Researchers.)
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* In the repulsion is simply that of the two positively charged protons.
† Recall from our discussion in Chapter 35 that the exclusion principle is related to the fact that the wave function for

two identical electrons is antisymmetric on the exchange of the electrons and that an antisymmetric wave function for
two electrons with the same quantum numbers is zero if the space coordinates of the electrons are the same.

H2,

fluorine molecule consists of 18 protons and 18 electrons, but only two of the
electrons take part in the bonding. We therefore can consider this molecule as two

and two electrons that belong to the molecule as a whole. The molecular
wave functions for the bonding electrons are called molecular orbitals. In many
cases, these molecular wave functions can be constructed from combinations of the
atomic wave functions with which we are familiar.

The two principal types of bonds responsible for the formation of solids and mol-
ecules are the ionic bond and the covalent bond. Other types of bonds that are im-
portant in the bonding of liquids and solids are van der Waals bonds, metallic bonds,
and hydrogen bonds. In many cases, bonding is a mixture of these mechanisms.

THE IONIC BOND

The simplest type of bond is the ionic bond, which is found in salts such as sodium
chloride The sodium atom has one electron outside a stable ten-electron
core. The first ionization energy of sodium is the energy needed to remove the 3s
electron from an isolated sodium atom. This energy is just (see Figure 36-18).
The removal of this electron results in an isolated positive ion that has its and

electron shells filled. A chlorine atom has 17 electrons, and so is one electron
short of having its first three shells filled. A measure of the energy released when
an isolated atom gains one electron is called its electron affinity; a chlorine atom
releases of energy when it acquires an electron to form a Thus, the
chlorine atom is said to have an electron affinity of The acquisition of one
electron by chlorine results in a negative ion that has a filled outer electron shell.
Thus, the formation of a and a by the donation of one electron of
sodium to chlorine requires only at infinite separation.
The electrostatic potential energy of the two ions when they are a distance 
apart is When the separation of the ions is less than approximately 
the negative potential energy of attraction is of greater magnitude than the 
of energy needed to create the ions. Thus, at separation distances less than 
it is energetically favorable (the total energy of the system is reduced) for the
sodium atom to donate an electron to the chlorine atom to form 

Because the electrostatic attraction increases as the ions get closer together, it
might seem that equilibrium could not exist. However, when the separation of
the ions is very small, there is a strong repulsion that can be described by quantum
mechanics and the exclusion principle. This repulsion is also responsible for the
repulsion of the atoms in all molecules and ions (except ).* We can understand
it qualitatively as follows. When the ions are very far apart, the probability distri-
bution for a core electron in one of the ions does not overlap the probability
distribution of any electron in the other ion. We can distinguish the electrons by the
ion to which they belong. This means that electrons in the two ions can have the
same quantum numbers because they occupy different regions of space. However,
as the distance between the ions decreases, the probability distributions of the core
electrons begin to overlap; that is, the electrons in the two ions begin to occupy the
same region of space. Some of these electrons must go into higher energy quantum
states as described by the exclusion principle.† But energy is required to shift the
electrons into higher energy quantum states. This increase in energy when the ions
are pushed closer together is equivalent to the repulsion energy of the ions. It is not
a sudden process. The energy states of the electrons change gradually as the ions
are brought together. A sketch of the potential energy of the and 
versus separation distance is shown in Figure 37-1. The energy is lowest at anr

Cl� ionsNa�U(r)

H2

NaCl.

0.95 nm,
1.52 eV

0.95 nm,�ke2>r. rUe

5.14 eV � 3.62 eV � 1.52 eV
Cl� ionNa� ion

�3.62 eV.
Cl� ion.3.62 eV

n � 2
n � 1

5.14 eV

3s(NaCl).

F� ions

F2
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U(r), eV

5
4
3
2
1
0

–1
–2
–3
–4
–5

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 r, nm

r = 0.236 nm0

Dissociation energy Ed
4.27 eV

Na++ Cl–

��E � 1.52 eV
Na + Cl F I G U R E  3 7 - 1 Potential energy for 

and as a function of separation
distance The energy at infinite separation is
chosen to be corresponding to the
energy needed to form the ions from
atoms. The minimum energy is at the equi-
librium separation for the ions.r0 � 0.236 nm

�¢E
1.52 eV,

r.
Cl� ions

Na�

equilibrium separation of approximately At smaller separations, the
energy increases steeply. The energy required to separate the ions and form
sodium and chlorine atoms is called the dissociation energy which is approxi-
mately for 

The equilibrium separation distance of the gaseous which can be obtained
by evaporating solid is Normally, exists as a solid in a cubic
crystal structure, where the and are at the alternate corners of a cube.
The separation of the and in a crystal is approximately 
which is somewhat larger than the separation for the gaseous 
Because of the presence of neighboring ions of opposite charge, the electrostatic
energy per ion pair is lower when the ions are in a crystal.

NaCl.0.236 nm
0.28 nm,Cl� ionsNa�

Cl� ionsNa�

NaCl0.236 nm.NaCl,
NaCl,

NaCl.4.27 eV
Ed,

0.236 nm.r0

Example 37-1 The Energy of Sodium Fluoride

The electron affinity of fluorine is and the equilibrium separation of sodium fluo-
ride is (a) How much energy is needed to form and from
sodium and fluorine atoms? (b) What is the electrostatic potential energy of the and

at their equilibrium separation? (c) The dissociation energy of is What
is the energy due to repulsion of the ions at the equilibrium separation?

PICTURE (a) The energy needed to form and from the sodium and fluorine
atoms is the sum of the first ionization energy of sodium and the electron affinity
of fluorine. (b) The electrostatic potential energy, where at infinity, is 
(c) If we choose the potential energy at infinity to be the total potential energy is

where is the energy of repulsion, which is found by setting the
dissociation energy equal to 

SOLVE

�Utot.
UrepUtot � Ue � ¢E � Urep,

¢E,
Ue � �ke2>r.U � 0

(5.14 eV)
F� ionsNa�¢E

5.38 eV.NaFF� ions
Na�

F� ionsNa�0.193 nm.(NaF)
�3.40 eV

(a) Calculate the energy needed to form and from the sodium
and fluorine atoms (see the Picture section):

F� ionsNa� 1.74 eV¢E � 5.14 eV � 3.40 eV �

(b) Calculate the electrostatic potential energy at the equilibrium separation of
r � 0.193 nm:

�7.45 eV� �1.19 � 10�18 J �

� �
(8.99 � 109 N # m2>C2)(1.60 � 10�19 C)2

1.93 � 10�10 m

Ue � �
ke2

r

CHECK The Part (c) result is greater than zero as expected.

(c) The dissociation energy equals the negative of the total potential energy:

so

0.33 eV� �(5.38 eV � 1.74 eV � 7.45 eV) �

Urep � �(Ed � ¢E � Ue)

Ed � �Utot � �(Ue � ¢E � Urep)
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THE COVALENT BOND

A completely different mechanism, the covalent bond, is responsible for the
bonding of identical or similar atoms to form molecules such as gaseous hydro-
gen nitrogen and carbon monoxide If we calculate the energy
needed to form and by the transfer of an electron from one atom to
the other and then add this energy to the electrostatic potential energy, we find
that there is no separation distance for which the total energy is negative. The
bond thus cannot be ionic. Instead, the attraction of two hydrogen atoms can
only be explained quantum-mechanically. The decrease in energy when two hy-
drogen atoms approach each other is due to the sharing of the two electrons by
both atoms, which can be explained using the symmetry properties of the wave
functions of electrons.

We can gain some insight into covalent bonding by considering a simple, one-
dimensional quantum-mechanics problem of two identical finite square wells. We
first consider a single electron that is equally likely to be in either well. Because the
wells are identical, the probability distribution, which is proportional to must
be symmetric about the midpoint between the wells. Then must be either sym-
metric or antisymmetric with respect to the two wells. The two possibilities for the
ground state are shown in Figure 37-2a for the case in which the wells are far apart
and in Figure 37-2b for the case in which the wells are close together. An important
feature of Figure 37-2b is that in the region between the wells the symmetric wave
function is large and the antisymmetric wave function is small.

Now consider adding a second electron to the two wells. We saw in Section 6 of
Chapter 35 that the wave functions for particles that obey the exclusion principle
are antisymmetric on exchange of the particles. Thus, the total wave function for
the two electrons must be antisymmetric on exchange of the electrons. Note that
exchanging the electrons while keeping the wells in place is equivalent to keeping
the electrons in place and exchanging the wells. The total wave function for two
electrons can be written as a spatial expression and an expression for spin. So, an
antisymmetric wave function can be the product of a symmetric spatial expression
and an antisymmetric expression for spin or of a symmetric expression for spin
and an antisymmetric spatial expression.

To understand the symmetry of the total wave function, we must therefore un-
derstand the symmetry of the expression for spin of the wave function. The spin of
a single electron can have two possible values for its quantum number

which we call spin up, or which we call spin down. We will
use arrows to designate the spin wave function for a single electron: or for
electron 1 or electron 2 that both are spin up and or for electron 1 or electron
2 that are both spin down. The total spin quantum number for two electrons can
be where or or where We use to denote
the spin wave function for two electrons. The spin state corresponding to

and can be written

37-1

Similarly, the spin state for is

37-2

Note that both of these states are symmetric upon exchange of the electrons. The
spin state corresponding to and is not quite so obvious. It turns out
to be proportional to

37-3f10 � c1T2 � c2T1 S � 1, mS � 0

mS � 0S � 1

f1 �1 � T1T2 S � 1, mS � �1

S � 1, mS � �1

f1 �1 � c1c2 S � 1, mS � �1

mS � �1,S � 1
f1 �1,

fS mS
mS � 0.S � 0,�1;mS � �1, 0,S � 1,

T2T1

c2c1

mS � �1
2,mS: mS � �1

2,

c

ƒc2 ƒ ,

H� ionsH�

(CO).(N2),(H2),

A

S

 S

A

c

c

c

c

(a)

(b)

F I G U R E  3 7 - 2 (a) Two square wells far
apart. The electron wave function can be
either symmetric or antisymmetric 
in space. The probability distributions and
energies are the same for the two wave
functions when the wells are far apart. (b) Two
square wells that are close together. Between
the wells, the antisymmetric space wave
function is approximately zero, whereas the
symmetric space wave function is quite large.

(cA)(cS )
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This spin state is also symmetric upon exchange of the electrons. The spin state for
two electrons with antiparallel spins is

37-4

This spin state is antisymmetric upon exchange of electrons.
We thus have the important result that the spin part of the wave function is

symmetric for parallel spins and antisymmetric for antiparallel spins
Because the total wave function is the product of the spatial expression

and the expression for spin, we have the following important result:
(S � 0).

(S � 1)

f00 � c1T2 � c2T1 S � 0, mS � 0

(S � 0)

S ⎥ ⎥2

⎥ ⎥2
A

S

A

S

A

(a) (b) (c)

F I G U R E  3 7 - 3 One-dimensional symmetric and antisymmetric wave functions for two hydrogen atoms (a) far apart and
(b) close together. (c) Electron probability distributions for the wave functions in Figure 37-3b. For the symmetric wave
function, the electron charge density is large between the protons. This negative charge density holds the protons together in the
hydrogen molecule For the antisymmetric wave function, the electron charge density is not large between the protons.H2.

( ƒc ƒ 2)

For the total wave function of two electrons to be antisymmetric, the spatial
part of the wave function must be antisymmetric for parallel spins 
and symmetric for antiparallel spins 

SPIN ALIGNMENT AND WAVE-FUNCTION SYMMETRY

(S � 0).
(S � 1)

We can now consider the problem of two hydrogen atoms. Figure 37-3a shows
a spatially symmetric wave function and a spatially antisymmetric wave func-
tion for two hydrogen atoms that are far apart, and Figure 37-3b shows the same
two wave functions for two hydrogen atoms that are close together. The squares of
these two wave functions are shown in Figure 37-3c. Note that the probability dis-
tribution in the region between the protons is large for the symmetric wave
function and small for the antisymmetric wave function. Thus, when the spatial
part of the wave function is symmetric the electrons are often found in the
region between the protons. The electron cloud, as shown in the upper part of
Figure 37-3c, is concentrated in the space between the protons and the protons are
bound together by this negatively charged cloud. Conversely, when the spatial
part of the wave function is antisymmetric the electrons spend little time
between the protons and the atoms do not bond together to form a molecule.
In this case, the electron cloud is not concentrated in the space between the pro-
tons, as shown in the lower part of Figure 37-3c.

(S � 1),

(S � 0),

ƒc ƒ 2

cA

cS



The total electrostatic potential energy for the molecule
consists of the positive energy of repulsion of the two elec-
trons and the negative potential energy of attraction of each
electron for each proton. Figure 37-4 shows the electrostatic
potential energy function for two hydrogen atoms versus
separation for the case in which the spatial part of the elec-
tron wave function is symmetric, and the electrostatic poten-
tial energy function for the case in which the spatial part
of the wave function is antisymmetric. We can see that the
potential energy for the symmetric state is lower than the po-
tential energy for the antisymmetric state and that the shape
of the potential energy curve for the symmetric state is simi-
lar to the shape of the potential energy curve for ionic bond-
ing (Figure 37-1). The equilibrium separation for is

and the binding energy is For the an-
tisymmetric state, the potential energy is never negative and
there is no bonding.

We can now see why three hydrogen atoms do not bond
to form If a third hydrogen atom is brought near an 
molecule, the third electron cannot be in a state and have
its spin antiparallel to the spin of both of the other electrons.
If that electron is in an antisymmetric spatial state with re-
spect to exchange with one of the electrons, the repulsion of
this atom is greater than the attraction of the other. As the
three atoms are pushed together, the third electron is, in
effect, forced into a higher quantum-energy state according
to the exclusion principle. The bond between two hydrogen atoms is called a
saturated bond because there is no room for another electron. The two shared
electrons essentially fill the states of both atoms.

We can also see why two helium atoms do not normally bond together to form
the molecule. There are no valence electrons that can be shared. The electrons
in the filled shells are forced into higher energy states when the two atoms are
brought together. At low temperatures or high pressures, helium atoms do bond
together due to van der Waals forces, which we will discuss next. This bonding is
so weak that at atmospheric pressure helium boils at and it does not form a
solid at any temperature unless the pressure is greater than about 

When two identical atoms bond, as in or the bonding is purely covalent.
However, the bonding of two dissimilar atoms is often a mixture of covalent and
ionic bonding. Even in the electron donated by sodium to chlorine has
some probability of being at the sodium atom because its wave function in the
vicinity of the sodium atom, while small, is not zero. Thus, this electron is par-
tially shared in a covalent bond, although this bonding is only a small part of the
total bond, which is mainly ionic.

A measure of the degree to which a bond is ionic or covalent can be obtained from
the electric dipole moment of the molecule or ionic unit. For example, if the bonding
in were purely ionic, the center of positive charge would be at the and
the center of negative charge would be at the The electric dipole moment
would have the magnitude

37-5

where is the equilibrium separation of the ions. Thus, the di-
pole moment of would be (from Figure 37-1)

� (1.60 � 10�19 C)(2.36 � 10�10 m) � 3.78 � 10�29 C # m

pionic � er0

NaCl
r0 � 2.36 � 10�10 m

pionic � er0

Cl� ion.
Na� ionNaCl

NaCl,

N2,O2

20 atm.
4 K,

He2

1s

1s
H2H3.

4.52 eV.r0 � 0.074 nm,
H2

UA

US

H2
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U(r)

U

0.2 0.30.1
r, nm

r = 0.074 nm0

4.52 eV

A

US

F I G U R E  3 7 - 4 Potential energy versus separation for two
hydrogen atoms. The curve labeled is for a wave function that has
a symmetric expression for the spatial part and the curve labeled is
for a wave function that has an antisymmetric expression for the
spatial part.

UA

US

Don’t think all bonds between
atoms are partly ionic. They are

not. Bonds between two identical
atoms are always 100 percent covalent.

!



OTHER BONDING TYPES

The van der Waals Bond Any two separated molecules will be attracted to one
another by electrostatic forces called van der Waals forces. So will any two atoms that
do not form ionic or covalent bonds. The van der Waals bonds due to these forces
are much weaker than the bonds already discussed. At high enough temperatures,
these forces are not strong enough to overcome the motion of the atoms or mole-
cules due to thermal energy. At sufficiently low temperatures, these motions be-
come negligible and the van der Waals forces will cause virtually all substances to
condense into a liquid and then a solid form.* The van der Waals forces arise from
the interaction of the instantaneous electric dipole moments of the molecules.

Figure 37-5 shows how two polar molecules—molecules that have permanent
electric dipole moments, such as —can bond. The electric field due to the di-
pole moment of one molecule orients the other molecule so that the two dipole
moments attract. Nonpolar molecules also attract other nonpolar molecules by
the van der Waals forces. Although nonpolar molecules have zero electric dipole
moments on the average, they have instanta-
neous dipole moments that are generally not
zero because of fluctuations in the positions of
the charges. When two nonpolar molecules
are near each other, the fluctuations in the
instantaneous dipole moments tend to be-
come correlated so as to produce attraction.
This is illustrated in Figure 37-6.

H2O
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* Helium is the only element that does not solidify at any temperature at atmospheric pressure.

PRACTICE PROBLEM 37-1

The equilibrium separation of is and its measured electric dipole moment
is What is the percentage of ionic bonding in HCl?3.60 � 10�30 C # m.

0.128 nmHCl

O
H

H

O

H

H

–

+

–

+

–

+

–

+

p

p

F I G U R E  3 7 - 5 Bonding of molecules due to
the attraction of the electric dipoles. The dipole
moment of each molecule is indicated by The
electric field of one dipole orients the other dipole so
the two dipole moments tend to be parallel. When the
dipole moments are approximately parallel, the center
of negative charge of one molecule is closer to the
center of positive charge of the other molecule than it
is to the center of the negative charge, so the
molecules attract.
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(a) (b)

F I G U R E  3 7 - 6 van der Waals attraction of
molecules that have zero permanent dipole moments.
(a) Possible orientations of instantaneous dipole
moments at different times leading to attraction.
(b) Possible orientations leading to repulsion. The
electric field of the instantaneous dipole moment of
one molecule tends to polarize the other molecule;
thus the orientations leading to attraction 
(Figure 37-6a) are much more likely than those
leading to repulsion (Figure 37-6b).

The actual measured electric dipole moment of is

We can define the ratio of to as the fractional amount of ionic bond-
ing. For this ratio is Thus, the bonding in is about
79 percent ionic.

NaCl3.00>3.78 � 0.79.NaCl,
pionicpmeasured

pmeasured � 3.00 � 10�29 C # m

NaCl
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The hydrogen bond Another bond-
ing mechanism of great importance is
the hydrogen bond, which is formed by
the sharing of a proton (the nucleus of
the hydrogen atom) between two
atoms, frequently two oxygen atoms.
This sharing of a proton is similar to the
sharing of electrons responsible for the
covalent bond already discussed. It is
facilitated by the small mass of the pro-
ton and by the absence of core electrons
in hydrogen. The hydrogen bond often
holds groups of molecules together and
is responsible for the cross-linking that
allows giant biological molecules and
polymers to hold their fixed shapes. The
well-known helical structure of DNA is
due to hydrogen-bond linkages across
turns of the helix (Figure 37-7).

(a) The discoverers of the structure of DNA. James Watson at
left and Francis Crick are shown with their model of part of
a DNA molecule in 1953. Crick and Watson met at
the Cavendish Laboratory, Cambridge, in 1951. Their work on
the structure of DNA was performed with a knowledge of
Chargaff’s ratios of the bases in DNA and some access to the
X-ray crystallography of Maurice Wilkins and Rosalind
Franklin at King’s College London. Combining all of this work
led to the deduction that DNA exists as a double helix, thus to
its structure. Crick, Watson, and Wilkins shared the 1962 Nobel
Prize for Physiology or Medicine; Franklin died from cancer
in 1958. ((a) Norman Collection for the History of Molecular Biology.)

(b) X-ray diffraction pattern of the B form of DNA. Rosalind
Franklin’s colleague Maurice Wilkins, without obtaining her
permission, made available to Watson and Crick her then
unpublished X-ray diffraction pattern of the B form of DNA,
which was crucial evidence for the helical structure. In his
account of this discovery, Watson wrote: “The instant I saw
the picture, my mouth fell open and pulse began to race. . . .
The black cross of reflections which dominated the picture
could arise only from a helical structure. . . . Mere inspection of
the X-ray picture gave several of the vital helical parameters”
(from Stent, Gunther, The Double Helix, New York: Norton,
1980). ((b) © A. Barrington Brown/Photo Researchers, NY.)

F I G U R E  3 7 - 7 The DNA molecule. (© Will and Demi McIntire/Photo Researchers.)

The metallic bond In a metal, two atoms do not bond together by exchanging or
sharing an electron to form a molecule. Instead, each valence electron is shared by
many atoms. The bonding is thus distributed throughout the entire metal. A metal
can be thought of as a lattice of positive ions held together by essentially free
electrons that roam throughout the solid. In the quantum-mechanical picture, these
free electrons form a cloud of negative charge density between the positively
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charged lattice ions that holds the ions together. In this respect, the metallic bond is
somewhat similar to the covalent bond. However, with the metallic bond, there are
far more than just two atoms involved, and the negative charge is distributed uni-
formly throughout the volume of the metal. The number of free electrons per lattice
ion varies from metal to metal but is of the order of one free electron per ion.

37-2 POLYATOMIC MOLECULES

Molecules that have more than two atoms range from relatively simple molecules
such as water, which has a molecular mass number of 18, to such giants as proteins
and DNA, which can have molecular mass numbers of hundreds of thousands up
to many millions. As with diatomic molecules, the structure of polyatomic mole-
cules can be understood by applying basic quantum mechanics to the bonding of
individual atoms. The bonding mechanisms for most polyatomic molecules are the
covalent bond and the hydrogen bond. We will discuss only some of the simplest
polyatomic molecules— and —to illustrate both the simplicity and
complexity of the application of quantum mechanics to molecular bonding.

The basic requirement for the sharing of electrons in a covalent bond is that the
wave functions of the valence electrons in the individual atoms must overlap as
much as possible. As our first example, we will consider the water molecule. The
ground-state configuration of the oxygen atom is The and electrons
are in filled shells and do not contribute to the bonding. The shell has room for
six electrons, two in each of the three spatial states (orbitals) corresponding to

In an isolated atom, we describe these spatial states by the hydrogen-like
wave functions corresponding to and and Because the en-
ergy is the same for these three spatial states, we could equally well use any linear
combination of these wave functions. When an atom participates in molecular
bonding, certain combinations of these atomic wave functions are important.
These combinations are called and atomic orbitals. The angular depen-
dence of these orbitals is

37-6
37-7
37-8

The electron charge distribution for these orbitals is maximum along the or 
axis, respectively, as shown in Figure 37-8.

zx, y,

pz � cosf
py � cosu cosf
px � sinu cosf

pzpx, py,

�1.m� � �1, 0,� � 1
� � 1.

2p
2s1s1s22s22p4.

CH4H2O, NH3,

z

y

x
px

z

y

x
py

z

y

x

pz

F I G U R E  3 7 - 8 Computer-generated dot plot illustrating the spatial dependence of the electron charge distribution in
the and atomic orbitals.pzpx, py,

*
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For the oxygen in an molecule, maximum overlap of
the electron wave functions occurs when two of the four 
electrons are in one of the atomic orbitals (for this example,
assume the orbital) with their spins antiparallel, the third

electron is in a second orbital (the orbital), and the
fourth electron is in the third orbital (the orbital). Each
of the unpaired electrons (in the and orbitals for this ex-
ample) forms a bond with the electron of a hydrogen atom,
as shown in Figure 37-9. Because of the repulsion of the two
hydrogen atoms, the angle between the bonds is actu-
ally greater than The effect of this repulsion can be cal-
culated, and the result is in agreement with the measured
angle of 

Similar reasoning leads to an understanding of the bond-
ing in (not shown). In the ground state, nitrogen has
three electrons in the state. When these three electrons are
in the and atomic orbitals, they bond to the elec-
trons of hydrogen atoms. Again, because of the repulsion of
the hydrogen atoms, the angles between the bonds are some-
what larger than 

The bonding of carbon atoms is somewhat more com-
plicated. Carbon forms single, double and triple bonds,
leading to a great diversity in the kinds of organic molecules.
The ground-state configuration of carbon is 
From our previous discussion, we might expect carbon to be
divalent–that is, bonding only through its two 
electrons–with the two bonds forming at approximately 
However, one of the most important features of the chemistry
of carbon is that tetravalent carbon compounds, such as 
are overwhelmingly favored.

The observed valence of 4 for carbon comes about in an
interesting way. One of the first excited states of carbon oc-
curs when a electron is excited to a state, giving a con-
figuration of In this excited state, we can have four
unpaired electrons, one each in the and 
atomic orbitals. We might expect there to be three similar
bonds corresponding to the three orbitals and one different
bond corresponding to the orbital. However, when carbon
forms tetravalent bonds, these four atomic orbitals become
mixed and form four new equivalent molecular orbitals called
hybrid orbitals. This mixing of atomic orbitals, called hy-
bridization, is among the most important features involved
in the physics of complex molecular bonds. Figure 37-10
shows the tetrahedral structure of the methane molecule

and Figure 37-11 shows the structure of the ethane
molecule which is similar to two joined
methane molecules in which one of the bonds is
replaced with a bond.

Carbon orbitals can also hybridize such that the and
orbitals combine to form three hybrid orbitals that are in

the plane and form bonds that are apart (the 
orbital does not participate in bonding). An example of
this configuration is graphite, in which the bonds in the 
plane provide the strongly layered structure characteristic of
the material.

xy

pz120°xy
py

s, px,
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(CH3 ¬CH3),

(CH4),
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p

2pz2s, 2px, 2py,
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F I G U R E  3 7 - 9 Electron charge distribution in the molecule.H2O
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37-3 ENERGY LEVELS AND SPECTRA

OF DIATOMIC MOLECULES

As is the case with an atom, a molecule often emits electromagnetic radiation when
it makes a transition from an excited energy state to a state of lower energy.
Conversely, a molecule can absorb radiation and make a transition from a lower
energy state to a higher energy state. The study of molecular emission and ab-
sorption spectra thus provides us with information about the energy states of mol-
ecules. For simplicity, we will consider only diatomic molecules here.

The internal energy of a molecule can be conveniently separated into three
parts: electronic, due to the excitation of the electrons of the molecule; vibrational,
due to the oscillations of the atoms of the molecule; and rotational, due to the ro-
tation of the molecule about its center of mass. The magnitudes of these energies
are sufficiently different that they can be treated separately. The energies due to the
electronic excitations of a molecule are typically of the order of magnitude of 
the same as for the electronic excitations of an atom. The energies of the vibrations
of the atoms and of the rotation of the molecule are much smaller than the elec-
tronic excitation energy.

ROTATIONAL ENERGY LEVELS

Figure 37-12 shows a simple schematic model of a diatomic molecule consisting
of particles that have masses of and are separated by a distance and are
rotating about the center of mass. Classically, the kinetic energy of rotation
(Equation 9-11) is

37-9

where is the moment of inertia and is the angular speed of the rotation motion.
If we write this in terms of the angular momentum we have

37-10

The solution of the Schrödinger equation for rotation leads to quantization of the
angular momentum with values given by

37-11

where is the rotational quantum number. This is the same quantum condition
on angular momentum that holds for the orbital angular momentum of an elec-
tron in an atom. Note, however, that in Equation 37-10 refers to the angular
momentum of the entire molecule rotating about its center of mass. The energy
levels of a rotating molecule are therefore given by

37-12

ROTATIONAL ENERGY LEVELS

where is the characteristic rotational energy of a particular molecule, which is
inversely proportional to its moment of inertia:

37-13

CHARACTERISTIC ROTATIONAL ENERGY

E0r �
U2

2I

E0r

E� �
�(� � 1)U2

2I
� �(� � 1)E0r � � 0, 1, 2, Á

L

�

L2 � �(� � 1)U2 � � 0, 1, 2, Á

E �
(Iv)2

2I
�
L2

2I

L � Iv,
vI

E � 1
2 Iv2

rm2,m1

1 eV,

cmm1

r1

m2

r2

r0

F I G U R E  3 7 - 1 2 Diatomic molecule
rotating about an axis through its center
of mass.
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A measurement of the rotational energy of a molecule from its rotational spec-
trum can be used to determine the moment of inertia of the molecule, which can
then be used to find the separation of the atoms in the molecule. The moment of
inertia about an axis through the center of mass of a diatomic molecule (see
Figure 37-12) is

Using where is the distance of atom 1 from the center of mass, is
the distance of atom 2 from the center of mass, and we can write the
moment of inertia (see Problem 26) as

37-14

where called the reduced mass, is

37-15

DEFINITION—REDUCED MASS

If the masses are equal as in and the reduced mass is
and

37-16

A unit of mass convenient for discussing atomic and molecular masses is 
the unified atomic mass unit, which is defined as one-twelfth the mass of the

atom. The mass of one atom is thus The mass of an atom
in unified mass units is therefore numerically equal to the molar mass of the
atom in grams. The unified mass unit is related to the gram and kilogram by

37-17

where is Avogadro’s number.NA

1 u �
1 g

NA

�
10�3 kg

6.0221 � 1023 � 1.6606 � 10�27 kg

12 u.12Ccarbon-12 (12C)
u,

I � 1
2mr

2
0

m � 1
2m

O2,H2(m1 � m2 � m),

m �
m1m2

m1 � m2

m,

I � mr2
0

r0 � r1 � r2,
r2r1m1r1 � m2r2,

I � m1r
2
1 � m2r

2
2

Example 37-2 The Reduced Mass of a Diatomic Molecule

Find the reduced mass of the molecule.

PICTURE We find the masses of the hydrogen and chlorine atoms in Appendix C* and use
the definition of reduced mass (Equation 37-15).

SOLVE

HCl

1. The reduced mass is related to the individual masses and mCl:mHm m �
mHmCl

mH � mCl

2. Find the masses in the periodic table: mH � 1.01 u, mCl � 35.5 u

CHECK The formula for reduced mass is identical to the formula for the equivalent resis-
tance for two resistors in parallel. As expected, the reduced mass is less than either mass.

TAKING IT FURTHER When one atom of a diatomic molecule is much more massive than
the other, the center of mass of the molecule is approximately at the center of the more mas-
sive atom and the reduced mass is approximately equal to the mass of the lighter atom.

3. Substitute to calculate the reduced mass: 0.982 um �
mHmCl

mH � mCl

�
(1.01 u)(35.5 u)
1.01 u � 35.5 u

�

* The masses in the tables are weighted according to the natural isotopic distribution. Thus, the mass of carbon is given
as 12.011 rather than 12.000 because natural carbon consists of about 98.9 percent and 1.1 percent Similarly,
natural chlorine consists of about 76 percent and 24 percent 37Cl.35Cl

13C.12C
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We can see from Example 37-3 that the rotational energy levels are several or-
ders of magnitude smaller than energy levels due to electron excitation. Transitions
within a given set of rotational energy levels yield photons in the microwave re-
gion of the electromagnetic spectrum. The rotational energies are also small com-
pared with the typical thermal energy at normal temperatures. For 
for example, is about which is approximately 100 times the char-
acteristic rotational energy as calculated in Example 37-3 and approximately 1 per-
cent of the typical electronic energy. Thus, at ordinary temperatures, a molecule
can be easily excited to the lower rotational energy levels by collisions with other
molecules. But such collisions cannot excite the molecule to its electronic energy
levels above the ground state.

VIBRATIONAL ENERGY LEVELS

The quantization of energy in a simple harmonic oscillator was one of the first
problems solved by Schrödinger in his paper proposing his wave equation. Solving
the Schrödinger equation for a simple harmonic oscillator gives

37-18

VIBRATIONAL ENERGY LEVELS

where is the frequency of the oscillator and (lowercase Greek nu) is the
vibrational quantum number.* An interesting feature of this result is that the en-
ergy levels are equally spaced with intervals equal to The frequency of vibration
of a diatomic molecule can be related to the force exerted by one atom on the other.
Consider two objects of mass and connected by a spring of force constant kF.m2m1

hf.

nf

E
n

� (n � 1
2)hf n � 0, 1, 2, Á

2.6 � 10�2 eV,kT
T � 300 K,kT

Example 37-3 Rotational Kinetic Energy of a Molecule

Estimate the characteristic rotational kinetic energy of an molecule, assuming that the
separation of the atoms is 

PICTURE The characteristic rotational kinetic energy is given by (Equation 37-
13), where is the moment of inertia. The moment of inertia is given by (Equation
37-14), where is the reduced mass and is the average center-to-center separation of the
atomic nuclei.

SOLVE

r0m

I � mr2
0I

E0r � U>(2I)0.100 nm.
O2

1. The characteristic rotational energy is inversely proportional to the
moment of inertia:

E0r �
U2

2I

2. Calculate the moment of inertia: I � mr2
0 � 1

2mr2
0

CHECK As expected, the characteristic rotational kinetic energy is small compared with
(a typical electronic excitation energy).1 eV

3. Substitute this expression for into the expression for E0r:I E0r �
U2

mr20

4. Use for the mass of oxygen to calculate E0r:m � 16 u

2.62 � 10�4 eV� 4.19 � 10�23 J �

�
(1.055 � 10�34 J # s)2

(16 u)(10�10 m)2 � a 1 u
1.66 � 10�27 kg

bE0r �
U2

mr20

* We use here rather than so as not to confuse the vibrational quantum number with the principal quantum number 
for electronic energy levels.

nnn

At room temperature, the molecu-
les of a diatomic gas undergo
transitions between rotational sta-
tes, but the atoms of a monatomic
gas do not. Why?

CONCEPT CHECK 37-1✓
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The frequency of oscillation of this system (see Problem 32) can be shown to be

37-19

where is the reduced mass given by Equation 37-15. The effective force constant
of a diatomic molecule can thus be determined from a measurement of the fre-

quency of oscillation of the molecule.
A selection rule on transitions between vibrational states (of the same electronic

state) requires that the vibrational quantum number can change only by so
the energy of a photon emitted by such a transition is and the frequency of the
photon is the same as the frequency of vibration. There is a similar selection rule
that must change by for transitions between rotational states.

A typical measured frequency of a transition between vibrational states is
which gives

and is an estimate for the order of magnitude of vibrational energies. This typical
vibrational energy is approximately 1000 times greater than the typical rotational
energy of the molecule we found in Example 37-3 and about 8 times greater
than the typical thermal energy at Thus, the vibrational
levels are almost never excited by molecular collisions at ordinary temperatures.

T � 300 K.kT � 0.026 eV
O2E0r

E � hf � (4.14 � 10�15 eV # s)(5.0 � 1013 s�1) � 0.2 eV

5 � 1013 Hz,

� 1�
f,

hf
�1,n

kF

m

f �
1

2pA kFm

Example 37-4 Determining the Force Constant

The frequency of vibration of the molecule is What is the effective force
constant for this molecule?

PICTURE We use (Equation 37-19) to relate to the frequency and the
reduced mass, and calculate from its definition.

SOLVE

m

kF2pf � 2kF>m
6.42 � 1013 Hz.CO

1. The effective force constant is related to the frequency and reduced mass by
Equation 37-19:

kF � (2pf)2m

f �
1

2pA kF

m

2. Calculate the reduced mass using for the mass of the carbon atom and 
for the mass of the oxygen atom:

16 u12 u m �
m1m2

m1 � m2

�
(12 u)(16 u)
12 u � 16 u

� 6.86 u

CHECK From Newton’s second law we know that so the units of that
remain after canceling out the u’s in step 3 are equal to which is what is expected for
the force constant of a “spring.”

N>m,
kg>s21 kg m>s2 � 1 N,

3. Substitute this value of into the equation for in step 1 and convert 
to SI units:

kFm

1.85 � 103 N>m�

� 1.12 � 1030 u>s2 � a1.66 � 10�27 kg

1 u
b� 4p2(6.42 � 1013 Hz)2(6.86 u)

kF � (2pf)2m

EMISSION SPECTRA

Figure 37-13 shows schematically some electronic, vibrational, and rotational energy
levels of a diatomic molecule. The vibrational levels are labeled with the quantum
number and the rotational levels are labeled with The lower vibrational levels are
evenly spaced, with For higher vibrational levels, the approximation that the
vibration is simple harmonic is not valid and the levels are not quite evenly spaced.

¢E � hf.
�.n



Note that the potential energy curves
representing the force between the
two atoms in the molecule do not
have exactly the same shape for the
electronic ground and excited states.
This implies that the fundamental
frequency of vibration is different
for different electronic states. For
transitions between vibrational states
of different electronic states, the se-
lection rule does not hold.
Such transitions result in the emis-
sion of photons of wavelengths in or
near the visible spectrum, so the
emission spectrum of a molecule for
electronic transitions is also some-
times called the optical spectrum.

The spacing of the rotational lev-
els increases with increasing values
of Because the energies of rotation are so much smaller than those of vibrational
excitation or electronic excitation of a molecule, molecular rotation shows up in
optical spectra as a fine splitting of the spectral lines. When this fine structure is not
resolved, the spectrum appears as bands, as shown in Figure 37-14a. Close inspec-
tion of these bands reveals that they have a fine structure due to the rotational energy
levels, as shown in the enlargement in Figure 37-14c.

�.

¢n � �1

f
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F I G U R E  3 7 - 1 3 Vibrational and rotational
energy levels of a diatomic molecule in both
an electronic ground state and in an electronic
excited state. The rotational levels are shown
in an enlargement of the and 
vibrational levels of the electronic ground state.

n � 1n � 0

F I G U R E  3 7 - 1 4 (a) Part of the emission spectrum of
The spectral lines are due to transitions between the

vibrational levels of two electronic states, as indicated in
the energy level diagram (b). (c) An enlargement of part
of Figure 37-14a shows that the apparent lines are in fact
bands with structure caused by rotational levels.
(Courtesy of Dr. J. A. Marquissee.)
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ABSORPTION SPECTRA

Much molecular spectroscopy is done using infrared absorption techniques in
which only the vibrational and rotational energy levels of the ground-state elec-
tronic level are excited. For ordinary temperatures, the vibrational energies are
sufficiently large in comparison with the thermal energy that most of the mol-
ecules are in the lowest vibrational state for which the energy is 
The transition from to is the predominant transition in absorption.
However, at room temperature the rotational energies are much less than the
thermal energy Thus, a number of the rotational energy states are occupied.
If the molecule is originally in a vibrational state characterized by and a
rotational state characterized by the quantum number the molecule’s initial
energy is

37-20

where is given by Equation 37-13. From this state, two transitions are permitted
by the selection rules. For a transition to the next higher vibrational state and
a rotational state characterized by the final energy is

37-21

For a transition to the next higher vibrational state and to a rotational state charac-
terized by the final energy is

37-22

The energy differences therefore are

37-23

and

37-24

(In Equation 37-24, begins at rather than at because from only
the transition can occur.) Figure 37-15 illustrates these transitions. The
frequencies of these transitions are given by

37-25

and

37-26

The frequencies for the transitions are thus 
and so forth; those corresponding to the transition are

and so forth. We thus expect the absorption
spectrum to contain frequencies equally spaced by except for a gap of
at the vibrational frequency as shown in Figure 37-16. A measurement of the po-
sition of the gap gives and a measurement of the spacing of the absorption peaks
gives which is inversely proportional to the moment of inertia of the molecule.

Figure 37-17 shows the absorption spectrum of The double-peak structure
results from the fact that chlorine occurs naturally in two isotopes, and 
which gives with two different moments of inertia. If all the rotational levels
were equally populated initially, we would expect the intensities of each absorp-
tion line to be equal. However, the population of a rotational level is proportional
to the degeneracy of the level, that is, to the number of states with the same value
of which is and to the Boltzmann factor where is the energy ofEe�E>kT,2� � 1,�,

HCl

37Cl,35Cl
HCl.

E0r,
f

f,
4E0r>h2E0r>hf � 6(E0r>h),f � 4(E0r>h),f � 2(E0r>h), � S � � 1f � 6(E0r>h), f � 4(E0r>h),f � 2(E0r>h),� S � � 1

� � 1, 2, 3, Áf�S��1 �
¢E�S��1

h
� f �

2�E0r

h

� � 0, 1, 2, Áf�S��1 �
¢E�S��1

h
� f �

2(� � 1)E0r

h

� S � � 1
� � 0� � 0� � 1�

� � 1, 2, 3, Á¢E�S��1 � E��1 � E� � hf � 2�E0r

� � 0, 1, 2, Á¢E�S��1 � E��1 � E� � hf � 2(� � 1)E0r

E��1 � 3
2 hf � (� � 1)�E0r

� � 1,

E��1 � 3
2 hf � (� � 1)( � � 2)E0r

� � 1,
n � 1

E0r

E� � 1
2 hf � �(� � 1)E0r

�,
n � 0

kT.

n � 1n � 0
E0 � 1

2 hf.n � 0,
kT
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F I G U R E  3 7 - 1 6 Expected absorption spectrum of a diatomic
molecule. The right branch corresponds to transitions 
and the left branch corresponds to the transitions 
The lines are equally spaced by The energy midway
between the branches is where is the frequency of vibration
of the molecule.
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2E0r.
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F I G U R E  3 7 - 1 7 Absorption spectrum of the diatomic molecule The double-peak structure results from the
two isotopes of chlorine, (abundance 75.5 percent) and (abundance 24.5 percent). The intensities of the peaks
vary because the population of the initial state depends on �.
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F I G U R E  3 7 - 1 5 Absorptive transitions between the lowest
vibrational states and in a diatomic molecule. These
transitions obey the selection rule and fall into two
bands. The energies of the band are 

and so forth; whereas the energies of the
band are and so forth.hf � 6E0r,hf � 4E0r,hf � 2E0r,� S � � 1
hf � 6E0r,hf � 4E0r,

hf � 2E0r,� S � � 1
¢� � 1

n � 1n � 0

the state. (The Boltzmann factor is presented in Chapter 17.) For low values of 
the population increases slightly because of the degeneracy factor, whereas for
higher values of the population decreases because of the Boltzmann factor. The
intensities of the absorption lines therefore increase with for low values of and
then decrease with for high values of as can be seen from the figure.�,�

��
�,

�,
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TOPIC RELEVANT EQUATIONS AND REMARKS

1. Molecular Bonding

Ionic Ionic bonds result when an electron is transferred from one atom to another, resulting in a positive ion
and a negative ion that bond together.

Covalent The covalent bond is the sharing of one or more electrons by atoms.

van der Waals The van der Waals bonds are weak bonds that result from the interaction of the instantaneous
electric dipole moments of molecules.

Hydrogen The hydrogen bond results from the sharing of a proton of the hydrogen atom by other atoms.

Metallic In the metallic bond, the positive lattice ions of the metal are held together by a cloud of negative
charge composed of free electrons.

Mixed A diatomic molecule formed from two identical atoms, such as must bond by covalent bond-
ing. The bonding of two nonidentical atoms is often a mixture of covalent and ionic bonding. The
percentage of ionic bonding can be found from the ratio of the magnitude of the measured electric
dipole moment to the magnitude of the ionic electric dipole moment defined by

37-5

where is the equilibrium separation of the ions.

2. *Polyatomic Molecules The shapes of such polyatomic molecules as and can be understood from the spatial dis-
tribution of the atomic-orbital or molecular-orbital wave functions. The tetravalent nature of the
carbon atom is a result of the hybridization of the and atomic orbitals.

3. Diatomic Molecules

Moment of inertia 37-14

where 37-15

is the equilibrium separation, and is the reduced mass.

Rotational energy levels where and 37-12

Vibrational energy levels 37-18

Effective force constant 37-19

4. Molecular Spectra The optical spectra of molecules have a band structure due to transitions between rotational levels.
Information about the structure and bonding of a molecule can be found from its rotational and
vibrational absorption spectrum involving transitions from one vibrational-rotational level to another.
These transitions obey the selection rules

¢n � �1 ¢� � �1

f �
1

2pA kFmkF

E
n

� An � 1
2 Bhf n � 0, 1, 2, Á

� � 0, 1, 2, ÁE0r � U>2pE� � �(� � 1)E0r

mr0

m �
m1m2

m1 � m2

I � mr2
0

2p2s

NH3H2O

r0

pionic � er0

O2,

Answers to Practice Problems
37-1 17.6 percent

Answers to Concept Check
37-1 The moment of inertia of an atom is much much less

than the moment of inertia of a diatomic molecule, so

Summary

1. Atoms are usually found in nature bonded to form molecules or in the lattices of crys-
talline solids.

2. Ionic bonnds and covalent bonds are the principal mechanisms responsible for forming mol-
ecules. Metallic bonds and van der Waals bonds are important in the formation of solids and
liquids. Hydrogen bonds enable large biological molecules to maintain their shape.

3. Like atoms, molecules emit electromagnetic radiation when making a transition from a
higher energy state to a lower energy state. The internal energy of a molecule can be sepa-
rated into three parts: electronic, vibrational, and rotational energy.

the amount of energy needed to change the rotational
state of a single atom is much much larger than the
amount needed for a diatomic molecule. At 300 K, the
required energy is not available by way of collisions
between atoms.
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Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Would you expect to be polar or nonpolar?
2 • Would you expect to be polar or nonpolar?
3 • Does neon naturally occur as or Explain your
answer.
4 • What type of bonding mechanism would you expect for
atoms of (a) HF, (b) KBr, (c) (d) Ag in solid silver?
5 •• The elements in the far right column of the periodic table
are sometimes called noble gases, both because they are gases
under a wide range of conditions and because atoms of these ele-
ments almost never react with other atoms to form molecules or
ionic compounds. However, atoms of noble gases can react if the re-
sulting molecule is formed in an electronic excited state. An exam-
ple is ArF. When it is formed in the excited state, it is written ArF*
and is called an excimer (for excited dimer). Refer to Figure 37-13
and discuss how a diagram for the electronic, vibrational, and rota-
tion energy levels of ArF and ArF* would look in which the ArF
ground state is unstable and the ArF* excited state is stable. (Note:
Excimers are used in certain kinds of lasers.)
6 • Find other atoms that have the same subshell electron
configurations in their two highest energy orbitals as carbon atoms
do. Would you expect the same type of hybridization for these or-
bitals as for carbon?
7 • How does the value of the effective force constant calcu-
lated for a in Example 37-4 compare with the value of
the force constant of the suspension springs on a typical automo-
bile, which is about 
8 • Explain why the moment of inertia of a diatomic mole-
cule increases slightly with increasing angular momentum.
9 • Why would you expect the separation distance between
the two protons to be larger in a than in a 
10 • At room temperature an atom typically absorb radiation
only from the ground state, whereas a diatomic molecule typically
absorbs radiation from many different rotational states. Why?
11 •• The vibrational energy levels of diatomic molecules are
described by a single vibrational frequency that is the frequency
of vibration of the two atoms of the molecule along the line through
their centers. Would you expect to see one or more than one vibra-
tional frequency in molecules that have three or more atoms?
Consider in particular a water molecule (Figure 37-9).

ESTIMATION AND APPROXIMATION

12 •• The potential energy for a diatomic molecule has a mini-
mum as shown in Figure 37-13. Near this minimum, the graph for
the energy as a function of distance between the atoms may be
approximated as a parabola, leading to the harmonic oscillator
model for the vibrating molecule. An improved approximation is
called the anharmonic oscillator and leads to a modification of 

H2O

f

H2 molecule?H�
2  ion

1.5 kN>m?

CO molecule

SSM

N2,

Ne2?Ne
N2

SSMNaCl

the expression for the energy where 
(Equation 37-18). The modified expression for energy is 

where For an molecule,
the constants have the values and 

Use this formula to estimate the smallest value of the
quantum number for which the modified expression differs from
the original expression by 10 percent.

13 •• To understand why quantum mechanics is not needed
to describe many macroscopic systems, estimate the rotational
energy quantum number and spacing between adjacent energy
levels for a baseball spinning about its own
axis at Hint: Pick so the quantum energy formula

where (Equation 37-12) gives the
correct energy for the given system. Then find the energy increase for
the next highest energy level.

14 •• Estimate the quantum number and spacing between
adjacent energy levels for a mass attached to spring. The
spring has a force constant equal to and the mass-spring
system is vibrating with an amplitude of Hint: Pick so that
the quantum energy formula where
(Equation 37-18) gives the correct energy for the given system. Then find
the energy increase for the next highest energy level.

MOLECULAR BONDING

15 • Calculate the separation of and for which
the potential energy of a single ionic unit (one and one

) is 

16 • The equilibrium separation of the atoms in a HF molecule
is and the measured electric dipole moment of the mole-
cule is What percentage of the HF bond is ionic?

17 •• The dissociation energy of RbF is and the equi-
librium separation of RbF is The electron affinity of a flu-
orine atom is and the ionization energy of rubidium is

Determine the core-repulsion energy of RbF.

18 •• The equilibrium separation of the and in 
is about (a) Calculate the potential energy of attraction of the
ions. Assume that the ions are point charges at this separation. (b) The
ionization energy of potassium is and the electron affinity of
chlorine is Calculate a value for the dissociation energy
using the assumption that the energy of repulsion is negligible. (See
Figure 37-1.) (c) The measured dissociation energy is What is
the energy due to repulsion of the ions at the equilibrium separation?

19 •• Indicate an approximate value for the average value of the
separation distance for two vibrational levels on the potential en-
ergy curve for a diatomic molecule (one of the curves in Figure 37-13).
Your teacher claims that the increase in with increases in vibration
energy explains why solids expand when heated. Do you agree? If so,
give an argument supporting this claim. If not, give an argument op-
posing this claim.

rav

r

4.49 eV.

�3.62 eV.
4.34 eV

0.267 nm.
KClCl� ionsK�

4.18 eV.
�3.40 eV

0.227 nm.
5.12 eV,

6.40 � 10�30 C # m.
0.0917 nm

�1.52 eV.Cl� ion
Na� ion

Cl� ionsNa�

n � 0, 1, 2, ÁE
n

� (n � 1
2)hf,

n3.0 cm.
1200 N>m1.0-kg

n

� � 0, 1, 2, ÁE� � �(� � 1)U2>(2I), �20 rev>min.
(m � 300 g, r � 3 cm)

�

n

7.6 � 10�3.
a �f � 4.74 � 1013 s�1

O2n � 0, 1, 2, Á .(n � 1
2)hf � (n � 1

2)2hfa,
E
n

�
n � 0, 1, 2, ÁE

n
� (n � 1

2)hf,
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20 •• Calculate the potential energy of attraction between the
and at the equilibrium separation 

Compare this result with the dissociation energy given in Figure 
37-1. What is the energy due to repulsion of the ions at the equilib-
rium separation?
21 •• The equilibrium separation of the and in KF
is about (a) Calculate the potential energy of attraction of
these ions. Assume that the ions are point charges at this separation.
(b) The ionization energy of potassium is and the electron
affinity of fluorine is Find the dissociation energy by
neglecting any energy of repulsion. (c) The measured dissociation
energy is Calculate the energy due to repulsion of the ions
at the equilibrium separation.

ENERGY LEVELS OF SPECTRA OF
DIATOMIC MOLECULES

22 • The characteristic rotational energy for the rotation of
a molecule is Using this value, find the separa-
tion distance of the 2 nitrogen atoms.
23 • The separation of the two oxygen atoms in a molecule of

is actually slightly greater than the used in Example
37-3. Furthermore, the characteristic energy of rotation for is

rather than the result obtained in that
example. Use this value to calculate the separation distance of the
two oxygen atoms.
24 •• Show that the reduced mass of a diatomic molecule is al-
ways smaller than the mass of the molecule. Calculate the reduced
mass for (a) (b) (c) and (d) Express your answers
in unified atomic mass units.
25 •• A molecule has a binding energy of approximately

Find the vibrational quantum number that corresponds to
(If a actually had this much vibrational energy,

it would “shake” apart.)
26 •• Derive the equation (Equation 37-14) for the mo-
ment of inertia in terms of the reduced mass of a diatomic molecule.

27 •• The equilibrium separation between the atoms of a
is Determine the energy separation

between the and rotational levels of the diatomic
molecule.
28 •• The equilibrium separation of the and in

is about Use this value together with the reduced
mass of to calculate the characteristic rotational energy 
(Equation 37-13) of 

29 •• The central frequency for the absorption band of 
shown in Figure 37-17 is at and the absorption
peaks to either side of the central frequency are separated by about

Use this information to find (a) the lowest (zero-point)
vibrational energy for (b) the moment of inertia of and
(c) the equilibrium separation of the two atoms.
30 •• Calculate the effective force constant for from its
reduced mass and from the fundamental vibrational frequency
obtained from Figure 37-17.
31 •• The equilibrium separation between the atoms of a 
molecule is For a molecule, such as that has a perma-
nent electric dipole moment, radiative transitions obeying the selec-
tion rule between two rotational energy levels of the same
vibrational level are allowed. (That is, the selection rule does
not hold.) (a) Find the moment of inertia of and calculate the char-
acteristic rotational energy (b) Make an energy-level dia-
gram for the rotational levels from to for some vibrational
level. Label the energies in electron volts, starting with for

Indicate on your diagram the transitions that obey 
and calculate the energies of the photons emitted. (c) Find the wave-
length of the photons emitted during each transition in (b). In what
region of the electromagnetic spectrum are those photons? SSM

¢� � �1,� � 0.
E � 0

� � 5� � 0
E0r (in eV).

CO
¢n � �1

¢� � �1

CO,0.113 nm.
CO

HCl

HCl,HCl,
6 � 1011 Hz.

8.66 � 1013 Hz,
HCl

KCl.
E0rKCl

0.267 nm.KCl
Cl� ionsK�

SSM

� � 2� � 3
0.16 nm.LiH molecule

I � mr2
0

CO molecule11 eV.
n11 eV.

CO

HCl.CO,N2,H2,

SSM

1.78 � 10�4 eV
O2E0r

0.100 nmO2

2.48 � 10�4 eV.N2

E0r

5.07 eV.

�3.40 eV.
4.34 eV

0.217 nm.
F� ionsK�

r0 � 0.236 nm.Cl� ionsNa�

32 •• Two objects, one of mass and the other of mass 
are connected to opposite ends of a spring of force constant The
objects are released from rest with the spring compressed.
(a) Show that when the spring is extended and the object of mass

is a distance from its equilibrium position in the center-of-
mass reference frame, the force exerted by the spring is given by

where is the reduced mass. (b) Show that the
frequency of oscillation is related to and by 
33 ••• Calculate the reduced masses for and mole-
cules and the fractional difference Show that the mixture of
isotopes in leads to a fractional difference in the frequency of a
transition from one rotational state to another given by 

Compute and compare your result with Figure 37-17.

GENERAL PROBLEMS

34 • Show that when one atom of a diatomic molecule is
much more massive than the other the reduced mass is approxi-
mately equal to the mass of the lighter atom.
35 •• The equilibrium separation between the nuclei of a 
molecule is Determine the energy difference between
the and rotational energy levels of the molecule.
36 •• The effective force constant for a is

Find the frequency of vibration for the molecule.
37 •• The frequency of vibration of a is

Find the effective force constant for 
38 •• The effective force constant of the hydrogen bond in a 
molecule is Obtain the energies of the four lowest vibra-
tional levels of the and where is protium
and is deuterium, and find the wavelengths of photons resulting
from transitions between adjacent vibrational levels for each of
the molecules.
39 •• The potential energy between two atoms in a molecule
separated by a distance can often be described rather well by the
Lenard-Jones (or 6-12) potential function, which can be written as

where and are constants. Find the equilibrium separation in
terms of a. Hint: At the equilibrium separation the potential energy is a
minimum. Find the value of when Use Figure 37-4 to
obtain numerical values of and for a and express
your answers in nanometers and electron volts.
40 •• In this problem, you are to determine how the van der
Waals force between a polar molecule and a nonpolar molecule
depends on the distance between the molecules. Let the polar
molecule be at the origin and let its dipole moment be in the 
direction. In addition, let the nonpolar molecule be on the axis a
distance x away. (a) How does the electric field strength due to an
electric dipole vary with the distance from the dipole in a given
direction? (b) Use (1) that the potential energy of an electric
dipole of dipole moment in an electric field can be expressed as

and (2) that the induced dipole moment of the non-
polar molecule is in the direction of and that is proportional
to to determine how the potential energy of interaction of the two
molecules depends on the separation distance (c) Using

determine how the force between the two molecules
depends on distance.
41 •• Find the dependence of the force on separation distance
between the two polar molecules described in Problem 40.
42 •• Use the infrared absorption spectrum of in Figure 37-
17 to obtain (a) the characteristic rotational energy and
(b) the vibrational frequency and the vibrational energy 
43 • The dissociation energy is sometimes expressed in kilo-
calories per mole (a) Find the relation between the units

and (b) Find the dissociation energy of 
in kcal>mol.

NaClkcal>mol.eV>molecule
(kcal>mol).

hf (in eV).f
E0r (in eV)

HCl
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T
he first microscopic model of electric conduction in metals was proposed by
Paul K. Drude in 1900 and developed by Hendrik A. Lorentz about 1909.
This model successfully predicts that the current is proportional to the po-
tential drop (Ohm’s law) and relates the resistivity of conductors to the
mean speed and the mean free path* of the free electrons within the con-
ductor. However, when mean speed and mean free path are interpreted clas-

sically, there is a disagreement between the calculated values and the measured
values of the resistivity, and a similar disagreement between the predicted tem-
perature dependence and the observed temperature dependence that resistivity
values have. Thus, the classical theory fails to adequately describe the resistivity of
metals. Furthermore, the classical theory says nothing about the most striking

C H A P T E R

Do you know how many atoms of

arsenic it takes to increase the

charge-carrier density by a factor of

5 million? (See Example 38-7.)

?
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38

* The mean free path is the average distance traveled between collisions. 

*

IT IS WELL KNOWN THAT ARSENIC IS A
POISON. IT IS LESS WELL KNOWN
THAT SILICON CRYSTALS THAT HAVE
SMALL CONCENTRATIONS OF ARSENIC
ATOMS HAVE A MUCH LOWER
RESISTIVITY THAN DO CRYSTALS
THAT ARE 100 PERCENT SILICON.
(The Natural History Museum/Alamy.)
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Cl –

Na+

F I G U R E  3 8 - 1 Face-centered-cubic
structure of the crystal.NaCl

property of solids, namely, that some substances are conductors, others are insula-
tors, and still others are semiconductors, which are substances whose resistivity
falls between that of conductors and insulators.

When mean speed and mean free path are interpreted using quantum theory,
both the magnitude and the temperature dependence of the resistivity are correctly
predicted. In addition, quantum theory allows us to determine if a substance will
be a conductor, an insulator, or a semiconductor.

In this chapter, we use our understanding of quantum mechanics to discuss
the structure of solids and solid-state semiconducting devices. Much of our
discussion will be qualitative because, as in atomic physics, the quantum-
mechanical calculations are mathematically sophisticated.

38-1 THE STRUCTURE OF SOLIDS

The three phases of matter we observe everyday—gas, liquid, and solid—result
from the relative strengths of the attractive forces between atoms and molecules and
the thermal energies of the particles. Molecules and atoms in the gas phase have rel-
atively large thermal kinetic energies, and such particles have little influence on one
another except during their frequent but brief collisions. (By using the term thermal
kinetic energies, we mean the kinetic energies of the molecules and atoms in the
center-of-mass reference frame of the gas.) At sufficiently low temperatures, van der
Waals forces will cause practically every substance to condense into a liquid
and then into a solid. In liquids, the molecules or atoms are close enough—and
their thermal kinetic energies are low enough—that they can develop a temporary
short-range order. As their thermal kinetic energies are further reduced, the mole-
cules or atoms form solids, which are characterized by a lasting order.

If a liquid is cooled slowly so that the kinetic energy of its molecules is reduced
slowly, the molecules (or atoms or ions) may arrange themselves in a regular crys-
talline array, producing the maximum number of bonds and leading to a minimum
potential energy. However, if the liquid is cooled rapidly so that its internal energy
is removed before the molecules have a chance to arrange themselves, the solid
formed is often not crystalline or the arrangement is not regular. Such a solid is
called an amorphous solid. It displays short-range order but not the long-range
order (the order over many molecular, atomic, or ionic diameters) that is character-
istic of a crystal. Glass is a typical amorphous solid. A characteristic result of the
long-range ordering of a crystal is that it has a well-defined melting point, whereas
an amorphous solid merely softens as its temperature is increased. Many sub-
stances may solidify into either an amorphous state or a crystalline state depending
on how the substances are prepared; others exist only in one such state or the other.

Most common solids are polycrystalline; that is, they consist of many single crys-
tals that meet at grain boundaries. The size of a single crystal is typically a fraction of
a millimeter. However, large single crystals do occur naturally and can be produced
artificially. The most important property of a single crystal is the symmetry and reg-
ularity of its structure. It can be thought of as having a single unit structure that is re-
peated throughout the crystal. This smallest unit of a crystal is called the unit cell;
its structure depends on the type of bonding—ionic, covalent, metallic, hydrogen,
van der Waals—between the atoms, ions, or molecules. If more than one kind of
atom is present, the structure will also depend on the relative sizes of the atoms.

Figure 38-1 shows the structure unit cell of crystalline sodium chloride 
The and are spherically symmetric, and the is approximately
twice as large as the The minimum potential energy for this crystal occurs
when an ion of either kind has six nearest neighbors of the other kind. This struc-
ture is called face-centered-cubic (fcc). Note that the and in solid 
are not paired into molecules.NaCl

NaClCl� ionsNa�

Na� ion.
Cl� ionCl� ionsNa�

(NaCl).
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* A large number of terms are needed to calculate the Madelung constant accurately because the sum converges
very slowly.

The net attractive part of the potential energy of an ion in a crystal can be written

38-1

where is the (center-to-center) separation distance between neighboring ions
( for the and in crystalline ) and called the Madelung
constant, depends on the geometry of the crystal. If only the six nearest neighbors of
each ion in a face-centered-cubic crystalline structure were important, would be
six. However, in addition to the six neighbors of the opposite charge at a distance 
there are twelve ions of the same charge at a distance eight ions of opposite
charge at a distance and so on. The Madelung constant is thus an infinite sum:

38-2

The value of the Madelung constant for face-centered-cubic structures is *a � 1.7476.

a � 6 �
12

22
�

8

23
� Á

23r,
22r,

r,
a

a,NaClCl� ionsNa�0.281 nm
r

Uatt � �a
ke2

r

Crystal structure. (a) The hexagonal symmetry of a snowflake arises from a
hexagonal symmetry in its lattice of hydrogen atoms and oxygen atoms. (b)
(salt) crystals, magnified approximately thirty times. The crystals are built up from a
cubic lattice of sodium and chloride ions. In the absence of impurities, an exact cubic
crystal is formed. This (false-color) scanning electron micrograph shows that in
practice the basic cube is often disrupted by dislocations, giving rise to crystals that
have a wide variety of shapes. The underlying cubic symmetry, though, remains
evident. (c) A crystal of quartz the most abundant and
widespread mineral on Earth. If molten quartz solidifies without crystallizing, glass
is formed. (d) A soldering iron tip, ground down to reveal the copper core within its
iron sheath. Visible in the iron is its underlying microcrystalline structure.
((a) Richard Waters 2/89 p. 52 Discover. (b) © Dr. Jeremy Burgess/Science Photo Library/Photo
Researchers. (c) © Thomas R. Taylor/Photo Researchers. (d) Courtesy the AT&T Archives.)

(SiO2, silicon dioxide),

NaCl

(c)(b) (d)

(a)
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Example 38-1 Separation Distance between and in NaClCl�Na�

1. We consider each ion to occupy a cubic volume of side The volume of one
mole of equals the number of ions multiplied by the volume per ion:NaCl

vr0. v � 2NAr
3
0

2. Relate to the density and the molar mass of NaCl:Mrr0 r �
M
v

�
M

2NA r
3
0

CHECK In Chapter 36, we found the diameter of the hydrogen atom in the ground state to be
about Our step 3 result is less than three times larger. Thus, is plausible.r0 � 0.282 nm0.11 nm.

3. Solve for and substitute the known values:r30

so

0.282 nmr0 � 2.82 � 10�8 cm �

� 2.25 � 10�23 cm3

r30 �
M

2NAr
�

58.4 g

2(6.02 � 1023)(2.16 g>cm3)

When and are very close together, they repel each other because
of the overlap of their electron orbitals and the exclusion-principle repulsion
discussed in Section 37-1. A simple empirical expression for the potential energy
associated with this repulsion that works fairly well is

where and are constants. The total potential energy of an ion is then

38-3

The equilibrium separation is that at which the force is zero.
Differentiating and setting at we obtain

38-4

Substituting for in Equation 38-3 gives

38-5

At we have

38-6

If we know the equilibrium separation the value of can be found approximately
from the dissociation energy of the crystal, which is the energy needed to break up the
crystal into atoms.

nr0,

U(r0) � �a
ke2

r0
a1 �

1
n
br � r0 ,

U � �a
ke2

r0
c r0
r

�
1
n
a r0
r
bn dA

A �
ake2rn�1

0

n

r � r0,dU>dr � 0
F � �dU>drr � r0

U � �a
ke2

r
�
A
rn

nA

Urep �
A
rn

Cl� ionsNa�

Calculate the equilibrium separation for from the measured density of which
is

PICTURE We consider each ion to occupy a cubic volume of side The mass of 1 mol of
is which is the sum of the molar masses of sodium and chlorine. There are

in 1 mol of where is Avogadro’s number.

SOLVE

NA � 6.02 � 1023NaCl,2NA ions
58.4 g,NaCl

r0.

r � 2.16 g>cm3.
NaCl,NaClr0

The measured dissociation energy of is Using 
and the fact that 1 mol of has pairs of ions, we can express

the dissociation energy in electron volts per ion pair. The conversion between
electron volts per ion pair and kilojoules per mole is

1
eV

ion pair
�

6.022 � 1023 ion pairs

1 mol
�

1.602 � 10�19 J
1 eV

NANaCl1.602 � 10�19 J
1 eV �770 kJ>mol.NaCl
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The result is

38-7

Thus, per ion pair. Substituting for 
for and 1.75 for in Equation 38-6, we can solve for The result is 

Most ionic crystals, such as and have a face-centered-
cubic structure. Some elemental solids that have fcc structure are silver, aluminum,
gold, calcium, copper, nickel, and lead.

Figure 38-2 shows the structure of which is called the body-centered-cubic
(bcc) structure. In this structure, each ion has eight nearest neighbor ions of the op-
posite charge. The Madelung constant for these crystals is 1.7627. Elemental solids
that have bcc structure include barium, cesium, iron, potassium, lithium, molyb-
denum, and sodium.

CsCl,

AgCl,LiF, KF, KCl, KI,
n � 9.35 � 9.n.ar0,
U(r0), 0.282 nm�7.98 eV770 kJ>mol � 7.98 eV

1
eV

ion pair
� 96.47

kJ
mol

F I G U R E  3 8 - 4 Diamond crystal structure.
This structure can be considered to be
a combination of two interpenetrating face-
centered-cubic structures.

F I G U R E  3 8 - 3 Hexagonal close-packed
crystal structure.

Cs+

Cl–

Cs+

Cl–

F I G U R E  3 8 - 2 Body-centered-cubic
structure of the crystal.CsCl

Figure 38-3 shows another important crystal structure: the hexagonal close-packed
(hcp) structure. This structure is obtained by stacking identical spheres, such as
bowling balls. In the first layer, each ball touches six others; thus, the name hexagonal.
In the next layer, each ball fits into a triangular depression of the first layer. In the
third layer, each ball fits into a triangular depression of the second layer, so it lies di-
rectly over a ball in the first layer. Elemental solids that have hcp structure include
beryllium, cadmium, cerium, magnesium, osmium, and zinc.

For solids that have covalent bonding, the crystal structure is determined by the
configuration of the bonds. Figure 38-4 illustrates the diamond structure of carbon,
in which each atom is bonded to four other atoms as a result of hybridization,
which is discussed in Section 37-2. This configuration is also the structure of
germanium and silicon.
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38-2 A MICROSCOPIC PICTURE
OF CONDUCTION

We consider a metal as a regular three-dimensional lattice of ions filling some volume
and having a large number of electrons that are free to move throughout the

whole metal. The number of free electrons in a metal is approximately one to four
electrons per atom. In the absence of an electric field, the free electrons move about
the metal randomly, much the way gas molecules move about in a container.

The current in a conducting wire segment is proportional to the voltage drop
across the segment:

The resistance is proportional to the length of the wire segment and inversely
proportional to the cross-sectional area 

R � r
L
A

A:
LR

I �
V
R

(or V � IR)

NV

(a)

(d) (e)

(b)

(c)

Carbon exists in three well-defined crystalline forms: diamond,
graphite, and fullerenes (short for “buckminsterfullerenes”). Fullerenes
were discovered in 1985. The forms differ in how the carbon atoms are
packed together in a lattice. A fourth form of carbon, in which no well-
defined crystalline form exists, is common charcoal. (a) Synthetic
diamonds, magnified approximately 75,000 times. In diamond, each
carbon atom is centered in a tetrahedron of four other carbon atoms.
The strength of these bonds accounts for the hardness of a diamond.
(b) An atomic-force micrograph of graphite. In graphite, carbon atoms
are arranged in sheets, where each sheet is made up of atoms in
hexagonal rings. The sheets slide easily across one another, a property
that allows graphite to function as a lubricant. (c) A single sheet of
carbon rings can be closed on itself if certain rings are allowed to be
pentagonal, instead of hexagonal. A computer-generated image of the
smallest such structure, is shown here. Each of the sixty vertices
corresponds to a carbon atom; twenty of the faces are hexagons and
twelve of the faces are pentagons. The same geometric pattern is
encountered in a soccer ball. (d) Fullerene crystals, in which C60

C60,

molecules are close-packed. The smaller crystals tend to form thin
brownish platelets; larger crystals are usually rodlike in shape.
Fullerenes exist in which more than sixty carbon atoms appear. In the
crystals shown here, about one-sixth of the molecules are 
(e) Carbon nanotubes have very interesting electrical properties. A
single graphite sheet is a semimetal, which means that it has properties
intermediate between those of semiconductors and those of metals.
When a graphite sheet is rolled into a nanotube, not only do the carbon
atoms have to line up around the circumference of the tube, but the
wave functions of the electrons must also match up. This boundary-
matching requirement places restrictions on these wave functions,
which affects the motion of the electrons. Depending on exactly how
the tube is rolled up, the nanotube can be either a semiconductor or a
metal. ((a) Chris Kovach 3/91 p. 69 Discover. (b) Srinivas Manne, University of
California, Santa Barbara. (c) Dr. F. A. Quiocho and J. S. Spurlino/Howard
Hughes Medical Institute, Baylor College of Medicine. (d) W. Krätschmer/
Max-Planck-Institute for Nuclear Physics. (e) © Kenneth Weard/BioGrafx/
Science Source/Photo Researchers.)

C70.
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38-8

DEFINITION—CURRENT DENSITY

J
S

� qnvSd

where and are the charge, the number density, and the drift velocity of the
charge carrier. (This follows from Equation 25-3.) In vector form, the relation
between the current density and the electric field is

38-9

This relation is the point form of Ohm’s law. The reciprocal of the resistivity is
called the conductivity.

According to Ohm’s law, the resistivity is independent of both the current den-
sity and the electric field Combining Equations 38-8 and 38-9 gives

38-10

where and have been substituted for and respectively. According to
Equation 38-10, the drift velocity is proportional to 

In the presence of an electric field, a free electron experiences a force If this
were the only force acting, the electron would have a constant acceleration

However, Equation 38-10 implies a steady-state situation with a constant
drift velocity that is proportional to the field In the microscopic model, it is as-
sumed that a free electron is accelerated for a short time and then makes a collision
with a lattice ion. The velocity of the electron immediately after the collision is
completely unrelated to the drift velocity. The justification for this assumption is
that the magnitude of the drift velocity is extremely small compared with the
speeds associated with the thermal kinetic energies of the free electrons.

For a typical free electron, its velocity a time after its last collision is
where is its velocity immediately after that collision. Because

the direction of is random, it does not contribute to the average velocity of the
electrons. Thus, the average velocity or drift velocity of the electrons is

38-11

where is the average time since the last collision. Substituting for in Equation
38-10, we obtain

so

38-12

The time called the collision time, is also the average time between collisions.*t,

r �
me

ne e
2t

�nee a eESme

tb �
1
r

E
S

vSdt

vSd � �
eE

S

me

t

vS0

vS0vS0 � (�eE
S>me)t,

t

E
S

.
�eE

S>me.

�eE
S

.
E
S

.vSd

n,qne�e

�enev
S

d �
1
r

E
S

E
S

.

J
S

�
1
r

E
S

vSdq, n,

where is the resistivity. Substituting for and for we can write the
current in terms of the electric field strength and the resistivity. We have

Dividing both sides by the area gives or where 
is the magnitude of the current density vector The current density vector is de-
fined as

J
S

.
J � I>AJ � (1>r)E,I>A � (1>r)E,A

I �
V
R

�
EL
rL>A �

1
r
EA

E
V,ELR,rL>Ar

* It is tempting but incorrect to think that if is the average time between collisions, the average time since its last col-
lision is rather than If you find this confusing, you may take comfort in the fact that Drude used the incorrect re-
sult in his original work.1

2 t

t.1
2 t

t
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* See Equation 17–21.

The average distance an electron travels between collisions is which is called
the mean free path 

38-13

where is the mean speed of the electrons. (The mean speed is many orders of
magnitude greater than the drift speed.) In terms of the mean free path and the
mean speed, the resistivity is

vav

l � vavt

l:
vavt,

Area = pr2

Lattice ion

v¢ t1

Electron

v¢ t2 v¢ t3

Radius = r

F I G U R E  3 8 - 5 Model of an electron
moving through the lattice ions of a
conductor. The electron, which is considered
to be a point particle, collides with an ion if it
comes within a distance of the center of the
ion, where is the radius of the ion. If the
electron speed is it collides in time with
all the ions whose centers are in the volume

While this picture is in accord with the
classical Drude model for conduction in
metals, it is in conflict with the current
quantum-mechanical model presented later in
this chapter.

pr2v¢t.

¢tv,
r

r

38-14

RESISTIVITY IN TERMS OF AND lvAV

r �
mevav

nee
2l

According to Ohm’s law, the resistivity is independent of the electric field 
Because and are constants, the only quantities that could possibly depend
on are the mean speed and the mean free path Let us examine these 
quantities to see if they can possibly depend on the applied field 

CLASSICAL INTERPRETATION OF AND 

Classically, at all the free electrons in a conductor should have zero kinetic
energy. As the conductor is heated, the lattice ions acquire an average kinetic en-
ergy of which is imparted to the free electrons by the collisions between the
electrons and the ions. (This is a result of the equipartition theorem studied in
Chapters 17 and 18.) The free electrons would then have a Maxwell–Boltzmann
distribution just like a gas of molecules. In equilibrium, the electrons would be ex-
pected to have a mean kinetic energy of which at ordinary temperatures

is approximately At their root-mean-square (rms)
speed,* which is slightly greater than the mean speed, is

38-15

Note that this is about nine orders of magnitude greater than the typical drift speed
of which was calculated in Example 25-1. The very small drift
speed caused by the electric field therefore has essentially no effect on the very
large mean speed of the electrons, so in Equation 38-14 cannot depend on the
electric field 

The mean free path is related classically to the size of the lattice ions in the con-
ductor and to the number of ions per unit volume. Consider one electron moving
with speed through a region of stationary ions that are assumed to be hard
spheres (Figure 38-5). Assume the size of the electron is negligible. The electron
will collide with an ion if it comes within a distance from the center of the ion,
where is the radius of the ion. During some time interval the electron moves
a distance If there is an ion whose center is in the cylindrical volume 
the electron will collide with the ion. The electron will then change directions and
collide with another ion in time if the center of the ion is in the volume 
Thus, in the total time the electron will collide with the
number of ions whose centers are in the volume The number of ions
in this volume is where is the number of ions per unit volume.nionnionpr

2v¢t,
pr2v¢t.

¢t � ¢t1 � ¢t2 � Á ,
pr2vt2.¢t2

pr2v¢t1,vt1.
¢t1,r

r

v

E
S

.
vav

3.5 � 10�5 m>s,

� 1.17 � 105 m>s
vav � vrms � A3kT

me

� A3(1.38 � 10�23 J>K)(300 K)
9.11 � 10�31kg

T � 300 K,0.04 eV.(~300 K)

3
2 kT,

3
2 kT,

T � 0

lvav

E
S

.
l.vavE

S
eme, ne,

E
S

.r
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The total path length divided by the number of collisions is the mean free path:

38-16

where is the cross-sectional area of a lattice ion.

SUCCESSES AND FAILURES OF THE CLASSICAL MODEL

Neither nor depends on the electric field so also does not depend on 
and do not depend on according to their classical interpretations, so the 

resistivity does not depend on in accordance with Ohm’s law. However, the
classical theory gives an incorrect temperature dependence for the resistivity.
Because depends only on the radius and the number density of the lattice ions,
the only quantity in Equation 38-14 that depends on temperature in the classical
theory is which is proportional to But experiments show that varies lin-
early with temperature. Furthermore, when is calculated at using the
Maxwell–Boltzmann distribution for and Equation 38-16 for the calculated
result is about six times greater than the measured value.

The classical theory of conduction fails because electrons are not classical particles.
The wave nature of the electrons must be considered. Because of the wave proper-
ties of electrons and the constraints described by the exclusion principle (to be dis-
cussed in the following section), the energy distribution of the free electrons in a
metal is not even approximately given by the Maxwell–Boltzmann distribution.
Furthermore, the collision of an electron with a lattice ion is not similar to the colli-
sion of a baseball with a tree. Instead, it involves the scattering of electron waves by
the lattice. To understand the quantum theory of conduction, we need a qualitative
understanding of the energy distribution of free electrons in a metal. This will also
help us understand the origin of contact potentials between two dissimilar metals
in contact and the contribution of free electrons to the heat capacity of metals.

38-3 FREE ELECTRONS IN A SOLID

One may want to consider free electrons in a metal to be an electron gas in a metal.
However, molecules in an ordinary gas, such as air, obey the classical
Maxwell–Boltzmann energy distribution, but the free electrons in a metal do not.
Instead, they obey a quantum energy distribution called the Fermi–Dirac distribution.
The main features of a free electron can be understood by considering the electron
in a metal to be a particle in a box, a problem whose one-dimensional version
we studied extensively in Chapter 34. We discuss the main features of a free elec-
tron semiquantitatively in this section and leave the details of the Fermi–Dirac
distribution to Section 38-9.

ENERGY QUANTIZATION IN A BOX

In Chapter 34, we found that the wavelength associated with an electron of
momentum is given by the de Broglie relation:

38-17

where is Planck’s constant. When a particle is confined to a finite region of space,
such as a box, only certain wavelengths where that are specified
by standing-wave conditions are allowed. For a one-dimensional box of length 
the standing-wave condition is

38-18n
ln

2
� L n � 1, 2, Á

L,
n � 1, 2, Á ,ln,

h

l �
h
p

p

l,vav

T � 300 Kr

r2T.vav,

l

E
S

r

E
S

lvav

E
S

.lE
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,rnion

A � pr2

l �
v¢t

nionpr
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�
1
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2 �
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This results in the quantization of energy:

or

38-19

where The spatial wave function for the state is given by

38-20

The quantum number characterizes the wave function for a particular state and
the energy of that state. In three-dimensional problems, three quantum numbers
arise, one associated with each dimension.

THE EXCLUSION PRINCIPLE

The distribution of electrons among the possible energy states is described by the
exclusion principle, which states that no two electrons in an atom can be in the
same quantum state; that is, they cannot have the same set of values for their quan-
tum numbers. The exclusion principle applies to all “spin one-half” particles
(fermions), which include electrons, protons, and neutrons. These particles have a
spin quantum number which has two possible values, and The quantum
state of a particle is characterized by the spin quantum number and the quan-
tum numbers associated with the spatial part of the wave function. Because the
spin quantum numbers have just two possible values, the exclusion principle can
be stated in terms of the spatial states:

ms

�1
2.�1

2ms

n

cn(x) � A 2
L

sin(npx>L)

nthE1 � h2>(8mL2).

En � n2E1

En �
p2
n

2m
�

(h>ln)2

2m
�
h2

2m
1
l2
n

�
h2

2m
1

(2L>n)2

When there are more than two electrons in a system, such as an atom, only two can
be in the lowest energy state. The third and fourth electrons must go into the second-
lowest state, and so on.

There can be at most two electrons with the same set of values for their spatial
quantum numbers.

EXCLUSION PRINCIPLE IN TERMS OF SPATIAL STATES

Example 38-2 Boson-System Energy versus 
Fermion-System Energy

Compare the total energy of the ground state of five identical bosons of mass in a one-
dimensional box with the total energy of the ground state of five identical fermions of
mass in the same box.

PICTURE The ground state is the lowest possible energy state. The energy levels in a
one-dimensional box are given by where (This is in accord
with Equation 38-19.) The lowest energy for five bosons occurs when all the bosons
are in the state as shown in Figure 38-6a. For fermions, the lowest state occurs
when two fermions are in the state two fermions are in the state and one
fermion is in the state as shown in Figure 38-6b.n � 3,

n � 2,n � 1,
n � 1,

E1 � h2>(8mL2).En � n2E1,

m

m

5

4

3

2

1

E

E

E

E

E

2

1 1

3

4

5 5

4

3

2

1

E

E

E

E

E

2

3

4

5

Bosons Fermions
(a) (b)F I G U R E  3 8 - 6
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EF

F I G U R E  3 8 - 7 At the electrons fill
up the allowed energy states to the Fermi
energy The levels are so closely spaced that
they can be assumed to be continuous.

EF.

T � 0

1. The energy of five bosons in the
state is:n � 1

2. The energy of two fermions in the
state two fermions in the
state and one fermion in the
state is:n � 3

n � 2,
n � 1, � 2E1 � 8E1 � 9E1 � 19E1

E � 2E1 � 2E2 � 1E3 � 2E1 � 2(2)2E1 � 1(3)2E1

3. Compare the total energies: The five identical fermions have 3.8 times
the total energy of the five identical bosons.

CHECK The fact that fermions must have different quantum states has a large effect on the
total energy of a multiple-particle system, as expected.

THE FERMI ENERGY

When there are many electrons in a box, at the electrons will occupy the low-
est energy states consistent with the exclusion principle. If we have electrons, we
can put two electrons in the lowest energy level, two electrons in the next lowest
energy level, and so on. The electrons thus fill the lowest energy levels
(Figure 38-7). The energy of the last filled (or half-filled) level at is called the
Fermi energy If the electrons moved in a one-dimensional box, the Fermi en-
ergy would be given by Equation 38-19, with 

38-21

FERMI ENERGY AT T � 0 IN ONE DIMENSION

In a one-dimensional box, the Fermi energy depends on the number of free elec-
trons per unit length of the box.

EF � aN
2
b 2 h2

8meL
2 �

h2

32me

aN
L
b 2

n � N>2:
EF.

T � 0
N>2N

N
T � 0

PRACTICE PROBLEM 38-1

Suppose there is an ion, and therefore a free electron, every in a one-dimensional
box. Calculate the Fermi energy. Hint: Write Equation 38-21 as

EF �
(hc)2

32mec
2 aNL b 2

�
(1240 eV # nm)2

32(0.511 MeV)
aN
L
b 2

0.100 nm

In our model of conduction, the free electrons move in a three-dimensional box
of volume The derivation of the Fermi energy in three dimensions is some-
what difficult, so we will just give the result. In three dimensions, the Fermi en-
ergy at is

38-22a

FERMI ENERGY AT T � 0 IN THREE DIMENSIONS

The Fermi energy depends on the number density of free electrons Substituting
numerical values for the constants gives

38-22b

FERMI ENERGY AT T � 0 IN THREE DIMENSIONS

EF � (0.3646 eV # nm2)aN
V
b 2>3

N>V.

EF �
h2

8me

a 3N
pV
b 2>3

T � 0

V.

SOLVE

E � 5E1
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Table 38-1 lists the free-electron number densities and Fermi energies at 
for several metals.

The free electrons in a metal are sometimes referred to as a Fermi gas. (They con-
stitute a gas of fermions.) The average energy of a free electron can be calculated
from the complete energy distribution of the electrons, which is discussed in
Section 38-9. At the average energy turns out to beT � 0,

T � 0

Example 38-3 The Fermi Energy for Copper

The number density for electrons in copper was calculated in Example 25-1 and found to be
Calculate the Fermi energy at for copper.

PICTURE The Fermi energy is given by Equations 38-22.

SOLVE

T � 084.7>nm3.

1. The Fermi energy is given by Equation 38-22b: EF � (0.3646 eV # nm2)aN
V
b 2>3

2. Substitute the given number density for copper:

7.03 eV�

EF � (0.3646 eV # nm2)(84.7>nm3)2>3

CHECK The Fermi energy (the step-2 result) is much greater than at room temperatures
as expected. For example, at is only about 

PRACTICE PROBLEM 38-2 Use Equation 38-22b to calculate the Fermi energy at for
gold, which has a free-electron number density of 59.0>nm3.

T � 0

0.026 eV.T � 300 K, kT
kT

38-23

AVERAGE ENERGY OF ELECTRONS IN A FERMI GAS AT T � 0

Eav � 3
5EF

Table 38-1 Free-Electron Number Densities* and Fermi Energies

at T � 0 for Selected Elements

Element

Al Aluminum 181 11.7

Ag Silver 58.6 5.50

Au Gold 59.0 5.53

Cu Copper 84.7 7.03

Fe Iron 170 11.2

K Potassium 14.0 2.11

Li Lithium 47.0 4.75

Mg Magnesium 86.0 7.11

Mn Manganese 165 11.0

Na Sodium 26.5 3.24

Sn Tin 148 10.2

Zn Zinc 132 9.46

* Number densities are measured using the Hall effect, discussed in Section 26-4.

EF, eVN>V, electrons>nm3
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f (E)

1

0
E EF

F I G U R E  3 8 - 8 Fermi factor versus energy
at T � 0.

For copper, is approximately This average energy is huge compared with
thermal energies of about at a temperature of This result
is very different from the classical Maxwell–Boltzmann distribution result that at

and that at some temperature is of the same order as 

THE FERMI FACTOR AT T � 0

The probability of an energy state being occupied is called the Fermi factor,
At all the states below are filled, whereas all those above that energy are
empty, as shown in Figure 38-8. Thus, at the Fermi factor is simply

38-24

THE FERMI FACTOR FOR 

At temperatures greater than some electrons will occupy higher energy
states because of thermal energy gained during collisions with the lattice.
However, an electron cannot move to a higher or lower state unless it is unoccu-
pied. Because the kinetic energy of the lattice ions is of the order of electrons
cannot gain much more energy than in collisions with the lattice ions.
Therefore, only those electrons that have energies within about of the Fermi en-
ergy can gain energy as the temperature is increased. At is only 
so the exclusion principle prevents all but a very few electrons near the top of the
energy distribution from gaining energy through random collisions with the lattice
ions. Figure 38-9 shows a plot of the Fermi factor for some temperature Because
for there is no distinct energy that separates filled levels from unfilled lev-
els, the definition of the Fermi energy must be slightly modified. At temperature

the Fermi energy is defined to be the energy of the energy state for which
the probability of being occupied is For all but extremely high temperatures, the
difference between the Fermi energy at temperature and the Fermi energy at
temperature is very small.

The Fermi temperature is defined by

38-25

For temperatures much lower than the Fermi temperature, the average energy of
the lattice ions will be much less than the Fermi energy, and the electron energy
distribution will not differ greatly from that at T � 0.

kTF � EF

TF

T � 0
T

1
2.

T,

T 
 0
T.

0.026 eV,300 K, kT
kT

kT
kT,

T � 0,

T>0

f(E) � e1 E 	 EF

0 E 
 EF

T � 0
EFT � 0

f(E).

kT.T, ET � 0, E � 0,

T � 300 K.kT � 0.026 eV
4 eV.Eav

f (E)

1

0
E EF

1––
2

F I G U R E  3 8 - 9 The Fermi factor for some
temperature Some electrons that have
energies near the Fermi energy are excited, as
indicated by the shaded regions. The Fermi
energy is that value of for which f(E) � 1

2.EEF

T.

Example 38-4 The Fermi Temperature for Copper

Find the Fermi temperature for copper.

PICTURE We use Equation 38-25 to find the Fermi temperature. The Fermi energy for
copper at calculated in Example 38-3, is 

SOLVE

7.03 eV.T � 0,

Use and in Equation 38-25:k � 8.617 � 10�5 eV>KEF � 7.03 eV 81 600 KTF �
EF

k
�

7.03 eV
8.617 � 10�5 eV>K �

CHECK The Fermi temperature is very high, as expected.

TAKING IT FURTHER We can see from this example that the Fermi temperature of copper
is much greater than any temperature for which copper remains a solid.T



The dashed curve in Figure 38-10 shows the Fermi
factor after the electric field has been acting for some
time Although all of the free electrons have their ve-
locities shifted in the direction opposite to the electric
field, the net effect is equivalent to shifting only the
electrons near the Fermi energy.

CONTACT POTENTIAL

When two different metals are placed in contact, a po-
tential difference called the contact potential de-
velops between them. The contact potential depends on
both the work functions of the two metals, and 
(we encountered work functions when the photoelec-
tric effect was introduced in Chapter 34), and the Fermi
energies of the two metals. When the metals are in con-
tact, the total energy of the system is lowered if elec-
trons near the boundary move from the metal that has
the higher Fermi energy into the metal that has the
lower Fermi energy until the Fermi energies of the two
metals are the same, as shown in Figure 38-11. When
equilibrium is established, the metal that has the lower
initial Fermi energy is negatively charged and the other metal is positively charged,
so that between them there is a potential difference given by

38-27

Table 38-2 lists the work functions for several metals.

Vcontact �
f1 � f2

e

Vcontact

f2f1

Vcontact

t.

Because an electric field in a conductor accelerates all of the con-
duction electrons together, the exclusion principle does not prevent
the free electrons in filled states from participating in conduction.
Figure 38-10 shows the Fermi factor in one dimension versus velocity
for an ordinary temperature. The factor is approximately 1 for ve-
locities in the range where the Fermi speed is
related to the Fermi energy by Then

38-26uF � A2EF

me

EF � 1
2mu2

F.
uF�uF 	 vx 	 uF,vx
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No electric field With electric field

f (E)

–u +u vxF F

F I G U R E  3 8 - 1 0 Fermi factor versus velocity in one
dimension with no electric field (solid) and with an electric field in
the direction (dashed). The difference is greatly exaggerated.�x

Metal 1 Metal 2 Metal 1 Metal 2

+
+
+
+
+

–
–
–
–
–

Allowed

Occupied

φ

Electrons at rest
outside either metal

1
φ 2

φ1 φ2

EF2

EF1
EF

–

Touching

(a) (b)

F I G U R E  3 8 - 1 1 (a) Energy levels for two different metals that have
different Fermi energies and work functions The work function is the
difference between the energy of an electron at rest outside the metal and the
Fermi energy within the metal. (b) When the metals are in contact, electrons
flow from the metal that initially has the higher Fermi energy to the metal that
initially has the lower Fermi energy until the Fermi energies are equal.

f.EF

Example 38-5 The Fermi Speed for Copper

Calculate the Fermi speed for copper.

PICTURE We use Equation 38-26 to find the Fermi speed. The Fermi energy for copper at
calculated in Example 38-3, is 

SOLVE

7.03 eV.T � 0,

Use Equation 38-26 with EF � 7.03 eV:  1.57 � 106 m>s.uF � A 2(7.03 eV)
9.11 � 10�31 kg

a1.60 � 10�19 J
1 eV

b �

CHECK As expected, the result (the Fermi speed for copper) is high, but less than the speed
of light.
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Table 38-2 Work Functions for Some Metals

Metal Metal

Ag Silver 4.7 K Potassium 2.1
Au Gold 4.8 Mn Manganese 3.8
Ca Calcium 3.2 Na Sodium 2.3
Cu Copper 4.1 Ni Nickel 5.2

f, eVf, eV

Example 38-6 Contact Potential between Silver and Tungsten

The threshold wavelength for the photoelectric effect is 271 nm for tungsten and 262 nm for
silver. What is the contact potential developed when silver and tungsten are placed in contact?

PICTURE The contact potential is proportional to the difference in the work functions for
the two metals (Equation 38-27). The work function can be found from the given thresh-
old wavelengths using (Equation 34-4).

SOLVE

f � hc>lt

f

1. The contact potential is given by Equation 38-27: Vcontact �
f1 � f2

e

2. The work function is related to the threshold wavelength
(Equation 34-4):

f �
hc
lt

3. Substitute for tungsten (the symbol for tungsten 
is W):

lt � 271 nm fW �
hc
lt

�
1240 eV # nm

271 nm
� 4.58 eV

CHECK As expected, the contact potential is small (less than one volt). You do not get large
potential differences just by putting two metals in contact.

4. Substitute for silver:lt � 262 nm fAg �
1240 eV # nm

262 nm
� 4.73 eV

5. The contact potential is thus: 0.15 VVcontact �
fAg � fW

e
� 4.73 V � 4.58 V �

HEAT CAPACITY DUE TO ELECTRONS IN A METAL

The quantum-mechanical description of the electron distribution in metals allows
us to understand why the contribution of the free electrons to the heat capacity of
a metal is much less that of the ions. According to the classical equipartition the-
orem, the energy of the lattice ions in moles of a solid is and thus the
molar specific heat is where is the universal gas constant (see Section
18-7). In a metal, the number of free electrons is approximately equal to the num-
ber of lattice ions. If these electrons obey the classical equipartition theorem, they
should have an energy of and contribute an additional to the molar spe-
cific heat. But measured heat capacities of metals are just slightly greater than
those of insulators. We can understand this result because at some temperature 
only those electrons that have energies near the Fermi energy can be excited by
random collisions with the lattice ions. The number of those electrons is of the
order of where is the total number of free electrons. The energy of
those electrons is increased from that at by an amount that is of the order
of So the total increase in thermal energy is of the order of (kT>EF)N � kT.kT.

T � 0
N(kT>EF)N,

T,

3
2R

3
2nRT

Rc� � 3R,
3nRT,n
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We can thus express the energy of electrons at temperature as

38-28

where is the average energy at and is a constant that we expect to be
of the order of 1 if our reasoning is correct. The calculation of is quite challeng-
ing. The result is Using this result and writing in terms of the Fermi
temperature, we obtain the following for the contribution of the free elec-
trons to the heat capacity at constant volume:

where we have written in terms of the gas constant The molar
specific heat at constant volume is then

38-29

We can see that because of the large value of the contribution of the free elec-
trons is a small fraction of at ordinary temperatures. Because for
copper, the molar specific heat of the free electrons at is

which is in good agreement with the experiment.

38-4 QUANTUM THEORY OF 

ELECTRICAL CONDUCTION

We can use Equation 38-14 for the resistivity if we use the Fermi speed (Equation
38-26) in place of 

38-30

We now have two problems. First, because the Fermi speed is approximately in-
dependent of temperature, the resistivity given by Equation 38-30 is independent
of temperature unless the mean free path should depend on the temperature. The
second problem concerns magnitudes. As mentioned earlier, the classical expres-
sion for resistivity using calculated from the Maxwell–Boltzmann distribution
gives values that are about 6 times too large at Because the Fermi speed

is about 16 times the Maxwell-Boltzmann value of the magnitude of pre-
dicted by Equation 38-30 will be approximately 100 times greater than the experi-
mentally determined value. The resolution of both of these problems lies in the
calculation of the mean free path 

THE SCATTERING OF ELECTRON WAVES

In Equation 38-16 for the classical mean free path the quantity
is the cross-sectional area of the lattice ion as seen by an electron. In the

quantum calculation, the mean free path is related to the scattering of electron
waves by the crystal lattice. Detailed calculations show that, for a perfectly
ordered crystal, that is, there is no scattering of the electron waves. The
scattering of electron waves arises because of imperfections in the crystal lattice,
which have nothing to do with the actual cross-sectional area of the lattice ions.A

l � ;

A � pr2
l � 1>(nionA),

l.

rvav,uF

T � 300 K.
vav

uF

r �
meuF

nee
2l

vav:
uF

c œ
V �

1
2
p2 300 K

81600 K
R � 0.02R

T � 300 K
TF � 81 600 KR

TF,

c œ
V �

1
2
p2R

T
TF

R (R � Nk>n).Nk

CV �
dE
dT

� 2aNk
kT
EF

�
1
2
p2nR

T
TF

EF � kTF ,
EFa � p2>4.

a

aT � 0Eav(0)

E � NEav(0) � aN
kT
EF

kT

TN



According to the quantum theory of electron scattering, depends merely on
deviations of the lattice ions from a perfectly ordered array and not on the size
of the ions. The most common causes of such deviations are thermal vibrations of
the lattice ions or impurities.

We can use for the mean free path if we reinterpret the area 
Figure 38-12 compares the classical picture and the quantum picture of this area. In
the quantum picture, the lattice ions are points that have no size but present an
area where is the amplitude of thermal vibrations. In Chapter 14, we
saw that the energy of vibration in simple harmonic motion is proportional to the
square of the amplitude, which is Thus, the effective area is proportional to
the energy of vibration of the lattice ions. From the equipartition theorem,* we
know that the average energy of vibration is proportional to Thus, is pro-
portional to and is proportional to Then the resistivity given by Equation
38-14 is proportional to in agreement with experiment.

The effective area due to thermal vibrations can be calculated, and the
results give values for the resistivity that are in agreement with experiments.
At for example, the effective area turns out to be about 100 times
smaller than the actual cross-sectional area of a lattice ion. We see, therefore, that
the free-electron model of metals gives a good account of electrical conduction
if the classical mean speed is replaced by the Fermi speed and if the colli-
sions between electrons and the lattice ions are interpreted in terms of the scat-
tering of electron waves, for which only deviations from a perfectly ordered
lattice are important.

The presence of impurities in a metal also causes deviations from perfect regu-
larity in the crystal lattice. The effects of impurities on resistivity are approximately
independent of temperature. The resistivity of a metal containing impurities can be
written where is the resistivity due to the thermal motion of the
lattice ions and is the resistivity due to impurities. Figure 38-13
shows typical resistance versus temperature curves for metals with
impurities. As the absolute temperature approaches zero, the resis-
tivity due to thermal motion approaches zero, and the total resistivity
approaches the resistivity due to impurities, which is constant.

38-5 BAND THEORY OF SOLIDS

Resistivities vary enormously between insulators and conductors.
For a typical insulator, such as quartz, whereas for a
typical conductor, The reason for this enormous vari-
ation is the variation in the number density of free electrons To
understand this variation, we consider the effect of the lattice on the
electron energy levels.

We begin by considering the energy levels of the individual atoms
as they are brought together. The allowed energy levels in an isolated
atom are often far apart. For example, in hydrogen, the lowest al-
lowed energy is below the next lowest allowed
energy † Let us consider two identical
atoms and focus our attention on one particular energy level. When the atoms are
far apart, the energy of a particular level is the same for each atom. As the atoms
are brought closer together, the energy level for each atom changes because of the
influence of the other atom. As a result, the level splits into two levels of slightly
different energies for the two-atom system. If we bring three atoms close together,

E2 � (�13.6 eV)>4 � �3.4 eV.
10.2 eVE1 � �13.6 eV

ne.
r ~ 10�8 Æ # m.

r ~ 1016 Æ # m,

ri

rtr � rt � ri ,

uFvav

T � 300 K,

A
T,

1>T.lT,
AkT.

Apr20.

r0A � pr20,

A.l � 1>(nionA)

A
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A = πr2

r

A = πr2
0

r0

(a)

(b)

F I G U R E  3 8 - 1 2 (a) Classical picture of
the lattice ions as spherical balls of radius 
that each present an area to the electrons.
(b) Quantum-mechanical picture of the lattice
ions as points that are vibrating in three
dimensions. The area presented to the
electrons is where is the amplitude of
oscillation of the ions.

r0pr20 ,

pr2
r

* The equipartition theorem does hold for the lattice ions, which obey the Maxwell–Boltzmann energy distribution.
† The energy levels in hydrogen are discussed in Chapter 36. 

R/R

T, K

290 K

4.0 × 10 –3

3.0 × 10 –3

2.0 × 10 –3

1.0 × 10 –3

2 4 6 8 10 12 14 16 18 20

F I G U R E  3 8 - 1 3 Relative resistance versus temperature
for three samples of sodium. The three curves have the same
temperature dependence but different magnitudes because of
differing amounts of impurities in the samples.



a particular energy level splits into three separate levels of slightly dif-
ferent energies. Figure 38-14 shows the energy splitting of two energy
levels for six atoms as a function of the separation of the atoms.

If we have identical atoms, a particular energy level in the iso-
lated atom splits into different, closely spaced energy levels when
the atoms are close together. In a macroscopic solid, is very large—
of the order of —so each energy level splits into a very large num-
ber of levels called a band. The levels are spaced almost continuously
within the band. There is a separate band of levels for each particular
energy level of the isolated atom. The bands may be widely separated
in energy, they may be close together, or they may even overlap, de-
pending on the kind of atom and the type of bonding in the solid.

The lowest energy bands, corresponding to the lowest energy lev-
els of the atoms in the lattice, are filled with electrons that are bound
to the individual atoms. The electrons that can take part in conduc-
tion occupy the higher energy bands. The highest energy band that
contains electrons is called the valence band. The valence band may
be completely filled with electrons or only partially filled, depending
on the kind of atom and the type of bonding in the solid.

We can now understand why some solids are conductors and why others are in-
sulators. If the valence band is only partially filled, there are many available empty
energy states in the band, and the electrons in the band can easily be raised to a
higher energy state by an electric field. Accordingly, this substance is a good con-
ductor. If the valence band is filled and there is a large energy gap between it and
the next available band, an applied electric field may be too weak to excite an elec-
tron from the upper energy levels of the filled band across the large gap into the en-
ergy levels of the empty band, so the substance is an insulator. The lowest band in
which there are unoccupied states is called the conduction band. In a conductor,
the valence band is only partially filled, so the valence band is also the conduction
band. An energy gap between allowed bands is called a forbidden energy band.

The band structure for a conductor, such as copper, is shown in Figure 38-15a.
The lower bands (not shown) are filled with the lower energy electrons of the
atoms. The valence band is only about half-filled. When an electric field is estab-
lished in the conductor, the electrons in the conduction band are accelerated, which
means that their energies are increased. This is consistent with the exclusion prin-
ciple because there are many empty energy states just above those occupied by
electrons in this band. These electrons are thus the conduction electrons.

Figure 38-15b shows the band structure for magnesium, which is also a conduc-
tor. In this case, the highest occupied band is completely filled, but there is an
empty band above it that overlaps it. The two bands thus form a combined
valence–conduction band that is only partially filled.

Figure 38-15c shows the band structure for a typical insulator. At the va-
lence band is completely filled. The next energy band having empty energy states,
the conduction band, is separated from the valence band by a large energy gap.

T � 0 K,

1023
N

N
N
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Closely spaced
energy levels
within the bands

SemiconductorInsulatorConductorConductor

OverlapAllowed, empty

Forbidden

Allowed, occupied

(a) (b) (c) (d)

F I G U R E  3 8 - 1 5 Four possible band
structures for a solid. (a) A typical conductor.
The valence band is also the conduction band.
It is only partially filled, so electrons can be
easily excited to nearby energy states. (b) A
conductor in which the valence band overlaps
a conduction band above it. (c) A typical
insulator. There is a forbidden band that has a
large energy gap between the filled valence
band and the conduction band. (d) A
semiconductor. The energy gap between the
filled valence band and the conduction band
is very small, so some electrons are excited to
the conduction band at normal temperatures,
leaving holes in the valence band.

Allowed energy bands

Separation of atoms

Energy

Level 2

Level 1

F I G U R E  3 8 - 1 4 Energy splitting of two energy levels
for six atoms as a function of the separation of the atoms.
When there are many atoms, each level splits into a near-
continuum of levels called a band.
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At the conduction band is empty. At ordinary temperatures, a few electrons
can be excited to states in that band, but most cannot be excited to states because the
energy gap is large compared with the energy an electron might obtain by thermal
excitation. Very few electrons can be thermally excited to the nearly empty conduc-
tion band, even at fairly high temperatures. When an electric field of ordinary mag-
nitude is established in the solid, electrons cannot be accelerated because there are
no empty energy states at nearby energies. We describe this by saying that there are
no free electrons. The small conductivity that is observed is due to the very few elec-
trons that are thermally excited into the nearly empty conduction band. When an
electric field applied to an insulator is sufficiently strong to cause an electron to be
excited across the energy gap to the empty band, dielectric breakdown occurs.

In some substances, the energy gap between the filled valence band and the
empty conduction band is very small, as shown in Figure 38-15d. At there
are no electrons in the conduction band and the material is an insulator. At ordi-
nary temperatures, however, there are an appreciable number of electrons in the
conduction band due to thermal excitation. Such a material is called an intrinsic
semiconductor. For typical intrinsic semiconductors, such as silicon and germa-
nium, the energy gap is only about In the presence of an electric field, the
electrons in the conduction band can be accelerated because there are empty states
nearby. Also, for each electron in the conduction band there is a vacancy, or hole,
in the nearly filled valence band. In the presence of an electric field, electrons in
this band can also be excited to a vacant energy level. This contributes to the elec-
tric current and is most easily described as the motion of a hole in the direction of
the field and opposite to the motion of the electrons. The hole thus acts like a pos-
itive charge. To visualize the conduction of holes, think of a two-lane, one-way
road that has one lane completely filled with parked cars and the other lane empty.
If a car moves out of the completely filled lane into the empty lane, it can move
ahead freely. As the other cars move up to occupy the vacated space, the vacated
space propagates backward in the direction opposite the motion of the cars. Both
the forward motion of the car in the nearly empty lane and the backward propa-
gation of the empty space contribute to a net forward propagation of the cars.

An interesting characteristic of semiconductors is that the resistivity of the sub-
stance decreases as the temperature increases, which is contrary to the case for nor-
mal conductors. The reason is that as the temperature increases, the number of free
electrons increases because there are more electrons in the conduction band. The
number of holes in the valence band also increases, of course. In semiconductors,
the effect of the increase in the number of charge carriers, both electrons and holes,
exceeds the effect of the increase in resistivity due to the increased scattering of the
electrons by the lattice ions due to thermal vibrations. Semiconductors therefore
have a negative temperature coefficient of resistivity.

38-6 SEMICONDUCTORS

The semiconducting property of intrinsic semiconductors makes them useful as a
basis for electronic circuit components whose resistivity can be controlled by
application of an external voltage or current. Most such solid-state devices, however,
such as the semiconductor diode and the transistor, make use of impurity
semiconductors, which are created through the controlled addition of certain
impurities to intrinsic semiconductors. This process is called doping. Figure 38-16a
is a schematic illustration of silicon doped with a small amount of arsenic so that
the arsenic atoms replace a few of the silicon atoms in the crystal lattice. The con-
duction band of pure silicon is virtually empty at ordinary temperatures, so pure
silicon is a poor conductor of electricity. However, arsenic has five valence elec-
trons rather than the four valence electrons of silicon. Four of these electrons take
part in bonds with the four neighboring silicon atoms, and the fifth electron is very

1 eV.

T � 0,

T � 0,

 Empty conduction
band

Impurity
donor levels

Filled valence band

Si Si Si Si Si

SiSi

Si

Si

Si

As

AsSi

Si

Si

SiSiSiSiSi

Extra electron Extra electron

(a)

(b)

F I G U R E  3 8 - 1 6 (a) A two-dimensional
schematic illustration of silicon doped with
arsenic. Because arsenic has five valence
electrons, there is an extra, weakly bound
electron that is easily excited to the
conduction band, where it can contribute to
electrical conduction. (b) Band structure of an

semiconductor, such as silicon doped
with arsenic. The impurity atoms provide
filled energy levels that are just below the
conduction band. These levels donate
electrons to the conduction band.

n-type
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Si
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Si
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Si

Si

Si

Si

Ga

Si

SiSiSiSiSi
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Hole

 Empty conduction
band

Impurity
acceptor levels

Filled valence band

(a) (b)

loosely bound to the atom. This extra electron occupies an energy level that is just
slightly below the conduction band in the solid, and it is easily excited into the con-
duction band, where it can contribute to electrical conduction.

The effect on the band structure of a silicon crystal achieved by doping it with
arsenic is shown in Figure 38-16b. The levels shown just below the conduction
band are due to the extra electrons of the arsenic atoms. These levels are called
donor levels because they donate electrons to the conduction band without leav-
ing holes in the valence band. Such a semiconductor is called an semi-
conductor because the major charge carriers are negatively charged electrons.
The conductivity of a doped semiconductor can be controlled by controlling the
amount of impurity added. The addition of just one part per million can increase
the conductivity by several orders of magnitude.

Another type of impurity semiconductor can be made by replacing a silicon
atom with a gallium atom, which has three valence electrons (Figure 38-17a). The
gallium atom accepts electrons from the valence band to complete its four covalent
bonds, thus creating a hole in the valence band. The effect on the band structure of
silicon achieved by doping it with gallium is shown in Figure 38-17b. The empty
levels shown just above the valence band are due to the holes from the ionized gal-
lium atoms. These levels are called acceptor levels because they accept electrons
from the filled valence band when those electrons are thermally excited to a higher
energy state. This creates holes in the valence band that are free to propagate in the
direction of an electric field. Such a semiconductor is called a p-type semiconductor
because the charge carriers are positively charged holes. The fact that conduction
is due to the motion of positively charged holes can be verified by the Hall effect.
(The Hall effect is discussed in Chapter 26.)

n-type

Synthetic crystal silicon is produced beginning
with a raw material containing silicon (for
instance, common beach sand), separating out
the silicon, and melting it. From a seed crystal,
the molten silicon grows into a cylindrical
crystal, such as the one shown here. The
crystals (typically about 1.3 m long) are
formed under highly controlled conditions to
ensure that they are flawless and the crystals
are then sliced into thousands of thin wafers
onto which the layers of an integrated circuit
are etched. (Museum of Modern Art.)

Try It YourselfExample 38-7 Number Density of Free Electrons in 
Arsenic-Doped Silicon

The number of free electrons in pure silicon is approximately at ordinary
temperatures. If one silicon atom out of every is replaced by an arsenic atom, how
many free electrons per cubic centimeter are there? (The density of silicon is and
its molar mass is )

PICTURE The number of silicon atoms per cubic centimeter, can be found from
Then, because each arsenic atom contributes one free electron, the number of

electrons contributed by the arsenic atoms is 10�6 nSi.
nSi � rNA>M.

nSi,

28.1 g>mol.
2.33 g>cm3

106 atoms
1010 electrons>cm3

F I G U R E  3 8 - 1 7 (a) A two-dimensional schematic illustration of silicon doped with gallium.
Because gallium has only three valence electrons, there is a hole in one of its bonds. As electrons
move into the hole the hole moves about, contributing to the conduction of electrical current.
(b) Band structure of a semiconductor, such as silicon doped with gallium. The impurity
atoms provide empty energy levels just above the filled valence band that accept electrons from
the valence band.

p-type
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Steps Answers

1. Calculate the number of silicon atoms per cubic centimeter.

� 4.99 � 1022 atoms>cm3

�
(2.33 g>cm3)(6.02 � 1023 atoms>mol)

28.1 g>mol

nSi �
rNA

M

2. Multiply by to obtain the number of arsenic atoms per
cubic centimeter, which equals the added number of free
electrons per cubic centimeter.

10�6 nAs � 10�6nSi � 4.99 � 1016 atoms>cm3

CHECK As expected, the step-3 result is less than the number density of silicon atoms and
more than the number density of conduction electrons in pure silicon.

TAKING IT FURTHER Because silicon has so few free electrons per atom, the number den-
sity of conduction electrons is increased by a factor of approximately 5 million per cubic cen-
timeter by doping silicon with just one arsenic atom per million silicon atoms.

PRACTICE PROBLEM 38-3 How many free electrons are there per silicon atom in pure
silicon?

3. The number of free electrons per cubic centimeter is equal to the
number of arsenic atoms per cubic centimeter plus 
(the number of silicon atoms per cubic centimeter).

1 � 10�10

 5 � 1016 electrons>cm3�

� 4.99 � 1016 cm�3 � 1 � 1010 cm�3

ne � nAs � 1 � 10�10nSi

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

38-7 SEMICONDUCTOR 
JUNCTIONS AND DEVICES

Semiconductor devices such as diodes and transistors make use of semi-
conductors and semiconductors joined together, as shown in Figure 38-18.
In practice, the two types of semiconductors are often incorporated into a single sil-
icon crystal doped with donor impurities on one side and acceptor impurities on
the other side. The region in which the semiconductor changes from a semi-
conductor to an semiconductor is called a junction.

When an semiconductor and a semiconductor are placed in con-
tact, the initially unequal concentrations of electrons and holes result in the diffu-
sion of electrons across the junction from the side to the side and holes from the

side to the side until equilibrium is established. The result of this diffusion is a
net transport of positive charge from the side to the side. Unlike the case when
two different metals are in contact, the electrons cannot travel very far from the
junction region because the semiconductor is not a particularly good conductor.
The diffusion of electrons and holes therefore creates a double layer of charge at
the junction similar to that on a parallel-plate capacitor. There is, thus, a potential
difference across the junction, which tends to inhibit further diffusion. In equi-
librium, the side which has a net positive charge will be at a higher potential than
the side which has a net negative charge. In the junction region, between the
charge layers, there will be very few charge carriers of either type, so the junction
region has a high resistance. Figure 38-19 shows the energy-level diagram for a 
junction. The junction region is also called the depletion region because it has been
depleted of charge carriers.
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F I G U R E  3 8 - 1 8 A junction. Because
of the difference in their concentrations on
either side of the junction, holes diffuse
from the side to the side, and electrons
diffuse from the side to the side. As a
result, there is a double layer of charge at the
junction, with the side being negative and
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*DIODES

In Figure 38-20, an external potential difference has been applied
across a junction by connecting a battery and a resistor to the
semiconductor. When the positive terminal of the battery is con-
nected to the side of the junction, as shown in Figure 38-20a, the
junction is said to be forward biased. Forward biasing lowers the
potential across the junction. The diffusion of electrons and holes is
thereby increased as they attempt to reestablish equilibrium, result-
ing in a current in the circuit.

If the positive terminal of the battery is connected to the side of
the junction, as shown in Figure 38-20b, the junction is said to be
reverse biased. Reverse biasing tends to increase the potential dif-
ference across the junction, thereby further inhibiting diffusion.
Figure 38-21 shows a plot of current versus voltage for a typical
semiconductor junction. Essentially, the junction conducts only in one
direction for applied voltages greater than the breakdown voltage.
A single-junction semiconductor device is called a diode.* Diodes
have many uses. One use is to convert alternating current into direct
current, a process called rectification.

Note that the current in Figure 38-21 suddenly increases in magni-
tude at extreme values of reverse bias. In such large electric fields,
electrons are stripped from their atomic bonds and accelerated across
the junction. These electrons, in turn, cause others to break loose. This effect is called
avalanche breakdown. Although such a breakdown can be disastrous in a circuit
where it is not intended, the fact that it occurs at a sharply defined voltage makes it
of use in a special voltage reference standard known as a Zener diode. Zener diodes
are also used to protect devices from excessively high voltages.

An interesting effect, one that we discuss only qualitatively, occurs if both the 
side and the side of a diode are so heavily doped that the donors on
the side provide so many electrons that the lower part of the conduction band is
practically filled, and the acceptors on the side accept so many electrons that the
upper part of the valence band is nearly empty. Figure 38-22a shows the energy-level

p
n

pn-junctionp
n

n

p

pn
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F I G U R E  3 8 - 2 1 Plot of current versus applied voltage
across a junction. Note the different scales on both axes for
the forward and reverse bias conditions.

pn

* The name diode originates from a vacuum tube device consisting of just two electrodes that also conducts electric cur-
rent in one direction only.
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F I G U R E  3 8 - 2 2 Electron energy levels
for a heavily doped tunnel diode.
(a) With no bias voltage, some electrons tunnel
in each direction. (b) With a small bias voltage,
the tunneling current is enhanced in one
direction, making a sizable contribution to the
net current. (c) With further increases in the
bias voltage, the tunneling current decreases
dramatically.
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I

VVA VB

F I G U R E  3 8 - 2 3 Current versus applied
(bias) voltage for a tunnel diode. For 
an increase in the bias voltage enhances
tunneling. For an increase in the
bias voltage inhibits tunneling. For 
the tunneling is negligible, and the diode
behaves like an ordinary diode.pn-junction

V 
 VB,
VA 	 V 	 VB ,

V
V 	 VA ,V

p-type

n-type
RL

Incident light

I

F I G U R E  3 8 - 2 4 A
semiconductor as a solar cell. When light
strikes the region, electron-hole pairs
are created, resulting in a current through the
load resistance RL.

p-type

pn-junction

diagram for this situation. Because the depletion region is now so narrow, electrons
can easily penetrate the potential barrier across the junction and tunnel to the other
side. The flow of electrons through the barrier is called a tunneling current, and such
a heavily doped diode is called a tunnel diode.

At equilibrium where there is no bias, there is an equal tunneling current in each
direction. When a small bias voltage is applied across the junction, the energy-level
diagram is as shown in Figure 38-22b, and the tunneling of electrons from the side
to the side is increased, whereas the tunneling of electrons in the opposite direc-
tion is decreased. This tunneling current, in addition to the usual current due to dif-
fusion, results in a considerable net current. When the bias voltage is increased
slightly, the energy-level diagram is as shown in Figure 38-22c, and the tunneling
current is decreased. Although the diffusion current is increased, the net current is
decreased. At large bias voltages, the tunneling current is completely negligible,
and the total current increases with increasing bias voltage due to diffusion, as in an
ordinary diode. Figure 38-23 shows the current versus voltage curve for
a tunnel diode. Such diodes are used in electric circuits because of their very fast re-
sponse time. When operated near the peak in the current versus voltage curve, a
small change in bias voltage results in a large change in the current.

Another use for the semiconductor is the solar cell, which is illus-
trated schematically in Figure 38-24. When a photon of energy greater than the gap
energy ( in silicon) strikes the region, it can excite an electron from the
valence band into the conduction band, leaving a hole in the valence band. This re-
gion is already rich in holes. Some of the electrons created by the photons will
recombine with holes, but some will migrate to the junction. From there, they are
accelerated into the region by the electric field between the double layer of
charge. This creates an excess negative charge in the region and an excess
positive charge in the region. The result is a potential difference between the
two regions, which in practice is approximately If a load resistance is con-
nected across the two regions, a charge flows through the resistance. Some of the
incident light energy is thus converted into electrical energy. The current in the re-
sistor is proportional to the rate of arrival of incident photons, which is in turn pro-
portional to the intensity of the incident light.

There are many other applications of semiconductors with junctions. Particle
detectors, called surface-barrier detectors, consist of a semiconductor
that has a large reverse bias so that there is ordinarily no current. When a high-en-
ergy particle, such as an electron, passes through the semiconductor, it creates
many electron–hole pairs as it loses energy. The resulting current pulse signals the
passage of the particle. Light-emitting diodes (LEDs) are semiconduc-
tors that have large forward biases that produce large excess concentrations of elec-
trons on the sides and holes on the sides of the junctions. Under these condi-
tions, an LED emits light as the electrons and holes recombine. This is essentially
the reverse of the process that occurs in a solar cell, in which electron–hole pairs
are created by the absorption of light. LEDs are commonly used as warning indi-
cators and as sources of infrared light beams.

*TRANSISTORS

The transistor, a semiconducting device that is used to produce a desired output
signal in response to an input signal, was invented in 1948 by William Shockley,
John Bardeen, and Walter Brattain and has revolutionized the electronics industry
and our everyday world. A simple bipolar junction transistor* consists of three
distinct semiconductor regions called the emitter, the base, and the collector. The
base is a very thin region of one type of semiconductor sandwiched between two
regions of the opposite type. The emitter semiconductor is much more heavily

np

pn-junction

pn-junction
pn

0.6 V.
p-type

n-type
n-type

p-type1.1 eV

pn-junction

pn-junction

p
n

A light-emitting diode (LED). (© C. Falco/Photo
Researchers.)

* Besides the bipolar junction transistor, there are other categories of transistors, notably, the field–effect transistor.
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F I G U R E  3 8 - 2 7 A transistor biased
for normal operation. Holes from the emitter
can easily diffuse across the base, which
is only tens of nanometers thick. Most of the
holes flow to the collector, producing the
current Ic.

pnp

doped than either the base or the collector. In an transistor, the emitter and col-
lector are semiconductors and the base is a semiconductor; in a 
transistor, the base is an semiconductor and the emitter and collector are

semiconductors.
Figure 38-25 and Figure 38-26 show, respectively, a transistor and an 

transistor, along with the symbols used to represent each transistor in circuit dia-
grams. We see that either transistor consists of two junctions. We will discuss the
operation of a transistor. The operation of an transistor is similar.

In the normal operation of a transistor, the emitter-base junction is forward
biased, and the base-collector junction is reverse biased, as shown in Figure 38-27.
The heavily doped emitter emits holes that flow toward the emitter-base junc-
tion. This flow constitutes the emitter current Because the base is very thin, most
of the holes flow across the base into the collector. This flow in the collector consti-
tutes a current However, some of the holes recombine in the base producing a pos-
itive charge that inhibits the further flow of charge. To prevent this, some of the holes
that do not reach the collector are drawn off the base as a base current in a wire
connected to the base. In Figure 38-27, therefore, is almost but not quite equal to

and is much smaller than either or It is customary to express as

38-31

where is called the current gain of the transistor. Transistors can be designed to
have values of as low as ten or as high as several hundred.

Figure 38-28 shows a simple transistor used as an amplifier. A small, time-
varying input voltage is connected in series with a constant bias voltage 
The base current is then the sum of a steady current produced by the bias voltage

and a time-varying current due to the signal voltage Because may at
any instant be either positive or negative, the bias voltage must be large enough
to ensure that there is always a forward bias on the emitter-base junction. The col-
lector current will consist of two parts: a constant direct current and a time-
varyng current We thus have a current amplifier in which the time-varying
output current is multiplied by the input current In such an amplifier, the
steady currents and although essential to the operation of the transistor, are
usually not of interest. The input signal voltage is related to the base current by
Ohm’s law:

38-32ib �
vs

Rb � rb

vs

Ib,Ic

ib.bic

ic � bib.
Ic � bIb

Veb

vsvs.ibVeb

Ib

Veb.vs

pnp
b

b

Ic � bIb

IcIe.IcIbIe,
Ic
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Ic.
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p-type

pnp
npnnpn
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n-type
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(a)

(b)

F I G U R E  3 8 - 2 5 A transistor. (a) The heavily
doped emitter emits holes that pass through the thin base
to the collector. (b) Symbol for a transistor in a
circuit. The arrow points in the direction of the
conventional current, which is the same as that of the
emitted holes.
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F I G U R E  3 8 - 2 6 An transistor. (a) The
heavily doped emitter emits electrons that pass
through the thin base to the collector. (b) Symbol for
an transistor. The arrow points in the direction of
the conventional current, which is opposite the
direction of the emitted electrons.

npn

npn
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F I G U R E  3 8 - 2 8 (a) A transistor used as an amplifier. A small change in the base
current results in a large change in the collector current. Thus, a small signal in the base circuit
results in a large signal across the load resistor in the collector circuit. (b) The same circuit as in
Figure 38-28a with the conventional symbol for the transistor.
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ibpnp

where is the internal resistance of that part of the transistor between the base and
emitter. Similarly, the collector current produces a time-varying voltage across
the output or load resistance given by

38-33

Using Equation 38-31 and Equation 38-32, we have

38-34

The output voltage is thus related to the input voltage by

38-35

The ratio of the output voltage to the input voltage is the voltage gain of the amplifier:

38-36

A typical amplifier (for example, in a tape player) has several transistors, similar
to the one shown in Figure 38-28, connected in series so that the output of one
transistor serves as the input for the next. Thus, the very small voltage fluctuations
produced by the motion of the magnetic tape past the pickup heads controls the
large amounts of power required to drive the loudspeakers. The power delivered
to the speakers is supplied by the dc sources connected to each transistor.

The technology of semiconductors extends well beyond individual transistors
and diodes. Many of the electronic devices we use every day, such as laptop
computers and the processors that govern the operation of vehicles and appli-
ances, rely on large-scale integration of many transistors and other circuit com-
ponents on a single chip. Large-scale integration combined with advanced
concepts in semiconductor theory has created remarkable new instruments for
scientific research.

38-8 SUPERCONDUCTIVITY

There are some substances for which the resistivity suddenly drops to zero below
a certain temperature which is called the critical temperature. This amazing
phenomenon, called superconductivity, was discovered in 1911 by the Dutch
physicist H. Kamerlingh Onnes, who developed a technique for liquefying

Tc ,

Voltage gain �
vL

vs

� b
RL

Rb � rb

vL � b
vs

Rb � rb
RL � b

RL

Rb � rb
vs

ic � bib � b
vs

Rb � rb

vL � icRL

RL

vLic

rb
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helium (boiling point equal to ) and used his technique to explore the prop-
erties of substances at temperatures in that range. Figure 38-29 shows Onnes’s plot
of the resistance of mercury versus temperature. The critical temperature for mer-
cury is approximately the same as the boiling point of helium, which is 
Critical temperatures for other superconducting elements range from less than

for hafnium and iridium to for niobium. The temperature range for su-
perconductors is much higher for a number of metallic compounds. For example,
the superconducting alloy discovered in 1973, has a critical temperature of

which was the highest known until 1986, when the discoveries of J. Georg
Bednorz and K. Alexander Müller launched the era of high-temperature supercon-
ductors, now defined as materials that exhibit superconductivity at temperatures
above (the temperature at which nitrogen boils). The highest temperature at
which superconductivity has been demonstrated, using thallium-doped

is at atmospheric pressure. At extremely high pres-
sures, some materials exhibit superconductivity at temperatures as high as 

The resistivity of a superconductor is zero. There can be a current in a super-
conductor even when there is no emf in the superconducting circuit. Indeed, in su-
perconducting rings in which there was no electric field, steady currents have been
observed to persist for years without apparent loss. Despite the cost and inconve-
nience of refrigeration using expensive liquid helium, many superconducting
magnets have been built using superconducting materials, because such magnets
require no power expenditure to maintain the large current needed to produce a
large magnetic field.

164 K.
138 KHgBa2Ca2Cu3O8 � delta,

77 K

25 K,
Nb3Ge,

9.2 K0.1 K

4.2 K.

4.2 K

The wires for the magnetic field of a magnetic
resonance imaging (MRI) machine carry large
currents. To keep the wires from overheating,
they are maintained at superconducting
temperatures. To accomplish this, they are
immersed in liquid helium. (Corbis.)
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The discovery of high-temperature superconductors has revolutionized the
study of superconductivity because relatively inexpensive liquid nitrogen, which
boils at can be used for a coolant. However, many problems, such as brittle-
ness and the toxicity of the materials, make these new superconductors difficult to
use. The search continues for new materials that will be superconductors at even
higher temperatures.

THE BCS THEORY

It had been recognized for some time that low temperature superconductivity is
due to a collective action of the conducting electrons. In 1957, John Bardeen, Leon
Cooper, and Robert Schrieffer published a successful theory of low temperature
superconductivity now known by the initials of the inventors as the BCS theory.
According to this theory, the electrons in a superconductor are coupled in pairs at
low temperatures. The coupling comes about because of the interaction between
electrons and the crystal lattice. One electron interacts with the lattice and perturbs
it. The perturbed lattice interacts with another electron in such a way that there is
an attraction between the two electrons that at low temperatures can exceed the
Coulomb repulsion between them. The electrons form a bound state called a
Cooper pair. The electrons in a Cooper pair have equal and opposite spins, so they
form a system with zero spin. Each Cooper pair acts as a single particle with zero
spin, in other words, as a boson. Bosons do not obey the exclusion principle. Any
number of Cooper pairs may be in the same quantum state with the same energy.
In the ground state of a superconductor (at ), all the conduction electrons are
in Cooper pairs and all the Cooper pairs are in the same energy state. In the su-
perconducting state, the Cooper pairs are correlated so that they act collectively.
An electric current can be produced in a superconductor because all of the elec-
trons in this collective state move together. But energy cannot be dissipated by in-
dividual collisions of electron and lattice ions unless the temperature is high
enough to break the binding of the Cooper pairs. The required energy is called the
superconducting energy gap In the BCS theory, this energy at zero temperature is
related to the critical temperature by

38-37

The energy gap can be determined by measuring the current across a junction
between a normal metal and a superconductor as a function of voltage. Consider
two metals separated by a layer of insulating material, such as aluminum oxide,
that is only a few nanometers thick. The insulating material between the metals
forms a barrier that prevents most electrons from traversing the junction. However,
waves can tunnel through a barrier if the barrier is not too thick, even if the energy
of the wave is less than that of the barrier.

When the materials on either side of the gap are normal nonsuperconducting
metals, the current resulting from the tunneling of electrons through the insulat-
ing layer obeys Ohm’s law for low applied voltages (Figure 38-30a). When one of
the metals is a normal metal and the other is a superconductor, there is no current
(at absolute zero) unless the applied voltage is greater than a critical voltage

where is the superconductor energy gap. Figure 38-30b shows the
plot of current versus voltage for this situation. The current escalates rapidly when
the energy absorbed by a Cooper pair traversing the barrier approaches

the minimum energy needed to break up the pair. (The small current
visible in Figure 38-30b before the critical voltage is reached is present because at
any temperature above absolute zero some of the electrons in the superconductor
are thermally excited above the energy gap and are therefore not paired.) At volt-
ages slightly above the current versus voltage curve becomes that for a normal
metal. The superconducting energy gap can thus be measured by measuring the
average voltage for the transition region.

Vc ,

Eg � 2eVc ,
2eV

EgVc � Eg>(2e), V

Eg � 7
2 kTc

Eg.

T � 0

77 K,

I

I

V

V

Vc

(a)

(b)

F I G U R E  3 8 - 3 0 Tunneling current
versus voltage for a junction of two metals
separated by a thin oxide layer. (a) When both
metals are normal metals, the current is
proportional to the voltage, as predicted by
Ohm’s law. (b) When one metal is a normal
metal and another metal is a superconductor,
the current is approximately zero until the
applied voltage approaches the critical
voltage Vc � Eg>(2e).V



Note that the energy gap for a typical superconductor is much
smaller than the energy gap for a typical semiconductor, which is of
the order of As the temperature is increased from some
of the Cooper pairs are broken. Then there are fewer pairs available
for each pair to interact with, and the energy gap is reduced until at

the energy gap is zero (Figure 38-31).

THE JOSEPHSON EFFECT

When two superconductors are separated by a thin nonsupercon-
ducting barrier (for example, a layer of aluminum oxide a few
nanometers thick), the junction is called a Josephson junction,
based on the prediction in 1962 by Brian Josephson that Cooper
pairs could tunnel across such a junction from one superconductor
to the other with no resistance. The tunneling of Cooper pairs con-
stitutes a current, which does not require a voltage to be applied
across the junction. The current depends on the difference in phase
of the wave functions that describe the Cooper pairs. Let be the
phase constant for the wave function of a Cooper pair in one su-
perconductor. All the Cooper pairs in a superconductor act coher-
ently and have the same phase constant. If is the phase constant
for the Cooper pairs in the second superconductor, the current
across the junction is given by

38-38

where is the maximum current, which depends on the thickness of the barrier.
This result has been observed experimentally and is known as the dc Josephson
effect.

Josephson also predicted that if a dc voltage were applied across a Josephson
junction, there would be a current that alternates with frequency given by

38-39

This result, known as the ac Josephson effect, has been observed experimentally,
and careful measurement of the frequency allows a precise determination of the
ratio Because frequency can be measured very accurately, the ac Josephson
effect is also used to establish precise voltage standards. The inverse effect, in
which the application of an alternating voltage across a Josephson junction results
in a dc current, has also been observed.

e>h.
f �

2e
h
V

f
V

Imax

I � Imax sin(f2 � f1)

f2

f1

T � Tc

T � 0,1 eV.
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Example 38-8 Superconducting Energy Gap for Mercury

Calculate the superconducting energy gap for mercury predicted by the BCS theory.

PICTURE The energy gap is related to the critical temperature by (Equation 38-37).

SOLVE

Eg � 3.5 kTc

(Tc � 4.2 K)

1. The BCS prediction for the energy gap is Eg � 3.5kTc

2. Substitute Tc � 4.2 K:

 1.3 � 10�3 eV�

� 3.5(1.38 � 10�23 J>K)(4.2 K) a 1 ev
1.6 � 10�19 J

bEg � 3.5kTc
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Example 38-9 Frequency of Josephson Current

Using and calculate the frequency of the Josephson
current if the applied voltage is 

PICTURE The frequency is related to the applied voltage by (Equation 38-39).

SOLVE

hf � 2eVVf

1.000 mV.
h � 6.626 � 10�34 J # s,e � 1.602 � 10�19 C

Substitute the given values into Equation 38-39 to calculate f:

483.5 MHz� 4.835 � 108 Hz �

f �
2e
h
V �

2(1.602 � 10�19 C)
6.626 � 10�34 J # s

(1.000 � 10�6 V)

38-9 THE FERMI–DIRAC DISTRIBUTION

The classical Maxwell–Boltzmann distribution (Equation 17-38) gives the number
of molecules that have energy in the range between and The num-

ber is equal to the product of where is the density of states
(number of energy states in the range ) and the Boltzmann factor which
is the probability of a state being occupied. The distribution function for free elec-
trons in a metal is called the Fermi–Dirac distribution. The Fermi–Dirac distribu-
tion can be written in the same form as the Maxwell–Boltzmann distribution,
where the density of states calculated from quantum theory and the Boltzmann
factor is replaced by the Fermi factor. Let be the number of electrons that
have energies between and This number is writtenE � dE.E

n(E) dE

e�E>(kT),dE
g(E)g(E) dEdN

E � dE.EEdN

38-40

ENERGY DISTRIBUTION FUNCTION

n(E)dE � f(E)g(E)dE

38-41

DENSITY OF STATES

g(E) �
822pm3>2

e V

h3 E1>2

where is the number of states that have energies between and 
and is the probability of a state being occupied, which is the Fermi factor. The
density of states in three dimensions is somewhat challenging to calculate, so we
just give the result. For electrons in a metal of volume the density of states isV,

f(E)
E � dEEg(E) dE

As in the classical Maxwell–Boltzmann distribution, the density of states is pro-
portional to 

At the Fermi factor is given by Equation 38-24:

The integral of over all energies gives the total number of electrons We
can derive the equation

EF �
h2

8me

a 3N
pV
b 2>3

N.n(E) dE

f(E) � e1 E 	 EF

0 E 
 EF

T � 0,
E1>2.
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38-43

DENSITY OF STATES IN TERMS OF E F

g(E) �
822pm3>2

e V

h3 E1>2 �
3
2
NE�3>2

F E1>2

(Equation 38-22a) for the Fermi energy at by integrating from 
to We obtain

Note that at is zero for Solving for gives the Fermi energy at

38-42

which is Equation 38-22a. In terms of the Fermi energy, the density of states
(Equation 38-41) is

EF �
h2

8me

a 3N
pV
b 2>3T � 0:

EFE 
 EF.T � 0, n(E)

� �
EF

0

822pm3>2
e V

h3 E1>2 dE � 0 �
1622pm3>2

e V

3h3 E3>2
F

N � �


0
n(E)dE � �

EF

0
n(E)dE � �



EF

n(E)dE

E � .
E � 0n(E) dET � 0

which is obtained by solving Equation 38-42 for and then substituting for 
in Equation 38-41. The average energy at is calculated from

38-44

where is the total number of electrons. Substituting for from

Equation 38-43 and then evaluating the integral in Equation 38-44, we obtain
Equation 38-23:

38-45

AVERAGE ENERGY AT T � 0

At the Fermi factor is more complicated. It can be shown to be

38-46

FERMI FACTOR

We can see from this equation that for greater than becomes very
large as approaches zero, so at the Fermi factor is zero for On the
other hand, for less than approaches 0 as approaches zero, so at

for Thus, the Fermi factor given by Equation 38-46 holds
for all temperatures. Note also that for any nonzero value of at E � EF.T, f(E) � 1

2

E 	 EF.T � 0, f(E) � 1
TEF , e(E�EF)>(kT)E

E 
 EF.T � 0,T
EF , e(E�EF)>(kT)E

f(E) �
1

e(E�EF)>(kT) � 1

T 
 0,

Eav � 3
5EF

g(E)N � �
EF

0
g(E)dE

Eav �
�
EF

0
Eg(E)dE

�
EF

0
g(E)dE

�
1
N �

EF

0
Eg(E)dE

T � 0
meme ,
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The complete Fermi-Dirac distribution function is thus

38-47

FERMI–DIRAC DISTRIBUTION

We can see that for those few electrons that have energies much greater than the
Fermi energy, the Fermi factor approaches 
which is proportional to Thus, the high-energy tail of the Fermi–Dirac energy
distribution decreases with increasing as just like the classical Maxwell–
Boltzmann energy distribution. The reason for this is that in this high-energy region
there are many unoccupied energy states and few electrons, so the exclusion princi-
ple is not important. Thus, the Fermi–Dirac distribution approaches the classical
Maxwell–Boltzmann distribution in the high-energy limit. This result has practical
importance because it applies to the conduction electrons in semiconductors.

e�E>(kT),E
e�E>(kT).

1>e(E�EF)>(kT) � e(EF�E)>(kT) � eEF>(kT)e�E>(kT),

n(E)dE � g(E)f(E)dE �
822pm3>2

e V

h3 E1>2 1
e(E�EF)>(kT) � 1

dE

Example 38-10 Fermi Factor for Copper at 300 K

At what energy is the Fermi factor equal to 0.100 for copper at 

PICTURE We set in Equation 38-46, using and from
Table 38-1, and solve for 

SOLVE

E.
EF � 7.03 eVT � 300 Kf(E) � 0.100

T � 300 K?

1. Solve Equation 38-46 for e(E�EF)>(kT):

so

e(E�EF)>(kT) �
1
f(E)

� 1

f(E) �
1

e(E�EF)>(kT) � 1

2. Take the logarithm of both sides:
E � EF

kT
� ln c 1

f(E)
� 1 d

3. Solve for For use the value for 
at listed in Table 38-1:T � 0 K

EFEF,E.

 7.09 eV�

� 7.03 eV � ln c 1
0.100

� 1 d (8.62 � 10�5 eV>K)(300 K)

E � EF � c 1
f(E)

� 1 dkT

CHECK As expected, the energy is slightly above the Fermi energy when the Fermi factor is
equal to 0.100.

Example 38-11 Probability of a Higher Energy State Being Occupied

Find the probability that an energy state in copper above the Fermi energy is occu-
pied at 

PICTURE The probability is the Fermi factor given in Equation 38-46, with and
E � 7.13 eV.

EF � 7.03 eV

T � 300 K.
0.100 eV
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1. The probability of an energy state being occupied equals the
Fermi factor:

P � f(E) �
1

e(E�EF)>(kT) � 1

2. Calculate the exponent in the Fermi factor (exponents are
always dimensionless):

E � EF

kT
�

7.13 eV � 7.03 eV
(8.62 � 10�5 eV>K)(300 K)

� 3.87

3. Use this result to calculate the Fermi factor:

 0.020�
1

48 � 1
�

f(E) �
1

e(E�EF)>(kT) � 1
�

1
e3.87 � 1

CHECK The probability that an energy state above the Fermi energy is occupied is less than
one-half. As expected, the step 4 result less than one-half.

TAKING IT FURTHER The probability of an electron having an energy above the
Fermi energy at is only about 2 percent.300 K

0.100 eV

Example 38-12 Probability of a Lower Energy State Being Occupied

Steps Answers

1. Write the Fermi factor: f(E) �
1

e(E�EF)>(kT) � 1

2. Calculate the exponent in the Fermi factor:
E � EF

kT
�

6.93 eV � 7.03 eV
(8.62 � 10�5 eV>K)(300 K)

� �3.87

CHECK As expected, the step-3 result is greater than one-half.

TAKING IT FURTHER The probability of an electron having an energy of below the
Fermi energy at is approximately 98 percent.

PRACTICE PROBLEM 38-4 What is the probability of an energy state below the
Fermi energy being unoccupied at 300 K?

0.10 eV

300 K
0.10 eV

3. Use your result from step 2 to calculate the Fermi factor:

0.98�
1

0.021 � 1
�

f(E) �
1

e(E�EF)>(kT) � 1
�

1
e3.87 � 1

Try It Yourself

SOLVE

Find the probability that an energy state in copper below the Fermi energy is
occupied at 

PICTURE The probability is the Fermi factor given in Equation 38-46, with and

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

E � 6.93 eV.
EF � 7.03 eV

T � 300 K.
0.10 eV
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. The Structure of Solids Solids are often found in crystalline form in which a small structure, which is called the unit
cell, is repeated over and over. A crystal may have a face-centered-cubic, body-centered-
cubic, hexagonal close-packed, or other structure depending on the type of bonding between
the atoms, ions, or molecules in the crystal and on the relative sizes of the atoms.

Potential energy 38-3

where is the center-to-center separation distance between neighboring ions, is the Madelung
constant, which depends on the geometry of the crystal and is of the order of 1.8, and is
approximately 9.

2. A Microscopic Picture of Conduction

Resistivity 38-14

where is the average speed of the electrons and is their mean free path between colli-
sions with the lattice ions.

Mean free path 38-16

where is the number of lattice ions per unit volume, is their effective radius, and is
their effective cross-sectional area.

3. Classical Interpretation of vav and L is determined from the Maxwell–Boltzmann distribution, and is the actual radius of a
lattice ion. (This interpretation is not consistent with measured results.)

4. Quantum Interpretation of vav and L is determined from the Fermi–Dirac distribution and is approximately constant indepen-
dent of temperature. The mean free path is determined from the scattering of electron waves,
which occurs only because of deviations from a perfectly ordered array. The radius is the am-
plitude of vibration of the lattice ion, which is proportional to so is proportional to 

5. Free Electrons

Fermi energy at is the energy of the last filled (or half-filled) energy state.

at is the energy at which the probability of being occupied is 

Approximate magnitude of is between and for most metals.

Dependence of on the number 38-22a
density of free electrons

Average energy at 38-23

Fermi factor at The Fermi factor is the probability of a state being occupied.

38-24

Fermi temperature 38-25

Fermi speed 38-26uF � A2EF

me

TF �
EF

k

f(E) � e1 E 	 EF

0 E 
 EF

f(E)T � 0

Eav � 3
5EFT � 0

(N>V)
EF �

h2

8me

a 3N
pV
b 2>3

EF

10 eV5 eVEFEF

1
2.EFT 
 0EF

EFT � 0EF

T.A2T,
r

vav

rvav

Arnion

l �
vt

nionpr
2vt

�
1

nionpr
2 �

1
nionA

lvav

r �
mevav

nee
2l

n

ar

U � �a
ke2
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Contact potential When two different metals are placed in contact, electrons flow from the metal with the
higher Fermi energy to the metal with the lower Fermi energy until the Fermi energies of the
two metals are equal. In equilibrium, there is a potential difference between the metals that
is equal to the difference in the work function of the two metals divided by the electronic
charge 

38-27

Specific heat due to conduction electrons 38-29

6. Band Theory of Solids When many atoms are brought together to form a solid, the individual energy levels are split
into bands of allowed energies. The splitting depends on the type of bonding and the lattice
separation. The highest energy band that contains electrons is called the valence band.
(The lowest energy band that is not filled with electrons is called the conduction band.) In a
conductor, the valence band is only partially filled, so there are many available empty energy
states for excited electrons. In an insulator, the valence band is completely filled and there is
a large energy gap between it and the next allowed band, the conduction band. In a semi-
conductor, the energy gap between the filled valence band and the empty conduction band
is small; so, at ordinary temperatures, an appreciable number of electrons are thermally ex-
cited into the conduction band.

7. Semiconductors The conductivity of a semiconductor can be greatly increased by doping. In an 
semiconductor, the doping adds electrons at energies just below that of the conduction band.
In a semiconductor, holes are added at energies just above that of the valence band.

8. *Semiconductor Junctions and Devices

* Junctions Semiconductor devices such as diodes and transistors make use of semiconductors
and semiconductors. The two types of semiconductors are typically a single silicon
crystal doped with donor impurities on one side and acceptor impurities on the other side.
The region in which the semiconductor changes from a semiconductor to an 
semiconductor is called a junction. Junctions are used in diodes, solar cells, surface barrier
detectors, LEDs, and transistors.

*Diodes A diode is a single-junction device that carries current in one direction only.

*Zener diodes A Zener diode is a diode with a very high reverse bias. It breaks down suddenly at a distinct
voltage and can therefore be used as a voltage reference standard.

*Tunnel diodes A tunnel diode is a diode that is heavily doped so that electrons tunnel through the depletion
barrier. At normal operation, a small change in bias voltage results in a large change in current.

*Transistors A transistor consists of a very thin semiconductor of one type sandwiched between two
semiconductors of the opposite type. Transistors are used in amplifiers because a small vari-
ation in the base current results in a large variation in the collector current.

9. Superconductivity In a superconductor, the resistance drops suddenly to zero below a critical temperature 
Superconductors with critical temperatures as high as have been discovered.

The BCS theory Superconductivity is described by a theory of quantum mechanics called the BCS theory in
which the free electrons form Cooper pairs. The energy needed to break up a Cooper pair is
called the superconducting energy gap When all the electrons are paired, individual elec-
trons cannot be scattered by a lattice ion, so the resistance is zero.

Tunneling When a normal conductor is separated from a superconductor by a thin layer of oxide, elec-
trons can tunnel through the energy barrier if the applied voltage across the layer is 
where is the energy needed to break up a Cooper pair. The energy gap can be determined
by a measurement of the tunneling current versus the applied voltage.

EgEg

Eg >(2e),
Eg.

138 K
Tc.

n-typep-type

p-type
n-typepn

p-type

n-type

c œ
V � 1

2p
2R
T
TF

Vcontact �
f1 � f2

e

e:

TOPIC RELEVANT EQUATIONS AND REMARKS
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TOPIC RELEVANT EQUATIONS AND REMARKS

Josephson junction A system of two superconductors separated by a thin layer of nonconducting material is
called a Josephson junction.

dc Josephson effect A dc current is observed to tunnel through a Josephson junction even in the absence of volt-
age across the junction.

ac Josephson effect When a dc voltage is applied across a Josephson junction, an ac current is observed with
a frequency

38-39

Measurement of the frequency of this current allows a precise determination of the ratio 

10. The Fermi–Dirac Distribution The number of electrons with energies between and is given by

38-40

where is the density of states and is the Fermi factor.

Density of states 38-41

Fermi factor at 38-46f(E) �
1

e(E�EF)>(kT) � 1
T 
 0

g(E) �
822pm3>2

e V

h3 E1>2
f(E)g(E)

n(E) dE � f(E) g(E) dE

E � dEE

e>h.f �
2e
h
V

V

Answers to Practice Problems

38-1

38-2 5.53 eV

EF � 9.40 eV

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • In the classical model of conduction, the electron loses
energy on average during a collision because it loses the drift ve-
locity it had acquired since the last collision. Where does this en-
ergy appear?

2 • A metal is a good conductor because the valence energy
band for electrons is (a) empty, (b) partly filled, (c) filled, but there
is only a small gap to a higher empty band, (d) completely filled,
(e) none of the above.

3 • Thomas refuses to believe that a potential difference can
be created simply by bringing two different metals into contact
with each other. John talks him into making a small wager and is
about to win the bet. (a) Which two metals from Table 38-2 would
demonstrate his point most effectively? (b) What is the value of that
contact potential?

4 • (a) In Problem 3, which choices of different metals would
make the least impressive demonstration? (b) What is the value of
that contact potential?

5 • When a sample of pure copper is cooled from to
its resistivity decreases more than the resistivity of a sample of

brass when it is cooled through the same temperature difference.
Why?

6 • Insulators are poor conductors of electricity because
(a) there is a small energy gap between the filled valence band and
the next higher band where electrons can exist, (b) there is a large
energy gap between the completely filled valence band and the next
higher band where electrons can exist, (c) the valence band has a
few vacancies for electrons, (d) the valence band is only partly filled,
(e) none of the above.

7 • How does the sign of the change in the resistivity of a
sample of copper compare with the sign of the change in the resis-
tivity of a sample of silicon when the temperatures of both samples
increase?

8 • True or false:
(a) Solids that are good electrical conductors are usually good heat

conductors.
(b) At an intrinsic semiconductor is an insulator.T � 0,

SSM

SSM

4 K,
300 K

38-3

38-4 One minus the probability of the energy state being
occupied. That is, or 2 percent.1 � 0.98 � 0.02

2 � 10�13 electrons>atom
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(c) The Fermi energy is the average energy of an electron in a solid.
(d) At the value of the Fermi factor can be either 1 or 0.
(e) Semiconductors conduct current in one direction only.
(f) The classical free-electron theory adequately explains the heat

capacity of metals.
(g) The contact potential between two metals is proportional to the

difference in the work functions of the two metals.

9 • Which of the following elements are most likely to act as
acceptor impurities in germanium? (a) bromine, (b) gallium, (c) sil-
icon, (d) phosphorus, (e) magnesium

10 • Which of the following elements are most likely to serve
as donor impurities in germanium? (a) bromine, (b) gallium, (c) sil-
icon, (d) phosphorus, (e) magnesium

11 • An electron hole is created when a photon is absorbed by
a semiconductor. How does this hole enable the semiconductor to
conduct electricity?

12 • Examine the positions of phosphorus, boron, thallium, and
antimony in Table 36-1. (a) Which of these elements can be used to
dope silicon to create an semiconductor? (b) Which of these el-
ements can be used to dope silicon to create a semiconductor?

13 • When photons of visible light strike the semicon-
ductor in a junction solar cell, (a) only free electrons are created,
(b) only positive holes are created, (c) both electrons and holes are
created, (d) protons are created, (e) none of the above.

ESTIMATION AND APPROXIMATION

14 • The ratio of the resistivity of the most resistive (least con-
ductive) material to that of the least resistive material (excluding su-
perconductors) is approximately You can develop a feeling for
how remarkable this range is by considering what the ratio is of the
largest values to smallest values of other material properties. Choose
any three properties of materials, and using tables in this book or
some other resource, calculate the ratio of the largest instance of the
property to the smallest instance of that property (other than zero)
and rank these in decreasing order. Can you find any other property
that shows a range as large as that of electrical resistivity?

15 • A device is said to be “ohmic” if a graph of current
versus applied voltage is a straight line through the origin. The re-
sistance of the device is the reciprocal of the slope of this line.
A junction is an example of a nonohmic device, as may be seen
from Figure 38-21. For nonohmic devices, it is sometimes con-
venient to define the differential resistance as the reciprocal of the
slope of the versus curve. Using the curve in Figure 38-21,
estimate the differential resistance of the junction at applied
voltages of and 

THE STRUCTURE OF SOLIDS

16 • Calculate the center-to-center separation distance be-
tween the and the in Do this by assuming that
each ion occupies a cubic volume of side The molar mass of 
is and its density is 

17 • The center-to-center separation distance between the 
and in is Use that value and the molar mass
of to compute the density of 

18 • Find the value of in Equation 38-6 that gives the mea-
sured dissociation energy of for which has the
same structure as and for which 

19 •• (a) Use Equation 38-6 and calculate for calcium
oxide, where Assume (b) If increases
from 8 to 10, what is the fractional change in U(r0)?

nn � 8.r0 � 0.208 nm.CaO,
U(r0)

r0 � 0.257 nm.NaCl
LiCl,741 kJ>mol

n

LiCl.LiCl (42.4 g>mol)
0.257 nm.LiClCl� ions

Li�

1.984 g>cm3.74.55 g>mol
KClr0.

KCl.Cl� ionsK�

r0

�0.8 V.�0.6 V,�0.4 V,�0.2 V,�20 V,
pn

VI

pn
R

1024.

pn
p-type

p-type
n-type

T � 0,
A MICROSCOPIC PICTURE OF
CONDUCTION

20 • A measure of the density of the free electrons in a metal
is the distance which is defined as the radius of the sphere whose
volume equals the volume per conduction electron. (a) Show that

where is the free-electron number density.
(b) Calculate for copper in nanometers.

21 • (a) Given a mean free path and a mean
speed for the charge flow in copper at a tem-
perature of calculate the classical value for the resistivity of
copper. (b) The classical model suggests that the mean free path is
temperature independent and that depends on temperature.
According to this model, what would be at 

FREE ELECTRONS IN A SOLID

22 •• Silicon has a molar mass of and a density of
Each atom of silicon has four valence electrons

and the Fermi energy of the material is (a) Given that the
electron mean free path at room temperature is esti-
mate the resistivity. (b) The accepted value for the resistivity of sili-
con is (at room temperature). How does this accepted
value compare to the value calculated in Part (a) ?

23 • Calculate the number density of free electrons in
(a) and (b) assuming one
free electron per atom, and compare your results with the values
listed in Table 38-1.

24 • The density of aluminum is How many free
electrons are present per aluminum atom?

25 • The density of tin is How many free electrons
are present per tin atom?

26 • Calculate the Fermi temperature for (a) (b) and
(c)

27 • What is the speed of a conduction electron whose energy
is equal to the Fermi energy for (a) (b) and (c)

28 • Calculate the Fermi energy for (a) (b) and (c)
using the number densities given in Table 38-1.

29 • Find the average energy of the conduction electrons at
in (a) copper and (b) lithium.

30 • Calculate (a) the Fermi temperature and (b) the Fermi en-
ergy at for iron.

31 •• (a) Assuming that each gold atom in a sample of gold
metal contributes one free electron, calculate the free-electron den-
sity in gold knowing that its atomic mass is and its
density is (b) If the Fermi speed for gold is

what is the Fermi energy in electron volts? (c) By
what factor is the Fermi energy higher than the energy at room
temperature? (d) Explain the difference between the Fermi energy
and the energy.

32 •• The bulk modulus B of a material can be defined by
(a) Use the monatomic ideal-gas relation

where is the average kinetic energy, Equation 38-
22 and Equation 38-23 to show that where 
is a constant independent of (b) Show that the bulk modulus of
the free electrons in a solid metal is therefore 
(c) Compute the bulk modulus in newtons per square meter for the
free electrons in a sample of copper and compare your result with
the measured value of 

33 •• The pressure of a monatomic ideal gas is related to the
average kinetic energy of the gas particles by where 
is the number of particles and is the average kinetic energy. UseEav

nPV � 2
3NEav,

140 � 109 N>m2.

B � 5
3P � 2

3NEF>V.
V.

CP � 2
5NEF>V � CV�5>3,EavPV � 2

3NEav,
B � �V�P>�V

SSMkT

kT
1.39 � 106 m>s,

19.3 � 103 kg>m3.
196.97 g>mol

T � 0

T � 0

SnK,Al,

Sn?Au,Na,EF

Zn.
Mn,Mg,

7.3 g>cm3.

2.7 g>cm3.

Au (r � 19.3 g>cm3),Ag (r � 10.5 g>cm3)

640 Æ # m

l � 27.0 nm,
4.88 eV.

2.41 � 103 kg>m3.
28.09 g>mol

100 K?r

vav

r300 K,
vav � 1.17 � 105 m>s l � 0.400 nm

rs

nrs � [3>(4pn)]1>3,
rs,
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this information to calculate the pressure of the free electrons in a
sample of copper in newtons per square meter, and compare your
result with atmospheric pressure, which is about (Note:
The units are most easily handled by using the conversion factors

and )
34 • Calculate the contact potential between (a) and 
(b) and and (c) and 

HEAT CAPACITY DUE 
TO ELECTRONS IN A METAL

35 •• Gold has a Fermi energy of Determine the molar
specific heat at constant volume for gold at room temperature.

QUANTUM THEORY OF
ELECTRICAL CONDUCTION

36 • The resistivities and Fermi speeds of and at
are and and

and respectively.
Use those values to find the mean free paths for the conduction
electrons in these elements.
37 •• The resistivity of pure copper increases by approximately

with the addition of 1.0 percent (by number of
atoms) of an impurity distributed throughout the metal. The mean
free path depends on both the impurity and the oscillations of the
lattice ions according to the equation where 
is the mean free path associated with the thermal vibrations of the
ions and is the mean free path associated with the impurities.
(a) Estimate using Equation 38-14 and the data given in Table 38-1.
(b) If is the effective radius of an impurity lattice ion seen by an
electron, the scattering cross section is Estimate this area, using
the fact that is related to by Equation 38-16.

BAND THEORY OF SOLIDS

38 • Electromagnetic radiation is incident on the surface of a
semiconductor. The maximum wavelength of this light that is re-
quired if electrons are to cross the energy gap between the valence
band and the conduction band is 380.0 nm. What is the energy gap,
in electron volts, for the semiconductor?

39 • An electron occupies the highest energy level of the
valence band in a silicon sample. What is the maximum photon
wavelength that will excite the electron across the energy gap if
the gap is 
40 • An electron occupies the highest energy level of the
valence band in a germanium sample. What is the maximum
photon wavelength that will excite the electron into the conduc-
tion band? In germanium, the energy gap between the valence
and conduction bands is 

41 • An electron occupies the highest energy level of the va-
lence band in a diamond sample. What is the maximum photon
wavelength that will excite the electron into the conduction band?
In diamond, the energy gap between the valence and conduction
bands is 
42 •• A photon of wavelength has just enough energy
to raise an electron from the valence band to the conduction band
in a lead sulfide sample. (a) Find the energy gap between the
bands in lead sulfide. (b) Find the temperature for which 
equals that energy gap.

kTT

3.35 mm
7.0 eV.

0.74 eV.

SSM1.14 eV?

SSMlir
pr2.

r
li

li

lt1>l � 1>lt � 1>li,
l

1.0 � 10�8 Æ # m

1.89 � 106 m>s,1.07 � 106 m>s, 1.39 � 106 m>s,
10.6 mÆ # cm,4.2 mÆ # cm, 2.04 mÆ # cm,T � 273 K

SnNa, Au,

SSM

5.53 eV.

Cu.CaNi,Ag
Cu,Ag

SSM1 eV � 1.602 � 10�19 J.1 N>m2 � 1 J>m3

105 N>m2.

SEMICONDUCTORS

43 • The donor energy levels in an semiconductor are
below the conduction band. Find the temperature for

which

44 •• When a thin slab of semiconducting material is illumi-
nated with monochromatic electromagnetic radiation, most of the
radiation is transmitted through the slab if the wavelength is
greater than For wavelengths less than most of
the incident radiation is absorbed. Determine the energy gap of the
semiconductor.

45 •• The relative binding of the extra electron in the arsenic
atom that replaces an atom in silicon or germanium can be under-
stood from a calculation of the first Bohr radius of the electron in
these materials. Four of arsenic’s valence electrons form covalent
bonds, so the fifth electron sees a center of attraction with a charge
of This model is a modified hydrogen atom. In the Bohr model
of the hydrogen atom, the electron moves in free space at a radius

given by (Equation 36-12). When an electron
moves in a crystal, we can approximate the effect of the other atoms
by replacing with and with an effective mass for the elec-
tron. For silicon, is 12 and the effective mass is approximately

For germanium, is 16 and the effective mass is approxi-
mately Estimate the Bohr radii for the valence electron as it
orbits the impurity arsenic atom in silicon and in germanium.

46 •• The ground-state energy of the hydrogen atom is given
by (Equations 36-15 and 36-16 where is
substituted for Modify this equation using information in Pro-
blem 45 by replacing with and with an effective mass for
the electron to estimate the binding energy of the extra electron of an
impurity arsenic atom in (a) silicon and (b) germanium.

47 •• A doped silicon sample has electrons
per cubic centimeter in the conduction band and has a resistivity of

at Find the mean free path of the electrons.
Use the effective mass of for the mass of the electrons. (See
Problem 45.) Compare this mean free path with that of conduction
electrons in copper at 

48 ••• In the Hall effect, the Hall coefficient is the proportion-
ality constant between the transverse electric field and the product of
the applied magnetic field and the current density. That is,

where the current density, the transverse electric field,
and the applied magnetic field are in the , and directions,
respectively. (The Hall effect is presented in Chapter 26.) The mea-
sured Hall coefficient of a doped silicon sample is 
at room temperature. If all the doping impurities have contributed to
the total number of charge carriers of the sample, find (a) the type of
impurity (donor or acceptor) used to dope the sample and (b) the con-
centration of the impurities.

*SEMICONDUCTOR JUNCTIONS 
AND DEVICES

49 •• Simple theory for the current versus the bias voltage
across a junction yields the equation Sketch 
versus for both positive and negative values of using that
equation.

50 • The base current in an transistor circuit is 
If 88.0 percent of the electrons entering the base from the emitter
reach the collector, what is the base current?

51 •• In Figure 38-28 for the amplifier, suppose
and Suppose further that a ac

base current generates a ac collector current . What is
the voltage gain of the amplifier? SSM

ic0.500-mAib

10.0-mARL � 10.0 kÆ.Rb � 2.00 kÆ
npn-transistor

25.0 mA.npn

VbVb

II � I0(e
eVb>kT � 1).pn

0.0400 V # m>(A # T)

�z�x, �y
Ey � RHBzJx,

RH

300 K.

0.2me

300 K.5.00 � 1023 Æ # m

1.00 � 1016n-type

mekP0P0

k�1).
4pP0E1 � �mee

4>(8P2
0h

2)

0.1me.
k0.2me.

k

mekP0P0

a0 � 4pP0U2>(mee
2)a0

�e.

1.85 mm,1.85 mm.

kT � 0.0100 eV.
0.0100 eV

n-type
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52 •• Germanium can be used to measure the energy of inci-
dent photons. Consider a gamma ray emitted from 
(a) Given that the band gap in germanium is how many
electron-hole pairs can be generated as this gamma ray travels
through germanium? (b) The number of pairs in Part (a) will have
statistical fluctuations given by What then is the energy
resolution of the detector in that photon energy region?
53 •• Make a sketch showing the valence and conduction band
edges and Fermi energy of a diode when biased (a) in the
forward direction and (b) in the reverse direction.
54 •• A good silicon diode has the current-voltage characteris-
tic given by Let (room tempera-
ture) and the saturation current (a) Show that for small
reverse-bias voltages, the resistance is Hint: Do a Taylor-
series expansion of the exponential function about or use the
expansion for found in Table M-4 of the Math Tutorial. (b) Find the dc
resistance for a reverse bias of (c) Find the resistance for
a forward bias. What is the current in this case? (d) Calculate
the differential resistance for a forward bias.
55 •• A long slab of silicon of thickness and width

is placed in a magnetic field The slab is in
the plane, where the length of the slab is parallel with the axis
and the magnetic field points in the direction. When a current of
0.20 A exists in the sample in the direction, a potential difference
of develops across the width of the sample and the electric
field in the sample points in the direction. Determine the semi-
conductor type and the concentration of charge carriers.
(The Hall effect is presented in Chapter 26.)

THE BCS THEORY

56 • (a) Use Equation 38-37 to calculate the superconducting
energy gap for tin, and compare your result with the measured
value of (b) Use the measured value to calculate the
minimum value of the wavelength of a photon that has sufficient
energy to break up Cooper pairs in lead at 
57 • (a) Use Equation 38-37 to calculate the superconducting
energy gap for lead, and compare your result with the measured
value of (b) Use the measured value to calculate the
minimum value of the wavelength of a photon that has sufficient
energy to break up Cooper pairs in tin at 

THE FERMI–DIRAC DISTRIBUTION

58 •• The number of electrons in the conduction band of an in-
sulator or intrinsic semiconductor is governed chiefly by the Fermi
factor. Because the valence band in these materials is nearly filled
and the conduction band is nearly empty, the Fermi energy is
generally midway between the top of the valence band and the bot-
tom of the conduction band; that is, it is at where is the band
gap between the two bands and the energy is measured from the
top of the valence band. (a) In silicon, Show that in this
case the Fermi factor for electrons at the bottom of the conduction
band is given by exp and evaluate this factor. Discuss the
significance of the result if there are valence electrons per cubic
centimeter and the probability of finding an electron in the conduc-
tion band is given by the Fermi factor. (b) Repeat the calculation in
Part (a) for an insulator with a band gap of 
59 •• Approximately how many energy states that have ener-
gies between and are available to electrons in a cube
of silver measuring on a side?
60 •• Show that at the expression for the Fermi factor
(Equation 38-24) is equal to 0.5.
61 •• (a) Using the equation (Equa-
tion 38-22a), calculate the Fermi energy for silver. (b) Determine the

EF � [h2>(8me)][3N>(pV)]2>3
E � EF ,

1.00 mm
2.20 eV2.00 eV

6.0 eV.
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(�Eg >2kT)

Eg � 1.0 eV.

EgEg>2,

EF

SSMT � 0.(Tc � 7.19 K)

2.73 � 10�3 eV.

T � 0.(Tc � 3.72 K)

6.00 � 10�4 eV.

(n or p)
�y

5.0 mV
�x

�z
xxy

B � 0.40 T.w � 1.0 cm
T � 1.0 mm

0.50-VdV>dI0.50-V
V>I0.50 V.

ex
Vb � 0,

25 MÆ.
I0 � 1.0 nA.
kT � 0.025 eVI � I0(e

eVb>kT � 1).

pn-junction

�1N.
N

0.72 eV,
137Cs.660-keV

average kinetic energy of a free electron and (c) find the Fermi
speed for silver.
62 •• What is the difference between the energies at which the
Fermi factor is 0.9 and 0.1 at in (a) copper, (b) potassium, and
(c) aluminum.
63 •• What is the probability that a conduction electron in sil-
ver will have a kinetic energy of at 
64 •• Show that (Equation 38-43) follows
from Equation 38-41 for and from Equation 38-22a for

65 •• Carry out the integration to

show that the average energy at is 
66 •• The density of the electron states in a metal can be writ-
ten where is a constant and is measured from the
bottom of the conduction band. (a) Show that the total number of
states is (b) Approximately what fraction of the conduction
electrons are within of the Fermi energy? (c) Evaluate that frac-
tion for copper at 
67 •• What is the probability that a conduction electron in sil-
ver will have a kinetic energy of at 
68 •• Using the expression 
(Equation 38-41) for the density of states, estimate the fraction of
the conduction electrons in copper that can absorb energy from col-
lisions with the vibrating lattice ions at (a) and (b)
69 •• In an intrinsic semiconductor, the Fermi energy is about
midway between the top of the valence band and the bottom of the
conduction band. In germanium, the forbidden energy band has a
width of Show that at room temperature the distribution
function of electrons in the conduction band is given by the
Maxwell–Boltzmann distribution function.
70 ••• The root-mean-square (rms) value of a variable is ob-
tained by calculating the average value of the square of that
variable and then taking the square root of the result. Use that pro-
cedure to determine the rms energy of a Fermi distribution. Express
your result in terms of and compare it to the average energy.
Why do and differ?

GENERAL PROBLEMS

71 • The density of potassium is How many free
electrons are there per potassium atom in a crystal of potassium?
72 • Calculate the number density of free electrons for
(a) magnesium, which has a density of and (b) zinc,
which has a density of For the calculations assume there
are two free electrons per atom, and compare your results with the
values listed in Table 38-1.
73 •• Estimate the fraction of free electrons in copper that are
in energy states above the Fermi energy at (a) (about room
temperature) and (b)
74 •• A certain free-electron energy state of manganese has a
10.0 percent chance of being occupied when the temperature of the
manganese is What is the energy of the state?
75 •• The semiconducting compound CdSe is widely used for
light-emitting diodes (LEDs). The energy gap in CdSe is What
is the frequency of the light emitted by a CdSe LED?
76 ••• A wafer of pure silicon is irradiated with elec-
tromagnetic radiation having a wavelength of The inten-
sity of the radiation is and every photon that strikes the
sample is absorbed and creates an electron-hole pair. (a) How many
electron-hole pairs are produced in one second? (b) If the number of
electron-hole pairs in the sample is in the steady state,
at what rate do the electron-hole pairs recombine? (c) If every re-
combination event results in the radiation of one photon, at what
rate is energy radiated by the sample? 

6.25 � 1011

4.00 W>m2
775 nm.

2.00-cm2

1.80 eV.

T � 1300 K.

1000 K.
300 K

7.14 g>cm3.
1.74 g>cm3,

0.851 g>cm3.

ErmsEav

EF

0.70 eV.

300 K.77 K

g(E) � (822pm3>2
e V>h3)E1>2T � 300 K?5.49 eV

T � 300 K.
kT

2
3AE

3>2
F .

EAg(E) � AE1>2,
3
5EF.T � 0

Eav � (1>N)�
EF

0
Eg(E)dE

EF.g(E),
g(E) � 3

2NEF
�3>2E1>2 SSMT � 300 K?4.90 eV
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T
he theory of relativity consists of two rather different theories, the special
theory and the general theory. The special theory, developed by Albert
Einstein and others in 1905, describes measurements made in different iner-
tial reference frames moving with constant velocity relative to one another.
Its consequences, which can be derived with a minimum of mathematics,
are applicable in a wide variety of situations encountered in physics and in

engineering. On the other hand, the general theory, also developed by Einstein and
others around 1916, describes accelerated reference frames and gravity. A thorough
understanding of the general theory requires sophisticated mathematics, and the
applications of the theory are mainly in the area of gravitation. The general theory
is of great importance in cosmology, but it is rarely encountered in other areas of
physics or in engineering. The general theory is applied, however, in the engineer-
ing of the Global Positioning System (GPS).*

C H A P T E R

Have you wondered how the

frequency of the light enables us to

determine the speed of recession of

a distant galaxy? (See Example 39-5.)

?

1319

THE ANDROMEDA GALAXY BY
MEASURING THE FREQUENCY OF
THE LIGHT COMING TO US FROM
DISTANT OBJECTS, WE ARE ABLE TO
DETERMINE HOW FAST THE OBJECTS
ARE APPROACHING TOWARD US OR
RECEDING FROM US. (NASA.)

39

* The satellites used in GPS contain atomic clocks.
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* Reference frames were first discussed in Section 3-1. Inertial reference frames were also discussed in Section 4-1.

In this chapter, we concentrate on the special theory (often referred to as
special relativity). General relativity theory (general relativity) will be dis-
cussed briefly near the end of the chapter. Special relativity is first presented
in Chapter R (which precedes Chapter 11). You should consider reviewing the
material in Chapter R before proceeding in this chapter.

39-1 NEWTONIAN RELATIVITY

Newton’s first law does not distinguish between a particle at rest and a particle
moving with constant velocity. If there is no net external force acting, the particle
will remain in its initial state, either at rest or moving with its initial velocity.
A particle at rest relative to you is moving with constant velocity relative to
an observer who is moving with constant velocity relative to you. How
might we distinguish whether you and the particle are at rest and the sec-
ond observer is moving with constant velocity, or the second observer is at
rest and you and the particle are moving?

Let us consider some simple experiments. Suppose we have a
railway boxcar moving along a straight, flat track with a constant velocity 
(The velocity is a signed quantity, and the sign indicates the direction of
the motion of the boxcar along the track.) We note that a ball at rest in the
boxcar remains at rest relative to the car. If we drop the ball, it falls straight
down, relative to the boxcar, with an acceleration due to gravity. Of course,
when viewed from the reference frame of the track, the ball moves along a
parabolic path because it has an initial velocity to the right. No mechanics
experiment that we can do—measuring the period of a pendulum, observ-
ing the collisions between two objects, or whatever—will tell us whether
the boxcar is moving and the track is at rest or the track is moving and the
boxcar is at rest. If we have a coordinate system attached to the track and
another attached to the boxcar, Newton’s laws hold in either system.

A set of coordinate systems at rest relative to each other is called a reference frame.
A reference frame in which Newton’s laws hold is called an inertial reference frame.*
All reference frames moving at constant velocity relative to an inertial reference
frame are also inertial reference frames. If we have two inertial reference frames
moving with constant velocity relative to each other, there are no mechanics experi-
ments that can tell us which is at rest and which is moving or if they are both moving.
This result is known as the principle of Newtonian relativity:

v

g

v
v.

Absolute motion cannot be detected.

PRINCIPLE OF NEWTONIAN RELATIVITY

This principle was well known by Galileo, Newton, and others in the seventeenth
century. By the late nineteenth century, however, this view had changed. It was
then generally thought that Newtonian relativity was not valid and that absolute
motion could be detected in principle by a measurement of the speed of light.

ETHER AND THE SPEED OF LIGHT

We saw in Chapter 15 that the velocity of a wave depends on the properties of the
medium in which the wave travels and not on the velocity of the source of the
waves. For example, the velocity of sound relative to still air depends on the tem-
perature of the air. Light and other electromagnetic waves (for example, radio

The ringlike structure of the radio source
is thought to be due to

gravitational lensing, first proposed by
Albert Einstein in 1936, in which a source is
imaged into a ring by a large, massive object
in the foreground. (NRAO/AUI.)

MG1131 � 0456
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* Annalen der Physik, vol. 17, 1905, p. 841. For a translation from the original German, see W. Perrett and G. B. Jeffery
(trans.), The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity by H. A.
Lorentz, A. Einstein, H. Minkowski, and W. Weyl, Dover, New York, 1923.

† Einstein did not set out to explain the results of the Michelson–Morley experiment. His theory arose from his consid-
erations of the theory of electricity and magnetism and the unusual property of electromagnetic waves that they prop-
agate in a vacuum. In his first paper, which contains the complete theory of special relativity, he made only a passing
reference to the Michelson–Morley experiment, and in later years he could not recall whether he was aware of the de-
tails of the experiment before he published his theory.

waves and X rays) travel through a vacuum with a speed that
is predicted by James Clerk Maxwell’s equations for electricity and magnetism.
But what is this speed relative to? What is the equivalent of still air for a vacuum?
A proposed medium for the propagation of light was called the ether; it was
thought to pervade all space. The velocity of light relative to the ether was as-
sumed to be as predicted by Maxwell’s equations. The velocity of any object
relative to the ether was considered to be the absolute velocity of the object.

Albert Michelson, first in 1881 and then again with Edward Morley in 1887, set
out to measure the velocity of Earth relative to the ether by an ingenious experiment
in which the velocity of light relative to Earth was compared for two light beams,
one parallel to the direction of Earth’s motion relative to the Sun and the other per-
pendicular to the direction of Earth’s motion. Despite painstakingly careful mea-
surements, they could detect no difference. The experiment has since been repeated
under various conditions by a number of people, and no difference has ever been
found. The absolute motion of Earth relative to the ether cannot be detected.

39-2 EINSTEIN’S POSTULATES

In 1905, at the age of 26, Albert Einstein published a paper on the electrodynamics
of moving bodies.* In this paper, he postulated that absolute motion cannot be de-
tected by any experiment. That is, there is no ether. Earth can be considered to be
at rest and the velocity of light will be the same in any direction.† His theory of spe-
cial relativity can be derived from two postulates. Simply stated, these postulates
are as follows:

c,

c � 3.00 � 108 m>s

Postulate 1: Absolute uniform motion cannot be detected.

Postulate 2: The speed of light is independent of the motion of the source.

EINSTEIN’S POSTULATES

Postulate 1 is merely an extension of the Newtonian principle of relativity to include
all types of physical measurements (not just those measurements that are mechani-
cal). Postulate 2 describes a common property of many waves. For example, the
speed of sound waves does not depend on the motion of the sound source.
The sound waves from a car horn travel through the air with the same speed, rela-
tive to the air, independent of whether the car is moving relative to the air or not. The
speed of the waves depends only on the properties of the air, such as its temperature.

Although each postulate seems quite reasonable, many of the implications of the
two postulates together are quite surprising and contradict what is often called
common sense. For example, one important implication of these postulates is that
every observer measures the same value for the speed of light independent of the
relative motion of the source and the observer. Consider a light source and two
observers, at rest relative to and moving toward with speed as shown
in Figure 39-1a. The speed of light measured by is What is
the speed measured by The answer is not By postulate 1, Figure 39-1a
is equivalent to Figure 39-1b, in which is at rest and the source and areR1SR2

c � v.R2?
c � 3.00 � 108 m>s.R1

v,SR2SR1

S

R2
v

R1

S

R2

v

R1

S

v

(a)

(b)

F I G U R E  3 9 - 1 (a) A stationary light
source a stationary observer and a
second observer moving toward the source
with speed (b) In the reference frame in
which the observer is at rest, the light
source and observer move to the right
with speed If absolute motion cannot be
detected, the two views are equivalent.
Because the speed of light does not depend on
the motion of the source, observer 
measures the same value for that speed as
observer R1.

R2

v.
R1S

R2

v.
R2

R1,S,
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S’

y’

z’

x’O’

v

S

y

z

xO

(a)

(b)

F I G U R E  3 9 - 2 Coordinate reference
frames and moving with relative speed 
In each frame, there are observers who have
metersticks and clocks that are identical when
compared at rest.

v.S�S

Postulate 2 (alternate): Every observer measures the same value for the
speed of light.

c

This result contradicts our intuitive ideas about relative velocities. If a car
moves at away from an observer and another car moves at in the
same direction, the velocity of the second car relative to the first car is 
This result is easily measured and conforms to our intuition. However, according
to Einstein’s postulates, if a light beam is moving in the direction of the cars, ob-
servers in both cars will measure the same speed for the light beam. Our intuitive
ideas about the combination of velocities are approximations that hold only when
the speeds are very small compared with the speed of light. Even in an airplane
moving with the speed of sound, to measure the speed of light accurately enough
to distinguish the difference between the results and where is the speed
of the plane, would require a measurement with six-digit accuracy.

39-3 THE LORENTZ TRANSFORMATION

Einstein’s postulates have important consequences for measuring time intervals
and space intervals, as well as relative velocities. Throughout this chapter, we will
be comparing measurements of the positions and times of events (such as lightning
flashes) made by observers who are moving relative to each other. We will use a
rectangular coordinate system that has an origin and is called the reference
frame; we will use another system that has an origin is called the 
frame, and is moving with a constant velocity relative to the frame. Relative
to the frame, the frame is moving with a constant velocity For simplicity,
we will consider the frame to be moving along the axis in the direction rel-
ative to where the direction is the same as the direction. In each frame,
we will assume that there are as many observers as are needed who have measur-
ing devices, such as clocks and metersticks, that are identical when compared at
rest (see Figure 39-2).

We will use Einstein’s postulates to find the general relation between the coor-
dinates and and the time of an event as seen in reference frame and the
coordinates and and the time of the same event as seen in reference
frame which is moving with uniform velocity relative to For convenience,
we assume that the origins are coincident at time The classical relation,
called the Galilean transformation, is

39-1a

GALILEAN TRANSFORMATION

The inverse transformation is

39-1b

These equations are consistent with experimental observations as long as is much
less than They lead to the familiar classical rules for velocities. If a particle has
velocity in frame its velocity in frame is

39-2uœ
x �
dx�
dt�

�
dx�
dt

�
d
dt

(x � vt) � ux � v

S�S,ux � dx>dtc.
v

x� � x � vt, y� � y, z� � z, t� � t

x � x� � vt�, y � y�, z � z�, t � t�

t � t� � 0.
S.S�,

t�z�x�, y�,
Stzx, y,

�x�x�S,
�xxS�

�vS.SS�
SvS

S�O�,x�y�z�
SOxyz

vc � v,c

30 km>h.
80 km>h50 km>h

moving with speed That is, because absolute motion cannot be detected, it is not
possible to say which is really moving and which is at rest. By postulate 2, the speed
of light from a moving source is independent of the motion of the source. Thus, look-
ing at Figure 39-1b, we see that measures the speed of light to be just as does.
This result is often considered as an alternative to Einstein’s second postulate:

R1c,R2

v.
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If we differentiate this equation again, we find that the acceleration of the particle
is the same in both frames:

It should be clear that the Galilean transformation is not consistent with
Einstein’s postulates of special relativity. If light moves along the axis with speed

in these equations imply that the speed in is rather than
which is consistent with Einstein’s postulates and with experiment. The

classical transformation equations must therefore be modified to make them con-
sistent with Einstein’s postulates. We will give a brief outline of one method of ob-
taining the relativistic transformation.

We assume that the relativistic transformation equation for is the same as the
classical equation (Equation 39-1a) except for a constant multiplier on the right
side. That is, we assume the equation is of the form

39-3

where is a constant that can depend on and but not on the coordinates. The
inverse transformation must look the same except for the plus sign:

39-4

Let us consider a light pulse that starts at the origin of at Because we have
assumed that the two origins are coincident at the pulse also starts at the
origin of at Einstein’s postulates require that the equation for the com-
ponent of the wave front of the light pulse is in frame and in frame

Substituting for and for in Equation 39-3 and Equation 39-4, we obtain

39-5
and

39-6

We divide both sides of Equations 39-5 and 39-6 by and then eliminate the ratio 
from the two equations and determine Thus,

39-7

(Note that is always greater than 1, and when is much less than The
relativistic transformation for and is therefore given by Equation 39-3 and
Equation 39-4, where is given by Equation 39-7. We can obtain equations for 
and by combining Equation 39-3 with the inverse transformation given by
Equation 39-4. Substituting for in Equation 39-4, we obtain

39-8

which can be solved for in terms of and The complete relativistic trans-
formation is

t�.x�t

x� � g[g(x� � vt�) � vt]

xx � g(x� � vt�)
t�

tg

x�x
c, g � 1.)vg

g �
1

41 � (v2>c2)

g.
t�>tt,

ct� � g(c � v)t

ct � g(c � v)t�

x�ct�xctS�.
x� � ct�Sx � ct

xt� � 0.S�
t � t� � 0,

t � 0.S

x� � g(x � vt)

cvg

x � g(x� � vt�)

x

ux � c,
ux � c � vS�S�,uœ

x � c
x

ax �
dux
dt

�
duœ
x

dt�
� a œ

x

39-9

39-10

LORENTZ TRANSFORMATION

t � ga t� �
vx�
c2 b

x � g(x� � vt�), y � y�, z � z�

The inverse transformation is

39-11

39-12t� � ga t �
vx
c2 b

x� � g(x � vt), y� � y, z� � z
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The transformation described by Equations 39-9 through 39-12 is called the
Lorentz transformation. It relates the space and time coordinates and of
an event in frame to the coordinates and of the same event as seen in
frame which is moving along the axis with speed relative to frame 

We will now look at some applications of the Lorentz transformation.

TIME DILATION

Consider two events, one that occurs on the axis at point at time in frame
and another that occurs on the axis at point at time in frame (Both

events occur at point in ) We can find the times and for the events in 
from Equation 39-10. We have

and

so

The time between two events that happen at the same place in a reference frame is
called proper time between the events. In this case, the time interval 
measured in frame is proper time. The time interval measured in any other
reference frame is always longer than the proper time. This expansion is called
time dilation:

¢tS�
tœ2 � tœ1≤tp

t2 � t1 � g(tœ2 � tœ1)

t2 � ga tœ2 �
vx œ

0

c2 b
t1 � ga tœ1 �

vx œ
0

c2 b
St2t1S�.x œ

0

S�.tœ2x œ
0x�S�

tœ1x œ
0x�

S.vxS�,
t�x�, y�, z�,S

tx, y, z,

39-13

TIME DILATION

¢t � g ¢tp

Example 39-1 Spatial Separation and Temporal Separation of Two Events

(a) 1. The position in is given by Equation 39-9 with xœ
1 � xœ

0:Sx1 x1 � g(xœ
0 � vtœ1)

2. Similarly, the position in is given by:Sx2 x2 � g(xœ
0 � vtœ2)

3. Subtract to find the spatial separation:  
v(tœ2 � tœ1)

41 � (v2>c2)
¢x � x2 � x1 � gv(tœ2 � tœ1) �

(b) Using the time dilation formula, relate the two time intervals.
The two events occur at the same place in so the proper time
between the two events is ¢tp � tœ2 � tœ1:

S�,

(tœ2 � tœ1)

41 � (v2>c2)
¢t � t2 � t1 � g(tœ2 � tœ1) �

Two events occur at the same point at times and in frame which is traveling in the
direction at speed relative to frame (a) What is the spatial separation of the events in

frame (b) What is the temporal separation of the events in frame 

PICTURE The spatial separation in is where and are the coordinates of the
events in which are found using Equation 39-9.

SOLVE

S,
x1x2x2 � x1,S

S?S?
S.v�x

S�,tœ2tœ1xœ
0
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S’
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x’
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Mirror

x’1

S

y

x

A’

Mirror

x1

A’ A’

x2

v

Δt
2

c

Δt
2

v

D

(a) (b) (c)

F I G U R E  3 9 - 3 (a) Observer and the
mirror are in a spaceship at rest in frame 
The time it takes for the light pulse to reach
the mirror and return is measured by to be

(b) In frame the spaceship is moving
to the right with speed If the speed of light
is the same in both frames, the time it takes for
the light to reach the mirror and return is
longer than in because the distance
traveled is greater than (c) A right triangle
for computing the time in frame S.¢t

2D.
S2D>c
v.

S,2D>c. A�

S�.
A�We can understand time dilation directly from Einstein’s postulates without using

the Lorentz transformation. Figure 39-3a shows an observer a distance from
a mirror. The observer and the mirror are in a spaceship that is at rest in frame 
The observer explodes a flash gun and measures the time interval between the
original flash (Event 1) and his seeing the return flash from the mirror (Event 2).
Because light travels with speed this time is

We now consider the same two events, the original flash of light and the re-
ceiving of the return flash, as observed in reference frame in which observer 
and the mirror are moving to the right with speed as shown in Figure 39-3b.
Events 1 and 2 happen at positions and , respectively, in frame During the
time interval (as measured in ) between the original flash and the return flash,
observer and his spaceship have moved to the right a distance In Figure
39-3, we can see that the path traveled by the light is longer in than in 
However, by Einstein’s postulates, light travels with the same speed in frame 
as it does in frame Because light travels farther in at the same speed, it takes
longer in to reach the mirror and return. The time interval in is thus longer than
it is in From the triangle in Figure 39-3c, we have

or

Using we obtain

¢t �
¢t�

41 � (v2>c2)
� g ¢t�

¢t� � 2D>c,
¢t �

2D

2c2 � v2
�

2D
c

1

41 � (v2>c2)

a c ¢t
2
b 2

� D2 � a v ¢t
2
b 2

S�.
SS

SS�.
Sc
S�.S

v ¢t.A�

S¢t
S.x2x1

v,
A�S,

¢t� �
2D
c

c,

¢t�
S�.

DA�

CHECK Taking the limits of the Part-(a) and Part-(b) results as approaches infinity gives
and respectively. Combining these expressions gives 

This is just the classical (nonrelativistic) equation that displacement equals velocity multi-
plied by time that is developed in Chapter 2 for one-dimensional motion. In addition, the
equation is just the classical result that the length of the time between events is
the same in both reference frames.

TAKING IT FURTHER Dividing the Part-(a) result by the Part-(b) result gives 
The spatial separation of the two events in is the distance a fixed point, such as in 
moves in during the time interval between the events in S.S

S�,xœ
0S¢x

¢x>¢t � v.

¢t � tœ2 � tœ1

¢x � v¢t.¢t � tœ2 � tœ1,¢x � v(tœ2 � tœ1)
c
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LENGTH CONTRACTION

A phenomenon closely related to time dilation is length contraction. The length of
an object measured in the reference frame in which the object is at rest is called its
proper length In a reference frame in which the object is moving parallel to its
length, the measured length is shorter than its proper length. Consider a rod at rest
in frame with one end at and the other end at The length of the rod in this
frame is its proper length Some care must be taken to find the length
of the rod in frame In that frame, the rod is moving to the right with speed the
speed of frame The length of the rod in frame is defined as where

is the position of one end at some time and is the position of the other end
at the same time as measured in frame To calculate at some time 
we use Equation 39-11:

and

Because by subtracting the second equation from the first we obtain

x œ
2 � x œ

1 � g(x2 � x1)

t2 � t1,

x œ
1 � g(x1 � vt1)

x œ
2 � g(x2 � vt2)

tx2 � x1S.t1 � t2

x1t2,x2

L � x2 � x1,SS�.
v,S.

Lp � xœ
2 � xœ

1.
xœ

1.xœ
2S�

Lp.

Example 39-2 How Long Is a One-Hour Nap?

Astronauts in a spaceship traveling at relative to Earth sign off from space con-
trol, saying that they are going to nap for and then call back. How long does their nap
last as measured on Earth?

PICTURE Because the astronauts go to sleep (Event 1) and wake up (Event 2) at the same
place in the reference frame of the ship, the time interval for their nap of as measured
by a clock on the ship, is the proper time between the two events. In the reference frame of
Earth, they move a considerable distance during the time between the two events. The time
interval measured in Earth’s frame is measured using two clocks that are stationary relative
to Earth. Clock 1 is located at the position of Event 1 and measures the time of occurrence of
Event 1. Clock 2 is located at the position of Event 2 and measures the time of occurrence
of Event 2. The difference between the two times is longer than the proper time between the
two events by the factor 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

g.

1.00 h,

1.00 h
v � 0.600c

Steps Answers

1. Relate the time interval measured on Earth to the proper
time (Equation 39-13).¢tp

¢t ¢t � g ¢tp

2. Calculate for (Equation 39-7).v � 0.6cg g � 1.25

CHECK The time interval is longer in the reference frame in which the two events occur at
different locations as expected.

PRACTICE PROBLEM 39-1 If the spaceship is moving at how long would a
nap last as measured on Earth?1.00 h

v � 0.800c,

3. Substitute the value for to calculate the time of the nap in
Earth’s frame.

g 1.25 h¢t � g ¢tp �

Try It Yourself



An interesting example of time dilation or length contraction is
the generation of muons as secondary radiation from cosmic rays.
Muons decay according to the statistical law of radioactivity:

39-15

where is the number of muons at time is the num-
ber remaining at time and is the mean lifetime, which is
approximately for muons at rest. Because muons are gen-
erated (from the decay of pions) high in the atmosphere, usually
several thousand meters above sea level, few muons should reach sea level. A typ-
ical muon moving with speed would travel only about in 
However, the lifetime of the muon measured in Earth’s reference frame is
increased by the factor which is 15 for this particular speed.
The mean lifetime measured in Earth’s reference frame is therefore and a
muon with speed travels approximately during this time. From
the muon’s point of view, it exists for only but the atmosphere is rushing
past it with a speed of The distance of in Earth’s frame is thus
contracted to only in the muon’s frame, as indicated in Figure 39-4.660 m

10 000 m0.9978c.
2.2 ms,

10 000 m0.9978c
33 ms,

1>11 � (v2>c2),

2.2 ms.660 m0.9978c

2.2 ms
tt,

t � 0,N(t)N0

N(t) � N0e
�t>t
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Solving for gives

or

x2 � x1 �
1
g

(x œ
2 � x œ

1) � (x œ
2 � x œ

1)A1 �
v2

c2

x2 � x1

39-14

LENGTH CONTRACTION

L �
1
g
Lp � LpA1 �

v2

c2

Because is less than one, it follows that the length of the rod is smaller when it
is measured in a frame in which it is moving parallel to its length. Before Einstein’s
paper was published, Hendrik A. Lorentz and George F. FitzGerald tried to explain
the null result of the Michelson–Morley experiment by assuming that distances in
the direction of motion contracted by the amount given in Equation 39-14. This
length contraction is now known as the Lorentz–FitzGerald contraction.

1>g

10 000 m

Muon

v

(a) (b)

660 m

Muon v

F I G U R E  3 9 - 4 Although muons are
created high above Earth and their mean
lifetime is only about when at rest,
many appear at Earth’s surface. (a) In Earth’s
reference frame, a typical muon moving at

has a mean lifetime of and
travels during that time. (b) In the
reference frame of the muon, the distance
traveled by Earth is only in the muon’s
lifetime of 2.2 ms.

660 m

10000 m
33 ms0.9978c

2.2 ms

Example 39-3 The Length of a Moving Meterstick

A stick that has a proper length of moves in a direction parallel to its length with speed
relative to you. The length of the stick as measured by you is What is the speed 

PICTURE We can find directly from Equation 39-14.

SOLVE

v

v?0.914 m.v
1.00 m

1. Equation 39-14 relates the lengths and and the speed v:LpL L � LpA1 �
v2

c2

2. Solve for v: 0.406cv � cA1 �
L2

L2
p

� cA1 �
(0.914 m)2

(1.00 m)2 �

CHECK As expected, the speed is a significant fraction of c.
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It is easy to distinguish experimentally between the classical and relativistic
predictions of the observation of muons at sea level. Suppose that we observe 

muons at an altitude of during some time interval with a muon
detector. How many would we expect to observe at sea level during the same time
interval? According to the nonrelativistic prediction, the time it takes for the
muons to travel is which is 15 lifetimes.
Substituting and into Equation 39-15, we obtain

We would thus expect all but about 31 of the original 100 million muons to decay
before reaching sea level.

According to the relativistic prediction, Earth must travel only the contracted
distance of in the rest frame of the muon. This trip takes only 
Therefore, the number of muons expected at sea level is

Thus, relativity predicts that we would observe 37 million muons during the
same time interval. Experiments have confirmed the relativistic prediction of
37 million muons.

THE RELATIVISTIC DOPPLER EFFECT

For light or other electromagnetic waves in a vacuum, a distinction between the
motion of the source and the motion of the receiver cannot be made. Therefore,
the expressions we derived in Chapter 15 for the Doppler effect cannot be correct
for light. The reason it is not correct is that in Chapter 15 we assumed the time
intervals in the reference frames of the source and receiver to be the same.

Consider a source moving toward a receiver with speed relative to the receiver.
If the source emits electromagnetic-wave crests during a time (measured in the
frame of the receiver), the first crest will travel a distance and the source will
travel a distance measured in the frame of the receiver. The wavelength in this
reference frame will be

The frequency observed by the receiver will therefore be

If the frequency of the source in the reference frame of the source is it will emit
waves in the time measured by the source. Then

Here is the proper time interval (the first wave and the wave are emitted
at the same place in the reference frame of the source). Times and are
related by Equation 39-13 for time dilation:

Thus, when the source and the receiver are moving toward one another we obtain

39-16af� �
f0

1 � (v>c)41 � (v2>c2) � A1 � (v>c)
1 � (v>c) f0 approaching

¢tR � g ¢tS �
¢tS

41 � (v2>c2)

¢tR¢tS
Nth¢tS

f� �
1

1 � (v>c) N¢tR �
1

1 � (v>c) f0 ¢tS
¢tR

�
f0

1 � (v>c) ¢tS
¢tR

¢tSN � f0 ¢tS
f0,

f� �
c
l�

�
c

(c � v)
N

¢tR
�

1
1 � (v>c) N¢tR

f�

l� �
c ¢tR � v ¢tR

N

v ¢tR
c ¢tR

¢tRN
v,

N � N0e
�t>t � 1.0 � 108e�1 � 37 � 106

2.2 ms � 1t.660 m

N � N0e
�t>t � 1.0 � 108e�15 � 31

t � 15tN0 � 1.0 � 108
(10 000 m)>(0.998c) � 33 ms,10 000 m

10 000 m108

See

Math Tutorial for more

information on the

The Exponential Function
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This differs from our classical equation only in the time-dilation factor. It is left as
a problem (Problem 25) for you to show that the same results are obtained if the
calculations are done in the reference frame of the receiver.

When the source and the receiver are moving away from one another, the same
analysis shows that the observed frequency is given by

39-16b

An application of the relativistic Doppler effect is the redshift observed in the
light from distant galaxies. Because the galaxies are moving away from us, the light
they emit is shifted toward the longer wavelengths. (Because light that has the
longest visible wavelengths appears red, this is referred to as a redshift.) The speed
of the galaxies relative to us can be determined by measuring this shift.

f� �
f0

1 � (v>c)41 � (v>c2) � A1 � (v>c)
1 � (v>c) f0 receding

Example 39-4 Red Light/Green Light

You are spending the day shadowing two police officers. You have just witnessed the offi-
cers pulling over a car that went through a red light. The driver claims that the red light
looked green because the car was moving toward the stoplight, which shifted the wave-
length of the observed light. You quickly do some calculations to see if the driver has a rea-
sonable case.

PICTURE We can use the Doppler shift formula for approaching objects in Equation 39-16a.
This will tell us the velocity, but we need to know the frequencies of the light. We can make
good guesses for the wavelengths of red light and green light and use to determine
the frequencies.

SOLVE

c � fl

1. The observer is approaching the light source, so we use
the Doppler formula (Equation 39-16a) for approaching
sources:

f� � A1 � (v>c)
1 � (v>c) f0

2. Substitute for then simplify:f,c>l
al0

l�
b 2

�
1 � (v>c)
1 � (v>c)

c
l�

� A1 � (v>c)
1 � (v>c) cl0

3. Cross multiply and solve for v>c:
v
c

�
(l0)

2 � (l�)2

(l0)
2 � (l�)2 �

1 � (l�>l0)
2

1 � (l�>l0)
2

 (l0)
2 � (l�)2 � C (l0)

2 � (l�)2 D a v
c
b

 (l0)
2 a1 �

v
c
b � (l�)2 a1 �

v
c
b

4. The values for the wavelengths for the colors of the
visible spectrum can be found in Table 30-1. The
wavelengths for red are or longer, and the
wavelengths for green are or shorter. Solve for
the speed needed to shift the wavelength from 
to 530 nm:

625 nm
530 nm

625 nm

v � 0.163c � 4.90 � 107 m>s � 1.10 � 108 mi>h
v
c

�
1 � 0.8482

1 � 0.8482 � 0.163

l�

l0

�
530 nm
625 nm

� 0.848

CHECK A car cannot travel at relativistic speeds, so the answer to this problem was obvious.

5. This speed is beyond any possible speed for a car:  The driver does not have a plausible case.
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* This is true unless the x coordinates of the two events are equal, where the x axis is parallel to the relative velocity of
the two frames.

Example 39-5 Finding Speed from the Doppler Shift

The emission spectrum of hydrogen includes a line that has the wavelength In
light reaching us from a distant galaxy, the wavelength of that spectral line is measured to
be Find the speed at which the distant galaxy is receding from Earth.

PICTURE Wavelength is related to frequency by and the received frequency is
related to the unshifted frequency by the Doppler shift equation for a receding source
(Equation 39-16b).

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

c � fl

l� � 1458 nm.

l0 � 656 nm.

Steps Answers

1. Use Equation 39-16b to relate the speed to the received frequency
and the unshifted frequency f0.f�

v f� � A1 � (v>c)
1 � (v>c) f0

2. Substitute and and solve for v>c.f0 � c>l0f� � c>l�
0.664cv �

v
c

�
1 � (l0>l�)2

1 � (l0>l�)2 � 0.664

CHECK As expected, the result is a significant fraction of This result is expected because
the wavelength of the received light is large in comparison to the wavelength of the same
spectral line in the reference frame of the source.

c.

Try It Yourself

Two clocks that are synchronized in one reference frame are typically not
synchronized in any other frame moving relative to the first frame.

SYNCHRONIZED CLOCKS

Here is a corollary to this result:

Two events that are simultaneous in one reference frame typically are not
simultaneous in another frame that is moving relative to the first.*

SIMULTANEOUS EVENTS

39-4 CLOCK SYNCHRONIZATION
AND SIMULTANEITY

We saw in Section 39-3 that proper time is the time interval between two events that
occur at the same point in some reference frame. It can therefore be measured on a
single clock. (Remember, in each frame there is, in principle, a stationary clock at
each point in space, and the time of an event in a given frame is measured by the
clock at that point.) However, in another reference frame moving relative to the first,
the same two events occur at different places, so two stationary clocks are needed
in this reference frame to record the times. The time of each event is measured on a
different clock, and the interval is found by subtraction of the measured times. This
procedure requires that the clocks be synchronized. We will show in this section that
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Comprehension of these facts usually resolves all relativity paradoxes.
Unfortunately, the intuitive (and incorrect) belief that simultaneity is an absolute
relation is difficult to overcome.

Suppose we have two clocks at rest, one at point and the other at point 
where points and are a distance apart in frame How can we synchronize
the two clocks? If an observer at looks at the clock at and sets her clock to read
the same time, the clocks will not be synchronized because of the time it takes
light to travel from one clock to another. To synchronize the clocks, the observer at

must set her clock ahead by the time Then she will see that the clock at 
reads a time that is behind the time on her clock, but she will calculate that the
clocks are synchronized when she allows for the time for the light to reach her.
Any other observers in (except those equidistant from the two clocks) will see the
clocks reading different times, but they will also calculate that the clocks are syn-
chronized when they correct for the time it takes the light to reach them. An equiv-
alent method for synchronizing two clocks would be for an observer at point 
a point midway between the clocks, to send a light signal and for the observers at

and to set their clocks to some prearranged time when they receive the signal.
We now examine the question of simultaneity. Suppose observers at and 

agree to explode flashguns at (having previously synchronized their clocks). The
observer at will see the light from the two flashes at the same time, and because
he is equidistant from and he will conclude that the flashes were simultane-
ous. Other observers in frame will see the light from or first, depending on
their location, but after correcting for the time the light takes to reach them, they
also will conclude that the flashes were simultaneous. We can thus define simul-
taneity as follows:

BAS
B,A

C
t0

BA
BA

C,

S
L>cL>c BL>c.A

L>cBA
S.LBA

B,A

Two events in a reference frame are simultaneous if light signals from the
events reach an observer halfway between the events at the same time.

DEFINITION—SIMULTANEITY

To show that two events that are simultaneous in frame are not simultaneous
in another frame moving relative to we will use an example introduced by
Einstein. A train is moving with speed past a station platform. We will consider
the train to be at rest in and the platform to be at rest in We have observers

and at the front, back, and middle of the train (Figure 39-5). We now sup-
pose that the train and platform are struck by lightning at the front and back of the
train and that the lightning bolts are simultaneous in the frame of the platform .
That is, an observer on the platform halfway between the positions and 
where the lightning strikes, sees the light from the two strikes at the same time.

B,AC
S

C�A�, B�,
S.S�

v
S,S�

S

A’B’ C’
S’

AB C

S Train v

Lp

F I G U R E  3 9 - 5 In frame attached to the platform, simultaneous lightning bolts strike the
ends of a train traveling with speed The light from the simultaneous events reaches observer 
standing on the platform midway between the events, at the same time. The distance between the
bolts is Lp platform.

C,v.
S



It is convenient to suppose that the lightning scorches
both the train and platform so that the events can be
easily located. Because is in the middle of the train,
halfway between the places on the train that are
scorched, the events are simultaneous in only if 
sees the flashes at the same time. However, the flash
from the front of the train is seen by before the flash
from the back of the train. We can understand this by
considering the motion of as seen in frame 
(Figure 39-6). By the time the light from the front flash
reaches has moved some distance toward the
front flash and some distance away from the back
flash. Thus, the light from the back flash has not yet
reached as indicated in the figure. Observer 
must therefore conclude that the events are not simul-
taneous and that the front of the train was struck before
the back. Furthermore, all observers in on the train
will agree with when they have corrected for the
time it takes the light to reach them.

Figure 39-7 shows the events of the lightning bolts
as seen in the reference frame of the train In this
frame the platform is moving, so the distance between
the scorch marks on the platform is contracted.
The platform is shorter than it is in and, because the
train is at rest, the train is longer than its contracted
length in When the lightning bolt strikes the front of
the train at the front of the train is at point and
the back of the train has not yet reached point Later,
when the lightning bolt strikes the back of the train at

the back has reached point on the platform.
The time discrepancy of two clocks that are syn-

chronized in frame as seen in frame can be
found from the Lorentz transformation equations.
Suppose we have clocks at points and that are
synchronized in What are the times and on
the clocks as observed from frame at a time tœ0?S�

t2t1S.
x2x1

S�S

BB�,

B.
A,A�,

S.

S,

(S�).

C�

S�

C�C�,

C�, C�

SC�

C�

C�S�

C�
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A’B’ C’S’

ACB
S

v

ACB
S

A’B’ C’S’
v

A
S

A’B’ C’S’
v

B C

B'

S'

C' A'

CBv
A

t'1

B'

S'

C' A'
t'2

CBv A

F I G U R E  3 9 - 7 The lightning bolts of
Figure 39-5 as seen in frame of the train.
In this frame, the distance between and 
on the platform is less than and the
proper length of the train is longer
than The first lightning bolt strikes
the front of the train when and are
coincident. The second bolt strikes the rear of
the train when and are coincident.BB�

AA�

Lp platform.
Lp train

Lp platform,
BA

S�

F I G U R E  3 9 - 6 In frame attached to the platform, the light from the
lightning bolt at the front of the train reaches observer standing on the train
at its midpoint, before the light from the bolt at the back of the train. Because 
is midway between the events (which occur at the front and rear of the train),
the events are not simultaneous for him.

C�

C�,
S
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From Equation 39-12, when we have

and

Subtracting the first equation from the second, and then rearranging, gives

Note that the chasing clock (at ) leads the other (at ) by an amount that is
proportional to their proper separation Lp � x2 � x1.

x1x2

t2 � t1 �
v
c2 (x2 � x1)

tœ0 � ga t2 �
vx2

c2 b
tœ0 � ga t1 �

vx1

c2 b
tœ1 � tœ2 � tœ0 ,

If two clocks are synchronized in the frame in which they are both at rest,
in a frame in which they are moving along the line through both clocks,
the chasing clock leads (shows a later time) by an amount

39-17

where is the proper distance between the clocks.

CHASING CLOCK SHOWS LATER TIME

Lp

¢tS � Lp

v
c2

A numerical example should help clarify time dilation, clock synchronization,
and the internal consistency of these results.

Example 39-6 Synchronizing Clocks

Observer in a spaceship that has a flashgun and a mirror is shown in Figure 39-3 (see
page 1325). Observer is standing next to the flashgun. The distance from the gun to the
mirror is 15 light-minutes (written ) and the spaceship, at rest in frame travels
with speed relative to a very long space platform that is at rest in frame The plat-
form has two synchronized clocks, one clock at position the position of the spaceship
when the observer explodes the flashgun, and the other clock at position the position of
the spaceship when the light returns to the gun from the mirror. Find the time intervals be-
tween the events (exploding the flashgun and receiving the return flash from the mirror)
(a) in the frame of the spaceship and (b) in the frame of the platform. Find (c) the distance
traveled by the spaceship and (d) the amount by which the clocks on the platform are out of
synchronization according to observers on the spaceship.

PICTURE The events occur at the same place on the spaceship, so the time between the
events in frame is the proper time between the events.

SOLVE

S�

x2,
x1,

S.v � 0.80c
S�,15 c # min

A�

A�

(a) 1. In the frame of the spaceship, the light travels from the gun
to the mirror and back, a total distance The
time required is D>c: D � 30 c # min.

30 min¢t� �
D
c

�
30 c # min
c

�

2. Because the two events happen at the same place in the
spaceship, the time interval is proper time:

30 min¢tp �

(b) 1. In frame the time between the events is longer by the
factor g:

S, ¢t � g ¢tp � g(30 min)

2. Calculate g: g �
1

41 � (v2>c2)
�

1

41 � (0.80)2
�

1

20.36
�

5
3

3. Use the value of to calculate the time between the events as
observed in frame S:

g 50 min¢t � g ¢tp � 5
3 (30 min) �
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TAKING IT FURTHER Observers on the platform would say that the spaceship’s clock is
running slow because it records a time of only 30 min between the events, whereas the time
measured by observers on the platform is 50 min.

(c) In frame the distance traveled by the spaceship is v ¢t:S, 40 c # minx2 � x1 � v ¢t � (0.80c)(50 min) �

(d) 1. The amount that the clocks on the platform are out of
synchronization is related to the proper distance between the
clocks Lp:

¢ts � Lp

v
c2

2. The Part-(c) result is the proper distance between the clocks
on the platform:

so

32 min¢ts � Lp

v
c2 � (40 c # min)

(0.80c)
c2 �

Lp � x2 � x1 � 40 c # min

Figure 39-8 shows the situation in Example 39-6 viewed from the spaceship
in The platform is traveling past the ship with speed There is a clock
at point which coincides with the ship when the flashgun is exploded, and
another at point which coincides with the ship when the return flash is
received from the mirror. We assume that the clock at reads 12:00 noon at the
time of the light flash. The clocks at and are synchronized in but not in 
In the clock at which is chasing the one at leads by it would thus
read 12:32 to an observer in When the spaceship coincides with the clock
there reads 12:50. The time between the events is therefore in Note that
according to observers in this clock ticks off for a
trip that takes in Thus, observers in see this clock run slow by the
factor

Every observer in one frame sees the clocks in the other frame run slow.
According to observers in who measure for the time interval, the time
interval in is too small, so they see the single clock in run too slow
by the factor According to the observers in the observers in measure a
time that is too long despite the fact that their clocks run too slow because the
clocks in are out of synchronization. The clocks tick off only but the sec-
ond clock leads the first clock by so the time interval is 50 min.32 min,

18 min,S

SS�,5>3.
S�S� (30 min)

50 minS,

30>18 � 5>3.
S�S�.30 min
50 min � 32 min � 18 minS�,

S.50 min
x2,S�.

32 min;x1,x2,S�,
S�.Sx2x1

x1

x2,
x1,

0.8c.S�.

S’

D

Mirror

x1 x2

12:00 12:32

Sv

(a) (b)

S’

D

Mirror

x1 x2

12:18 12:50

Sv

F I G U R E  3 9 - 8 Clocks on a platform as observed from the spaceship’s frame of reference 
During the time min it takes for the platform to pass the spaceship, the clocks on the
platform run slow and tick off But the clocks are unsynchronized, with the
chasing clock leading by which for this case is The time it takes for the spaceship
to go from to as measured on the platform, is therefore 32 min � 18 min � 50 min.x2,x1

32 min.Lpv>c2,
(30 min)>g � 18 min.

¢t� � 30
S�.
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THE TWIN PARADOX

Homer and Ulysses are identical twins. Ulysses travels at high
speed to a planet beyond the solar system and returns while
Homer remains at home. When they are together again, which
twin is older or are they the same age? The correct answer is that
Homer, the twin who stays at home, is older. This problem, with
variations, has been the subject of spirited debate for decades,
though there are very few who disagree with the answer. The
problem appears to be a paradox because of the seemingly sym-
metric roles played by the twins and the asymmetric result in
their aging. The paradox is resolved when the asymmetry of the
twins’ roles is noted. The relativistic result conflicts with common
sense based on our strong but incorrect belief in absolute simul-
taneity. We will consider a particular case with some numerical
magnitudes that, though impractical, make the calculations easy.

In reference frame S, Earth, planet P and Homer are at rest and
Earth and planet P are a distance apart (Figure 39-9). Homer is
on Earth. Reference frames and are moving with speed 
toward and away from planet P, respectively. Ulysses quickly
accelerates to speed then coasts, at rest in until he reaches the
planet, where he quickly decelerates to a stop and is momentarily
at rest in To return, Ulysses quickly accelerates to speed toward Earth and then
coasts, at rest in until he reaches Earth, where he quickly decelerates to a stop.
We can assume that the acceleration (and deceleration) times are negligible
compared with the coasting times. We use the following values for illustration:

and Then and 
It is easy to analyze the problem from Homer’s point of view on Earth.

According to Homer’s clock, Ulysses coasts in for a time and in 
for an equal time. Thus, Homer is older when Ulysses returns. The time in-
terval in between Ulysses’s leaving Earth and his arriving at the planet is shorter
because it is proper time. The time it takes to reach the planet by Ulysses’s clock is

Because the same time is required for the return trip, Ulysses will have recorded
for the round trip and will be 8 years younger than Homer upon his return.

From Ulysses’s point of view, the distance between Earth and the planet is
contracted and is only

At it takes only each way.
The real challenge in this problem is for Ulysses to understand why his twin

aged during his absence. If we consider Ulysses as being at rest and Homer as
moving away, Homer’s clock should run slow and measure only 
Then why shouldn’t Homer age only during the round trip? This, of course,
is the paradox. The difficulty with the analysis from the point of view of Ulysses is
that he does not remain in a single inertial reference frame. What happens while
Ulysses is stopping and starting? To investigate this problem in detail, we would
need to treat accelerated reference frames, a subject dealt with in the study of gen-
eral relativity and beyond the scope of this book. However, we can get some insight
into the problem by having the twins send regular signals to each other so that they
can record the other’s age continuously. If they arrange to send a signal once a year,
each can determine the age of the other merely by counting the signals received.
The arrival frequency of the signals will not be 1 per year because of the Doppler
shift. The frequency observed will be given by Equations 39-16a and 39-16b.

7.2 y

3
5 (6 y) � 3.6 y.

20 y

L�>v � 4.8 c # y>0.8 c � 6 yv � 0.8c,

L� �
Lp

g
�

8 c # y

5>3 � 4.8 c # y

12 y

¢t� �
¢t
g

�
10 y

5>3 � 6 y

S�
20 y

S�Lp>v � 10 yS�

g � 5>3.11 � (v2>c2) � 3>5v � 0.8c.Lp � 8 light-years (8 c # y)

S�,
vS.

S�,v,

vS�S�
Lp

S’

S

Earth

y’

x’

S’’

y’’

x’’

x

y

Lp

P

v

v

Ulysses going

Ulysses returning

Homer

F I G U R E  3 9 - 9 The twin paradox. Earth and a distant planet
are fixed in frame Ulysses coasts in frame to the planet and
then coasts back in frame His twin Homer stays on Earth. When
Ulysses returns, he is younger than his twin. The roles played by
the twins are not symmetric. Homer remains at rest in one inertial
reference frame, but Ulysses must go from being at rest in one
inertial reference frame to another if he is to return home.

S�.
S�S.
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Using (so we have for the case in which the twins are
receding from each other

When they are approaching, Equation 39-16a gives
Consider the situation first from the point of view of Ulysses. During the it

takes him to reach the planet (remember that the distance is contracted in his
frame), he receives signals at the rate of signal per year, and so he receives 2 sig-
nals. As soon as Ulysses turns around and starts back to Earth, he begins to receive
3 signals per year. In the it takes him to return he receives 18 signals, giving a
total of 20 for the trip. He accordingly expects his twin to have aged 20 years.

We now consider the situation from Homer’s point of view. He receives signals
at the rate of signal per year not only for the it takes Ulysses to reach the
planet but also for the time it takes for the last signal sent by Ulysses before he
turns around to get back to Earth. (He cannot know that Ulysses has turned around
until the signals begin reaching him with increased frequency.) Because the planet
is away, there is an additional of receiving signals at the rate of 
signal per year. During the first Homer receives 6 signals. In the final be-
fore Ulysses arrives, Homer receives 6 signals, or 3 per year. (The first signal sent
after Ulysses turns around takes 8 y to reach Earth, whereas Ulysses, traveling at

takes 10 y to return and therefore arrives just 2 y after Homer begins to receive
signals at the faster rate.) Thus, Homer expects Ulysses to have aged 12 y. In this
analysis, the asymmetry of the twins’ roles is apparent. When they are together
again, both twins agree that the one who has been accelerated will be younger than
the one who stayed home.

The predictions of the special theory of relativity concerning the twin paradox
have been tested using small particles that can be accelerated to such large speeds
that is appreciably greater than 1. Unstable particles can be accelerated and
trapped in circular orbits in a magnetic field, for example, and their lifetimes can
then be compared with those of identical particles at rest. In all such experiments,
the accelerated particles live longer on the average than the particles at rest, as pre-
dicted. These predictions have also been confirmed by the results of an experiment
in which high-precision atomic clocks were flown around the world in commercial
airplanes, but the analysis of that experiment is complicated due to the necessity
of including gravitational effects treated in the general theory of relativity.

39-5 THE VELOCITY TRANSFORMATION

We can find how velocities transform from one reference frame to another by dif-
ferentiating the Lorentz transformation equations. Suppose a particle has velocity

in frame which is moving to the right with speed relative to
frame The particle’s velocity in frame is

From the Lorentz transformation equations (Equations 39-9 and 39-10), we have

and

dt � gadt� �
v dx�
c2 b

dx � g(dx� � v dt�)

ux �
dx
dt

SS.
vS�,uœ

x � dx�>dt�

g

0.8c,

2 y18 y,

1
38 y8 light-years

10 y1
3

6 y

1
3

6 y
f� � 3f0.

f� �
f0

1 � (v>c)41 � (v2>c2) �
21 � 0.64

1 � 0.8
f0 �

1
3
f0

v2>c2 � 0.64),v>c � 0.8
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The velocity relative to frame is thus

If a particle has components of velocity along the or axes, we can use the same
relation between and with and to obtain

and

The complete relativistic velocity transformation is

39-18a

39-18b

39-18c

RELATIVISTIC VELOCITY TRANSFORMATION

The inverse velocity transformation equations are

39-19a

39-19b

39-19c

These equations differ from the classical and intuitive result 
and because the denominators in the equations are not equal to 1. When 
and are small compared with the speed of light and Then
the relativistic and classical velocity transformation equations are the same.

vuœ
x>c2 V 1.c, g � 1uœ

x

vuz � uœ
z

ux � uœ
x � v, uy � uœ

y,

uœ
z �

uz

ga1 �
vux
c2 b

uœ
y �

uy

ga1 �
vux
c2 b

uœ
x �

ux � v

1 �
vux
c2

uz �
uœ
z

ga1 �
vuœ
x

c2 b

uy �
uœ
y

ga1 �
vuœ
x

c2 b

ux �
uœ
x � v

1 �
vuœ
x

c2

uz �
uœ
z

ga1 �
vuœ
x

c2 b

uy �
dy

dt
�

dy�

gadt� �
v dx�
c2 b �

dy�

dt�

ga1 �
v
c2

dx�
dt�
b �

uœ
y

ga1 �
vuœ
x

c2 b
dz � dz�,dy � dy�dt�,dt

zy

ux �
dx
dt

�
g(dx� � v dt�)

gadt� �
v dx�
c2 b �

dx�
dt�

� v

1 �
v
c2

dx�
dt�

�
uœ
x � v

1 �
vuœ
x

c2

S
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The result in Example 39-8 is quite different from the classically expected result
of In fact, it can be shown from Equations 39-18a–c that if the
speed of an object is less than in one frame, it is less than in all other frames
moving relative to that frame with a speed less than (See Problem 59.) We will
see in Section 39-7 that it takes an infinite amount of energy to accelerate a particle
to the speed of light. The speed of light is thus an upper, unattainable limit for the
speed of a particle with mass. (There are massless particles, such as photons, that
always move at the speed of light.)

c

c.
cc

0.80c � 0.80c � 1.60c.

Example 39-7 Relative Velocity at Nonrelativistic Speeds

A supersonic plane moves away from you, and in the direction, at a speed of 
(about 3 times the speed of sound) relative to you. A second plane, traveling in the same direc-
tion and ahead of the first plane, moves away from you, and away from the first plane, at a
speed of relative to the first plane. How fast is the second plane moving relative to you?

PICTURE The speeds are so small compared with that we expect the classical equations
for combining velocities to be accurate. We show this by calculating the correction term in
the denominator of Equation 39-18a. Let frame be your rest frame and frame be the rest
frame of the first plane. Then the velocity of relative to is The second plane
has velocity relative to 

SOLVE

S�.uœ
x � 500 m>s 1000 m>s.S,S�v,

S�S

c

500 m>s
1000 m>s�x

1. Let and be the reference frames of you and the first plane,
respectively. Also, let and be the velocities of the second plane
relative to and respectively. Equation 39-18a can be used to find 
The velocity of the second plane relative to you is v:

ux.S�,S
uœ
xux

S�S

2. If the correction term in the denominator is negligible (compared to 1),
Equation 39-18a gives the classical formula for combining velocities.
Calculate the value of the correction term:

ux �
uœ
x � v

1 �
vuœ
x

c2

vuœ
x

c2 �
(1000)(500)

(3.00 � 108)2 � 5.56 � 10�12

3. The correction term is so small that the classical and relativistic results are
virtually the same:

1500 m>s� 500 m>s � 1000 m>s �

ux � uœ
x � v

Example 39-8 Relative Velocity at Relativistic Speeds

Work Example 39-7 if the first plane moves with speed relative to you and the sec-
ond plane moves with the same speed relative to the first plane.

PICTURE These speeds are not small compared with so we need to use the relativistic ex-
pression (Equation 39-18a). We again assume that you are at rest in frame and the first
plane is at rest in frame that is moving at relative to you. The velocity of the sec-
ond plane relative to is 

SOLVE

uœ
x � 0.80c.S�

v � 0.80cS�
S

c,

0.80c
v � 0.80c

Use Equation 39-18a to calculate the speed of the second plane relative to you: 0.98cux �
uœ
x � v

1 �
vuœ
x

c2

�
0.80c � 0.80c

1 �
(0.80c)(0.80c)

c2

�
1.60c
1.64

�

CHECK As expected, the result is less than c.

Example 39-9 Relative Speed of a Photon

A photon moves along the axis in frame with speed What is its speed in frame 

PICTURE Use Equation 39-18a to calculate the speed of the photon in S.

S?uœ
x � c.S�,x�
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The speed in is given by Equation 39-18a:S cux �
uœ
x � v

1 �
vuœ
x

c2

�
c � v

1 �
vc
c2

�
c � v

1 �
v
c

�
c � v

1
c

(c � v)
�

CHECK The speed in both frames is independent of This is in accord with Einstein’s
postulates.

v.c,

Example 39-10 Rockets Passing in Opposite Directions

Two spaceships, each 100 m long when measured at rest, travel toward each other, each with
a speed of relative to Earth. (a) What is the length of each spaceship as measured by
someone at rest relative to Earth? (b) How fast is each spaceship traveling as measured by an
observer at rest relative to the other spaceship? (c) What is the length of one spaceship when
measured by an observer at rest relative to the other spaceship? (d) At time on Earth,
the front ends of the ships are next to each other as they just begin to pass each other. At what
time on Earth are their back ends next to each other?

PICTURE (a) The length of each space-
ship as measured on Earth is the con-
tracted length (Equation
39-14), where u is the speed of either
spaceship relative to Earth. To solve Part
(b), let Earth be at rest in frame and let
the spaceship on the left (spaceship 1) be
at rest in frame , which is moving at
speed relative to Then the
spaceship on the right (spaceship 2)
moves with velocity (Figure
39-10). (c) The length of spaceship 2 as
seen by an observer at rest relative to
spaceship 1 is 21 � (u2

2x >c2)Lp.

u1x � �0.85c

S.v � 0.85c
S�

S,

21 � (u2>c2)Lp

t � 0

0.85c

(a) The length of each spaceship in the reference frame of Earth,
is the proper length divided by g.

S, 53 m� A1 �
(0.85c)2

c2 (100 m) �L �
1
g
Lp � C1 �

ƒu2x ƒ 2

c2 Lp

(b) Use the velocity transformation formula (Equation 39-19a)
to find the velocity of spaceship 2 as seen in frame S�:uœ

2x

so

0.99cƒuœ
2x ƒ �

�
�1.70c
1.7225

� �0.987cuœ
2x �

u2x � v

1 �
vu2x

c2

�
�0.85c � 0.85c

1 �
(0.85c)(�0.85c)

c2

CHECK As expected, the Part (c) result is less than the Part (a) result, and both results are
less than the proper length of 100 m.

(c) In the frame of spaceship 1, spaceship 2 is moving with speed
Use this to calculate the length of spaceship 2 as

seen by an observer at rest relative to spaceship 1:
ƒuœ ƒ � 0.987c.

16 m� A1 �
(0.987c)2

c2 (100 m) �L �
1
g
Lp � C1 �

ƒu2x ƒ 2

c2 Lp

(d) If the front ends of the spaceships are together at on Earth,
their back ends will be together after the time it takes either
spaceship to move the length of the spaceship in Earth’s frame:

t � 0 2.1 � 10�7 s�
53 m

(0.85)(3.00 � 108 m>s)
�t �

L
u

�
53 m
0.85c

S’

S

Earth

u2x = 0.85c

u1x = – 0.85c
v = 0.85c

1

2

F I G U R E  3 9 - 1 0

SOLVE

SOLVE
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39-20

RELATIVISTIC MOMENTUM

pS �
muS

A1 �
u2

c2

is conserved in the elastic collision shown in Figure 39-11. Because this quantity also
approaches as approaches zero, we take this equation for the definition of the
relativistic momentum of a particle.

One interpretation of Equation 39-20 is that the mass of an object increases with
speed. Then the quantity is called the relativistic mass. The
relativistic mass of a particle when it is at rest in some reference frame is then called
its rest mass m. In this chapter, we will treat the terms mass and rest mass as synony-
mous, and both terms will be labeled 

ILLUSTRATION OF CONSERVATION OF 
THE RELATIVISTIC MOMENTUM

We consider two observers: one observer at rest in reference frame and the other
observer at rest in frame which is moving to the right in the direction with
speed relative to frame Each has a puck of mass that can slide freely across a
flat horizontal surface. The two pucks are identical when compared at rest. One ob-
server launches puck in the direction with a speed relative to himself and the
other launches puck in the direction with a speed relative to himself, so that
each puck makes an elastic collision with the other puck, and returns to the person
that launched it. Figure 39-11 shows how the collision looks in each reference frame.

We will compute the component of the relativistic momentum of each puck in
the reference frame for the collision and show that the component of the total rel-
ativistic momentum is zero. The speed of puck in is so the component of
its relativistic momentum is

The speed of puck in is more complicated. Its component is and its com-
ponent is (Equation 39-18b). Thus,

u2
B � u2

Bx � u2
By � v2 � c�u041 � (v2>c2) d 2 � v2 � u2

0 �
u2

0v
2

c2

�u0>g yvxSB

pAy �
mu0

41 � (u2
0>c2)

yu0,SA
yS

y

u0�yB
u0�yA

mS.v
�xS�,
S,

m.

mrel � m>11 � (u2>c2)

u>cmuS

39-6 RELATIVISTIC MOMENTUM

We have seen in previous sections that Einstein’s postulates require important mod-
ifications in our ideas of simultaneity and in our measurements of time and length.
Einstein’s postulates also require modifications in our concepts of mass, momen-
tum, and energy. In classical mechanics, the momentum of a particle is defined as
the product of its mass and its velocity, where is the velocity. In an isolated
system of particles, with no net force acting on the system, the total momentum of
the system remains constant.

The reason that the total momentum of a system is important in classical mecha-
nics is that it is conserved when there are no external forces acting on the system,
as is the case in collisions. But we have just seen that is conserved only in the
approximation that We will define the relativistic momentum of a particle
to have the following properties:

1. In collisions, is conserved.
2. As approaches zero, approaches 

We will show that the quantity

muS.pSu>c pS

pSu V c.
©miu

S
i

uSmuS,

S

v

y

x

A

B

u0

u0

v
u0/γ

u0/γ

(a)

(b)

u0

S

y

x

A

B

’

’ ’

u0/γ
v

F I G U R E  3 9 - 1 1 (a) Elastic collision of
two identical pucks as seen in frame The
vertical component of the velocity of puck is

in if it is in (b) The same collision
as seen in In this frame, puck has a
vertical component of velocity equal to u0>g.

AS�.
S�.u0Su0>g B

S.
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Using this result to compute we obtain

and

The component of the relativistic momentum of puck as seen in is therefore

Because the component of the total momentum of the two pucks is
zero. If the component of the momentum of each puck is reversed by the colli-
sion, the total momentum will remain zero and momentum will be conserved.

39-7 RELATIVISTIC ENERGY

In classical mechanics, the work done by the net force acting on a particle equals the
change in the kinetic energy of the particle. In relativistic mechanics, we equate
the net force to the rate of change of the relativistic momentum. The work done
by the net force can then be calculated and set equal to the change in kinetic energy.

As in classical mechanics, we will define kinetic energy as the work done by the
net force in accelerating a particle from rest to some final velocity Considering
one dimension only, we have

39-21

where we have used It is left as a problem (Problem 35) for you to show
that

da mu

41 � (u2>c2)
b � ma1 �

u2

c2 b�3>2
u du

u � ds>dt.
K � �

u�uf

u� 0
Fnet ds � �

u�uf

u� 0

dp

dt
ds � �

u�uf

u� 0
u dp � �

u�uf

u� 0
u da mu

41 � (u2>c2)
b

uf .

y
ypBy � �pAy,

pBy �
muBy

41 � (u2
B>c2)

�
�mu0>g

(1>g)41 � (u2
0>c2)

�
�mu0

41 � (u2
0>c2)

SBy

41 � (u2
B>c2) �41 � (v2>c2) 41 � (u2

0>c2) � a 1
g
b41 � (u2

0 >c2)

1 �
u2
B

c2 � 1 �
v2

c2 �
u2

0

c2 �
u2

0v
2

c4 � a1 �
v2

c2 b a1 �
u2

0

c2 b
41 � (u2

B>c2)

The creation of elementary particles
demonstrates the conversion of kinetic energy
to rest energy. In this 1950 photograph of a
cosmic ray shower, a high-energy sulfur
nucleus (red) collides with a nucleus in a
photographic emulsion and produces a spray
of particles, including a fluorine nucleus
(green), other nuclear fragments (blue), and
approximately 16 pions (yellow). (© C. Powell,
P. Fowler, and D. Perkins. Science Photo
Library/Photo Researchers.)
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If we substitute that expression into the integrand in Equation 39-21, we obtain

or

� mc2a 1

41 � (u2
f>c2)

� 1b
K � �

u�uf

u� 0
u da mu

41 � (u2>c2)
b � �

uf

0
ma1 �

u2

c2 b�3>2
u du

39-23

REST ENERGY

E0 � mc2

39-24

RELATIVISTIC ENERGY

E � K � mc2 �
mc2

41 � (u2>c2)

The total relativistic energy is then defined to be the sum of the kinetic energy
and the rest energy:

E

Thus, the work done by an unbalanced force increases the energy from the 
rest energy to the final energy We can obtain a useful
expression for the velocity of a particle by multiplying Equation 39-20 for the rela-
tivistic momentum by and comparing the result with Equation 39-24 for the
relativistic energy. We have

Dividing both sides by cE gives

39-25

Energies in atomic and nuclear physics are usually expressed in units of electron
volts or mega-electron volts 

A convenient unit for the masses of atomic particles is or which is
the rest energy of the particle divided by The rest energies of some elementary
particles and light nuclei are given in Table 39-1.

c2.
MeV>c2,eV>c2

1 eV � 1.602 � 10�19 J

(MeV):(eV)

u
c

�
pc

E

pc2 �
mc2u

41 � (u2>c2)
� Eu

c2

mc2>11 � (u2>c2).mc2

39-22

RELATIVISTIC KINETIC ENERGY

K �
mc2

41 � (u2>c2)
� mc2

(In this expression the final speed is arbitrary, so the subscript f is not needed.)
The expression for kinetic energy consists of two terms. The first term depends

on the speed of the particle. The second term, is independent of the speed.
The quantity is called the rest energy of the particle. The rest energy is the
product of the mass and c2:

E0mc2
mc2,

uf
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Table 39-1 Rest Energies of Some Elementary Particles and Light Nuclei

Particle Symbol Rest energy, MeV

Photon 0

Electron (positron) 0.5110

Muon 105.7

Pion 135.0

139.6

Proton 938.272

Neutron 939.565

Deuteron 1875.613

Triton 2808.920

Helion 2808.391

Alpha particle 3727.3794He or a

3He or h

3H or t

2H or d

n

1H or p

p�

p0

m�

e or e�(e�)

g

Example 39-11 Total Energy, Kinetic Energy, and Momentum

An electron (rest energy moves with speed Find (a) its total energy,
(b) its kinetic energy, and (c) the magnitude of its momentum.

PICTURE This problem involves substituting into Equations 39-20 to 39-25.

SOLVE

u � 0.800c.0.511 MeV)

(a) The total energy is given by Equation 39-24: 0.852 MeVE �
mc2

41 � (u2>c2)
�

0.511 MeV

21 � 0.64
�

0.511 MeV
0.6

�

(b) The kinetic energy is the total energy
minus the rest energy:

0.341 MeVK � E � mc2 � 0.852 MeV � 0.511 MeV �

(c) The magnitude of the momentum is found
from Equation 39-20. We can simplify the
momentum expression by multiplying
both numerator and denominator by 
and using the Part-(a) result:

c2 0.682 MeV>c�
mc2

41 � (u2>c2)

u
c2 � (0.852 MeV)

0.8c
c2 �

p �
mu

41 � (u2>c2)

CHECK The kinetic energy is less than the total energy as expected.

TAKING IT FURTHER The technique used to solve Part (c) (multiplying numerator and de-
nominator by ) is equivalent to using Equation 39-25.c2

The expression for kinetic energy given by Equation 39-22 does not look much
like the classical expression However, when is much less than we can 
approximate using the binomial expansion

39-26

Then

1

41 � (u2>c2)
� a1 �

u2

c2 b�1>2
� 1 �

1
2
u2

c2 u V c

(1 � x)n � 1 � nx �
n(n � 1)

2
x2 � p � 1 � nx x V 1

1>21 � (u2>c2)
c,u1

2mu2.

See

Math Tutorial for more

information on the

Binomial Expansion



E2 = (pc)2 + (mc2)2

E
pc

mc2

F I G U R E  3 9 - 1 2 Right triangle to
remember Equation 39-27.
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From this result, when is much less than the expression for relativistic kinetic
energy becomes

Thus, at low speeds, the relativistic expression is the same as the classical expression.
We note from Equation 39-24 that as the speed approaches the speed of light 

the energy of the particle becomes very large (because becomes
very large). At the energy becomes infinite. A simple interpretation of the re-
sult is that it takes an infinite amount of energy to accelerate a particle (that has
mass) to the speed of light.

In practical applications, the momentum or energy of a particle is often known
rather than the speed. Equation 39-20 for the relativistic momentum and Equa-
tion 39-24 for the relativistic energy can be combined to eliminate the speed 
The result is

u.

u � c,
1>11 � (u2>c2)

c,u

K � mc2 c 1

41 � (u2>c2)
� 1 d � mc2 c1 �

1
2
u2

c2 � 1 d �
1
2
mu2 u V c

c,u

39-27

RELATION FOR TOTAL ENERGY, MOMENTUM, AND REST ENERGY

E2 � p2c2 � (mc2)2

This useful equation can be conveniently remembered from the right triangle
shown in Figure 39-12.

PRACTICE PROBLEM 39-2 

A proton moving at speed has a total energy of 
Find (a) (b) the momentum of the proton, and (c) the speed of the proton.u1>11 � (u2>c2),

1400 MeV.u(mass equal to 938 MeV>c2)

If the energy of a particle is much greater than its rest energy the second term
on the right side of Equation 39-27 can be neglected, giving the useful approximation

39-28

Equation 39-28 is an exact relation between energy and momentum for particles
that do not have mass, such as photons.

MASS AND ENERGY

Einstein considered the relation (Equation 39-23) relating the energy of a
particle to its mass to be the most significant result of the theory of relativity.
Energy and inertia, which were formerly two distinct concepts, are related through
this famous equation. As discussed in Chapter 7, the conversion of rest energy to
kinetic energy with a corresponding decrease in mass is a common occurrence in
radioactive decay and nuclear reactions, including nuclear fission and nuclear
fusion. We illustrated this in Section 7-4 with the deuteron, whose mass is
2.22 less than the mass of its parts—a proton and a neutron. When a
neutron and a proton combine to form a deuteron, of energy is released.
The breaking up of a deuteron into a neutron and a proton requires of
energy input. The proton and the neutron are thus bound together in a deuteron
by a binding energy of Any stable composite particle, such as a deuteron
or an alpha particle (2 neutrons plus 2 protons), that is made up of other particles
has a mass and rest energy that are less than the sum of the masses and rest ener-
gies of its parts. The difference in these rest energies is the binding energy of the
composite particle. The binding energies of atoms and molecules are of the order
of a few electron volts, which explains why there is only a negligible difference in
mass between the composite particle and its parts. The binding energies of nuclei

2.22 MeV.

2.22 MeV
2.22 MeV

MeV>c2

E0 � mc2

E � pc E W mc2

mc2,



are of the order of several which explains why
there is a noticeable difference in mass between the
composite particle and its parts. Some very heavy nu-
clei, such as radium, are radioactive and decay into a
less massive nucleus plus an alpha particle. In this case,
the original nucleus has a rest energy greater than that
of the decay particles. The excess energy appears as the
kinetic energy of the decay products.

To further illustrate the connection between mass and energy, we consider a
perfectly inelastic collision of two particles. Classically, kinetic energy is lost dur-
ing such a collision. Relativistically, this loss in kinetic energy shows up as an in-
crease in rest energy of the system; that is, the total energy of the system is con-
served. Consider a particle of mass moving with initial speed that collides
with a particle of mass moving with initial speed The particles collide and
stick together, forming a particle of mass that moves with speed as shown in
Figure 39-13. The initial total energy of particle 1 is

where is its initial kinetic energy. Similarly the initial total energy of particle 2 is

The total initial energy of the system is

where and are the initial kinetic energy and initial
mass of the system. The final total energy of the system is

If we set the final total energy equal to the initial total energy, we obtain

Rearranging gives which can be expressed

39-29

where is the change in mass of the system.¢M �Mf �Mi

¢K � (¢M)c2 � 0

Kf � Ki � �(Mf �Mi)c
2,

Kf �Mfc
2 � Ki �Mic

2

Ef � Kf �Mfc
2

Mi � m1 � m2Ki � K1 � K2

Ei � E1 � E2 � K1 � m1c
2 � K2 � m2c

2 � Ki �Mic
2

E2 � K2 � m2c
2

K1

E1 � K1 � m1c
2

uf ,M
u2.m2

u1m1

MeV,
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m1 m2

u1 u2

M

uf

(a) (b)

Example 39-12 Totally Inelastic Collision

A particle of mass and kinetic energy collides with a stationary particle
of mass After the collision, the two particles stick together. Find (a) the magni-
tude of the initial momentum of the system, (b) the final velocity of the two-particle system,
and (c) the mass of the two-particle system.

PICTURE (a) The initial momentum of the system is the initial momentum of the incoming
particle, which can be found from the total energy of the particle. (b) The final velocity of the
system can be found from its total energy and momentum using (Equation 39-25).
The energy is found from conservation of energy, and the momentum from conservation of
momentum. (c) Because the final energy and momentum are known, the final mass can be
found using E2 � p2c2 � (mc2)2.

u>c � pc>E

4.00 MeV>c2.
3.00 MeV2.00 MeV>c2

F I G U R E  3 9 - 1 3 A perfectly inelastic
collision between two particles. One particle
of mass collides with another particle of
mass After the collision, the particles stick
together, forming a composite particle of
mass that moves with speed so that
relativistic momentum is conserved. Kinetic
energy is lost in the process. If we assume
that the total energy is conserved, the loss in
kinetic energy must equal multiplied by
the increase in the mass of the system.

c2

ufM

m2.
m1
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(a) 1. The initial momentum of the system is the initial
momentum of the incoming particle. The momentum of a
particle is related to its energy and mass (Equation 39-27): p1c �4E2

1 � (m1c
2)2

E2
1 � p2

1c
2 � (m1c

2)2

2. The total energy of the moving particle is the sum of its
kinetic energy and its rest energy:

E1 � 3.00 MeV � 2.00 MeV � 5.00 MeV

3. Use the total energy to calculate the magnitude of the
momentum:

4.58 MeV>cp1 �

p1c �4E2
1 � (m1c

2)2 �4(5.00 MeV)2 � (2.00 MeV)2 � 221.0 MeV

(b) 1. We can find the final velocity of the system from its total
energy and its momentum using Equation 39-25:pfEf

uf

c
�
pfc

Ef

TAKING IT FURTHER Note that the mass of the system increased from to
This mass increase, multiplied by equals the loss in kinetic energy of the sys-

tem, as you will show in the following exercise.

PRACTICE PROBLEM 39-3 (a) Find the final kinetic energy of the two-particle system in
Example 39-12. (b) Find the loss in kinetic energy, in the collision. (c) Show that

where is the change in mass of the system.¢MKloss � (¢M)c2,
Kloss,

c2,7.75 MeV>c2.
6.00 MeV>c2

2. By the conservation of total energy, the final energy of the
system equals the initial total energy of the two particles:

Ef � Ei � E1 � E2 � 5.00 MeV � 4.00 MeV � 9.00 MeV

3. By the conservation of momentum, the final momentum
of the two-particle system equals the initial momentum:

pf � 4.58 MeV>c
4. Calculate the velocity of the two-particle system from

its total energy and momentum using u>c � pc>E:

0.509cuf �

uf

c
�
pf c

Ef

�
4.58 MeV
9.00 MeV

� 0.509

(c) We can find the mass of the final two-particle system from
Equation 39-27 using and E � 9.00 MeV:pc � 4.58 MeV

Mf

7.75 MeV>c2Mf �

 (9.00 MeV)2 � (4.58 MeV)2 � (Mf c
2)2

E2
f � (pf c)

2 � (Mf c
2)2

Example 39-13 Momentum and Total-Energy Conservation

A rocket has of fuel on board. The rocket is parked in space
when it suddenly becomes necessary to accelerate. The rocket engines ignite, and the

of fuel are consumed. The exhaust (spent fuel) is ejected during a very short
time interval at a speed of relative to —the inertial reference frame in which the
rocket is initially at rest. (a) Calculate the change in the mass of the rocket–fuel system.
(b) Calculate the final speed of the rocket relative to (c) Again, calculate the final speed
of the rocket relative to this time using classical (Newtonian) mechanics.

PICTURE The speed of the rocket and the change in the mass of the system can be calcu-
lated using conservation of momentum and conservation of energy. In reference frame the
total momentum of the rocket plus fuel remains zero. After the burn, the magnitude of the
momentum of the rocket equals that of the ejected fuel. Let be the mass
of the rocket, not including the mass of the fuel, let be the mass of the
fuel before the burn, and let be the mass of the fuel after the burn. The mass of the rocket,

remains fixed, but during the burn the mass of the fuel decreases. (The fuel has less
chemical energy after the burn, and so has less mass as well.)
mR,

mFf

mFi � 1.00 � 103 kg
mR � 1.00 � 106 kg

S,

S,
S.uR

S0.500c
1.00 � 103 kg

1.00 � 103 kg1.00 � 106-kg

SOLVE
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(a) 1. The magnitudes of the momentum of the
rocket and the momentum of the ejected fuel
are equal. For the reasons stated above, the
mass of the rocket, not including the

of fuel, does not change during
the burn:
1.00 � 103 kg and is the final speed of

the rocket.
uRmR � 1.00 � 106 kg, uF � 0.500c,

mRuR

41 � (u2
R >c2)

�
mFfuF

41 � (u2
F >c2)

� p

pR � pF � p

2. The total energy of the system does not change: Ef � Ei

3. The initial energy is the rest energy of the
rocket and fuel before the burn. The final
energy is the energy of the rocket plus energy
of the fuel. The energy of each is related to its
momentum by Equation 39-27: so

Ef �4p2c2 � (mRc
2) �4p2c2 � (mFfc

2)2

Ef � ERf � EFf

E2
F f � p2c2 � (mF fc

2)2

E2
R f � p2c2 � (mRc

2)2

Ei � mRc
2 � mF ic

2 � (mR � mF i)c
2

4. Equate the initial and final energies: 4p2c2 � (mRc
2)2 �4p2c2 � (mFfc

2)2 � (mR � mFi)c
2

5. The step-4 result and 

(the step-1 result) constitute two simultaneous
equations with unknowns and Solving
for gives:mFf

mFf .p

p �
mFfuF

1 � (u2
F>c2)

so

134 kgmloss � mFi � 1000 kg � 866 kg �

mFf � 866 kg

(b) 1. To solve for we use Equation 39-25:uR,

2. To solve for we substitute the value for 
into the Part (a), step-1 result:

mFfp,

� (5.00 � 102 kg)c

p �
mFfuF

41 � (u2
F>c2)

�
(866 kg)0.500c

21 � 0.250

3. We use the value for to solve for ER f :p

so

ERf � (1.00 � 106 kg)c2

� (1.00 � 1012 kg2)c4

� (5.00 � 102 kg)2c4 � (1.00 � 106 kg)2c4

E2
Rf � p2c2 � (mRc

2)2

SOLVE

4. Using our Part (b), step-1 result, we solve for uR:

5.00 � 10�4c � 1.50 � 10�5 m>s�

uR �
pc2

ERf

�
(5.00 � 102 kg)c3

(1.00 � 106 kg)c2

(c) Equate the magnitude of the classical expressions
for the momentum of the rocket and burned fuel
and solve for uR:

CHECK We find the result of the relativistic calculation of the final rocket speed to differ from
the classical result. If carried out to five figures, the relativistic calculation gives

for the final speed of the rocket. However, the classical calculation gives
These two values differ by less than one part in 8000.uR � 5.0000 � 10�4 c.

uR � 4.9994 � 10�4 c

1.50 � 105 m>s�

� 5.00 � 10�4c

uR �
mF

mR

uF �
1.00 � 103 kg

1.00 � 106 kg
0.500c

mRmR � mFuF

uR

c
�
pc

ERf

If the matter being ejected were a
rigid block laun-

ched by a spring with one end
attached to the rocket, would the
mass of the block change or would
the mass of the spring change? 

1.00 � 103-kg

CONCEPT CHECK 39-1✓



This principle arises in Newtonian mechanics because of the apparent identity of
gravitational mass and inertial mass. In a uniform gravitational field, all objects fall
with the same acceleration independent of their masses because the gravitational
force is proportional to the (gravitational) mass, whereas the acceleration varies in-
versely with the (inertial) mass. Consider a compartment in space undergoing a uni-
form acceleration as shown in Figure 39-14a. No mechanics experiment can be
performed inside the compartment that will distinguish whether the compartment is
actually accelerating in space or is at rest (or is moving with uniform velocity) in the
presence of a uniform gravitational field as shown in Figure 39-14b. If ob-
jects are dropped in the compartment, they will fall to the floor with an acceleration

If people stand on a spring scale, it will read their weight of magnitude

Einstein assumed that the principle of equivalence applies to all physics and
not just to mechanics. In effect, he assumed that there is no experiment of any kind
that can distinguish uniformly accelerated motion from the presence of a gravita-
tional field.

One consequence of the principle of equivalence—the deflection of a light beam
in a gravitational field—was one of the first to be tested experimentally. In a region
that has no gravitational field, a light beam will travel in a straight line at speed 
The principle of equivalence tells us that a region that has no gravitational field ex-
ists only in a compartment that is in free fall. Figure 39-15 shows a beam of light
entering a compartment that is accelerating relative to a nearby reference frame in
free fall. Successive positions of the compartment at equal time intervals are shown
in Figure 39-15a. Because the compartment is accelerating, the distance it moves in
each time interval increases with time. The path of the beam of light as observed
from inside the compartment is therefore a parabola, as shown in Figure 39-15b.

c.

ma � mg.
gS � �aS.

gS � �aS,

aS,

gS
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39-8 GENERAL RELATIVITY

The generalization of the theory of relativity to noninertial reference frames by Einstein
in 1916 is known as the general theory of relativity. It is much more difficult mathe-
matically than the special theory of relativity, and there are fewer situations in which
it can be tested. Nevertheless, its importance calls for a brief qualitative discussion.

The basis of the general theory of relativity is the principle of equivalence:

a

g

Planet

(a)

(b)

F I G U R E  3 9 - 1 4 The results of
experiments in a uniformly accelerated
reference frame (a) cannot be distinguished
from those in a uniform gravitational field
(b) if the acceleration and the gravitational
field have the same magnitude.gS

aS

A homogeneous gravitational field is completely equivalent to a uniformly
accelerated reference frame.

PRINCIPLE OF EQUIVALENCE

t1 t2 t3 t4

a

Light
beam

t1 t2 t3 t4

(a) (b)

F I G U R E  3 9 - 1 5 (a) A light
beam moving in a straight line
through a compartment that is
undergoing uniform acceleration
relative to a nearby reference
frame in free fall. The position of
the beam is shown at equally
spaced times and 
(b) In the reference frame of the
compartment, the light travels in 
a parabolic path as a ball would
if it were projected horizontally.
The vertical displacements are
greatly exaggerated for emphasis.

t4.t1, t2, t3,
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The quartz sphere in the top part of the
container is probably the world’s most perfectly
round object. It is designed to spin as a
gyroscope in a satellite orbiting Earth. General
relativity predicts that the rotation of Earth will
cause the axis of rotation of the gyroscope to
precess in a circle at a rate of approximately 1
revolution in years. (Michael Freeman.)100000

But according to the principle of equivalence, there is no way to distinguish be-
tween an accelerating compartment and one moving with uniform velocity in a
uniform gravitational field. We conclude, therefore, that a beam of light will accel-
erate in a gravitational field, just like objects that have mass. For example, near the
surface of Earth, light will fall with an acceleration of This is difficult to
observe because of the enormous speed of light. In a distance of which
takes light about to traverse, a beam of light should fall approximately

Einstein pointed out that the deflection of a light beam in a gravitational
field might be observed when light from a distant star passes close to the Sun, as
illustrated in Figure 39-16. Because of the brightness of the Sun, this cannot ordi-
narily be seen. Such a deflection was first observed in 1919 during an eclipse of the
Sun. This well-publicized observation brought instant worldwide fame to Einstein.

A second prediction from Einstein’s theory of general relativity, which we will
not discuss in detail, is the excess precession of the perihelion of the orbit of Mercury
of about per century. This effect had been known and unexplained for some
time, so, in a sense, explaining it constituted an immediate success of the theory.

A third prediction of general relativity concerns the change in time intervals and
frequencies of light in a gravitational field. In Chapter 11, we found that the grav-
itational potential energy between two masses and a distance apart is

where is the universal gravitational constant, and the point of zero potential
energy has been chosen to be when the separation of the masses is infinite. The po-
tential energy per unit mass near a mass is called the gravitational potential

39-30f � �
GM
r

f:M

G

U � �
GMm
r

rmM

0.01°

0.5 mm.
0.01 s

3000 km,
9.81 m>s2.

Sun

Earth

Star

Light
path

Apparent
position of star

Apparent
light path

F I G U R E  3 9 - 1 6 The deflection (greatly
exaggerated) of a beam of light due to the
gravitational attraction of the Sun.
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This extremely accurate hydrogen maser clock
was launched in a satellite in 1976, and its
time was compared to that of an identical
clock on Earth. In accordance with the
prediction of general relativity, the clock on
Earth, where the gravitational potential was
lower, lost approximately each
second compared with the clock orbiting
Earth at an altitude of approximately

(NASA.)10000 km.

4.3 � 10�10 s

According to the general theory of relativity, clocks run more slowly in regions
of lower gravitational potential. (Because the gravitational potential is negative, as
can be seen from Equation 39-30, the nearer the mass the more negative, and there-
fore, the lower the gravitational potential.) If is a time interval between two
events measured by a clock where the gravitational potential is and is the in-
terval between the same two events as measured by a clock where the gravitational
potential is general relativity predicts that the fractional difference between the
times will be approximately*

39-31

A clock in a region of low gravitational potential will therefore run more slowly
than a clock in a region of higher gravitional potential. Because a vibrating atom
can be considered to be a clock, the frequency of vibration of an atom in a region
of low potential, such as near the Sun, will be lower than the frequency of vibra-
tion of the same atom on Earth. This shift toward a lower frequency, and therefore
a longer wavelength, is called the gravitational redshift.

As our final example of the predictions of general relativity, we mention black
holes, which were first predicted by J. Robert Oppenheimer and Hartland Snyder
in 1939. According to the general theory of relativity, if the density of an object such
as a star is great enough, its gravitational attraction will be so great that once in-
side a critical radius, nothing can escape, not even light or other electromagnetic
radiation. (The effect of a black hole on objects outside the critical radius is the
same as that of any other mass.) A remarkable property of such an object is that
nothing that happens inside it can be communicated to the outside. As sometimes
occurs in physics, a simple but incorrect calculation gives the correct results for the
relation between the mass and the critical radius of a black hole. In Newtonian me-
chanics, the speed needed for a particle to escape from the surface of a planet or a
star of mass and radius is given by Equation 11-21:

If we set the escape speed equal to the speed of light and solve for the radius, we
obtain the critical radius called the Schwarzschild radius:

39-32

For an object that has a mass equal to five times that of our Sun (theoretically the
minimum mass for a black hole) to be a black hole, its radius would have to be ap-
proximately 15 km. Because no radiation is emitted from a black hole and its ra-
dius is expected to be small, the detection of a black hole is not easy. The best
chance of detection occurs in a binary-star system in which a black hole is a close
companion to a normal star. Then both stars revolve around their center of mass
and the gravitational field of the black hole will pull gas from the normal star into
the black hole. However, to conserve angular momentum, the gas does not go
straight into the black hole. Instead, the gas orbits around the black hole in a disk,
called an accretion disk, while slowly being pulled closer to the black hole. The gas
in this disk emits X rays because the temperature of the gas being pulled inward
reaches several million kelvins. The mass of a black-hole candidate can often be es-
timated. An estimated mass of at least five solar masses, along with the emission
of X rays, establishes a strong inference that the candidate is, in fact, a black hole.
In addition to the black holes just described, there are supermassive black holes
that exist at the centers of galaxies. At the center of the Milky Way is a supermas-
sive black hole that has a mass of about two million solar masses.

RS �
2GM
c2

RS,

ve � A2GM
R

RM

¢t2 � ¢t1
¢t

�
1
c2 (f2 � f1)

f2,

¢t2f1

¢t1

* Because this shift is usually very small, it does not matter by which interval we divide on the left side of the equation.
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Einstein’s Postulates The special theory of relativity is based on two postulates of Albert Einstein. All of the re-
sults of special relativity can be derived from these postulates.

Postulate 1: Absolute uniform motion cannot be detected.

Postulate 2: The speed of light is independent of the motion of the source.

An important implication of these postulates is

Postulate 2 (alternate): Every observer measures the same value for the speed of light.

2. The Lorentz Transformation 39-9

39-10

39-7

Inverse transformation 39-11

39-12

3. Time Dilation The time interval measured between two events that occur at the same point in space
in some reference frame is called the proper time interval between those two events. 
In another reference frame in which the same two events occur at different places, the time
interval between the events is longer by the factor 

39-13

4. Length Contraction The length of an object measured in the reference frame in which the object is at rest is called
its proper length When measured in another reference frame, the length of the object
along the direction parallel to the velocity of the object is

39-14

5. The Relativistic Doppler Effect 39-16a

39-16b

6. Clock Synchronization and Two events that are simultaneous in one reference frame typically are not simultaneous in 
Simultaneity another frame that is moving relative to the first. If two clocks are synchronized in the frame

in which they are at rest, they will be out of synchronization in another frame. In the frame
in which they are moving, the chasing clock leads by an amount

39-17

where is the proper distance between the clocks.

7. The Velocity Transformation 39-18a

39-18b

39-18cuz �
uœ
z

g[1 � (vuœ
x>c2)]

uy �
uœ
y

g[1 � (vuœ
x>c2)]

ux �
uœ
x � v

1 � (vuœ
x>c2)

Lp

¢tS � Lp

v
c2

f� �
41 � (v2>c2)

1 � (v>c) f0 receding

f� �
41 � (v2>c2)

1 � (v>c) f0 approaching

L �
Lp

g

Lp.

¢t � g ¢tp

g.¢t

¢tp

t� � ga t �
vx
c2 b

x� � g(x � vt), y� � y, z� � z

g �
1

41 � (v2>c2)

t � ga t� �
vx�
c2 b

x � g(x� � vt�), y � y�, z � z�

c



Inverse velocity transformation 39-19a

39-19b

39-19c

8. Relativistic Momentum 39-20

where is the mass of the particle.

9. Relativistic Energy

Kinetic energy 39-22

Rest energy 39-23

Total Relativistic energy 39-24

10. Useful Formulas for Speed, 
Energy, and Momentum

E � K � E0 �
mc2

41 � (u2>c2)

E0 � mc2

K �
mc2

41 � (u2>c2)
� mc2

m

pS �
muS

41 � (u2>c2)

uœ
z �

uz
g[1 � (vux>c2)]

uœ
y �

uy

g[1 � (vux>c2)]

uœ
x �

ux � v

1 � (vux>c2)
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Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

Answer to Concept Check

39-1 Only the rest mass of the spring would change.

Answers for Practice Problems

39-1

39-2 (a) 1.49, (b) and (c)

39-3 (a)

(b)
and

(c)
(2.00 MeV � 4.00 MeV) � 1.75 MeV � Kloss

(¢M)c2 � (Mf �Mi)c
2 � 7.75 MeV �

Kloss � Ki � Kf � 3.00 MeV � 1.25 MeV � 1.75 MeV,

Kf � Ef �Mfc
2 � 9.00 MeV � 7.75 MeV � 1.25 MeV,

u � 0.74cp � 1.04 � 103 MeV>c,1.67 h

TOPIC RELEVANT EQUATIONS AND REMARKS

39-25

39-27

39-28E � pc EW mc2

E2 � p2c2 � (mc2)2

u
p

�
pc

E
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CONCEPTUAL PROBLEMS

1 • The approximate total energy of a particle of mass 
moving at speed is (a) (b) (c) (d)
(e)

2 • A set of twins work in an office building. One twin works
on the top floor and the other twin works in the basement.
Considering general relativity, which twin will age more quickly?
(a) They will age at the same rate. (b) The twin who works on the
top floor will age more quickly. (c) The twin who works in the base-
ment will age more quickly. (d) It depends on the speed of the office
building. (e) None of the above.

3 • True or false:
(a) The speed of light is the same in all reference frames.
(b) The time interval between two events is never shorter than the

proper time interval between the two events.
(c) Absolute motion can be determined by means of length con-

traction.
(d) The light-year is a unit of distance.
(e) Simultaneous events must occur at the same place.
(f) If two events are not simultaneous in one frame, they cannot be

simultaneous in any other frame.
(g) The mass of a system that consists of two particles tightly

bound together by attractive forces is less than the sum of the
masses of the individual particles when separated.

4 • An observer sees a system moving past her that consists
of a mass oscillating on the end of a spring and measures the period

of the oscillations. A second observer, who is moving with the
mass–spring system, also measures its period. The second observer
will find a period that is (a) equal to (b) less than (c) greater
than (d) either (a) or (b) depending on whether the system was
approaching or receding from the first observer, (e) Not enough in-
formation is given to answer the question.

5 • The Lorentz transformation for and is the same as the
classical result: and Yet the relativistic velocity trans-
formation does not give the classical result and 
Explain why this result occurs.

ESTIMATION AND 
APPROXIMATION

6 •• The Sun radiates energy at the rate of approximately
Assume that this energy is produced by a reaction

whose net result is the fusion of four protons to form a single 4He
nucleus and the release of of energy that is radiated into
space. Calculate the Sun’s loss of mass per day.

7 •• The most distant galaxies that can be seen by the Hubble
telescope are moving away from us and have a redshift parameter
of about [The redshift parameter is defined as 
where is the frequency measured in the rest frame of the emitter
and is the frequency measured in the rest frame of the receiver.]
(a) What is the speed of the galaxies relative to us (expressed as a
fraction of the speed of light)? (b) Hubble’s law states that the reces-
sion speed is given by the expression where is the speed
of recession, is the distance, and , the Hubble constant, is equal
to where (The abbreviation for
parsec is ) Estimate the distance of such a galaxy from us using
the information given. SSM

pc.
1 pc � 3.26 c # y.75 km>s>Mpc,

Hx
vv � Hx,

f�
f

(f � f�)>f�,zz � 5.

25 MeV
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zy

T,
T,T,

T

SSM
1
2 cmu.

mc2,cmu,1
2mu2,mc2 � 1

2mu2,u V c
m

TIME DILATION AND LENGTH
CONTRACTION

8 • The proper mean lifetime of a muon is Muons in
a beam are traveling through a laboratory at (a) What is their
mean lifetime as measured in the laboratory? (b) How far do they
travel, on average, before they decay? 

9 •• In the Stanford linear collider, small bundles of electrons
and positrons are fired at each other. In the laboratory’s frame of
reference, each bundle is approximately long and in di-
ameter. In the collision region, each particle has an energy of 
and the electrons and the positrons are moving in opposite direc-
tions. (a) How long and how wide is each bundle in its own reference
frame? (b) What must be the minimum proper length of the acceler-
ator for a bundle to have both its ends simultaneously in the acce-
lerator in its own reference frame? (The actual proper length of the
accelerator is less than ) (c) What is the length of a positron
bundle in a reference frame that moves with the electron bundle?

10 • Use the binomial expansion equation

to derive the following results for the case when is much less
than

(a)

(b)

(c)

11 •• Star A and Star B are at rest relative to Earth. Star A is
27 from Earth, and as viewed from Earth, Star B is located beyond
(behind) Star A. (a) A spaceship is making a trip from Earth to Star A
at a speed such that the trip from Earth to Star A takes according
to clocks on the spaceship. At what speed, relative to Earth, must the
spaceship travel? (Assume that the times for the accelerations are very
short compared to the overall trip time.) (b) Upon reaching Star A,
the spaceship speeds up and departs for Star B at a speed such that
the gamma factor, is twice that of Part (a). The trip from Star A to
Star B takes (spaceship’s time). How far, in is Star B from
Star A in the rest frame of Earth and the two stars? (c) Upon reaching
Star B, the spaceship departs for Earth at the same speed as in Part (b).
It takes it (spaceship’s time) to return to Earth. If you were born
on Earth the day the ship left Earth and you remain on Earth, how old
are you on the day the ship returns to Earth?

12 • A spaceship travels to a star 35 away at a speed of
How long does the spaceship take to get to the star

(a) as measured on Earth and (b) as measured by a passenger on the
spaceship?

13 •• Unobtainium (Un) is an unstable particle that decays into
normalium (Nr) and standardium (St) particles. (a) An accelerator
produces a beam of Un that travels to a detector located 100 m away
from the accelerator. The particles travel with a velocity of 
How long do the particles take (in the laboratory frame) to get to
the detector? (b) By the time the particles get to the detector, half of
the particles have decayed. What is the half-life of Un? (Note: half-life
as it would be measured in a frame moving with the particles) (c) A
new detector is going to be used, which is located away from
the accelerator. How fast should the particles be moving if half of the
particles are to make it to the new detector? SSM
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14 •• A clock on Spaceship A measures the time interval be-
tween two events, both of which occur at the location of the clock.
You are on Spaceship B. According to your careful measurements,
the time interval between the two events is 1.00 percent longer than
that measured by the two clocks on Spaceship A. How fast is
Spaceship A moving relative to Spaceship B. (Hint: Use one or more
of the results of Problem 10.)

15 •• If a plane flies at a speed of how long must
the plane fly before its clock loses because of time dilation?
(Hint: Use one or more of the results of Problem 10.)

THE LORENTZ TRANSFORMATION,
CLOCK SYNCHRONIZATION, AND
SIMULTANEITY

16 •• Show that when the relativistic transformation
equations for and reduce to the classical transformation
equations.

17 •• A spaceship of proper length moves past a
transmitting station at a speed of (The transmitting sta-
tion broadcasts signals that travel at the speed of light.) A clock is
attached to the nose of the spaceship and a second clock is attached
to the transmitting station. The instant that the nose of the space-
ship passes the transmitter, the clock attached to the transmitter
and the clock attached to the nose of the spaceship are set equal to
zero. The instant that the tail of the spaceship passes the transmit-
ter a signal is sent by the transmitter that is subsequently detected
by a receiver in the nose of the spaceship. (a) When, according to
the clock attached to the nose of spaceship, is the signal sent?
(b) When, according to the clocks attached to the nose of spaceship,
is the signal received? (c) When, according to the clock attached
to the transmitter, is the signal received by the spaceship?
(d) According to an observer that works at the transmitting station,
how far from the transmitter is the nose of the spaceship when the
signal is received?

18 •• In frame event occurs after event and event
occurs at the origin whereas event occurs on the axis at

How fast and in what direction must an observer be trav-
eling along the axis so that events and occur simultaneously? Is
it possible for event to precede event for some observer?

19 •• Observers in reference frame see an explosion located
on the axis at A second explosion occurs, later, 
at In reference frame which is moving along the 
axis in the direction at speed the two explosions occur at the
same point in space. What is the separation in time between the two
explosions as measured in 

20 ••• In reference frame events 1 and 2 are separated by a
distance and a time (a) Use the Lorentz
transformation to show that in frame which is moving along the

axis with speed relative to the time separation is
(b) Show that the events can be simultane-

ous in frame only if is greater than (c) If one of the events
is the cause of the other, the separation must be less than be-
cause is the smallest time that a signal can take to travel from

to in frame Show that if is less than is greater than
in all reference frames. This shows that if the cause precedes the

effect in one frame, it must precede it in all reference frames.
(d) Suppose that a signal could be sent with speed so that in
frame the cause precedes the effect by the time Show
that there is then a reference frame moving with speed less than 
in which the effect precedes the cause.

cv
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21 ••• A rocket that has a proper length of is moving to
the right at a speed of It has two clocks—one in the nose and
one in the tail—that have been synchronized in the frame of the
rocket. A clock on the ground and the clock in the nose of the rocket
both read zero as they pass by each other. (a) At the instant the clock
on the ground reads zero, what does the clock in the tail of the
rocket read according to observers on the ground? When the clock
in the tail of the rocket passes the clock on the ground, (b) what does
the clock in the tail read according to observers on the ground, and
(c) what does the clock in the nose read according to observers on
the ground, and (d) what does the clock in the nose read according
to observers on the rocket? (e) At the instant the clock in the nose of
the rocket reads a light signal is sent from the nose of the
rocket to an observer standing by the clock on the ground. What
does the clock on the ground read when the observer on the ground
receives the signal? (f) When the observer on the ground receives
the signal, he immediately sends a return signal to the nose of the
rocket. What is the reading of the clock in the nose of the rocket
when that signal is received at the nose of the rocket?

THE VELOCITY TRANSFORMATION
AND THE RELATIVISTIC DOPPLER
EFFECT

22 •• SPREADSHEET A spaceship, at rest in a certain reference
frame is given a speed increase of (call this increase boost 1).
Relative to its new rest frame, the spaceship is given a further 
increase 10 seconds later (as measured in its new rest frame; call this
increase boost 2). This process is continued indefinitely, at in-
tervals, as measured in the rest frame of the spaceship. (Assume
that the boosts take a very short time compared to ) (a) Using a
spreadsheet program, calculate and graph the speed of the space-
ship in reference frame as a function of the boost number for
boost 1 to boost 10. (b) Graph the gamma factor in the same man-
ner. (c) How many boosts does it take until the speed of the ship in

is greater than (d) How far does the spaceship move
between boost 1 and boost 6, as measured in reference frame 
What is the average speed of the spaceship between boost 1 and
boost 6, as measured in 

23 • Light is emitted by a sodium sample that is moving toward
Earth with speed The wavelength of the light is 589 nm in the rest
frame of the sample. The wavelength measured in the frame of Earth
is Find 

24 • A distant galaxy is moving away from us at a speed of
Calculate the fractional redshift that

we observe the light from the galaxy to have.

25 •• Derive (Equation 39-16a)
for the frequency received by an observer moving with speed 
toward a stationary source of electromagnetic waves. 

26 • Show that if is much less than the Doppler shift is
given approximately by

27 •• A clock is placed in a satellite that orbits Earth with an
orbital period of By what time interval will this clock differ
from an identical clock on Earth after (Assume that special
relativity applies and neglect general relativity.)

28 •• For light that is Doppler-shifted with respect to an observer,
we define the redshift parameter where is the fre-
quency of the light measured in the rest frame of the emitter and is
the frequency measured in the rest frame of the receiver. If the emitter
is moving directly away from the receiver, show that the relative ve-
locity between the emitter and the receiver is 
where u � z � 1.

v � c(u2 � 1)>(u2 � 1),

f�
fz � (f � f�)>f�,
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29 • A light beam moves along the axis with speed in
frame which is moving in the direction with speed relative
to frame (a) Find the and components of the velocity of the
light beam in frame (b) Show that, according to the velocity trans-
formation equations, the magnitude of the velocity of the light
beam in is 

30 •• A spaceship is moving east at speed relative to
Earth. A second spaceship is moving west at speed relative to
Earth. What is the speed of one spaceship relative to the other
spaceship?

31 •• A particle moves with speed in the direction
along the axis of frame which moves with the same speed and
in the same direction along the axis relative to frame Frame 
moves with the same speed and in the same direction along the 
axis relative to frame (a) Find the speed of the particle relative to
frame (b) Find the speed of the particle relative to frame 

RELATIVISTIC MOMENTUM AND
RELATIVISTIC ENERGY

32 • A proton that has a rest energy equal to has a
total energy of (a) What is its speed? (b) What is its
momentum?

33 • If the kinetic energy of a particle equals twice its rest en-
ergy, what percentage error is made by using for the mag-
nitude of its momentum?

34 •• In a certain reference frame, a particle has momentum of
and total energy of (a) Determine the mass of

the particle. (b) What is the total energy of the particle in a reference
frame in which its momentum is (c) What is the rela-
tive speed of the two reference frames? 

35 •• Show that

Note: This relation was used to derive the relativistically correct ex-
pression for kinetic energy (Equation 39-22).

36 •• The particle has a mass of It decays
into a and each having mass Following the
decay of a one of the pions is at rest in the laboratory.
Determine the kinetic energy of the other pion after the decay and
of the prior to the decay.

37 •• In reference frame two protons, each moving at
approach each other head-on. (a) Calculate the total kinetic

energy of the two protons in frame (b) Calculate the total kinetic
energy of the protons as seen in reference frame which is moving
with one of the protons.

38 •• An antiproton has the same mass as a proton p. The
antiproton is created during the reaction 
During an experiment, protons at rest in the laboratory are bom-
barded with protons of kinetic energy which must be great
enough so that an amount of kinetic energy equal to can be
converted into the rest energy of the two particles. In the frame of
the laboratory, the total kinetic energy cannot be converted into rest
energy because of conservation of momentum. However, in the
zero-momentum reference frame in which the two initial protons
are moving toward each other with equal speed the total kinetic
energy can be converted into rest energy. (a) Find the speed of each
proton so that the total kinetic energy in the zero-momentum
frame is (b) Transform to the laboratory’s frame in which one
proton is at rest, and find the speed of the other proton. (c) Show
that the kinetic energy of the moving proton in the laboratory’s
frame is KL � 6mc2.
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cy� 39 ••• A particle of mass and kinetic energy

collides with a stationary particle of mass 
After the collision, the particles stick together. Find (a) the speed of
the first particle before the collision, (b) the total energy of the first
particle before the collision, (c) the initial total momentum of the
system, (d) the total kinetic energy after the collision, and (e) the
mass of the system after the collision.

GENERAL RELATIVITY

40 •• Light traveling in the direction of increasing gravita-
tional potential undergoes a frequency redshift. Calculate the shift
in wavelength if a beam of light of wavelength is sent
up a vertical shaft of height 

41 •• Let us revisit a problem from Chapter 3: Two cannons are
pointed directly toward each other, as shown in Figure 39-17. When
fired, the cannonballs will follow the trajectories shown. Point is
the point where the trajectories cross each other. Ignore any effects
due to air resistance. Using the principle of equivalence, show that
if the cannons are fired simultaneously (in the rest frame of the
cannons), the cannonballs will hit each other at point P.

P

L � 100 m.
l � 632.8 nm

2.00 MeV>c2.2.00 MeV
1.00 MeV>c2

A

B

P
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Problem 41

42 ••• A horizontal turntable rotates with angular speed 
There is a clock at the center of the turntable and an identical clock
mounted on the turntable a distance from the center. In an inertial
reference frame, in which the clock at the center is at rest, the clock
at distance is moving with speed (a) Show that from time
dilation according to special relativity, the time between ticks, 
for the clock at rest and for the moving clock, are related by

(b) In a reference frame rotating with the table, both clocks are at rest.
Show that the clock at distance experiences a pseudoforce 
in the rotating frame and that this is equivalent to a difference in grav-
itational potential between and the origin of 
(c) Use the difference in gravitational potential given in Part (b) to show
that in this frame the difference in time intervals is the same as in the
inertial frame.

GENERAL PROBLEMS

43 • How fast must a muon travel so that its mean lifetime is
if its mean lifetime at rest is 

44 • A distant galaxy is moving away from Earth with a speed
that results in each wavelength received on Earth being shifted so
that Find the speed of the galaxy relative to Earth.

45 •• Frames and are moving relative to each other along
the and axes (which superpose). Observers at rest in the two
frames set their clocks to when the two origins coincide.
In frame event 1 occurs at and and event
2 occurs at and The events occur simulta-
neously in frame (a) Find the magnitude and direction of the ve-
locity of relative to (b) At what time do both events occur as
measured in SSMS�?
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46 •• An interstellar spaceship travels from Earth to a star sys-
tem 12 light-years away (as measured in Earth’s frame). The trip
takes as measured by clocks on the spaceship. (a) What is the
speed of the spaceship relative to Earth? (b) When the spaceship ar-
rives, it sends an electromagnetic signal to Earth. How long after the
spaceship leaves Earth will observers on Earth receive the signal?

47 •• The neutral pion has a mass of This
particle can be created in a proton–proton collision:

Determine the threshold kinetic energy for the creation of a in a col-
lision of a moving proton and a stationary proton. (See Problem 38.)

48 •• A rocket that has a proper length of moves away
from a space station and in the direction at relative to an
observer on the station. An astronaut stands at the rear of the rocket
and fires a dart toward the front of the rocket at relative to
the rocket. How long does it take the dart to reach the front of the
rocket (a) as measured in the frame of the rocket, (b) as measured
in the frame of the space station, and (c) as measured in the frame
of the dart?

49 ••• Using a simple thought experiment, Einstein showed
that there is mass associated with electromagnetic radiation.
Consider a box of length and mass resting on a frictionless sur-
face. Attached to the left wall of the box is a light source that emits
a directed pulse of radiation of energy which is completely ab-
sorbed at the right wall of the box. According to classical electro-
magnetic theory, the radiation carries momentum of magnitude

(Equation 30-24). The box recoils when the pulse is emitted
by the light source. (a) Find the recoil velocity of the box so that mo-
mentum is conserved when the light is emitted. (Because is small
and is large, you may use classical mechanics.) (b) When the light
is absorbed at the right wall of the box the box stops, so the total
momentum of the system remains zero. If we neglect the very small
velocity of the box, the time it takes for the radiation to travel across
the box is Find the distance moved by the box in that
time. (c) Show that if the center of mass of the system is to remain
at the same place, the radiation must carry mass 

50 ••• Using the relativistic conservation of momentum and en-
ergy and the relation between energy and momentum for a photon

prove that a free electron (an electron not bound to an
atomic nucleus) cannot absorb or emit a photon.

51 ••• When a moving particle that has a kinetic energy greater
than the threshold kinetic energy strikes a stationary target par-
ticle, one or more particles may be created in the inelastic collision.
Show that the threshold kinetic energy of the moving particle is
given by

Here is the sum of the masses of the particles prior to the col-
lision, is the sum of the masses of the particles following the
collision, and is the mass of the target particle. Use this ex-
pression to determine the threshold kinetic energy of protons
incident on a stationary proton target for the production of a
proton–antiproton pair; compare your result with the result of
Problem 38. SSM
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52 ••• A particle of mass decays into two identical particles,
each of mass where Prior to the decay, the particle
of mass has a total energy of in the laboratory reference
frame. The velocities of the decay products are along the direction
of motion of Find the velocities of the decay products in the lab-
oratory reference frame.

53 ••• A rod of proper length makes an angle with the 
axis in frame Show that the angle made with the axis
in frame which is moving in the direction with speed 
is given by and that the length of the stick in is

54 ••• Show that if a particle moves at an angle with the axis
with speed in frame it moves at an angle with the axis in

given by

55 ••• For the special case of a particle moving with speed 
along the axis in frame show that its momentum and energy in
frame a frame that is moving along the axis with velocity are
related to its momentum and energy in by the transformation
equations

Compare these equations with the Lorentz transformation equa-
tions for and Notice that the quantities and 

transform in the same way as do and 

56 ••• The equation for the spherical wavefront of a light pulse
that begins at the origin at time is 
Frame moves with velocity along the axis. Using the Lorentz
transformation, show that such a light pulse also has a spherical
wavefront in frame by showing that 

57 ••• In Problem 56, you showed that the quantity
has the same value (zero) in both and 

A quantity that has the same value in all inertial frames is called a
Lorentz invariant. From the results of Problem 55, the quantity

must also be a Lorentz invariant. Show that
this quantity has the value in both the and reference
frames.

58 ••• A long rod that is parallel to the axis is released from
rest. Subsequently, it is in free fall with an acceleration of magni-
tude in the direction. An observer in a rocket ship moving
with speed parallel to the axis passes by. Using the Lorentz
transformations, show that the observer on the rocket ship will
measure the rod to be bent into a parabolic shape. Is the parabola
concave upward or concave downward? 

59 •• Show that if and in 
(Equation 39-18a) are both positive and less than then is posi-
tive and less than (Hint: Let and where

and are positive numbers that are less than 1.)

60 ••• In reference frame the acceleration of a particle is
Derive expressions for the acceleration com-

ponents and of the particle in reference frame that is
moving relative to in the direction with velocity v.xS
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Nuclear Physics

40-1 Properties of Nuclei

40-2 Radioactivity

40-3 Nuclear Reactions

40-4 Fission and Fusion

T
o many chemists, the atomic nucleus is modeled as a point charge that has
most of the mass of the atom. In this chapter, we will look at the nucleus
from the physicist’s perspective and see how the protons and neutrons that
make up the nucleus have played important roles in our everyday life as
well as in the history and structure of the universe.

In this chapter, we study the properties of atomic nuclei, examine radioactiv-
ity, and explore nuclear reactions. We also discuss fission and fusion. The fis-
sion of very heavy nuclei, such as uranium, is a major source of power today,
while the fusion of very light nuclei is the energy source that powers the stars,
including our Sun, and may hold the key to our energy needs of the future.

40-1 PROPERTIES OF NUCLEI

The nucleus of an atom has just two kinds of particles, protons and neutrons,*
which have approximately the same mass (the neutron is approximately 0.2 per-
cent more massive). The proton has a charge of and the neutron is uncharged.�e,

C H A P T E R

How much energy is released during

the fission of one gram of 235U?

(See Example 40-6).
?

1357

40

* The most prevalent hydrogen nucleus has a single proton.

THE DIABLO CANYON NUCLEAR
POWER PLANT NEAR SAN LUIS OBISPO,
CALIFORNIA. (Tony Hertz/Alamy.)
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* The word nucleon refers to either a neutron or a proton that is part of a nucleus.

The number of protons, is the atomic number of the atom, which also equals
the number of electrons in the atom. The number of neutrons that a nucleus has,

is approximately equal to for light nuclei. For heavier nuclei, the number of
neutrons is increasingly greater than The total number of nucleons*

is called the nucleon number or mass number of the nucleus. A par-
ticular nuclear species is called a nuclide. Two or more nuclides that have the
same atomic number but have different values for and are called isotopes.
A particular nuclide is designated by its atomic symbol (for example, H for hy-
drogen and He for helium) and its mass number as a superscript. The lightest
element, hydrogen, has three isotopes: protium, whose nucleus is just a sin-
gle proton; deuterium, whose nucleus is composed of one proton and one
neutron; and tritium, whose nucleus is composed of one proton and two neu-
trons. Although the mass of the deuterium atom is about twice the mass of the
protium atom and the mass of the tritium atom is about three times the mass of
protium, these three atoms have nearly identical chemical properties because they
each have one electron. On the average, there are about three stable isotopes
for each element, although some atoms have only one stable isotope while oth-
ers have five or six. The most common isotope of the second lightest element,
helium, is The nucleus is also known as an particle. Another isotope
of helium is and the nucleus is also known as helion.

Nucleons exert a strong attractive force on other nucleons. This force, called
the strong nuclear force or the hadronic force, is much stronger than the elec-
trostatic force of repulsion between the protons and is very much stronger than
the gravitational forces between the nucleons. (Gravity is so comparably weak
that it can always be neglected in nuclear physics.) The strong nuclear force is
roughly the same between two neutrons, two protons, or a neutron and a proton.
Two protons, of course, also exert a repulsive electrostatic force on each other due
to their charges, which tends to weaken the attraction between them somewhat.
The strong nuclear force decreases rapidly with distance, and it is negligible
when two nucleons are more than a few femtometers apart.

SIZE, SHAPE, AND DENSITY

The size and shape of the nucleus can be determined by bombarding it with high-
energy particles and observing the scattering. The results depend somewhat on
the kind of experiment. For example, a scattering experiment using electrons mea-
sures the charge distribution of the nucleus, whereas a scattering experiment
using neutrons determines the region of influence of the strong nuclear force.
A wide variety of experiments suggest that most nuclei are approximately spher-
ical, with radii given approximately by

40-1

NUCLEAR RADIUS

where is approximately The fact that the radius of a spherical nucleus
is proportional to implies that the volume of the nucleus is proportional to 
Because the mass of the nucleus is also approximately proportional to the
densities of all nuclei are approximately the same. This is analogous to a drop of
liquid, which also has constant density independent of its size. The liquid-drop
model of the nucleus has proved quite successful in explaining nuclear behavior,
especially the fission of heavy nuclei.

A,
A.A1>3 1.2 fm.R0

R � R0A
1>3

3He3He,
a4He4He.

3H,

2H,

1H,
A

ANZ

A � N � Z
Z.

ZN,

Z,
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F I G U R E  4 0 - 2 (a) Eight neutrons in a one-dimensional box. In accordance with the exclusion
principle, only two neutrons (that have opposite spins) can be in a given energy level. (b) Four
neutrons and four protons in a one-dimensional box. Because protons and neutrons are not
identical particles, two of each can be in the same energy level. The total energy is much less for
this case than for the case shown in Figure 40-2a.

N AND Z Numbers

For light nuclei, the greatest stability is achieved when the numbers of protons
and neutrons are approximately equal, For heavier nuclei, instability
caused by the electrostatic repulsion between the protons is minimized when
there are more neutrons than protons. We can see this by looking at the and 

numbers for the most abundant isotopes of some representative elements: for
and for and for and 

for and and for and (The atomic
number has been included here as a subscript of the atomic symbol for em-
phasis. It is not actually needed because the atomic number is implied by the
atomic symbol.)

Figure 40-1 shows a plot of versus for the known stable nuclei. The curve
follows the straight line for small values of and We can understand
this tendency for and to be equal by considering the total energy of parti-
cles in a one-dimensional box. For Figure 40-2 shows the energy levels for
eight neutrons and for four neutrons and four protons. Because of the exclusion
principle, only two identical particles (that have opposite spins) can be in the
same space state. Because protons and neutrons are not identical, we can put two
each in a state, as shown in Figure 40-2b. Thus, the total energy for four protons
and four neutrons is less than the total energy for eight neutrons (or eight pro-
tons), as shown in Figure 40-2a. When the Coulomb energy of repulsion, which
is proportional to is included, this result changes somewhat. For large values
of and the total energy may be increased less by adding two neutrons than
by adding one neutron and one proton because of the electrostatic repulsion
involved in the latter case. This explains why for the larger values of 
(for the heavier nuclei).

AN 
 Z

Z,A
Z2,

A � 8,
AZN

Z.NN � Z
ZN

Z
Z � 92.238

92U,N � 146Z � 82;207
82Pb,N � 125

Z � 26;56
26Fe,N � 30Z � 20;40

20Ca,N � 20Z � 8;16
8O,N � 8
Z

N

N � Z.

PRACTICE PROBLEM 40-1

(a) Calculate the total energy of the eight neutrons in the one-dimensional box shown in
Figure 40-2a. (b) Calculate the total energy of the four neutrons and four protons in the
one-dimensional box shown in Figure 40-2b.
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F I G U R E  4 0 - 1 Plot of number of
neutrons versus number of protons for
the stable nuclides. The dashed line is N � Z.
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40-3

TOTAL NUCLEAR BINDING ENERGY

Eb � (ZMH � Nmn � MA)c2

where is the mass of the atom and is the mass of the neutron. (Note that
the mass of the electrons in the term is canceled by the mass of the elec-
trons in the term † ) The atomic masses of the neutron and of some selected
isotopes are listed in Table 40-1.

MA.
ZZMHZ

mn
1HMH

Example 40-1 Binding Energy of the Last Neutron

Find the binding energy of the last neutron in a nucleus.

PICTURE The binding energy is energy equivalent of the mass of a atom plus the mass
of a neutron minus the mass of a atom. We find the masses from Table 40-1 and multi-
ply by to obtain the energy equivalents.c2

4He

3He

4He

MASS AND BINDING ENERGY

The mass of a nucleus is less than the sum of the masses of its parts by where
is the binding energy and is the speed of light. When two or more nucleons

fuse together to form a nucleus, the total mass decreases and energy is released.
Conversely, to break up a nucleus into its parts, energy is absorbed by the system
and the mass of the system increases.

Atomic masses and nuclear masses are often given in unified atomic mass
units (u), defined as one-twelfth the mass of a atom. The rest energy of one
such mass unit is

40-2

Consider for example, which consists of two protons and two neutrons. The
mass of an atom can be accurately measured in a mass spectrometer. The mass of
the atom is and the mass of the atom is These val-
ues include the masses of the electrons in the atom. The mass of the neutron is

The sum of the masses of two atoms and two neutrons is
which is greater than the mass of the

atom by * We can find the binding energy of the nucleus from
this mass difference of by using the mass conversion factor

from Equation 40-2. Then

The total binding energy of is thus In general, the binding energy
of a nucleus of an atom of atomic mass having protons and neutrons is
found by calculating the difference between the sum of the masses of the nucleons
and the mass of the nucleus and then multiplying by c2:

NZMA

28.30 MeV.4He

(0.030 377 u)c2 � (0.030 377 u)c2 �
931.5 MeV>c2

1 u
� 28.30 MeV

(1 u)c2 � 931.5 MeV
0.030 377 u

4He0.030 377 u.4He
2(1.007 825 u) � 2(1.008 665 u) � 4.032 980 u,

1H1.008 665 u.

1.007 825 u.1H4.002 603 u4He

4He,

(1 u)c2 � 931.5 MeV

12C

cEb

Eb >c2,

* Note that by using the masses of two 1H atoms rather than two protons, the masses of the electrons in the atom are
accounted for. We do this because it is atomic masses, not nuclear masses, that are measured directly and listed in
mass tables.

† The mass associated with the binding energies of the electrons are not accounted for in this calculation.



CHECK As expected, the step-3 result of is less than the total binding energy of
a nucleus. (The total binding energy of a nucleus is a value that is cal-
culated preceding Equation 40-3.)

28.30 MeV,4He4He
20.58 MeV

Properties of Nuclei S E C T I O N  4 0 - 1 | 1361

1. Add the mass of the neutron to that of 3He:

� 4.024 695 u

m3He � mn � 3.016 030 u � 1.008 665 u

2. Subtract the mass of from the result:4He

� 4.024 695 u � 4.002 603 u � 0.022 092 u

¢m � (m3He � mn) � m4He

3. Multiply this mass difference by and convert to MeV:c2

20.58 MeV�

� (0.022 092 u)c2 �
931.5 MeV>c2

1 u

Eb � (¢m)c2

SOLVE

Table 40-1 Atomic Masses of the Neutron and Selected Isotopes*

Element Symbol Z Atomic mass, u

Neutron n 0 1.008 665
Hydrogen

Protium 1 1.007 825
Deuterium 1 2.014 102
Tritium 1 3.016 050

Helium 2 3.016 030
2 4.002 603

Lithium 3 6.015 125
3 7.016 004

Boron 5 10.012 939
Carbon 6 12.000 000

6 13.003 354
6 14.003 242

Nitrogen 7 13.005 738
7 14.003 074

Oxygen 8 15.994 915
Sodium 11 22.989 771
Potassium 19 38.963 710
Iron 26 55.939 395
Copper 29 62.929 592
Silver 47 106.905 094
Gold 79 196.966 541
Lead 82 207.976 650
Polonium 84 211.989 629
Radon 86 222.017 531
Radium 88 226.025 360
Uranium 92 238.048 608
Plutonium 94 242.058 725

*Mass values obtained at <http://physics.nist.gov/PhysRefData/Compositions/index.html>.

242Pu

238U

226Ra

222Rn

212Po

208Pb

197Au

107Ag

63Cu

56Fe

39K

23Na

16O

14N

13N

14C

13C

12C

10B

7Li

6Li

4He

3He

3H or T

2H or D

1H

http://physics.nist.gov/PhysRefData/Compositions/index.html
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* The positron has the same mass as an electron and it has a charge of �e.

Figure 40-3 shows the binding energy per nucleon versus The mean
value is approximately The flatness of the curve for shows that

is approximately proportional to This indicates that there is saturation of
nuclear forces in the nucleus as would be the case if each nucleon were attracted
only to its nearest neighbors. Such a situation also leads to a constant nuclear den-
sity consistent with the measurements of the radius. If, for example, there were no
saturation and each nucleon bonded to each other nucleon, there would be 
bonds for each nucleon and a total of bonds altogether. The total bind-
ing energy, which is a measure of the energy needed to break all these bonds,
would then be proportional to and would not be approximately
constant. The steep rise in the curve for low is due to the increase in the num-
ber of nearest neighbors and therefore to the increased number of bonds per
nucleon. The gradual decrease at high is due to the Coulomb repulsion of the
protons, which increases as and decreases the binding energy. For very large 
this Coulomb repulsion is so great that a nucleus that has an greater than
approximately 300 is unstable and undergoes spontaneous fission.

A
A,Z2

A

A
Eb>AA(A � 1),

A(A � 1)
A � 1

A.Eb

A 
 508.3 MeV.
A.Eb>A
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Eb/A,
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12C
16O

20Ne

24Mg
Ca Fe Zn Kr

Mo Te
Sm Lu Hg Ra

F I G U R E  4 0 - 3 The binding energy per nucleon versus the nucleon number For nuclei
that have values of greater than 50, the curve is approximately constant, indicating that the
total binding energy is approximately proportional to A.

A
A.

40-2 RADIOACTIVITY

Many nuclei are radioactive; that is, they decay into other nuclei by the emission
of particles such as photons, electrons, neutrons, or particles. The terms decay,

decay, and decay were used before it was discovered that particles are 
nuclei, particles are either electrons or positrons* and rays are pho-
tons. The rate of decay of a radioactive sample decreases exponentially with in-
creasing time. This exponential time dependence is characteristic of all radioactivity and
indicates that radioactive decay is a statistical process. Because each nucleus is well
shielded from others by the atomic electrons, pressure and temperature changes
have little or no effect on the rate of radioactive decay or other nuclear properties.

g(b�),(b�)b

4Heagb

aa



where

40-8

is the decay rate at time The decay rate is the quantity that is determined
experimentally. The decay rate is also called the activity of the sample.

The average or mean lifetime is equal to the reciprocal of the decay constant
(see Problem 40):

40-9t �
1
l

t

Rt � 0.

R0 � lN0

Radioactivity S E C T I O N  4 0 - 2 | 1363

40-7

DECAY RATE

R � �
dN
dt

� lN � lN0e
�lt � R0e

�lt

See

Math Tutorial for more

information on 

Exponential Functions

Let be the number of radioactive nuclei at some time If the decay of an in-
dividual nucleus is a random event, we expect the number of nuclei that decay in
some time interval to be proportional both to and to Because of these
decays, the number will decrease. The change in between time and time

is given by

40-4

where is a constant of proportionality called the decay constant. The rate of
change of is proportional to This is characteristic of exponential
decay. To solve Equation 40-4 for we first divide each side by thus separat-
ing the variables and 

Integrating, we obtain

or

40-5

where is the number of nuclei that remain at time For convenience, we drop
the primes from and This introduces no ambiguity because the parameters

and have been integrated out of the equation. Taking the exponential of each
side, we obtain

or

40-6

The number of radioactive decays per second is called the decay rate R:

N � N0e
�lt

N
N0

� e�lt

tN
t�.N�

t�.N�

ln
N�

N0

� �lt�

�
N�

N0

dN
N

� �l�
t�

0
dt

dN
N

� �l dt

t:N
N,N,

N.N, dN>dt,l

dN � �lN dt

t � dt
tNN

dt.Ndt

t.N
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Example 40-2 Counting Rate for Radioactive Decay

A radioactive source has a half-life of At time the radioactive source is placed
near a detector, and the counting rate (the number of decay particles detected per unit time)
is observed to be Find the counting rate at times 

PICTURE The counting rate is proportional to the decay rate and the decay rate is given
by (Equation 40-12), where is the time divided by 

SOLVE

1.0 min.nR � A 12 B nR0

R,r

t � 3.0 min, and t � 10 min.
t � 1.0 min, t � 2.0 min,2000 counts>s.

t � 0,1.0 min.

1. Because the half-life is the counting rate
will be half as great at as at t � 0:t � 1.0 min

1.0 min,

1.0 � 103 counts>s at 1.0 min�

r1 � 1
2 r0 � 1

2 (2000 counts>s)

2. At the rate is half that at 1 min.
It decreases by one-half each minute:
t � 2.0 min,

2.5 � 102 counts>s at 3.0 min�

r3 � A 12 B 3r0 � 1
8 (2000 counts>s)

5.0 � 102 counts>s at 2.0 min�

r2 � A 12 B 2r0 � 1
4 (2000 counts>s)

3. At the rate will be multiplied
by the initial rate:

A 12 B 10
t � 10 min,

2.0 counts>s at 10 min�

� 1.95 counts>sr10 � A 12 B 10
r0 � 1

1024 (2000 counts>s)

CHECK As expected, the counting rate decreases as the number of minutes increases.

N

N0

t1/2 2t1/2

N0

N0

1
2

1
4

t

F I G U R E  4 0 - 4 Exponential radioactive
decay. After each half-life the number of
nuclei remaining has decreased by one-half.
The decay rate has the same time
dependence as does N.

R � lN

t1>2,

The mean lifetime is analogous to the time constant in the exponential decrease
in the charge on a capacitor in an circuit that we discussed in Section 25-6.
After a time equal to the mean lifetime, the number of radioactive nuclei and the
decay rate are each equal to percent of their original values. The half-
life is defined as the time it takes for the number of nuclei and the decay rate
to decrease by half. Setting and in Equation 40-6 gives

40-10

or

Solving for gives

40-11

Figure 40-4 shows a plot of versus If we multiply the numbers on the axis
by this graph becomes a plot of versus After each time interval of one half-
life, both the number of nuclei left and the decay rate have decreased to half of
their previous values. For example, if the decay rate is initially, it will be 
after one half-life, after two half-lives, and so forth. After half-lives, the
decay rate will be

40-12

The half-lives of radioactive nuclei vary from very small times (less than ) to
very large times (greater than ).1010 y

1 ms

R � A 12 B nR0

nA 12 B A 12 BR0

1
2R0R0

t.Rl,
Nt.N

t1>2 �
ln 2
l

� (ln 2)t � 0.693t

t1>2
e�lt1>2 � 2

N0

2
� N0e

�lt1>2

N � N0>2t � t1>2t1>2 e�1 � 37

RC

A radioactive isotope has a half-
life of 10 s. You are observing a
sample of this isotope. After
approximately one minute of
observation, there is only one
atom of this isotope left in your
sample. How many atoms of
this isotope will be left in your
sample 15 s later?

CONCEPT CHECK 40-1✓
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The SI unit of radioactive decay is the becquerel (Bq), which is defined as one
decay per second:

40-13

A historical unit that applies to all types of radioactivity is the curie which
is defined as

40-14

The curie is the rate at which radiation is emitted by of radium. Because this is
a very large unit, the millicurie or microcurie are often used.

BETA DECAY

Beta decay occurs in nuclei that have too many neutrons or too few neutrons for
stability. During decay, remains the same while either increases by

or decreases by 
An example of decay is the decay of a free neutron into a proton and an elec-

tron. (The half-life of a free neutron is about 10.8 min.) The energy of decay is
which is the difference between the rest energy of the neutron and the

rest energy of the proton and an electron. More generally, during decay, ab�

0.782 MeV,
b

b

1 (b�  decay).1 (b�  decay)
ZAb

(mCi)(mCi)
1 g

1 Ci � 3.7 � 1010 decays>s � 3.7 � 1010 Bq

(Ci),

1 Bq � 1 decay>s

Example 40-3 Detection-Efficiency Considerations

If the detection efficiency in Example 40-2 is 20 percent, (a) how many radioactive nuclei are
there at time and (b) at time (c) How many nuclei decay in the first minute?

PICTURE The detection efficiency depends on the probability that a radioactive decay parti-
cle will enter the detector and the probability that upon entering the detector it will produce
a count. If the efficiency is 20 percent, the decay rate must be five times the counting rate.

SOLVE

t � 1.0 min?t � 0

(a) 1. The number of radioactive nuclei is related to the decay rate
and the decay constant l:R

R � lN

2. The decay constant is related to the half-life: l �
ln 2.0
t1>2 �

0.693
1.0 min

� 0.693 min�1

3. Because the detection efficiency is 20 percent, the decay
rate is five times the counting rate. Calculate the initial
decay rate:

� 1.0 � 104 decays>sR0 � (5 decays>count) � (2000 counts>s)

CHECK The results for Parts (b) and (c) are equal, as expected. At the end of one half-life,
half of the nuclei have decayed and the other half remain.

4. Substitute to calculate the initial number of radioactive
nuclei at t � 0:N0

8.7 � 105� 8.66 � 105 �

N0 �
R0

l
�

1.0 � 104 s�1

0.693 min�1 �
60 s

1 min

(b) At time there are half as many radioactive
nuclei as at t � 0:

t � 1 min � t1>2,

4.3 � 105�

N1 � 1
2 (8.66 � 105) � 4.33 � 105

(c) The number of nuclei that decay in the first minute is N0 � N1:

4.3 � 105�

� 8.66 � 105 � 4.33 � 105

¢N � N0 � N1
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nucleus of mass number and atomic number decays into a nucleus, referred to
as the daughter nucleus, of mass number and atomic number and an
electron is emitted. (The original nucleus is called the parent.) If the decay energy
were shared by only the daughter nucleus and the emitted electron, the energy of
the electron would be uniquely determined by the conservation of energy and mo-
mentum. Experiments show, however, the energies of the electrons emitted during
the decay of a nucleus are observed to vary from zero to the maximum energy
available. A typical energy spectrum for the electrons is shown in Figure 40-5.

To explain the fact that energy seemed not to be conserved during decay,
Wolfgang Pauli in 1930 suggested that a third particle, which he called the neutrino,
is also emitted. Because the measured maximum energy of the emitted electrons is
equal to the total available for the decay, the rest energy and therefore the mass
of the neutrino was assumed to be zero. (It is now known that the mass of the neu-
trino is very small but not zero.) In 1948, measurements of the momenta of the
emitted electron and the recoiling nucleus showed that the neutrino was also
needed for the conservation of linear momentum during decay. The neutrino was
first observed experimentally in 1957. It is now known that there are at least three
kinds of neutrinos, one associated with electrons, one associated with
muons, and one associated with the tau particle, Moreover, each neutrino has
an antiparticle, written and It is the electron antineutrino that is emitted
during the decay of a neutron, which is written*

40-15

During decay, a proton changes into a neutron, and a positron (and a neutrino)
is emitted. A free proton cannot decay by positron emission because of conserva-
tion of energy (the mass of the neutron and the positron is greater than the mass of
the proton); however, because of binding-energy effects, a proton inside a nucleus
can decay. A typical decay is

40-16

The electrons or the positrons emitted during decay do not exist inside the nu-
cleus. They are created during the process of decay, just as photons are created
when an atom makes a transition from a higher energy state to a lower energy state.

An important example of decay is that of which is used in radioactive car-
bon dating:

40-17

The half-life for this decay is The radioactive isotope is produced in the
upper atmosphere during nuclear reactions caused by cosmic rays. The chemical
reactivity of a carbon atom that has a nucleus is the same as the chemical reac-
tivity of a carbon atom that has a nucleus. For example, atoms that have these
nuclei combine with oxygen to form molecules. Because living organisms con-
tinually exchange with the atmosphere, the ratio of to in a living or-
ganism is the same as the equilibrium ratio in the atmosphere, which is about

After an organism dies, it no longer absorbs from the atmosphere,
so the ratio of to continually decreases due to the radioactive decay of 
The number of decays per minute per gram of carbon in a living organism can
be calculated from the known half-life of and the number of nuclei in a
gram of carbon. The result is that there are approximately per minute
per gram of carbon in a living organism. Using this result and the measured num-
ber of decays per minute per gram of carbon in a nonliving sample of bone, wood,
or other object having carbon, we can determine the age of the sample. For exam-
ple, if the measured rate were per minute per gram, the age of the sam-
ple would be one half-life � 5730 years.

7.5 decays

15.0 decays

14C14C

14C

14C.12C14C

14C1.3 � 10�12.

12C14CCO2

CO2

12C

14C

14C5730 y.

14C S 14N � e � � ne

14C,b

b

13
7N S 13

6C � e � � ne

b�

b�

n S p � e� � ne

n
t
.ne , n

m
,

t.(n
t
)

(n
m
)(ne)

b

b

b�

Z� � Z � 1A
ZA N

Kmax K

F I G U R E  4 0 - 5 Number of electrons
emitted during decay versus kinetic
energy. The fact that all the electrons do not
have the same energy suggests that
another particle, one that shares the energy
available for decay, is emitted.

Kmax

b�

* This reaction is also written n S p � b� � ne.

Do not confuse the symbols and
with the symbol . The symbols

and denote particles (the electron
and the positron), whereas the
symbol denotes an amount of charge.e

e�e �

ee�

e �!
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Example 40-4 How Old Is the Artifact?

You have a summer job working in an archeological research lab. Your supervisor calls to tell
you that they found a new bone at their current site and asks you to determine the age of the
bone from a sample that she will send you. When the bone sample arrives, you take a sec-
tion that contains of carbon and you find a beta decay rate of 

PICTURE There are approximately per minute per gram of carbon in a living or-
ganism, and the half-life of carbon-14 is We need to determine the number of half-
lives that have occurred since the death of the organism. We do this by using the equality

(Equation 40-12), where is the current decay rate, is the initial decay rate,
and is the number of half-lives. We can determine the initial decay rate by multiplying the
decay rate per gram by the mass of the carbon of the sample.

SOLVE

n
R0RnRn � (1>2)nR0

5730 y.
15.0 decays

400 decays>min.200 grams

1. Write the decay rate after half-lives in terms of the initial
decay rate:

n Rn � A 12 B nR0

CHECK If the bone were from a recently living organism, we would expect the decay rate to
be a steady The current decay rate is given
as Because is roughly (actually ), the sample must be
approximately three half-lives old, which is about This is in agreement with the
step-5 result of 

PRACTICE PROBLEM 40-2 The Check of Example 40-4 states, “Because is
roughly (actually ), the sample must be approximately three half-lives old .”
Explain why this ratio of implies an age equal to three half-lives.1>8 Á1>7.51>8 400>3000

2.91(5730 y).
3(5730 y).

1>7.51>8400>3000400 decays>min.
[(15 decays>min)>g](200 g) � 3000 decays>min.

2. Calculate the initial decay rate (the decay for 200 g of carbon
when the organism died):

� 3000 decays>min

R0 � [(15 decays>min)>g](200 g)

3. Substitute the values for and into the step-1 equation
and solve for n:

RnR0

 2n �
3000
400

� 7.5

A 12 Bn �
400

3000

 400 decays>min � A 12 Bn3000 decays>min

Rn � A 12 BnR0

4. We solve for by taking the logarithm of each side:n n ln 2 � ln 7.5 ⇒  n �
ln 7.5
ln 2

� 2.91

5. The age of the bone is nt1>2: 1.67 � 104 yt � nt1>2 � 2.91(5730 y) �

Context-Rich

GAMMA DECAY

During decay, a nucleus in an excited state decays to a lower-energy state by the
emission of a photon. This process is the nuclear counterpart of spontaneous emis-
sion of photons by atoms and molecules. Unlike decay or decay, neither
the mass number nor the atomic number change during decay. Because the
spacing of the nuclear energy levels is of the order of (as compared with
spacing of the order of in atoms), the wavelengths of the emitted photons are
of the order of 1 pm 

l �
hc
E

�
1240 eV # nm

1 MeV
� 0.00124 nm � 1.24 pm

(1 pm � 10�12 m):
1 eV

1 MeV
gZA
ab

g



The mean lifetime for decay is often very short. It is usually observed only be-
cause it follows either decay or decay. For example, if a radioactive parent nu-
cleus decays by decay to an excited state of the daughter nucleus, the daughter
nucleus then decays to its ground state by emission. Direct measurements of
mean lifetimes as short as approximately are possible. Measurements of
mean lifetimes shorter than are difficult, but they can sometimes be made
by indirect methods.

A few emitters have very long lifetimes, of the order of hours. The energy
states that do have such long lifetimes are called metastable states.

ALPHA DECAY

All very heavy nuclei are potentially unstable via decay because the
mass of the original radioactive nucleus is greater than the sum of the masses of
the decay products—an particle and the daughter nucleus. Consider the decay
of into and an particle. This process is written as

40-18

The mass of the atom is The mass of the daughter atom 
is Adding (the mass of to the mass of 

we get for the total mass of the decay products. This value is less
than the mass of by which multiplied by gives

for the excess mass of when compared to the total mass of the
decay products. The isotope is therefore potentially unstable to decay. This
decay does in fact occur in nature with the emission of an particle of kinetic
energy (The kinetic energy of the particle is actually somewhat less
than because some of the released energy is taken up by the recoiling

nucleus.)
When a nucleus emits an particle, both and decrease by 2 and decreases

by 4. The daughter of a radioactive nucleus is often itself radioactive and decays
by either decay or decay or both. If the original nucleus has a mass number 
that is 4 times an integer, the daughter nucleus and all those in the decay chain will
also have mass numbers equal to 4 multiplied by an integer. Similarly, if the mass
number of the original nucleus is where is an integer, all the nuclei in the
decay chain will have mass numbers given by where decreases by one at
each decay. We can see, therefore, that there are four possible -decay chains, de-
pending on whether equals where is an integer.
All but one of these decay chains are found on Earth. The series is not found
because its longest-lived member (other than the stable end product ) is 
which has a half-life of only Because this period is much less than the
age of Earth, this series has disappeared.

Figure 40-6 shows the thorium series, for which It begins with an 
decay from to The daughter nuclide of an decay is on the left or
neutron-rich side of the stability curve (the dashed line in the figure), so it often
decays by decay. In the thorium series, decays by decay to 
which in turn decays by decay to There are then four decays to 
which decays by decay to The series branches at which decays ei-
ther by decay to or by decay to The branches meet at the stable
lead isotope 

The energies of particles from natural radioactive sources range from appro-
ximately to and the half-lives of the sources range from approxi-
mately to In general, the smaller the energy of the emitted particle,
the longer the half-life. As we discussed in Section 35-4, the enormous variation

a1010 y.10�5 s
7 MeV,4 MeV
a

208Pb.

212Po.b�208Tla

212Bi,212Bi.b�

212Pb,a228Th.b�

228Ac,b�228Rab�

a228Ra.232Th
aA � 4n.

2 � 106 y.

237Np,209Bi
4n � 1

nor 4n � 3,4n � 2,4n � 1,4n,A
aa

n4n � 1,
n4n � 1,

Aba

AZNa

228Ra
4.08 MeV

a4.08 MeV.
a

a232Th

232Th4.08 MeV>c2
931.5 MeV>c20.004 383 u,232Th

232.033 667 u

228Ra,4He)4.002 603 u228.031 064 u.228Ra
232.038 050 u.232Th

232Th S 228Ra � a � 228Ra � 4He

a228Ra (Z � 88)232Th (Z � 90)
a

a(Z 
 83)

g

10�11 s
10�11 s
g

b

ba

g
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F I G U R E  4 0 - 6 The thorium decay series. The dashed line is the curve of stability.(4n) a

U = k2eZe
r1

E = k2eZe/r1

U
Umax

E

0
R

E
K

r1
r

in half-lives was explained by George Gamow in 1928. He considered decay to
be a process in which an particle is first formed inside a nucleus and then tun-
nels through the Coulomb barrier (Figure 40-7). A slight increase in the energy of
the particle reduces the relative height of the barrier and also the thick-
ness Because the probability of penetration is so sensitive to the relative
height and thickness of the barrier, a small increase in leads to a large increase
in the probability of barrier penetration and therefore to a significantly shorter
lifetime. Gamow was able to derive an expression for the half-life as a function of

that is in excellent agreement with experimental results.E

E
r1 � R.

Umax � Ea

a

a

F I G U R E  4 0 - 7 A model of the potential energy for an particle and a nucleus. The strong
attractive nuclear force that exists for values of less than the nuclear radius is indicated by the
potential well. Outside the nucleus, the nuclear force is negligible, and the potential energy is
given by the Coulomb potential energy function where is the nuclear charge
and is the charge of the particle. The kinetic energy of the particle is equal to the energy

when the particle is far away from the nucleus. A small increase in reduces the relative
height of the barrier and also reduces its thickness , leading to a much greater
probability of penetration. An increase in the energy of the emitted particles by a factor of
2 results in a reduction of the half-life by a factor of more than 1020.

a

r1 � RUmax � E
EaE

aKa2e
ZeU � �k2eZe>r, Rr

a
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Example 40-5 Exothermic or Endothermic?

Find the value of the reaction and state whether the reaction is
exothermic or endothermic.

p � 7Li S 4He � 4HeQ

40-3 NUCLEAR REACTIONS

Information about nuclei is typically obtained by bombarding the nuclei with var-
ious particles and observing the results. Although the first experiments of this type
were limited by the need to use naturally occurring radiation, they produced many
important discoveries. In 1932, J. D. Cockcroft and E. T. S. Walton succeeded in pro-
ducing the reaction

using artificially accelerated protons. At about the same time, the Van de Graaff
electrostatic generator (by R. Van de Graaff in 1931) and the first cyclotron (by E.
O. Lawrence and M. S. Livingston in 1932) were built. Since then, enormous ad-
vances in the technology for accelerating and detecting particles have been made,
and many nuclear reactions have been studied.

When a particle is incident on a nucleus, several different things can happen.
The incident particle may be scattered, either elastically or inelastically, or the inci-
dent particle may be absorbed by the nucleus, and another particle or particles
may be emitted. In inelastic scattering, the nucleus is left in an excited state and
subsequently decays by emitting photons (or other particles).

The amount of energy released or absorbed during a reaction (in the center of
mass reference frame) is called the value of the reaction. The value equals 
multiplied by the mass difference. When energy is released during a reaction, the re-
action is said to be an exothermic reaction. During an exothermic reaction, the total
mass of the incoming particles is greater than the total mass of the outgoing parti-
cles, and the value is positive. If the total mass of the incoming particles is less
than that of the outgoing particles, energy is required for the reaction to take place,
and the reaction is said to be an endothermic reaction. The value of an endother-
mic reaction is negative. In general, if is the change in mass, the value is

40-19

Q VALUE

An endothermic reaction cannot take place below a specific threshold energy. In
the laboratory reference frame in which stationary particles are bombarded by in-
coming particles, the threshold energy is somewhat greater than because the
outgoing particles must have some kinetic energy to conserve momentum.

A measure of the effective size of a nucleus for a particular nuclear reaction is
the cross section If is the number of the incident particles per unit time per unit
area (the incident intensity) and is the number of reactions per unit time per nu-
cleus, the cross section is

40-20

The cross section has the dimensions of area. Because nuclear cross sections are
of the order of the square of the nuclear radius, a convenient unit for them is the
barn, which is defined as

40-21

The cross section for a particular reaction is a function of energy. For an endother-
mic reaction, it is zero for energies below the threshold energy.

1 barn � 10�28 m2

s

s �
R
I

R
Is.

ƒQ ƒ

Q � �(¢m)c2

Q¢m
Q

Q

c2QQ

p � 7Li S 8Be S 4He � 4He
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1. Find the mass of each atom from Table 40-1:

4He 4.002 603 u

7Li  7.016 004 u

1H 1.007 825 u

CHECK Because the initial mass is greater than the final mass, the initial energy is greater
than the final energy and the reaction is exothermic, yielding 17.35 MeV.

2. Calculate the initial mass of the incoming particles:mi mi � 1.007 825 u � 7.016 004 u � 8.023 829 u

3. Calculate the final mass mf : mf � 2(4.002 603 u) � 8.005 206 u

4. Calculate the change in mass:

� �0.018 623 u

¢m � mf � mi � 8.005 206 u � 8.023 829 u

5. Calculate the value:Q

Q is positive, so the reaction is exothermic.

17.35 MeV�

Q � �(¢m)c2 � (�0.018 623 u)c2 �
931.5 MeV

1 u

REACTIONS WITH NEUTRONS

Nuclear reactions that involve neutrons are important for understanding nuclear re-
actors. The most likely reaction between a nucleus and a neutron that has an energy
of more than about is scattering. However, even if the scattering is elastic,
the neutron loses some energy to the nucleus because the nucleus recoils. If a neu-
tron is scattered many times in a material, its energy decreases until the neutron is
of the order of the energy of thermal motion where is Boltzmann’s constant
and is the absolute temperature. (At ordinary room temperatures, is approxi-
mately ) The neutron is then equally likely to gain or lose energy from
a nucleus when it is elastically scattered. A neutron that has an energy of the order
of is called a thermal neutron.

At low energies, a neutron is likely to be captured, producing an excited nucleus.
A ray is then emitted from the excited nucleus. Figure 40-8 shows the neutron-
capture cross section for silver as a function of the energy of the neutron. The large
g

kT

0.025 eV.
kTT

kkT,

1 MeV

SOLVE

PICTURE We find the masses of the atoms from Table 40-1 and calculate the difference
in the total mass of the outgoing particles and the incoming particles. The value is related
to the change in mass by If we use the mass of protium rather than the
mass of the proton, there will be four electrons on each side of the reaction, so the electron
masses will cancel.

Q � �(¢m)c2.¢m
Q

F I G U R E  4 0 - 8 Neutron-capture cross
section for silver as a function of the energy
of the incident neutron. The straight line
indicates the dependence of the cross
section, which is proportional to the time
spent by the neutron in the vicinity of the
silver nucleus. Superimposed on this
dependence are a large resonance and
several smaller resonances.

1>v
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peak in this curve is called a resonance. Except for the resonance, the cross section
varies fairly smoothly with energy, decreasing with increasing energy roughly as 
where is the speed of the neutron. We can understand this energy dependence as
follows: Consider a neutron moving with speed near a nucleus of diameter The
time it takes the neutron to pass the nucleus is Thus, the neutron-capture cross
section is proportional to the time spent by the neutron in the vicinity of the silver nu-
cleus. The dashed line in Figure 40-8 indicates this dependence. At the maximum
of the resonance, the value of the cross section is very large compa-
red with a value of only about 10 barns just past the resonance. Many elements show
similar resonances in their neutron-capture cross sections. For example, the maxi-
mum cross section for is approximately This material is thus very
useful for shielding against low-energy neutrons.

An important nuclear reaction that involves neutrons is fission, which is dis-
cussed in the next section.

40-4 FISSION AND FUSION

Figure 40-9 shows a plot of the nuclear mass difference per nucleon
in units of versus This curve is just the negative

of the binding-energy curve shown in Figure 40-3. From Figure 40-9, we can see
that the values for the mass difference per nucleon for both very heavy 
and very light nuclides are greater than the values for nuclides of inter-
mediate mass. Thus, energy is released when a very heavy nucleus, such as 
breaks up into two lighter nuclei—during a process called fission—or when two
very light nuclei, such as and fuse together to form a nucleus of greater
mass—during a process called fusion.

The applications of both fission and fusion to the generation of electrical power
and the development of nuclear weapons have had a profound effect on our lives
since the early twentieth century. The application of these reactions to the devel-
opment of energy resources may have an even greater effect in the future. We will
look at some of the features of fission and fusion that are important for their ap-
plication in reactors to generate power.

3H,2H

235U,
(A � 20)

(A � 200)

A.MeV>c2(M � Zmp � Nmn)>A

57 000 barns.113Cd

(s 
 5000 barns)
1>v2R>v. 2R.v

v
1>v,

– 9
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F I G U R E  4 0 - 9 Plot of mass difference
per nucleon in units of

versus The mass per nucleon is less
for nuclei of intermediate mass than for very
light nuclei or very heavy nuclei.
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(b)

(a)

(c)

Hidden layers in paintings are analyzed by bombarding the painting with neutrons and observing the radiative
emissions from nuclei that have captured a neutron. Different elements used in the painting have different half-
lives. (a) Van Dyck’s painting Saint Rosalie Interceding for the Plague-Stricken of Palermo. The black-and-white
images in (b) and (c) were formed using a special film sensitive to electrons emitted by the radioactively decaying
elements. Image (b), taken a few hours after the neutron irradiation, reveals the presence of manganese, found in
umber, which is a dark earth pigment used for the painting’s base layer. (Blank areas show where modern
repairs, free of manganese, have been made.) The image in (c) was taken 4 days later, after the umber emissions
had died away and when phosphorus, found in charcoal and boneblack, was the main radiating element. Upside
down is revealed a sketch of Van Dyck himself. The self-portrait, executed in charcoal, had been overpainted by
the artist. ((a) © 1991 by the Metropolitan Museum of Art. (b) and (c) Courtesy of Paintings Conservation Department,
Metropolitan Museum of Art.)
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FISSION

Very heavy nuclei are subject to spontaneous fission. They break apart
into two nuclei even if the nuclei are not disturbed. We can understand this by con-
sidering the analogy of a charged liquid drop. If the drop is not too large, surface
tension can overcome the repulsive forces of the charges and hold the drop to-
gether. There is, however, a certain maximum size beyond which the drop will be
unstable and will spontaneously break apart. Because of spontaneous fission, an
upper limit exists on the size of a nucleus and therefore on the number of elements
that are possible.

Some heavy nuclei—uranium and plutonium, in particular—can be induced
to fission by the capture of neutrons. During the fission of for example, the ura-
nium nucleus is excited by the capture of a neutron, causing it to split into two nu-
clei and emit several neutrons. The Coulomb force of repulsion drives the fission
fragments apart, with the released energy eventually appearing as thermal energy.
Consider, for example, the fission of a nucleus of mass number into two
nuclei of mass number Because the rest energy for is about

per nucleon greater than that for approximately per
nucleus is released during such a fission. This is a large amount of energy. By con-
trast, during the chemical reaction of combustion, only about of energy is
released per molecule of oxygen consumed.

4 eV

200 MeVA � 100,1 MeV
A � 200A � 100.
A � 200

235U,

(Z 
 92)

Example 40-6 Energy Released During the Fission of 235U

Calculate the total energy (in kilowatt-hours) released during the fission of of 
assuming that is released per fission.

PICTURE We need to find the number of uranium nuclei in one gram of which we find
using the fact that there are Avogadro’s number of nuclei in 

SOLVE

235 grams.(NA � 6.02 � 1023)

235U,

200 MeV

235U,1.00 g

1. The total energy is the number of nuclei multiplied by the
energy per nucleus:

E � NEnucleus � N(200MeV>nucleus)

2. Calculate N:

� 2.56 � 1021 nuclei

N �
6.02 � 1023 nuclei>mol

235 g>mol
� 1.00 g

3. Calculate the energy per gram in and convert to kW # h:eV

2.28 � 104 kW # h� 8.19 � 107 kW # s �

� 5.12 � 1029 eV � 8.19 � 1010 J

E �
200 � 106 eV

1 nucleus
� 2.56 � 1021 nuclei

The fission of uranium was discovered in 1938 by Otto Hahn and Fritz
Strassmann, who found that medium-mass elements (for example, barium and
lanthanum) were produced in the bombardment of uranium with neutrons.
The discovery that several neutrons were emitted during the fission process led
to speculation concerning the possibility of using those neutrons to cause further
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fissions, thereby producing a chain reaction. When captures a neutron, the re-
sulting nucleus emits rays as it de-excites to the ground state approximately
15 percent of the time and undergoes fission approximately 85 percent of the time.
The fission process is somewhat analogous to the oscillation of a liquid drop, as
shown in Figure 40-10. If the oscillations are violent enough, the drop splits in two.
Using the liquid-drop model, Niels Bohr and John Wheeler calculated the critical
energy needed by the nucleus to undergo fission. ( is the nucleus
formed momentarily by the capture of a neutron by ) For this nucleus, the crit-
ical energy is which is less than the of excitation energy pro-
duced when captures a neutron. The capture of a neutron by therefore
produces an excited state of the nucleus that has more than enough energy to
break apart. On the other hand, the critical energy for fission of the nucleus is

The capture of a neutron by a nucleus produces an excitation energy
of only Therefore, when a neutron is captured by to form the
excitation energy is not great enough for fission to occur. In this case, the excited

nucleus de-excites by emission and then decays to by decay, and
then again to by decay.

A fissioning nucleus can split into a pair of medium-mass nuclei, as shown in
Figure 40-11. Depending on the particular reaction, 1, 2, or 3 neutrons may be emit-
ted. The average number of neutrons emitted in the fission of is approximately
2.5. A typical fission reaction is

n � 235U S 141Ba � 92Kr � 3n

235U

b239Pu
b239Npg239U

239U,238U5.2 MeV.

238U5.9 MeV.

239U

236U

235U235U
6.4 MeV5.3 MeV,

235U.

236U236UEc

g236U

235U

n

Fission
fragments

235U
n

236U

236U

n

n

(b)

(a)

(c)

(d)

F I G U R E  4 0 - 1 0 Schematic
illustration of nuclear fission.
(a) The absorption of a neutron
by leads to (b) in an
excited state. (c) The oscillation
of has become unstable.
(d) The nucleus splits apart into
two nuclei that are less massive
than the original nucleus and
emits several neutrons that can
produce fission in other nuclei.

236U

236U235U



1376 | C H A P T E R  4 0 Nuclear Physics

NUCLEAR FISSION REACTORS

To sustain a chain reaction in a fission reactor, one of the neutrons (on average) that
is emitted during and following* the fission of must be captured by another

nucleus and cause it to fission. The reproduction constant of a reactor is de-
fined as the average number of neutrons from each fission that cause a subsequent
fission. The maximum possible value of for a uranium reactor is 2.5, but it is
normally less than this for two important reasons: (1) Some of the neutrons may
escape from the region containing fissionable nuclei and (2) some of the neutrons
may be captured by nonfissioning nuclei in the reactor. If is exactly 1, the reaction
will be self-sustaining. If is less than 1, the reaction will die out. If is significantly
greater than 1, the reaction rate will increase rapidly and become uncontrollable.
In the design of nuclear bombs, such a runaway reaction is desired. In power re-
actors, the value of must be kept very nearly equal to 1.

Because the neutrons emitted during and following fission have energies of the
order of whereas the chance for neutron capture leading to fission in 
is largest at small energies, the chain reaction can be sustained only if the neutrons
are slowed down before they escape from the reactor. At high energies

neutrons lose energy rapidly by inelastic scattering from 
the principal constituent of natural uranium. (Natural uranium contains 99.3 per-
cent and only 0.7 percent fissionable ) Once the neutron energy is below
the excitation energies of the nuclei in the reactor (about ), the main process
of energy loss is by elastic scattering, in which a fast neutron collides with a nu-
cleus at rest and transfers some of its kinetic energy to that nucleus. Such energy
transfers are efficient only if the masses of the two bodies are comparable. A neu-
tron will not transfer much energy in an elastic collision with a heavy uranium nu-
cleus. Such a collision is like one between a marble and a billiard ball. The marble
will be deflected by the much more massive billiard ball, and very little of its
kinetic energy will be transferred to the billiard ball. A moderator consisting of
material, such as water or carbon, that has light nuclei is therefore placed around
the fissionable material in the core of the reactor to slow down the neutrons.

1 MeV

235U.238U

238U,(1 MeV to 2 MeV),

235U1 MeV,

k

kk
k

k

k235U

235U

10

10–3

70 90 110 130 150 170
Mass number

10–2

10–1

1

Fission yield,
percent

F I G U R E  4 0 - 1 1 Distribution of the
possible fission fragments of The
splitting of into two fragments of
unequal mass is more likely than its splitting
into fragments of equal mass.

235U

235U.

* Neutrons are sometimes emitted by the fission products. These neutrons are typically emitted a few seconds following
the fission.
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F I G U R E  4 0 - 1 2 Simplified drawing of a pressurized-water reactor. The water in contact with the reactor core serves as
both the moderator and the heat-transfer material. It is isolated from the water used to produce the steam that drives the
turbines. Many features, such as the backup cooling mechanisms, are not shown here.

The inside of a nuclear power plant in Kent,
England. A technician is standing on
the reactor charge transfer plate, into which
uranium fuel rods fit. (© Jerry Mason/
Photo Researchers.)

The neutrons are slowed down by elastic collisions with the nuclei of the modera-
tor until they are in thermal equilibrium with the moderator. Because of the rela-
tively large neutron-capture cross section of the hydrogen nucleus in water, reac-
tors that use ordinary water as a moderator cannot easily achieve unless they
use enriched uranium, in which the content has been increased from 0.7 per-
cent to between 1 percent and 4 percent. Natural uranium can be used if heavy
water is used instead of ordinary (light) water as the moderator.
Although heavy water is expensive, most Canadian reactors use heavy water for a
moderator to avoid the cost of constructing uranium-enrichment facilities.

Figure 40-12 shows some of the features of a pressurized-water reactor commonly
used in the United States to generate electricity. Fission in the core heats the water to
a high temperature in the primary loop, which is closed. This water, which also
serves as the moderator, is under high pressure to prevent the water from boiling.

(H2O)(D2O)

235U
k � 1



1378 | C H A P T E R  4 0 Nuclear Physics

The hot water is pumped to a heat exchanger, where it heats the water in the sec-
ondary loop and converts the water to steam, which is then used to drive the tur-
bines that produce electrical power. Note that the water in the secondary loop is
isolated from the water in the primary loop to prevent its contamination by the ra-
dioactive nuclei in the reactor core.

The ability to control the reproduction factor precisely is important if a power
reactor is to be operated safely. Both natural negative-feedback mechanisms and
mechanical methods of control are used. If is greater than 1, the reaction rate in-
creases and the temperature of the reactor increases. If water is used as a modera-
tor, its density decreases with increasing temperature and the water becomes a less
effective moderator. A second important control method is the use of control rods
made of a material, such as cadmium, that has a very large neutron-capture cross
section. To decrease the reaction rate, the control rods are inserted so that more
neutrons are captured by the rods and becomes less than 1. To increase the reac-
tion rate, the rods are gradually withdrawn from the reactor; fewer neutrons are
captured by the control rods and becomes greater than 1.

Mechanical control of the reaction rate of a nuclear reactor using control rods is
possible only because some of the neutrons emitted during the fission process are
delayed neutrons. The time needed for a neutron to slow down from or

to the thermal-energy level and then be captured is only of the order of a
millisecond. If all the neutrons emitted during fission were prompt neutrons, that
is, emitted immediately during the fission process, mechanical control would not
be possible because the reactor would run away before the rods could be inserted
farther. However, approximately 0.65 percent of the neutrons emitted are delayed
by an average time of about 14 s. Those neutrons are emitted not during the fission
process itself but during the decay of the fission fragments. The effect of the de-
layed neutrons can be seen in the following examples.

2 MeV
1 MeV

k

k

k

k

Example 40-7 Doubling Time

If the average time between fission generations (the time it takes for a neutron emitted dur-
ing one fission to cause another) is and if the average number of neutrons
from each fission that cause a subsequent fission is 1.001, how long will it take for the reac-
tion rate to double?

PICTURE The reaction rate is the number of nuclei that fission per unit time. The time to
double the reaction rate is the product of the number of generations needed to double the
reaction rate and the generation time. If the reaction rate after generations is

We find the number of generations by setting equal to 2 and solving for 

SOLVE

N.1.001N1.001N.
Nk � 1.001,

N

t1 � 1 ms � 0.001 s

1. Set equal to 2 and solve for N:1.001N

N �
ln 2

ln 1.001
� 693

N ln 1.001 � ln 2

(1.001)N � 2

2. Multiply the number of generations by the generation time: 0.7 st � Nt1 � 693(0.001 s) �

CHECK The step-2 result of is approximately 700 times the average time between
generations. This many generations is plausible because the reproduction factor is so
close to 1.

TAKING IT FURTHER The doubling time of about is not enough time for insertion of
control rods.

0.7 s

k
0.7 s



Because of the limited supply of natural uranium, the small fraction of in
natural uranium, and the limited capacity of enrichment facilities, reactors based
on the fission of cannot meet our energy needs for very long. A promising
alternative is the breeder reactor. When the relatively plentiful but nonfissionable

nucleus captures a neutron, it decays by decay (with a half-life of 20 min)
to which in turn decays by decay (with a half-life of 2.35 days) to the fis-
sionable nuclide Because fissions with fast neutrons, no moderator is
needed. A reactor initially fueled with a mixture of and will breed
as much fuel as it uses or more if one or more of the neutrons emitted in the fission
of is captured by Practical studies indicate that a typical breeder reactor
can be expected to double its fuel supply in 7 to 10 years.

There are two major safety problems inherent with breeder reactors. The fraction
of delayed neutrons is only 0.3 percent for the fission of so the time between
generations is much less than that for ordinary reactors. Mechanical control is there-
fore much more difficult. Also, because the operating temperature of a breeder re-
actor is relatively high and a moderator is not desired, a heat-transfer material,
such as liquid sodium metal, is used rather than water (which is the moderator as
well as the heat-transfer material in an ordinary reactor). If the temperature of the
reactor increases, the resulting decrease in the density of the heat-transfer material
leads to positive feedback, because it will absorb fewer neutrons than before.
Because of these safety considerations, breeder reactors are not yet in commercial
use in the United States. There are, however, several in operation in France, Great
Britain, and the former Soviet Union.

FUSION

During fusion, two light nuclei, such as deuterium and tritium fuse
together to form a heavier nucleus. A typical fusion reaction is

2H � 3H S 4He � n � 17.6 MeV

(3H),(2H)

239Pu,

238U.239Pu

239Pu238U

239Pu239Pu.
b239Np,

b238U

235U

235U
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Example 40-8 Delayed Neutrons and Control-Rod Insertion

Assuming that 0.65 percent of the neutrons emitted are delayed by find the average
generation time and the doubling time if 

PICTURE The doubling time is where is the average time between generations.
Since 99.35 percent of the generation times are and 0.65 percent are the average
generation time is 

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

0.9935(0.001 s) � 0.0065(14 s).
14 s,0.001 s

tavNtav,

k � 1.001.
14 s,

Steps Answers

1. Compute the average generation time. tav � 0.9935(0.001 s) � 0.0065(14 s) � 0.092 s

2. Use your result to find the time for 693 generations. 60 st � 63.8 s �

CHECK The number of delayed neutrons is approximately 0.7 percent of the total number
of neutrons, but the generation time of is approximately 0.007 percent of Thus, an
increase in the doubling time by a factor of about 100 is plausible.

TAKING IT FURTHER A doubling time of is plenty of time for mechanical insertion of
control rods.

60 s

14 s.1 ms

Try-It-Yourself
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The energy released in fusion depends on the particular reaction. For the 
reaction, the energy released is Although this energy is less than the en-
ergy released during a fission reaction, it is a greater amount of energy per unit mass.
The energy released during this fusion reaction is 

per nucleon. This is approximately 3.5 times as great as the per nu-
cleon released in fission.

The production of power from the fusion of light nuclei holds great promise be-
cause of the relative abundance of the fuel and the absence of some of the dangers
inherent in fission reactors. Unfortunately, the technology necessary to make fu-
sion a practical source of energy has not yet been developed. We will consider the

reaction; other reactions present similar problems.
Because of the Coulomb repulsion between the and nuclei, very large

kinetic energies, of the order of are needed to get the nuclei close enough
together for the attractive nuclear forces to become effective and to cause fusion.
Such energies can be obtained in an accelerator, but because the scattering of one
nucleus by the other is much more probable than fusion, the bombardment of
one nucleus by another in an accelerator requires the input of more energy than is
recovered. To obtain energy from fusion, the particles must be heated to a temper-
ature great enough for the fusion reaction to occur as the result of random thermal
collisions. Because a significant number of particles have kinetic energies greater
than the mean kinetic energy, and because some particles can tunnel through
the Coulomb barrier, a temperature corresponding to is adequate to
ensure that a reasonable number of fusion reactions will occur if the density of the
particles is sufficiently high. The temperature corresponding to is of
the order of These temperatures occur in the interiors of stars, where such
reactions are common. At these temperatures, a gas consists of positive ions and
electrons and is called a plasma. One of the problems arising in attempts to
produce controlled fusion reactions is the problem of confining the plasma long
enough for the reactions to take place. In the interior of the Sun, the plasma is con-
fined by the enormous gravitational field of the Sun. In a laboratory on Earth,
confinement is a difficult problem.

The energy required to heat a plasma is proportional to the number density of
its ions, whereas the collision rate is proportional to (the square of the num-
ber density). If is the confinement time, the output energy is proportional to 
If the output energy is to exceed the input energy, we must have

where and are constants. In 1957, the British physicist J. D. Lawson evaluated
these constants from estimates of the efficiencies of various hypothetical fusion re-
actors and derived the following relation between density and confinement time,
known as Lawson’s criterion:

C2C1

C1n
2t 
 C2n

n2t.t

n2n,

108 K.
kT � 10 keV

kT � 10 keVT

3
2 kT,

1 MeV,

3H2H

2H � 3H

1 MeV3.52 MeV
(17.6 MeV)>(5 nucleons) �

17.6 MeV.

2H � 3H

40-22

LAWSON’S CRITERION

nt 
 1020 s # particles>m3

If Lawson’s criterion is met and the thermal energy of the ions is great enough
the energy released by a fusion reactor will just equal the energy

input; that is, the reactor will just break even. For the reactor to be practical, much
more energy must be released.

Two schemes for achieving Lawson’s criterion are currently under investiga-
tion. In one scheme, magnetic confinement, a magnetic field is used to confine the
plasma (see Section 26-2). In the most common arrangement, first developed in the
former Soviet Union and called a tokamak, the plasma is confined in a large toroid.

(kT � 10 keV),
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The magnetic field is a combination of the doughnut-shaped magnetic field due to
the windings of the toroid and the self-field due to the current of the circulating
plasma. The break-even point has almost been achieved using magnetic confine-
ment, but we are still a long way from building a practical fusion reactor.

Poloidal field/toroidal field bus

Inner support structure

Igloo neutron shield

Neutral
beamline

Equilibrium field coilsVacuum vessel

Ohmic heating coils

Toroidal field coils 

Torus vacuum
pumping station

Vacuum vessel heating
and cooling system

(b)

(a)

(c)

(a) Schematic of the Tokamak Fusion Test Reactor (TFTR). The
toroidal coils, surrounding the doughnut-shaped vacuum vessel,
are designed to conduct current for 3-s pulses, separated by
waiting times of Pulses peak at producing a
magnetic field of This magnetic field is the principal means
of confining the deuterium–tritium plasma that circulates within
the vacuum vessel. Current for the pulses is delivered by
converting the rotational energy of two 600-ton flywheels. Sets of
poloidal coils, perpendicular to the toroidal coils, carry an
oscillating current that generates a current through the confined

5.2 T.
73 000 A,5 min.

plasma itself, heating it ohmically. Additional poloidal fields help
stabilize the confined plasma. Between four and six neutral-beam
injection systems (only one of which is shown in the schematic) are
used to inject high-energy deuterium atoms into the
deuterium–tritium plasma, heating beyond what could be
obtained ohmically, ultimately to the point of fusion. (b) The TFTR
itself. The diameter of the vacuum vessel is (c) An 
plasma, lasting as it discharges within the vacuum vessel.
((All) Courtesy of the Princeton Plasma Physics Laboratory.)

1.6 s,
800-kA7.7 m.
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In a second scheme, called inertial confinement, a pellet of solid deuterium and
tritium is bombarded from all sides by intense pulsed laser beams of energies of
the order of lasting about (Intense beams of ions are also used.)
Computer simulation studies indicate that the pellet should be compressed to ap-
proximately times its normal density and heated to a temperature greater than

This should produce approximately of fusion energy in which
is so brief that confinement is achieved by inertia alone.

Because the break-even point is just barely being achieved in magnetic-
confinement fusion, and because the building of a fusion reactor involves many
practical problems that have not yet been solved, the availability of fusion to meet
our energy needs is not expected for at least several decades. However, fusion
holds great promise as an energy source for the future.

10�11 s,106 J108 K.
104

10�8 s.104 J

(a) The Nova target chamber, an
aluminum sphere approximately in
diameter, inside which 10 beams from the
world’s most powerful laser converge
onto a hydrogen-containing pellet 
in diameter. (b) The resulting fusion
reaction is visible as a tiny star, lasting

releasing neutrons. ((All)
Courtesy of the Lawrence Livermore National
Laboratory/U.S. Department of Energy.)

101310�10 s,

0.5 mm

5 m

(a)

(b)
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Properties of Nuclei A nucleus has neutrons, protons, and a mass number For light nuclei, 
and are approximately equal, whereas for heavy nuclei, is greater than 

Isotopes Isotopes are two or more nuclei that have the same atomic number but have different val-
ues of and 

Size and shape Most nuclei are approximately spherical in shape and have a volume that is proportional to
Because the mass is proportional to nuclear density is independent of 

Radius 40-1

Mass and binding energy The mass of a stable nucleus is less than the sum of the masses of its nucleons. The mass dif-
ference multiplied by equals the binding energy of the nucleus. The binding energy
is approximately proportional to the mass number 

2. Radioactivity Unstable nuclei are radioactive and decay by emitting particles ( nuclei), particles
(electrons or positrons), or rays (photons). All radioactivity is statistical in nature and fol-
lows an exponential decay law:

40-6

Decay rate 40-7

Mean lifetime 40-9

Half-life 40-11

The half-lives of decay range from a fraction of a second to millions of years. For decay,
the half-lives range up to hours or days. For decay, the half-lives are usually less than 
a microsecond.

Decay-rate units The number of decays per second of of radium is the curie (Ci).

3. Nuclear Reactions

value The value equals multiplied by the total mass of the incoming particles less the total
mass of the outgoing particles in the center of mass reference frame. If the net mass change
is the value is

40-19

Exothermic reaction If total mass decreases during a reaction, is positive and measures the energy released.

Endothermic reaction If total mass increases during a reaction, is negative. Then is the threshold energy for
the reaction in the center of mass reference frame.

4. Fission Fission occurs when some heavy elements, such as or capture a neutron and split
apart into two nuclei. The two nuclei then fly apart because of electrostatic repulsion. A chain
reaction is possible because several neutrons are emitted by a nucleus when it undergoes fis-
sion. A chain reaction can be sustained in a reactor if, on the average, one of the emitted neu-
trons is slowed down by scattering in the reactor and is then captured by another fissionable
nucleus. Very heavy nuclei are subject to spontaneous fission.(Z 
 92)

239Pu,235U

ƒQ ƒQ

Q

Q � �(¢m)c2

Q¢m,

c2QQ

(1 Bq � 1 decay>s)

1 Ci � 3.7 � 1010 decays>s � 3.7 � 1010 Bq

1 g

g

ba

t1>2 � t ln 2 � 0.693t

t �
1
l

R � lN � R0e
�lt

N � N0e
�lt

g

b4Hea

A.
Ebc2¢m

R � R0A
1>3 � (1.2 fm)A1>3

A.A,A.

A.N

Z

Z.NZN

A � N � Z.ZN
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Answer to Concept Check

41-1 The number left can be either one or zero, where zero
left is more probable than one left.

Answers to Practice Problems

40-1 (a) (b)

40-2 It is because so n � 3.1
8 � A 12 B 3,20E160E1

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

CONCEPTUAL PROBLEMS

1 • Isotopes of nitrogen, iron and tin have stable isotopes
and Give the symbols for two other isotopes of 

(a) nitrogen, (b) iron, and (c) tin.

2 • Why is the decay chain not found in nature?

3 • A decay by emission is often followed by decay.
When this occurs, it is by and not decay. Why?

4 • The half-life of is much less than the age of the uni-
verse, yet is found in nature. Why?

5 • What effect would a long-term variation in cosmic-ray
activity have on the accuracy of dating?

6 • Why does an element that has not exist?

7 • Why is a moderator needed in an ordinary nuclear fis-
sion reactor?

8 • Explain why water is more effective than lead in slowing
down fast neutrons.

9 • The stable isotope of sodium is What kind of beta
decay would you expect of (a) and (b)

10 • What is the advantage of a breeder reactor over an ordi-
nary reactor? What are the disadvantages of a breeder reactor?

11 • True or false:

(a) In a breeder reactor, fuel can be produced as fast as it is con-
sumed.

24Na?22Na
23Na.

Z � 130

14C

14C
14C

b�b�

ba

A � 4n � 1

118Sn.56Fe14N,

(b) The atomic nucleus is composed of protons, neutrons, and
electrons.

(c) The mass of a nucleus is less than the mass of a nucleus
plus the mass of a neutron.

(d) After two half-lives, all the radioactive nuclei in a given sample
have decayed.

12 • Why is it that extreme changes in the temperature or
the pressure of a radioactive sample have little or no effect on the
radioactivity?

ESTIMATION AND APPROXIMATION

13 • We found in Chapter 25 that the ratio of the resistivity of
the most insulating material to the resistivity of the least resistive
material (excluding superconductors) is approximately Few
properties of materials show such a wide range of values. Using in-
formation in the textbook or other resources, find the ratio of largest
to smallest for some nuclear properties of matter. Some examples
might be the range of mass densities found in an atom, the half-life
of radioactive nuclei, or the range of nuclear masses.

14 •• According to the United States Department of Energy,
the U.S. population consumes approximately joules of energy
each year. Estimate the mass (in kilograms) of (a) uranium that
would be needed to produce this much energy using nuclear fis-
sion and (b) deuterium and tritium that would be needed to pro-
duce this much energy using nuclear fusion.

1020

1022.

1H2H

5. Fusion A large amount of energy is released when two light nuclei, such as and fuse together.
Fusion takes place spontaneously inside the Sun and other stars, where the temperature is
great enough (about ) for thermal motion to bring the charged hydrogen ions close
enough together to fuse. Although controlled fusion holds great promise as a future energy
source, practical difficulties have thus far hindered its development.

Lawson criterion The minimum product of particle density and confinement time to get more energy out
of a fusion reactor than is put in is nt 
 1020 s # particles>m3.

tn

108 K

3H,2H

TOPIC RELEVANT EQUATIONS AND REMARKS
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PROPERTIES OF NUCLEI

15 • Calculate the binding energy and the binding energy
per nucleon from the masses given in Table 40-1 for (a)
(b) and (c)

16 • Calculate the binding energy and the binding energy
per nucleon from the masses given in Table 40-1 for (a)
(b) and (c)

17 • Use the radius formula (Equation 40-1),
where to compute the radii of the following nuclei:
(a) (b) and (c)

18 • During a fission process, a nucleus splits into two
nuclei whose mass number ratio is 3 to 1. Calculate the radii of the
nuclei formed during the process.

19 •• The neutron, when isolated from an atomic nucleus, de-
cays into a proton, an electron, and an antineutrino as follows:

The thermal energy of a neutron is of the order of
where is the Boltzmann constant. (a) In both joules and electron

volts, calculate the energy of a thermal neutron at (b) What
is the speed of that thermal neutron? (c) A beam of monoener-
getic thermal neutrons is produced at and has an intensity 
After traveling the beam has an intensity of Using this
information, estimate the half-life of the neutron. Express your an-
swer in minutes.

20 • Use (Equation 40-1), where for
the radius of a spherical nucleus to calculate the density of nuclear
matter. Express your answer in grams per cubic centimeter.

21 •• In 1920, 12 years before the discovery of the neutron,
Ernest Rutherford argued that proton–electron pairs might exist in
the confines of the nucleus in order to explain the mass number, 
being greater than the nuclear charge, He also used this argu-
ment to account for the source of beta particles in radioactive decay.
Rutherford’s scattering experiments in 1910 showed that the nu-
cleus had a diameter of approximately Using this nuclear di-
ameter, the uncertainty principle, and that beta particles have an
energy range of to show why the hypothetical
electrons cannot be confined to a region occupied by the nucleus.

22 •• Consider the following fission process: 

Determine the electrostatic potential energy, in
of the reaction products when the surfaces of the nucleus

and the nucleus are just touching immediately after being
formed during the fission process.

RADIOACTIVITY

23 • Homer enters the visitors’ chambers, and his Geiger
beeper sounds. He shuts off the beeper, removes the device from
his shoulder patch, and holds it near the only new object in the
room—an orb that is to be presented as a gift from the visiting
Cartesians. Pushing a button marked “monitor,” Homer reads
that the device is reading a counting rate of above
the background counting rate. After the counting rate has
dropped to above the background rate. (a) What is
the half-life of the source? (b) How high will the counting rate be
(above the background counting rate) after the monitoring
device was switched on?

24 • A certain source gives at time Its
half-life is How many counts per second will it give after
(a) (b) and (c) 8.0 min?6.0 min,4.0 min,

2.0 min.
t � 0.2000 counts>s

20 min

1000 counts>s 10 min,
4000 counts>s

137Cs
95RbMeV,

95
37Rb � 137

55Cs � 4n.

235
92U � n S

SSM

3.40 MeV,0.02 MeV

10 fm.

Z.
A,

R0 � 1.2 fm,R � R0A
1>3SSM

1
2 I.1350 km,

I.25°C

25°C.
kkT,

n S 1H � e � � n.

239Pu

197Au.56Fe,16O,
R0 � 1.2 fm,

R � R0A
1>3

208Pb.39K,
6Li,

SSM
238U.56Fe,

12C,

25 • The counting rate from a radioactive source is
at time and later the rate is
(a) What is the half-life? (b) What is the decay con-

stant? (c) What is the counting rate after 

26 • The half-life of radium is Calculate the number of
disintegrations per second of of radium and show that the
disintegration rate is approximately 

27 • A radioactive piece of silver foil is placed
near a Geiger counter and are observed at time 
(a) What is the counting rate at and at (b) If
the counting efficiency is 20 percent, how many radioactive silver
nuclei are there at time At time (c) At what time
will the counting rate be about 

28 • Use Table 40-1 to calculate the energy release, in 
for the decay of (a) and (b)

29 •• Plutonium is very toxic to the human body. Once it en-
ters the body it collects primarily in the bones, although it also can
be found in other organs. Red blood cells are synthesized within the
marrow of the bones. The isotope is an alpha emitter that has
a half-life of Because alpha particles are an ionizing
radiation, the blood-making ability of the marrow is, in time, de-
stroyed by the presence of In addition, many kinds of cancers
will also develop in the surrounding tissues because of the ionizing
effects of the alpha particles. (a) If a person accidentally ingested

of and all of it is absorbed by the bones of the person,
how many alpha particles are produced per second within the body
of the person? (b) When, in years, will the activity be 1000 alpha
particles per second?

30 •• Consider an alpha-emitting parent nucleus initially at
rest. The nucleus decays into a daughter nucleus Y and an alpha
particle as follows: (a) Show that the alpha
particle has a kinetic energy of (b) Show that the ki-
netic energy of the recoiling daughter nucleus is given by

31 • The fissile material is an alpha emitter. Write the re-
action that describes undergoing alpha decay. Given that

and an alpha particle have respective masses of
and use the relations ap-

pearing in Problem 30 to calculate the kinetic energies of the alpha
particle and the recoiling daughter nucleus.

32 • Through a friend in the security department at the mu-
seum, Angela obtains a sample of a wooden tool handle that con-
tains of carbon. The decay rate of the in the sample is

How long ago was the wood in the handle last alive?

33 • A sample of a radioactive isotope is found to have an ac-
tivity of immediately after it is pulled from the reactor that
formed the isotope. Its activity later is measured to be

(a) Calculate the decay constant and the half-life of the
sample. (b) How many radioactive nuclei were there in the sample
initially?

34 •• A sample of substance that has an atomic mass
of and emits particles has an activity of Find the
decay constant for the substance in reciprocal seconds and find the
half-life in years.

35 •• Radiation has been used for a long time in medical ther-
apy to control the development and growth of cancer cells. Cobalt-60,
a gamma emitter that emits photons that have energies of 
and is used to irradiate and destroy deep-rooted cancers.
Small needles made of of a specified activity are encased in
gold and used as body implants in tumors for time periods that are
related to tumor size, tumor cell reproductive rate, and the activity
of the needle. (a) A sample of that has a half-life of60Co,1.00-mg

60Co
1.33 MeV,

1.17 MeV

1.131 Ci.b59.934 u
1.00-mg

85.2 Bq.
2 h 15 min

115.0 Bq

8.1 Bq.
14C175 g

SSM

4.002 603 u,239.052 156 u, 235.043 923 u,
239Pu, 235U,

239Pu
239Pu

KY � 4Q>A.

(A � 4)Q>A.
A
ZX S A� 4

Z� 2Y � 4
2a � Q.

A
ZX

SSM

239Pu2.0 mg

239Pu.

24 360 years.
239Pu

242Pu.226Raa

MeV,

30 counts>s?
t � 2.4 min?t � 0?

t � 4.8 min?t � 2.4 min
t � 0.1000 counts>s (t1>2 � 2.4 min)

1.0 Ci.
1.00 g

1620 y.

20 min?
1000 counts>s.

10 mint � 0,8000 counts>s
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and that is used to irradiate a small internal tumor with
gamma rays, is prepared in the cyclotron of a medical center.
Determine the activity of the sample in curies. (b) What will the ac-
tivity of the sample be from now?

36 •• (a) Show that if the decay rate is at time and 
at some later time the decay constant is given by

and the half-life is given by 
(b) Use these results to find the decay constant and the half-life if the
decay rate is at and at 

37 •• A wooden casket is thought to be 18 000 years old. How
much carbon would have to be recovered from the object to yield a

counting rate of no less than with a detection effi-
ciency of 20 percent?

38 •• A sample of radioactive material is initially found to
have an activity of After its activity is
measured to be (a) Calculate the half-life of the
material. (b) How long (from the initial time) will it take for the
sample to reach an activity of 

39 •• The rubidium isotope is a emitter that has a half-
life of It decays into This nuclear decay is used to
determine the age of rocks and fossils. Rocks containing the fossils
of early animals have a ratio of to of 0.0100. Assuming that
there was no present when the rocks were formed, calculate the
age of the fossils.

40 ••• Consider a single nucleus of a radioactive isotope that
has a decay rate equal to The nucleus has not decayed at 
The probability that the nucleus will decay between time and
time is equal to (a) Show that this statement is con-
sistent with the fact that the probability is 1 that the nucleus will
decay between and (b) Show that the expected lifetime
of the nucleus is equal to Hint: The expected lifetime is equal
to divided by (c) A sample of material contains
a number of these radioactive nuclei at time What is the
mean lifetime of the radioactive nuclei in the sample?

NUCLEAR REACTIONS

41 • Using Table 40-1, find the values for the following
reactions: (a) and (b)

42 • Using Table 40-1, find the values for the following
reactions: (a) (b)

and (c)

43 •• (a) Use the values and for
the atomic masses of and respectively, to calculate the 
value (in MeV) for the reaction 
(b) Explain why you should not add the mass of the electron to
that of atomic for the calculation in Part (a).

44 •• (a) Use the values and for
the atomic masses of and respectively, to calculate the 
value (in MeV) for the -decay reaction

(b) Explain why you need to add twice the mass of an electron
to the mass of during the calculation of the value for the
reaction in Part (a).

FISSION AND FUSION

45 • Assuming an average energy of per fission,
calculate the number of fissions per second needed for a 
reactor. SSM

500-MW
200 MeV

Q13
6C

13
7N S 13

6C � e � � ve

b

Q13
6C,13

7N
13.003 354 u13.005 738 u

SSM
14N

14
6C S 14

7N � e � � ve.b-decay
Q14N,14C

14.003 074 u14.003 242 u

6Li � n S 3H � 4He � Q.4He � 1H � Q,
2H � 3He S2H � 2H S 3H � 1H � Q,

Q

3He � n � Q.
2H � 2H S1H � 3H S 3He � n � Q

Q

t � 0.
� 

0 le
�ltdt.� 

0 tle
�ltdt

1>l.t � .t � 0

le�ltdt.t � dt
t
t � 0.l.

87Sr
87Rb87Sr

87Sr.4.9 � 1010 y.
b�87Rb

10.0 decays>min?

73.5 decays>min.
4 d 5 h,115.0 decays>min.

5 counts>min14C

t1 � 60.0 s.800 Bqt � 01200 Bq

t1>2 � t1 ln(2)>ln(R0>R1).l � t�1
1  ln(R0>R1)

t � t1,
R1t � 0R0

SSM1.75 y

5.27 y 46 • If the reproduction factor in a reactor is 1.1, find the num-
ber of generations needed for the power level to (a) double, (b) in-
crease by a factor of 10, and (c) increase by a factor of 100. Find the
time needed in each case if (d) there are no delayed neutrons, so that
the time between generations is and (e) there are delayed
neutrons that make the average time between generations 

47 •• Consider the following fission reaction: 
The masses of the neutron, 

and are and
respectively. Calculate the value, in for the

fission reaction.

48 •• In 1989, researchers claimed to have achieved fusion in
an electrochemical cell at room temperature. Their now thoroughly
discredited claim was that a power output of was produced
by deuterium fusion reactions in the palladium electrode of their
apparatus. The two most likely reactions are

and

Of the deuterium nuclei that participated in these reactions, as-
sume half of the deuterium nuclei participated in the first reaction
and the other half participated in the second reaction. How many
neutrons per second would we expect to be emitted in the genera-
tion of of power?

49 •• A fusion reactor that uses only deuterium for fuel would
have the two reactions in Problem 48 taking place in the reactor.
The produced in the second reaction reacts immediately with
another in the reaction

The ratio of to atoms in naturally occurring hydrogen is
How much energy would be produced from of

water if all of the nuclei undergo fusion?

50 ••• The fusion reaction between and is

Using the conservation of momentum and the given value, find
the final energies of both the nucleus and the neutron, assum-
ing the initial kinetic energy of the system is and the ini-
tial momentum of the system is zero.

51 ••• Energy is generated in the Sun and other stars by fusion.
One of the fusion cycles, the proton–proton cycle, consists of the fol-
lowing reactions:

followed by

(a) Show that the net effect of these reactions is

(b) Show that is released during this cycle (not counting
the additional energy of that is released when each
positron meets an electron and the two annihilate). (c) The Sun ra-
diates energy at the rate of approximately Assuming
that this is due to the conversion of four protons into helium, rays,
and neutrinos, which releases what is the rate of proton
consumption in the Sun? How long will the Sun last if it continues
to radiate at its present level? (Assume that protons constitute
about half of the total mass, of the Sun.)2.0 � 1030 kg,

26.7 MeV,
g

4.0 � 1026 W.

1.02 MeV
24.7 MeV

41H S 4He � 2e� � 2ne � g

1H � 3He S 4He � e� � ne

1H � 2H S 3He � g

1H � 1H S 2H � e� � ne

1.00 MeV
4He

Q

3H � 2H S 4He � n � 17.6 MeV

3H2H

2H
4.0 L1.5 � 10�4.

1H2H

3H � 2H S 4He � n � 17.6 MeV

2H
3H

4.00 W

2H � 2H S 3H � 1H � 4.03 MeV

2H � 2H S 3He � n � 3.27 MeV

4.00 W

SSM

MeV,Q138.906 348 u,
94.905 842 u,235.043 923 u,1.008 665 u,139La95Mo,

235U,95
42Mo � 139

57La � 2n � Q.n S
235
92U �

100 ms.
1.0 ms,
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GENERAL PROBLEMS

52 • (a) Show that where is the
Coulomb constant and is the magnitude of the electron charge.
(b) Show that 

53 • The counting rate from a radioactive source is
The half-life of the source is Make a plot of the

counting rate as a function of time for times up to What is the
decay constant for the source?

54 • Find the energy needed to remove a neutron from (a)
and (b)

55 • The isotope decays according to 
The atomic mass of is Determine the maximum
kinetic energy of the electron. (Neglect recoil of the nitrogen atom.)

56 • The density of a neutron star is the same as the density of
a nucleus. If our Sun were to collapse to a neutron star, what would
be the radius of that object?

57 •• Show that the nucleus is stable and does not un-
dergo alpha decay, The mass of the 
nucleus is and the products of the decay are

and respectively.

58 •• Gamma rays can be used to induce photofission (fission
triggered by the absorption of a photon) in nuclei. Calculate the
threshold photon wavelength for the following nuclear reaction:

Use Table 40-1 for the masses of the interacting
particles.

59 • The relative abundance of (potassium 40) is
The isotope has a molar mass of is ra-

dioactive, and has a half-life of Potassium is an essen-
tial element of every living cell. In the human body the mass of
potassium constitutes approximately 0.36 percent of the total mass.
Determine the activity of this radioactive source in a student whose
mass is 

60 •• When a positron makes contact with an electron, the
electron–positron pair annihilate by way of the reaction 

Calculate the minimum total energy, in of the two photons
created when a positron–electron pair annihilate.

61 •• The isotope is a emitter and has a half-life of 
A saline solution containing the radioactive isotope has an activity
of and is injected into the bloodstream of a patient. Ten
hours later, the activity of of blood from the individual yields
a counting rate of at a counting efficiency of 20 percent.
Determine the volume of blood in the patient.

62 •• (a) Determine the distance of closest approach of an
particle in a head-on collision with a stationary nucleus of

and with a stationary nucleus of neglecting the recoil of the
struck nuclei. (b) Repeat the calculation taking into account the recoil
of the struck nuclei.

63 •• Twelve nucleons are in a one-dimensional infinite square
well of length (a) Using the approximation that the
mass of a nucleon is find the lowest energy of a nucleon in the
well. Express your answer in MeV. What is the ground-state energy
of the system of 12 nucleons in the well if (b) all the nucleons
are neutrons so that there can be no more than 2 in each spatial state
and (c) 6 of the nucleons are neutrons and 6 are protons so that there
can be as many as 4 nucleons in each spatial state? (Neglect the en-
ergy of Coulomb repulsion of the protons.)

64 •• The helium nucleus or particle is a very tightly bound
system. Nuclei with where is an integer (for example,

and ), can be modeled as agglomerates of par-
ticles. (a) Use this model to estimate the binding energy of a pair of 

a24Mg12C, 16O, 20Ne,
nN � Z � 2n,

a

1.0 u,
L � 3.0 fm.

10B,197Au
8.0-MeV a

12 counts>s1 mL
600 kBq

15 h.b24Na

MeV,2g.
b� � b� S

60 kg.

1.3 � 109 y.
40.0 g>mol,40K1.2 � 10�4.

40K

2H � gS 1H � n.

SSM104.905 250 u,4.002 603 u
108.904 756 u,

109Ag109
47Ag S 4

2He � 105
45Rh � Q.

109Ag

14.003 074 u.14N
14C S 14N � e � � ve.

14C

7Li.
4He

SSM

1 min.
10 s.6400 counts>s.

hc � 1240 MeV # fm.
e

kke2 � 1.44 MeV # fm,

particles from the atomic masses of and Assume that the
four particles in form a regular tetrahedron that has one par-
ticle at each vertex. (b) From the result obtained in Part (a) determine,
on the basis of the model, the binding energy of and compare
your result with the result obtained from the atomic mass of 

65 •• Nuclei of a radioactive isotope that has a decay constant of
are produced in an accelerator at a constant rate The number of

radioactive nuclei then obeys the equation 
(a) If is zero at sketch versus for the situation. (b) The
isotope is produced at a rate of 100 per second by placing ordi-
nary copper in a beam of high-energy photons. The reaction is

The isotope decays by decay and has a half-life of 
After a time long enough so that how many nuclei
are there?

66 •• The total energy consumed in the United States in is
approximately How many kilograms of would be
needed to provide this amount of energy if we assume that

of energy is released by each fissioning uranium nucleus,
that all of the uranium atoms undergo fission, and that all of the en-
ergy-conversion mechanisms used are 100 percent efficient?

67 •• (a) Find the wavelength of a particle in the ground state
of a one-dimensional infinite square well of length 
(b) Find the momentum in units of for a particle that has this
wavelength. (c) Show that the total energy of an electron that has
this wavelength is approximately (d) What is the kinetic en-
ergy of an electron in the ground state of the well? This calculation
shows that if an electron were confined in a region of space as small
as a nucleus, it would have a very large kinetic energy.

68 •• If and have respective masses of 
and determine the minimum energy, 

in MeV, required to remove a proton from a nucleus.

69 ••• Assume that a neutron decays into a proton and an elec-
tron without the emission of a neutrino. The kinetic energy shared
by the proton and the electron is then In the rest frame
of the neutron, the total momentum is zero, so the momentum of
the proton must be equal and opposite the momentum of the elec-
tron. This determines the ratio of the kinetic energies of the two par-
ticles, but because the electron is relativistic, the exact calculation of
these relative kinetic energies is somewhat challenging. (a) Assume
that the kinetic energy of the electron is and calculate the
momentum of the electron in units of Hint: Use

(Equation 39-27). (b) Using your result from Part
(a), calculate the kinetic energy of the proton. (c) Because the
total kinetic energy of the electron and the proton is 
the calculation in Part (b) gives a correction to the assumption that
the kinetic energy of the electron is What percentage of

is this correction?

70 ••• In the laboratory reference frame, a neutron of mass 
moving with speed makes an elastic head-on collision with a nu-
cleus of mass that is at rest. (a) Show that the speed of the center
of mass in the lab frame is (b) What is the speed
of the nucleus in the center-of-mass frame before the collision and
after the collision? (c) What is the speed of the nucleus in the labo-
ratory frame after the collision? (d) Show that the energy of the nu-
cleus after the collision in the laboratory frame is

(e) Show that the fraction of the energy lost by the neutron in the
elastic collision is

�¢E
E

�
4mM

(m � M)2 �
4(m>M)

[1 � (m>M)]2

1
2
M(2V)2 �

4mM
(m � M)2 a 1

2
mv2

Lb

V � mvL>(m � M).
M

vL

m

SSM0.782 MeV
0.782 MeV.

0.782 MeV,
p2>2mp

E2 � p2c2 � (mc2)2
MeV>c.p

0.782 MeV

0.782 MeV.

12C
Q,1.007 825 u,11.009 306 u,

12.000 000 u,1H12C, 11B,

E � pc.

MeV>c L � 2.00 fm.

200 MeV

235U7.0 � 1019 J.
1 y

62CudN>dt � 0,
10 min.b62Cu

g � 63Cu S 62Cu � n

(63Cu)
62Cu

tNt � 0,N
Rp � lN.dN>dt �N

Rp.l

12C.
12C

a16Oa

16O.4Hea
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71 ••• (a) Use the result from Part (e) of Problem 70 to show that
after head-on collisions of a neutron with carbon nuclei at rest,
the energy of the neutron is approximately where is
its original energy. (b) How many head-on collisions are required to
reduce the energy of the neutron from to 
assuming stationary carbon nuclei?

72 ••• On the average, a neutron loses 63 percent of its energy in
a collision with a hydrogen atom and 11 percent of its energy in a col-
lision with a carbon atom. Calculate the number of collisions needed
to reduce the energy of a neutron from to if the
neutron collides with (a) hydrogen atoms and (b) carbon atoms.

73 ••• Frequently, the daughter nucleus of a radioactive parent
nucleus is itself radioactive. Suppose the parent nucleus, desig-
nated by has a decay constant while the daughter nucleus,
designated by D, has a decay constant The number of daughter
nuclei are then given by the solution to the differential equation

where is the number of parent nuclei. (a) Justify this differential
equation. (b) Show that the solution for the equation is

ND(t) �
NP0lP

lD � lP

(e�lPt � e�lDt)

NP

dND >dt � lPNP � lDND

ND

lD.
lP,P,

0.020 eV2.0 MeV

0.020 eV,2.0 MeV

E0(0.714)NE0,
N

where is the number of parent nuclei present at when there
are no daughter nuclei. (c) Show that the expression for in Part (b)
gives whether or (d) Make a plot of 
and as a function of time when where and are the
mean lifetimes of the daughter and parent nuclei, respectively.

74 ••• Suppose isotope A decays to isotope B and has a decay
constant and isotope B in turn decays and has a decay constant

Suppose a sample contains, at only isotope A nuclei.
Derive an expression for the time at which the number of isotope B
nuclei will be a maximum. (See Problem 73.)

75 ••• An example of the situation discussed in Problem 73 is
the radioactive isotope an emitter that has a half-life of

Its daughter, is a emitter that has a half-life of 
In this instance, as in many instances, the half-life of the parent is
much longer than the half-life of the daughter. Using the expression
given in Problem 73, Part (b), starting with a sample of pure 
containing nuclei, show that the number, of nuclei
will, after several years, be given by

where is the number of nuclei. The number of daughter
nuclei are said to be in secular equilibrium.

229ThNP

ND �
lP

lD

NP

225RaND,NP0

229Th

14.8 d.b225Ra,7300 y.
a229Th,

t � 0,lB.
lA,

SSM

tPtDtD � 3tP,ND(t)
NP(t)lD 
 lP.lP 
 lDND(t) 
 0

ND

t � 0NP0
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I
tems that we encounter in everyday life are made of atoms. In some sense,
atoms are the building blocks of nature. However, we know that atoms are not
the most fundamental constituents of matter. With the discovery of the elec-
tron by J. J. Thomson (1897), the Bohr theory of the nuclear atom (1913), and
the discovery of the neutron (1932), it became clear that atoms and even nu-
clei have considerable structure. Indeed the once simple picture of particle

physics in which there were just four “elementary” particles—the proton, neutron,
electron, and photon—has become much more complex.

C H A P T E R

How do you determine the energy

of particle interactions?

(See Example 41-1.)
?

1389

TRACKS IN A BUBBLE CHAMBER
PRODUCED BY AN INCOMING HIGH-
ENERGY PROTON (YELLOW), INCIDENT
FROM THE LEFT, COLLIDING WITH A
PROTON AT REST. THE SMALL GREEN
SPIRAL IS AN ELECTRON KNOCKED OUT
OF AN ATOM. IT CURVES TO THE LEFT
BECAUSE OF AN EXTERNAL MAGNETIC
FIELD IN THE CHAMBER. THE COLLISION
PRODUCES SEVEN NEGATIVE PARTICLES
(BLUE), ALL ; A NEUTRAL PARTICLE 
THAT LEAVES NO TRACK; AND NINE
POSITIVE PARTICLES (RED) INCLUDING
SEVEN A K�, AND A PROTON. THE 
TRAVELS IN THE ORIGINAL DIRECTION
OF THE INCOMING PROTON BEFORE
DECAYING INTO A PROTON (YELLOW)
AND A (PURPLE). (© Lawrence
Livermore Laboratory/Science
Photo Library/Photo Researchers.)

p�

¶0p� ,

¶0p�

41
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Since the 1950s, enormous sums of money have been spent constructing particle
accelerators of greater and greater energies in hopes of finding particles predicted
by various theories. At present, we know of several hundred particles that at one
time or another have been considered to be elementary, and research teams at the
giant accelerator laboratories around the world are searching for and finding new
particles. Some of these particles have such short lifetimes (of the order of 
that they can be detected only indirectly. Many particles are observed only during
nuclear reactions using high-energy accelerators. In addition to the usual particle
properties of mass, charge, and spin, new properties have been found and given
whimsical names such as strangeness, charm, color, topness, and bottomness.

In this chapter, we will first look at the various ways of classifying the mul-
titude of particles that have been found. We will then describe the current
theory of elementary particles, called the standard model, in which all mat-
ter in nature—from the exotic particles produced in the giant accelerator lab-
oratories to ordinary grains of sand—is considered to be constructed from
just two families of elementary particles, leptons and quarks. In the final sec-
tion, we will use our knowledge of elementary particles to discuss the big
bang theory which describes the origin of the universe.

41-1 HADRONS AND LEPTONS

All the different forces observed in nature, from ordinary friction to the tremen-
dous forces involved during supernova explosions, can be understood in terms of
the four basic interactions: (1) the strong nuclear interaction (also called the
hadronic interaction), (2) the electromagnetic interaction, (3) the weak (nuclear) in-
teraction, and (4) the gravitational interaction. The four basic interactions provide
a convenient structure for the classification of particles. Some particles participate
in all four interactions, whereas other particles participate in only some of the in-
teractions. For example, all particles participate in gravitational interaction, the
weakest of the interactions. All particles that have electric charge participate in the
electromagnetic interaction.

Particles that interact by the strong interaction are called hadrons. There are two
kinds of hadrons: baryons, which have spin or or etc., and mesons, which
have spin 0 or 1 or 2, etc. Baryons, which include nucleons, are the most massive
of the elementary particles. Mesons have intermediate masses, between the mass
of the electron and the mass of the proton. Particles that decay by the strong inter-
action have very short lifetimes, of the order of which is about the time it
takes light to travel a distance equal to the diameter of a nucleus. On the other
hand, particles that decay by the weak interaction have much longer lifetimes, of
the order of Table 41-1 lists some of the properties of those hadrons that are
stable against decay by the strong interaction.

Hadrons are rather complicated entities and have complex structures. If we use
the term elementary particle to mean a point particle that has no structure and is not
constructed from some more elementary entities, then hadrons are not elementary
particles. It is now believed that all hadrons are composed of more fundamental
entities called quarks, which, as far as we know, are truly elementary particles.

Particles that participate in the weak interaction but not in the strong interaction
are called leptons. These include electrons, muons, and neutrinos, which are all
less massive than the lightest hadron. The word lepton, meaning “light particle,”
was chosen to reflect the relatively small mass of the particles. However, the most
recently discovered lepton, the tau, found by Martin Lewis Perl in 1975, has a mass
of nearly twice the mass of the proton so we now have
a “heavy lepton.” In addition, the word muon, short for mu-meson, is something of
a misnomer. The muon is not now categorized as a meson, so it is best to refer to it

(938 MeV>c2),1784 MeV>c2,

10�10 s.

10�23 s,

5
2,

3
2

1
2

10�23 s)

The Super-Kamiokande detector, built in
Japan in 1996 as a joint Japanese–American
experiment, is essentially a water tank the size
of a large cathedral installed in a deep zinc
mine 1 mile inside a mountain. When
neutrinos pass through the tank, one of the
neutrinos occasionally collides with an atom,
sending blue light through the water to an
array of detectors. This photograph shows the
detector wall and top that have approximately
9000 photomultiplier tubes that help detect
the neutrinos. Experimental results reported
in June 1998 were evidence that the mass of
the neutrino cannot be zero. (ICCR (Institute
for Cosmic Ray Research), The University of Tokyo.)



Hadrons and Leptons S E C T I O N  4 1 - 1 | 1391

Table 41-1 Hadrons That Are Stable Against Decay via the Strong Nuclear Interaction

Mass Mean Typical Decay 
Name Symbol Spin, Charge, e Antiparticle Lifetime, s Products*

Baryons

Nucleon p (proton) 938.3 Infinite

n (neutron) 939.6 0 930

Lambda 1116 0

Sigma† 1189

1193 0

1197

Xi 1315 0

1321

Omega 1672

Mesons

Pion 139.6 0

135 0 0

139.6 0

Kaon‡ 493.7 0

497.7 0 0

and

Eta 549 0 0

* Other decay modes also occur for most particles.
† The is included here for completeness even though it does decay via the strong interaction.
‡ The has two distinct lifetimes, sometimes referred to as and All other particles have a unique lifetime.K0

longK0
shortK0

©0

g � g2 � 10�19h0

p� � e� � ne5.2 � 10�8

p� � p�0.88 � 10�10K0K0

p� � p01.24 � 10�8K��1K�

m� � n
m

2.6 � 10�8p��1p�

g � g0.8 � 10�16p0p0

m� � n
m

2.6 � 10�8p��1p�

�0 � p�1.3 � 10�10Æ��13
2Æ�

¶0 � p�1.7 � 10�10���11
2��

¶0 � p03.0 � 10�10�01
2�0

n � p�1.7 � 10�10©��11
2©�

¶0 � g10�20©01
2©0

n � p�0.8 � 10�10©��11
2©�

p � p�2.5 � 10�10¶01
2¶0

p � e� � nen1
2

p��11
2

UMeV>c2

* The connection between the shortfall of solar-neutrino detections and the mass of the neutrino is elucidated in “On
Morphing Neutrinos and Why They Must Have Mass” by Eugene Hecht, The Physics Teacher 41 (2003): 164–168.

as a muon and not as a mu-meson. As far as we know, leptons are point particles
that have no structure and can be considered to be truly elementary in the sense
that they are not composed of other particles.

There are six leptons. They are the electron and the electron neutrino, the muon
and the muon neutrino, and the tau and the tau neutrino. (Each of the leptons has
an antiparticle.) The masses of the electron, the muon, and the tau are quite differ-
ent. The mass of the electron is the mass of the muon is 
and the mass of the tau is The standard model predicts that neutrinos,
like photons, do not have mass. However, there is now strong evidence that their
mass, though very small, is greater than zero. During the late 1990s, experiments
using a detector in Japan called the Super-Kamiokande (Super-K) found that neutri-
nos emitted from the Sun arrived on Earth in much smaller numbers than the num-
bers that are predicted from the fusion processes in the Sun. This result can be ex-
plained if the mass of the neutrino is not zero.* In addition, a neutrino mass as small
as a few would have great cosmological significance. The answer to the ques-
tion of whether the universe will continue to expand indefinitely or will reach a max-
imum size and begin to contract depends on the total mass in the universe. Thus, the
answer could depend on whether the mass of the neutrino is actually zero or is
merely small, because the cosmic density of each species of neutrino is ~100 per cm3.

eV>c2

1784 MeV>c2.
106 MeV>c2,0.511 MeV>c2,
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The observation of electron neutrinos from the supernova 1987A puts an upper
limit on the masses of the neutrinos. Because the velocity of a particle that has mass
depends on its energy, the arrival time of a burst of neutrinos that have mass from
a supernova would be spread out in time. The fact that the electron neutrinos from
the 1987 supernova all arrived at Earth within of one another results in an
upper limit of about for their mass. Note that an upper limit does not
imply that the mass is not zero. Measurements of the relative number of muon neu-
trinos and electron neutrinos entering the huge, underground Super-K detector
suggest that at least one type of neutrino can oscillate between types (for example,
between a mu neutrino and a tau neutrino). Further measurements of antineutrinos
from nuclear reactors strongly show that all three types of neutrinos oscillate be-
tween types and thus have mass. Measurements made in Japan, using the Kamioka
Liquid Scintillator Anti-Neutrino Detector (KamLAND), show that oscillations from
one species of neutrino to another species of neutrino can be observed over path
lengths as short as 180 km (Figure 41-1).

16 eV>c2
13 s

(a) A computer display of the production and decay of a 
and pair. An electron and a positron annihilate at the
center marked by the yellow cross, producing a and 

pair, which travel in opposite directions, but quickly
decay while still inside the beam pipe (yellow circle). The

decays into two invisible neutrinos and a which
travels toward the bottom left. Its track in the drift
chamber is calculated by a computer and indicated in red.
It penetrates the lead–argon counters outlined in purple
and is detected at the blue dot near the bottom blue line
that marks the end of a muon detector. The decays into
three charged pions (red tracks moving upward) plus
invisible neutrinos. (b) The Mark I detector, built by a
team from the Stanford Linear Accelerator Center (SLAC)
and the Lawrence Berkeley Laboratory, became famous
for many discoveries, including the meson and the 

lepton. Tracks of particles are recorded by wire spark
chambers wrapped in concentric cylinders around the
beam pipe extending out to the ring where physicist
Carl Friedberg has his right foot. Beyond this are two
rings of protruding tubes, housing photomultipliers that
view various scintillation counters. The rectangular
magnets at the left guide the counterrotating beams that
collide in the center of the detector. ((a) Science Photo
Library/Photo Researchers. (b) © Lawrence Berkeley Laboratory/
Science Photo Library/Photo Researchers.)

t

J>c
t�

m�,t�

t�

t�

t2

t1

(a)

(b)
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41-2 SPIN AND ANTIPARTICLES

One important characteristic of a particle is its in-
trinsic spin angular momentum. We have already
discussed the fact that the electron has a quantum
number that corresponds to the component
of its intrinsic spin characterized by the quantum
number Protons, neutrons, neutrinos,
and the various other particles that also have
an intrinsic spin characterized by the quantum
number are called spin- particles. Particles
that have spin (or etc.) are called fermions
and obey the exclusion principle. Particles such
as pions and other mesons have zero spin or in-
tegral spin ( etc.). Those particles are
called bosons and do not obey the exclusion
principle. That is, any number of those particles
can be in the same quantum state.

Spin- particles are described by the Dirac
equation, which is an extension of the
Schrödinger equation that includes special rela-
tivity. One feature of Paul Dirac’s theory, pro-
posed in 1927, is the prediction of the existence
of antiparticles. In special relativity, the energy
of a particle is related to the mass and the mo-
mentum of the particle by 
(Equation 39-27). We usually choose the positive
solution and dismiss the negative-energy solu-
tion with a physical argument. However, the
Dirac equation requires the existence of wave
functions that correspond to the negative-energy
states. Dirac got around this difficulty by postu-
lating that all the negative-energy states were

E � �2p2c2 � m2c4

1
2

s � 0, 1, 2,

3
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5
2,

1
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2

s � 1
2.

zms

101 102 103

Distance to Reactor (m)

104 105

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

N
ob

s/
N

ex
p

ILL
Savannah River
Bugey
Rovno
Goesgen
Krasnoyark
Palo Verde
Chooz
KamLAND

γ

Lead sheet
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e–

π 0

–πγ
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A negative kaon enters a bubble chamber from the bottom and decays into a 
which moves off to the right, and a which immediately decays into two photons
whose paths are indicated by the dashed lines in the drawing. Each photon interacts
in the lead sheet, producing an electron–positron pair. The spiral at the right is
another electron that has been knocked out of an atom in the chamber. (Other
extraneous tracks have been removed from the photograph.) (Figure 4 from “First
Results from KamLAND: Evidence for Reactor Antineutrino Disappearance” by the KamLAND
Collaboration, Physical Review Letters, Vol. 90, No. 2, December 17, 2003. Copyright © 2003
The American Physical Society. Reprinted with permission.)

p0,
p�,(K�)

F I G U R E  4 1 - 1 First evidence for
antineutrino disappearance. The ratio of the
number of antineutrinos observed to the
number that one would expect to observe 
(assuming no neutrino oscillations) is plotted
versus distance to the nearest antineutrino
sources. The KamLAND site is from
nearby antineutrino sources (nuclear reactors),
while the other eight detector sites are less than

from nearby nuclear reactors. For those
eight sites, which is what is
expected assuming no neutrino oscillations.
However, the KamLAND detector found

This result is strong evidence
that while neutrinos do not oscillate in
significant numbers while traveling over path
lengths of less than they do oscillate in
significant numbers while traveling over path
lengths only a few orders of magnitude longer
than (© Lawrence Berkeley Laboratory/
Science Photo Library/Photo Researchers.)

1 km.
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Nobs >Nexp � 0.6.

Nobs >Nexp � 1.0,
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An aerial view of the European Laboratory for Particle Physics (CERN) just outside of Geneva, Switzerland.
The large circle shows the Large Electron–Positron collider (LEP) tunnel, which is in circumference. The
irregular dashed line is the border between France and Switzerland. (Richard Ehrlich.)

27 km

filled and would therefore not be observable. Only holes in the “infinite sea” of
negative-energy states would be observed. For example, a hole in the negative sea
of electron energy states would appear as a particle identical to the electron except
having positive charge. When such a particle came in the vicinity of an electron the
two particles would annihilate, releasing two photons having a minimum total en-
ergy of where is the mass of the electron. This interpretation received little
attention until a particle with just those properties, called the positron, was discov-
ered in 1932 by Carl Anderson.

Antiparticles are never created alone but always in particle–antiparticle pairs.
In the creation of an electron–positron pair by a photon, the energy of the photon
must be at least as great as the rest energy of the electron plus the rest energy of the
positron, which is Although the positron is stable, it has only a
short-term existence in our universe because of the large supply of electrons in
matter. The fate of a positron is annihilation according to the reaction

41-1

The probability of this reaction is large only if the positron and electron are moving
slowly relative to one another. In the center-of-mass reference frame, the momen-
tum of the two particles prior to annihilation is zero, so two photons moving in
opposite directions are needed to conserve linear momentum.

The fact that we call electrons particles and positrons antiparticles does not imply
that positrons are less fundamental than electrons. It merely reflects the nature of
our universe. If our matter were made up of negative protons and positive elec-
trons, then positive protons and negative electrons would suffer quick annihilation
and would be called antiparticles.

e � � e � S g � g

2mec
2 � 1.02 MeV.

me2mec
2,



The antiproton was discovered in 1955 by Emilio Segrè and Owen
Chamberlain using a beam of protons in the Bevatron at Berkeley to produce the
reaction*

41-2

The creation of a proton–antiproton pair (Figure 41-2) requires kinetic energy of at
least in the zero-momentum reference frame
in which the two protons approach each other with equal and opposite momenta.
In the laboratory frame in which one of the protons is initially at rest, the kinetic
energy of the incoming proton must be at least (see Problem 38
of Chapter 39). This energy was not available in laboratories before the develop-
ment of high-energy accelerators in the 1950s. Antiprotons annihilate with protons
to produce two gamma rays in a reaction similar to the reaction in Equation 41-1.

6mpc
2 � 5.63 GeV

2mpc
2 � 1877 MeV � 1.877 GeV

p� � p� S p� � p� � p� � p�

(p�)
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p p–

e–

e+

p p
F I G U R E  4 1 - 2

Bubble-chamber tracks
that show the creation of
a proton–antiproton pair
in the collision of an
incident proton
with a stationary proton
in liquid hydrogen.
(CERN.)

25-GeV

* The antiproton is sometimes denoted by rather than For neutral particles, such as the neutron, the bar must be
used to denote the antiparticle. Thus, the antineutron is denoted by The electron and proton are often denoted by 
and without the minus sign or plus sign superscripts.p

en.
p�.p

The tunnel of the proton–antiproton collider at CERN. The same bending magnets and focusing
magnets can be used for protons or antiprotons moving in opposite directions. The rectangular
box in the foreground is a focusing magnet, and the next four boxes are the bending magnets.
(CERN.)
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41-3 THE CONSERVATION LAWS

One adage is “anything that can happen does.” If a conceivable decay or reaction
does not occur, there must be a reason. The reason is usually expressed in terms of
a conservation law. The conservation of energy rules out the decay of any particle
for which the total mass of the decay products would be greater than the initial
mass of the particle before decay. The conservation of linear momentum requires
that when an electron and a positron at rest annihilate, two photons must be
emitted. Angular momentum must also be conserved during a reaction or a decay.
A fourth conservation law that restricts the possible particle decays and reactions
is the conservation of electric charge. The net electric charge before a decay or a
reaction must equal the net charge after the decay or the reaction.

There are two additional conservation laws that are important in the reactions
and the decays of elementary particles: the conservation of baryon number and the
conservation of lepton number. Consider the proposed decay

p S p0 � e �

1. Set the total energy of the two photons, equal to the rest
energy of the proton plus antiproton and solve for E

g
:

2E
g
,

so

E
g

� mpc
2 � 938 MeV

2E
g

� 2mpc
2

2. Set the energy of the photon equal to and solve for the
wavelength l:

hf � hc>l
� 1.32 � 10�6 nm � 1.32 fm

l �
hc
E
g

�
1240 eV # nm

938 MeV

E
g

� hf �
hc
l

3. Compare this wavelength with the wavelengths of visible light: The photons are not in the visible spectrum.

CHECK In Chapter 36, we found that the energies of photons in the visible spectrum are
equal to only a few electron volts. It is not a surprise to find that photons that have energies
on the order of electron volts are not in the visible spectrum.

TAKING IT FURTHER The wavelength of the photons produced by proton–antiproton an-
nihilation is more than eight orders of magnitude less than —the shortest wavelength
in the visible spectrum.

400 nm

109

Example 41-1 Proton–Antiproton Annihilation

You have been reading about nuclear physics and particle interactions. In particular, you
have been looking at the reaction (proton–antiproton annihilation).
You wonder if the photons produced are visible to the human eye if the two protons are ini-
tially at rest. Are the photons visible to the human eye?

PICTURE If the photons are visible, they should have wavelengths in the visible range
( to ) Because the proton and the antiproton are at rest, conservation of mo-
mentum requires that the two photons created during their annihilation have equal and op-
posite momenta and therefore equal energies, frequencies, and wavelengths. Conservation
of energy implies that the photons have a combined energy equal to the rest energy of the
proton plus the rest energy of the antiproton (approximately each).938 MeV

800 nm.400 nm

p� � p� ¡ g � g

Context-Rich

SOLVE



where is the symbol for the pion (pi-meson). This decay would conserve charge,
energy, angular momentum, and linear momentum, but it does not occur. It does
not conserve either lepton number or baryon number. (The proton is a baryon,
the positron is a lepton, and the is a meson.) The conservation of lepton num-
ber and baryon number implies that whenever a lepton or a baryon is created, an
antiparticle of the same type is also created. We assign the lepton number
to all leptons, to all antileptons, and to all other particles. Similarly,
the baryon number is assigned to all baryons, to all antibaryons,
and to all other particles. The sum of the baryon numbers and the sum of the
lepton numbers cannot change during a reaction or a decay. The conservation of
baryon number along with the conservation of energy implies that the least mas-
sive baryon, the proton, must be stable.

The conservation of lepton number implies that the neutrino emitted during the
decay of the free neutron is an antineutrino:

41-3

The fact that neutrinos and antineutrinos are different is illustrated by an experi-
ment in which is bombarded with an intense antineutrino beam from the
decay of reactor neutrons (reactor neutrons are fission products that are produced
in nuclear reactors). If neutrinos and antineutrinos were the same, we would ex-
pect the following reaction:

41-4

This reaction is not observed. However, if protons are bombarded with antineutri-
nos, the reaction

41-5

is observed. Note that the sum of the lepton numbers is on the left side of the re-
action equation in Equation 41-4 and is on the right side of the reaction equation.
But the sum of the lepton numbers is on both sides of the reaction equation in
Equation 41-5.

Not only are neutrinos and antineutrinos distinct particles, but the neutrinos as-
sociated with electrons are distinct from the neutrinos associated with muons.
Electron-like leptons ( and ), muon-like leptons ( and ), and tau-like leptons
( and are each separately conserved, so we assign separate lepton numbers

and to the particles. The leptons and their lepton numbers are listed in
Table 41-2.

L
t

Le, Lm,
n
t
)t

n
m

mnee

�1
�1

�1

p � ne S n � e �

37
17Cl � ne S 37

18Ar � e �

37Cl

n S p� � e � � ne

b

B � 0
B � �1B � �1

L � 0L � �1
L � �1

p0e�

p

p
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Table 41-2 Lepton Numbers

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 �1n
t

�1t�

�1n
t

�1t�

�1n
m

�1m�

�1n
m

�1m�

�1ne

�1e�

�1ne

�1e�

L
t

L
m

Le

Why is it that the conservation of
baryon number along with the
conservation of energy implies
that the proton, which is the least
massive baryon, must be stable?

CONCEPT CHECK 41-1✓
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ConceptualExample 41-2 What Laws Are Being Violated?

What conservation laws (if any) are violated by the following proposed decays:
(a) (b) and (c) ( is the symbol for the lambda-
zero particle.)

PICTURE All reactions must separately conserve energy, electric charge, baryon number,
electron lepton number, muon lepton number, and tau lepton number.

¶0m� S e� � g?¶0 S p� � p�,n S p � p�,

(a) There are no leptons in this decay, so there is no problem with the conservation of lepton
number. The net charge is zero before the decay and after the decay, so charge is
conserved. Also, the baryon number is both before and after the decay. However, rest
energy of the proton plus the rest energy of the pion is greater
than the rest energy of the neutron In the rest frame of the neutron, the
energy prior to the reaction (the rest energy of the neutron) is less than the total rest
energy following the reaction.

(939.6 MeV).
(139.6 MeV)(938.3 MeV)

�1

This decay does not conserve energy.

SOLVE

(b) Again, there are no leptons involved, and the net charge is zero before the decay and
after the decay. Also, the rest energy of the lambda-zero is greater than the
rest energy of the antiproton plus the rest energy of the pion 
so in the rest frame of the lambda-zero the energy prior to the reaction (the rest energy
of the lambda-zero) is greater than the total rest energy following the reaction. Energy
could be conserved, with the loss in rest energy equal to the gain in kinetic energy of the
decay products. There are no leptons in the reaction, so all three lepton numbers are
conserved. The baryon number is for the lambda particle and for the antiproton
and zero for the pi-meson.

�1�1

(139.6 MeV),(938.3 MeV)
(1116 MeV)

This decay does not conserve
baryon number.

(c) The has a muon lepton number equal to and an electron lepton number 
equal to 0, the has and and the has L

m
� Le � 0.gLe � �1,L

m
� 0e �

(Le)�1(L
m
)m� This reaction does not conserve

either muon lepton number or
electron lepton number.

TAKING IT FURTHER The muon does decay by which does conserve
both muon lepton numbers and electron lepton numbers.

m� S e � � ne � n
m
,

There are some conservation laws that are not universal but apply only to cer-
tain kinds of interactions. In particular, there are quantities that are conserved dur-
ing decays and reactions that occur by the strong interaction but not during decays
or reactions that occur by the weak interaction. One of these quantities that is par-
ticularly important is strangeness, introduced by M. Gell-Mann and K. Nishijima
in 1952 to explain the strange behavior of some of the heavy baryons and mesons.
Consider the reaction

41-6

where K is the symbol for the kaon The proton and the pion interact by
the strong interaction. Both the and decay into hadrons

41-7

and

41-8

However, the decay times for both the and are of the order of which
is characteristic of the weak interaction, rather than which would be ex-
pected for the strong interaction. Other particles showing similar behavior were
called strange particles. These particles are always produced in pairs, even when

10�23 s,
10�10 s,K0¶0

K0 S p� � p�

¶0 S p � p�

K0¶0
(K-meson).

p � p� S ¶0 � K0
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–π

K0

–π

+π

–π

Λ0

p

–π + p Λ0 + K0

all other conservation laws are met. This behavior is described by assigning a new
property called strangeness to the particles. During reactions and decays that
occur by the strong interaction, strangeness is conserved. During reactions and
decays that occur by the weak interaction, the strangeness can only change by 
The strangeness of the ordinary hadrons—the nucleons and pions—was arbitrar-
ily taken to be zero. The strangeness of the was arbitrarily chosen to be 
The strangeness of the par-
ticle must then be so that
strangeness is conserved dur-
ing the reaction described by
Equation 41-6. The strangeness
of other particles could then be
assigned by looking at their
various reactions and decays.
During reactions and decays
that occur by the weak inte-
raction, the strangeness can
change by 

Figure 41-3 shows the
masses of the baryons and the
mesons that are stable against
decay by the strong interaction
versus strangeness. We can see
from this figure that the parti-
cles cluster in multiplets of one,
two, or three particles of ap-
proximately equal mass, and
that the strangeness of a multi-
plet of particles is related to the
center of charge of the multiplet.

�1.

�1
¶0

�1.K0

�1.

An early photograph of bubble-chamber tracks at the Lawrence Berkeley Laboratory, showing
the production and the decay of two particles that have nonzero strangeness, the and the 
These neutral particles are identified by the tracks of their electrically charged decay particles.
The lambda particle was named because of the similarity of the tracks of its decay particles to the
uppercase Greek letter lambda (The blue tracks are particles not involved in the reaction of
Equation 41-6.) (© Lawrence Berkeley Laboratory/Science Photo Library/Photo Researchers.)
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F I G U R E  4 1 - 3 The strangeness of
hadrons shown on a plot of mass versus
charge. The strangeness of a baryon–charge
multiplet is related to the number of places on
the plot that the center of charge of the
multiplet is displaced from that of the nucleon
doublet. For each “displacement” of the
strangeness changes by For mesons, the
strangeness is related to the number of places
the center of charge is displaced from that of
the pion triplet. Because of the unfortunate
original assignment of for the strangeness
of (kaons), all of the baryons that
are stable against decay by the strong
interaction have negative or zero strangeness.

K-mesons
�1

�1.
e,
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ConceptualExample 41-3 Strong Interaction,Weak Interaction, or No Interaction

State whether the following decays can occur by the strong interaction, by the weak interac-
tion, or not at all: (a) (b) and (c) where and 
are the symbols for the sigma, lambda and particles respectively.

PICTURE We first note that the mass of each decaying particle is greater than the mass of
the decay products, so none of the three reactions are in conflict with the principle of con-
servation of energy. In addition, no leptons are involved in any of the three decays, and
charge and baryon number are both conserved during all three reactions. The decay will
occur by the strong interaction if strangeness is conserved (if ). If the decay
will occur via the weak interaction. If the decay will not occur.

SOLVE

ƒ¢S ƒ 
 1,
¢S � �1,¢S � 0

xi
�¶©,�0 S n � p0,©0 S ¶0 � g,©� S p � p0,

(a) From Figure 41-3, we can see that the strangeness of the is 
whereas the strangeness of both the proton and the pion is zero.

�1,©� This decay is possible by the weak interaction but
not by the strong interaction. It is, in fact, one of the
decay modes of the particle which has a lifetime
of the order of 10�10 s.

©�

(b) The strangeness of both the and is whereas the strangeness of the
photon is zero.

�1,¶0©0 This decay can proceed by the strong interaction. It is,
in fact, the dominant mode of decay of the particle
which has a lifetime of approximately 10�20 s.

©0

(c) The strangeness of the is whereas the strangeness of both the
neutron and the pion is zero.

�2,�0 Because strangeness cannot change by 2 during a
decay or a reaction, this decay does not occur.

41-4 QUARKS

Leptons appear to be truly elementary particles in that they do not break down
into smaller entities and they seem to have no measurable size or structure.
Hadrons, on the other hand, are complex particles that have size and structure,
and they decay into other hadrons. Furthermore, at the present time, there are only
six known leptons, whereas there are many more hadrons. Except for the par-
ticle, Table 41-1 includes only hadrons that are stable against decay by the strong
interaction. Hundreds of other hadrons have been discovered; their properties,
such as charge, spin, mass, strangeness, and decay schemes, have been measured.

The most important advance in our understanding of elementary particles was
the quark model proposed by M. Gell-Mann and G. Zweig in 1963 in which all
hadrons consist of combinations of two or three truly elementary particles called
quarks.* In the original model, quarks came in three types, called flavors, labeled

and (for up, down, and strange). An unusual property of quarks is that they
carry fractional electron charges. The charge of the quark is and the charge
of the and quarks is Each quark has spin and a baryon number of 
The strangeness of the and quark is 0, and the strangeness of the quark is 
Each quark has an antiquark that has the opposite electric charge, baryon number,
and strangeness. Baryons consist of three quarks (or three antiquarks for baryons
that are antiparticles), whereas mesons consist of a quark and an antiquark, giv-
ing mesons baryon numbers as required. The proton consists of the combi-
nation and the neutron consists of the combination Baryons that have a
strangeness have one quark. All the particles listed in Table 41-1 can besS � �1

udd.uud
B � 0,

�1.sdu

1
3.

1
2

1
3 e.sd

� 2
3 eu

su, d,

©0

* The name quark was chosen by M. Gell-Mann from a quotation from Finnegan’s Wake by James Joyce.
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† The correct quark combinations of hadrons are not always obvious, because of the symmetry requirements on the total
wave function. For example, the meson is represented by a linear combination of and dd.uup0

constructed from these three quarks and three antiquarks.† The great strength of
the quark model is that all the allowed combinations of three quarks or quark–
antiquark pairs result in known hadrons. Strong evidence for the existence of
quarks inside a nucleon is provided by high-energy scattering experiments
called deep inelastic scattering. During these experiments, a nucleon is bombar-
ded with electrons, muons, or neutrinos of energies from to 
Analyses of particles scattered at large angles indicate that inside the nucleon are
three spin- particles of sizes much smaller than that of the nucleon. These ex-
periments are analogous to Rutherford’s scattering of particles by atoms in
which the presence of a tiny nucleus in the atom was inferred from the large-
angle scattering of the particles.

In 1967, a fourth quark was proposed to explain some discrepancies between
experimental determinations of certain decay rates and calculations based on the
quark model. The fourth quark is labeled for a new property called charm. Like
strangeness, charm is conserved during strong interactions but changes by in
weak interactions. In 1975, a new heavy meson called the meson was discovered
that has the properties expected of a combination. Since then, other mesons that
have combinations such as and as well as baryons having the charmed quark,
have been discovered. Two more quarks labeled and (for top and bottom) were
proposed in the 1970s. In 1977, a massive new meson called the (upsilon) meson
or bottomonium, which is considered to have the quark combination was
discovered. The top quark was observed in 1995. The properties of the six quarks
are listed in Table 41-3.

The six quarks and six leptons (and their antiparticles) are thought to be the fun-
damental elementary particles of which all matter is composed. Table 41-4 lists the
masses of the fundamental particles. In this table, the masses given for neutrinos
are upper limits. The masses given for quarks are educated guesses. There is strong
experimental evidence for the existence of each of these particles.

bb,
�

bt
cd,cd
cc

c

�1
c

a

a

1
2

200 GeV.15 GeV

Table 41-3 Properties of Quarks and Antiquarks

Baryon
Flavor Spin Charge Number Strangeness Charm Topness Bottomness

Quarks

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Antiquarks

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 �1�1
3�1

3 e
1
2 Ub

�1�1
3�2

3 e
1
2 Ut

�1�1
3�2

3 e
1
2 Uc

�1�1
3�1

3 e
1
2 Us

�1
3�1

3 e
1
2 Ud

�1
3�2

3 e
1
2 Uu

�1�1
3�1

3 e
1
2 Ub (bottom)

�1�1
3�2

3 e
1
2 Ut (top)

�1�1
3�2

3 e
1
2 Uc (charmed)

�1�1
3�1

3 e
1
2 Us (strange)

�1
3�1

3 e
1
2 Ud (down)

�1
3�2

3 e
1
2 Uu (up)
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Table 41-4 Masses of Fundamental Particles

Particle Mass

Quarks

Leptons

	 28 MeV>c2n
t
 (tau neutrino)

1784 MeV>c2t� (tau)

	 0.17 MeV>c2n
m
 (muon neutrino)

105.659 MeV>c2m� (muon)

	 2.2 eV>c2ne (electron neutrino)

0.511 MeV>c2e� (electron)

4500 MeV>c2b (bottom)

174000 MeV>c2t (top)

1500 MeV>c2c (charmed)

540 MeV>c2s (strange)

338 MeV>c2d (down)

336 MeV>c2u (up)

ConceptualExample 41-4 Given the Constituent Quark Species, Identify the Particle

What are the properties of the particles made up of the following quarks: (a) (b)
(c) and (d)

PICTURE Baryons are made up of three quarks, whereas mesons consist of a quark and an
antiquark. We add the electric charges of the quarks to find the total charge of the hadron.
We also find the strangeness of the hadron by adding the strangeness of the quarks.

SOLVE

uss?dds,
ud,uu,

(a) Because is a quark-antiquark combination, it has baryon number 0 and is
therefore a meson. There is no strange quark here (that is, ), so the
strangeness of the meson is zero. The charge of the up quark is and the
charge of the antidown quark is so the charge of the meson is �1e.�1

3 e,
�2

3 e
S � 0

ud The quark combination is the meson.p�ud

(b) The particle is also a meson that has zero strangeness. Its electric charge is
�2

3 e � A�1
3 e B � �1e.
ud The quark combination is the meson.p�ud

(c) The particle is a baryon that has strangeness because it has one strange
quark. Its electric charge is �1

3 e � 1
3 e � 1

3 e � �1e.
�1dds The quark combination is the particle.©�dds

(d) The particle is a baryon that has strangeness Its electric charge is
�2

3 e � 1
3 e � 1

3 e � 0.
�2.uss The quark combination is the particle.�0uss

QUARK CONFINEMENT
Despite considerable experimental effort, no isolated quark has ever been ob-
served. It is now believed that it is impossible to obtain an isolated quark.
Although the force between quarks is not known, it is believed that the potential
energy of two quarks increases with increasing separation distance so that an
infinite amount of energy would be needed to separate the quarks completely.
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This would be true, for example, if the force of attraction between two quarks
remains constant or increases with separation distance, rather than decreasing
with increasing separation distance as is the case for other fundamental forces,
such as the electric force between two charges, the gravitational force between
two masses, and the strong nuclear force between two hadrons.

When a large amount of energy is added to a quark system, such as a nucleon,
a quark–antiquark pair is created and the original quarks remain confined within
the original system. Because quarks cannot be isolated, but are always bound to-
gether to form a baryon or a meson, the mass of a quark cannot be accurately
known, which is why the masses listed in Table 41-4 are merely educated guesses.

41-5 FIELD PARTICLES

In addition to the six fundamental leptons and six fundamental quarks, there are
other particles, called field particles, or field quanta, that are associated with the forces
exerted by one elementary particle on another. In quantum electrodynamics, the
electromagnetic field of a single charged particle is described by virtual photons
that are continuously being emitted and reabsorbed by the particle. If we put energy
into the system by accelerating the charge, some of these virtual photons are shaken
off and become real, observable photons. The photon is said to mediate the electro-
magnetic interaction. Each of the four basic interactions can be described via medi-
ating field particles.

The field quantum associated with the gravitational interaction, called the
graviton, has not yet been observed. The gravitational charge analogous to electric
charge is mass.

The weak interaction is thought to be mediated by three field quanta called vector
bosons: and These particles were predicted by Sheldon Glashow,
Abdus Salam, and Steven Weinberg in a theory called the electroweak theory, which we
discuss in the next section. The and particles were first observed in 1983 by a
group of over a hundred scientists led by Carlo Rubbia using the high-energy accel-
erator at CERN in Geneva, Switzerland. The masses of the particles (about

and the particle (about measured during this experiment
were in excellent agreement with those predicted by the electroweak theory. (The 
particle is the antiparticle of the particle, so they must have identical masses.)

The field quanta associated with the strong force between quarks are called
gluons. Isolated gluons have not been observed experimentally. The charge responsi-
ble for the strong interactions comes in three varieties, labeled red, green, and blue
(analogous with the three primary colors), and the strong charge is called the color
charge. The field theory for strong interactions, analogous to quantum electrody-
namics for electromagnetic interactions, is called quantum chromodynamics (QCD).

Table 41-5 lists the bosons responsible for mediating the basic interactions.

W�

W�

91 GeV>c2)Z80 GeV>c2)
W�

ZW

Z0.W�,W�,

Table 41-5 Bosons That Mediate the Basic Interactions

Interaction Boson Spin Mass Electric Charge

Strong 1 0 0

Weak 1

1 0

Electromagnetic 1 0 0

Gravitational 2 0 0

† Not yet observed.

Graviton†

g (photon)

91.19 GeV>c2Z0

�1e80.22 GeV>c2W�

g (gluon)
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41-6 THE ELECTROWEAK THEORY

In the electroweak theory, the electromagnetic and weak interactions are consid-
ered to be two different manifestations of a more fundamental electroweak inter-
action. At very high energies the electroweak interaction would be
mediated by four bosons. From symmetry considerations, these would be a triplet
consisting of and all of equal mass, and a singlet of some other
mass. Neither the nor the would be observed directly, but one linear com-
bination of the and the would be the and another would be the photon.
At ordinary energies, the symmetry is broken. This leads to the separation of the
electromagnetic interaction mediated by the massless photon and the weak in-
teraction mediated by the and particles. The fact that the photon is
massless and that the and particles have masses of the order of 
shows that the symmetry assumed in the electroweak theory does not exist at
lower energies.

The symmetry-breaking mechanism is called a Higgs field, which requires a
new boson, the Higgs boson, whose rest energy is expected to be of the order of

The Higgs boson has not yet been observed. Calculations
show that Higgs bosons (if they exist) should be produced in head-on collisions
between protons of energies of the order of a few Such energies are not
presently available, but the Large Hadron Collider, a particle accelerator under
construction near Geneva, Switzerland, is scheduled to come on line late in 2007.
The LHC is designed to produce head-on proton–proton collisions for which each
proton has an energy of 

41-7 THE STANDARD MODEL

The combination of the quark model, electroweak theory, and quantum chromo-
dynamics is called the standard model. In this model, the fundamental particles
are the leptons and quarks, each of which comes in six flavors, as shown in Table
41-4; the force carriers are the photon, the and particles, and the gluons (of
which there are eight types). The leptons and quarks are all spin- fermions, which
obey the exclusion principle, and the force carriers are integral-spin bosons, which
do not obey the exclusion principle. Every interaction in nature is due to one of the
four basic interactions: strong, electromagnetic, weak, and gravitational. A particle
experiences one of the basic interactions if it carries a charge associated with that
interaction. Electric charge is the familiar charge that we have studied previously.
Weak charge, also called flavor charge, is carried by leptons and quarks. The
charge associated with the strong interaction is called color charge and is carried
by quarks and gluons but not by leptons. The charge associated with the gravita-
tional force is mass. It is important to note that the photon, which mediates the
electromagnetic interaction, does not carry electric charge. Similarly, the and 
particles, which mediate the weak interaction, do not carry weak charge. However,
the gluons, which mediate the strong interaction, do carry color charge. This fact is
related to the confinement of quarks as discussed in Section 41-4.

All matter is made up of leptons or quarks. There are no known composite par-
ticles consisting of leptons bound together by the weak force. Leptons exist only
as isolated particles. Hadrons (baryons and mesons) are composite particles con-
sisting of quarks bound together by the color charge. A result of QCD theory is
that only color-neutral combinations of quarks are allowed. Three quarks of

ZW�

1
2

ZW�

7 TeV.

TeV.

1 TeV (1 TeV � 1012 eV).

100 GeV>c2ZW
Z0W�,W�,

Z0B0W0
B0W0

B0W�,W�,W0,

( W 100 GeV),
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different colors can combine to form color-neutral baryons, such as the neu-
tron and the proton. Mesons each have a quark and an antiquark and are also
color-neutral. Excited states of hadrons are considered to be different particles.
For example, the particle is an excited state of the proton. Both are made up
of the quarks, but the proton is in the ground state and has spin and a rest
energy of whereas the particle is in the first excited state and has
spin and a rest energy of The two quarks can be in the same spin
state in the without violating the exclusion principle, because they have dif-
ferent color. All baryons eventually decay to the lightest baryon, the proton. That
the proton does not decay is consistent with the conservation of energy and con-
servation of baryon number.

The strong interaction has two parts, the fundamental interaction or color inter-
action and what is called the residual strong interaction. The fundamental interaction
is responsible for the force exerted by one quark on another quark and is mediated
by gluons. The residual strong interaction is responsible for the force between
color-neutral nucleons, such as the neutron and the proton. This force is due to the
residual strong interactions between the color-charged quarks that make up
the nucleons and can be viewed as being mediated by the exchange of mesons.
The residual strong interaction between color-neutral nucleons can be thought of
as analogous to the residual electromagnetic interaction between neutral atoms
that bind them together to form molecules. Table 41-6 lists some of the properties
of the basic interactions.

For each particle, there is an antiparticle. A particle and its antiparticle have
identical mass and spin but opposite electric charge. For leptons, the lepton num-
bers and of the antiparticles are the negatives of the corresponding lepton
numbers for the particles. For example, the lepton number for the electron is

and the lepton number for the positron is For hadrons, the
baryon number, strangeness, charm, topness, and bottomness are the sums of
those quantities for the quarks that make up the hadron. The number of each an-
tiparticle is the negative of the number for the corresponding particle. For exam-
ple, the lambda particle which is made up of the quarks, has and

whereas its antiparticle which is made up of the quarks, has
and A particle such as the photon or the particle that has zero

electric charge; and zero charm, topness, and bottomness is itsB � 0, L � 0, S � 0;
Z0gS � �1.B � �1

uds¶0,S � �1,
B � 1uds¶0,

Le � �1.Le � �1,

L
t

Le, Lm,

¢�

u1232 MeV.3
2

¢�938 MeV,

1
2uud

¢�

Table 41-6 Properties of the Basic Interactions

Strong

Gravitational Weak Electromagnetic Fundamental Residual

Acts on Mass Flavor Electric charge Color charge

Particles experiencing All Quarks, leptons Electrically charged Quarks, gluons Hadrons

Particles mediating Graviton Gluons Mesons

Strength for two 
quarks at † 0.8 1 25 (not applicable)

Strength for two 
protons in nucleus† 1 (not applicable) 20

† Strengths are relative to electromagnetic strength.

10�710�36

10�4110�18 m

gW�, Z
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A plot of the recession
velocities of individual
galaxies versus distance.

own antiparticle. Note that the meson has a zero value for all of these quan-
tities except strangeness, which is Its antiparticle, the meson has
strangeness which makes it distinct from the The and are
somewhat special in that they have electric charge but zero values for and 
They are antiparticles of each other, but because there is no conservation law for
mesons, it is impossible to say which is the particle and which is the antiparticle.
Similarly, the and are antiparticles of each other.

GRAND UNIFICATION THEORIES

With the success of the electroweak theory, attempts have been made to combine
the strong, electromagnetic, and weak interactions in various grand unification
theories (GUTs). In one of these theories, leptons and quarks are considered to be
two aspects of a single class of particles. Under certain conditions, a quark could
change into a lepton and vice versa, even though this would appear to violate the
conservation of lepton number and baryon number. One of the exciting predictions
of this theory is that the proton is not stable but merely has a very long lifetime of
the order of Such a long lifetime makes proton decay difficult to observe.
However, projects are ongoing in which detectors monitor very large numbers of
protons in search of an event indicating the decay of a proton.

41-8 THE EVOLUTION OF THE UNIVERSE

In the presently accepted model, the universe began with a singular cataclysmic
event called the big bang and is expanding. The first evidence that the universe is
expanding was the astronomer Edwin Powell Hubble’s discovery of the relation
between the redshifts in the spectra of galaxies and their distances from us. This
relation is illustrated in Figure 41-4 for a group of spiral galaxies used by astro-
nomers for calibrating distances. Provided that the redshift is due to the Doppler
effect, the recession velocity of a galaxy is related to its distance from us by
Hubble’s law,

41-9

where is the Hubble constant. In principle, the value of is easy to obtain be-
cause it relies on the direct calculation of from redshift measurements. However,
astronomical distances are very challenging to measure, and they have been de-
termined for only a fraction of the or so galaxies in the observable universe.1010

v
HH

v � Hr

rv

1032 y.

W�W�

S.L, B,
p� (ud)p� (ud)K0.�1,

(ds),K0�1.
(ds)K0



The Evolution of the Universe S E C T I O N  4 1 - 8 | 1407

Example 41-5 Using Hubble’s Law

Redshift measurements of a galaxy in the constellation Virgo yield a recession velocity of
How far is it to that galaxy?

PICTURE We calculate the distance from Hubble’s law.

SOLVE

1200 km>s.

Use Hubble’s law to find r: 52 � 106 c # yr �
v
H

� (1200 km>s)
106 c # y

23 km>s �

PRACTICE PROBLEM 41-1 Show that 1>H � 1.3 � 1010 y.

THE BACKGROUND RADIATION

In investigating ways of accounting for the cosmic abundance of atoms that are
heavier than hydrogen atoms, cosmologists recognized that nucleosynthesis in
stars could explain the abundance of atoms heavier than helium atoms but could
not by itself explain the abundance of helium atoms. Helium must therefore have
been formed during the big bang. To synthesize an amount of helium sufficient to
account for its present abundance, the big bang would have to have occurred at an
extremely high initial temperature to provide the necessary reaction rate before fu-
sion was shut down by the decreasing density of the very rapid initial expansion.
The high temperature implies a corresponding thermal (blackbody) radiation field
that would cool as the expansion progressed. Theoretical analysis predicted that
from the estimated time of the big bang to the present, the remnants of the radia-
tion field should have cooled to a temperature of about corresponding to a
blackbody spectrum with peak wavelength in the microwave region. In 1965,
the predicted cosmic background radiation was discovered by Arno Penzias and
Robert Wilson at the Bell Labs. Since this landmark discovery, careful analysis has
established that the temperature of the background field is and has shown
that it has an isotropic distribution in space.

2.7281 K

lmax

3 K,

2.7-K

Thus, the value of changes as distance calibration data are refined. The cur-
rently accepted value of the Hubble constant is about

41-10

Hubble’s law tells us that the galaxies are all rushing away from us, and those
galaxies that are the farthest away are moving the fastest. However, there is no rea-
son why our location should be special. An observer in any galaxy would make the
same observations and compute the same Hubble constant. Thus, Hubble’s law
suggests that all of the galaxies are receding from each other at an average speed
of of separation. In other words, the universe is expanding.
Notice that the basic dimension of is reciprocal time. The quantity is called
the Hubble age and equals about This would correspond to the age
of the universe if the gravitational pull on the receding galaxies were ignored.

1.3 � 1010 y.
1>HH

23 km>s per 106c # y

H �
23 km>s
106 c # y

H
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THE BIG BANG

The singular event that initiated the expansion of the universe is thought to have
been a huge explosion. The four interactions of nature (strong, electromagnetic,
weak, and gravitational) initially were unified into a single interaction. Physicists
have been successful in developing theoretical descriptions that unify the first three
interactions, but a theory of quantum gravity, needed for the extreme densities of the
single-interaction period, does not yet exist. Consequently, until the cooling universe
“froze” or “condensed out” the gravitational interaction at approximately 
after the big bang, when the temperature was still we have no means of de-
scribing what was occurring. At this point, the average energy of the particles created
would have been about As the universe continued to cool below the
three interactions other than gravity remained unified and are described by the grand
unification theories (GUTs). Quarks and leptons were indistinguishable and particle
quantum numbers were not conserved. It was during this period that a slight excess
of quarks over antiquarks occurred, roughly 1 part in that ultimately resulted in
the predominance of matter over antimatter that we now observe in the universe.

At the universe had expanded sufficiently to cool to approximately
at which point another phase transition occurred as the strong interaction

condensed out of the GUTs group, leaving only the electromagnetic and weak
interactions still unified as the electroweak interaction. During this period, the
previously free quarks in the dense mixture of roughly equal numbers of quarks,
leptons, their antiparticles, and photons began to combine into hadrons and their
antiparticles, including the nucleons. By the time the universe had cooled to ap-
proximately at about the hadrons had mostly disappeared. This
is because corresponds to which is the minimum energy needed
to create nucleons and antinucleons from the photons present by the reactions

41-11a
and

41-11b

The particle–antiparticle pairs annihilated and there was no new production to re-
place them. Only the slight earlier excess of quarks over antiquarks led to a slight
excess of protons and neutrons over their antiparticles. The annihilations resulted
in photons and leptons, and after about those particles in roughly equal
numbers dominated the universe. This was the lepton era. At about the
temperature had fallen to Further expansion and cooling
dropped the average photon energy below the energy needed to form an
electron–positron pair. Annihilation then removed all of the positrons as it had the
antiprotons and antineutrons earlier, leaving only the small excess of electrons aris-
ing from charge conservation, and the radiation era began. The particles present
were primarily photons and neutrinos.

Within a few more minutes, the temperature dropped sufficiently to enable fus-
ing protons and neutrons to form nuclei that were not immediately photodisinte-
grated. The nuclei of deuterium, helium, and lithium were produced during this
nucleosynthesis period, but the rapid expansion soon dropped the temperature
too low for the fusion to continue and the formation of heavier elements had to
await the birth of stars.

A long time later, when the temperature had dropped to about as the uni-
verse grew to about of its present size, dropped below typical atomic ion-
ization energies and atoms were formed. By then, the expansion had redshifted the
radiation field so that the total radiation energy was about equal to the energy rep-
resented by the remaining mass. As expansion and cooling continued, the energy
of the steadily redshifting radiation declined at a steady rate until, at 
(now), matter came to dominate the universe, with its energy density exceeding
that of the radiation remaining from the big bang by a factor of about 1000.2.7-K

t � 1010 y

kT1>1000
3000 K

1010 K (kT ~ 1 MeV).
t � 10 s,

t � 10�4 s,

gS n� � n

gS p� � p�

kT ~ 1 GeV,1013 K
t � 10�6 s,1013 K,

1027 K,
10�35 s,

109,

1032 K,1019 GeV.

1032 K,
10�43 s
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Summary

TOPIC RELEVANT EQUATIONS AND REMARKS

1. Basic Interactions There are four basic interactions: strong, electromagnetic, weak, and gravitational.

Strong The charge associated with the strong interaction is called color. Quarks and gluons have
color and experience the strong interaction. Hadrons (baryons and mesons) experience a
residual strong interaction resulting from the fundamental strong interaction between the
quarks that make up the hadrons. Decay times by the strong interaction are typically 

Electromagnetic All particles that have electric charge experience the force due to the electromagnetic
interaction.

Weak The charge associated with the weak interaction is called flavor. Quarks and leptons
have flavor and experience the weak interaction. Decay times by the weak interaction are
typically

Gravitational The charge associated with the gravitational interaction is called mass.

2. Fundamental Particles There are two families of fundamental particles, leptons and quarks, each having six mem-
bers. It is thought that these particles have no size and no internal structure.

Leptons Leptons are spin- fermions: the electron and its neutrino the muon and its neutrino
and the tau and its neutrino The electron, muon, and tau have mass, electric charge,

and flavor, but not color; so they participate in the gravitational, electromagnetic, and weak
interactions, but not the strong interaction. The neutrinos have flavor but no electric charge
and no color. They have a very small mass.

Quarks There are six quarks, called up down strange charmed top and bottom Each is
a spin- fermion. The quarks participate in all of the basic interactions. Because they are al-
ways confined in mesons or baryons, their masses can only be estimated.

3. Hadrons Hadrons are composite particles that are made up of quarks. There are two types of hadrons,
baryons and mesons. Baryons, which include the neutron and proton, are fermions of half-
integral spin consisting of three quarks. Mesons, which include pions and kaons, have zero
or integral spin. Hadrons interact with each other by the residual strong interaction.

4. Field Particles In addition to the six fundamental leptons and six fundamental quarks, there are field particles
that are associated with the basic interactions.

Interaction Field Particle
Gravitational Graviton (not yet observed)
Electromagnetic Photon
Weak
Strong Gluons

5. The Conservation Laws Some quantities, such as energy, linear momentum, electric charge, angular momentum, baryon
number, and each of the three lepton numbers, are strictly conserved during all reactions and
decays. Others, such as strangeness and charm, are conserved during reactions and decays that
proceed by the strong interaction but not in those that proceed by the weak interaction.

6. Particles and Antiparticles Particles and their antiparticles have identical masses but opposite values for their other
properties, such as charge, lepton number, baryon number, and strangeness. Particle–
antiparticle pairs can be produced during various nuclear reactions if the energy available is
greater than where is the mass of the particle.

7. Hubble’s Law Hubble’s law relates the recession velocity of a galaxy, determined from the redshift of its spec-
trum, to the distance of the galaxy from us:

41-9

where the Hubble constant per million light-years. From Hubble’s law, we con-
clude that the universe is expanding and that the expansion began approximately years ago.1>HH � 23 km>sv � Hr

m2mc2,

W�,W�, Z0
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b.t,c,s,d,u,
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,
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8. The Big Bang According to the model currently used to describe the evolution of the universe, the universe
began with a big bang approximately years ago. The big bang model is supported by
substantial experimental observations, including the isotropic, background blackbody
radiation spectrum.

2.7-K
1010

Answer to Concept Check

41-1 A proton is a baryon that has a baryon number 
equal to 1, and all particles that are not baryons have

If a proton decays, conservation of baryon
number implies that the decay products must
contain a minimum of one baryon. In addition,
conservation of energy implies that the rest mass of

B � 0.

(B)

Problems

In a few problems, you are given more data than you
actually need; in a few other problems, you are required to
supply data from your general knowledge, outside sources,
or informed estimate.

Interpret as significant all digits in numerical values that
have trailing zeros and no decimal points.

• Single-concept, single-step, relatively easy

•• Intermediate-level, may require synthesis of concepts

••• Challenging

Solution is in the Student Solutions Manual

Consecutive problems that are shaded are paired 
problems.

SSM

the decay products cannot be greater than the rest
mass of the proton. Because there are no baryons
that have a rest mass less than the rest mass of the
proton, the proton cannot decay without either
violating conservation of baryon number,
conservation of energy, or both.

CONCEPTUAL PROBLEMS

1 • How are baryons and mesons similar? How are they
different?

2 • The muon and the pion have nearly the same masses.
How do the particles differ?

3 • How can you tell whether a decay proceeds by the strong
interaction or the weak interaction?

4 • True or false:

(a) All baryons are hadrons.
(b) All hadrons are baryons.

5 • True or false: All mesons are spin- particles.

6 • A particle that is made of exactly two quarks is (a) a
meson, (b) a baryon, (c) a lepton, (d) either a meson or a baryon, but
definitely not a lepton.

7 • Have any quark–antiquark combinations whose electric
charge is not an integer multiplied by the fundamental charge 
been observed?

8 • True or false:

(a) A lepton is a combination of three quarks.
(b) The typical times for decays by the weak interaction are orders

of magnitude longer than the typical times for decays by the
strong interaction.

(c) The muon and the pion are both mesons.

9 • True or false:

(a) Electrons interact with protons by the strong interaction.

e

1
2

SSM

(b) Strangeness is not conserved in reactions involving the weak
interactions.

(c) Neutrons have zero charm.

ESTIMATION AND APPROXIMATION

10 •• Grand unification theories predict that the proton has a
long but finite lifetime. Current experiments based on detecting the
decay of protons in water infer that this lifetime is at least years.
Assume years is, in fact, the mean lifetime of the proton.
Estimate the expected time between proton decays that occur in the
water of a filled Olympic-size swimming pool. An Olympic-size
swimming pool is Give your answer in days.

11 •• Table 41-6 lists some properties of the four fundamental
interactions. To better understand the significance of this table,
confirm the ratio of the numerical entries in the second and fourth
column of the last row of the table by estimating the ratio of
the electromagnetic force to the gravitational force between two
protons of a nucleus.

SPIN AND ANTIPARTICLES

12 • Two pions at rest annihilate according to the reaction
(a) Why must the energies of the two rays be

equal? (b) Find the energy of each ray. (c) Find the wavelength of
each ray.

13 • Find the minimum energy of the photon needed for
the following pair-production reactions: (a)
(b) and (c) gS m� � m�.gS p � p�,

gS p� � p�,

g

g

gp� � p� S g � g.

100 m � 25 m � 2.0 m.

1032
1032

TOPIC RELEVANT EQUATIONS AND REMARKS



Problems | 1411

THE CONSERVATION LAWS

14 • State which of the following decays or reactions
violate one or more of the conservation laws, and give the law or laws
violated in each case: (a) (b)

(c) (d) and
(e)

15 • Determine the change in strangeness in each
reaction that follows, and state whether the each decay can 
proceed by the strong interaction, by the weak interaction, or 
not at all: (a) (b) and
(c)

16 • Determine the change in strangeness for each decay, and
state whether each decay can proceed by the strong interaction, by
the weak interaction, or not at all: (a) and
(b)

17 • Determine the change in strangeness for each decay, and
state whether each decay can proceed by the strong interaction, by
the weak interaction, or not at all: (a) and
(b)

18 • (a) Which of the following decays of the particle is
possible?

(b) Explain why the other decay is not possible. (c) Calculate the ki-
netic energy of the decay products for the decay that is possible.

19 •• Using Table 41-2 and the laws of conservation of charge
number, baryon number, strangeness, and spin, identify the un-
known particle, symbolized by (?), in each of the following reactions:
(a) (b) and
(c)

20 •• Test the following decays for violation of the conserva-
tion of energy, electric charge, baryon number, and lepton number:
(a) and (b) Assume
that linear momentum and angular momentum are conserved.
State which conservation laws (if any) are violated in each decay.

QUARKS

21 • Find the baryon number, charge, and strangeness for the
following quark combinations and identify the hadron: (a)
(b) (c) (d) (e) and ( f )

22 • Find the baryon number, charge, and strangeness for the
following quark combinations: (a) (b) (c) and (d)

23 • The particle is a baryon that decays by the strong in-
teraction. Its strangeness, charm, topness, and bottomness are all
zero. What combination of quarks gives a particle that has those
properties?

24 • Find a possible combination of quarks that gives the cor-
rect values for electric charge, baryon number, and strangeness for
(a) and (b)

25 • The meson has zero strangeness, but it has charm of
(a) What is a possible quark combination that will give the cor-

rect properties for the particle? (b) Repeat Part (a) for the meson,
which is the antiparticle of the meson.

26 • Find a possible combination of quarks that gives the cor-
rect values for electric charge, baryon number, and strangeness for
(a) (the is the antiparticle of the ) and (b) K 0.K�K�K�

D�

D�

�1.
D�

K0.K�

¢� �

us.us,ud,ud,

dss.uss,dds,uus,udd,
uud,

p0 S e � � e � � g.n S p� � p� � m� � m�

SSMp � K� S �� � (?)
p � p S p� � n � K� � (?),p � p� S ©0 � (?),

tS m� � n
m

� n
t

tS m� � n
m

� n
t

t

©� S p � p0.
Æ� S ¶0 � ne � e �

�0 S p � p�.
Æ� S ¶0 � K�

¶0 S p � p�.
� 0 S p � p� � p0,Æ � S � 0 � p� ,

ne � p� S n � e �.
p� � p� S g � g,e � � e � S g,p� � p�,

n Sp� S n � e � � ne,

27 •• Find a possible quark combination for the following
particles: (a) (b) and (c)

28 •• Find a possible quark combination for the following
particles: (a) (b) and (c)

29 •• Find a possible quark combination for the following par-
ticles: (a) and (b)

30 •• State the properties of the particles made up of the fol-
lowing quarks: (a) (b) (c) and (d)

THE EVOLUTION OF THE UNIVERSE

31 • A galaxy is receding from Earth at 2.5 percent the speed
of light. Estimate the distance from Earth to the galaxy.

32 • Estimate the speed of a galaxy that is away
from us.

33 •• The Doppler frequency shift for a light from a source that
is receding from a stationary receiver is given by

where (Equation 39-16b). Show
that the Doppler wavelength shift for light is 

34 •• The red line in the spectrum of atomic hydrogen is
frequently referred to as the line, and it has a wavelength of

Using Hubble’s law and the Doppler equation for
light from Problem 33, determine the wavelength of the line in
the spectrum emitted from galaxies at distances of
(a) (b) and (c)
from Earth.

GENERAL PROBLEMS

35 • (a) What conditions are necessary for a particle and its an-
tiparticle to be identical? (b) Find the quark combination of both the
particle and the antiparticle of both the and the particles. (c) Of
the and the particles, which, if any, is its own antiparticle?

36 •• The red line in the spectrum of atomic hydrogen is fre-
quently referred to as the line, and it has a wavelength of

Light from a distant galaxy shows a redshift of the 
line of hydrogen to a wavelength of (a) What is the reces-
sional velocity of the galaxy? (b) Estimate the distance to the galaxy.

37 •• (a) In terms of the quark model, show that the reaction
does not violate any conservation laws. (b) Which con-

servation law is violated by the reaction 

38 •• Test the following decays for violation of the conserva-
tion of energy, electric charge, baryon number, and lepton number:
(a) (b) and (c)
Assume that linear momentum and angular momentum are
conserved. State which conservation laws (if any) are violated in
each decay.

39 •• Consider the following high-energy particle reaction:
where (?) represents an unknown

particle. During this reaction, stationary protons are bombarded
with a beam of high-energy protons. (a) Use the laws of conserva-
tion of charge number, baryon number, strangeness (Table 41-2),
and spin to determine the unknown particle. (b) Calculate the 
value for the reaction. (c) The threshold kinetic energy for this
reaction is given by 

where and are the masses of the reaction
products. Find Kth.

M4M1,M2,M3,mp,
Kth � � 1

2Q(mp � mp � M1 � M2 � M3 � M4)>Kth

Q

p � p S ¶0 � K0 � p � (?),

m� S e � � ne � n
m
.©� S n � p�,¶0 S p � p�,

SSMp0 S g?
p0 S g � g

1458 nm.
Ha656.3 nm.

Ha

�0p0
� 0p0

5.00 � 109 c # y5.00 � 108 c # y,5.00 � 106 c # y,

Ha
656.3 nm.

Ha

l01(1 � b)>(1 � b).
l� �

b � v>cf� � f01(1 � b)>(1 � b),

12 � 109 c # y

SSM

sss.ub,uc,ddd,

��.Æ�

©�.�0,n,

SSM©�.p�,¶0,
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40 ••• In this problem, you will calculate the difference in the time
of arrival of two neutrinos of different energy from a supernova that is

light-years away. Let the energies of the neutrinos be
and and assume that the mass of a neutrino

is Because the total energies of the neutrinos is so much
greater than their rest energies, the neutrinos have speeds that are very
nearly equal to and energies that are approximately 
(a) If and are the times that the neutrinos with speeds and 
take to travel a distance show that 

(b) The speed of a neutrino of mass and total en-
ergy can be found from (Equation 39-24).
Show that when the speed ratio is given approximately
by (c) Use the results from Part (a) and Part (b) to
calculate for the energies and mass given, and calculate 
from the result from Part (a) for (d) Repeat the calcu-
lation in Part (c) using for the neutrino mass.20 eV>c2

x � 170 000 c # y.
¢tu1 � u2

u>c � 1 � 1
2 (mc2>E)2.

u>cEW mc2,
E � mc2>[1 � (u2>c2)]1>2E

mu1u2 � (x ¢u)>c2.
¢t � t2 � t1 � x(u1 � u2)>x,

u2u1t2t1

E � pc.c

2.0 eV>c2.
E2 � 5 MeV,E1 � 20 MeV

170 000

41 ••• A at rest decays by the reaction 
(a) Calculate the total kinetic energy of the decay products. (b) Find
the ratio of the kinetic energy of the pion to the kinetic energy of the
proton. (c) Find the kinetic energies of the proton and the pion for
the decay.

42 ••• A particle at rest decays by the reaction 
(a) What is the total energy (total energy includes rest energy) of the
decay products? (b) Assuming that the kinetic energy of the is
negligible compared with the energy of the photon, calculate the
approximate momentum of the photon. (c) Use your result from
Part (b) to calculate the kinetic energy of the (d) Use your result
from Part (c) to obtain a better estimate of the momentum and the
energy of the photon.

¶0.

¶0

©0 S ¶0 � g.©0

¶0 S p � p�.¶0



Appendix A

SI Units and 
Conversion Factors

Base Units*

Length The meter (m) is the distance traveled by light in a vacuum
in 1/299,792,458 s.

Time The second (s) is the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two
hyperfine levels of the ground state of the 133Cs atom.

Mass The kilogram (kg) is the mass of the international standard
body preserved at Sèvres, France.

Mole The mole (mol) is the amount of substance of a system which
contains as many elementary entities as there are atoms in
0.012 kilogram of carbon 12.

Current The ampere (A) is that constant current which, if maintained
in two straight parallel conductors of infinite length, of
negligible circular cross section, and placed 1 m apart in
vacuum would produce between these conductors a force
equal to 2 � 10�7 N/m of length.

Temperature The kelvin (K) is 1/273.16 of the thermodynamic temperature
of the triple point of water.

Luminous intensity The candela (cd) is the luminous intensity in a given
direction, of a source that emits monochromatic radiation of
frequency 540 � 1012 hertz and that has a radiant intensity in
that direction of 1/683 watt/steradian.

* These definitions are found on the Internet at http://physics.nist.gov/cuu/Units/current.html

Derived Units

Force newton (N) 1 N � 1 kg m/s2

Work, energy joule (J) 1 J � 1 N m

Power watt (W) 1 W � 1 J/s

Frequency hertz (Hz) 1 Hz � cy/s

Charge coulomb (C) 1 C � 1 A s

Potential volt (V) 1 V � 1 J/C

Resistance ohm (�) 1 � � 1 V/A

Capacitance farad (F) 1 F � 1 C/V

Magnetic field tesla (T) 1 T � 1 N/(A m)

Magnetic flux weber (Wb) 1 Wb � 1 T m2

Inductance henry (H) 1 H � 1 J/A2

#
#

#

#
#
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Conversion Factors

Conversion factors are written as equations for simplicity; 
relations marked with an asterisk are exact.

Length

1 km � 0.6215 mi

1 mi � 1.609 km

1 m � 1.0936 yd � 3.281 ft � 39.37 in

*1 in � 2.54 cm

*1 ft � 12 in � 30.48 cm

*1 yd � 3 ft � 91.44 cm

1 lightyear � 1 c y � 9.461 � 1015 m

*1 Å � 0.1 nm

Area

*1 m2 � 104 cm2

1 km2 � 0.3861 mi2 � 247.1 acres

*1 in2 � 6.4516 cm2

1 ft2 � 9.29 � 10�2 m2

1 m2 � 10.76 ft2

*1 acre � 43 560 ft2

1 mi2 � 640 acres � 2.590 km2

Volume

*1 m3 � 106 cm3

*1 L � 1000 cm3 � 10�3 m3

1 gal � 3.785 L

1 gal � 4 qt � 8 pt � 128 oz � 231 in3

1 in3 � 16.39 cm3

1 ft3 � 1728 in.3 � 28.32 L
� 2.832 � 104 cm3

Time

*1 h � 60 min � 3.6 ks

*1 d � 24 h � 1440 min � 86.4 ks

1 y � 365.24 d � 3.156 � 107 s

Speed

*1 m/s � 3.6 km/h

1 km/h � 0.2778 m/s � 0.6215 mi/h

1 mi/h � 0.4470 m/s � 1.609 km/h

1 mi/h � 1.467 ft/s

Angle and Angular Speed

*p rad � 180°

1 rad � 57.30°

1° � 1.745 � 10�2 rad

1 rev/min � 0.1047 rad/s

1 rad/s � 9.549 rev/min

Mass

*1 kg � 1000 g

*1 tonne � 1000 kg � 1 Mg

1 u � 1.6605 � 10�27 kg

� 931.49 MeV/c2

1 kg � 6.022 � 1026 u

1 slug � 14.59 kg

1 kg � 6.852 � 10�2 slug

Density

*1 g/cm3 � 1000 kg/m3 � 1 kg/L

(1 g/cm3)g � 62.4 lb/ft3

Force

1 N � 0.2248 lb � 105 dyn

*1 lb � 4.448222 N

(1 kg)g � 2.2046 lb

Pressure

*1 Pa � 1 N/m2

*1 atm � 101.325 kPa � 1.01325 bars

1 atm � 14.7 lb/in2 � 760 mmHg
� 29.9 inHg � 33.9 ftH2O

1 lb/in2 � 6.895 kPa

1 torr � 1 mmHg � 133.32 Pa

1 bar � 100 kPa

Energy

*1 kW h � 3.6 MJ

*1 cal � 4.1840 J

1 ft lb � 1.356 J � 1.286 � 10�3 Btu

*1 L atm � 101.325 J

1 L atm � 24.217 cal

1 Btu � 778 ft lb � 252 cal � 1054.35 J

1 eV � 1.602 � 10�19 J

1 u c2 � 931.49 MeV

*1 erg � 10�7 J

Power

1 horsepower � 550 ft lb/s � 745.7 W

1 Btu/h � 2.931 � 10�4 kW

1 W � 1.341 � 10�3 horsepower
� 0.7376 ft lb/s

Magnetic Field

*1 T � 104 G

Thermal Conductivity

1 W/(m K) � 6.938 Btu in/(h ft2 F°)

1 Btu in/(h ft2 F°) � 0.1441 W/(m K)####
####

#

#

#

#
#
#
#

#

#
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Numerical Data

Terrestrial Data

Free-fall acceleration g
Standard value (at sea level at 45° latitude)* 9.806 65 m/s2; 32.1740 ft/s2

At equator* 9.7804 m/s2

At poles* 9.8322 m/s2

Mass of Earth ME 5.97 � 1024 kg
Radius of Earth RE, mean 6.37 � 106 m; 3960 mi
Escape speed 1.12 � 104 m/s; 6.95 mi/s
Solar constant† 1.37 kW/m2

Standard temperature and pressure (STP):
Temperature 273.15 K (0.00°C)
Pressure 101.325 kPa (1.00 atm)

Molar mass of air 28.97 g/mol
Density of air (STP), rair 1.217 kg/m3

Speed of sound (STP) 331 m/s
Heat of fusion of H2O (0°C, 1 atm) 333.5 kJ/kg
Heat of vaporization of H2O (100°C, 1 atm) 2.257 MJ/kg

* Measured relative to Earth’s surface.
† Average power incident normally on 1 m2 outside Earth’s atmosphere at the mean distance from Earth to the Sun.

Astronomical Data*

Earth
Distance to moon, mean† 3.844 � 108 m; 2.389 � 105 mi
Distance to the Sun, mean† 1.496 � 1011 m; 9.30 � 107 mi; 1.00 AU
Orbital speed, mean 2.98 � 104 m/s

Moon
Mass 7.35 � 1022 kg
Radius 1.737 � 106 m
Period 27.32 d
Acceleration of gravity at surface 1.62 m/s2

Sun
Mass 1.99 � 1030 kg
Radius 6.96 � 108 m

* Additional solar-system data is available from NASA at <http://nssdc.gsfc.nasa.gov/planetary/planetfact.html>.
† Center to center.

22REg
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Physical Constants*

Gravitational constant G 6.6742(10) � 10�11 N m2/kg2

Speed of light c 2.997 924 58 � 108 m/s

Fundamental charge e 1.602 176 453(14) � 10�19 C

Avogadro’s number NA 6.022 141 5(10) � 1023 particles/mol

Gas constant R 8.314 472(15) J/(mol K)

1.987 2065(36) cal/(mol K)

8.205 746(15) � 10�2 L atm/(mol K)

Boltzmann constant k � R/NA 1.380 650 5(24) � 10�23 J/K

8.617 343(15) � 10�5 eV/K

Stefan-Boltzmann constant s � (p 2/60)k4/(U3c2) 5.670 400(40) � 10�8 W/(m2k4)

Atomic mass constant mu � m(12C) 1.660 538 86(28) � 10�27 kg � 1u

Magnetic constant
(permeability of free space) m0 4 p � 10�7 N/A2

1.256 637 � 10�6 N/A2

Electric constant 
(permittivity of free space) P0 � 1/(m0C

2) 8.854 187 817 … � 10�12 C2/(N m2)

Coulomb constant k � 1/(4pP0) 8.987 551 788 … � 109 N m2/C2

Planck’s constant h 6.626 0693(11) � 10�34 J s

4.135 667 43(35) � 10�15 eV s

U � h/2p 1.054 571 68(18) � 10�34 J s

6.582 119 15(56) � 10�16 eV s

Mass of electron me 9.109 382 6(16) � 10�31 kg

0.510 998 918(44) MeV/c2

Mass of proton mp 1.672 621 71(29) � 10�27 kg

938.272 029(80) � MeV/c2

Mass of neutron mn 1.674 927 28(29) � 10�27 kg

939.565 360(81) MeV/c2

Bohr magneton mB � eh/2me 9.274 009 49(80) � 10�24 J/T

5.788 381 804(39) � 10�5 eV/T

Nuclear magneton mn � eh/2mp 5.050 783 43(43) � 10�27 J/T

3.152 451 259(21) � 10�8 eV/T

Magnetic flux quantum f0 � h/ 2e 2.067 833 72(18) � 10�15 T m2

Quantized Hall resistance RK � h/e2 2.581 280 7449(86) � 104 �

Rydberg constant RH 1.097 373 156 8525(73) � 107 m�1

Josephson KJ � 2e/ h 4.835 978 79(41) � 1014 Hz/V
frequency-voltage quotient

Compton wavelength lC � h/mec 2.426 310 238(16) � 10�12 m

* The values for these and other constants may be found on the Internet at http://physics.nist.gov/cuu/Constants/index.html. The numbers in

parentheses represent the uncertainties in the last two digits. (For example, 2.044 43(13) stands for 2.044 43 � 0.000 13.) Values without

uncertainties are exact, including those values with ellipses (such as the value of pi is exactly 3.1415. . .).

#

#
#

#
#
#

#
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For additional data, see the following tables in the text.

1-1 Prefixes for Powers of 10

1-2 Dimensions of Physical Quantities

1-3 The Universe by Orders of Magnitude

1-4 Properties of Vectors

5-1 Approximate Values of Frictional Coefficients

6-1 Properties of Scalar Products

7-1 Rest Energies of Some Elementary Particles and Light Nuclei

9-1 Moments of Inertia of Uniform Bodies of Various Shapes

9-2 Analogs in Fixed-Axis Rotational and One-Dimensional Linear
Motion

11-1 Mean Orbital Radii and Orbital Periods for the Planets

12-1 Young’s Modulus � and Strengths of Various Materials

12-2 Approximate Values of the Shear Modulus Ms of Various Materials

13-1 Densities of Selected Substances

13-2 Approximate Values for the Bulk Modulus B of Various Materials

13-3 Coefficients of Viscosity for Various Fluids

15-1 Intensity and Intensity Level of Some Common Sounds 
(I0 � 10�12 W/m2)

17-1 The Temperatures of Various Places and Phenomena

18-1 Specific Heats and Molar Specific Heats of Some Solids and Liquids

18-2 Melting Point (MP), Latent Heat of Fusion (Lf), Boiling Point (BP),
and Latent Heat of Vaporization (LV), all at 1 atm for Various
Substances

18-3 Molar Heat Capacities J/mol K of Various Gases at 25°C

20-1 Approximate Values of the Coefficients of Thermal Expansion for
Various Substances

20-3 Critical Temperatures Tc for Various Substances

20-4 Thermal Conductivities k for Various Materials

20-5 R Factors �x/k for Various Building Materials

21-1 The Triboelectric Series 

21-2 Some Electric Fields in Nature 

24-1 Dielectric Constants and Dielectric Strengths of Various Materials

25-1 Resistivities and Temperature Coefficients 

25-2 Wire Diameters and Cross-Sectional Areas for Commonly Used
Copper Wires 

27-1 Magnetic Susceptibility of Various Materials at 20°C

27-2 Maximum Values of m0Ms, and Km for Some Ferromagnetic Materials 

30-1 The Electromagnetic Spectrum 

36-1 Electron Configurations of the Atoms in Their Ground States

38-1 Free-Electron Number Densities and Fermi Energies at T � 0 for
Selected Elements 

38-2 Work Functions for Some Metals 

39-1 Rest Energies of Some Elementary Particles and Light Nuclei

40-1 Atomic Masses of the Neutron and Selected Isotopes 

41-1 Hadrons That Are Stable Against Decay via the Strong Nuclear
Interaction

41-2 Properties of Quarks and Antiquarks

41-3 Masses of Fundamental Particles 

41-4 Bosons That Mediate the Basic Interactions 

41-5 Properties of the Basic Interactions 

#

Geometry and Trigonometry

C � pd � 2pr definition of p

A � pr2 area of circle

V � pr3 spherical volume

A � V/ r � 4pr2 spherical surface area

V � AbaseL � pr2 L cylindrical volume

A � V/ r � 2prL cylindrical surface area

sin2u � cos2u � 1

sin(A � B) � sin A cos B � cos A sin B

cos(A � B) � cos A cos B � sin A sin B

sin A � sin B � 2 sin[ (A � B)] cos[ (A � B)]

If �u� 		 1, then 
cosu � 1 and tanu � sinu � u (u in radians)

Quadratic Formula

If ax2 � bx � c � 0, then x �

Binomial Expansion

If �x� 	 1, then (1 � x)n �

1 � nx � x2 � x3 �…

If �x� 		 1, then (1 � x)n � 1 � nx

Differential Approximation

If �F � F(x � �x) � F(x) and if ��x� is small,

then �F � �x.
dF
dx

n(n � 1)(n � 2)
3!

n(n � 1)
2!

�b � 2b2 � 4ac
2a

1

u

u

cos u

sin u

(x, y)

y

x

1
2

1
2

h
o

a
u

o � h sinu
a � h cosu

��

��

4
3

sinu � y
cosu � x

tanu �
y

x



AP-6

Appendix C

Periodic Table of Elements*

1 18

1 2

H He
2 13 14 15 16 17

3 4 5 6 7 8 9 10

Li Be B C N O F Ne

11 12 13 14 15 16 17 18

Na Mg Al Si P S Cl Ar
3 4 5 6 7 8 9 10 11 12

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

55 56 57–71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Cs Ba Rare Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Earths

87 88 89–103 104 105 106 107 108 109

Fr Ra Actinides Rf Db Sg Bh Hs Mt
110

Ds
111

Rg

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
Rare Earths La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

(Lanthanides)

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Actinides Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

* The 1–18 group designation has been recommended by the International Union of Pure and Applied Chemistry (IUPAC). 

Elements with atomic numbers 112, 114, and 116 have been reported but not fully authenticated as of September 2003. 

From http://www.iupac.org/reports/periodic_table/IUPAC_Periodic_Table-3Oct05.pdf

http://www.iupac.org/reports/periodic_table/IUPAC_Periodic_Table-3Oct05.pdf
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Atomic
Number Name Symbol Mass

1 Hydrogen H 1.00794(7)
2 Helium He 4.002602(2)
3 Lithium Li 6.941(2)
4 Beryllium Be 9.012182(3)
5 Boron B 10.811(7)
6 Carbon C 12.0107(8)
7 Nitrogen N 14.0067(2)
8 Oxygen O 15.9994(3)
9 Fluorine F 18.9984032(5)

10 Neon Ne 20.1797(6)
11 Sodium Na 22.98976928(2)
12 Magnesium Mg 24.3050(6)
13 Aluminum Al 26.9815386(8)
14 Silicon Si 28.0855(3)
15 Phosphorus P 30.973762(2)
16 Sulfur S 32.065(5)
17 Chlorine Cl 35.453(2)
18 Argon Ar 39.948(1)
19 Potassium K 39.0983(1)
20 Calcium Ca 40.078(4)
21 Scandium Sc 44.955912(6)
22 Titanium Ti 47.867(1)
23 Vanadium V 50.9415(1)
24 Chromium Cr 51.9961(6)
25 Manganese Mn 54.938045(5)
26 Iron Fe 55.845(2)
27 Cobalt Co 58.933195(5)
28 Nickel Ni 58.6934(2)
29 Copper Cu 63.546(3)
30 Zinc Zn 65.409(4)
31 Gallium Ga 69.723(1)
32 Germanium Ge 72.64(1)
33 Arsenic As 74.92160(2)
34 Selenium Se 78.96(3)
35 Bromine Br 79.904(1)
36 Krypton Kr 83.798(2)
37 Rubidium Rb 85.4678(3)
38 Strontium Sr 87.62(1)
39 Yttrium Y 88.90585(2)
40 Zirconium Zr 91.224(2)
41 Niobium Nb 92.90638(2)
42 Molybdenum Mo 95.94(2)
43 Technetium Tc [98]
44 Ruthenium Ru 101.07(2)
45 Rhodium Rh 102.90550(2)
46 Palladium Pd 106.42(1)
47 Silver Ag 107.8682(2)
48 Cadmium Cd 112.411(8)
49 Indium In 114.818(3)
50 Tin Sn 118.710(7)
51 Antimony Sb 121.760(1)
52 Tellurium Te 127.60(3)
53 Iodine I 126.90447(3)
54 Xenon Xe 131.293(6)
55 Cesium Cs 132.9054519(2)
56 Barium Ba 137.327(7)

57 Lanthanum La 138.90547(7)
58 Cerium Ce 140.116(1)
59 Praseodymium Pr 140.90765(2)
60 Neodymium Nd 144.242(3)
61 Promethium Pm [145]
62 Samarium Sm 150.36(2)
63 Europium Eu 151.964(1)
64 Gadolinium Gd 157.25(3)
65 Terbium Tb 158.92535(2)
66 Dysprosium Dy 162.500(1)
67 Holmium Ho 164.93032(2)
68 Erbium Er 167.259(3)
69 Thulium Tm 168.93421(2)
70 Ytterbium Yb 173.04(3)
71 Lutetium Lu 174.967(1)
72 Hafnium Hf 178.49(2)
73 Tantalum Ta 180.94788(2)
74 Tungsten W 183.84(1)
75 Rhenium Re 186.207(1)
76 Osmium Os 190.23(3)
77 Iridium Ir 192.217(3)
78 Platinum Pt 195.084(9)
79 Gold Au 196.966569(4)
80 Mercury Hg 200.59(2)
81 Thallium Tl 204.3833(2)
82 Lead Pb 207.2(1)
83 Bismuth Bi 208.98040(1)
84 Polonium Po [209]
85 Astatine At [210]
86 Radon Rn [222]
87 Francium Fr [223]
88 Radium Ra [226]
89 Actinium Ac [227]
90 Thorium Th 232.03806(2)
91 Protactinium Pa 231.03588(2)
92 Uranium U 238.02891(3)
93 Neptunium Np [237]
94 Plutonium Pu [244]
95 Americium Am [243]
96 Curium Cm [247]
97 Berkelium Bk [247]
98 Californium Cf [251]
99 Einsteinium Es [252]

100 Fermiun Fm [257]
101 Mendelevium Md [258]
102 Nobelium No [259]
103 Lawrencium Lr [262]
104 Rutherfordium Rf [261]
105 Dubnium Db [262]
106 Seaborgium Sg [266]
107 Bohrium Bh [264]
108 Hassium Hs [277]
109 Meitnerium Mt [268]
110 Darmstadtium Ds [271]
111 Roentgenium Rg [272]

Atomic
Number Name Symbol Mass

Atomic Numbers and Atomic Masses*

* IUPAC 2005 standard atomic weights (mean relative atomic masses) as approved at the 43rd IUPAC General Assembly in Beijing, China, in August 2005 are

listed with uncertainties in the last figure in parentheses. From http://www.iupac.org/reports/periodic_table/IUPAC_Periodic_Table-3Oct05.pdf

http://www.iupac.org/reports/periodic_table/IUPAC_Periodic_Table-3Oct05.pdf
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Math Tutorial

M-1 Significant Digits
M-2 Equations
M-3 Direct and Inverse Proportions
M-4 Linear Equations
M-5 Quadratic Equations and Factoring
M-6 Exponents and Logarithms
M-7 Geometry
M-8 Trigonometry
M-9 The Binomial Expansion
M-10 Complex Numbers
M-11 Differential Calculus
M-12 Integral Calculus

In this tutorial, we review some of the basic results of algebra, geome-
try, trigonometry, and calculus. In many cases, we merely state results
without proof. Table M-1 lists some mathematical symbols.

M-1 SIGNIFICANT DIGITS

Many numbers we work with in science are the result of measurement
and are therefore known only within a degree of uncertainty. This un-
certainty should be reflected in the number of digits used. For exam-
ple, if you have a 1-meter-long rule with scale spacing of 1 cm, you
know that you can measure the height of a box to within a fifth of a
centimeter or so. Using this rule, you might find that the box height is
27.0 cm. If there is a scale with a spacing of 1 mm on your rule, you
might perhaps measure the box height to be 27.03 cm. However, if
there is a scale with a spacing of 1 mm on your rule, you might not be
able to measure the height more accurately than 27.03 cm because the
height might vary by 0.01 cm or so, depending on which part of the
box you measure the height at. When you write down that the height
of the box is 27.03 cm, you are stating that your best estimate of the
height is 27.03 cm, but you are not claiming that it is exactly 27.030000
. . . cm high. The four digits in 27.03 cm are called significant digits.
Your measured length, 2.703 m, has four significant digits. Significant
digits are also called significant figures.

The number of significant digits in an answer to a calculation will
depend on the number of significant digits in the given data. When
you work with numbers that have uncertainties, you should be careful
not to include more digits than the certainty of measurement warrants.
Approximate calculations (order-of-magnitude estimates) always result
in answers that have only one significant digit or none. When you
multiply, divide, add, or subtract numbers, you must consider the
accuracy of the results. Listed below are some rules that will help you
determine the number of significant digits of your results.

Table M-1 Mathematical Symbols

is equal to

is not equal to

is approximately equal to

is of the order of

is proportional to

is greater than

is greater than or equal to

is much greater than

is less than

is less than or equal to

is much less than

change in 

absolute value of 

sum

lim limit

approaches zero

derivative of with respect to 

partial derivative of with respect to 

integral�
tx

�x
�t

tx
dx
dt

¢t¢tS 0

a
n(n � 1)(n � 2) Á 1n!

xƒx ƒ
x¢x

		

�
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�
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�

�

�
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1. When multiplying or dividing quantities, the number of significant digits in the
final answer is no greater than that in the quantity with the fewest significant
digits.

2. When adding or subtracting quantities, the number of decimal places in the
answer should match that of the term with the smallest number of decimal 
places.

3. Exact values have an unlimited number of significant digits. For example, a
value determined by counting, such as 2 tables, has no uncertainty and is an
exact value. In addition, the conversion factor 0.0254000 . . . is an exact
value because 1.000 . . . inches is exactly equal to 0.0254000 . . . meters. (The yard
is, by definition, equal to exactly 0.9144 meters, and 0.9144 divided by 36 is
exactly equal to 0.0254.)

4. Sometimes zeros are significant and sometimes they are not. If a zero is before
a leading nonzero digit, then the zero is not significant. For example, the num-
ber 0.00890 has three significant digits. The first three zeroes are not significant
digits but are merely markers to locate the decimal point. Note that the zero
after the nine is significant.

5. Zeros that are between nonzero digits are significant. For example, 5603 has
four significant digits.

6. The number of significant digits in numbers with trailing zeros and no decimal
point is ambiguous. For example 31000 could have as many as five significant
digits or as few as two significant digits. To prevent ambiguity, you should
report numbers by using scientific notation or by using a decimal point.

m/in

SOLVE

1. Sum the three numbers. 19.90 � (�7.524) � (�11.8179) � 0.5581

2. If the problem only asked for the sum of the three numbers, we
would round the answer to the least number of decimal places
among all the numbers being added. However, we must divide
this intermediate result by 3, so we use the intermediate answer
with the two extra digits (italicized and red).

0.5581
3

� 0.1860333 Á

3. Only two of the digits in the intermediate answer, 
0.18 are significant digits, so we must round this
number to get our final answer. The number 3 in the
denominator is a whole number and has an unlimited number
of significant digits. Thus, the final answer has the same
number of significant digits as the numerator, which is 2.

60333 Á ,
The final answer is 0.19.

CHECK The sum in step 1 has two significant digits following the decimal point, the same as
the number being summed with the least number of significant digits after the decimal point.

PRACTICE PROBLEMS

1.

2. 57.8 m/s � 26.24 m/s

5.3 mol
22.4 mol/L

Example M-1 Finding the Average of Three Numbers

Find the average of and 

PICTURE You will be adding 3 numbers and then dividing the result by 3. The first number
has three significant digits, the second number has four, and the third number has five.

�11.8179.19.90 , �7.524 ,
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M-2 EQUATIONS

An equation is a statement written using numbers and symbols to indicate that two
quantities, written on either side of an equals sign are equal. The quantity on
either side of the equal sign may consist of a single term, or of a sum or difference
of two or more terms. For example, the equation contains
three terms, 1 and 

You can perform the following operations on equations:

1. The same quantity can be added to or subtracted from each side of an equation.
2. Each side of an equation can be multiplied or divided by the same quantity.
3. Each side of an equation can be raised to the same power.

These operations are meant to be applied to each side of the equation rather than each
term in the equation. (Because multiplication is distributive over addition, opera-
tion 2—and only operation 2—of the preceding operations also applies term by term.)

Caution: Division by zero is forbidden at any stage in solving an equation; results (if
any) would be invalid.

Adding or Subtracting Equal Amounts
To find when add 3 to both sides of the equation:

thus,

Multiplying or Dividing by Equal Amounts
If solve for by dividing both sides of the equation by 3; thus, 
or 5.7.

Example M-2 Simplifying Reciprocals in an Equation

Solve the following equation for 

Equations containing reciprocals of unknowns occur in geometric optics and in electric cir-
cuit analysis—for example, in finding the net resistance of parallel resistors.

PICTURE In this equation, the term containing is on the same side of the equation as a
term not containing Furthermore, is found in the denominator of a fraction.

SOLVE

xx .
x

1
x

�
1
4

�
1
3

x:

x � 17
3 ,x3x � 17,

x � 10.(x � 3) � 3 � 7 � 3;
x � 3 � 7,x

(ay � b)>(cx � d) .x ,
x � 1 � (ay � b)>(cx � d)

(�) ,

1. Subtract from each side:
1
4

1
x

�
1
3

�
1
4

2. Simplify the right side of the equation by using the lowest
common denominator:

so
1
x

�
1

12
1
x

�
1
3

�
1
4

�
4

12
�

3
12

�
4 � 3

12
�

1
12

3. Multiply both sides of the equation by to determine the
value of x:

12x

� x12

12x
1
x

� 12x
1

12

CHECK Substitute 12 for in the left side of original equation.

PRACTICE PROBLEMS Solve each of the following for 

3.

4.
4
x

�
1
3

�
3
x

(7.0 cm3)x � 18 kg � (4.0 cm3)x

x:

1
x

�
1
4

�
1

12
�

3
12

�
4

12
�

1
3

x
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Example M-3 Painting Cubes

You need 15.4 mL of paint to cover one side of a cube. The area of one side of the cube is
What is the relation between the volume of paint needed and the area to be cov-

ered? How much paint do you need to paint one side of a cube in which the one side has an
area of 

PICTURE To determine the amount of paint for the side whose area is you will
need to set up a proportion.

SOLVE

503 cm2 ,

503 cm2?

426 cm2 .

M-3 DIRECT AND INVERSE PROPORTIONS

When we say variable quantities and are directly proportional, we mean that
as and change, the ratio is constant. To say that two quantities are propor-
tional is to say that they are directly proportional. When we say variable quantities

and are inversely proportional, we mean that as and change, the ratio 
is constant.

Relationships of direct and inverse proportion are common in physics. Objects
moving at the same velocity have momenta directly proportional to their masses.
The ideal-gas law states that pressure is directly proportional to
(absolute) temperature when volume remains constant and is inversely pro-
portional to volume, when temperature remains constant. Ohm’s law 
states that the voltage across a resistor is directly proportional to the electric cur-
rent in the resistor when the resistance remains constant.

CONSTANT OF PROPORTIONALITY

When two quantities are directly proportional, the two quantities are related by a
constant of proportionality. If you are paid for working at a regular rate in dollars
per day, for example, the money you earn is directly proportional to the time 
you work; the rate is the constant of proportionality that relates the money
earned in dollars to the time worked in days:

If you earn $400 in 5 days, the value of is To find the
amount you earn in 8 days, you could perform the calculation

Sometimes the constant of proportionality can be ignored in proportion problems.
Because the amount you earn in 8 days is times what you earn in 5 days, this
amount is

m �
8
5

($400) � $640

8
5

m � ($80>day)(8 days) � $640

$400/(5 days) � $80/day.R

m
t

� R  or  m � Rt

t
R

tm
R

R
V

(V � IR)
VT ,

P(PV � nRT)

xyyxyx

x/yyx
yx

1. The volume of paint needed increases in proportion to the
area to be covered.A

V

That is, or 

where is the proportionality constantk

V � kA
V
A

� k

V and A are directly proportional .

2. Determine the value of the proportionality constant using the
given values :V1 � 15.4 mL and A1 � 426 cm2 k �

V1

A1

�
15.4 mL
426 cm2 � 0.0361 mL>cm2

3. Determine the volume of paint needed to paint a side of a cube
whose area is using the proportionality constant in step 1:503 cm2

18.2 mL� (0.0361 mL>cm2)(503 cm2) �V2 � kA2
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CHECK Our value for is greater than the value for as expected. The amount of paint
needed to cover an area equal to should be greater than the amount of paint needed
to cover an area of because is larger than 

PRACTICE PROBLEMS

5. A cylindrical container holds 0.384 L of water when full. How much water would the
container hold if its radius were doubled and its height remained unchanged? 
Hint: The volume of a right circular cylinder is given by where is its radius and 

is its height. Thus, is directly proportional to when remains constant.
6. For the container in Practice Problem 5, how much water would the container hold if

both its height and its radius were doubled? How much water would the container
hold if its radius were doubled and its height remained unchanged? 
Hint: The volume of a right circular cylinder is given by where is its radius and

is its height.h

rV � pr2h ,V

hr2Vh

rV � pr2h ,

426 cm2 .503 cm2426 cm2
503 cm2

V1 ,V2

M-4 LINEAR EQUATIONS

A linear equation is an equation of the form That is, an equation
is linear if each term either is constant or is the product of a constant and a variable
raised to the first power. Such equations are said to be linear because the plots of
these equations form straight lines or planes. The equations of direct proportion
between two variables are linear equations.

GRAPH OF A STRAIGHT LINE

A linear equation relating and can always be put into the standard form

M-1

where and are constants that may be either positive or negative. Figure M-1
shows a graph of the values of and that satisfy Equation M-1. The constant 
called the y intercept, is the value of at The constant is the slope of the
line, which equals the ratio of the change in to the corresponding change in In
the figure, we have indicated two points on the line, and and the
changes and The slope is then

If and are both unknown in the equation there are no unique val-
ues of and that are solutions to the equation. Any pair of values on the
line in Figure M-1 will satisfy the equation. If we have two equations, each with
the same two unknowns and the equations can be solved simultaneously for the
unknowns. Example M-4 shows how simultaneous linear equations can be solved.

y ,x

(x1 , y1)yx
y � mx � b ,yx

m �
y2 � y1

x2 � x1

�
¢y
¢x

m¢y � y2 � y1 .¢x � x2 � x1

(x2 , y2) ,(x1 , y1)
x .y

mx � 0.y
b ,yx

bm

y � mx � b

xy

x � 2y � 4z � 3.

�

x2

b

y2

y1

x1

m �

x

�x �y

�y

y � mx � b

y

x

F I G U R E M - 1 Graph of the linear
equation where is the
y intercept and is the slope.m � ¢y>¢x by � mx � b ,

Example M-4 Using Two Equations to Solve for Two Unknowns

Find any and all values of and that simultaneously satisfy

M-2

and

M-3y � x � 2

3x � 2y � 8

yx
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1. Solve Equation M-3 for y: y � x � 2

10

10

5

5–5

–5

–10

(x,y) = (12, 14)

y – x = 2

y

x
3x – 2y = 8

FIGURE M-2 Graph of Equations M-2 and M-3. At the point
where the lines intersect, the values of and satisfy both
equations.

yx

2. Substitute this value for into
Equation M-2:

y 3x � 2(x � 2) � 8

3. Simplify the equation and solve for x:

12x �

x � 4 � 8

3x � 2x � 4 � 8

4. Use your solution for and one of the
given equations to find the value of y:

x where 

14y � 2 � 12 �

y � 12 � 2

x � 12y � x � 2 ,

CHECK An alternative method is to multiply one equation by a constant
such that one of the unknown terms is eliminated when the equations are
added or subtracted. We can multiply through Equation M-3 by 2

and add the result to Equation M-2 and solve for 

Substitute into Equation M-3 and solve for 

y � 12 � 2⇒ y � 14

y:

2y � 2x � 4 
3x � 2y � 8 
3x � 2x � 12⇒ x � 12

x:

2y � 2x � 4

 2(y � x) � 2(2)

PRACTICE PROBLEMS

7. True or false: is a linear equation.
8. At time the position of a particle moving along the axis at a constant velocity

is At the position is Write a linear equation showing
the relation of to 

9. Solve the following pair of simultaneous equations for and 

y � 5x � 20

5
4
x �

1
3
y � 30

y:x

t .x

x � 12.0 m .t � 2.0 s ,x � 3.0 m .
xt � 0.0 s ,

xy � 4

M-5 QUADRATIC EQUATIONS AND FACTORING

A quadratic equation is an equation of the form 
where and are variables and and are constants. In

each term of the equation the powers of the variables are integers that sum to 2, 1,
or 0. The designation quadratic equation usually applies to an equation of one
variable that can be written in the standard form

M-4

where and are constants. The quadratic equation has two solutions or
roots—values of for which the equation is true.x

ca , b ,

ax2 � bx � c � 0

ga , b , c , e , f ,yxfy � g � 0,
ax2 � bxy � cy2 � ex �

PICTURE Figure M-2 shows a graph of the two equations. At the point
where the lines intersect, the values of and satisfy both equations. We
can solve two simultaneous equations by first solving either equation for
one variable in terms of the other variable and then substituting the re-
sult into the other equation.

SOLVE

yx
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FACTORING

We can solve some quadratic equations by factoring. Very often terms of an equation
can be grouped or organized into other terms. When we factor terms, we look for
multipliers and multiplicands—which we now call factors—that will yield two or
more new terms as a product. For example, we can find the roots of the quadratic
equation by factoring the left side, to get The
roots are and 

Factoring is useful for simplifying equations and for understanding the relation-
ships between quantities. You should be familiar with the multiplication of the fac-
tors

You should readily recognize some typical factorable combinations:

1. Common factor: 
2. Perfect square: (If the expression on the left side of a

quadratic equation in standard form is a perfect square, the two roots will be
equal.)

3. Difference of squares: 

Also, look for factors that are prime numbers (2, 5, 7, etc.) because these factors
can help you factor and simplify terms quickly. For example, the equation 
98 can be simplified because 98 and 140 share the common factor 2.
That is, becomes so we have 

This result can be further simplified because 49 and 70 share the common factor 7.
Thus, becomes so we have 

THE QUADRATIC FORMULA

Not all quadratic equations can be solved by factoring. However, any quadratic equa-
tion in the standard form can be solved by the quadratic formula,

M-5

When is greater than there are two solutions corresponding to the and 
signs. Figure M-3 shows a graph of versus where The curve,
a parabola, crosses the axis twice. (The simplest representation of a parabola in

coordinates is an equation of the form ) The two roots of
this equation are the values for which that is, they are the x intercepts.

When is less than 4ac, the graph of versus does not intersect the axis, as
is shown in Figure M-4; there are still two roots, but they are not real numbers (see
the discussion of complex numbers beginning on page M-19). When the
graph of versus is tangent to the axis at the point the two roots
are each equal to �b/2a .

x � �b/2a;xxy
b2 � 4ac ,

xxyb2
y � 0;

y � ax2 � bx � c .(x , y)
x

y � ax2 � bx � c .xy
��4ac ,b2

x �
�b � 2b2 � 4ac

2a
� �

b
2a

�
1
2a
2b2 � 4ac

ax2 � bx � c � 0

7x2 � 10 � 0.7(7x2 � 10) � 0,49x2 � 70 � 0

49x2 � 70 � 0.2(49x2 � 70) � 0,98x2 � 140 � 0
x2 � 140 � 0

x2 � y2 � (x � y)(x � y)

x2 � 2xy � y2 � (x � y)2
2ax � 3ay � a(2x � 3y)

(cx � dy) � acx2 � (ad � bc)xy � bdy2 .(ax � by)

x � 1.x � 2
(x � 2)(x � 1) � 0.x2 � 3x � 2 � 0

y � ax2 � bx � cy

x

b2 	 4ac

F I G U R E  M - 4 Graph of versus when
for the case In this

case, there are no real values for for which
y � 0.

x
b2 	 4ac .y � ax2 � bx � c

xy

y � ax2 � bx � c

y

x

b2 
 4ac

F I G U R E M - 3 Graph of versus when
for the case The

two values of for which satisfy the
quadratic equation (Equation M-4).

y � 0x
b2 
 4ac .y � ax2 � bx � c

xy

Example M-5 Factoring a Second-Degree Polynomial

Factor the expression 

PICTURE We examine the coefficients of the terms to see whether the expression can be fac-
tored without resorting to more advanced methods. Remember that the multiplication

SOLVE

(ax � by)(cx � dy) � acx2 � (ad � bc)xy � bdy2 .

6x2 � 19xy � 10y2 .

3 # 2 � 6 or 6 # 1 � 6

ac � 6

2. The coefficient of is 10 which can also be factored two ways:y2

5 # 2 � 10 or 10 # 1 � 10

bd � 10

1. The coefficient of is 6 which can be factored two ways:x2
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3. List the possibilities for and in a table. Include a
column for 

If then and vice versa. In addition, if 
then and vice versa. For each value of there are four
values for b .

ac � 1 ,
a � 6 ,c � 2 ,a � 3 ,

ad � bc .
da , b , c ,

3 5 2 2 16

3 2 2 5 19

3 10 2 1 23

3 1 2 10 32

2 5 3 2 19

2 2 3 5 16

2 10 3 1 32

2 1 3 10 23

6 5 1 2 17

6 2 1 5 32

6 10 1 1 16

6 1 1 10 61

1 5 6 2 32

1 2 6 5 17

1 10 6 1 61

1 1 6 10 16

ad � bcdcba

4. Find a combination such that As you can see
from the table there are two such combinations, and each gives
the same results:

ad � bc � 19.

5. Use the combination in the second row of the table to factor the
expression in question:

3 # 5 � 2 # 2 � 19

ad � bc � 19

CHECK As a check, expand 

The combination in the fifth row of the table also gives the step-4 result.

PRACTICE PROBLEMS

10. Show that the combination in the fifth row of the table also gives the step-4 result.
11. Factor 
12. Factor 

M-6 EXPONENTS AND LOGARITHMS

EXPONENTS

The notation stands for the quantity obtained by multiplying times itself 
times. For example, and The quantity is called the power,
or the exponent, of (the base). Listed below are some rules that will help you
simplify terms that have exponents.

1. When two powers of are multiplied, the exponents are added:

M-6

Example:

2. Any number (except 0) raised to the 0 power is defined to be 1:

M-7
3. Based on rule 2,

M-8x�n �
1
xn

xnx�n � x0 � 1

x0 � 1

x2x3 � x2�3 � (x # x)(x # x # x) � x5 .

(xm)(xn) � xm�n

x

x
nx3 � x # x # x .x2 � x # x

nxxn

2x4 � 10x3 � 12x2 .
2x2 � 4xy � 2y2 .

(3x � 2y)(2x � 5y) � 6x2 � 15xy � 4xy � 10y2 � 6x2 � 19xy � 10y2

(3x � 2y)(2x � 5y) .

6x2 � 19xy � 10y2 � (3x � 2y)(2x � 5y)
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4. When two powers are divided, the exponents are subtracted:

M-9

5. When a power is raised to another power, the exponents are multiplied:

M-10

6. When exponents are written as fractions, they represent the roots of the base.
For example,

so

x1>2 � 2x  (x 
 0)

x1>2 # x1>2 � x

(xn)m � xnm

xn

xm
� xnx�m � xn�m

1. Simplify the numerator using rule 1.x4 x7 x4 x7 � x4�7 � x11

Example M-6 Simplifying a Quantity That Has Exponents

Simplify

PICTURE According to rule 1, when two powers of are multiplied, the exponents are
added. Rule 4 states that when two powers are divided, the exponents are subtracted.

SOLVE

x

x4x7

x8 .

2. Simplify using rule 4:
x11

x8

x11

x8 � x11 x�8 � x11�8 � x3

CHECK Use the value to determine if your answer is correct.

PRACTICE PROBLEMS

13.
14.

LOGARITHMS

Any positive number can be expressed as some power of any other positive num-
ber except one. If is related to by then the number is said to be the log-
arithm of to the base and the relation is written

Thus, logarithms are exponents, and the rules for working with logarithms corre-
spond to similar laws for exponents. Listed below are some rules that will help you
simplify terms that have logarithms.

1. If and then

Correspondingly,

M-11loga y1y2 � loga a
n�m � n � m � loga a

n � loga a
m � loga y1 � loga y2

y1y2 � anam � an�m

y2 � am ,y1 � an

x � loga y

a ,y
xy � ax ,xy

x6x0 �

(x1>18)9 �

2427

28 �
(16)(128)

256
�

2048
256

� 8

2427

28 � 23 � 8

x � 2



Example M-7 Converting Between Common Logarithms 
and Natural Logarithms

The steps leading to Equation M-19 show that, in general, and thus
that conversion of logarithms from one base to another requires only multiplication by a con-
stant. Describe the mathematical relation between the constant for converting common log-
arithms to natural logarithms and the constant for converting natural logarithms to common
logarithms.

PICTURE We have a general mathematical formula for converting logarithms from one base
to another. We look for the mathematical relation by exchanging for and vice versa in the
formula.

SOLVE

ba

logb x � (logb a)loga x ,

M-10 | Math Tutorial

It then follows that
M-12

2. Because and 

M-13
and

M-14

There are two bases in common use: logarithms to base 10 are called common loga-
rithms, and logarithms to base (where ) are called natural logarithms.

In this text, the symbol ln is used for natural logarithms and the symbol log,
without a subscript, is used for common logarithms. Thus,

M-15

and implies
M-16

Logarithms can be changed from one base to another. Suppose that

M-17
Then

M-18

Taking the natural logarithm of both sides of Equation M-18, we obtain

Substituting log for (see Equation M-17) gives

M-19ln x � (ln 10)log x

zx

z ln 10 � ln x

10z � 10log x � x

z � log x

x � ey
y � ln x

loge x � ln x  and  log10 x � log x

e � 2.718 Áe

loga 1 � 0

loga a � 1

a0 � 1,a1 � a

loga y
n � n loga y

1. You have a formula for converting logarithms from base to base b:a logb x � (logb a)loga x

2. To convert from base to base exchange all for and vice versa:baa ,b loga x � (loga b)logb x

3. Divide both sides of the equation in step 1 by loga x:
logb x

loga x
� logb a

4. Divide both sides of the equation in step 2 by (loga b)loga x:
1

loga b
�

logb x

loga x

5. The results show that the conversion factors and are reciprocals of one other:loga blogb a
1

loga b
� logb a

CHECK For the value of your calculator will give 0.43429. For ln 10, your calculator
will give 2.3026. Multiply 0.43429 by 2.3026; you will get 1.0000.

PRACTICE PROBLEMS

15. Evaluate 
16. Evaluate log25

log101000.

log10 e ,
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Spherical volume
A � 4� r2

Spherical surface area

r

V � � r34
3

F I G U R E  M - 8 Surface area and volume of
a sphere.

b

h

Area of
triangle

A � bh
1
2

F I G U R E M - 7 Area of a triangle.

b

h

Area of parallelogram
A � bh

F I G U R E  M - 6 Area of a parallelogram.

Area of a circle A =    r2

r

π

F I G U R E M - 5 Area of a circle.

r

L

Cylindrical surface area
A � 2� rL

Cylindrical volume
V � � r2L

F I G U R E  M - 9 Surface area
(not including the end faces) and
the volume of a cylinder.

M-7 GEOMETRY

The properties of the most common geometric figures—bounded shapes in two or
three dimensions whose lengths, areas, or volumes are governed by specific ratios—
are a basic analytical tool in physics. For example, the characteristic ratios within tri-
angles give us the laws of trigonometry (see the next section of this tutorial), which in
turn give us the theory of vectors, essential in analyzing motion in two or more di-
mensions. Circles and spheres are essential for understanding, among other con-
cepts, angular momentum and the probability densities of quantum mechanics.

BASIC FORMULAS IN GEOMETRY

Circle The ratio of the circumference of a circle to its diameter is a number 
which has the approximate value

The circumference of a circle is thus related to its diameter and its radius by

M-20

The area of a circle is (Figure M-5)

M-21

Parallelogram The area of a parallelogram is the base times the height 
(Figure M-6):

The area of a triangle is one-half the base times the height (Figure M-7)

Sphere A sphere of radius (Figure M-8) has a surface area given by

M-22

and a volume given by

M-23

Cylinder A cylinder of radius and length (Figure M-9) has surface area (not in-
cluding the end faces) of

M-24
and volume of

M-25V � pr2L  volume of cylinder

A � 2prL  surface of cylinder

Lr

V �
4
3
pr3  volume of sphere

A � 4pr2  surface area of sphere

r

A �
1
2
bh

A � bh

hb

A � pr2  area of circle

C � pd � 2pr  circumference of circle

rdC

p � 3.141 592

p,
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Example M-8 Calculating the Mass of a Spherical Shell

An aluminum spherical shell has an outer diameter of 40.0 cm and an inner diameter of 39.0
cm. Find the volume of the aluminum in this shell.

PICTURE The volume of the aluminum in the spherical shell is the volume that remains
when we subtract the volume of the inner sphere having from the volume
of the outer sphere having 

SOLVE

do � 2ro � 40.0 cm.
di � 2ri � 39.0 cm

1. Subtract the volume of the sphere of radius from the volume
of the sphere of radius ro:

ri V � 4
3pr3o � 4

3pr3i � 4
3p(r3o � r3i )

2. Substitute 20.0 cm for and 19.5 cm for ri :ro 2.45 � 103 cm3�V � 4
3p3(20.0 cm)3 � (19.5 cm)34

CHECK The volume of the shell is expected to be the same order of magnitude as the volume of
a hollow cube with an outside edge length of 40.0 cm and an inside edge length of 39.0 cm. The
volume of such a hollow cube is The step-2 result
meets the expectation that the volume of the shell is the same order of magnitude as the volume
of the hollow cube.

PRACTICE PROBLEMS

17. Find the ratio between the volume and the surface of a sphere of radius 
18. What is the area of a cylinder that has a radius that is its length?1/3

r .AV

(40.0 cm)3 � (39.0 cm)3 � 4.68 � 103 cm3.

M-8 TRIGONOMETRY

Trigonometry, which gets its name from Greek roots meaning “triangle” and
“measure,” is the study of some important mathematical functions, called trigono-
metric functions. These functions are most simply defined as ratios of the sides of
right triangles. However, these right-triangle definitions are of limited use because
they are valid only for angles between zero and However, the validity of the
right-triangle definitions can be extended by defining the trigonometric functions
in terms of the ratio of the coordinates of points on a circle of unit radius drawn
centered at the origin of the plane.

In physics, we first encounter trigonometric functions when we use vectors to
analyze motion in two dimensions. Trigonometric functions are also essential in
the analysis of any kind of periodic behavior, such as circular motion, oscillatory
motion, and wave mechanics.

ANGLES AND THEIR MEASURE: DEGREES AND RADIANS

The size of an angle formed by two intersecting straight lines is known as its
measure. The standard way of finding the measure of an angle is to place the angle
so that its vertex, or point of intersection of the two lines that form the angle, is at
the center of a circle located at the origin of a graph that has Cartesian coordinates
and one of the lines extends rightward on the positive axis. The distance traveled
counterclockwise on the circumference from the positive axis to reach the intersec-
tion of the circumference with the other line defines the measure of the angle.
(Traveling clockwise to the second line would simply give us a negative measure;
to illustrate basic concepts, we position the angle so that the smaller rotation will
be in the counterclockwise direction.)

The most familiar unit for expressing the measure of an angle is the degree,
which equals of the full distance around the circumference of the circle. For
greater precision, or for smaller angles, we either show degrees plus minutes (�)

1/360

x
x

xy

90°.
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� � �

�

�

�

�

�

Parallel lines
� � �

� ��

D
A

C

B

� � �
AB � BD
AD � BC

� � � � �

�

� � � � 180�

��

� � � � � � 180�  

�

�
�

F I G U R E  M - 1 1 Some useful relations for
angles.

s
r

� �

r

s
r

�

F I G U R E M - 1 0 The angle in radians is
defined to be the ratio where is the arc
length intercepted on a circle of radius r .

ss>r , u

and seconds with and or show degrees as an
ordinary decimal number.

For scientific work, a more useful measure of an angle is the radian (rad). Again,
place the angle with its vertex at the center of a circle and measure counterclockwise
rotation around the circumference. The measure of the angle in radians is then
defined as the length of the circular arc from one line to the other divided by the
radius of the circle (Figure M-10). If is the arc length and is the radius of the circle,
the angle measured in radians is

M-26

Because the angle measured in radians is the ratio of two lengths, it is dimension-
less. The relation between radians and degrees is

or

Figure M-11 shows some useful relations for angles.

1 rad �
360°
2p

� 57.3°

360° � 2p rad

u �
s
r

u

rs

1� � 1�/60 � 1°/3600;1� � 1°/60(�) ,

b

a
c

C

B

�
A

FIGURE M-12 A right triangle with sides of
length and and a hypotenuse of length c .ba

THE TRIGONOMETRIC FUNCTIONS

Figure M-12 shows a right triangle formed by drawing the line perpendicular
to The lengths of the sides are labeled and The right-triangle definitions
of the trigonometric functions (the sine), (the cosine), and (the tan-
gent) for an acute angle are

M-27

M-28

M-29

(Acute angles are angles whose positive rotation around the circumference of a cir-
cle measures less than or ) Three other trigonometric functions—thep>2.90°,

tan u �
a
b

�
Opposite side

Adjacent side
�

sin u
cos u

cos u �
b
c

�
Adjacent side

Hypotenuse

sin u �
a
c

�
Opposite side

Hypotenuse

u

tan ucos usin u
c .a , b ,AC .

BC
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secant (sec), the cosecant (csc), and the cotangent (cot), defined as the reciprocals
of these functions—are

M-30

M-31

M-32

The angle whose sine is is called the arcsine of and is written 
That is, if

then

M-33

The arcsine is the inverse of the sine. The inverse of the cosine and tangent are
defined similarly. The angle whose cosine is is the arccosine of That is, if

then

M-34

The angle whose tangent is is the arctangent of That is, if

then

M-35

TRIGONOMETRIC IDENTITIES

We can derive several useful formulas, called trigonometric identities, by exam-
ining relationships between the trigonometric functions. Equations M-30 through
M-32 list three of the most obvious identities, formulas expressing some trigono-
metric functions as reciprocals of others. Almost as easy to discern are identities
derived from the Pythagorean theorem,

M-36

(Figure M-13 illustrates a graphic proof of the theorem.) Simple algebraic manipu-
lation of Equation M-36 gives us three more identities. First, if we divide each term
in Equation M-36 by we obtain

or, from the definitions of (which is and (which is 

M-37

Similarly, we can divide each term in Equation M-36 by or and obtain

M-38

and

M-391 � tan2 u � sec2 u

1 � cot2 u � csc2 u

b2a2

sin2 u � cos2 u � 1

b/c)cos ua/c)sin u

a2

c2 �
b2

c2 � 1

c2 ,

a2 � b2 � c2

u � arctan z � tan�1 z

tan u � z

z .z

u � arccos y � cos�1 y

cos u � y

y .y

u � arcsin x � sin�1 x

sin u � x

sin�1 x .x ,x ,u ,

 cot u �
b
a

�
1

tan u
�

cos u
sin u

 csc u �
c
a

�
1

sin u

 sec u �
c
b

�
1

cos u

c
b a

F I G U R E  M - 1 3 When this figure was
first published, the letters were absent and it
was accompanied by the single word
“Behold!” Using the drawing, establish the
Pythagorean theorem (a2 � b2 � c2) .



Table M-2 lists these last three and many more
trigonometric identities. Notice that they fall into four
categories: functions of sums or differences of angles,
sums or differences of squared functions, functions of
double angles and functions of half angles 
Notice that some of the formulas contain paired alternatives, expressed with the
signs � and �; in such formulas, remember to always apply the formula with
either all the “upper” or all the “lower” alternatives. Figure M-14 shows a graphic
proof of the first two sum-of-angle identities.

SOME IMPORTANT VALUES 
OF THE FUNCTIONS

Figure M-15 is a diagram of an isosceles right triangle (an isosceles triangle is a tri-
angle with two equal sides), from which we can find the sine, cosine, and tangent
of The two acute angles of this triangle are equal. Because the sum of the three
angles in a triangle must equal and the right angle is each acute angle
must be For convenience, let us assume that the equal sides each have a length
of 1 unit. The Pythagorean theorem gives us a value for the hypotenuse of

We calculate the values of the functions as follows:

Another common triangle, a right triangle, is shown in Figure 
M-16. Because this particular right triangle is in effect half of an equilateral
triangle (a triangle, or a triangle having three equal sides and
three equal angles), we can see that the sine of must be exactly 0.5
(Figure M-17). The equilateral triangle must have all sides equal to the
hypotenuse of the right triangle. Thus, side is one-half the length
of the hypotenuse, and so

sin 30° �
1
2

a30°–60°
c ,

30°
60°–60°–60°

30°–60°

sin 45° �
a
c

�
1

22
� 0.707 cos 45° �

b
c

�
1

22
� 0.707 tan 45° �

a
b

�
1
1

� 1

c � 2a2 � b2 � 212 � 12 � 22 units

45°.
90°,180°

45°.

A 12u B .(2u) ,
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Table M-2 Trigonometric Identities

sin 
1
2
u � �A1 � cos u

2
; cos 

1
2
u � �A1 � cos u

2
; tan 

1
2
u � �A1 � cos u

1 � cos u

tan 2u �
2 tan u

1 � tan2 u

cos 2u � cos2 u � sin2 u � 2 cos2 u � 1 � 1 � 2 sin2 u

sin 2u � 2 sin u cos u

sin2 u � cos2 u � 1; sec2 u � tan2 u � 1; csc2 u � cot2 u � 1

tan A � tan B �
sin(A � B)
cos A cos B

cos A � cos B � 2 sinc1
2

(A � B) dsinc1
2

(B � A) d
cos A � cos B � 2 cosc1

2
(A � B) dcosc1

2
(A � B) d

sin A � sin B � 2 sinc1
2

(A � B) dcosc1
2

(A < B) d
tan(A � B) �

tan A � tan B
1 < tan A tan B

cos(A � B) � cos A cos B < sin A sin B

sin(A � B) � sin A cos B � cos A sin B

sin B

cos B

1

B

A
co

s 
B

 s
in

 A
si

n 
B

 c
os

 A

si
n(

A
+

B
)

F I G U R E  M - 1 4 Using this drawing, establish the
identity You can
also use it to establish the identity 

Try it.cos A cos B � sin A sin B .
cos(A � B) �

sin A cos B � cos A sin B .sin(A � B) �

45�

45�

1

1	2

F I G U R E  M - 1 5 An isosceles right triangle.

c � 2 60�

30�

b � 	

a � 1

3

F I G U R E  M - 1 6 A right triangle.30°–60°

c

60°

60°

60° 60°

60°

60°

F I G U R E  M - 1 7 (a) An equilateral triangle. (b) An
equilateral triangle that has been bisected to form two

right triangles.30°�60°
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To find the other ratios within the right triangle, let us assign a value of 1
to the side opposite the angle. Then

SMALL-ANGLE APPROXIMATION

For small angles, the length is nearly equal to the arc length as can be seen in
Figure M-18. The angle is therefore nearly equal to 

M-40

Similarly, the lengths and are nearly equal, so tan is
nearly equal to both and for small values of 

M-41

Equations M-40 and M-41 hold only if is measured in radians.
Because and because these lengths are nearly equal for
small values of we have

M-42

Figure M-19 shows graphs of and versus for small
values of If accuracy of a few percent is needed, small-angle ap-
proximations can be used only for angles of about a quarter of a ra-
dian (or about ) or less. Below this value, as the angle becomes
smaller, the approximation is even more accurate.

TRIGONOMETRIC FUNCTIONS AS FUNCTIONS 
OF REAL NUMBERS

So far we have illustrated the trigonometric functions as properties of angles. Figure
M-20 shows an obtuse angle with its vertex at the origin and one side along the 
axis. The trigonometric functions for a “general” angle such as this are defined by

M-43

M-44

M-45

It is important to remember that values of to the left of the vertical axis and
values of below the horizontal axis are negative; in the figure is always
regarded as positive. Figure M-21 shows plots of the general sine, cosine, and
tangent functions versus The sine function has a period of Thus, for
any value of and so forth. That is, when an angle changes
by the function returns to its original value. The tangent function has a2p rad,

u , sin(u � 2p) � sin u ,
2p rad.u .

cy
x

tan u �
y

x

cos u �
x
c

sin u �
y

c

x

u � sin u � tan u
15°

u .
utan uu , sin u ,

cos u � 1  for small values of u

u ,
cos u � b/c ,

u

tan u � sin u � u  for small values of u

u:sin uu

u � a/bbc

sin u � u  for small values of u

sin u � a/c:u � s/c
s ,a

tan 60° �
b
a

�
23
1

� 1.732

cos 60° �
a
c

� sin 30° �
1
2

sin 60° �
b
c

� cos 30° � 0.866

tan 30° �
a
b

�
1

23
� 0.577cos 30° �

b
c

�
23
2

� 0.866

b � 2c2 � a2 � 222 � 12 � 23c �
1

0.5
� 2

30°
30–60°

b

s
c

�

a

F I G U R E M - 1 8 For small angles,
and the angle 

are all approximately equal.
u � s>csin u � a>c , tan u � a>b ,

tan � � sin �

0

0.8

0.6

0.4

1.2

0.2

0.2 0.4 0.6 0.8

70�

� , radians

10� 20� 30� 40� �, degrees60�50�

1.00

F I G U R E  M - 1 9 Graphs of and for
small values of u .

sin u versus utan u , u ,

x

y c �

F I G U R E  M - 2 0 Diagram for defining the
trigonometric functions for an obtuse angle.
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720�
�180� 180� 360�

4��� � 2� � , radians

� , degrees

tan �

(c )

630��90� 90� 270� 450�

7�

2

�

2
�

�

2

3�

2

5�

2
�, radians

�, degrees

sin �

� 1

� 1

(a )

540�

3�

720��180� 180� 360�

4��� � 2� � , radians

� , degrees

cos �

� 1

� 1

(b)
540�

3�

0

0

0

0

F I G U R E M - 2 1 The trigonometric
functions and tan u versus u .sin u , cos u ,

period of Thus, and so forth. Some other useful rela-
tions are

M-46

M-47

M-48

M-49

Because the radian is dimensionless, it is not hard to see from the plots in Figure
M-21 that the trigonometric functions are functions of all real numbers. The func-
tions can also be expressed as power series in The series for and are

M-50

M-51

When is small, good approximations are obtained using only the first few terms
in the series.

u

cos u � 1 �
u2

2!
�
u4

4!
�
u6

6!
� Á

sin u � u �
u3

3!
�
u5

5!
�
u7

7!
� Á

cos usin uu .

cos(1
2p � u) � sin u

sin(1
2p � u) � cos u

cos(p � u) � �cos u

sin(p � u) � sin u

tan(u � p) � tan u ,p rad.

Example M-9 Cosine of a Sum

Using the suitable trigonometric identity from Table M-2, find Give your
answer in four significant figures.

PICTURE As long as all angles are given in degrees, there is no need to convert to radians,
because all operations are numerical values of the functions. Be sure, however, that your
calculator is in degree mode. The suitable identity is 
where the upper signs are appropriate.

cos(A � B) � cos A cos B < sin A sin B ,

cos(135° � 22°) .



M-18 | Math Tutorial

SOLVE

1. Write the trigonometric identity for the cosine of a sum, with
and B � 22°:A � 135°

� (cos 135°)(cos 22°) � (sin 135°)(sin 22°)cos(135° � 22°)

2. Using a calculator, find and sin 22°:cos 135°, sin 135°, cos 22°,

sin 22° � 0.3746cos 22° � 0.9272

sin 135° � 0.7071cos 135° � �0.7071

3. Enter the values in the formula and calculate the answer:
� �0.9205

 cos(135° � 22°) � (�0.7071)(0.9272) � (0.7071)(0.3746)

CHECK The calculator shows that the 

PRACTICE PROBLEMS

19. Find and for the right triangle shown in Figure M-12 in which and
What is the value for 

20. Find where Is your answer consistent with the small-angle approximation?u � 8.2°.sin u
u?b � 7 cm.

a � 4 cmcos usin u

cos(135° � 22°) � cos(157°) � �0.9205.

M-9 THE BINOMIAL EXPANSION

A binomial is an expression consisting of two terms joined by a plus sign or a minus
sign. The binomial theorem states that a binomial raised to a power can be written,
or expanded, as a series of terms. If we raise the binomial to a power the bi-
nomial theorem takes the form

M-52

The series is valid for any value of if is less than 1. The binomial expansion is
very useful for approximating algebraic expressions, because when the
higher-order terms in the sum are small. (The order of a term is the power of in
the term. Thus, the terms explicitly shown in Equation M-52 are of order 0, 1, 2,
and 3.) The series is particularly useful in situations where is small compared
with 1; then each term is much smaller than the previous term and we can drop all
but the first two or three terms in the expansion. If is much less than 1, we have

M-53

The binomial expansion is used in deriving many formulas of calculus that are im-
portant in physics. A well-known use in physics of the approximation in Equation
M-53 is the proof that relativistic kinetic energy reduces to the classic formula when
the velocity of a particle is very small compared with the velocity of light 

Example M-10 Using the Binomial Expansion to Find a Power
of a Number

Use Equation M-53 to find an approximate value for the square root of 101.

PICTURE The number 101 readily suggests a binomial, namely, To approximate
the answer using the binomial expansion, we must manipulate the expression to get a bino-
mial consisting of 1 and a term less than 1.

SOLVE

(100 � 1) .

c .

(1 � x)n � 1 � nx ,  ƒx ƒ V 1

ƒx ƒ

ƒx ƒ

x
ƒx ƒ 	 1,

ƒx ƒn

(1 � x)n � 1 � nx �
n(n � 1)

2!
x2 �

n(n � 1)(n � 2)
3!

x3 � Á

n ,(1 � x)

1. Write to give an expression in which is much
less than 1:

x(1 � x)n(101)1>2 (101)1>2 � (100 � 1)1>2 � (100)1>2(1 � 0.01)1>2 � 10(1 � 0.01)1>2
2. Use Equation M-53 with and to expand

(1 � 0.01)1>2: x � 0.01n � 1
2 (1 � 0.01)1>2 � 1 � 1

2(0.01) �

1
2 A� 1

2 B
2

(0.01)2 � Á
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3. Because we expect the magnitude of terms of order 2
and higher to be significantly smaller than the magnitude of the
first-order term. Approximate the binomial (1) by keeping only
the zeroth and first-order terms, and (2) by keeping only the
first 3 terms:

ƒx ƒ V 1, Keeping only the zeroth and first-order terms gives

Keeping only the zeroth, first-, and second-order terms gives

� 1.004 987 5

� 1 � 0.005 000 0 � 0.000 012 5

 (1 � 0.01)1>2 � 1 � 1
2(0.01) �

1
2(� 1

2)
2

(0.01)2

� 1.005 000 0

 (1 � 0.01)1>2 � 1 � 1
2(0.01) � 1 � 0.005 000 0

4. Substitute these results into the equation in step 1: Keeping only the zeroth and first-order terms gives

Keeping only the zeroth, first-, and second-order terms gives

10.049 875(101)1>2 � 10(1 � 0.01)1>2 �

10.050 000(101)1>2 � 10(1 � 0.01)1>2 �

CHECK We therefore expect our answer to be correct to within about 0.001%. The value of
to eight figures, is 10.049 876. This differs from 10.050 000 by 0.000 124, or about one

part in and differs from 10.049 875 by about one part in 

PRACTICE PROBLEMS For the following, calculate the answer keeping the zeroth and
first-order terms in the binomial series (Equation M-53), find the answer using your calcula-
tor, and show the percentage discrepancy between the two values:

21.
22. (1 � 0.001)40

(1 � 0.001)�4

107 .105 ,
(101)1>2 ,

M-10 COMPLEX NUMBERS

Real numbers are all numbers, from to that can be ordered. We know that,
given two real numbers, one is always equal to, greater than, or less than the other.
For example, and A number that cannot
be ordered is we cannot measure the size of this number, and so it makes no
sense to say, for example, that is greater than or less than The
earliest mathematicians who dealt with numbers containing referred to
these numbers as imaginary numbers because they could not be used to measure or
count something. In mathematics the symbol is used to represent 

Equation M-5, the quadratic formula, applies to equations of the form

The formula shows that there are no real roots when There are, however,
still two roots. Each root is a number containing two terms: a real number, and a
multiple of The multiple of is called an imaginary number, and is
called the unit imaginary.

A general complex number can be written

M-54

where and are real numbers. The quantity is called the real part of or 
and the quantity is called the imaginary part of or We can represent a
complex number as a point in a plane, called the complex plane, as shown in
Figure M-22, where the axis is the real axis and the axis is the imaginary axis.
We can also use the relations and from Figure M-22 to write
the complex number in polar coordinates (a system in which a point is designated
by the counterclockwise angle of rotation and the distance in the direction of 

M-55

where is called the magnitude of z .r � 2a2 � b2

z � r cos u � ir sin u

u):ru

z
b � r sin ua � r cos u

yx
z

Im(z) .z ,b
Re(z) ,z ,aba

z � a � bi

z

iii � 2�1.

b2 	 4ac .

ax2 � bx � c � 0

2�1.i

2�1
2 � 2�1.3 � 2�1

1�1;
3.14 	 p 	 3.15.3 
 2, 1.4 	 22 	 1.5,

� ,�

r

Im
b

�

a Re

z � a � bi

� r(cos � � i sin �)

z � a � bi
� r cos � � (r sin �)i

F I G U R E  M - 2 2 Representation of a
complex number in a plane. The real part of
the complex number is plotted along the
horizontal axis, and the imaginary part is
plotted along the vertical axis.
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When complex numbers are added or subtracted, the real and imaginary parts
are added or subtracted separately:

M-56

However, when two complex numbers are multiplied, each part of one number is
multiplied by each part of the other number:

M-57

where we have used 
The complex conjugate of the complex number is that number obtained by

replacing with when writing If then

M-58

(When a quadratic equation has complex roots, the roots are conjugate complex
numbers, in the form The product of a complex number and its complex
conjugate equals the square of the magnitude of the number:

M-59

A particularly useful function of a complex number is the exponential Using an
expansion for we have

Using and so forth, and separating the real parts from
the imaginary parts, this expansion can be written

Comparing this result with Equations M-50 and M-51, we can see that

M-60

Using this result, we can express a general complex number as an exponential:

M-61

If where and are real variables, then is called a complex variable.

COMPLEX VARIABLES IN PHYSICS

Complex variables are often used in formulas describing AC circuits: the impedance
of a capacitor or an inductor includes a real part (the resistance) and an imaginary
part (the reactance). (There are alternative ways, however, of analyzing AC cir-
cuits—such as rotating vectors called phasors—that do not require assigning imagi-
nary values.) Complex variables are also important in the study of harmonic waves
through Fourier analysis and synthesis. The time-dependent Schrödinger equation
contains a complex-valued function of position and time.

zyxz � x � iy ,

z � a � ib � r cos u � ir sin u � reiu

eiu � cos u � i sin u

eiu � a1 �
u2

2!
�
u4

4!
� Áb � iau �

u3

3!
� Áb

i2 � �1, i3 � �i , i4 � �1,

eiu � 1 � iu �
(iu)2

2!
�

(iu)3

3!
�

(iu)4

4!
� Á

ex ,
eiu .

zz* � (a � ib)(a � ib) � a2 � b2 � r2

a � bi.)

z* � (a � ib)* � a � ib

z � a � ib ,z .�ii
zz*

i2 � �1.

� a1a2 � b1b2 � i(a1b2 � a2b1)

z1z2 � (a1 � ib1)(a2 � ib2) � a1a2 � i2b1b2 � i(a1b2 � a2b1)

z1 � z2 � (a1 � ib1) � (a2 � ib2) � (a1 � a2) � i(b1 � b2)

Example M-11 Finding a Power of a Complex Number

Calculate by using the binomial expansion.

PICTURE The expression is of the form Because is a positive integer, the expansion
is valid for any value of and all terms, other than those of order or lower must equal zero.nx ,

n(1 � x)n .

(1 � 3i)4

SOLVE

1. Write out the expansion of to show the terms up
through the fouth-order term:

(1 � 3i)4 �
4(3)(2)(1)

4!
(3i)41 � 4 # 3i �

4(3)
2!

(3i)2 �
4(3)(2)

3!
(3i)3
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2. Evaluate each term, remembering that and i4 � �1:i2 � �1, i3 � �i ,

3. Show the result in the form a � bi:

1 � 12i � 54 � 108i � 81

28 � 96i(1 � 3i)4 �

CHECK We can solve the problem algebraically to show that the answer is correct. We first
square and then square the result, to get 

PRACTICE PROBLEMS Express in the form 

23.

24. eip>2
eip

a � bi:

 (�8 � 6i)2 � (�8)(�8) � 2(�8)(6i) � (6i)2 � 64 � 96i � 36 � 28 � 96i

 (1 � 3i)2 � 1 # 1 � 2 # 1 # 3i � (3i)2 � 1 � 6i � 9 � �8 � 6i

(1 � 3i)4:(1 � 3i)

M-11 DIFFERENTIAL CALCULUS

Calculus is the branch of mathematics that allows us to deal with
instantaneous rates of change of functions and variables. From
the equation of a function—say, as a function of —we can al-
ways find for a particular but with the methods of calculus
you can go much further. You can know where will have certain
properties, such as a maximum or a minimum value, without
having to try endless values of With calculus, if given the
proper data, you can find, for example, the location of maximum
stress on a beam, or the velocity or position of a falling object at a
time or the energy a falling object has acquired at the time of
impact. The principles of calculus are derived from examining
functions at the infinitesimal level—analyzing how, say, will
change when the change in becomes vanishingly small. We start
with differential calculus, in which we determine the limit of the
rate of change of with respect to as the change in becomes
closer and closer to zero.

Figure M-23 is a graph of versus for a typical function 
At a particular value has the value of as indicated. At
another value has the value The change in is
written and the corresponding change in is writ-
ten The ratio is the slope of the straight line
connecting and If we take the limit as ap-
proaches (as approaches zero) the slope of the line connect-
ing and approaches the slope of the line that is tangent to the curve
at the point The slope of this tangent line is equal to the derivative of with
respect to and is written 

M-62

(When we find the derivative of a function, we say that we are differentiating the
function; and the very small “ ” and “ ” elements are called differentials of
and respectively.) The derivative of a function of is another function of If is
a constant and does not change, the graph of versus is a horizontal line with
zero slope. The derivative of a constant is thus zero. In Figure M-24, is not con-
stant but is proportional to 

x � Ct

t:
x

tx
xt .tt ,
xdtdx

dx
dt

� lim
¢tS0

¢x
¢t

dx>dt:t
x(x1 , t1) .

(x2 , t2)(x1 , t1)
¢tt1

t2(x2 , t2) .(x1 , t1)
¢x>¢t¢x � x2 � x1 .

x¢t � t2 � t1;
t , t2 � t1 ,x2 .t2 , x

x1 ,t � t1 , x
x(t) .tx

ttx

t
x

t ,

t .

x
t ,x

tx

x

x1

t1 t2 t

Tangent line at

t2

�t � t2 � t1

�x � x2 � x1

�x
�t � slope

(x2, t2)

(x1, t1)

x2

(x1, t1)

�

F I G U R E  M - 2 3 Graph of a typical function The points
and are connected by a straight line. The slope of this

line is As the time interval beginning at is decreased, the
slope for that interval approaches the slope of the line tangent to the
curve at time which is the derivative of with respect to t .xt1 ,

t1¢x>¢t .(x2 , t2)(x1 , t1)
x(t) .

t

x � Ct

x

F I G U R E  M - 2 4 Graph of the linear
function This function has a constant
slope C .

x � Ct .
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This function has a constant slope equal to Thus the derivative of is 
Table M-3 lists some properties of derivatives and the derivatives of some particular
functions that occur often in physics. It is followed by comments aimed at making
these properties and rules clearer. More detailed discussion can be found in most
calculus textbooks.

C .CtC .

Table M-3 Properties of Derivatives and Derivatives 

of Particular Functions

Linearity

1. The derivative of a constant times a function equals the constant times the
derivative of the function:

2. The derivative of a sum of functions equals the sum of the derivatives of the
functions:

Chain rule

3. If is a function of and is in turn a function of the derivative of with
respect to equals the product of the derivative of with respect to and the
derivative of with respect to 

Derivative of a product

4. The derivative of a product of functions equals the first function times
the derivative of the second plus the second function times the derivative of the
first:

Reciprocal derivative

5. The derivative of with respect to is the reciprocal of the derivative of with
respect to assuming that neither derivative is zero:

Derivatives of particular functions

6. If is a constant, then 

7.

8.

9.

10.

11.

12.
d
dt

 ln bt �
1
t
  If b is constant.

d
dt
ebt � bebt  If b is constant.

d
dt

tanvt � v sin2vt        If v is constant.

d
dt

 cos vt � �v sin vt  If v is constant.

d
dt

 sin vt � v cos vt  If v is constant.

d(tn)
dt

� ntn�1  If n is constant.

dC>dt � 0.C

dt
dx

� adx
dt
b�1

  if  
dt
dx

� 0  and  
dx
dt

� 0

t ,
xxt

d
dt

[f(t)g(t)] � f(t)
dg(t)

dt
� g(t)

df(t)

dt

f(t)g(t)

d
dt
f(x(t)) �

df

dx
dx
dt

t:x
xft
ft ,xxf

d
dt

[f(t) � g(t)] �
df(t)

dt
�
dg(t)

dt

d
dt

[Cf(t)] � C
df(t)

dt

f(t)C
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COMMENTS ON RULES 1 THROUGH 5

Rules 1 and 2 follow from the fact that the limiting process is linear. We can un-
derstand rule 3, the chain rule, by multiplying by and noting that as

approaches zero, also approaches zero. That is,

where we have used that the limit of the product is equal to product of the limits.
Rule 4 is not immediately apparent. The derivative of a product of functions is

the limit of the ratio

If we add and subtract the quantity in the numerator, we can write
this ratio as

As approaches zero, the terms in square brackets become and 
respectively, and the limit of the expression is

Rule 5 follows directly from the definition:

COMMENTS ON RULE 7

We can obtain this important result using the binomial expansion. We have

Then

and

The next term omitted from the last sum is proportional to the following to 
and so on. Each term except the first approaches zero as approaches zero. Thus

COMMENTS ON RULES 8 TO 10

We first write sin with and use the chain rule,

d sin u
dt

�
d sin u
du

du
dt

� v
d sin u
du

u � vtvt � sin u

df

dt
� lim

¢xS0

f(t � ¢t) � f(t)

¢t
� ntn�1

¢t
(¢t)3 ,(¢t)2 ,

f(t � ¢t) � f(t)

¢t
� ntn�1 �

n(n � 1)
2!

tn�2¢t � Á

f(t � ¢t) � f(t) � tn cn¢t
t

�
n(n � 1)

2!
a¢t
t
b 2

� Á d
� tn c1 � n

¢t
t

�
n(n � 1)

2!
a¢t
t
b 2

�
n(n � 1)(n � 2)

3!
a¢t
t
b 3

� Á d
f(t � ¢t) � (t � ¢t)n � tna1 �

¢t
t
bnf(t) � tn

dx
dt

� lim
¢tS0

¢x
¢t

� lim
¢xS0
a ¢t

¢x
b�1

� a dt
dx
b�1

f(t)
dg(t)

dt
� g(t)

df(t)

dt

df(t)>dt ,dg(t)>dt¢t

� f(t � ¢t) cg(t � ¢t) � g(t)

¢t
d � g(t) cf(t � ¢t) � f(t)

¢t
d

f(t � ¢t)g(t � ¢t) � f(t � ¢t)g(t) � f(t � ¢t)g(t) � f(t)g(t)

¢t

f(t � ¢t)g(t)

f(t � ¢t)g(t � ¢t) � f(t)g(t)

¢t

lim
¢tS0

¢f
¢t

� lim
¢tS0
a¢f

¢t
¢x
¢x
b � lim

¢tS0
a¢f

¢x
¢x
¢t
b � a lim

¢xS0

¢f
¢x
b a lim

¢tS0

¢x
¢t
b �

df

dx
dx
dt

¢x¢t
¢x/¢x¢f/¢t
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We then use the trigonometric formula for the sine of the sum of two angles 
and

Because is to approach zero, we can use the small-angle approximations

Then

and

Similar reasoning can be applied to the cosine function to obtain rule 9.
Rule 10 is obtained by writing and applying rule 4 along

with rules 8 and 9:

To obtain rule 10, let and use the chain rule.

COMMENTS ON RULE 11

Again we use the chain rule

and the series expansion for the exponential function:

Then

As approaches zero, the right side of this equation approaches 

COMMENTS ON RULE 12

Let

Then

Then, using rule 11, we obtain

Then, using rule 5, we obtain

dy

dt
� a dt
dy
b�1

�
1
t

dt
dy

�
1
b
ey ‹

dt
dy

� t

ey � bt⇒ t �
1
b
ey

y � ln bt

eu .¢u

eu�¢u � eu

¢u
� eu � eu

¢u
2!

� eu
(¢u)2

3!
� Á

eu�¢u � eue¢u � eu c1 � ¢u �
(¢u)2

2!
�

(¢u)3

3!
� Á d

deu

dt
�
b deu

b dt
� b

deu

d(bt)
� b
deu

du
  with  u � bt

u � vt

�
sin2 u

cos2 u
� 1 � tan2 u � 1 � sec2 u

� sin u(�1)(cos u)�2(�sin u) � (cos u)(cos u)�1

d
dt

(tan u) �
d
dt

(sin u)(cos u)�1 � sin u
d
dt

(cos u)�1 �
d(sin u)
dt

(cos u)�1

tan u � sin u>cos u

sin(u � ¢u) � sin u
¢u

� cos u

sin(u � ¢u) � ¢u cos u � sin u

sin ¢u � ¢u  and  cos ¢u � 1

¢u

sin(u � ¢u) � sin ¢u cos u � cos ¢u sin u
¢u:

u
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SECOND- AND HIGHER-ORDER DERIVATIVES;
DIMENSIONAL ANALYSIS

Once we have differentiated a function, we can differentiate the resulting derivative
as long as terms remain to differentiate. A function such as can be differen-
tiated indefinitely: (this function differentiates to give and so on).

Consider velocity and acceleration. We can define velocity as the rate of change
of position of a particle, or and acceleration as the rate of change of velocity,
or the second derivative of with respect to written If a particle moves at
a constant velocity, then will equal a constant. The acceleration, however, will
be zero: having constant velocity is the same as having no acceleration, and the de-
rivative of a constant is zero. Now consider a falling object, subject to the constant
acceleration of gravity: the velocity itself will be time-dependent, so the second de-
rivative, will be a constant.

The physical dimensions of a derivative with respect to a variable are those that
would result if the original function of the variable were divided by a value of the vari-
able. For example, the dimension of an equation in which one term is (for position)
is that of length (L); the dimensions of the derivative of with respect to time are
those of velocity and the dimensions of are those of acceleration 

Example M-12 Position,Velocity, and Acceleration

Find the first and the second derivative of where and are con-
stants. The function gives the position (in m) of a particle in one dimension, where is the
time (in s), is acceleration is velocity at a time and is the po-
sition (in m) of the particle at 

PICTURE Both the first and the second derivatives are sums of terms; for each differentia-
tion we take the derivative of each term separately and add the results.

SOLVE

t � 0 .
ct � 0 ,(in m>s)(in m>s2) , ba
t

ca , b ,x � 1
2 at2 � bt � c ,

(L>T2) .dx2>dt2(L>T),
tx

x

dx2>dt2 ,

dx>dt dx2>dt2 .t ,x
dx>dt , b2ebt ,dx>dt � bebt

x � ebt

1. To find the first derivative, first compute the derivative of the
first term:

d(1
2 at2)

dt
� a 1

2
ab2t1 � at

2. Compute the first derivative of the second and third terms:
d(c)

dt
� 0

d(bt)

dt
� b ,

3. Add these results: dx
dt

� at � b

4. To compute the second derivative, repeat the process for the
result in step 3:

d2x
dt2

� a � 0 � a

CHECK The physical dimensions show that the answer is plausible. The original function is
an equation for position; all terms are in meters—the units of and cancel the units of 
and in the constants and respectively. In the function for all terms are similarly
in the constant has differentiated to zero, and the unit for cancels one of the units
for s in the constant In the function for only the acceleration constant remains; as
expected, its dimensions are 

PRACTICE PROBLEMS

25. Find for 

26. Find for where and are constants.bay � atebt ,dy>dt y � 5
8 x3 � 24x � 5

8 .dy>dx
L>T2 .

dx2>dt2 ,a .
tcm>s:

dx>dt ,b ,as
s2tt2
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SOLVING DIFFERENTIAL EQUATIONS 
USING COMPLEX NUMBERS

A differential equation is an equation in which the derivatives of a function
appear as variables. It is an equation in which the variables are related to each
other through their derivatives. Consider an equation of the form

M-63

that represents a physical process, such as a damped harmonic oscillator driven by a
sinusoidal force, or a series RLC combination being driven by a sinusoidal potential
drop. Although each of the parameters in Equation M-63 is a real number, the time-
dependent cosine term suggests that we might find the steady-state solution to this
equation by introducing complex numbers. We first construct the “parallel” equation

M-64

Equation M-64 has no physical meaning of its own, and we have no interest in
solving it. However, it is of use in solving Equation M-63. After multiplying
through Equation M-64 by the unit imaginary we add Equation M-64 and
Equation M-63 to obtain

We next combine terms to get

M-65

which is valid because the derivative of a sum is equal to the sum of the deriva-
tives. We simplify our result by defining and by using the identity

Substituting these into Equation M-65, we obtain

M-66

which we now solve for Once is obtained, we can solve for using 
Because we are looking only for the steady-state solution for Equation M-65, we

can assume its solution is of the form where is a constant.
This is equivalent to assuming that the solution to Equation M-66 is of the form

where pronounced eta (like beta without the b), is a constant complex
number. Then and Substituting these into
Equation M-65 gives

Dividing both sides of this equation by and solving for gives

Expressing the denominator in polar form gives

where Thus,

h �
A

4(�av2 � c)2 � v2b2
e�if

tan f � v2b2>(�av2 � c) .

(�av2 � c) � ivb �4(�av2 � c)2 � v2b2 eif

h �
A

�av2 � ivb � c

hz

�av2z � ivbz � cz � A
z
h

eivt � z>h .dz>dt � ivz , d2z>dt2 � �v2z ,
h ,z � heivt ,

fx � x0 cos(vt � f) ,

x � Re(z) .xzz .

a
d2z
dt2

� b
dz
dt

� cz � Aeivt

eivt � cos vt � i sin vt .
z � x � iy

a
d2(x � iy)

dt2
� b
d(x � iy)

dt
� c(x � iy) � A(cos vt � i sin vt)

aa d2x
dt2

� ai
d2y

dt2
b � ab dx

dt
� bi

dy

dt
b � (cx � ciy) � A cos vt � Ai sin vt

i ,

a
d2y

dt2
� b
dy

dt
� cy � A sin vt

a
d2x
dt2

� b
dx
dt

� cx � A cos vt



Differential Calculus S E C T I O N  M - 1 1 | M-27
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F I G U R E  M - 2 5 Graph of versus when
decreases exponentially. The time is the

time it takes for to decrease by one-half.N
t1>2N
tN

so

M-67

It follows that

M-68

THE EXPONENTIAL FUNCTION

An exponential function is a function of the form where and are con-
stants. The function is usually written as where is constant.

When the rate of change of a quantity is proportional to the quantity itself, the
quantity increases or decreases exponentially, depending on the sign of the pro-
portionality constant. An example of an exponentially decreasing function is nuclear
decay. If is the number of radioactive nuclei at some time, then the change 
in some very small time interval will be proportional to and to 

where is the decay constant (not to be confused with the decay rate which
decreases exponentially). The function satisfying this equation is

M-69

where is the value of at time Figure M-25 shows versus A charac-
teristic of exponential decay is that decreases by a constant factor in a given time
interval. The time interval for to decrease to half its original value is its half-life

The half-life is obtained from Equation M-69 by setting and solving
for the time. This gives

M-70

An example of exponential increase is population growth. If the number of organ-
isms is the change in after a very small time interval is given by

where is now the growth constant. The function satisfying this equation is

M-71

(Note the change of sign in the exponent.) A graph of this function is shown in
Figure M-26. An exponential increase can be characterized by a doubling time 
which is related to by

M-72

Very often, we know population growth as an annual percentage increase and
wish to calculate the doubling time. In this case, we find (in years) from the
equation

M-73

where is the percent per year. For example, if the population increases by 2 per-
cent per year, the population will double every Table M-4 lists
some useful relations for exponential and logarithmic functions.

69.3>2 � 35 years.
r

T2 �
69.3
r

T2

T2 �
ln 2
l

�
0.693
l

l

T2 ,

N � N0e
lt

Nl

dN � �lN dt

dtNN ,

t1>2 �
ln 2
l

�
0.693
l

N � 1
2N0t1>2 .

N
N

t .Nt � 0.NN0

N � N0e
�lt

N
dN>dt ,l

dN � �lN dt

dt:Ndt
dNN

cecx ,
ba 
 0abx ,

x � Re(z) �
A

4(�av2 � c)2 � v2b2
cos(vt � f)

�
A

4(�av2 � c)2 � v2b2
[cos(vt � f) � i sin(vt � f)]

z � heivt �
A

4(�av2 � c)2 � v2b2
ei(vt�f)

N N=

=

0

N

N

0

N0

2
0.693

eλ

λ

t

T

2T t

2

F I G U R E  M - 2 6 Graph of versus 
when increases exponentially. The time is
the time it takes for to double.N

T2N
tN

Table M-4 Exponential and 

Logarithmic Functions

If then 

ln(1 � x) � x �
x2

2
�
x3

3
�
x4

4

ex � 1 � x �
x2

2!
�
x3

3!
� Á

log x � (log e) ln x � 0.434 29 ln x

� 2.30 26 log x

 ln x � (ln 10) log x

ln ex � x; ln ax � x ln a

ln
x
y

� ln x � ln y

ln xy � ln x � ln y

ln e � 1; ln 1 � 0

(ex)y � exy�1ey2xex ey � e(x�y)

eln x � x

x � ln y .y � ex ,

e0 � 1

e � 2.718 28
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Example M-13 Radioactive Decay of Cobalt-60

The half-life of cobalt-60 is 5.27 y. At you have a sample of that has a mass
equal to 1.20 mg. At what time (in years) will 0.400 mg of the sample of have decayed?

PICTURE When we derived the half-life in exponential decay, we set In this
example, we are to find the time at which two-thirds of a sample remains, and so the ratio

will be 0.667.

SOLVE

N>N0

N>N0 � 1>2 .

60Cot

60Cot � 0(60Co)

1. Express the ratio as an exponential function:N>N0

N
N0

� 0.667 � e�lt

2. Take the reciprocal of both sides:
N0

N
� 1.50 � elt

3. Solve for t: t �
ln 1.50
l

�
0.405
l

4. The decay constant is related to the half-life by 
(Equation M-70). Substitute for and evaluate the time:l(ln2)>t1>2 l � (ln2)>t1>2 t �

ln 1.5
ln 2

t1>2 �
ln 1.5
ln 2

� 5.27 y � 3.08 y

CHECK It takes 5.27 y for the mass of a sample of to decrease to 50 percent of its initial
mass. Thus, we expect it to take less than 5.27 y for the sample to lose 33.3 percent of its mass.
Our step-4 result of 3.08 y is less than 5.27 y, as expected.

PRACTICE PROBLEMS

27. The discharge time constant of a capacitor in an circuit is the time in which the ca-
pacitor discharges to (or 0.368) times its charge at If for a capacitor, at
what time (in seconds) will it have discharged to 50.0% of its initial charge?

28. If the coyote population in your state is increasing at a rate of 8.0% a decade and con-
tinues increasing at the same rate indefinitely, in how many years will it reach 1.5 times
its current level?

t

t � 1 st � 0 .e�1

RCt

60Co

M-12 INTEGRAL CALCULUS

Integration can be considered the inverse of differentiation. If a
function is integrated, a function is found for which 
is the derivative of with respect to 

THE INTEGRAL AS AN AREA UNDER A CURVE;
DIMENSIONAL ANALYSIS

The process of finding the area under a curve on the graph il-
lustrates integration. Figure M-27 shows a function The
area of the shaded element is approximately where is
evaluated anywhere in the interval This approximation is
highly accurate if is very small. The total area under some
stretch of the curve is found by summing all the area elements
it covers and taking the limit as each approaches zero. This
limit is called the integral of over and is written

M-74

The physical dimensions of an integral of a function are
found by multiplying the dimensions of the integrand (the func-
tion being integrated) and the dimensions of the integration
variable For example, if the integrand is a velocity functiont .

f(t)

�f dt � areai � lim
¢tiS0a

i

fi¢ti

tf
¢ti

¢ti
¢ti .

fifi ¢ti ,
f(t) .

t .F(t)
f(t)F(t)f(t)

f(t)

fi

t1 t2

t�ti�t1 �t2 �t3

F I G U R E  M - 2 7 A general function The area of the shaded
element is approximately where is evaluated anywhere in
the interval.

fifi¢ti ,
f(t) .
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(dimensions ) and the integration variable is time the dimension of the
integral is That is, the dimensions of the integral are those of ve-
locity times time.

Let

M-75

The function is the area under the curve from to a general value 
For a small interval the change in the area is approximately 

If we take the limit as approaches 0, we can see that is the derivative of 

M-76

INDEFINITE INTEGRALS AND DEFINITE INTEGRALS

When we write

M-77

we are showing as an indefinite integral of over To evaluate an indefinite in-
tegral, we find the function whose derivative is Because that function could
contain a constant term that differentiated to zero, we include as our final term a
constant of integration If we are integrating the function over a known seg-
ment—such as to in Figure M-27—we can find a definite integral, eliminating
the unknown constant 

M-78

Table M-5 lists some important integration formulas. More extensive lists of inte-
gration formulas can be found in any calculus textbook or by searching for “table
of integrals” on the Internet.

�
t2

t1

f dt � y(t2) � y(t1)

C:
t2t1

C .

f .y
t .fy

y � �f dt

f �
dy

dt

y:f¢t

f �
¢y
¢t

¢y � f ¢t

f ¢t:¢y¢t ,
t .t1f-versus-ty

y � �
t

t1

f dt

L � (L>T) � T.
t) ,L>Tv(t)

Table M-5 Integration Formulas†

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. 

12.

13.

† In these formulas, and are constants. In

formulas 1 through 7, an arbitrary constant can be

added to the right side of each equation. The constant

is greater than zero.a

C

vA , b ,

�


0
x4e�ax2 dx �

3
8Apa5

�


0
x3e�ax

2
dx �

4
a2

�


0
x2e�ax

2
dx �

1
4Apa3

�


0
xe�ax

2
dx �

2
a

�


0
e�ax

2
dx �

1
2Apa

�


0
e�ax dx �

1
a

�sin vt dt � �
1
v

 cos vt

�cos vt dt �
1
v

 sin vt

�ebt dt �
1
b
ebt

�At�1 dt � A ln ƒt ƒ

�Atn dt � A
tn�1

n � 1
, n � �1

�At dt �
1
2
At2

�A dt � At

1. Integrate with respect to to find the as a function of The
can be factored from the integrand because is constant:aa

t .vta

where represents times the constant of integration.aC1

v � at � C1

v � �a dt � a �dt

Example M-14 Integrating Equations of Motion

A particle is moving at a constant acceleration Write a formula for position at time 
given that the position and velocity are and at time 

PICTURE Velocity is the derivative of with respect to time and acceleration is the de-
rivative of with respect to We should be able to write a function by performing two
integrations.

SOLVE

x(t)t .v
t ,xv

t � 0 .v0x0

txa.

2. The velocity when t � 0v � v0

so v � v0 � at

v0 � 0 � C1⇒ C1 � v0
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4. The position when t � 0x � x0

3. Integrate with respect to to find as a function of t:xtv

where represents the combined constants of integration.C2

x � v0 �dt � a �t dt � v0t � 1
2 at2 � C2

x � �v dt � �(v0 � at) dt � �v0 dt � �at dt

so x � x0 � v0t � 1
2 at2

x0 � 0 � 0 � C2

CHECK Differentiate the step-4 result twice to get the acceleration

PRACTICE PROBLEMS

29.

30. V � �
8

5
pr2 dL �

�
6

3
3 dx �

a �
dv
dt

�
d
dt

(v0 � at) � a

v �
dx
dt

�
d
dt

(x0 � v0t � 1
2 at2) � 0 � v0 � at

Answers to Practice Problems

1. 0.24 L

2.

3.

4.

5. 1.54 L

6. 3.07 L

7. False

8.

9.

11.

12.

13.

14.

15. 3

16.

17. V>A � 1
3 r

~ 2.322

x6

x1>2x
2(2x � 4)(x � 3)

2(x � y)2

x � 8 , y � 60

x � (4.5 m>s)t � 3.0 m

�3

6.0 kg>cm3

31.6 m>s 18.

19.

20.

21. 0.996, 0.996 00, close to 0%

22.

23.

24.

25.

26.

27. 0.693 s

28. 51 y

29. 9

30. 3pr2

dy>dt � aebt(bt � 1)

dy>dx � 5
24 x2 � 24

0 � i � i

�1 � 0i � �1

0.96 , 0.960 77 , V 1%

sin 8.2° � 0.1426 , 8.2° � 0.1431 rad

sin u � 0.496 , cos u � 0.868 , u � 29.7°

A �
2
3
pL2



Answers to Odd-Numbered 
End-of-Chapter Problems

A-1

Problem answers are calculated using unless
otherwise specified. Differences in the last figure can easily result
from differences in rounding the input data and are not
important.

Chapter 1

1 (c)

3 (c)

5

7 (e)

9 False

11

13

15

17 (a) (b) (c)

19 (a) 50 MB, (b)

21 (a) (b) (c)
(d)

23 (a) (b) (c)
(d) (e)

25 (a) (b) (c)

27 210 cm

29 1.280 km

31 (a) (b) (c) (d)

33 (a) (b) 4 cases

35 (a) (b) s, (c) mm>s2,

1.3 � 104 lb

27 m>s88 ft>s,10.00 m>s2,36.00 km>h # s,

3.96 � 103 mi
2.49 � 104 mi,6.37 � 106 m,4.00 � 107 m,

C1 is in m>s; C2 is in s�1C1 is in m; C2 is in s�1,
C1 is in m>s2,C1 is in m>s2,C1 is in m; C2 is in m>s,

25 � 103 m
3 � 106 W,4 � 10�9 s,40 � 10�6 W,

7 � 102 novels

� 0.8 mi2� 2 � 107 m3,� 3 � 1010 diapers,

2.0 � 1027 molecules

1.609 � 105 cm>mi

g � 9.81 m>s2 37

39 (a) (b)

43

45 (a) 30000, (b) 0.0062, (c) 0.000004, (d) 217000

47 (a) (b) (c) (d)

49

51 (a) (b)

53 (a) (b)
(c)

55 You could have gone either 87 m north or 87 m south. The
headings of your walk were either north of east or 
south of east, respectively.

57 (a) (b)

59

61

63 31.7 y

65

67 (a) (b)

69 (a) (b)
(c) (d) (e) light-years

71 (a)

(c) (d) 1.1 s, (e)

73 The 50,000-ton claim is conservative.
The actual weight is closer to 55,000 tons.

75 (a)

(b) r � 0.510 Gm
T � [17.0 y>(Gm)3>2]r1.50,C � 17.0 y>(Gm)3>2,n � 1.50,

55.4 � 103 tons.

1.7 m>s2C � 2.0,B � 0.84 m>s2,

3.2626.324 � 104 AU,9.461 � 1015 m,
3.086 � 1016 m,4.848 � 10�6 parsec,

2.2 � 102 m1.4 � 1017 kg>m3,

2.0 � 1023

� 1.5 � 103 m>s� 5.3 �  103 km>h,� 3.3 � 103 mi>h,

�0.51 in � 0.86 jn0.92 in � 0.38 jn,�0.59 in � 0.81 jn,

�51°40in � 50jn,

60°60°

Fy � 20 lbFx � 35 lb,vy � �16 m>s,
vx � �19 m>s,Ax � 5.0 m, Ay � 8.7 m,

30.1 mm225.8 mm2,

3.6 � 106

6.27 � 1028.27 � 103,2.25 � 10�8,1.14 � 105,

M>L3

kg # m2>s2M>T2,

T�1

y

x

A

A

BC

0.80
0.50 0.60 0.70

log t

log y = 1.9637log t − 0.0762

0.80 0.90

1.00

1.20

1.40

1.60

1.80

lo
g

y

−0.4
−1.0 −0.8

log r

log T = 1.5036log r + 1.2311

−0.6 −0.4 −0.2

0.8

0.4

0.0

lo
g

T
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0 205 10 15
t, s

200

100

0

300

400

1st car 2nd car

x,
 m

0 108642

A B C D E

t, s

0

20

40

60

80

100

x,
 m

0.0 1.51.00.5
t, s

0

2

4

6

8

y,
 m

0 2 4 6 97531 8
t, s

200

150

100

50

0

250

x,
 m

x

t

vx

t

77 (a)

(b)

Chapter 2

1 Zero

3

5 (a) Your speed increased from zero, stayed constant for a
while, and then decreased.
(b)

vav 1st half � 2H>T, vav 2nd half � �2H>T

F
S

Connie� (18 lb) in� (1.9 lb) jn, FConnie�18 lb, u�6.1° N of E

(�53 lb) in � (�37.3 lb) jn,

�F
S

Paul � (35 lb)in � (35 lb)jn F
S

Johnny

7 True

9 False. If it were true, then any time the initial and final
velocities are both zero the average velocity would be zero.

11 (a)

13 (a) b, (b) c, (c) d, (d) e

15 (a) B, D, and E, (b) A and D, (c) C

17 (a) True, (b) True

19 (a) 0, (b) (c) Its acceleration is greater than in
magnitude while the ball is in contact with the ceiling.

21 (a) False, (b) False, (c) True

23 (a) c
(b)

g�g,

25 B is passing A.

27 (c)

29 (a) Yes, when the graphs intersect, (b) Yes, when the slopes of
the curves have opposite signs, (c) Yes, when the curves have
the same slope, (d) The two cars are farthest apart at the
instant the two curves are farthest apart in the x direction.

31

33 (a) d, (b) b, (c) None, (d) c and d

35 (a) a, f, and i, (b) c and d, (c) a, d, e, f, h, and i, (d) b, c, and g,
(e) a and i, d and h, f and i

37

39

41 (a) (b) If the uncertainty in your time
estimate is less than 1 s the uncertainty in the(�20%),

1.7 km � 1 mi,

4.03 m>s2

�1.2 � 103 m>s2

vJ � 1
2 vmax

distance estimate will be about 20% of 1.7 km,
or approximately 300 m.

43 (a) (b) (c) 0 (d)

45 (a) 2.2 h, (b)

47 (a) 4.3 y, (b) Because 
Gregor does not have to pay.

49

51 (a) 0, (b) (c) (d)

53 The average speed
would be equal to one-third the sum of the three speeds if
the three speeds were each maintained for the same length
of time instead of for the same distance.

55 (a)

vNumerical av � 1.04vav .vav � 122 km>h.

1 m>s�2 m>s,0.3 m>s,

23.5 m>s
4.3 � 106 y W 1000 y,4.3 � 106 y.

(tsupersonic >tsubsonic) � 0.45

0.13 km>min�0.083 km>min,0.28 km>min,

(b) 15 s, (c) 300 m, (d) 100 m

57

59

61 (a) (b) (c)

63 (a) (b) 75 m

(c)

aavAB � 3.3 m>s2, aavBC � 0, aavCE � �7.5 m>s2,

v(t) � 2t � 5¢x � (2t � 5)¢t � (¢t)2,2.0 m>s,

�2.0 m>s2

15 m>s

(d) At point D, the graph crosses the time axis;
therefore 

65 (a) (b) 0.40 km, (c)

67

69 (a) 4.1 s, (b) 20 m, (c) 0.99 s and 3.1 s
71 (a)

16 m>s2

40 m>s80 m>s,

v � 0.
t � 8 s,

(b) 7.3 m, (c) 1.7 s, (d) 12 m>s

(c)
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0 161284
t, s

0

10

20

30

40

50

Train Passenger

x,
 m

0 10 20 30 40
t, s

0

1200

800

400

Speeder
Officerx,

 m

0 1 2 3 4 5
t, s

0

10

20

30

v,
 m

/
s

0 1 2 3
t, s

0

2

4

6

v,
 m

/
s

73 44 m

75

77 (a) 666 m, (b)

79 (a) You did not achieve your goal. To go higher, you can
increase the acceleration value or the duration of the
acceleration. (b) 138 s, (c)

81

83 (a) (b) 0.60

85 11 m

87 28 m

89 (a) 2.4 m, (b) 1.4 s

93 (a) 2.1 d, (b) 5.8 y

95 4.8 m>s

11 mi>h,

40 cm>s, �6.9 cm>s2

610 m>s
14 m>s68 m>s

97

99 (a) 35 s, (b) 1.2 km

(c)

h>3

101 (a) (b) (c)

103 (a)

24aL>32
3 tfin,2L>3,

105

107 (a) (b) 0.93 m>s, 3.0 m>s, 6.0 m>s0.25 m>s per box,

x(t) � (2.3 m>s3)t3 � (5.0 m>s)t

109 (a)

tv x

(c)

ta x

(b)

111 (a)
(b)
(c) is not the same as because
the acceleration is not constant.

113 (b) 0.452 s, (c)

115 (a) The maximum value of the sine function (as in sin
is 1. Hence, the coefficient 
(b) The acceleration is not constant.
(c) (d)

117 (a) (c)

119 (b) 0.762

(c)

vt � g>bs�1,

x � x0 � (vmax >v)[1 � cos(vt)]ƒamax ƒ � vvmax ,
a � vvmax cos(vt).

B � vmax .
vt)

12.0 m>s2, 22.3%

(vi � vf)>213 m>s, 15 m>s. vav

x(t) � 1
6 (0.20 m>s3)t3 � (9.5 m>s)t � 5.0 m>s,

v(t) � (0.10 m>s3)t2 � 9.5 m>s,

0 4 8 12 141062
t, s

0

10

20

30

60

50

40

v,
 m

/
s

x(3 s) � 6.5 m

area under the curve

(b) 90 mx(t) � (3.0 m>s2)t2 � (3.0 m>s)t,

� 90 m

(c) The points at the greatest distances from the time axis
correspond to turnaround points. The velocity of the body
is zero at these points.
(d) The velocity is greatest when the slope is greatest, and
vice versa. The acceleration is zero when the concavity
changes sign, and the acceleration is greatest when the rate
of change of the slope with respect to is greatest.x

121 You should not contest your ticket.
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6
5

4

3

2

1

7

8

9

+y

v6v5

v4

v3

v2

v1

v7

v8

v9

a45
a67

a56

a78

a89

a34

a23

a12

v2

v2

Δv = v2 − v1

= v2 + (− v1)

v1

−v1

v1

Δv

v2 v1 + Δv = v2

v1

Δv = v2 − v1

v2

v2 −v1

v1

Δv
v2

v2 = v1 + Δv

Chapter 3

1 No. Yes.

3 Zero

5 (e)

7 (c)
9 (a) The velocity vector is tangent to the path.

(b)

11 (a) A car moving along a straight road while slowing down.
(b) A car moving along a straight road while speeding up.
(c) A particle moving around a circular track at constant
speed.

13 (a)

(b)

(c)

15

17 You must also be walking west so the rain is falling straight
down relative to you.

19 (a) True, (b) True, (c) True
21 (a)
23 (d)
25 (a) False, (b) True, (c) True, (d) False, (e) True

27 Assume the direction is east and the direction is
north. Then

(a) Path Direction of Velocity Vector

AB North

BC Northeast

CD East

DE Southeast

EF South

(b) Path Direction of Acceleration Vector

AB North

BC Southeast

CD 0

DE Southwest

EF North

(c) The magnitude of the acceleration is larger on DE than
on BC.

29 The droplet leaving the bottle has the same horizontal
velocity as the ship. During the time the droplet is in the
air, it is also moving horizontally with the same velocity as
the rest of the ship. Because of this, it falls into the vessel,
which has the same horizontal velocity. Because you have
the same horizontal velocity as the ship does, you see
things as if the ship were standing still.

31 (a) True, (b) False, (c) False, (d) True

33 (a)

�y�x
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i
(m/s) (m/s) (m/s2)

1
2 0.09 1.8
3 0.14 2.8
4 0.20 4.0
5 0.25 5.0
6 0.15 0.25 5.0
7 0.35 0.20 4.0
8 0.49 0.14 2.8
9 0.53 0.04 0.8

(b) The acceleration vector always points upward, so the
sign of its y component does not change. The magnitude of
the acceleration vector is greatest when the bungee cord has
its maximum extension.

35
37
39

41

¢B
S

� 0, ¢A
S

� �(0.25 m)jn � (0.25 m)in
15 m>s� 7 � 104 m>s2

�0.10
�0.35
�0.55
�0.69
�0.78

aave¢vyvy

43 (a) (b) 5.2 m

45

47

49 (a)

(b)

51

53 (a) (b)

(c)

55 (a) west of north, (b)

57

59 You should fly your plane across the wind.

61 (a)

(b) (c)

63 (a) (b)

65

67 (a) percent of (b) From the person toward
the center of Earth, (c) (d) Zero

69 (a) (b)

71 (a) 15 cm, (b) The range of accelerations is to 

73

75

77

79

81 (a) (b)

83 (a) 8.1 m, (b) 23 m>s13°18 m>s,

69.3°

20.3 m>s, 36.1°

34 m>sh � (v2
0 sin2u0)>2g 2700g.1300g

0.89 m>s, 0.40 m>s214 s, 1.8 m>s,

380 m>s, 2.76 � 10�2 m>s2,
g,463 m>s, 0.343

1.55 � 10�7g1.5 � 10�6 m>s2,

1.0 m>svSrel � (0.80 m>s) in � (1.2 m>s) jn,

(�2.0 m>s2)jnvSAB(6.0 s) � (�20 m>s) in � (12 m>s) jn,

rSAB(6.0 s) � (1.2 �  102 m) in � (4.0 m) jn,

8.5°, 2.57 h

280 km>s16°

¢rS � (600 m)(�in � jn)

aSav � (�2.0 m>s2) in,vSav � (20 m>s)(�in � jn),

vS � 30in � (40 � 10t)jn, aS � (�10 m>s2)jn
aSav � (�3.0 m>s2)in � (�1.8 m>s2)jn
vSav � (33 m>s) in � (27 m>s) jn,

7.2 m>svSav � (14 km>h)in � (�4.1 km>h)jn
D
S

� (3.0 m)in � (3.0 m)jn � (3.0 m)kn,

D
S

� 22 m @ 23° south of west

N

12 m
θ

45° 12 m

E

D

85 below the horizontal

87 (a) The kick is short. (b) 0.34 m under the bar, (c) 5.2 m

89 (a) 0.97 s, (b) 4.2 m, (c) below the horizontal

91 (a) 485 km, (b)

93 (a) 194 m, (c) 219 m, 11 percent

95 (b) 80 m, (c) 288 m. The approximate solution is 80 m larger.
(The approximation ignores higher-order terms, and they
are important when the differences are not small.)

99 (a) (b) 3.1 s, (c)

101 (a) (b) 3.53 s, (c)

103 (a) (b) 0.756 s, (c)

105 (a) 0.785 m, (b) 105 m

107 (a) 1.1 m, (b) 3.9 m

109 (a) 15 km, (b) 54 s

111 north of west

113 step

115 (a)

(b)

119 (a) 26 m, (b)

121 east of north

Chapter 4

1 Yes, there are forces acting on it. They are the same as those
that would act on it if it were sitting on your table at home.

3 In the limo you hold one end of the string and suspend the
object from the other end. If the string remains vertical, the
reference frame of the limo is an inertial reference frame.
No, you cannot determine the limo’s velocity

5 No. Predicting the direction of the subsequent motion
requires additional information.

7 The mass of the probe is constant. However, the solar
system will attract the probe with a gravitational force.

9 You and the elevator could be either descending and
slowing or ascending and speeding up. In both cases your
apparent weight is greater than your actual weight.

11 The most significant force in our everyday world is gravity.
It literally keeps us on or near the ground. The other most
relevant force is the electromagnetic force. It provides
“the glue” to hold solids together and make them rigid. It is
of great importance in electric circuits.

13 (a) Normal force, contact type, (b) Normal, contact,
(c) Normal, contact, (d) Normal, contact, (e) Gravitational,
action-at-a-distance
The two normal forces that the two blocks exert on each
other and the two normal forces that the table and the
bottom block exert on each other

15 When the plate is sitting on the floor, the normal force 
acting upward on it is exerted by the floor and is the same
size as the gravitational force on the plate. Hence, the
plate does not accelerate. However, to slow the plate down
as it hits the floor requires that (or if theFn W Fg ,Fn 
 Fg

Fg

Fn

52.9 km, 52.8°

7.8°

vmin � 26 m>s � 58 mi>h,

vmin �
x

cosu A g

2(x tanu � h)
,

4th

806 mi>h, 60.3°

15.9 m>s, 17.5 m>s, 25.0°7.41 m>s,

19.3 m>s21.5 m>s,

vS � (6.5 m>s) in � (�22 m>s) jn11 m>s,

1.70 km>s13 m>s @ 70°

63.4°
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Fby string on object

Fby string on object

Fg by Earth on object

2.5 kg Object

Force

Fg by Earth on object

Fby object on string

Third-Law Pair

Fg by object on Earth

Fby ceiling on string

String

Fg by Earth on string

Fby object on string

Fby ceiling on string

Force

Fg by Earth on string

Fby string on ceiling

Third-Law Pair

Fg by string on Earth

Fby object on string Fby string on object

Fn by floor

Fby springFby hand

Fg by Earth

Fn by floor

Fby spring

Fg by Earth

Fn by floor

Fg by Earth

xm

y

60°
30°

T1

T2

Fg

floor is hard and the plate slows quickly). A large normal
force exerted on delicate china can easily break it.

17 (a) The normal force of the block on the sprinter, in the
forward direction.
(b) The frictional force by the ice on the puck, in the
opposite direction to the velocity.
(c) The gravitation force by Earth on the ball, in the
downward direction.
(d) The force by the stretched bungee cord on the jumper, in
the upward direction.

19 (a) (2) 100 N, (b) Their accelerations are the same. (c) The
directions of their acceleration are the same.

21 (a)

(b)

23 (a)

(b)

(c)

25 (a) (b) (c) Because
the object whose mass is is ahead.

27 3.6 kN
29
31 (a) (b) (c)
33 12 kg
35 (a) (b) 3.00 cm
37 (a) from each force, (b) from

39 (a) (b)

41 (a)

(b)

(c)
43 (a) (b)
45 (a) 2.45 kN, (b) 409 N, (c) 2.45 kN
47 (a)

1.2 � 102 lb5.3 � 102 N,
rS(3.0 s) � (6.8 m)in � (�16 m)jn
vS(3.0 s) � (4.5 m>s) in � (�11 m>s) jn,

aS � (1.5 m>s2) in � (�3.5 m>s2) jn,

2.4 m>s24.0 m>s2,
2F

S
8.4 m>s2 @ 15°4.2 m>s2 @ 45°

�3.8 kN,

2.3 m>s21>3,6.0 m>s2,
�17 kN

m2m1 
 m2 ,
¢x � 1

2F(m�1
2 � m�1

1 )(¢t)2.m2 >m1 ,m2 >m1 ,

(b) is greater than 
49 (a) (b) 4.1 N, (c)
51
53 (a) 3.82 kN, (b) 4.30 kN
55 (a) If then the width of the arch is 9.56 m.

(b) If the width of the arch is 8.00 m, then and
the arch is 2.63 m high, tall enough for someone to walk
through.

57 56.0 N
59 (a) (b)
61 0.55 kN
63 (a)

T � mg sinuT � 0.42 kN, Fn � 0.25 kN,

TH � 3.72 N
TH � 10.0 N,

F
S

3 � (�5.0 N)in � (�26 N)jn
T1 � 3.4 N, T2 � 2.4 N, T3 � 3.4 N37°,
T1T2

m

T

Fg

T1

Fg

(b)

(c) No. There is no difference.

65 (a) 20 N, (b) 20 N, (c) 26 N, (d)

67 (a) (b)

69 (a) (b) 0.40 m>s2, 0.8 Na �
F

m1 � m2

m, F21 �
Fm1

m1 � m2

,

T1 � 17 N, T2 � 21 N1.3 m>s2,

T0S 5.0 s � 20 N, T5 sS 9 s � 15 N
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0 4 82 6
t, s

60

20

40

0

v x
, m

/
s

T

y

m

Fg

75 (a)

(b)

77 (a) (b)

79 (a) 0.40 kN, (b) 0.37 kN

81 (a) 5.0 cm, (b)

83

85

87

89 (a) (b) 6.1 cm, (c) 35 ms

91 (a) (b) (c)

93 (a) 55.0 g, (b)

95 (a) (b)

97 (a) You should throw your boot in the direction away from
the closest shore. (b) 420 N, (c) 7.52 s

99 (a)

t0 � (3T0 >4C)T � 1
3 (F2 � 2F1),

2.45 m>s2, 2.03 N

T �
m1

m1 � m2

FFnet �
m2

m1 � m2

F,a �
F

m1 � m2

,

�0.10 km>s2,

Fmast on the deck � 1.55 kNTB � 305 N,

Fon m2
� am2 � m2

1 � m2
2

m � m1 � m2

bgm2nd mass � 1.4 kg or 1.1 kg

a20 � 2.5 m>s2, a5 � 4.9 m>s2, T � 25 N

(m1 >m2) � 1.191.4 m>s2, 61 N,

2.5 m>s2, 37 N

a �
g(m2 � m1 sinu)

m1 � m2

, T �
gm1m2(1 � sinu)

m1 � m2

,

0 2 4 631 5
t, s

12

4

8

0

a x
, m

/
s2

Chapter 5

1 Static and kinetic frictional forces are responsible for the
accelerations. If the coefficient of static friction between the
truck bed and the object is sufficiently large, then the object
will not slip on the truck bed. The larger the acceleration of
the truck, the larger the coefficient of static friction that is
needed to prevent slipping.

73 (a) 3 (d)

5 (c)

7 As the spring is extended, the force exerted by the spring
on the block increases. Once that force exceeds the maxi-
mum value of the force of static friction, the block will slip.
As it does, it will shorten the length of the spring, decreas-
ing the force that the spring exerts. The force of kinetic fric-
tion then slows the block to a stop, which starts the cycle
over again.

9 (a), (b), and (c)

11 Block 1 will hit the pulley before block 2 hits the wall.

13 Air drag is proportional to the density of air and to the
cross-sectional area of the object. On a warm day the air is
less dense. The air is also less dense at high altitudes.
Pointing his hands results in less area being presented to
air drag forces and, hence, reduces them. Rounded and
sleek clothing has the same effect as pointing his hands.

15 (c)

17 (a) The drag force is proportional to the area presented and
some power of the speed.The drag force on the feather ini-
tially is larger because the feather presents a larger area
than does the pebble. As the pebble gains speed the drag
force on it increases. The drag force on the pebble eventu-
ally exceeds the drag force on the feather because the drag
force on the feather cannot exceed the gravitational force
on the feather.

(b) Terminal speed is much higher for the pebble than for
the feather. The acceleration of the pebble will remain high
until its speed approaches its terminal speed.

19

21 The friction of the road on the tire causes the car to slow
down

23 The center of mass moves downward

25 The acceleration of the center of mass is zero.

acm � (m1>(m1 � m2))a1

27 (a) (b) (c) (d)
(e)

29 This is probably not such a good idea. Tires on
asphalt or concrete have a maximum coefficient of static
friction of about 1.

31 (b)

33 (a) 15 N, (b) 12 N

35 500 N

37 (a) (b) 76 m

39 (a) 49.1 N, (b) 123 N

41 (a) (b)

43

45

47 (a) 4.0 m, (b) 0.47

49 (a) (b) 10 s2.7 m>s2,

2.4 m>s2, 37 N

0.84 m>s 4.6°4.6°,

5.9 m>s2,

ms � 1.4.

87 m>s 57 m>s,ML>T2,M>L, kg>m,M>T, kg>s,

(b) 592 N

(b) 2.8 s to 3.6 s, (c) 5500 N, (d) 160 m
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0 20 40 603010 50
, degθ

235

225

215

205

F,
 N

51 (a) (b) 0.18 N

53 (a) The static-frictional force opposes the motion of the
object, and the maximum value of the static-frictional force
is proportional to the normal force The normal force is
equal to the weight minus the vertical component of the
force Keeping the magnitude constant while increasing

from zero results in a decrease in and thus a
corresponding decrease in the maximum static-frictional
force, The object will begin to move if the horizontal
component of the force exceeds An increase in 

results in a decrease in As increases from 0, the
decrease in is larger than the decrease in so the object
is more and more likely to slip. However, as approaches

approaches zero and no movement will be initiated.
If is large enough and if increases from 0, then at some
value of the block will start to move.

(b)

u,
uF

90°, Fx

u

Fx ,FN

uFx .u

fmax .FFx

fmax .

Fyu

FF.
Fy

FN.

0.96 m>s2,

From the graph, we can see that the minimum value for 
occurs when 

57 (a) 0.24, (b)

59 (a) 18 N, (b) (c)

61 (a) (b)

63 (a) (b) and
(The direction is to the right.)

65 (b) 0.30, (c)

67

69

71

73 (a) about 39 ms, (b) With the drag force in Problem 72, it
takes about 86 times longer than it does using the
centrifuge.

75

77 (a) (b) 8.5 N

79 (a) upward, (b) 667 N, upward, (c) 1.45 kN,
upward

81

83 (a) above horizontal, 0.41 kN, (b) below horizontal,
0.41 kN

85 (a) 0.40 N, (b) 0.644

87

89

91 (a) (b) 0.54

93

95 (a) 7.8 kN, (b)

97

99 (a) about 60.4 m, (b) about 60.6 m, (c) about 3.3 s, (d) about
3.7 s, (e) less than

20 km>h � v � 56 m>h�0.78 kN

22°

7.3 m>s,

12.8 m>s52°

53°53°

T1 � [m2(L1 � L2) � m1L1](2p>T)2, T1 � m2(L1 � L2)(2p>T)2

8.33 m>s2,

1.4 m>s,

25°

25 m>sdn filters � 1n d1 filter

2.8 � 10�4 kg>m2.8 m>s�xFmax � 37 N
Fmin � 5.8 NFmin � �1.6 kg, Fmax � 84 N,

1.9 m>s5.7°,

a1 � 2.0 m>s2, a2 � 7.8 m>s21.5 m>s2, 2.9 N,

1.4 m>s2

u � 32°.
F

101 (0.23 cm, 0)

103 (2.0 m, 1.4 m)

105 (1.5 m, 1.4 m)
107
113
115

117 (a)

aScm � (2.4 m>s2)in
vScm � (3.0 m>s)in � (1.5 m>s)jn
(1

4L, 1
4L)

Consider the cup
as part of the spring.

k

Fby scale on spring

Fby ball on spring

Fby spring on ball

Fg Earth on ball

mb

k

Fby scale on spring

Fby ball on spring

Fby spring on ball

Fg Earth on ball

mb Consider the cup
as part of the spring.

(c) Fby scale � (mball � mplatform)g

(b)

(c) Fby scale � (mb � mp)(a � g) 
 Fby scale pblm 117

d� �
mb(g � a)

k

 d,

m

Fg

fs max

Fn
x

y

(b) 0.74 kN, (c) This result holds for all patrons,
regardless of their mass.

20 rev>min.

133 Yes. Sally’s claim seems to be supported by Liz’s
calculation.

119 (a)

121 0.51
123 1.49 kN
125 (a) (b)
127 (a) 0.19 kN, (b) 52 N, (c) 35 N, (d) 0.24, (e) 0.54 kN
129 0.43
131 (a)

13 rev>min49 m>s2,
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135 It is inside the surface of Earth.

137 (a) 35 cm, (b) downward (c)
downward

139 (a) (b) downward, (c)
downward

Chapter 6

1 (a) True, (b) True, (c) False, (e) True

3 (a) False, (b) True, (c) False, (d) True

5 An object moving along a curved path at constant speed
has constant kinetic energy, but is accelerating (because its
velocity is continually changing direction). No, because if
the object is not accelerating, the net force acting on it must
be zero and, consequently, its kinetic energy must be
constant.

7 The work required to stretch a spring 2.0 cm is greater than
the work required to stretch it 1.0 cm by a factor of 4.

9 (d)

11 (a) False, (b) False, (c) False, (d) False

13 (a) False, (b) False, (c) True, (d) True

15

17 The only external force (neglecting air resistance) that does
center-of-mass work on the car is the static friction force 
exerted by the road on the tires. The positive center-of-mass
work this friction force does is translated into a gain of
kinetic energy.

19 (a) (b) 1%, (c)

21 21 kJ

23 (a) 147 J, (b) 266 J

25 11 kJ, 3.5 kW

27 (a) 6.0 J, (b) 12 J, (c)

31 (a) (b) 0.59 kJ

33 (a)

m(y) � 20 kg � (2.5 kg>m)y,

3.5 m>s
1.4 � 1011 W4.5 � 1018 J,

f
S

s

2¢t

1.09 m>s21.64 m>s4.91 m>s,

14.2 kN, 9.81 m>s2,4.7 m>s4.67 � 106 m.

φ

φ

φ

Fg

T
y

d

φd

�

�

(b) (c) 2.5 kJ, 7.0 m>sdWFg
� �mg� sinf df,

43 (b) Another vector that meets the requirements is

45 (b) (c) 0.28 kJ, 0.28 kJ

49 (a) (b) 9.4 W

51 0.15 kW

55 (a) (b)

57

59 50 kW

61 (a) 405 N, (b) 19.9 N

(c) 39.7 mJ

63 (a) (b)

65 (a) (b)
(c)

67 (a) 208 kW, (b) 5.74 km

69 (a)

(m) 4.0 0.0 1.0 2.0 3.0 4.0

(J) 6.0 4.0 2.0 0.5 0.0 0.5 1.5 2.5 3.0

(b) 28.0 J

71 (b)

73 (a) (c)

Chapter 7

1 (d)

3 (a) False, (b) False, (c) False, (d) False

5 (a) True, (b) True, (c) True, (d) True, (e) False

7 (a) False, (b) False, (c) False, (d) False, (e) True

9 (d)

11 (a) Yes, (b) No, (c) No

13 (a) 25 cm, (b)

15 (a) 16 s, (b) 6.8 min. Not feasible that you can maintain the
pace for 6.8 min.

17

19

21 (a) 0.39 kJ, (b) (c) 24 J, 0.37 kJ,
(d)

23 (a) 10 cm, (b) 14 cm

25 (a) and 
(b) If points away from the origin. If 
points toward the origin.
(c) Decrease.
(d) If points toward the origin. If points
away from the origin.

27 U(x) � [(�0.63 kJ # m)>x] � 0.30 kJ

x 	 0, F
S

x 
 0, F
S

x 	 0, F
S

x 
 0, F
S

F
S

� Fx i
nFx � C>x2,

0.39 kJ, 20 m>s2.5 m, 4.9 m>s,

2.4 � 105 L>s1.5 � 1018 J>y, 3%

�0.12 kJ

vf �
L2

2y0A
k
m

Fx � �kx£1 �
y0

4x2 � y2
0

≥ ,

W1 rev cw � (31 m)F0 ,W1 rev ccw � (�31 m)F0

W

�1.0�2.0�3.0x

W � 2mt21(3t1 � 4)2
P � 8mt(9t2 � 18t � 8),v � (6t2 � 8t), a � (12t � 8),

W � 1
2mC2x2

1F(x) � mC2x,

3.2 � 105 m

148 mi>h0.381 kg>m,

P(t) � (3.1 W>s)t,

pS � (34 kg # m>s) in � (�16 kg # m>s) jn,

�6 in � 8 jn.

6 in � 8 jn.

18° 18°

y

x

F

T' T

35

37

39 (a) (b) (c) 0

41 (a) 1.0 J, (b) 0.21 N

�10,�24,

180°

Wx0Sx � Aa 1
x0

�
1
x
b , KxS  �

A
x0

, vxS  � A 2A
mx0
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−1.0 0.0 1.0 2.0 3.0
x, m

0.0

4.0

3.0

2.0

1.0

U
, J

29 (a) (b) and 
(c) Unstable at stable at unstable at

31 (a) and 
(b)

x � 2.0 m,x � 0.0 m
x � 2 m

x � 0,x � �2 m,
x � 2 m,x � �2 m, x � 0,Fx � 4x(x � 2)(x � 2),

(c) Stable equilibrium at unstable equilibrium at
(d)

33 (a) (b) is a minimum at
is a maximum at 

35 (a)

(b)
(d) This is a point of stable equilibrium.

37

39 (a) 0.858 m, (b) The block will retrace its path, rising to a
height of 5.00 m.

41

43

45

47 16.7 kN

49

51 (a) 31 m, (b)

53 (a) 0.15 km, (b)

55 (a) (b)

57 (a) (b)

59

61 (a) 82 kJ, (b) The energy comes from the internal chemical
energy in your body. (c) 410 kJ, (d) 330 kJ,

63 (a) 0.10 kJ, (b) 70 J, (c) 34 J, (d)

65 (a) (b) 59 J, (c) 0.33

67 (a) (b) (c)

69

71 (a) (b) (c)

73 (a) (b) As expected, this
result is greater than the speed of light (and
thus incorrect). Use of the nonrelativistic expression for
kinetic energy is not justified.

75

77 0.782 MeV

79 (a) 1.1 kg, (b)

81 (a) 6, (b) 0.21 eV

83

85

87 (a) 0.208, (b) 3.5 MJ

12 m2

¢Etherm � �mgv ¢t sin u

2.7 � 109 kg

1.1 � 105 reactions>s
(4.2 � 108 m>s)

4.2 � 108 m>s.3.9 � 1031 MeV,

2.8 � 104 y$2.5 � 106,9.0 � 1013 J,

0.87 m, 2.7 m>s 2.0 m>s�(14 N)y,(14 N)y,

7.7 m>s,

2.9 m>s
v2 � L42(g>L)(1 � cos u) � (k>m)(213

4 � 3 cos u � 1
2)2

6.4 m>s20°,

6mgKmax � 5
2mgL,

45 m>s34 m>s6mg

6mg

U �
[mg(sinu � ms cosu)]2

2k

26°

v � 2gL>2
y � d2m2>4M2 � m2,

U(y) � �mgy � 2MgaL � 2y2 � d2b ,

u � p>2u � �p>2, U
UU(u) � (m2�2 � m1�1)g sinu,

2.0 m>sx � 2.0 m,
x � 0,

0.0 0.2 0.4 0.6 0.8 1.0
y, m

Block on spring

U
, J

−0.30

−0.20

−0.10

0.00

89 (a) (b)
(c)

91 (a) 11 kW, (b) (c) $1.81, $5.43

93 (a) 1.61 kJ, (b) 0.6 kJ, (c)

95 (b)

23 m>s�6.8 kW,

mk � kxi >2mg v0 � 4(k>m)x2
0 � 2mkgx0 ,x1,� � (2mkmg>k) � xi ,

50 17090 130 210
s, m

U
,k

J

246

244

242

240

238

97 (a) 17 m, (b) 4.91 kN, (c) (d) 13 kN, upward,
(e) (f) 1.4 kN

99 (a) (b)
(c) (d)

103 (a) (b) Same as in (a)

107 (a)

v �42my>(m �M) ,

6.36 km>L8.8°,
P20 � 9.8 kW, P30 � 29 kW,F20 � 491 N, F30 � 981 N,

5.5 kN, 64°,
4.9 m>s2,

(b) 5.4 kJ

Chapter 8

5 The momentum of the bullet–gun system is initially zero.
After firing, the bullet’s momentum is directed west.
Momentum conservation requires that the system’s total
momentum does not change, so the gun’s momentum must
be directed east. Kinetic energy is not conserved.

7 In a way, the rocket does need something to push upon. It
pushes the exhaust in one direction, and the exhaust
pushes it in the opposite direction. However, the rocket
does not push against the air.

9 Think of someone pushing a box across a floor. Her push
on the box is equal but opposite to the push of the box on
her, but the action and reaction forces act on different objects.
Newton’s second law states that the sum of the forces
acting on the box equals the rate of change of momentum
of the box. This sum does not include the force of the box
on her.

11 Hovering in midair while tossing objects violates the
conservation of linear momentum! To throw something
forward requires being pushed backward. Superheroes are
not depicted as experiencing this backward motion that is
predicted by conservation of linear momentum. This action
does not violate conservation of energy.

13 The road. (The frictional force by the road on the tire causes
the car to slow down.)

15 About

17 (a) False, (b) True, (c) True, (d) True

104
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19 (a) The loss of kinetic energy is the same in both cases.
(b) The situation in which the two objects have oppositely
directed velocities.

21 (b)

23 The water is changing direction when it rounds the corner
in the nozzle. Therefore, the nozzle must exert a force on
the stream of water to change its momentum, and from
Newton’s third law, the water exerts an equal but opposite
force on the nozzle. This requires a net force in the direction
of the momentum change.

25 In the center-of-mass frame the two velocities are equal and
opposite, both before and after the collision. In addition, the
speed of each puck is the same before and after the
collision. The direction of the velocity of each puck changes
by some angle during the collision.

27 The downward force of lunar gravity and the upward
thrust provided by the rocket combustion products.

29 Think of the sail facing the fan (like the sail on a square
rigger might), and think of the stream of air molecules
hitting the sail. Imagine that they bounce off the sail
elastically—their net change in momentum is then roughly
twice the change in momentum that they experienced
going through the fan. Thus the change in momentum of
the air is backward, so to conserve momentum of the
air–fan–boat system the change in momentum of the
fan–boat system will be forward.

31 (a) 2.34 s, (b)

33

35 to the right

37

39 0.084

41 (a) 44 J, (b)
(c) (d) 37 J

43 (a) (b) 1.3 kN
45 1.81 0.60 MN
47 0.23 kN
49 (a) directed into the wall, (b) 0.36 kN, into the wall,

(c) away from the wall, (d) 3.8 N, away from the
wall

51 (a) 0.20 s, (b) 27 ms, (c) Because the collision time is much
shorter for the sawdust landing, the average force exerted
on the vaulter by the airbag is much less than the average
force the sawdust exerts on him.

53 (a) (b) Twenty percent of the initial kinetic energy is
transformed into thermal energy, acoustic energy, and the
deformation of metal.

55 (a) (b) The collision was not elastic.
57
59 (a) (b) 0.25 m, (c)
61 (a) (b)
63
67
69 0.0529
71 (a) The meteorite should impact Earth along a line exactly

opposite Earth’s orbital velocity vector.
(b) (c) 1.00 � 1023 kg2.71 � 10�15 percent,

h � (v2>8g)(m1>m2)
2

0.45 km>s 0.4v00.2v0 ,
v1f � 0, v2f � 7.0 m>s5.0 m>s,

vp f � �0.25 km>s, vnuc f � 46 m>s2.0 m>s,

20 m>s,

0.48 N # s,
1.1 N # s

MN # s,
11 N # s,

vS1 rel � (3.5 m>s) in, vS2 rel � (�3.5 m>s) in,
vScm � (1.5 m>s) in,

vS� � 2vin � vjn
4.0 m>s5.5 m>s 6.7 m>s

73

75 (a) (b) 5.6 km, (c) 35.8 kJ
77 0.91
79 (a) 20%, (b) 0.89
81 (a) (b) 0.83
83 (a) At room temperature rubber will bounce more when it

hits a stick than it will at freezing temperatures. (b) 3.8 cm
85 (a) (b)
87 (a) and (b) The collision was

elastic.
89

91

If the particles do not collide.

93 (a) (b)
(c)
(d) (e)

95 (a) 360 kN, (b) 120 s, (c)
97 (d) 28
99

101 (a)
(b) The direction of the wreckage is west of
north.

103 (a) (b) 20 m
105 (a) The velocity of the basketball will be equal in magnitude

but opposite in direction to the velocity of the baseball.
(b) 0, (c)

107 (a) (b) 8.1. The energy comes from an
immeasurably small slowing of Saturn’s orbital speed.

109 The driver was not telling the truth.

111 8.9 kg
113 (b) 55

115 (a)

(b)

This additional energy came from chemical energy in the
astronaut’s bodies.

117

Chapter 9

1 (a) The point on the rim. (b) Both turn through the same
angle. (c) The point on the rim. (d) Both have the same
angular speed. (e) Both have zero tangential acceleration.
( f ) Both have zero angular acceleration. ( ) The point on
the rim.

3 (c)
5 (a) Tara, (b) Tara, (c) Neither

g

4.53 m>s
¢K �

1
2

m2m
2
b(2m1 � mb)2

(m2 � mb)2(m1 � mb)2 a1 �
m1m2

(m1 � mb)2 bv2.

v1f � �
m2mb(2m1 � mb)

(m1 � mb)2(m2 � mb)
v,

v2f � a mb

m2 � mb

b a1 �
m1

m1 � mb

bv,

30 km>s,
2v

6.3 m>s,

46°43 km>h.
pS � �(1.1 � 105 kg # km>h)in � (1.1 � 105 kg # km>h)jn,

0.19 m>s, Ki � 31 mJ, Kf � 12 mJ

1.72 km>s Ki � Kf � 60 JvSœ
3 � (5.0 m>s)in, vSœ

5 � (�3.0 m>s)in,
uSœ

3 � (5.0 m>s)in, uœ
5 � 0.75 m>s,

uS3 � (�5.0 m>s)in, uS5 � (3.0 m>s)in,vScm � 0,

pœ
1 � �p1 ,pœ

1 � �p1 .

p�2
1

2
cm2

1 � 6m1m2 � m2
2

m2
1m2 � m1m

2
2

d
�Ki � Kf �

p2
1

2
cm2

1 � 6m1m2 � m2
2

m2
1m2 � m1m

2
2

d5.3 m>s, 29°

v2 � 1.0 m>s,v1 � 1.7 m>svcf � 2.50 m>s, v8 � 4.33 m>s60°,

1.7 m>s,

vS1 � (312 m>s)in � (66.6 m>s)jn,
1.5 � 106 m>s
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7 By choking up, you are rotating the bat about an axis closer
to the center of mass, thus reducing the bat’s moment of
inertia. The smaller the moment of inertia, the larger the
angular acceleration (a quicker bat) for the same torque.

9 (b)
11 (b)
13 One reason is to maximize the moment arm about the line

through the hinge pins for the force exerted by someone
pulling or pushing on the knob.

15 (b)
17 (b)
19 (a)
23 12 rev
25 10%
27 Approximately 6
29 (a) (b) 47 rad, (c) 7.4 rev, (d) and 
31 (a) (b)
33 (a) (b)
35
37
39 (a) 2.94 rad, (b) 780 d
41
43 (a) (b)
45
47 (b)
49
51
55
57
59 (a) (b) (c)
61 (a) (b)
63 (a) (b)

(c)

65 (a) 85 mJ, (b)

67 (a) 19.6 kN, (b) (c) (d) 1.6 kW

69 (a) (b)

71

73

75

77 (a) (b)

79 (a) 72 kg, (b)

81 (a) (b)

(c) (d) and 

83 10 kJ

85

87 (a) (b) 0.96 N

89

91 (a) (b) (c)

93

95 0.22 kJ

v� � 24
3 v

umax � tan�1(3ms)fs � 1
3mg sinu,a � 2

3 g sinu,

20°

0.19 m>s2,

3.1 m>s
v � 22gha � g, T � 0,v � A 2gh

1 � (m1 >2m2)
,

T �
m2g sinu

1 � (2m2>m1)
,a �

g sinu

1 � (m1> 2m2)
,

1.4 rad>s2, 0.29 kN, 0.75 kN

T � (2mMg)>(5m � 2M)a � g>(1 � (2M>5m)),

8.21 m>s30°

3.1 m>s2, T1 � 12 N, T2 � 13 N

3.6 rad>s3.6 rad>s,

0.27 rad>s,5.9 kN # m,

72 rev>min

¢t � (3Rv>4mkg)
t � 2

3MRmkg,dt � (2mkMg>R2)r2 dr,
mgL sinuat � g sinu,

6.2 � 102 rad>s1.2 � 102 rad>s2,1.9 N # m,
Ix � 3M((H2>5) � (R2>20))
I � 3

10MR2

1.4 � 10�2 kg # m2

5.4 � 10�47 kg # m2

Icm � 1
12m(a2 � b2)

2.6 kg # m2

32 kg # m228 kg # m2,
60 kg # m2

1.0 rad>s, 9.9 rev>min
3.6 rad>s 4.7 rad>s0.59 rad>s2,

at � 0.96 m>s2, at � 0.19 km>s240 rad>s,
73 m>s24.7 m>s16 rad>s,

97 (a) counterclockwise,
(b) in direction of 
(c) opposite to direction of 

99 (a) (b) 4.0 N, clockwise
101 (a) and (b)

(c) and 
103

105 (a) 0.19 s, (b) 0.67 m, (c)
107 (a) (b) (c)
109 13 cm
111 (a) (b) (c)
113 (a) (b) (c)
115 (a) 15 m, (b)
117 (a) (b)
119 (a) (b) (c)
121 (a) (b) 66.7 cm
123 42 J
125

14.7 m>s2,
24 rad>s223°32.2 rad>s,

F � 7
3Mgv � 24g>3r ,15 rad>s 1.4 � 103 rev90 N # m, 0.15 kN,7.8 � 102 kJ,

2.4 m>s15 m>s2,7.4 m>s2,

¢x � 36
49 (v2

0 >mkg)¢t � 4
7 (v0 >mkg),v � 11

7 v0 ,
2.9 m>sv � (2rv0 >7)

v1 � 5.7 m>ss1 � 27 m, t1 � 3.9 s,

5
7 ,v1 � 5

7 v0 ,s1 � 12
49 (v2

0 >mkg), t1 � 2
7 (v0 >mkg),

0.40 rad>s2, 0.20 rad>s2,
F
S

aCB � �2F>(M � 3m),
F
S
,aC � F>(M � 3m),

a � 2F>[R(M � 3m)],

0.0 0.4 0.8 1.2 1.6 2.0
t, s

0

2

4

6

8

10

Bucket with
winch attached

Bucket without
winch attached

y,
 m

127 (a) 26 N, (b) (c) 3.2 kg1.1 m>s2,

Chapter 10

1 (a) True, (b) False, (c) False

3

5 (a) is doubled, (b) is doubled

7 False. A high diver going from a tucked to a layout
position.

9 (e)

11 The hardboiled egg is solid inside, so everything rotates
with a uniform angular speed. By contrast, when you start
an uncooked egg spinning, the yolk will not immediately
spin with the shell, and when you stop it from spinning the
yolk will continue to spin for a while.

13 (a)

15 (a) The plane tends to veer to the right. The change in
angular momentum for the propeller is up, so the
net torque on the propeller is up as well. The propeller
must exert an equal but opposite torque on the plane.
This downward torque exerted by the prop on the plane
tends to cause a downward change in the angular
momentum of the plane. This means the plane tends
to rotate clockwise as viewed from above.
(b) The plane tends to veer downward. The change in
angular momentum for the propeller is to the right,¢L

S

prop

T
S

¢L
S

prop

LL

90°
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so the net torque on the propeller is toward the right as
well. The propeller must exert an equal but opposite torque
on the plane. This leftward directed torque exerted by the
prop on the plane tends to cause a leftward-directed change
in angular momentum for the plane. This means the plane
tends to rotate clockwise as viewed from the right.

17 (a) Your kinetic energy decreases. Increasing your moment
of inertia while conserving your angular momentum 
decreases your kinetic energy 
(b) Extending your arms out to the side increases your
moment of inertia, and decreases your angular speed. The
angular momentum of the system is unchanged.

19 About

21 (a) 33, (b) 33, (c) 8, (d) 14

23 (a)
(b)
(c) The quantization of angular
momentum is not noticed in macroscopic physics because
no experiment can detect a fractional change in of 

25 (a) 0.331, (b) Because experimentally the mass
density must be greater near the center of Earth.

27

29 (a) (b) (c)

33

37 (a) upward, (b) downward, (c) 0

39 (b) Downward

41 (a) away from you,
(b) away from you,
(c) away from you,
(d) pointing toward you

43 (a) Note that, because decreases as the particle
rotates clockwise, the angular acceleration and the net
torque are both upward.
(b) downward.

45 (a) (b)

(c)

49 (a) (b) 0.62 kJ, (c) Because no external agent does
work on the system, the energy comes from your internal
energy.

51

53 (a) (b) (c)

55

57 (a) (b) 1.00 meV, 2.01 meV, 6.02 meV

59 (a) No, None of the allowed values of are equal to 
(b) 2.5

61

63

65 (a) (b) (c) (d) Yes, one
point remains motionless, but only for a very brief time.

67 0.36

69 (a) (b) (c) 15 s, (d) 0.079 J # s0.41 rad>s,18 J # s,

V � �2K>M,V � 4K>M,vcm � K>M,

v � C (0.5M � 0.8m)(1
3ML2 � 0.64mL2)g

0.32Lm2

vScm �
m

M � m
vS, v � a mMd

1
12ML2(M � m) �Mmd2

bv
3E0r .E�

3.46 � 10�47 kg # m2,

125°

m(v2
0>r0), �2

3mv2
0

1
2mv2

0 ,r0mv0 ,

10 mm>s
5.0 rev>s,

a �
g(m2 sinu � m1)

(I>R2) � m1 � m2

L � vR((I>R2) � m1 � m2),tnet � Rg(m2 sinu � m1),

vorbital � 0.48 rad>s � (0.19 rad>s2)t,

L�4.9 N # m.

8.8 � 10�5 kg # m2>s,
1.3 � 10�5 kg # m2>s,
1.3 � 10�5 kg # m2>s,
1.3 � 10�5 kg # m2>s,

54 kg # m2>s,54 kg # m2>s,

B
S

� 4jn � 3kn
�5kn�24jn,24kn,

t
S

� FRkn

C 	 0.4,

10�6 %.�

¢� � 2.3 � 1018.
�(� � 1) � 5.2 � 1052, � � 2.3 � 1026,
2.4 � 10�8 kg # m2>s,

4 rev>s
K � L2>(2I). LI

T
S

71 (a) (b)

73 (a) (b) 0.31 kJ

75 (a) Because angular momentum is not conserved.
(b) Because, in this frictionless environment, the net
external force acting on the object is the tension force and it
acts at right angles to the object’s velocity, the energy of the
object is conserved. (c)

77 Yes. The solution depends only upon conservation of
angular momentum of the system, so it depends only upon
the initial and final moments of inertia.

81 (a) (b)

83

85

Chapter R

1 In the reference frame of the car both events occur at the
same location (the location of the car). Thus, your friend’s
watch measures the proper time between the two events.

3 Yes. Let the initial frame of reference be frame 1. In frame 1
let be the distance between the events, let be the time
between the events, and let the direction be the
direction of event B relative to event A. Next, calculate the
value of If is less than then consider the two
events in a reference frame 2, a frame moving at speed

in the direction. In frame 2 both events occur at
the same location.

5 Yes.

7 (a)

9 (b)

�xv � L>T c,L>TL>T.

�x
TL

�79.9 cm

4.47 � 1022 N # m

0.192 rad>s0.228 rad>s,

v0

tnet � 0,

0.24 kJ # s,

t
S

� (16 N # m)knL
S

� �(48 kg # m2>s)kn,

E pc

mc2

11 (a)

13 5.9 ns

15 (a) (b)
(c)

17 6.6 m
19 (a) 599 m
21 (a) (b) 88 y
23 (a) 60 cm, (b) 2.5 ns
25
27 (a) (b) less than 1 y, 
29 36 min
31 12.5 min, 12.5 min
33 60 min
35 Event B can precede event A provided 
37 (a) 11 y, (b) 40 y
39 (a) 1.01, (b) 1.15, (c) 1.67, (d) 7.09
41 (a) (b) (c)
43 2.97 GeV
45 (b) (c) 0.999c0.866c,

6.09 mc21.29 mc2,0.155 mc2,

v 
 0.400c.0.400c.

142 ms142 ms4.50 � 10�10 %,
0.80c

1.3 � 102 y,

Knon-rel >Krel � 0.9999999999999975
E>E0 � 1.000 000 000 000 005 0,K>E0 � 5 � 10�15,



A-14 | Answers to Odd-Numbered End-of-Chapter Problems

49 (a) 0.79%, (b) 69%

51 (a) 0.943

53 In 100 lifetimes, or approximately one Earth
radius. This relatively short distance should convince your
classmate that the origin of the muons that are observed on
Earth is within our atmosphere, and that they certainly are
not from the Sun.

55 (a) (b)

57 (a) (b) 5.0 ft, (c) No. In your rest frame, the back end
of the ladder will clear the door before the front end hits
the wall of the shed, while in Ernie’s rest frame, the front
end will hit the wall of the shed while the back end has yet
to clear the door.

Chapter 11

1 (a) False, (b) True, (c) True, (d) False

3 Earth is closest to the Sun during winter in the northern
hemisphere. This is the time of fastest orbital speed.
Summer would be the time for minimum orbital speed.

5 To obtain the mass of Venus you need to measure the
period and semi-major axis of the orbit of one of the
satellites, substitute the measured values into

(Kepler’s third law) and solve for 

7 (d)

9 (b)

11 (b)

13 You should fire the rocket in a direction to oppose the orbital
motion of the satellite. As the satellite gets closer to Earth
after the burn, the potential energy will decrease. However,
the total mechanical energy will decrease due to the frictional
drag forces transforming mechanical energy into thermal
energy. The kinetic energy will increase until the satellite
enters the atmosphere where the drag forces slow its motion.

15 At a point inside the sphere a distance from its center, the
gravitational field strength is directly proportional to the
amount of mass within a distance from the center, and
inversely proportional to the square of the distance from
the center. The mass within a distance from the center is
proportional to the cube of Thus, the gravitational field
strength is directly proportional to 

17

19 About 3.0 km

21 (a) 2.78 h, (b)

(c)

23 84.0 y

25

27 (a)
(b)

29 (b) 0.73 AU, (c) 0.63 y

31 (a)

33 (a) 22.7 h, (b)

35 Your weight would be ten times your weight on Earth.

1.22 � 109 m

1.90 � 1027 kg

2.7 � 1010 m � 0.18 AU, 2.9 � 1011 m � 1.9 AU
1.6 � 1011 m � 1.1 AU,

4.90 � 1011 m � 3.00 AU

TSun � 3.64 h, TSun � 1.30Tmax

LS � 7.85 � 1042 kg # m2>s, 0.70%,
LJ � 1.93 � 1043 kg # m2>s,6.28 � 10�4 rad>s,

Mgalaxy � 1.08 � 1011MS

r.
r.

r
r

r

r

M.T2>a3 � 4p2>(GM)

aT
M

0.75c,

0.334 ms4.50 km>s,

d � 6600 km

37

39 (a) 1.4, (b) It is farther from the Sun than Earth. Kepler’s
third law tells us that longer orbital periods
together with larger orbital radii means slower orbital
speeds, so the speed of objects orbiting the Sun decreases
with distance from the Sun. The average orbital speed of
Earth, given by is approximately 
Because the given maximum speed of the asteroid is only

the asteroid is further from the Sun.

41 (a) 7.37 m, (b)

43 0.605

45

47

49 (a) (b) $500

51

53

55

57 (a) 7.31 h, (b) (c)

59

61

63 (a) (b)

65 (a) (b)
(c) 2.5 m

67 (a) (b)

69 (a) 0, (b) 0, (c)

71

73 (a) (b) (c) 0

77

79

81

83 (a)

85 249 y

87 (a)

89 (a) (b) 241

91 1.70 Mm

95

97

99
g(r) � e 0

GM(r3 � R3
1)

r2(R3
2 � R3

1)
GM
r2

r 	 R1

R1 	 r � R2

R2 	 r

v � 1.16BGMa
1.60 � 10�4

3.36 � 109,

W � GMEma 1
r1

�
1
r2
b

F
S

� �
GMm
d2 c1 �

d3>4
{d2 � (R2>4)}3>2 d in

1.0 m>sv � A
4pr0G

3

g(x) � Ga4pr0R
3

3
b c 1
x2 �

1

8(x � 1
2R)2

d
GmM1

3.61a2 ,
Gm(M1 �M2)

9a2 ,

g1 � g2

3.2 � 10�9 N>kg

gS � �
2GM
L2 c L

x0 � L
� ln

x0

x0 � L
d in1

2CL2,

(�8.3 � 10�12 N>kg) in,(�1.7 � 10�11 N>kg) in,

ƒgS ƒ � 22
Gm
L2gS �

Gm
L2 in �

Gm
L2 jn,

(4.0 N>kg)in
1.11 � 1010 J

8.72 � 1012 J # s1.04 � 109 J,

13.8 km>s19.4 km>s6.9 km>s8.7 kW # h,

2.38 km>s109 m

31.9 mm

20 km>s,

30 km>s.v � 2prES >TES ,

[T2 � Cr3av]

2.27 � 104 m>s
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101

103 (b) (c)

This answer and the answer given in Example 11-8 are
the same.

105 34 pN

107 (a) The gravitational force is greater on the lower robot, 
so if it were not for the cable, its acceleration would be
greater than that of the upper robot and they would
separate. In opposing this separation, the cable is stressed.
(b)

Chapter 12

1 (a) False, (b) True, (c) True, (d) False

3 (b)

5 The higher the sign, the greater the torque about the
horizontal axis through the lowest extremes of the posts for
a given wind speed. In addition, the deeper the post hole
the greater the maximum opposing torque about the same
axis for a given consistency of the dirt. Thus, higher signs
require deeper holes for the signposts.

7 The main reason this is done is to lower the center of
gravity of the mug. The lower the center of gravity
the more stable the mug is.

9 (b)

11 (b)

13 (b) Taking long strides requires a large coefficient of static
friction because is large for long strides. (c) If is small,
that is, there is ice on the surface, must be small to avoid
slipping.

15 84 cm

17 692 N, 2.54 kN

19 0.728 m

21

23 (a) (b)

25 (a) (b)

(c) F4(2R � h)>h F,Fn �Mg � F4(2R � h)>h ,

F
S

� (35 N)in � (45 N)jnF
S

� (30 N) in � (30 N) jn,

F1 � 1
2 Mg, F2 � 23

2 Mg

u

msu

2.0 N>cm

2.2 � 105 m

Fx(x) � �
GMm0

x2 � (L>2)2U � �
GMm0

L
lnax � L>2
x � L>2 b ,

g � (2Gl)>r

27 (a) 6.87 N, (b) (c) 8.3 N, 15 N

29 (a) 71 N, (b) 3.5 m, (c) 0.50 kN

31 (b) (c)

33

35

37

39

41 (a) 42 N, (b) 0.14%

43

47 (a) , (b) 7 mJ, (c) 28 mJ. There is about 
4 times as much energy stored in the rubber when 0.30 kg
are hung from it. That is because the stored energy
increases quadratically with an increase in the mass.

49 0.69

51 Because the cable will not support
the elevator.

55 1.5 kN

57

59 1.8 kg

61 0.15

63

65

67 (a) 0.15 kN, (b) 3.8 m

69

71 (c)

ms 	 0.50

ms �
1
2

(cot u � 1)

ms 	 0.50

m1 � 0.15 kg, m2 � 0.71 kg, m3 � 0.36 kg

Stressfailing 	 Stresscable,

1.4 � 106 N>m2

5.0°

62°

59°

ms �
2h

L tan u sin u

h � msL tan u sin u

Mg>2a>3,

1.7 N # m,

R1 R20
r

0

g r

1
2
3
4
5
6

102
103

A B C
L = 0.20

0
i

1
2
3

m

offset
0.100
0.150
0.183

99
100

0.518
0.519

D

(d) No.

73 566 N

75 Fn � 2mg, F � mg
r

2R(2r � R)
, FW � mg

R � r

2R(2r � R)

d5 � 15 cm, d10 � 26 cm, and d100 � 0.52 cm

Cell Content/Formula Algebraic Form

B5

C5 di �
L
2i

C4�$B$1>(2*B5)

i � 1B4�1



F2F1

Fg

h1
h2FB
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Chapter 13

1 (e)

3 (c)

5 Pressure increases approximately 1 atm every 10 m of
depth. To breathe requires creating a pressure of less than
1 atm in your lungs. At the surface you can do this easily,
but not at a depth of 10 m.

7 (b)

9 False. The buoyant force on a submerged object depends
on the weight of the displaced fluid, which, in turn, de-
pends on the volume of the displaced fluid. Because the
bricks have the same volume, they will displace the same
volume of water.

11 Because the pressure increases with depth, the object will
be compressed and its density will increase as its volume
decreases. Thus, the object will sink to the bottom.

13

27 29.8 in Hg

29 1.5 N

31 230 N

33 197 atm. Because a depth of only 2 km is required to produce
a 1-percent compression, this does occur in our oceans.

35 (a) 15 kN, (b) 0.34 kg

37 45 cm

39

41 4.36 N

43 (a) (b) From Table 13-1, we see that the
density of the unknown material is close to that of lead.

45

47

49 3.9 kg

51

53

55 (a) (b) 133 kPa, (c) The flow rates are the same.

57 (a) (b)

59 144 kPa

61 0.20 kPa. Because as a function of 
is a parabola that opens upward), this pressure difference is
the minimum pressure difference.

65 (b)

67 (a) (b) 0.331 cm, (c) 76 cm

69 (a) (c)

71 1.43 mm

73 Because most major league pitchers can throw a
fastball in the low-to-mid-90s, this abrupt decrease in drag
may very well play a role in the game.

75

77 2

79

81 0.71 kg

83 12 cm

85 One meter is a plausible diameter for such a pipe.

87 29 s

89 (a) (b)

91 (b)

93

Chapter 14

1 (a) False, (b) True, (c) True

3 (a)

5 (c)

7 (c)

9 Neglecting the mass of the spring in your calculations
results in your using a value for the mass of the oscillating
system that is smaller than its actual value. Hence, your
calculated value for the period will be smaller than the
actual period of the system and the calculated value for
the frequency, which is the reciprocal of the period, will be
higher than the actual value.

39 cm3

0.13 km�1

5.2 m>s270 m3,

36 kg>m3

2.91 L>s
90 mi>h.

xmax � Hx � 24h(H � h) ,

9.28 cm>s,

Ptop � Pat � rgd

IV¢P � I2V (a plot of ¢P

7.6 � 10�2 m24.6 L>min,

12.0 m>s,

2.5 � 107 kg

3.9 � 105 N

250 kg>m3

800 kg>m3, 1.11

11 � 103 kg>m3,

1.4%

The pictorial representation shows the glass and an element
of water in the middle of the glass. As is readily established
by a simple demonstration, the surface of the water is not
level while the glass is accelerated, showing that there is a
pressure gradient (a difference in pressure) due to the
differing depths and hence, of water on
the two sides of the element of water. This pressure
gradient results in a net force on the element of water, as
shown in the figure. The upward buoyant force is equal in
magnitude to the downward gravitational force.

15 (c)

17 The mounding around entrance 1 will cause the streamlines
to curve concave downward over the entrance. An upward
pressure gradient produces the downward centripetal
force. This means there is a lowering of the pressure at
entrance 1. No such lowering occurs over entrance 2, so
the pressure there is higher than the pressure at entrance 1.
The air circulates in entrance 2 and out entrance 1. It has
been demonstrated that enough air will circulate inside the
tunnel even with the slightest breeze outside.

19

21

23

25 0.773

33.6 kg>m3

1.0 � 102 kg

1.11 kg>m3

F1 
 F2)(h1 
 h2 ,
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(b) 2.9 cm, 7.1 cm, 7.1 cm, 2.9 cm

37 (a) (b)

39 (a) 3.1 s, 0.32 Hz, (b)

41 23 J

43 (a) 0.368 J, (b) 3.83 cm

45

47 (a) 6.9 Hz, (b) 0.15 s, (c) 10 cm, (d)
(e) ( ) 36 ms, 0

49 (a) (b) 0.42 s, (c) (d)

51 (a) (b) 4.16 Hz, (c) 0.240 s

53 0.262 s

55 (a) 1.0 Hz, (b) 0.50 s, (c) 0.29 N

57 (a) 6.7 cm, (b) 0.26 s, (c) Because the spring is
never uncompressed. 

59 44 cm

61 12 s

63 11.7 s

77 cm>s h 	 8.0 cm,

3.08 kN>m,

23 m>s21.5 m>s,0.68 kN>m,

f1.9 � 102 m>s2,
4.3 m>s,

1.4 kN>m
x � (40 cm)cos[(2.0 s�1)t � (p>2)]

6.3 m>s, �15 m>s27.9 m>s, 25 m>s2,

0
−10
−8
−6
−4
−2

0
2
4
6
8

10

x,
 c

m

2 4
t, s

6 8

65

67 1.1 s

69

71 21.1 cm from the center of the meter stick

75 (a) (b) 2.31 cm

79 (a) 0.31, (b)

81 (a) 1.57%, (c)

83 (a) (b) 125

85 (a) 1.0 Hz, (b) 2 Hz, (c) 0.35 Hz

87 (a) 4.98 cm, (b) (c) 35.4 cm, (d)

89 (a) 0.48 Hz, 2.1 s, (b)

(c)

91 The error is greater if the clock is elevated.

93 (a) (b) is unchanged. is unchanged.

is reduced, and is increased.

95 (b)

101

103

107 (a)

T � 7.782R>g6.44 � 1013 rad>s2.0 cm>s2

Tv

EAms �
Ak

(m1 � m2)g

1.2 m>s v � �(1.2 m>s)sin c (3.0 rad>s)t �
p

4
d ,1.00 rad>s14.1 rad>s,

5.51 Pa # s,

0.43E0

�3.1 � 10�2 %

d � 1.64 m,

0.50 kg # m2

T � 2p4L>(g cosu)

(b) (c) v � 2b2D>mk � 2b2D,r � r0 ,

Because the total energy of the oscillating system depends
solely on the amplitude of its motion and on the stiffness of
the spring, it is independent of the mass of the system,
and so neglecting the mass of the spring would have no
effect on your calculation of the system’s total energy.

11 (d)

13 (b)

15 1 matches up with B, 2 matches up with D, and 3 matches
up with A.

17 (c)

19 (a) True, (b) False, (c) True, (d) False, (e) True

21 (b)

23 (b)

25 About 5

27

29 (a) 3.00 Hz, (b) 0.333 s, (c) 7.0 cm, (d) 0.0833 s in 
direction.

31 (a)
(b)

(c)

33 (a)
(b)
(c)

35 (a)

a � �(4.9 m>s2) cos[(4.2 s�1)t � 0.45]
v � �(1.2 m>s) sin[(4.2 s�1)t � 0.45],
x � (0.28 m) cos[(4.2 s�1)t � 0.45],

a � �(4.4 m>s2) cos[(4.2 s�1)t]

v � �(1.0 m>s) sin[(4.2 s�1)t],
x � (0.25 m) cos[(4.2 s�1)t],

�x

8p

Chapter 15

1 The speed of a transverse wave on a uniform rope
increases with increasing tension. The waves on the rope
move faster as they move up because the tension increases
due to the weight of the rope below.

3 (b)

5 The resonant (standing-wave) frequencies on a string are
inversely proportional to the square root of the linear
density of the string Thus, extremely high
frequencies (which might otherwise require very long
strings) can be accommodated on relatively short strings if
the strings are linearly denser than the high-frequency
strings. High frequencies are not a problem, as they utilize
short strings anyway.

7 (c)

(f � 1FT>m>l).
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9 There was only one explosion. Sound travels faster in water
than air. Abel heard the sound wave in the water first, then,
surfacing, heard the sound wave traveling through the air,
which took longer to reach him.

11 (b)
13 (a)
15 (b)
17 (a) False, (b) True, (c) True
19 (a)
21 The light from the visible star will be shifted about its mean

frequency periodically due to the relative approach toward
and recession away from Earth as the star revolves around
the common center of mass.

23

25 Path C. Because the wave speed is highest in the water,
and more of path C is underwater than are paths A or B,
the sound wave will spend the least time on path C.

27 11 ms
29
31
33 (b) 40 N, (c) 40.8 N, 2% 
39 9.9 W
41 (a) in the direction, (b) 10.0 cm, 50.0 Hz,

0.0200 s, (c)
43 (a) 6.8 J, (b) 44 W
45 (a) 79 mW, (b) The power can be increased by a factor of 100

by increasing either the frequency or the amplitude by a
factor of 10, or by increasing the tension by a factor of 100.
(c) Increasing the frequency probably would be the easiest.

47 (a) 0.75 Pa, (b) 4.00 m, (c) 85.8 Hz, (d)
49 (a) (b) 83.4 mPa
51 (a) Zero, (b)
53 (a) 0.80 s, (b) 30 m, (c) 6.8 m
55 (a) 50.3 W, (b) 2.00 m, (c)
57 (a) 20.0 dB, (b) 100 dB
59 90 dB
61 (a) 0.10 km, (b) 0.13 W
63 (a) 80 dB, (b) Eliminating the 70 dB and 73 dB sources does

not reduce the intensity level significantly.
65 87.8 dB
67 57 dB
73 (a) (b) 1.32 m, (c) 261 Hz
75 153 Hz
77
79
81 (a) (b)
83 (a)
85 (a) 0.82 kHz, (b) 0.85 kHz
87 185 m, 714 Hz
89 and

lmin � (500 nm)(1 � 4.36 � 10�5)
lmax � (500 nm)(1 � 4.36 � 10�5)

fœ
r � fs(v � ur)>(v � us)

�4.44 kHz�7.78 kHz,
174 mi>h2.25 � 108 m>s

263 m>s,

4.44 mW>m2

3.64 mm
36.4 mm,

343 m>s

0.314 m>s�x5.00 m>s
1.32 km>s0.27 km>s, 21%

0 2 4 6 8
x, cm

v y

107 9531

91 529 Hz, 474 Hz

93 7.99 m from the left end of the wire

95 (a) (b) (c) 0.110 W

97 77 kN

99 206 m

101 0.2 cm

103 (a) , (b) 2.00 m, (c) , 
(d) 3.95 mN

Chapter 16

1

Pmax � 1.26 � 10�4 kg m>s10.0 m>s
3.49 W>m2,55.6 N>m2,

t = 0.0 s

t = 1.0 s

t = 2.0 s

t = 3.0 s

3 (c)

5 (a)

7 3.0 m

9 (b)

11 (a)

13 You could measure the lowest resonant frequency and the
length of the pipe. Assuming the end corrections are
negligible, the wavelength equals 4 if the pipe is stopped
at one end, and is 2 if the pipe is open at both ends. Then
use to find the speed of sound at the ambient
temperature. Finally, use (Equation 15-5),
where for a diatomic gas such as air, is the molar
mass of air, is the universal gas constant, and is the
absolute temperature, to estimate the temperature of the air.

15 (a) No, (b) Yes

17 Standing sound waves are produced in the air columns
above the water. The resonance frequency of the air
columns depends on the length of the air column, which
depends on how much water is in the glass.

19 The wavelength is determined mostly by the size of
the resonant cavity of the mouth; the frequency of sounds
he makes is equal to the wave speed divided by the
wavelength. Because (see Equation 15-5),
the resonance frequency is higher if helium is the gas 
in the cavity.

21 If you do not hear even one beat for the entire time the
string and the tuning fork are vibrating, you can be sure
that their frequencies, while not exactly the same, are very
close. If the sounds of the vibrating string and the tuning
fork last for 10 s, it follows that the beat frequency is less
than 0.1 Hz. Hence the frequencies of the vibrating string
and the tuning fork are within 0.1 Hz of each other.

23 3. The estimated frequencies agree with the observed
frequencies to within 14%.

25 7.1 cm

vHe 
 vair

TR
Mg � 1.4

v � 2gRT>Mv � fl
L

L
L

f
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27 (a) (b)

29 (a) 0, (b) (c)

31 (a) 60.0 cm, (b) (c)

33

35 (b)

f1 � 2.0 kHz, f2 � 5.0 kHz

24.0 m>s0.400p rad,

4I02I0 ,

1.5A89°,

37

39 (a) 0.279 m, (b) 1.23 kHz, (c) 0.432 rad, 0.592 rad, 0.772 rad,
0.992 rad, and 1.35 rad, (d)

41 2.0 rad

43 (b) 1.2 kHz, (c)

45 (a) 2.00 m, 2.50 Hz,
(b)

47 (a) (b) 2.80 m, 186 Hz, (c) 372 Hz and 558 Hz

49 141 Hz

51 (a) 32.4 cm, 47.7 Hz, (b) (c) 62.8 cm

53 (a) 71.5 Hz, (b) 5.00 kHz, (c) 71

55 452 Hz. Ideally, the pipe should expand so that where
is the length of the pipe, is independent of temperature.

57 (a) 40.0 cm, (b) 480 N, (c) You should place your finger
9.2 cm from the scroll bridge.

59 (a) 75 Hz, (b) and (c) 2.0 m

61 (a) (b)

63 (a) The two sounds produce a beat because the third
harmonic of the A string equals the second harmonic of the
E string, and the original frequency of the E string is
slightly greater than 660 Hz. (b) 662 Hz

mD � 2.91 g>m, mG � 6.57 g>m 2.91 g>m,�mE � 1.29 g>m, mA0.574 g>m,

6th,5th

L
v>L,

15.0 m>s,

521 m>s,

y3(x,t) � (4.00 mm) sin(p m�1)x cos(50.0p s�1)t

15 Hz>(mi>h)

0.0698 rad

1.8 m, 51°

50 1 2 3 4
x, m

2.0

−2.0

−1.0

0.0

1.0

y
(x

, 0
), 

cm

−5.0 −2.5 0.0 2.5 5.0
x, m

2.0

1.8

1.6

Y
(x

, t
), 

cm

t = 0.0 s
t = 5.0 s
t = 10.0 s

(c)

65 (a) Because the frequency is fixed, the wavelength depends
only on the tension on the string. This is true because the
only parameter that can affect the wave speed on the string
is the tension on the string. The tension on the string is
provided by the weight hanging from its end. Given that
the length of the string is fixed, only certain wavelengths
can resonate on the string. Thus, because only certain
wavelengths are allowed, only certain wave speeds will
work. This, in turn, means that only certain tensions, and
therefore weights, will work.
(b) Higher frequency modes on the same length of string
results in shorter wavelengths. To accomplish this without
changing frequency, you need to reduce the wave speed.
This is accomplished by reducing the tension in the string.
Because the tension is provided by the weight on the end of
the string, you must reduce the weight.
(d)

67 (a) (b) (c) (d) is un-
certain because the waveform dies out gradually rather
than stopping abruptly at some time; hence, where the
pulse starts and stops is not well defined.

69 6.74 m

71 (a) (b) 0, 0, (c) (d) 0, 0

73 98.0 Hz

75 (a) The pipe is closed at one end. (b) 262 Hz, (c) 32.7 cm

77 (a)

(b) 2.00 m, (c)

(d)

79

81 (b) 203.4 Hz, (c) 203.4 Hz

83 812 Hz

85 (a)

yres(x,t) � (10.0 cm)sin(kx � vt)

ay(1.0 m,t) � �(0.32 km>s2)cos[(40p s�1)t]

vy(1.0 m,t) � �(2.5 m>s)sin[(40p s�1)t],

y2(x,t) � (0.010 m)sin[(1
2p m�1)x � (40p s�1)t],

y1(x,t) � (0.010 m)sin[(1
2p m�1)x � (40p s�1)t],

�1.2 cm, �2.2 m>s,1.9 cm, 3.6 m>s,

Nk � 2pN>¢x,l � ¢x>N,¢t � N>f0 ,

w1 � 19.2 N, w2 � 4.80 N, w3 � 2.13 N

Cell Content/Formula Algebraic Form

A6

B4

B5

C5
4
p a



n�0

(�1)n cos((2n � 1)x)

2n � 1>C$4*4>PI()B5�(�1)^C$3*COS(C$4*$A5)

4
p a



n�0

(�1)n cos((2n � 1)x)

2n � 1
(�1)^B$3*COS(B$4*$A5)>B$4*4>PI()

2n � 12*B3�1

x � ¢xA5�0.1

The solid curve is plotted from the data in columns A and B
and is the graph of for 1 term. The dashed curve is
plotted from the data in columns A and F and is the graph
of for 5 terms. The dotted curve is plotted from thef(x)

f(x)

1
2
3
4
5
6

134
135

A B C

0
1
1.2732
1.2669

1
3
0.8488
0.8614

2
5
1.1035
1.0849

0.0
0.1

1.2030
1.1554

0.9740
1.0422

0.9493
0.8990

 9
19
 0.9682
 1.0134

0.9691
1.0261

10
21
 1.0289
 0.9828

1.0146
0.9685

12.9
13.0

D K L

is 92% of venvelopevest � 46 cm>s, vest
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0 π
x

2π

−1.0

0.0f(
x)

1.0 n = 5
n = 1

n = 10

200150100500
0

2

4

6

8

10

12

n

Δ
t n

, m
s

t, °C
7550250−25 100 125

L,
 c

m

0

5

10

15

20

25

30

data in columns A and K and is the graph of for
10 terms.

f(x)

(b) It is equivalent to the Leibnitz formula.

(c) The frequency heard at any time is so because 
increases over time, the frequency of the culvert whistler
decreases. 

Chapter 17

1 (a) False, (b) False, (c) True

3 Mert’s room was colder.

fhighest � 7.72 kHz, flowest � 85.5 Hz

¢tn1>¢tn ,

5 From the ideal-gas law, we have and is
the slope of the line from the origin to the point on
the graph. During the process the slope of the line from the
origin to continuously decreases, so the pressure
continuously increases.

7 (d)

9 The average kinetic energies are equal. The ratio of their
rms speeds is equal to the square root of the reciprocal of
the ratio of their molecular masses.

11 False

13 It does not matter.

15 (b)

17 The rms speed is always somewhat greater than the speed
of sound. However, it is only the component of the
molecular velocities in the direction of propagation that is
relevant to this issue. In addition, in a gas the mean free
path is greater than the average intermolecular distance.

19 If the volume decreases the pressure increases because
more molecules hit a unit of area of the walls in a given
time. This happens because the number of molecules per
unit volume increases as the volume decreases.

21 The average molecular speed of He gas at 300 K is about
so a significant fraction of He molecules have

speeds in excess of Earth’s escape velocity 
Thus, they “leak” away into space. Over time, the He
content of the atmosphere decreases to almost nothing.

23 About

25 (a) 3600 K, (b) 230 K, (c) Because hydrogen is lighter than
air, it rises to the top of the atmosphere. Because the
temperature is high there, a greater fraction of the
molecules reach escape speed. (d) 160 K, 10 K. Because is
less on the moon, the escape speed is lower. Thus, a larger
percentage of the molecules are moving at escape speed.

27 (a) (b) (c) (d) Because is
greater than for and all three gases
should be found on Jupiter.

29 (a) (b)

31

33

35 (a)

1063°C

1 � 10�4 g

vrms electrons � 2 � 107 m>svrms protons � 5 � 105 m>s,2 � 1011 atm,

H2,O2, CO2,vrms

ve264 m>s,310 m>s,1.23 km>s,

g

1.2 kg>m3

(11.2 km>s).
1.4 km>s,

(T, V)

(T, V)
V>TP � nRT>V,

(b) 8.40 cm, (c) 107°C

1
2
3
6
7
8

206

A B C
L =
r =
c = 

90
1

343
n

1
2

m
m
m/s
t (n)
0.5248
0.5249

200 2.3739

delta t (n)
0.0001
0.0004

0.0114

D

87 (b)

Cell Content/Formula Algebraic Form

B1 90

B2 1

B3 340

B8

C7 ¢tn�$B$1^2)^0.52>$B$3*((2*(B7�1)*$B$2)^2

n � 1B7�1

c

r

L

37 �320°F
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T, K
4003002001000

P
, t

or
r

0

20

40

60

80

(b) 54.9 torr, (c) 3.70 � 103 K

(c) The graph rises from zero to the peak much more
rapidly than it falls off to the right of the peak. Because the
distribution is so strongly skewed to the right of the peak,
the outlying molecules with relatively high energies pull
the average far to the right of the most probable
value (kT>2).

(3kT>2)

have less kinetic energy, so the temperature of the droplet,
which is proportional to the average translational kinetic
energy per molecule, decreases.
(b) As long as the temperature is not too high, the molecules
that evaporate from a surface will be only those with the
most extreme speeds, at the high-energy “tail” of the
Maxwell–Boltzmann distribution. Within this part of the
distribution, increasing the temperature only slightly can
greatly increase the percentage of molecules with speeds
above a certain threshold. For example, suppose that we set
an initial threshold at then imagine increasing the
temperature by 10%, so At the threshold, the
ratio of the new energy distribution to the old one is

an increase of almost 37%.

75

77 4m

79 (a) 142 ms, (b) 146 ms

81 (a)

110 mol of H2, 55 mol of O2

(1.1)�3>2 e�5>1.1e5 � 1.365
F(T2)

F(T1)
� aT1

T2

b e�E>KT2 e�E>kT1 �

T2 � 1.1T1 .
E � 5kT1 ,

12008004000 600 1000200
v, m/s

F(v) = �
0
v f(v')dv'

1.0
0.8
0.6
0.4
0.2
0.0

F(
v)

39 (a)

12008004000 600 1000200
v, m/s

20

10

0

f(
v)

, m
s/

m

(b) As the temperature is increased, the graph spreads out
horizontally and gets shorter vertically. More precisely, the
horizontal position of the peak moves to the right in
proportion to the square root of the temperature, while the
height of the peak drops by the same factor, preserving the
total area under the graph (which must be 1.0, the total
probability of a molecule having any velocity between zero
and infinity).
(c) A graph of for nitrogen at 300 K follows. Each
number in column C of the spreadsheet [shown in Part (a)]
is approximately equal to the integral of from zero up
to the corresponding value. This integral represents the
probability of a molecule having a speed greater than or
equal to this value of v.

v
f(v)

F(v)

41

43

45 (a) (b)
(c) (d) The thermistor has greater
sensitivity at lower temperatures.

47

49

51 (a) (b) 60 mol

53 11.1 atm

55 (a) Air will be less dense when its water-vapor content is
higher. (b) 18 g

57 1.1 kN

59 (a) (b) The rms speed of argon atoms
is slightly less than one-third the rms speed of helium
atoms.

61

65

69 (a)

(b)

Epeak � 1
2 kT, Epeak � 1

3Eav

K>¢U � 7.9 � 104

5.0 � 105 m>s, 2.1 � 10�16 J

0.87 km>s.0.28 km>s,

3.7 � 103 mol,

�83 glips

1.79 mol, 1.08 � 1024 molecules

�389 Æ>K, �4.33 Æ>K,
1.31 kÆ,R0 � 3.91 � 10�3 K, B � 3.94 � 103 K,

�183°C, �297°F

�40.0°C � �40.0°F

50 1 2 3 4

E/kT
Emax

Emax is the most probable energy

Eav

0

f(
E

)

(d) About 7%. Note that this value is consistent with the
graph of shown immediately above.
(e) A little under 14%.

F(v)

71 (a) (b) (c) 1.4 atm

73 (a) To escape from the surface of a droplet of water, molecules
must have enough translational kinetic energy to overcome
the attractive forces from their neighbors. Therefore the
molecules that escape will be those that are moving faster,
leaving the slower molecules behind. The slower molecules

2.4 � 102 K,1.2 � 102 K,
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P

Isothermal

Isochoric
(constant volume)

Adiabatic

V

Vf =   Vi Vi
1
2

P
, a

tm

V, L

3.00

2

1

2.00

1.00

0
0 1.00 2.00 3.00

P
, a

tm

V, L

3.00

2

1

2.00

1.00

0
0 1.00 2.00 3.00

Chapter 18

1 (e)
3 (c)
5 (a)
7 (c)
9 Yes. If the gas does work at the same rate

that it absorbs heat, its internal energy will remain constant.
11 Particles that attract each other have more potential

energy the farther apart they are. In a real gas the molecules
exert weak attractive forces on each other. These forces
increase the internal potential energy during an expansion.
An increase in potential energy means a decrease in
kinetic energy, and a decrease in kinetic energy means
a decrease in translational kinetic energy. Thus, there is a
decrease in temperature.

13 Particles that repel each other have more potential energy
the closer together they are. The repulsive forces
decrease the internal potential energy during an expansion.
A decrease in potential energy means an increase in kinetic
energy, and an increase in kinetic energy means an
increase in translational kinetic energy. Thus, there is
an increase in temperature.

15 (a)
17 (a) False, (b) False, (c) True, (d) True, (e) True, (f) True
19 (d)
21 During a reversible adiabatic process, is constant,

where and during an isothermal processes, is
constant. Thus the pressure rise during the compression is
greater than the pressure drop during the expansion. The
final process could be a constant volume process during
which heat is absorbed from the system. A constant-volume
cooling will decrease the pressure and return the gas to its
original state.

PVg 
 1,
PVg

¢Eint � Qin � Won .

43
45 2.20 kJ
47 54 J
49 (a) 6.13 W, (b) 38.1 min

618°C

(b) 861 J

(b) 963 J

23 The temperature decreases.
25 1.6 min, an elapsed time that seems to be consistent with

experience.
27
29 31.3 kJ
31 48.8 g
33
35
37 (a) (b) 125 g
39 (a) (b) No ice is left.
41 (a) (b) 175 g, (c) No5.26°C,

4.9°C,
0°C,

4.5 � 102 kg
12.1°C

1.2 � 10�5 (or 1.2 � 10�3 percent)

53 (a) 507 J

55

57 (a) 555 J, (b) 555 J

59 (a) 0.495 mol, (b) 3.09 kJ, (c) (d)

61 (a) 6.24 kJ, 6.24 kJ, (b) 6.24 kJ , 8.73 kJ, 2.49 kJ, (c) 2.49 kJ

63 59.6 L

65

67 There are three translational degrees of freedom and
three rotational degrees of freedom. In addition, each 
of the hydrogen atoms can vibrate against the oxygen
atom, resulting in an additional 4 degrees of freedom 
(2 per atom). 

69 (a) 300 K, 7.80 L, 1.14 kJ, 1.14 kJ, (b) 5.40 L, 208 K, 0, 574 J

71 (a) 263 K , (b) 10.8 L, (c) 1.48 kJ, (d)

73

75 Process Qin (kJ) Won (kJ)

8.98 0

13.2

0

6.58

Wby gas total � 6.6 kJ

�6.58C S D

�8.98B S C

�13.2A S B

D S A

�0.14 kJ

�1.48 kJ

Cvwater � 5Nk � 5nR

¢c œ
p � � 13

2 R

10.3 J>K20.8 J>mol # K,

Wby gas � 3
2P0V0

51 (a) 405 J
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P

Th

V

Tc

V1

P1

3

2

1

4

P2

P4

P3

V4 V2 V3

t,
°C

Time, min

0.3 12.9 50.5 50.85.9

100

0
−10

110

77 (a)

79 (a) 65 K, 81 K, (b) 1.6 kJ, (c) 2.2 kJ
81 (a) 81 K, 81 K, (b) 2.7 kJ, (c) 3.3 kJ
83 256 kcal
85 (a) (b)
87 (a) 2.49 kJ, (b) 3.20 kJ
89 171 K
91

0.0584 J>kgc(4.00 K) � 9.20 � 10�2 J>kg # K,

93 396 K
95 (b) 4.62 kJ
97 (a) (b) The gas is diatomic. (c) During the

isothermal process the translational kinetic energy is
unchanged. During the adiabatic process the translational
kinetic energy increases by a factor of 1.32.

P2 � 1
2P0 ,

Chapter 19

1 (c)
3 (a)
5 The COP is defined so as to be a measure of the

effectiveness of the device. For a refrigerator or air
conditioner, the important quantity is the heat transferred
from the already colder interior, For a heat pump, the
idea is to focus on the heat transferred into the warm
interior of the house, 

7 Increasing the temperature of the steam increases its energy
content. In addition, it increases the Carnot efficiency, and
generally increases the efficiency of any heat engine.

9 A Carnot-cycle refrigerator is more efficient when the
temperatures are close together because it requires less
work to extract heat from an already cold interior if the
temperature of the exterior is close to the temperature of
the interior of the refrigerator. A Carnot-cycle heat engine is
more efficient when the temperature difference is large
because then more work is done by the engine for each unit
of heat absorbed from the hot reservoir.

11 (c)

Qh .

Qc .

V

S
P

C B

D A

V

19

13 (d)

15 The cycle is that of the Otto engine (see Figure 19-3).

17

P
, a

tm

1
4

3 2
B

C

D

A

400 K

300 K

2

1.5

0
10 30 60

V, L
50200 40

1

0.5

33 13.1%

21 An increase of about 47%.
23 56%
25 (a) (b)
27 (a) 500 J, (b) 400 J

29 (a) 40%, (b) 80 W

6.02 � 1014 J>(K # s)1.7 � 1017 W,
P

, a
tm

2 3

1 4

2

1

0
10 30

V, L
50200 40

31 (a)

(b) 15%

Process W (kJ) Q (kJ) �Eint (kJ)

0 3.74 3.74

12.5 7.5

0

2.49 �3.75�6.244 S 1

�7.48�7.483 S 4

�4.992 S 3

1 S 2



A-24 | Answers to Odd-Numbered End-of-Chapter Problems

P

2

3

Qh

Qc

1

4

V

35 (a) (b) 15%

37 (a) 5.16%. No contradiction. (b) Most warm-blooded
animals survive under roughly the same conditions as
humans. To make a heat engine work with appreciable
efficiency, internal body temperatures would have to be
maintained at an unreasonably high level.

41 (a) 33.3%, (b) 33.3 J, (c) 67 J, (d) 2.0

45 (a) 33%

47 (a) (b) 3.12 kJ, (c) 6.7%,
(d) 35.5%

49 (a) 6.3, (b) 3.2 kW, (c) 5.3 kW

51 (a) 0.17 MJ, (b) 0.12 MJ. Because the temperature difference
increases when the room is warmer, the COP decreases.

53

55 and, because the entropy of the
universe increases.

57 (a) 0, (b) 267 K

59 (a) (b) (c) The entropy change of the
universe is just slightly greater than zero.

61 (a) (b) (c)

63 (a) (b) 125 J

65 (a) (b)

67 (a) 51%, (b) 0.10 MJ, (c) 98 kJ

69

71 (a) You should explain to him that, because the efficiency
he claims for his invention (83.3%) is greater than the
efficiency of a Carnot engine operating between the same
two temperatures, his data are not consistent with what is
known about the thermodynamics of engines. He must
have made a mistake in his analysis of his data-or he is a
con man looking for people to swindle.

(b) 135 W

73 (a) Process (2) is more wasteful of available work.
(b)

75 313 K

77 10 W

79 (a) 253 kPa, (b) 462 K, (c) 6.97 kJ

81 (a) 253 kPa, (b) 416 K, (c) 6.59 kJ

83 (a)

¢S1 � 1.67 J>K, ¢S2 � 0.833 J>K

113 W>K
Qh cycle � 67 J, Qc cycle � 47 JWcycle � 20.0 J,

0.42 J>K,

20 J>K138 J>K,�117 J>K,

�244 kJ>K,244 kJ>K,

¢Su 
 0,¢Su � 2.40 J>K6.05 kJ>K

Q2S3 � 0, Q3S1 � �2.91 kJ,100°C,

T2 � 600 K, T3 � 1800 K, T4 � 600 K,

89 T � 10484 y, T � 10478TRussell

Chapter 20

1 The glass bulb warms and expands first, before the mercury
warms and expands.

3 Water expands greatly as it freezes. If a sealed glass bottle
full of water is placed in a freezer, as the water freezes there
will be no room for the expansion to take place. The bottle
will be broken.

5 The strip will curl more tightly.

7 (c)

9 (a) With increasing altitude, decreases; from curve OC,
the temperature of the liquid–gas interface decreases as
the pressure decreases, so the boiling temperature
decreases. Likewise, from curve OB, the melting
temperature increases with increasing altitude.

(b) Boiling at a lower temperature means that the cooking
time will have to be increased.

11 At very low pressures and temperatures, carbon dioxide
can exist only as a solid or gas (or vapor above the gas). The
atmosphere of Mars is 95 percent carbon dioxide. Mars, on
average, is warm enough so that the atmosphere is mostly
gaseous carbon dioxide. The polar regions are cold enough
to enable solid carbon dioxide (dry ice) to exist, even at the
low pressure.

13 (a)

15

T
P

17 Your assumption was not correct and 14 mL of water
overflowed.

19

21

23 2.9 nm

25

27

29

31

33 (a) (b) (c) 170 kPa

35

37 (a) (b) l.53 kW, (c) 0.052 K>WICu � 0.96 kW, IAl � 0.57 kW,

2.1 kBtu>h 82°C,90°C,

3.7 � 10�12 N>m2

15 � 10�6 K�1

220°C

8(°F # h # ft2)>Btu

0.30 kW, 0.1 K>W17 mW>(m # K)

t,
°C

x, m

Inside Outside

Glass pane

−5 0 5

25

20

15

10

5

0
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Chapter 21

1 The net charge on large objects is always very close to zero.
Hence the most obvious force is the gravitational force.

3 (a) Coulomb’s law is only valid for point particles. The
paper bits cannot be modeled as point particles because the
paper bits become polarized.

(b) No, the attraction does not depend on the sign of the
charge on the comb. The induced charge on the paper that
is closest to the comb is always opposite in sign to the
charge on the comb, and thus the net force on the paper is
always attractive.

5 (a)

+4q −3q

+
+
+

+
+

+ + + + +

−
−

−
−

−

−
−

−

−

−

+
+

+

+

+

+q−3q

−2q+q

(b)

7 Assume that the rod has a negative charge. When the
charged rod is brought near the aluminum foil, it induces
a redistribution of charges with the side nearer the rod
becoming positively charged, and so the ball of foil
swings toward the rod. When it touches the rod, some of
the negative charge is transferred to the foil, which, as a
result, acquires a net negative charge and is now repelled
by the rod.

9 (a) On the sphere near the positively charged rod, the
induced charge is negative and near the rod. On the other
sphere, the net charge is positive and on the side far from
the rod. This is shown in the diagram.

(b) When the spheres are separated and far apart and the
rod has been removed, the induced charges are distributed
uniformly over each sphere. The charge distributions are
shown in the diagram.

11 (a) False, (b) True, (c) False, (d) Possibly, (e) False, (f ) True

13 (a)

(b)

41 1.3 mm

43

45

47 2.1 km

49 5800 K

51 (b) The values agree to within 0.3%.

53 About 0.007 percent.

55 142 W

57

59 (a) (b) 12 d0.70 cm>h,

L2 � L1 , v2 � (1 � 2a ¢T)v1 , E2 � E1(1 � 2a ¢T)

1.3 � 1010 kW.

1598°C

93.5 cm2
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15 The dipole moment rotates back and forth in oscillatory
motion. The dipole moment gains angular speed as it
rotates toward the direction of the electric field, and loses
angular speed as it rotates away from the direction of the
electric field.

17 1 2 3

(a) down up up

(b) up right left

(c) down up up

(d) down up up

Figure 21-23 shows the electric field due to a single dipole,
where the dipole moment is directed toward the right. The
electric field due two a pair of dipoles can be obtained by
superposing the two electric fields.

19 Because the can is grounded, the presence of the
negatively charged plastic rod induces a positive charge
on it. The positive charges induced on the can are attracted,
via the Coulomb interaction, to the negative charges on the
plastic rod. Unlike charges attract, so the can will roll
toward the rod.

21

23

25 (a) , (b)

27

29 A distance equal to from the charge on the
side away from the charge.

31

33

35

37 (a) (b)

(c)

(�0.36 kN>C)in,(1.0 kN>C)in,

F
S

q �
kqQ

R2 (1 � 22)in

F
S

3 � (0.4 N)in � (0.64 N)jn
F
S

2 � (�1.3 N)in � (1.2 N)jn,F
S

1 � (0.90 N)in � (1.8 N)jn,

F
S

3 � �(8.65 N)jn
4.0-mC

�2.9-mC0.41L

F
S

1 � (1.5 � 10�2 N)in
2.1 � 10�13 W2.60 h

4.82 � 107 C

5.0 � 1012 electrons

49 (a) For a positive test charge, the equilibrium at (0, 0) is
unstable for small displacements in either direction along
the axis, and stable for small displacements in either
direction along the axis.
(b) For a negative test charge, the equilibrium is stable
at (0,0) for displacements along the axis and unstable
for displacements along the axis.
(c)

51 (a) , (b) in the direction
opposite to the direction of the electric field, (c) ,
(d)

53 (a) (b) , (c) in the 
direction

55

57 The electron strikes the lower plate to the right of its
initial position.

59 (a)

(b)

8.0 � 10�18 C # m

4.1 cm

800 mC

�y
33.4°50.0 nsaS � (�5.28 � 1013 m>s2)jn,

3 mm
0.2 ms

1.76 � 1013 m>s21.76 � 1011 C>kg

q0 � � 1
4 q

y
x

y
x

500

250

−250

E
x 

(N
/

C
)

−500
−2 −1 0

x (m)
21

0

−q +q

p

39 (a) (b)
(c)

41 (a) , (b)

43 (a) , (b)

45 (a) , (b)

47 The charge must be placed a distance below the
midpoint of the base of the triangle, where is the length of
a side of the triangle.

L
L>13

3.0 � 10�16 N at 230°1.9 kN>C at 230°

2.1 � 10�15 N at 51°13 kN>C at 230°

F
S

� (69 mN)in35 kN>C at 0°

�40 nC
F
S

(0, 0) � (�1.6 mN)jn,E
S

(0, 0) � (4.0 � 105 N>C)jn,

63 (a) , (b) The exact and
estimated values of agree to within . This difference is
this large because the separation of the two charges of the
dipole is of the distance from the center of the dipole
to point 

67 (a) and 

(b) and 

69 (a) downward, (b) counterclockwise,
(c) , (d)

71 (a)

(b)

73 (a) , (b)

75 (a) , (b) for each

79

83 (a)

(b) where is positive,

(c)

85

87 (b)

Chapter 22

1 The resultant field is directed along the dashed line,
pointing away from the intersection of the two sides of the
L-shaped object. This can be seen by dividing each leg of
the object into 10 (or more) equal segments and then
drawing the electric field on the dashed line due to the
charges on each pair of segments that are equidistant from
the intersection of the legs.

52 mm>s4.6 � 10�14 m � 46 fm

v �48 A1 � 22>3 B A kqQam � 1.21A kqQam

qF
S

�
2kqQy

[y2 � 1
4 a2]3>2 jn,

Ey �
2kQy

[y2 � 1
4 a2]3>2 ,

v � e4k>(2mL)

9.9°10°

x � 0.0508 m and x � 0.169 m�97.2 mC

250 N

28.0 mC and 172 mC

5.00 � 10�7 C45.8 g
0.112 N # m,0.225 N,

2.1 � 10�4 C�1.4 � 10�5 C

1.8 � 10�4 C1.8 � 10�5 C

P.
20%

2%EP

1.80 � 106 N>C.1.83 � 106 N>C
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3 (a) True (assuming there are no charges inside the shell),
(b) True, (c) False

5 (a) False, (b) True

7 (a) False, (b) False, (c) True, (d) False, (e) True

9 (a) radially inward, (b) radially outward, (c) radially inward

11 (a) radially inward, (b) radially inward, (c) The field is zero.

13 (a) , (b) , (c) , (d) , 
(e) This result is about 0.01% less than the exact value
obtained in (d).

15 (a) , (b) , (c)
(d) This result agrees exactly, to two
significant figures, with the result obtained in Part (c).

17 (a) , (b) , (c) ,
(d) , (e) , 

(f )

0.179 kQ>a20.354 kQ>a2
0.385 kQ>a20.358 kQ>a20.189 kQ>a2

1.5 � 103 N>C.
1.5 � 103 N>C1.1 � 106 N>C4.7 � 105 N>C

2.6 mN>C4.4 N>C26 N>C18 nC

(b)

1
2
3
4
5
6
7
8
9

77
78

A B C

9.00E+09
5.00E–10

0.300

E(x)
28.27
27.33

N*m2/C2

C/m2

m

Esheet

28.3
28.3

k =
� =
a =

x
0.00
0.01

2.34
2.29

28.3
28.3

0.69
0.70

0.4

0.2

−0.2

E
z/

kQ
(m

−2
)

−0.4
−3 −1−2 0

z/a

321

0.0

30

25

20

15

10

5

0
0.0 0.1 0.30.2 0.4

x (m)

E
E sheet

E
(N

/
C

)

0.70.60.5

R1

R2

2 kBπ

0.0 0.5 1.0 1.5 2.0
r/R

E
r

3.02.5

19 (a)

Cell Content/Formula Algebraic Form

B3

B4

B5 0.3

A8 0

A9

B8

$B$5^2)^2)^0.5)(A8^2�

(1�A8>2*PI()*$B$3*$B$4*

x0 � 0.01A8�0.01

x0

r

s5.00E�10

k9.00E�09

The magnitudes differ by more than 10.0 percent for

27 (a) , (b)

29 (a) , (b) 0, (c) ,
(d)

31 (a) , (b) , (c) ,
(d) No, (e)

33

35

37 (a) (b) ,

(c)

�1Er	R1
� 0, E

S

R1	r	R1
�
kq1
r2

rn, E
S

r
R2
�
k(q1 � q2)

r2
rn,

cosu

�79.7 nC

2.26 � 105 N # m2>C 2.26 � 105 N # m2>C7.19 � 104 N>C3.14 m2

2.7 � 10�11 C
3.0 N # m2>C1.5 N # m2>C, 1.5 N # m2>C17 N # m2>C20.0 N # m2>Cx � 0.0300 m.

39 (a) , (b) , (c) , (d) ,
(e)

41 (a) , (b)

43 (a) , (b)

(c)

Er �
BR2

2P0r
2 r 
 R, Er �

B
2P0

 r 	 RQ � 2pBR2

470 N>C2.00 mC>m3

366 N>C 983 N>C1.00 kN>C339 N>C0.407 nC

2pksa1 �
x

3x2 � a2
b

C8 2pks2*PI()*$B$3*$B$4
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45 (a)

(b)

47 (a) , (b) Because of its much larger mass, the
impact speed of the ion will be much less than the impact
speed of the electron. (The ion will impact the tube instead
of the wire.)

49 (a) , (b) 0, (c) 0, (d) , (e)

51 (a) , (b) , (c) , (d) ,
(e)

53 (a)

(b) and 

55 (b)

57 (a) , (b)

59

61 (a)

(b)

Er �
kq

r2
 r 	 R1 , Er � 0 R1 	 r 	 R2, Er �

kq

r2
 r 
 R2

9.4 kN>C  R 
 6.50 cm
339 N # m>C

R
ER �

ER � 0 4.50 cm 	 R 	 6.50 cm,

 1.50 cm 	 R 	 4.50 cm,
339 N # m>C

R
ER �

ER � 22.6 kN>C R 	 1.50 cm,18.8 nC>mER �
b

4P0

R3 r 	 a, ER �
ba4

4RP0

 r 
 a

soutside � 14.7 nC>m2sinside � �21.2 nC>m2

 r 
 6.50 cm,
156 N # m>C

R
ER �

ER � 0 4.50 cm 	 r 	 6.50 cm,

 1.50 cm 	 r 	 4.50 cm,
(108 N # m>C)

R
ER �

ER � 0 r 	 1.50 cm,

610 N>C 1.00 kN>C1.00 kN>C339 N>C679 nC

610 N>C1.00 kN>C679 nC

1.41 � 106 m>s
Er �

r

3P0r
2 (R3

2 � R3
1) r 
 R2

Er � 0 r 	 R1 , Er �
r

3P0r
2 (R3

2 � R3
1) R1 	 r 	 R2 ,

Qinside �
4pr

3
(r3 � R3

1),
(c)

65 (a) and 

(b) and 
and

67

69 (a) radially outward,

(b) radially outward,

(c)

71 (a) toward the right, (b)
toward the right, (c) zero, (d) zero

73 (a) , 

(b)

75 (a) Radially outward toward the gap, (b)

77 (a) at , 

(b) at 

79 (a) , (b)

81 (a) , (b)

83 (b)

85

87

Chapter 23

1 The proton is moving to a region of higher potential. The
proton’s electrostatic potential energy is increasing.

3 The electric field is zero throughout the region.

5

1
2R

E
S

1 � a rb
3P0

�
Q

4pP0b
2 b in, E

S

2 � a rb
3P0

�
Q

4pP0b
2 b in

E
S

1 � E
S

2 �
rb

3P0

in

1.18 Hz0.997 kg

T � pRA 2m
kql

v � A2kql

m

153°E
S

� 263 kN>C 56.3°E
S

� 204 kN>C Ecenter �
kQ�

2pR3

Er(r) �
ke
r2
a1 �

1
4
c (1 � e�2r>a) � 2e�2r>aa r

a
�
r2

a2 b d b
r0 �

�e
pa3

3.39 � 109 N>C,3.39 � 109 N>C,

P �
Q2

32p2P0r
4

F �
Q2a2

32pP0r
4 ,

E �
Q

8pP0r
2 ,

�115 kN>C sright � 2.60 mC>m2sleft � 0.60 mC>m2
Erightx � 294 kN>C,Eleftx � �68 kN>CQright � 65 mC,Qleft � 15 mC

Er � (5.4 � 104 N # m2>C)
1
r2
 r 
 90 cm

Er � 0 60 cm 	 r 	 90 cm,

Er � (2.3 � 104 N # m2>C)
1
r2
 r 	 60 cm,

souter � 0.59 mC>m2,sinner � �0.55 mC>m2,

R2

R1

−qq

q

+Q−Q

(c)

63 (a)

(b)

Er � (2.3 � 104 N # m2>C)
1
r2
 r 
 90 cm

Er � 0 60 cm 	 r 	 90 cm,

Er � (2.3 � 104 N # m2>C)
1
r2
 r 	 60 cm,

sinner � �0.55 mC>m2, souter � 0.25 mC>m2

sinner � �
q

4pR2
1

, souter �
q

4pR2
2
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7
V

−3 −1−2 0
x/a

321

9 (a) 2, (b) 3

11 No. The local surface charge density is proportional to the
normal component of the electric field, not the potential on
the surface.

13

15

17

19 (a) , (b)

21 (a) , (b) , (c) ,
(d)

23 (a) , (b)

25 (a) (b) , (c) No. The distance of
closest approach for a alpha particle found above

is much larger than the 7 fm radius of a gold
nucleus. Hence the scattering was solely the result of the
inverse-square Coulomb force.

27 (a) (b) (c)

29 (a) (b) (c) Because the two field points are
equidistant from all points on the circle, the answers for
Parts (a) and (b) would not change.

31 (a)

(b)

V(x) � kqa 1

ƒx � a ƒ
�

1

ƒx � a ƒ
b ,

95.3 kV135 kV

4.43 kV7.55 kV,12.9 kV,

(45.5 fm)
5-MeV

46 fm, 25 fmr � kzZe2>Ki,

2.50 MV>m3.09 � 107 m>sV(x) � �(2.00 kV>m)x
24.0 mJ�24.0 mJ�8.00 kV

13.5 mJ4.49 kV

27 mC>m2

0.72 MeV

3.0 � 109 V

33 (b) at points on the axis

35 (a) positive, (b)

37 (a) , (b) The plane at is at the
higher potential.

39 (a)

(b)

Ex(x) �
2kqx

(x2 � a2)3>2 �
kq

(a � x)2  x 	 a

Ex(x) �
2kqx

(x2 � a2)3>2 �
kq

(x � a)2  x 
 a,

V(x) � kqa 2

3x2 � a2
�

1

ƒx � a ƒ
b  x � a,

x � 2.00 m3.00 kV.�668 nC

25.0 kV>mz

41 (a) , (b) , (c)

43

45

47

49

Va � Vb � kqa1
a

�
1
b
b

Va � Vb �
2kq

L
lna b
a
b~3 � 10�5 C>m2

�42.3 kV�12.7 kV6.02 kV

Region

Part (a) 0

Part (b) 0 0

51 (a)

53 (a) , (b)

55 (a)

57 (a) , (b) , (c)

(d) , (e) , (f )

61 (a) The equipotential surfaces are planes parallel to the
charged planes. (b) The regions to either side of the two
charged planes are equipotential regions, so any surface in
either of these regions is an equipotential surface.

63 (a) closer to the wire, (b) , (c) The
distance between the and the equipotentials is

This closer spacing of these two equipotential
surfaces was to be expected. Close to the central wire, two
equipotential surfaces with the same difference in potential
should be closer together to reflect the fact that the electric
field strength is greater closer to the wire.

65 (a) , (b) , (c)

67 (a) , (b)

69

71 (a) , (b) , (c) Because
the electron escapes from the proton

with residual kinetic energy.

73 (a) , (b)

75 (a)

(b)

(c)

y � �321.25x � x2 � 25

V(x, y) �
l

2pP0

lna4(x � a)2 � y2

4(x � a)2 � y2
b , V(0, y) � 0

E
S

(x) �
2kqx

(x2 � a2)3>2 inV(x) �
2kq

3x2 � a2

2Kimin 
 Ki escape ,
4.59 � 105 m>s9.61 � 10�20 J

v � qC622k
ma

� 2.91qA kma
22.3 mJ22.3 nC

�18.0 mJ�5.99 mJ30.0 mJ

0.0966 mm.
725 V700 V

0.864 mm0.224 cm,

V �
kQ

2R
a3 �

r2

R2 bV �
kQ

R3 r
2dV � a3kQ

R3r
br�2 dr�

V �
3kQ
2R3 (R2 � r2),dV �

3kQ
R3 r� dr�dQ �

3Q
R3 r�

2 dr�

V(x) �
kQ

L
lnax � 1

2L

x � 1
2L
b

V �
2pks0

3R2 ((R2 � 2z2)3z2 � R2 � 2z3)Q � 1
2ps0R

2

V(x, 0) �
kQ

L
lna 2x2 � 1

4L2 � 1
2L

2x2 � 1
4L2 � 1

4L2
b

�
s

P0

x

�
s

P0

(x � a)
s

P0

x

x � a0 � x � ax � 0

Cell Content/Formula Algebraic Form

A2 1.25
A3

B2

B4 y � �321.25x � x2 � 25�B2

y � 321.25x � x2 � 25SQRT(21.25*A2�A2^2�25)

x � ¢xA2�0.05

1
4 a
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The wires are in the plane.

77 (a) , 

(b)

79 (a) , (b) , (c)

81 (a) , (b)

83

85

87 (b)

89 (a)

(b)

93 (a) (b) ¢E � �0.370ER� � 0.794R

V(b) � kQ
(c � b)(b � a)
b2(c � a)

Qc � �Q
c(b � a)
b(c � a)

,

Qa � �Q
a(c � b)
b(c � a)

,Qb � Q, V(a) � V(c) � 0,

V(c) � 0, V(b) � kQa1
b

�
1
c
b , V(a) � V(b) � kQa1

b
�

1
c
b ,

s �
qd

4p(d2 � r2)3>2
7.1 nC

R2 �
2
3
R1

1.38 � 105 m>s100 eV

W
�QS2a �

2kQ2

3a
W

�QS0 �
�2kQ2

a
W

�QS�a �
kQ2

2a

V(r) � pka3r0a1
a

�
1
r
be�2r>a � kea1

a
�

1
r
be�2r>a

3.56 � 108 C>m3

y � 0

Chapter 24

1 (c)

3 False. The electrostatic energy density is not uniformly
distributed because the magnitude of the electric field
strength is not uniformly distributed.

5

7 (a) True, (b) True

9 (a) True, (b) False. Because and increases, 
must increase. (c) True. where is the plate
separation. (d) False. 

11 (a) , (b)

13

15

17

19 (a) , (b)

21 (a) , (b)

23 (a) , (b) , (c) , (d) ,
(e)

25 (a) , (b) Because work has to be done to pull the plates
farther apart, you would expect the energy stored in the
capacitor to increase, (c)

27 10.00 mF

0.55 mJ

11 nC

88.5 mJ
17.7 nF88.5 mJ44.3 mJ>m3100 kV>m 1.88 J0.625 J

45.0 mJ15.0 mJ

75.0 nF

2.3 nF

0.1 nF>m � C>L � 0.2 nF>mUseries � 1
2U1 capacitorUparallel � 2U1 capacitor

U � 1
2QV.

dE � V>d, QCQ � CV,

1>3

1
2
3
4
5
6
7

370
371
372
373
374
375
376

A B C
ypos

0.00
0.97
1.37
1.67
1.93
2.15

yneg

0.00
–0.97
–1.37
–1.67
–1.93
–2.15

x
1.25
1.30
1.35
1.40
1.45
1.50

2.54
2.35
2.15
1.93
1.67
1.37
0.97

–2.54
–2.35
–2.15
–1.93
–1.67
–1.37
–0.97

19.65
19.70
19.75
19.80
19.85
19.90
19.95

10

5

0

y 
(c

m
)

−10

−5

0
x (cm)

20155 10

3.00 μF 6.00 μF

8.00 μF

29 (a) , (b) , (c) ,
(d)

31 (a) If their capacitance is to be a maximum, the capacitors
must be connected in parallel.

U10 � 180 mJ, U20 � 360 mJ
Q10 � 60.0 mC, Q20 � 120 mC6.00 V30.0 mF

(b) (1) 1.67 mF

(2) 3.33 mF
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(3) 7.50 mF

35 (a) , (b)

37

39 (a) , (b)

41 (a) , (b) , (c) , (d)

43 (a) , (b)

45

47

51

53 (a) , (b)

55 (a) , (b)

57 (a) , (b)

59 (a)
(b)
(c)

61

63 (a) , (b)

65

67 (a) , (b)

69 (a) 2.1, (b) , (c)

71 A series combination of two of the capacitors connected
in parallel with a series combination of the other
two capacitors will result in total energy stored in all
four capacitors.

73

75 (a) , (b) , (c)

77 (a) , (b) , (c) ,

(d)

79

83 (a) , (b)

85 (a) , (b) ,

(c) , (d) The force originates from the

fringing fields around the edges of the capacitor. The effect
of the force is to pull the polarized dielectric into the space
between the capacitor plates.

87 (a) First show that is inversely proportional to for a
given Because increases as decreases, a decrease in
plate separation will unbalance the system. Hence the 

balance is unstable. (b) V0 � d0A2Mg

P0A

dFV0 .
dF

F �
(k � 1)aP0V

2

2d

F �
(k � 1)Q2d

2aP0[(k � 1)x � a]2U �
Q2d

2P0a[(k � 1)x � a]

dU �
Q2

2P0A
dxU �

Q2

2P0A
x

133 mC, 267 mC

W �
P0AV

2

d

Unew �
3P0AV

2

2d
Vnew � 3VCnew �

P0A

3d

3C0C0
2
3C0

2.00 mF

U0

5.2 nC45 cm2

1.17 nC16.7 nF

Q1 �
2Q

1 � k
, Q2 �

2Qk
1 � k

240 cm250 mm

2.72 nF

V1 � 127 V, V2 � 36.4 V, V3 � 90.9 V
Q1 � �255 mC, Q2 � 145 mC, Q3 � 545 mC,
V1 � V2 � V3 � 200 V,

Ui � 1.15 mJ, Uf � 0.29 mJV4.00 � V12.0 � 6.0 V

0.4 mJ2.4 mF

640 mJV100 � V400 � 1.20 kV

R� � 2R

¢C � �2
P
Y
C

179 pF>m 15.5 nC>m1.55 pF

0.16 J37 mJ23 V7.9 m2

9.60 mC4.80 kV

6.00 mF, 7.00 mF
1.71 mF, 2.33 mF, 2.80 mF, 3.00 mF, 4.67 mF, 5.00 mF,
0.571 mF, 0.667 mF, 0.800 mF, 0.857 mF, 1.33 mF, 1.43 mF,

11C02C0

89 (a)
(b)
(c) , (d)

91

93

Chapter 25

1 In earlier chapters the conductors are constrained to be in
electrostatic equilibrium. In this chapter, this constraint is
no longer in place.

3 (c)

5 (a)

7 No, it is not necessarily true for a battery. Under normal
operating conditions the current in the battery is in the
direction away from the negative battery terminal and
toward the positive battery terminal. That is, it opposite to
the direction of the electric field.

9 (e)

11 (d)

13 You should decrease the resistance. The heat output is
given by Because the voltage across the resistor
is constant, decreasing the resistance will increase 

15 (a)

17 (a)

19 (a) False, (b) True, (c) True

21 (b)

23 and

25

27

29 12 gauge

31

33 (a) , (b) 0.396

35 (a) , (b) , (c)

37

39 (a) , (b)

41

43

45

47

49

51 (a) , (b)

53

55 (a) , (b) , (c)

57 (b)

59 (a) , (b) As the filament heats up, its resistance
decreases. This results in more power being dissipated,
further heat, higher temperature, etc. If not controlled, this
thermal runaway can burn out the filament.

61 0.18 kJ

636 K

3 � 102

1.30 kW11.1 Æ15.0 A

46°C

2.05 AR �
r

2pL
 ln(b>a)R �

rL

pab

31 mÆ
1.20 Æ
63 light-years

1.9 V

0.750 A33.3 Æ
0.86 s

5.00 kA>m21.04 � 1014 m�31.04 � 108 m�1

0.21 mm>s, 0.53 mm>s0.28 mm>s
26 m

1.9 kA

P3 � 1
2PP2 � 1

2P

P.
P � V2>R.

C �
P0ab

y0

ln(2)

0.100 mF, 16.0 mC

Vf � 100(1 � k) VUf � (1.00 � 104 V2)C1(1 � k)2
U � (2.00 � 104 V2)(1 � k)C1,
Q1 � (200 V)C1 , Q2 � (200 V)kC1,
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63 (a) , (b) , (c) , (d)

65 (a) , (b)

67 (a) , (b) , (c) , (d) ,
(e)

69

71 (b) It would not affect it.

73

75 (a) , (b) The current in both the and the 
resistor in the upper branch is The current in each

resistor in the parallel combination in the lower
branch is The current in the resistor on the
right in the lower branch is 

77

79 (a) , (b) 0, (c)

81 (a) , (b) , (c)

83 (a)

1.00 Æ2.00 V4.00 A

R1 �
R3 � 2R3

2 � 4R2R3

2
R3 �

R1
2

R1 � R2

8 pieces

1.33 A.
6.00-Æ667 mA.

6.00-Æ
667 mA.

12.0-Æ6.00-Æ6.00 Æ
0.45 kÆ

I4 � 3.00 A, I3 � 4.00 A, I6 � 2.00 A

$0.03 per km
57.6 km69.1 MJ576 kC26.7 kW

12.8 h6.9 MJ

84 J1.7 kJ0.23 kW0.24 kW

1 2

r1

R

r2

(b) , (c) Battery 2
supplies Of the that is delivered to battery 1,

goes into recharging battery 1 and is
dissipated by the internal resistance. In addition, is
delivered to the resistor.

85 (a) ,

(b) , (c)

87 For the series combination, the power delivered to the load
is greater if and is greatest when If 
both arrangements provide the same power to the load.
For the parallel combination, the power delivered to the
load is greater if and is a maximum when 

89

91 (a) , (b) , (c) , (d) , (e) ,
(f )

93

95 (a) , (b) , (c) , (d)

97

99 (a) , (b) (c) , (d) ,
(e) , (f )

103 (a) , (b) , (c)

105 (a) , (b)

107 (a) (1) The potential drops across and are equal, so
The current in equals the sum of the currents 

and so is greater than either or 
(b)

109 (a) , (b) , (c)

111 (a) , (b) , (c) 27.6 s210 J>s2.18 � 1013 s�1

3.8 kÆ300 Æ43.9 Æ
I1 � 1.50 A, I2 � 1.00 A, I3 � 0.50 A

I3 .I2I1I3 ,
I2R1I2 
 I3 .

R3R2

0.866 s48.0 mA

I2(t) � (62.5 mA)(1 � e�t>0.750 ms)62.5 mA0.250 A

4.19 mW2.44 mW
6.62 mW1.10 mA1.10 mC>s,5.69 mC

2.18 MÆ
81.2 mC3.00 ms0.200 A600 mC

2.5 Æ
Rmax � 1.67 MÆ

0.435 V2.00 V3.13 V3.33 V3.33 V

Va � Vb � 2.40 V

R � 1
2 r.R 	 r

r � R,R � 2r.R 
 r

Pleft � 8.00 W, Pright � 10.7 WVab � 9.33 V

I4Æ � 0.667 A, I3Æ � 0.889 A, I6Æ � 1.56 A

2.00-Æ
76.2 W

18.0 W216 W
234 W311 W.

I1 � �19.0 A, I2 � 25.1 A, IR � 6.17 A

113
115 (a) , (c) , (d) , (e)

119 (a) , (b)

Chapter 26

1 (b)

3 Because the alternating current running through the
filament is changing direction every the filament
experiences a force that changes direction at the frequency
of the current. Thus, it oscillates at 

5 (a)

9 (a) False, (b) True, (c) True, (d) True

11 According to the principle of relativity, this is equivalent to
the electron moving from right to left at speed with the
magnet stationary. When the electron is directly over the
magnet, the field points directly up, so there is a force
directed out of the page on the electron.

13 You should advise him to develop some
other act. A current of would overheat the wire
(which is a gross understatement).

15 (a) (b) (c) 0, (d)

17

19

21

23

27 (a) , (b) , (c)

29 (a) , (b) , (c)

33 (a) , (b)

35 (a) , (b) , (c)
37
39 (a) , (b)
41

43 (a) , (b) ,
(c)

47 (a) , (b)

49 (a) 0, (b)

51

53 (a) (b) 0, (c) 0, (d)

55 into the page

61

63 (a) , (b)

65 (a) , (b)
67
69 4
71 (a) , (b) , (c)

75 (a) , (b) up the incline

77 (a) (b) The positive end has the lesser 
coordinate, (c)

81 1.0 � 10�28 kg
20 V

y(10 V>m)jn,

aS � g sinu,B � �
mg

IL
tanu

0.12 MeV2.4 � 106 m>s1.3 ms

1.0 mV
1.47 mV3.68 � 10�5 m>s Æ �

psr2B
2m

 sinut � 1
4psr4vB sinu

m � 4
3psR4v

0.38 A # m2,

(0.59 N # m)kn(0.84 N # m)kn,

Bmin �
mg

IpR

2.7 � 10�3 N # m

0.13 N # m0.30 A # m2

fdeuterons � 11 MHz, Kdeuterons � 23 MeV
46 MeV21 MHz

¢t58 � 15.7 ms, ¢t60 � 16.3 ms
2.58 cm63.3 cm

7.37 mm
7.7 eV14 keV1.6 � 106 m>s 24°, 6.3 � 105 m>s24°, 1.3 � 106 m>s L

a
� 2Ld � 2Lp1K

a
� 2Kd � 1Kp2v

a
� 2vd � 1vp

11 MeV4.7 � 107 m>s87 ns

(10 T)in � (10 T)jn � (15 T)kn
1.5 A

�(19 fN)in � (13 fN)jn � (58 fN)kn
0.96 N

(7.5 mN)jn�(7.5 mN)kn,�(3.8 mN)kn,

2000 A
I � 2 � 103 A.

v

60 Hz.

1>60 s,

Req �
R1 � 3R1

2 � 4R1R2

2
Req � a1 � 25

2
bR

2.89 kW60.9 ps1.00 GÆ10.0 ms
0.16 L>s
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Chapter 27

1 Note that, while the two far fields (the fields far from the
dipoles) are the same, the two near fields (the fields near to
the dipoles) are not. At the center of the electric dipole, the
electric field is antiparallel to the direction of the far field
above and below the dipole, and at the center of the
magnetic dipole, the magnetic field is parallel to the
direction of the far field above and below the dipole. It is
especially important to note that while the electric field
lines begin and terminate on electric charges, the magnetic
field lines are continuous, i.e., they form closed loops.

3 (a)
5 Both tell you about the respective fluxes through closed

surfaces. In the electrical case, the flux is proportional to
the net charge enclosed. In the magnetic case, the flux is
always zero because there is no such thing as magnetic charge
(a magnetic monopole). The source of the magnetic field is
NOT the equivalent of electric charge; that is, it is NOT a thing
called magnetic charge, but rather it is moving electric charges.

7 Clockwise
9 (a) True, (b) False, (c) True, (d) True

11 and are diamagnetic is
paramagnetic

13 (a) (b)

(c) (d)

15 (a)

(b)

(c)
17

19
21 (a) , (b)

(c) , (d)

25 (a) (b)

(c) (d)

27 (a) (b)

(c) (d)

29 (a)

(b)
31 (a) Because the currents repel, they are antiparallel.

(b)
33
35 (a) down the page, (b) toward the right
37 (a) , (b)

39 (a) , (b)

41 (a) , (b) 1.6 mT3.3 mT

F
�

�
22 m0I

2

4pa
F
�

�
322 m0I

2

4pa

B
S

(5.0 cm, 0, 0) � �(0.24 mT)jn80 A
4.5 � 10�4 N>m,30 mT,

80 A
39 mA

�(48 mT)kn
(64 mT)jn,

B
S

(9.0 cm) � (0.11 mT)knB
S

(3.0 cm) � �(0.18 mT)kn,

B
S

(0) � �(0.13 mT)kn,B
S

(�3.0 cm) � �(0.18 mT)kn,

B
S

(9.0 cm) � �(160 mT)knB
S

(3.0 cm) � (89 mT)kn,

B
S

(0) � 0B
S

(�3.0 cm) � �(89 mT)kn,

B(0.35 m) � 34 nTB(0.020 m) � 31 mT
B(0.010 m) � 46 mT,B(0) � 54 mT

B
S

(0, 3.0 m, 4.0 m) � �(9.6 pT)in
P0m0v

2

B
S

(3.0 m, 6.0 m) � (4.0 � 10�23 T)kn
B
S

(6.0 m, 4.0 m) � �(3.6 � 10�23 T)kn,

B
S

(2.0 m, 2.0 m) � 0,

B
S

(0, 4.0 m) � (9.0 pT)knB
S

(0, 3.0 m) � (36 pT)kn,

B
S

(0, 1.0 m) � �(36 pT)kn,B
S

(0, 0) � �(9.0 pT)kn,

(xm 
 0).
(xm 	 0); O2N2H2, CO2,

−

+

E

B

B
 (

T
)

1086420 12 14
Bapp (mT)

2.0

1.6

1.2

0.8

0.4

0.0
K

m

0 2000 4000 6000 8000 10000
nI (A/m)

6000

5000

4000

3000

2000

1000

0

45 The direction of the magnetic

field is in the direction of the curled fingers of your right
hand when you grab the cylinder with your right thumb in
the direction of the current.

49 (a) , (b) , (c)

51 (a) , (b)
53 (a) , (b)

55
57

59

5.43 A>m�4.0 � 10�5

Bapp � 10.1 mT, B � 1.5 TB � Bapp � 10.1 mT
B(1.50 cm) � 20.0 mTB(1.10 cm) � 27.3 mT

BR
b �
m0I

2pR
Ba	R	b �

m0I

2pR
R2 � a2

b2 � a2BR	a � 0

Binside � 0, Boutside �
m0I

2pR
.

61
63 (b)

65

67 (a) (b) (c)
69
71 (a) (b) (c) 137
73 (a)

(b)

75 (a) (b)

(c) , (d) Note that the field in the

ferromagnetic region is that which would be produced
in a nonmagnetic region by a current of 
The amperian current on the inside of the surface of
the ferromagnetic material must therefore be

in the direction of 
On the outside surface there must then be an amperian
current of in the opposite direction.1560 A

I .1600 A � 40 A � 1560 A

400I � 1600 A.

(8.00 � 10�6 T # m)
1
r

(3.20 � 10�3 T # m)
1
r

,(8.00 T>m)r,

Km � 90.0, m � 1.13 � 10�4 T # m>A, xm � 89
1.42 � 106 A>m,

1.36 � 106 A>m,12.6 mT,
11.7, 1.48 � 10�5 N>A2

30.2 mT6.96 A>m,30.2 mT,

Bapp �
m0NI

2pa
, B �

m0NI

2pa
� m0M

7.46 � 10�4

1.69mB
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77 out of the page

79 out of the page

81 The and directions are up the page and to the right. 

(a)

(b)

83 into the page

85

7.1 mT,

F
S

net � (0.71 � 10�4 N)in

F
S

right side � �(0.29 � 10�4 N)in,F
S

bottom � (2.5 � 10�5 N)jn,

F
S

left side � (1.0 � 10�4 N)in,F
S

top � �(2.5 � 10�5 N)jn,

�y�x

B
S

P �
m0

2p
I
a

(1 � 22),

B
S

P �
m0I

4
a 1
R1

�
1
R2

b ,

Cell Formula/Content Algebraic Form

B1

B2 5.00
B3

C6

C17
m0

4p
2I
R

10^4*$B$1*2*$B$2*A6>A17

m0

4p
2I
R2

0

R10^4*$B$1*2*$B$2*A6>$B$3^2

r02.55E�03
I

m0

4p
1.00E�07

87 (a) , (b) , (c)
89 (a) , (b) Because Earth’s magnetic field points down

at the north pole, application of the right-hand rule indicates
that the current is clockwise when viewed from above the
north pole.

91
93 (a) and (b) ,

(c)
95

97 (c) Bz � 1
2m0vsa R2 � 2z2

3R2 � z2
� 2zb2.24 A

B(20 cm) � 5.0 mT
B(5.0 cm) � B(10 cm) � 10 mT

3.18 cm

15.5 GA
23.1 kA7.70 � 105 A>m5.24 � 10�2 A # m2

B
 (G

)

0 4 8 12 16 20 24
R (mm)

0

1

2

3

4

1
2
3
4
5
6
7

105
106

A B C
1.00E–07

5
2.55E–03

R(mm)
0.00E+00
2.55E–01

N/A2

A
m

B(T)
0.00E+00
3.92E–01

� /4�=
I=

R0=

R(m)
0.00E+00
2.55E–04

2.52+01
2.55E+01

3.96E–01
3.92E–01

2.52E–02
2.55E–02

Time

Flux
Current

0.0
t1 t2

3.0 4.0 5.0 6.02.01.00.0
t (s)

−1.50

−1.00

−0.50

0.00

Fl
ux

 (W
b)

em
f (

V
)

0.50

1.00

1.50

−1.00

0.00

0.50Flux
emf

−0.50

1.00

Chapter 28

1 (a) Orient the sheet so the normal to the sheet is 
both horizontal and perpendicular to the local 
tangent to the magnetic equator. (b) Orient the sheet 
of paper so the normal to the sheet is perpendicular 
to the direction of the normal described in the answer 
to Part (a).

5 (d)
7 The induced current is clockwise as viewed from the left.

The loops repel each other.
9 (a) and (b)

11 The magnetic field of the falling magnet sets up eddy
currents in the metal tube. The eddy currents establish a
magnetic field that exerts a force on the magnet opposing
its motion; thus the magnet is slowed down. If the tube is
made of a nonconducting material, there are no eddy
currents.

13 (c)

15 (a) False, (b) True, (c) False, (d) True, (e) False

17

19 (a) (b)

21 (a) 0, (b) , (c) 0, (d)

23

25

27 (a) , (b)

29

31 (a)

fm

L
�
m0I

4p

fm � m0nINpR
2
2fm � m0nINpR

2
1

1.68 mWb

fm � �pR2B

12 mWb14 mWb

7 mV>m0.5 V,

um � (8 � 103)ue
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(b) The flux is a minimum when 

(c) The flux is zero when and 
and

33 (a) , (b) , (c)

35

37

39 (a)

400 m>s79.8 mT

628 mV12.6 mA1.26 mC

E(4.0 s) � �0.40 V.
t � 4.0 s; E(0) � 0.40 Vt � 0

t � 2.0 s; V(2.0 s) � 0.

1
2
3
4
5
6
7
8
9

10
11
12

32
33
34
35
36

A B C
2

100
1

I(t)
1.00E+00
7.79E–01
6.07E–01
4.72E–01
3.68E–01
2.87E–01
2.23E–01

H
ohms

A

V(t)
100.00
77.88
60.65
47.24
36.79
28.65
22.31

L=
R=
I0=

t
0.000
0.005
0.010
0.015
0.020
0.025
0.030

1.50E–03
1.17E–03
9.12E–04
7.10E–04
5.53E–04

0.15
0.12
0.09
0.07
0.06

0.130
0.135
0.140
0.145
0.150

8 10 12 14 166420
t, s

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

I, 
m

A I, 
(A

)

0.00 0.03 0.06 0.09
t (s)

0.12 0.15
0.0

0.2

0.4

0.6

0.8

1.0

V
 (V

)

0.00 0.03 0.06 0.09
t (s)

0.12 0.15
0

20

40

60

80

100

8 10 12 14 166420
t, s

−1

0

1

2

3

4

5

6

7

8

9

M
ag

ne
ti

c 
fl

ux
, m

W
b

8 10 12 14 166420
t, s

−2.5

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2.0

2.5

em
f, 

m
V

(b)

41 (a) , (c) 0

45 (a) , (b)

47 (a) , (b)

49

51

57
dUm
dx

�
m0I

2

16p

0.16 mH

L � 0, R � 162 Æ
�1.60 kV24.0 Wb

486 rev>s14 V

Fm �
B�

R
(E � B�v)

Cell Content/Formula Algebraic Form

B1 2.0
B2 100
B3 1
A6 0

B6 I0 e
�
R
L t$B$3*EXP((�$B$2>$B$1)*A6)

t0

I0

R

L

59 (a)

(b)

(c)

(d)

61 (a) , (b) , (c)

63 (a) , (b) , (c) , (d)

65 (a) , (b)

(c)

V2-H � 100 VI10-Æ � I2-H � 1.0 A, I100-Æ � 0

0.123 ms80.0 mA1.50 kA>s3.00 kA>s 3.62 W40.4 W44.1 W

I � 10.8 A, dI>dt � 3.38 kA>sI � 7.90 A, dI>dt � 9.20 kA>s,

I � 2.27 A, dI>dt � 20.5 kA>s,

I � 0, dI>dt � 25.0 kA>s,



67 (a) (b)

69 (a) (b) (c)

71 (b)

75

77 (a) As the magnet passes through a loop it induces an emf
because of the changing flux through the loop. This allows
the coil to “sense” when the magnet is passing through it.
(b) One cannot use a cylinder made of conductive material
because eddy currents induced in it by a falling magnet
would slow the magnet. (c) As the magnet approaches the
loop the flux increases, resulting in the negative voltage
signal of increasing magnitude. When the magnet is
passing a loop, the flux reaches a maximum value and then
decreases, so the induced emf becomes zero and then
positive. The instant at which the induced emf is zero is the
instant at which the magnet is at the center of the loop.

(d)

0.28 H

2.50 krad>s 1.92 J1.61 J,3.53 J,

35 mH88 ms,
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y 
(m

)

0.20
t (s)

y = 4.9257t2 + 1.3931t + 0.0883

0.30 0.400.100.00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Q
 (m

C
)

I (
m

A
)

0 2 4

Charge
Current

6
t (s)

8 10
−1.2

−0.6

0.0

0.6

1.2

−1.2

−0.6

0.0

0.6

1.2

79 (a) , 

(b)

Chapter 29

1
3 (b)
5 (c)
7 Yes to both questions. (a) While the magnitude of the

charge is accumulating on either plate of the capacitor, the
capacitor absorbs power from the generator. (b) When the
magnitude of the charge is on either plate of the capacitor is
decreasing, it supplies power to the generator.

9 (a)
11 (a)
13 (a) False, (b) False, (c) True, (d) True, (e) True, (f ) True
15 (a) True, (b) False, (c) True
17 (a) False, (b) True, (c) True, (d) True, (e) True, (f ) True
19 (a) , (b) , (c)
21 (a) , (b) , (c)
23
25 (a) , (b)
27 (a) , (b) , (c)
29 (a) , (b) 88 mH1.3 ms

I � (0.34 A)cos(vt � 0.17 rad)0.35 A0.35 A
18 mA25 mA

1.6 kHz
37.7 Æ3.77 Æ0.38 Æ
200 W1.18 A0.833 A

8.33 ms

Er � �
m0nR

2I0v

2r
 cosvt r 
 R

Er � �1
2 rm0nI0v cosvt r 	 R

g � 9.85 m>s2

31 (a) (b) (c)

33 (a)

0.67 A0.71 kHz,2.3 mJ,

35
37 (a) , (b) , (c) , (d) Because the circuit is

inductive, the current lags the voltage. (e)
39
41 (a) , 

(b) , 

(c) , (d)
43

45 (a) , (b) , (c)

(d) For very low driving frequencies, and so 
effectively lags by For very high driving
frequencies, and so is effectively in phase
with

51 (b) Note that, as This makes sense
physically in that, for low frequencies, is large and,
therefore, a larger peak voltage will appear across it than
appears across it for high frequencies. Note further that,
as This makes sense physically in that,
for high frequencies, is small and, therefore, a smaller
peak voltage will appear across it than appears across it
for low frequencies.

53

XC

vS , VL S 0.

XC

vS 0, VL S Vpeak .
V
S

in .
V
S

RXC V R
90°.V

S

in

V
S

CXC W R

dS 0,dS �90°d � tan�1 c� 1
vRC

d60 V
80.0%50.2%

Irms � 3.28 A, IRL rms � 2.94 A, IL rms � 1.46 A

Irms � 6.23 A, IRL rms � 2.80 A, IL rms � 5.53 A
0.397

71°
0.20 H27 Æ0.33

29.2 mH

Cell Formula/Content Algebraic Form

d in degreesC8*180>PI()D8
tan�1(2pfRC)ATAN(2*PI()*A8*1000*$B$1*$B$2)C8

1000*$B$1*$B$2)^2))

Vin peak

41 � (2pfRC)2
$B$3>SQRT(1�((2*PI()*A8*B8

Vin peak1B3
C5.00E�09B2
R2.00E�03B1

1
2
3
4
5
6
7
8

56
57

A B C
R =
C =

Vin peak =

f(kHz)
0
1

1.00E+04
5.00E–09

1

Vout

1.000
0.954

ohms
F
V

!(rad)
0.000
0.304

!(deg)
0.0
17.4

0.065
0.064

49
50

1.506
1.507

86.3
86.4

D
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(c)

55 (b)

57

59 (a)

where , (b)

(c)

where 

61 (a) , (b)

65 (a) , (b) , (c)

67 (a) , (b) , (c) , (d)

69 (a) , (b) , (c) , (d) , (e)

71 (a)

0.18 kV0.11 kV0.17 kV78 V80 V

0.13 kV0.33 mF53°10 A

0.2780 Hz14

f(x) �
70 MHz

41 � (4.0 m�1)x
5.4 fF

U � 4.9 mJ

v � 1250 rad>s,Ue(t) � (4.9 mJ)cos2avt �
p

4
b ,

Um(t) � (4.9 mJ)sin2avt �
p

4
b ,

23 mF,v � 1250 rad>sI(t) � �(19 mA)sinavt �
p

4
b ,

33 mF

¢v �
R
L

V
L,

 V

0 10 20 30
f , kHz

40 50
0.0

0.2

0.4

0.6

0.8

1.0

d
, d

eg

0 10 20 30 40 50
f , kHz

0

30

60

90

v

R

Z

v

R

Z

v

R

Z

(b)

73 (a) (b) (c) If the current
leads the emf, the reactance is capacitive.

79 (a) 1:5, (b)

81 (a) (b)

83

85 (a) (b)

87

Chapter 30

1 (a) False, (b) True, (c) True, (d) False

3 (a) False, (b) True, (c) True, (d) True

5 (a) (1) X-rays, (2) green light, (3) red light, (b) (1) microwaves,
(2) green light, (3) ultraviolet light.

7 (a) The electric dipole antenna should be oriented 
vertically. (b) The loop antenna and the electric dipole
transmitting antenna should be in the same vertical 
plane.

9 (d)

11 (d)

13

15 (a)

19 (a) , (b)

(c)

21

23 (a) , (b) Consulting 
Table 30-1, we see that the color of light that has a
wavelength of is yellow-green. This result is
consistent with those of Problem 21 and is close to the
wavelength of the peak output of the Sun. Because we 
see naturally by reflected sunlight, this result is not
surprising.

25 (a) , (b)

27

29

31 (a) , (b) , (c) , (d)

33 (a) , (b)

35 (a) , (b)

37 (a) direction, (b) , 

(c)

where k � 10.0 rad>m and v � 3.00 � 109 rad>s.

B
S

(x, t) � (647 nT)cos[kx � vt]kn,

E
S

(x, t) � (194 V>m)cos[kx � vt]jn,

l � 0.628 m, f � 477 MHz�x

5.7°45°

80 nN40 nN

708 nPa212 W>m2943 nT283 V>m386 nW>m2

4.13 mW>m2

7.1 m30°

550 nm

5.45 � 1014 Hz.3.00 � 1018 Hz

580 nm, 5.17 � 1014 Hz
ACB

S # d�
S

� 0.79 mT # m

dE
dt

� 2.3 � 1012 V>m # s,10 A

3.4 � 1014 V>m # s

2 � 10�7

Imax � 1.06 A, Imin � �0.06 A, Iav � 0.50 A, Irms � 0.64 A

8.5 V12 V,

3.33 � 103

191.5 A,

50 A

R �  7.2 Æ, X � 10 Æ,Z � 12 Æ,



31 (a) , (b) , (c)

33 (a) , (b)

37 wide, deep

39

41

43

45

47 (a) , (b) Yes, if , where is the angle of
incidence for the rays in glass that are incident on the 
glass-water boundary, the rays will leave the glass through
the water and pass into the air.

49

51 (a) , (b)

53 (a) (b)

55 (a) , (b)

57 I3 � 1
8 I0 sin2 2vt

1.730°

3
32 I0

1
8 I0,

56.3°53.1°

1.0°

uu � 41.8°62.5°

5°

1.30

1.0 � 102 m2

48.8°

2.2 m5.1 m

99%92%

26°39°50°

39

41 (a)

(b)

(c) Mars

47

49 (a)

(b)

(c)

51 (a)

(b)

(c)

53 (a) (b) (c)

55 (a) where is a unit vector in the direction of

the current. (b) where is a unit vector 

perpendicular to and tangent to the surface of the
conducting cylinder.

(c) where is a unit vector directed radially

outward—away from the axis of the conducting cylinder.
(d)

57 (a) (b) The critical radius is an upper limit and so
particles smaller than that radius will be blown out.

59

Chapter 31

1 (c)

3 (b)

5 The decrease in the index of refraction n of the atmosphere
with altitude results in refraction of the light from the Sun,
bending it toward the normal to the surfaces on constant n
(that is, toward the Earth). Consequently the Sun can be
seen even after it is just below the horizon.

7 The path of least time is the path through point D.

9 In resonance absorption, the molecules respond to the
frequency of the light through the Einstein photon relation

Neither the wavelength nor the frequency of the
light within the eyeball depend on the index of refraction of
the medium outside the eyeball. Thus, the color appears to

E � hf.

3.34 mN

574 nm

�Sn dA � I2R

rnS
S

� �
I2r

2p2a3 rn,

in

UnB
S

�
m0I

2pa
Un,

inE
S

�
Ir

pa2 in,

5.49 mV101 mV,9.16 � 10�15 T,

S
S

av �
1

2m0c
[E2

10 � E2
20]in

S
S

(x, t) �
1
m0c

[E2
10 cos2(k1x � v1t) � E2

20 cos2(k2x � v2t � d)]in,

S
S

av �
1

2m0c
[E2

10 � E2
20]in

cos(k2x � v2t � d) � E2
20 cos2(k2x � v2t � d)]in

S
S

(x, t) �
1
m0c

[E2
10 cos2(k1x � v1t) � 2E10E20 cos(k1x � v1t)

d � tan�1aRvP0pa
2

d
b

B(r) �
m0V0

2pr
a 1
R

 sinvt � v
P0pr

2

d
 cosvtb ,

I � V0a 1
R

 sinvt �
P0pa

2

d
 cosvtb ,

2.6 mV

Fr Mars � 7.18 � 107 N, Fr Mars � (4.27 � 10�14)Fg, Mars,

Fr Earth � 5.83 � 108 N, Fr Earth � (1.65 � 10�14)Fg Earth,

6.10 degrees be the same in spite of the fact that the wavelength has
changed.

11
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θ

Smooth surface

Polaroid
sunglasses

Light from the Sun

r

θP θP

13 (c)

15 The population inversion between the state and the
state below it (see Figure 31-51) is achieved by
inelastic collisions between neon atoms and helium atoms
excited to the state 

17 (d)

19

21 (a) 2:00 a.m., September 1, (b) 2:08 a.m., September 1

23 (a)

25

29

14 ms

3 ps

E2 He .

1.96 eV
E2 Ne

(a) speed (b) wavelength (c) frequency
(m/s) (nm) (Hz)

air

water

glass 4.74 � 10144222.00 � 108

4.74 � 10144762.25 � 108

4.74 � 10146333.00 � 108
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The optimum number of sheets is 11.
61 (a) (b) For the single sheet between the two end

sheets at The intensity with four sheets
at angles of , , and is greater than the intensity
of three sheets at angles of , and by a factor of 1.69.

63 (a) right circularly polarized,
(b)

65 (a) (b)
67 (a)

(b)
69 (a) , (b)
71
73 (a) , (b)
75 (a) , (b) , (c)
77

79 (b)

81 (a) (b) (c) Because is also the angle of
incidence at the liquid–air interface and because it is equal
to the critical angle for total internal reflection at this
interface, no light will emerge into the air.

83 (c)

Chapter 32

1 Yes. Note that a virtual image is “seen” because the eye
focuses the diverging rays to form a real image on the
retina. For example, you can photograph the virtual image
of yourself in a flat mirror and get a perfectly good picture.

3 (a) False, (b) False, (c) True, (d) False
5 (a) The mirror will produce an upright image for all object

distances.
(b) The mirror will produce a virtual image for all object
distances.
(c) The mirror will produce an image that is smaller than
the object for all object distances.
(d) The mirror will never produce an enlarged image.

7 (b)
9 (d)

11 (a)
13 The muscles in the eye change the thickness of the lens and

thereby change the focal length of the lens to accommodate
objects at different distances. A camera lens, on the other
hand, has a fixed focal length so that focusing is

1.67°

48.6°48.6°.37.2°,1.33,

up 	 uc

up quartz � 57.0°, up silicate crown � 56.5°
up silicate flint � 58.3°, up borate flint � 57.5°,

26.6°26.6°x � �1.00 m
38.7°36.8°

37°
5.2 � 101615 mJ

l1S0 � 588 nm, l3S1 � 554 nm
lmax � 388 nm, l2S1 � 1140 nm, l1S0 � 588 nm,

1210 nm435 nm
E
S

� E0 sin(kx � vt)jn � E0 cos(kx � vt)kn

90°45°0°
90°60°30°0°

u � 45°, I3 � 0.125I0 .
I4 � 0.211I0,

1050 15 20
Number of sheets (N )

I/
I 0

0.0

0.2

0.4

0.6

0.8

1.0

Ideal polarizer

Real polarizer
Percent transmission

59 accomplished by varying the distance between the lens and
the light-sensitive surface.

15 The objective lens of a microscope ordinarily produces an
image that is larger than the object being viewed (see
Figure 32-52), and that image is angularly magnified by the
eyepiece. The objective lens of a telescope, on the other
hand, ordinarily produces an image that is smaller than the
object being viewed (see Figure 32-53), and that image is
angularly magnified by the eyepiece. The telescope never
produces a real image that is larger than the object.

17

19

1
2REarth

21 (a)

(b)

Image

Source
Eye 1

2

Virtual image

Virtual image Virtual image

P

Virtual image

Virtual image

P

Virtual image

Virtual image
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(c)

23 (a) For the mirror on the left, the location of the images to
be , , , and behind the mirror on
the left.
(b) For the mirror on the right, the location of the images to
be , , , and behind the mirror on
the right.
(c) The successive images are dimmer because the 
light travels farther to form them. The intensity falls of
inversely with the square of the distance the light travels. 
In addition, at each reflection a small percentage of the 
light intensity is lost. Real mirrors are not 100% 
reflecting.

25 (a)
(b)

27 (a)

(b) 0.18, 0.33, 0.50, 0.60

29 (a) concave, (b)

31 The 3.7-cm-diameter image is 4.0 m in front of the mirror.

33 (a) , (b) convex

35 (a) , (b) 27 cms� � �8.6 cm

�1.3 m

5.1 cm

�9.9 cm, �8.0 cm, �6.0 cm, �4.8 cm,

�0.28, �1.0, undefined, 3.0
15 cm, 24 cm, undefined, �0.2 m,

100 cm80 cm40 cm20 cm

110 cm70 cm50 cm10 cm

Virtual image

P

Virtual image

(b) virtuals� � �8.29 cm,

(c) reals� � 64 cm,

39 (a) (b) (c) The final image is inside the rod
and from the surface whose radius of curvature is

and is virtual.

41 (a) (b) from the lens and on the same side of
the lens as the object, (c) 0.27, (d) virtual and upright

22 cm�30 cm,

8.00 cm
0.2 m

�0.8 m,0.6 m,

37 (a) virtuals� � �104 cm,

(b) 30 cm

(c) �15 cm

(d) �52 cm

43 (a) 19 cm

Water
n1 = 1.33

P' P

Glass
n2 = 1.68

c

Water
n1 = 1.33

Glass
n

2 = 1.68

P' P c

Water
n1 = 1.33

Glass
n

2 = 1.50

c
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(c) Because , the image
is virtual. Because the image is erect and
about one-third the size of the object. These results are
consistent with those obtained graphically.

y� � 1.00 cm,
s� 	 0s� � �6.67 cm, y� � 1.00 cm.

F

F'

F

F'

F'F

r1

r2

F1 F2

F'1
F'2

4 6 820 10 12
s (cm)

−110

12.0

10.0

8.0

6.0

4.0

2.0

0.0

−90

−70

−50

−30

−10

10

s'
s'

(c
m

)

mm

Lens 1 Lens 2

F'2F'1F1 F2

r1

r1

r2

45 (a) Because the image
is real and because the image is inverted
and diminished. These results confirm those obtained
graphically. However, this ray diagram is not to scale.

y�>y � �0.67 cm,
s� 
 0,s� � 16.7 cm, y� � �2.00 cm.

(b) Because the image is
real. Because the image is inverted and the
same size as the object. These results confirm those
obtained from the ray diagram.

y� � �3.00 cm,
s� 
 0s� � 20.0 cm, y� � �3.00 cm.

47 r1 � �16.2 cm, r2 � ,

r1 � �32.4 cm, r2 � 32.4 cm,

r1 � �5.40 cm, r2 � �8.10 cm

49 (a) The final image is to the right of the object.85 cm

(b) Because , the image is real, and because 
the image is erect and twice the size of the object.

(c) 2.0

51 (b)

53 (a) and (b)

3.70 m

m1m2 � 2.0,
m �sœ2 
 0

(c) The images are virtual and erect for this range of object
distances.
(d) The equation for the vertical asymptote of the graph of 
versus is This indicates, that as the object moves
toward the second focal point, the magnitude of the image
distance becomes large without limit. The equation for the
vertical asymptote of the graph of versus is This
indicates, that as the object moves toward the second focal
point, the image becomes the large without limit. In
addition, as approaches zero approaches negative
infinity and approaches 1, so as the object moves toward
the lens the image becomes the same size as the object and
the magnitude of the image distance increases without limit.

55 (a) The final image is
from the object, virtual, erect, and the same size as

the object.

(b)

20 cm
sœ2 � f2 � 15.0 cm, m � m2 � 1.00.

m
s�s

s � f.sm

s � f.s
s�



95

97 (a) to the right of the second lens. (b) About 20%
larger than the object and is inverted.

(c)

9.5 cm

3.7 m

A-42 | Answers to Odd-Numbered End-of-Chapter Problems

59 (a) The final image is to the right of the second lens.
(b) (c) Because the image is inverted. Because

the image is real.

61 Reasons for the preference for reflectors include: (1) no
chromatic aberrations, (2) less expensive to shape one side of
a piece of glass than to shape both sides, (3) reflectors can be
more easily supported from rear instead of edges, preventing
sagging and focal length changes, and (4) support from rear
makes larger sizes easier to handle.

63

65 (a) (b)

67 (c)

69 (c)

71

73

75 5.0

77 (a) 3.0, (b) 4.0

79 (a) (b)

81

83 (a) (b) (c)

85 (a) (b)

87 (b)

�134025.0,

M � �20.00.180 mrad,9.00 mm,

�230

�1.9 � 102�19,

3.1 D

0.444 D

6.0 D

Pmin � 40.0 D, A � 4.00 D

1.60 mm80.0 mrad

�1.77 mm

sœ2 
 0,
m 	 0,�1.53
18.7 cm

Image formed by
objective lens

Final image

F1 h

F'1 F2θ0

θe

F F'1

F

F'

Objective

Eyepiece

1

F2

F'1

2

F1 F'2

4 1

3 2

F

F' C

89

91 (a) s � 5.0 cm, s� � �10 cm

�6.67 � 10�3

(b) s � 15 cm, s� � 30 cm

93 (a) The lens that has a focal length of should be the
objective. The two lenses should be separated by 
The angular magnification is 

(b)

�21.
210 mm.

25 mm

99

101 (a) from the lens, on the same side as the original
object. (b) real and upright, (c) To see this image the eye
must be to the left of image 4.

18 cm

9.72 cm>s

103

105 (a) The final image is to the left of the center of 
the ball. (b) Because is undefined, no image is formed
when the object is to the left of the glass ball.
(Alternatively, an image is formed an infinite distance to
the left of the ball.)

20.0 cm
sœ1

13.2 cm

37 cm
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Chapter 33

1 (a)

3 The thickness of the air space between the flat glass and the
lens is approximately proportional to the square of the
diameter of the ring. Consequently, the separation between
adjacent rings is proportional to 

5 Colors are observed when the light reflected from the front
and back surfaces of the film interfere destructively for some
wavelengths and constructively for other wavelengths. For
this interference to occur, the phase difference between the
light reflected from the front and back surfaces of the film
must be constant. This means that twice the thickness of the
film must be less than the coherence length of the light. The
film is called a thin film if twice its thickness is less than the
coherence length of the light.

7 (d)

9 (a)

11 (a)

13 (a)

15 (a) False, (b) True, (c) True, (d) True, (e) True

17 The condition for the resolution of the two sources is given
by Rayleigh’s criterion: (Equation 33-25),
where is the critical angular separation, is the diameter
of the aperture, and is the wavelength of the light
illuminating (or emitted by) the objects, in this case
headlights, to be resolved. Because the diameter of the
pupils of your eyes are larger at night, the critical angle is
smaller at night, which means that at night you can resolve
the light as coming from two distinct sources when they are
at a greater distance. 

19 (a) , (b)

21

23

25

27 (a) , (b) and ,
(c) and 

29

31 (c) 68, (d) (e) The fringes would become more
closely spaced.

33

35

37 (a) (b) Not with the unaided eye. The separation is
too small to be observed with the naked eye. (c) 0.500 mm

50.0 mm,

4.95 mm

0.535 mm, 0.926 mm

1.14 cm

476 nm

400 nm720 nm, 514 nm,
400 nm720 nm, 514 nm,600 nm

5.5 mm 	 d 	 5.8 mm

�2.9 rad

5.9 c # y

9.6 km11 km

l

Dac

ac � 1.22l>D

1>d. d,

39 and

41 (a) , (b) , (c)

43 (a)

45 (a) , (b) 9

47 8

49

51

53 (b) The width for four sources is half the width for
two sources.

55 (a)

6.00 mm.

I>I0 � 0.0162

E
S

� 3.6 A0 sin(vt � 0.98 rad)in

20.0 mm

1.53 km

60 mrad6.0 mrad0.60 mrad

417 nm625 nm

R = A0

A0

A0

A0

δ

δ

(b)

57 (a) (b)

59

61

63 (a) , (b)

65

67 One can see the complete spectrum for only the first 
and second order spectra. That is, only for 
Because there is no overlap of the
second-order spectrum into the first-order spectrum;
however, there is overlap of long wavelengths in the 
second order with short wavelengths in the third-order
spectrum.

69 (a) , (b) , (c) 8000

71

73 (a) , (b)

75

77

79 (a) , (b)

81

85 (a) , (b) No, because is not in the visible
portion of the spectrum. (c) 0.273

87 12 m

180 nm97.8 nm

0.13 mrad

3.33 m�115.1 cm

3.6°, 2.5°

3.5 mm

32.1°fm �
1
2

 sin�1am
l

d
b3.09 � 105, 5.14 � 104 cm�1

88.4 mm36.4 cm, 80.1 cm

700 nm 	 2 � 400 nm,
m � 1 and 2.

30.0°

709 mrad, 662 mrad86.9 mrad, 82.1 mrad

5.00 � 109 m

7.00 mm

6.83 cm8.54 mrad,

5.56 mW>m2



37

39

41 (a) E1 � 205 MeV, E2 � 818 MeV, E3 � 1.84 GeV

4.6 pm

0.17 nm

0

7 × 10−20

6 × 10−20

5 × 10−20

4 × 10−20

3 × 10−20

2 × 10−20

1 × 10−20

f (Hz)
5.6 × 10145.4 × 10145.2 × 10145.0 × 10144.8 × 10144.6 × 1014

K
m

ax
(J

)

Kmax = af + b

a = 6.19 × 10−34 J•s

b = −2.83 × 10−19 J

(b) 1.77 eV (c) cesium

15 (a) , (b)

17 (a) , (b)

19

21 (a) , (b) , (c) , (d)

23 (a) 653 nm, , (b) , (c)

25 1.2 pm

27 0.18 nm

29

31 2.9 nm

33 (a)

(b)

35 20.2 fm

le � 3.17 pm, lp � 73.9 fm, l
a

� 37.0 fm

p
a

� 8.97 � 10�21 N # s

pe � 2.09 � 10�22 N # s, pp � 8.97 � 10�21 N # s,

9.32 � 10�24 kg # m>s, 1.80 � 10�23 kg # m>s

1.64 eV3.06 eV4.58 � 1014 Hz

590 nm0.78 eV2.10 eV4.13 eV

1.95 � 1016 s�1

1.24 GeV12.4 keV

3.72 � 10�9 eV4.14 � 10�7 eV

Chapter 34

1 (c)

3 (a)

5 (a) True, (b) True, (c) True

7 (c)

9 According to quantum theory, the average value of many
measurements of the same quantity will yield the
expectation value of that quantity. However, any single
measurement may differ from the expectation value.

11

13 (a)

2.48 pm, 2%

En/E1

0
1
4

9

16

25 5

n

4

3

2
1

(b) ,

(c) ,

(d)

43 (a) 0, (b) 1, (c) 0.002

45 (a) L/2, (b)

47 (a) , (b) 0.865

49 (a) 0.500, (b) 0.402, (c) 0.750

51 (b) For large values of n, the result agrees with the classical
value of given in Problem 50.

53

55 (a) , (b) , (c)

57 (a) 1 , (b)

59

61

63 (a) , (b)

67 The energy of the most energetic electron is
approximately 2.5 times the rest energy of an electron.

69

71 (b) 0.2% (c) Classically, the energy is continuous. For very
large values of n, the energy difference between adjacent
levels is infinitesimal.

73 (a) , (b) 53 min6.2 � 10�4 eV>s

1.04 eV, 554 nm

1.3 MeV.

3 � 10492 mW>m2

7 � 103 km

0.2 keV

2 � 1011mm, 10�16 kg # m>s 2.08 � 10166.24 � 1016 eV3.10 eV

8x9 � 0, 8x29 � L2 c 1
12

�
1

2p2 d
L2>3

1>22

0.321L2

l3S1 � 0.758 fm

l3S2 � 1.21 fm

l2S1 � 2.02 fm
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(b) (1, 1, 4) and (1, 2, 2)

(c)

21 (a)

(b)

(c) (1, 2) and (2, 1)

(d) (1, 7), (7, 1), and (5, 5)

23

29

31 (b)

35

Chapter 36

1 Examination of Figure 36-4 indicates that as n increases,
the spacing of adjacent energy levels decreases.

3 (a)

5 (d)

A2 �
4B

8mv0

h

8x29 �
2
L
a L3

24
�
L3

4n2p2 cosnpb
E0 �

5h2

mL2, E1 � E2 �
21h2

4mL2

E110 bosons �
5h2

4mL2

Enm �
h2

8mL2 an2 � m2b
c(x,y) � A sin

np
L
x sin

mp
L
y

c(1, 1, 4) � A sin a p
L1

xb  sin a p
2L1

yb  sin a p
L1

zb9 (a) , (b)

11

13 (b)

¢x¢p �
U
2

4.1 meV9.5 nm

15 (a) , (b)

17 (a)

(b)

19 (a)

T4.0 MeV � 10�51, T7.0 MeV � 10�38

r1 4.0 MeV � 66 fm, r1 7.0 MeV � 38 fm

10�210�17

Chapter 35

1 (a)

0 L

5Ψ

x

(b)

0

5
2Ψ

L
x

1
2
3
4
5

A

18
19
20
21
22

B C
R

1.000
0.298
0.298
0.149

T
0.000
0.702
0.802
0.851

�

1.0
1.2
1.4
1.6

0.036
0.034
0.032
0.031
0.029

0.964
0.966
0.968
0.969
0.971

4.2
4.4
4.6
4.8
5.0

R
T

54321
α

0.0

0.2

0.4

0.6

0.8

1.0

Cell Content/Formula Algebraic Form

A2 1.0

B2 (1�SQRT((A2�1)>A2))> a

n1 1 1 1 1 1 1 1 1 1 1

n2 1 1 1 2 1 2 2 1 2 3

n3 1 2 3 1 4 2 3 5 4 1

E 21 24 29 33 36 36 41 45 48 53

C2

1 � ±1 � Aa � 1
a

1 � Aa � 1
a

≤ 21 � B2

± 1 � Aa � 1
a

1 � Aa � 1
a

≤ 2

(1�SQRT((A2�1)>A2))2



37 (a) 4

(b)

z

m� = 1

m� = −1

m� = 0

7 (a)

9 The energy of a bound isolated system that consists of
two oppositely charged particles, such as an electron and
a proton, depends only upon the principle quantum number
n. For sodium, which consists of 12 charged particles, the
energy of an n � 3 electron depends upon the degree to
which the wave function of the electron penetrates the n � 1
and n � 2 electron shells. An electron in a 3s (n � 3, � � 0)
state penetrates these shells to a greater degree than does an
electron in a 3p (n � 3, � � 1) state, so a 3s electron has less
energy (is more tightly bound) than is a 3p electron. In
hydrogen, however, the wave function of an electron in the
n � 3 shell cannot penetrate any other electron shells
because no other electron shells exist. Thus, an electron in
the 3s state in hydrogen has the same energy as an electron
in the 3p state in hydrogen. 

11 In conformity with the exclusion principle, the total
number of electrons that can be accommodated in states of
quantum number n is (see Problem 48). The fact that

closed shells correspond to electrons indicates that
there is another quantum number that can have two
possible values.

13 (a) phosphorus, (b) chromium

15 (d)

17 The optical spectrum of any atom is due to the
configuration of its outer-shell electrons. Ionizing the next
atom in the periodic table gives you an ion with the same
number of outer-shell electrons, and almost the same
nuclear charge. Hence, the spectra should be very similar.

21 (a) , (b) , (c)

23 (a) , (b)

25 (a)
(b)

---|--------------|--------------------------------------|-----

1100 nm 1280 nm 1880 nm

27 (b) and 
agree to three significant figures.

(c) 0.0545%

29 (a) , (b)

(c)

�1, 0, �11.49 � 10�34 J # s

RH approx1.096850 � 107 m�1, 1.097448 � 107 m�1, RH

4 S 35 S 36 S 3

0.661 eV, 1880 nm, 0.967 eV, 1280 nm, 1.13 eV, 1100 nm
1.51 eV, 821 nm

97.3 nm103 nm

5.08 � 104103105

2n2

n2

5
2

S

S

LL

J

J

j � �
7
2

j � �

39 (a) , (b)

(c)

41 (a) , (b) 0

47 0.323

49

51

� � 0 or 1

9.20 � 10�4

P(a0) �
0.0460
a0

Cc200(a0) D 2 �
0.00366
a3

0

c200(a0) �
0.0605
a3>2

0

31 (a) 0, 1, 2, (b) For For 

For (c) 18

33 (a) , (b) , (c)

35 (a) , (b) , (c) 2U24U26U2

8.05°26.6°45.0°

� � 2, m� � �2, �1, 0, �1, �2.

� � 1, m� � �1, 0, �1.� � 0, m� � 0.

n

2 0 0 (2, 0, 0)

2 1 �1 (2, 1, �1)

2 1 0 (2, 1, 0)

2 1 1 (2, 1, 1)

(n, �, m�)m��

53 (c)

55 (a) , (b)

57 (a) or , (b) , (c)

59 (a) , (b)

61 (a) , (b)

63

65

ni � 4 to nf � 1

0.155 nm1.00 nm

0.0542 nm0.0610 nm, 0.0578 nm

1s2s1s22s22p63p2p2s

Lz � �3U, �2U, �U, 0, U, 2U, 3ULz � �2U, �U, 0, U, 2U

164 3 2
230.6 9 3
541 7 4

n fn il, nm

67 (a) , (b) , (c)

(b) No

71 (a) , (b) microwave

73 (a) , (b) 0.179 nm

75 (a) , (b) 0.0600 nm, (c) 0.238 nm

Chapter 37 

1 Because the center of charge of the positive does not
coincide with the center of charge for the negative 
the has a permanent dipole moment. Hence,
it is a polar molecule.

NaCl molecule
Cl ion,

Na ion

1.097074 � 107 m�1

1.097075 � 107 m�1

28.4 cm,1.06 GHz

63.0 T0.00730 eV1.6179 eV, 1.6106 eV
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3 Neon occurs naturally as Ne, not Neon is a noble gas.
Atoms of noble gases have a closed shell electron
configuration.

5 The diagram would consist of a nonbonding ground state
with no vibrational or rotational states for (similar to
the upper curve in Figure 37-4) but for there should be
a bonding excited state with a definite minimum with
respect to internuclear separation and several vibrational
states as in the excited state curve of Figure 37-13.

7 The effective force constant from Example 37-4 is
This value is about 25% larger than the

given value of the force constant of the suspension springs
on a typical automobile.

9 For the concentration of negative charge between the
two protons holds the protons together. In the 
there is only one electron that is shared by the two positive
charges such that most of the electronic charge is again
between the two protons. However, in the the
negative charge between the protons is not as effective as
the larger negative charge between them in the 
molecule, and the protons should be farther apart.
The experimental values support this argument. For

while for 

11 For more than two atoms in the molecule, there will
be more than just one frequency of vibration because
more relative motions are possible. In advanced 
mechanics, these are known as normal modes 
of vibration.

13

15

17

19 You should agree. The potential energy curve is shown in
the following diagram. The turning points for vibrations
of energy and are at the values of r where the
energies equal The average value of r for the
vibrational levels and are labeled and Note
that the estimate of is force midway between and

The potential is like a special spring that has a
greater force constant for compressions than it has for
extensions. The period of a spring-and-mass oscillator is
inversely proportional to the square root of the spring
constant, so our “special spring” spends more time in
extension than in compression. As a result, will be
greater than the equilibrium radius. This argument can be
extended to explain why is greater than It is
because the “force constant” for extension, which can be
estimated by taking the average slope of the potential
energy curve in the region to the right of the equilibrium
position, is greater for than for It is also
because the “force constant” for compression is greater for

than for It follows that is greater than
Because is greater than it follows that as the

vibrational energy of a diatomic molecule increases, the
average separation of the atoms of the molecule increases
and, hence, the solid expands with heating.

r1 av ,r2 avr1 av.
r2 avE � E1.E � E2

E � E1.E � E2

r1 av.r2 av

r1 av

r1 max.
r1 minr1 av

r2 av.r1 avE2E1

U(r).
E2E1

0.44 eV

0.947 nm

� � 2 � 1030, E0r � 5 � 10�65 J

H�
2 , r0 � 0.106 nm.H2 , r0 � 0.074 nm,

H2

H�
2  ion

H�
2  ion,

H2,

1.85 � 103 N>m.

ArF*
ArF

Ne2.

21 (a) , (b) , (c)

23

25 41

27

29 (a) , (b) , (c)

31 (a)

(b)

1.45 � 10�46 kg # m2, 0.239 meV

0.1 nm3 � 10�47 kg # m20.179 eV

5.6 meV

0.121 nm

Urep � 0.63 eVEd calc � 5.70 eVUe � �6.64 eV

r1av r2av

U (r)

r

E2

E1

0

(c)

33

in fair agreement (about

20% difference) with the calculated result. Note that 
is difficult to determine precisely from Figure 37-17.

35

37

39

41

43 (a)

(b) 98.2 kcal>mol

1 eV
molecule

� 23.0 kcal>mol

Fx � �
dU
dx

�
1
x4

r0 � a, Umin � � U0 , r0 � 0.074 nm, U0 � 4.52 eV

1.55 kN>m0.955 meV

¢f

¢m
m

� 0.00150, ¢f>f � 0.0012,

mH35Cl � 0.972 u, mH37Cl � 0.974 u,

l43 � 650 mm, l54 � 520 mm, microwave

l10 � 2600 mm, l21 � 1300 mm, l32 � 867 mm,

¢E21 � 1.25 meV, ¢E10 � 0.476 meV

¢E54 � 2.38 meV, ¢E43 � 1.90 meV, ¢E32 � 1.43 meV,

� = 5, E = 7.14 meV

� = 4, E = 4.76 meV

� = 3, E = 2.86 meV

� = 2, E = 1.43 meV

� = 1, E = 0.476 meV
� = 0, E = 0



Chapter 38

1 The energy lost by the electrons in collision with the ions of
the crystal lattice appears as thermal energy throughout the
crystal.

3 (a) potassium and nickel (b) 3.1 V
5 The resistivity of brass at 4 K is almost entirely due to the

residual resistance (the resistance due to impurities and
other imperfections of the crystal lattice). In brass, the zinc
ions act as impurities in copper. In pure copper, the
resistivity at 4 K is due to its residual resistance. The
residual resistance is very low if the copper is very pure.

7 The resistivity of copper increases with increasing
temperature; the resistivity of (pure) silicon decreases with
increasing temperature because the number density of
charge carriers increases.

9 (b)
11 The excited electron is the motion of the electron in the

conduction band and contributes to the current. A hole is
left in the valence band allowing the positive hole to move
through the band, also the motion of the hole contributes
to the current.

13 (c)

15

51 250

53 (a)

0

10

20

30

40

50

Vb (V)

I/
I 0

−0.10 −0.05 0.00 0.05 0.10

Conduction band

p-side

Valence band

Fermi level

n-side

Conduction band

Valence band

Fermi level

n-sidep-side

49

(b)

55 The charge carriers are holes and the semiconductor is
p-type.

57 (a) 2.17 meV, , (b) 0.454 mm
59
61 (a) 5.51 eV, (b) 3.31 eV, (c)
63 1
67 0.60
71 1.07
73 (a) , (b)
75 4.35 � 1014 Hz

1.84 � 10�25.51 � 10�3

1.08 � 106 m>s2.0 � 1018

Eg � 0.8Eg measured

1.0 � 1023 m�3

�20 
�0.2 40
�0.4 20
�0.6 10
�0.8 5

1>slope (Æ)V (V)

45
47 37.1 nm, 38.7 nm. The mean free paths agree to within

about 4%.

aB Si � 3 nm, aB Ge � 8 nm

17
19 (a) , (b)
21 (a) , (b)
23 (a)

(b) Both these results agree
with the values in Table 38-1.

25 4.0
27 (a) (b)

(c)
29 (a) 4.22 eV (b) 2.85 eV
31 (a) , (b) 5.50 eV, (c) 212, (d) The ratio EF>kT

is equal to 212 at T � 300 K. The Fermi energy is the energy
of the most energetic conduction electron when the crystal
is at absolute zero. Because no two conduction electrons
can occupy the same state, the Fermi energy is quite
high compared with kT. The kT energy is the energy the
average conduction electron would have when the crystal
is at temperature T if the electrons did not obey the
exclusion principle. 

33
35
37 (a) 66 nm, (b)
39
41 180 nm
43 116 K

1.09 mm
1.8 � 10�4 nm2

0.192 J>(mol # K)
3.82 � 1010 N>m2 � 3.77 � 105 atm

5.90 � 1028 e>m3

1.89 � 106 m>s 1.39 � 106 m>s1.07 � 106 m>s
nAg � 5.90 � 1022 electrons>cm3.
nAg � 5.86 � 1022 electrons>cm3

70.7 nÆ # m0.123 mÆ # m
2.83%�10.6 eV

2.07 g>cm3
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Chapter 39

1 (a)

3 (a) True, (b) True, (c) False, (d) True, (e) False, ( f ) False,
(g) True

5 Although Consequently,

7 (a) 0.946, (b)

9 (a) 0.98 km. The width of the beam is unchanged.
(b) , (c)

11 (a) 0.91c, (b) , (c) 101 y

13 (a) , (b) , (c) 0.998c

15

17 (a) , (b) , (c) , (d) 1.70 km

19

21 (a) , (b) , (c) , (d) , (e) 4.36 h,
( f ) 18.8 h

23

27 11 ms

29 (a) and 

31 (a) 0.976, (b) 0.997c

33 66.7%

37 (a) 290 MeV, (b) 629 MeV

39 (a) 0.943c, (b) 3.0 MeV, (c) , (d) , 
(e) 0.9 MeV

43 0.999c

45 (a) moves in the direction, (b) 1.7 y

47 281 MeV

49 (a) , (b)

51 in agreement with Problem 40.

Chapter 40

1 (a) , (b) , (c)

3 Generally, decay by emission leaves the daughter
nucleus neutron rich, i.e. above the line of stability. The
daughter nucleus therefore tends to decay via emission
which converts a nuclear neutron to a proton.

5 It would make the dating unreliable because the current
concentration of is not equal to that at some earlier time.

7 The probability for neutron capture by the fissionable nucleus
is large only for slow (thermal) neutrons. The neutrons
emitted during the fission process are fast (high energy)

14C

b�

a

117Sn, 119Sn54Fe, 55Fe15N, 16N

Kth � 6mpc
2

d � �
LE
Mc2v � �

E
Mc

�x�0.50c, S�

4.1 MeV>c22.8 MeV>c

uy �
c
g

ux � v

2.22 � 107 m>s
2.59 ms0.49 ms2.59 ms2.10 ms

4.4 ms

3.1 ms6.32 ms1.76 ms

1.85 � 104 y

0.193 ms0.385 ms

22 c # y

0.10 mm9.6 � 107 m

1.23 � 1010 c # y

¢y>¢t � ¢y�>¢t�.¢y � ¢y�, ¢t � ¢t�.
Material Property Ratio (order of magnitude)

Mass density

Half-life

Nuclear masses 2

1015

1015

15 (a)

(b)

(c)

17 (a) 3.0 fm, (b) 4.6 fm, (c) 7.0 fm

19 (a) , 

(b) , (c) 10.1 min

23 (a) 5 min, (b) 250 Bq

25 (a) 200 s, (b) , (c) 125 Bq

27 (a) 500 Bq, 250 Bq, (b) ,

(c) 12 min

29 (a) , (b)

31

33 (a) , (b)

35 (a) 1.13 mCi, (b) 0.898 mCi

37 About 15 g

39

41 (a) , (b)

43 (a) 0.156 MeV, (b) The masses given are for atoms, not
nuclei, so the atomic masses are too large by the atomic
number multiplied by the mass of an electron. For the
given nuclear reaction, the mass of the carbon atom is
too large by and the mass of the nitrogen atom is too
large by Subtracting from both sides of the
reaction equation leaves an extra electron mass on the right.
Not including the mass of the beta particle (electron) is
mathematically equivalent to explicitly subtracting 
from the right side of the equation.

45

47 208 MeV

49

51 (c) 3.7 � 1038 s�1, 5.0 � 1010 y

3.2 � 1010 J

1.56 � 1019 s�1

1me

6me7me.
6me

3.27 MeV�0.764 MeV

7.0 � 108 y

N0 � 3.11 � 106l � 0.133 h�1, t1>2 � 5.20 h

K
a

� 5.15 MeV, K235U � 89.2 keV

239
94Pu S 235

92U � 4
2a � Q, Q � 5.24 MeV,

5.3 � 104 y4.5 � 103 a>s
N0 � 1.0 � 106,N2.4 min � 5.2 � 105

3.5 � 10�3 s�1

2.22 km>sEthermal � 4.11 � 10�21 J � 25.7 meV

Eb � 1802 MeV, Eb >A � 7.57 MeV

Eb � 492 MeV, Eb >A � 8.79 MeV

Eb � 92.2 MeV, Eb >A � 7.68 MeV

neutrons and must be slowed to thermal neutrons before they
are likely to be captured by another fissionable nucleus.

9 (a) , (b)

11 (a) True (given an unlimited supply of ),

(b) False, (c) True, (d) False

13

238U

b�b�



(b)

67 (a) 4.00 fm, (b) , (d) 310 MeV

69 (a) , (b) 752 eV, (c) 0.0962%

71 (b) 55

73 (d)

1.188 MeV>c310 MeV>c8.7 � 104

3 A decay process involving the strong interaction has a very
short lifetime whereas decay processes that
proceed via the weak interaction have lifetimes of order

5 False

7 No; from Table 41-3 it is evident that any quark–antiquark
combination always results in an integral or zero charge.

9 (a) False, (b) True, (c) True

11

13 (a) 279.2 MeV, (b) 1877 MeV, (c) 211.3 MeV

15 (a) Because the reaction can proceed via the weak
interaction, (b) Because the reaction is not
allowed, (c) Because the reaction can proceed via
the weak interaction.

17 (a) Because the reaction is not allowed,
(b) Because the reaction can proceed via 
the weak interaction.

19 (a) , (b) , (c)

21

K�©0 or ¶0K0

¢S � �1,
¢S � �2,

¢S � �1,
¢S � �2,

¢S � �1,

Fem

Fgrav

� 1.24 � 1036

10�10 s.

('10�23 s),

53 l � 0.069 s�1

R
(B

q)

605030 4020100
t (s)

0

1000

2000

3000

4000

5000

6000

7000

55 156 keV

59

61 6.3 L

63 (a) 23 MeV, (b) 4.2 GeV, (c) 1.3 GeV

65 (a)

6.7 � 103 Bq

–––
Rp

N

43210
tλ

λ

Number of parent (P) nuclei
Number of daughter (D) nuclei

Time
20 P15 P10 P5 Pτ τ τ τ0

0

0.20NP0

0.40NP0

0.60NP0

0.80NP0

1.00NP0

Chapter 41

1 Similarities Differences

Baryons and mesons Baryons consist of three 
are hadrons, i.e., they quarks and are fermions.
participate in the  Mesons consist of two quarks
strong interaction. and are bosons. Baryons have
Both are composed baryon number or 
of quarks. Mesons have baryon number 0.

�1.�1

Combination B Q S Hadron

(a) uud 1 0

(b) udd 1 0 0 n

(c) uus 1

(d) dds 1

(e) uss 1 0

(f) dss 1 ���2�1

�0�2

©��1�1

©��1�1

p��1

23 From Table 41-3 we see that to satisfy the properties of
charge number equal to and strangeness, charm,
topness, and bottomness all equal to zero, the quark
combination must be uuu.

25 (a) , (b)

27 (a) uds, (b) , (c)

29 (a) sss, (b) ssd

31

35 (a) Baryon number and lepton numbers are conserved
quantities. A particle and its antiparticle must have baryon
numbers that add to zero and lepton numbers that add to
zero. Thus, for a particle and its antiparticle to be identical,
its baryon number and all three of its lepton numbers must
equal zero. This means it cannot be a lepton or a baryon, so
it must be a meson. A particle and its antiparticle have the

3.3 � 108 c # y

ddsdu u

cdcd

�2
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complementary quark content. That is, if each quark in a
particle is replaced by its antiquark, then the resulting
entity is the antiparticle of the particle.
(b) The quark combination for the is a linear combination
of and and the quark combination for the is a
linear combination of and The quark combination for
the is uss and that of the is 
(c) The is a meson with quark content of a linear
combination of and , so the is its own antiparticle.p0dduu

p0
u s s.�0�0

dd.uu
p 0dduu

p0

The is a baryon. As is explained in the answer to Part (a),
a baryon cannot be its own antiparticle.

37 (a) The u and annihilate, resulting in the photons. 
(b) Two or more photons are required to conserve linear
momentum.

39 (a) , (b) , (c) 1.98 GeV

41 (a) , (b) 6.72, (c) 5 MeV, 33 MeV38 MeV

�815 MeVp�

u

�0
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Aberrations, 1121
chromatic, 1121
spherical, 1100, 1121

Absolute motion, 522, 1320–1322
Absolute temperature, average translational

kinetic energy of molecules and, 576
Absolute temperature scale, 568–569, 643
Absorption

polarization by, 1071–1072
resonance, 1082

Absorption coefficients, 554
Absorption spectra of diatomic molecule,

1276–1277
Ac. See Alternating current (ac)
Accelerated reference frame, 406–407

pendulum in, 472–473
Acceleration, 14, 27, 35–47, 309. See also

Angular acceleration
average, 35
for center of mass, 154
centripetal, 80, 141, 292
constant, 37–47
defined, 35
dimensions of, 8, 35
drag forces and, 139–140
Euler’s method for approximating,

147–149
free-fall, 369, 370, 391
as function of time, 36–37
due to gravity, 71
instantaneous, 35
motion diagrams and, 37
motion of point charges in electric fields,

714–716
Newton’s second law and, 97
nonslip condition for, 310, 312–314
in simple harmonic motion, 459
of simple pendulum, 471–473
SI unit of, 35
tangential, 81, 111, 292, 305
of ultracentrifuges, 316
in uniform circular motion, 79–80

Acceleration vector(s), 37
for motion in two and three dimensions,

68–71
tangential and centripetal components of,

79
Accelerators, 879

circular, 51
linear, 51
Van de Graaff, 784

Accelerometer, 124
Acceptor levels, 1300

Accident reconstruction, 158
Accommodation, 1122
Accretion disk, 1350
Acetone, coefficient of thermal expansion

for, 666
ac Josephson effect, 1308
Acoustical architecture, 554
Actinium, electron configuration of, 1251
Action-at-a-distance forces, 95, 96, 704–705
Activity (decay rate), 1363
Adams, John (astronomer), 394
Addition

phasors to add harmonic waves, 1152
significant figures in, 9
vector, 15–17, 20

Adiabatic bulk modulus, 499
Adiabatic process, quasi-static, 615–618
Aerodynamics, automotive, 448
Air, 353

coefficient of thermal expansion for, 666
coefficient of viscosity of, 446
dielectric strength of, 785
index of refraction of, 1061
as nondispersive medium, 553
quasi-static adiabatic compression of, 617
speed of sound in, 499
thermal conductivity of, 676, 682

Air conditioner, SEER of, 635n
Airfoil, 443–444, 448
Air pressure, ambient, 443–445
Alaskan pipeline, 665, 668
Alcohol

boiling point of, 596
coefficient of thermal expansion for, 666
density of, 424
latent heat of fusion of, 596
latent heat of vaporization of, 596
melting point of, 596
specific heat and molar specific heat of, 593

Alkali metals, optical spectra of, 1252–1253
Alpha decay, 1368–1369
a particles, 352

decay of, 1216
rest energy of, 228, 1343

Alternating current (ac)
generator, 972–973, 993, 997–998
in resistor, 996–999

Alternating-current (ac) circuits, 995–1028
capacitors in, 1002–1003
current in, 1010
electric grid, 1019
inductors in, 999–1001
LC circuits without a generator, 1007–1009

phasors, 1010–1011, 1012
potential drop in, 1011
RLC circuits, 1009–1018
transformer in, 1004–1006

Altitude, pressure and, 430–431
Aluminum

bulk modulus of, 426
coefficient of thermal expansion for, 666
density of, 424
electron configuration of, 1249
magnetic susceptibility of, 939
resistivity and temperature coefficient of,

847
shear modulus of, 411
specific heat and molar specific heat of, 593
strength of, 410
thermal conductivity of, 676

Amber, resistivity of, 847
Americium, electron configuration of, 1251
Ammeters, 867–868, 931, 997

tangent galvanometer, 957
Ammonia (NH3), 1270
Amorphous solid, 1282
Ampere (A), 4, 695, 840

defined, 931
Ampère, André-Marie, 917, 919, 930, 938
Ampère’s law, 933–937, 1036

generalized form of, 1030–1031
limitations of, 936–937
long, straight wire and, 933, 935
Maxwell’s equation for, 1030–1031, 1033,

1034
steady and continuous currents

requirement, 933, 936
toroid and, 935–936

Ampere-square meter, 901
Amperian current, 938
Amplifiers, 1304–1305
Amplitude

of driven oscillation, 482, 484
of simple harmonic motion, 458–459, 462,

466
AM radio waves, 1041
Analytical ultracentrifuge, 316
Analyzer, 1072
Anderson, Carl, 1394
Andromeda galaxy, diameter of, 12
Anechoic chamber, 541
Angle(s)

banking, 144
blaze, 1171
of deviation, 1070, 1095
of incidence, 1061, 1063
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of minimum deviation, 1070
polarizing, 1073
of refraction, 1061
of repose, 132
small-angle approximation, M-16
solid, 753

Angular acceleration, 290–291, 305, 309
average, 290–291
constant, 291
couples and, 405
for rigid objects, 303

Angular displacement, 291, 309
Angular frequency, 460, 471, 1009
Angular magnification (magnifying power)

of microscope, 1127
of simple magnifier, 1125
of telescope, 1128

Angular momentum, 248, 309, 331–362
angular impulse–angular-momentum

equation, 337
atmospheric, 353
about an axis, 337–338, 350
of bound systems, 350
conservation of. See Conservation of angular

momentum
defined, 334–335
directions of, 1236
fundamental unit of, 351
of gyroscope, 339–340
magnetic moment and, 939–940
Newton’s second law for, 336–337, 348–349
orbital, 337, 349–350, 351–352, 1235, 1237,

1241, 1242
about the origin, 336
of particle, 334–335, 337–338, 348, 351
quantization of, 350–352, 1231–1232, 1234
spin, 337, 349–350, 352, 1242, 1393
of system of particles, 335–338, 349–350
torque and, 334–340

Angular speed, 290
Angular velocity, 290–291, 309, 332
Anisotropic materials, 1074
Annihilation, electron–positron, 228

electron–hole, 1303
Anode, 810
Antenna(s)

electric-dipole, 1042, 1043–1044
loop, 1043
very large array (VLA) of radio, 1161

Antiderivative, 48, 49
Anti-Helmholtz coils, 952
Antilock braking systems (ABS), 138–139
Antimony, electron configuration of, 1250
Antineutrinos, 1393, 1397
Antinodes, 543
Antiparallel vectors, 15
Antiparticles, 1391, 1393–1396, 1405–1406

big bang and, 1408
Antiprotons, 1395–1396
Antiquarks, 1401
Anti-Stokes Raman scattering, 1082
Antisymmetric wave functions, 1221–1222
Anvil cell, diamond, 1246
Aphelion, 364, 365
Apparent size, 1122–1123, 1124
Apparent weight, 100, 432, 433
Approach, speed of, 267
Arc discharge, 785

Archimedes, 432–433
Archimedes’ principle, 432–438
Architectural acoustics, 554
Area, 7, 8
Argon

critical temperature for, 674
electron configuration of, 1249
molar heat capacity of, 607

Aristotle, 2
Armstrong, Edwin, 1049
Armstrong, Lance, 624
Arsenic, 1299–1300

electron configuration of, 1249
Art, 1
Ashkin, Arthur, 1088
Asperities, 128
Associative law for vector addition, 16
Astatine, electron configuration of, 1251
Astigmatism, 1121, 1122
Aston, Francis William, 897, 898
Astronomical data, AP-3, front of book
Astronomical unit (AU), 26, 364
Astronomy at optical wavelengths, 1129–1130
Atlanta, Georgia, 686
Atlas (moon), 390
Atmosphere(s), 375

law of, 431, 456
pressure of, 426

Atmosphere (atm), 426
Atmospheric angular momentum, 353
Atmospheric pressure, 430
Atom(s), 1227–1260. See also Bohr model of

hydrogen; Nuclear physics; Periodic
table; Quantum theory

atomic spectra, 1228–1229
counting, 11
electromagnetic radiation by, 1251–1252
electron configuration of, 1244, 1247
energy quantization in, 1180–1181
excited states of, 1252
magnetic dipole moments of, 937
mass of, 1227
nuclear radius of, 1227
nucleus of, 1229
optical spectra, 1251–1252
periodic table, AP-7
“plum pudding” model of, 1229
radius of, 1227
Rydberg, 1260
spin-orbit effect and fine structure, 1241–1243
X-ray spectra, 1252–1254

Atomic magnetic moments, 939–941
angular momentum and, 939–940
due to electron spin, 940
in magnetic domain, 943
due to orbital motion of electron, 940

Atomic mass unit, unified, 1272
Atomic number, 1227, 1358
Atomic orbitals, 1269–1270
Atomic particles, masses of, 228
Atomizer, 442
Atto prefix, 5
Atwater, Wilber O., 619
Atwood’s machine, 124, 239, 338–339
Aurora Borealis, 887
Automotive aerodynamics, 448
Automotive electrical systems, 874
Avalanche breakdown, 1302
Average acceleration, 35

Average-acceleration vector, 68
Average density, 424
Average force, 255–260

estimating, 256–257
impulse and, 256

Average power, 998
Average speed, 29–32
Average velocity, 29–32, 39–40, 64

alternative definition of, 50
defined, 30
geometric interpretation of, 30

Average-velocity vector, 64
Avogadro’s number, 11, 570
Axis

semimajor, 364, 365
semiminor, 364
symmetry, 335

Babinet’s principle, 1172
Back emf (self-induced emf), 967, 976, 999
Background radiation, 2.7-K, 1407
Backstay, 415
Baggage transfer methods, 193
Balance

current, 931
torsion, 370, 411

Ballistic pendulum, 262, 347
Balmer, Johann, 1228
Balmer series, 1233
Band theory, 1297–1299
Banked curves, motion along, 144–146
Banking angle, 144
Bar, 430
Bardeen, John, 1303, 1307
Barium, 1285

electron configuration of, 1250
Barn, 1370
Barometer, mercury, 430
Barringer Meteorite Crater, 284
Baryon number, 1397

conservation of, 1396–1397
Baryons, 1390, 1391, 1398, 1400, 1401
Base (semiconductor region), 1303–1304
Basic interactions. See also Electromagnetic

interaction; Gravitational interaction;
Strong nuclear interaction (hadronic
force); Weak interaction

big bang and, 1408
boson mediation in, 1403, 1404
properties of, 1405

Battery(ies), 850–853
as “charge pump,” 811
charging, 861–862
charging capacitor with, 807–808
electrodes of, 810
fully charged, 862
ideal, 850–851
internal resistance of, 852
real, 852
terminal voltage of, 810, 852–853

BCS theory, 1307–1308
Bean, Alan L., 460
Beat frequency, 538
Beats, 537–538
Becquerel (Bq), 1365
Becquerel, Antoine, 2
Bednorz, J. Georg, 1306
Benzene, 12
Berkelium, electron configuration of, 1251

Angle(s) (cont.)
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Bernoulli equation, 440–445
for flow along horizontal streamline, 440
for flow along non-horizontal streamline,

441
for fluid at rest, 441
Newton’s second law to derive, 440
Torricelli’s law and, 441–442
Venturi effect and, 442–443

Beryllium, 1247, 1285
electron configuration of, 1249

Bessel’s method, 1137
Beta decay, 228, 1365–1367
Big bang, 1406, 1407, 1408
Bimetallic strip thermometer, 566
Binary stars, 389, 394, 1350
Binary systems, 689
Binding energy, 229, 230, 376, 1233, 1344–1345

of nucleus, 1360–1362
Binomial expansion

formula for, AP-5, back of book
review of, M-18–M-19

Biot, Jean-Baptiste, 917, 928
Biot–Savart law, 919–932, 936, 937, 1030

current loop, 919–923
parallel wires, 930–932
solenoid, 923–927, 938
straight wire, 927–930

Birefringence, 1074
polarization by, 1074–1076

Bismuth
electron configuration of, 1251
magnetic susceptibility of, 939
specific heat and molar specific heat of, 593

Blackbody, 683–685
Blackbody radiation, 1176n
Black holes, 394, 689, 1350

supermassive, 395
Black light, 1083
Blackouts, 1019
Blaze angle, 1171
Block and tackle, 420
Blood

coefficient of viscosity of, 446
Poiseuille’s law and, 447
resistivity of, 847

Blood flow, 439, 447
resistance to, 445–446

Blood pressure, 430
Bluetooth protocol, 1041
Body-centered-cubic (bcc) structure, 1285
Body fat, 435–436
Bohr, Niels, 1181, 1190n, 1228, 1229, 1254, 1375
Bohrium, electron configuration of, 1251
Bohr magneton, 940, 1242
Bohr model of hydrogen, 1229–1234, 1254,

1389
energy for circular orbit, 1229–1230
energy levels, 1232–1234
postulates of, 1230–1232

Bohr radius, first, 761
Bohr’s correspondence principle, 1192
Boiling point, 596

normal, 565, 673
Boltzmann, Ludwig, 683
Boltzmann factor, 583
Boltzmann’s constant, 569, 675n
Bond(s), 1261–1269

carbon, 1270
covalent, 1262, 1264–1267, 1269

hydrogen, 1262, 1268, 1269
ionic, 1262–1263, 1266
in liquid, 424
metallic, 1262, 1268–1269
saturated, 1266
van der Waals, 1262, 1267

Bone
density of, 424
strength of, 410

Boron, electron configuration of, 1249
Bosons, 95, 352, 1222, 1307, 1393

Higgs, 1404
as mediators of basic interactions, 1403, 1404
vector, 1403

Bottomonium, 1401
Boundary condition, 1190
Bound charge, 825

magnitude of, 827
Bound particle, 350
Bound state, 1237
Bound systems, 229, 350, 376

discrete energies of, 612
energy quantization in, 232
internal energy of, 231–232

Bova, Ben, 89
Boyle, Robert, 569
Boyle’s law, 569
Brackett, F., 1233
Brahe, Tycho, 364, 367
Brakes, antilock, 138–139
Braking, threshold, 138
Branch currents, 854–855
Brass

bulk modulus of, 426
coefficient of thermal expansion for, 666
resistivity and temperature coefficient of,

847
shear modulus of, 411
strength of, 410

Brattain, Walter, 1303
Brayton cycle, 663
Breeder reactor, 1379
Bremsstrahlung, 1042
Brewster, David, 1073
Brewster (polarizing) angle, 1073
Brewster window, 1095
Brick, density of, 424
British Patent Office, 655
Bromine

boiling point of, 596
electron configuration of, 1249
latent heat of fusion of, 596
latent heat of vaporization of, 596
melting point of, 596

Btu, 593
Buckminsterfullerenes, 1286
Building materials, R factors for, 681
Bulk modulus, 426, 498n

adiabatic, 499, 618
of ideal gas, 618
isothermal, 499n, 618n

Buoyancy, 432–438
density and, 432–433
neutral, 453

Buoyancy wheels and belts, 655

Cable, grounding, 861
Cadmium, 1285

electron configuration of, 1250

Calcium, 1248
electron configuration of, 1249
work function for, 1295

Calculus, 381
fundamental theorem of, 48

Californium, electron configuration of, 1251
Caloric theory, 592
Calorie, 593

dietary, 627
Calorimeter, 594
Calorimetry, 594–595, 619

respirometry, 619
Cancer, radiation treatment of, 51
Candela (cd), 4
Capacitance, 801–838

in circuits, 979n
of cylindrical capacitor, 806
definition of, 802
dielectrics and, 817–827
of electrical double-layer capacitors, 828
equivalent, 812, 814
of parallel-plate capacitor, 803–804
self-capacitance, 802
SI unit of, 802
storage of electrical energy, 806–810

Capacitive goniometer, 834
Capacitive pressure gauge, 834
Capacitive reactance, 1003
Capacitor(s), 802–806

in ac circuits, 1002–1003
changes in, 828
charging of, 806, 807
combinations of, 811–817
connected in parallel, 811–812
connected in series, 812–815
cylindrical, 804–806
in dc circuit, 999
electrical double-layer (EDLCs), 828
energy stored in, 806–810
parallel-plate, 803–804, 868
in RC circuits, 868–873
reconnected, 816
uncharged, connected to terminals of

battery, 810–811
Capsaicin, 754
Car, flywheel-powered, 298
Carbon

beta decay of 14C, 1366
bonding of, 1270
crystalline forms of, 1285, 1286
electron configuration of, 1247, 1249
resistivity and temperature coefficient of,

847
in resistors, 848

Carbon dioxide
boiling point of, 596
critical temperature for, 674
latent heat of fusion of, 596
latent heat of vaporization of, 596
magnetic susceptibility of, 939
melting point of, 596
molar heat capacity of, 607
triple-point temperature and pressure of, 674
vibrational modes of, 610

Carbon fibers, 412
Carbon monoxide, 1264

molar heat capacity of, 607
Carbon nanotubes, 412
Carnot, Sadi, 2, 637
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Carnot cycle, 637
entropy change for, 650–651
steps in, 638
on ST plot, 651

Carnot efficiency, 638–642, 643
Carnot engine, 637–643
Carnot theorem, 637
Cartesian diver, 451
Cataracts, 1131
Cathode, 810
Cathode ray tube (CRT), 51, 1181
Cavendish, Henry, 367, 368, 369
Cedar Rapids, Iowa, 686
Cells, unit, 1282–1283
Celsius scale, 565, 568–569
Cement, density of, 424
Center of gravity, 302–303, 398–399
Center of mass, 149–157

acceleration for, 154
for continuous objects, 150–152
defined, 149, 150
finding by integration, 153–154
motion of, 154–157
position of, 150–152
rolling and, 312–313
of semicircular hoop, 153–154
for system of particles, 149–150, 154–155
of uniform rod, 153
velocity for, 154

Center-of-mass reference frame, 190, 271–273
Center-of-mass work, 190–192

done by a single force, 190
Center-of-mass work–translational-kinetic-

energy relation, 190
Center of percussion, 323
Center of symmetry, 150
Centigrade temperature scale, 564–566
Centimeter, 5
Centi prefix, 5
Central diffraction maximum, 1149
Central force, 371
Central ray, 1116
Centripetal acceleration, 80, 141, 292
Centripetal direction, 79
Centripetal force, 142
Ceramic, superconducting, 985
Cerenkov radiation, 523, 531, 1129
Cerium, 1285

electron configuration of, 1250
CERN, 1394, 1395
Cesium, 4, 1285

electron configuration of, 1250
Cesium clock, 21
Cgs system, 5
Chamberlain, Owen, 1395
Charcoal, 1286
Charge, electric, 694–696. See also Point

charge(s)
action of electric field on, 714–718
attraction/repulsion and, 694–695
bound, 825, 827
charging by contact, 696
at conductor surfaces, 750–752
conservation of, 695
electrostatic potential energy of two-

charge system, 767–768
electrostatic powder coating and, 719
force exerted by a system of, 702–704
fundamental unit of, 695

mobile, 840–841
quantization of, 695

Charge carriers, 841
in metals, 905

Charge density, 742
continuous, 728
linear, 732

Charge distributions
electric field due to continuous, 728
electric potential for continuous, 773–781
solubility and, 754

Charge-to-mass ratio, 1181
Charging by induction, 697–698, 699
Charles, Jacques, 569
Charm, 1401
Checketts, Stan, 114
Chemical energy, 201, 219, 226–227
Chemical reactions, 219
Chlorine, 1262–1263

critical temperature for, 674
electron configuration of, 1249

Chromatic aberration, 1121
Chromium, 1248

electron configuration of, 1249
Ciliary muscle, 1122, 1126
Circuit(s). See also RL circuits; Alternating-

current (ac) circuits
capacitance in, 979n
capacitors connected in parallel, 811–812
capacitors connected in series, 812–815
combinations of resistors in, 854–859
differentiation, 1025
integration, 1025

Circuit diagrams, symbols in, 811
Circular accelerators, 51
Circularly polarized wave, 1075

right and left, 1094
Circular motion, 78–81

period, 80
simple harmonic motion and, 464–465
tangential, 81
uniform, 79–81

Circulation integral, 933
Citicorp Building, 459
Cities, heat islands in, 686
Classical electron radius, 800
Classically forbidden region, 1208, 1214
Classical particle, 1187

probability calculation for, 1186–1187
Classical physics, 2
Classical wave, 1187
Clausius, Rudolf, 609
Clausius (refrigerator) statement of second

law of thermodynamics, 630, 634–637
Click beetle, 59
Clocks

cesium, 4, 21
hydrogen maser, 1350
light, R-5–R-6
mechanical, 474
moving, R-5–R-8
pendulum, 473–474
water, 3

Closed surface, 738
total or net electric flux through, 739–740, 741

Closing speed (speed of approach), 265
Coastdown method, 162
Coaxial cable, as long cylindrical capacitor,

804, 806

Cobalt, electron configuration of, 1249
Cockcroft, J. D., 1370
Coefficient(s)

absorption, 554
frictional, 129, 130, 131, 132
of linear expansion, 666, 667
of performance (COP), 635, 644
reflection, 514–515
of restitution, 267
transmission, 514–515
of viscosity, 446
of volume expansion, 666–667

Coercive force, 955
Coherence, 541–542

phase, 1143
Coherence length, 1143
Coherence time, 1143
Coincidence(s)

invariance of, R-7
spacetime, R-7

Cold reservoir, 633, 634, 637, 643
Collector, 1303–1304
Collision frequency, 578
Collisions, 255–273

average force, 255–260
in center-of-mass reference frame, 271–273
elastic. See Elastic collisions
entropy changes for, 649
impulse, 255–260
impulse–momentum theorem, 256
inelastic. See Inelastic collisions
perfectly inelastic. See Perfectly inelastic

collisions
relative speeds of approach and

separation, 265
of two disks, 342–343
of two wave pulses, 534–535

Collisions in one dimension, 260–267
coefficient of restitution, 267
elastic, 264–267, 272–273
head-on, 264–267, 271
perfectly inelastic, 260–264

Collisions in two and three dimensions,
267–271

elastic, 269–271
glancing, 269–271
inelastic, 268–269

Collision time, 578, 1287
Color charge, 1403
Color code, resistance, 848
Coma aberrations, 1121
Combustion, types of, 277
Communication, wireless, 1049
Commutative law for vector addition, 16
Compact disks, 1162
Compact Muon Solenoid, 947
Compass needle, 888
Complex numbers

review of, M-19–M-21
differential equations, M-26–M-27

Components of vectors, 17–19
Compound microscope, 1126–1127
Compressibility, 426
Compression

of gas, quasi-static adiabatic, 615–618
isobaric, 603
isothermal, 604

Compressive strength, 410
Compressive stress, 410
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Compton, Arthur H., 1178–1179
Compton equation, 1179
Compton scattering, 1082, 1083, 1178–1180,

1187
Compton wavelength, 1179
Computation fluid dynamics (CFD)

modeling programs, 448
Concave mirrors, 1099–1104, 1105
Concrete

strength of, 410
thermal conductivity of, 676

Condensation, 673
Conduction, 674, 675–682

R factor, 680–681
temperature gradient and, 675
thermal current in, 675–676, 678
thermal resistance in, 676–682

Conduction band, 1298–1300
Conduction electrons (delocalized electrons),

697
Conduction in metals

classical interpretation of electron mean
speed and mean free path, 1288–1289

current, 1286
microscopic picture of, 1286–1289
quantum theory of electrical, 1281–1282,

1296–1297
resistivity, 1286–1288

Conductivity, electrical, 845, 1287
Conductor(s), 677, 697–699

band structure of, 1298
charge and field at surfaces, 750–752
copper as, 693, 697
dielectric breakdown creating, 784–787
in electrostatic equilibrium, 750
electrostatic potential energy of system of,

789
equipotential surface of, 781–787
resistivities in, 1297
Van de Graaff generator, 783–784

Cones, 1122, 1126
Conical tube, 549–550
Conservation laws for elementary particles,

1396–1400
conservation of baryon number, 1396–1397
conservation of lepton number, 1396–1397
strangeness, 1398–1399

Conservation of angular momentum, 331,
341–350

ballistic pendulum, 347
law of equal areas and, 365
Newton’s second law and, 348–349
statement of, 341

Conservation of charge, 695
charging by induction and, 697–698

Conservation of energy, 3, 201, 219–227, 1181
in charging a capacitor, 873
chemical energy and, 226–227
heat and, 220
kinetic friction and, 221–225
law of, 219–220
mass and, 228–231
in special relativity, R-12–R-13
work-energy theorem, 220–221, 222

Conservation of linear momentum, 249–253
in collisions. See Collisions
component of momentum, 249
finding velocities using, 249
law of, 249

in rocket propulsion, 273–277
Conservation of mechanical energy, 209–219,

314
applications of, 210–216
defined, 209
law of, 249

Conservation of momentum, in special
relativity, 1340–1341, R-12–R-13

Conservative electric field, 860
Conservative force, 203–204, 209, 469
Constancy of speed of light, R-3–R-4
Constant

Coulomb’s, 700, 732, AP-4
dielectric, 818, 819
electric (permittivity of free space), 732,

802, 1030, AP-4
Planck’s, 1079, AP-4
table of, AP-4

Constant acceleration, 37–47
average velocity for, 39–40
free-fall, 43–44
as function of time, 38–39
of one object, 40–43
of two objects, 45–47

Constant-acceleration equations, 309
Constant angular acceleration, 291
Constant-angular-acceleration equations,

309
Constantin, resistivity and temperature

coefficient of, 847
Constant-pressure processes, entropy

change for, 648–649
Constant-volume gas thermometer, 567–568
Constructive interference, 537, 1144
Contact, microscopic area of, 128
Contact forces, 101–104

defined, 95
Hooke’s law for, 102
solids, 101–102
springs, 102–103
strings, 103–104

Contact potential, 1294–1295
Continuity equation, 439, 443
Continuous spectra, 1080

sources of, 1081–1082
Control rods, 641, 1378
Convection, 578, 675, 683

UHI-related, 686
Converging (positive) lens, 1112–1113, 1116
Converse piezoelectric effect, 827
Conversion factor, 6–7

table of, AP-2
Convex mirrors, 1105, 1106–1107
Cooling, Newton’s law of, 675, 685
Cooper, Leon, 1307
Cooper pair, 1307–1308
Coordinate axes, attached to reference

frames, 66
Coordinated Universal Time (UTC), 21
Coordinate system, 15

right-handed, 333
Copper, 1248

boiling point of, 596
bulk modulus of, 426
coefficient of thermal expansion for, 666
as conductor, 693, 697
density of, 424
electron configuration of, 1249
latent heat of fusion of, 596

latent heat of vaporization of, 596
magnetic susceptibility of, 939
melting point of, 596
resistivity and temperature coefficient of,

847
shear modulus of, 411
specific heat and molar specific heat of,

593
strength of, 410
thermal conductivity of, 676
work function for, 1295

Copper wires, wire diameters and cross-
sectional areas for, 847

Cornea, 1122
Cornell potential, 243n
Corner-cube reflector, 1099
Corona discharge, 719
Coronas, 1172
Coulomb (C), 695, 931
Coulomb, Charles, 699
Coulomb constant, 700, 732
Coulomb potential, 767
Coulomb repulsion, 1362, 1374
Coulomb’s law, 699–704, 919, 1030

calculating electric field from, 728–738
definition of, 699
for electric field due to single point

charge, 705–706
force exerted by a system of charges,

702–703
Gauss’s law and, 738, 741, 744, 753
for magnitude of force exerted by q1 on q2,

700
ratio of electric and gravitational forces, 701
similarity between Newton’s law of

gravity and, 700
summing forces in two dimensions,

703–704
vector form, 700

Couples, 405–406
Covalent bonds, 1262, 1264–1267, 1269
Crab Pulsar, 88, 293
Cranes, 397
Crick, Francis, 1268
Critical angle for total internal reflection,

1065–1066
Critically damped motion, 477
Critical point, 673, 674
Critical temperature, 613, 673, 674,

1305–1306
superconducting energy gap and, 1307

Crossed fields, 895–897
Cross section, 1370
Cross term, 183
Crystalline solid, Einstein model of, 628
Crystals

liquid, 584
piezoelectric, 827
pyroelectric, 827

Crystal structure, 1282–1286
body-centered-cubic (bcc), 1285
face-centered-cubic (fcc), 1282–1283, 1285
hexagonal close-packed (hcp), 1285

Curie (Ci), 1365
Curie, Marie, 3
Curie, Pierre, 3, 942
Curie’s law, 942
Curie temperature, 943
Curium, electron configuration of, 1251
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Current(s), 1286
in ac circuits, 1010
amperian, 938
branch, 854–855
defined, 840, 841
drift speed and, 841
eddy, 974, 1004n
induced, 959, 965–967, 970
across inductor, 1000
magnetic field of. See Biot–Savart law
motion of charges and, 840–844
in parallel RLC circuit, 1018
peak, 998, 1000
per unit area, 841
resistance, 844–849
rms, 998
sign of, 842
SI unit of, 840
through a surface, 841–842
tunneling, 1303, 1307

Current balance, 931
Current density, 841, 1287
Current element, 890
Current gain, 1304
Current gun, 929
Current integrator, 990
Current loop(s)

atomic, 938
magnetic dipole moment of, 901, 902–904
magnetic field due to, 919–923
tilting, 902
torques on, 900–904

Cycle per second (cy/s), 458
Cyclotron, 898–899
Cyclotron frequency, 893
Cyclotron period, 893, 894, 899
Cylinder, moment of inertia for uniform, 296
Cylindrical capacitors, 804–806

capacitance of, 806
Cylindrical (line) symmetry, 742

Damped oscillations, 477–481
differential equation for, 478
overdamped motion, 479
Q factor, 479–481, 482
underdamped motion, 477–478, 481
weak motion, 478, 480, 481, 482

Dampers
tuned-mass, 459, 486
viscous, 486

Damping constant, 478–479
Dark matter, 386
Darmstadtium, electron configuration of, 1251
Dart (Deep-Ocean Assessment and

Reporting of Tsunamis) buoy, 495
Daughter nucleus, 1366
Da Vinci, Leonardo, 655
Davisson, C. J., 1183–1184
Daytona International Speedway, 127
dc Josephson effect, 1308
Dead reckoning, 82
De Broglie, Louis, 1181
De Broglie hypothesis, 1181–1183, 1184
De Broglie wavelength, 1289

thermal, 1257
Decay, radioactive, 253
Decay constant, 1363
Decay rate, 1363
Deceleration, 35, 36

Decibels (dB), 511
Deci prefix, 5
Deep inelastic scattering, 1401
Dees, 899
Deflagration, 277
Deflection, angle of, 270
Deformations, nonconservative force in, 219
Degeneracy, 1218
Degrees of freedom, 577, 609
Deka prefix, 5
Delayed neutrons, 1378–1379
Delocalized electrons, 674n, 697
Density

average, 424
buoyancy and, 432–433
calculating, 425
current, 841, 1287
defined, 424
dimension of, 8
of fluids, 424–425
magnetic energy, 978–979
of nucleus, 1358
number, 841, 843–844
of states, 583, 1309–1310

Density wave, 508
Depletion region, 1301
Depth, pressure and, 430–431
Depth inversion, 1098–1099
Derivatives, 33, 35

partial, 501
Descartes, René, 1062, 1068
Destructive interference, 537, 1144
Detonation, 277
Deuterium, 1358
Deuterium oxide (heavy water), 229
Deuteron, 229, 898–899, 1260, 1344

rest energy of, 228, 1343
Deutsches Elektronen-Synchrotron (DESY), 947
Deviation, angle of, 1070, 1095
Diamagnetism, 937, 938, 939, 946
Diamond, 1286

bulk modulus of, 426
coefficient of thermal expansion for, 666
crystal structure of, 1285
index of refraction of, 1066
magnetic susceptibility of, 939

Diamond anvil cell, 1246
Diatomic molecules, 231–232, 499, 607,

609–610, 611–613, 614, 1271–1277
absorption spectra of, 1276–1277
electronic energy of, 1271, 1274–1275
emission (optical) spectra of, 1274–1275
kinetic energy of, 609–610
molar heat capacities of, 607
rotational energy levels of, 1271–1273,

1274–1275, 1276
vibrational energy levels of, 1271,

1273–1275, 1276
Dielectric breakdown, 760, 784–787, 818–819
Dielectric constant, 818, 819
Dielectrics, 817–827

capacitance and, 817–827
electric field inside, 818
energy stored in presence of, 821–824
molecular view of, 824–827
PCBs as, 828
permittivity of, 818
uses of, 818–819

Dielectric strength, 785, 819

Diesel cycle, 659–660
Diesel engines, 627
Dietary calorie, 627
Differential approximation,

formulas, back of book, AP-5
review, M-18–M-19

Differential calculus review, M-11–M-28
Differential resistance, 1316
Differentiation circuit, 1025
Diffraction, 1097, 1175

defined, 1141
Fraunhofer patterns, 1159–1160
Fresnel pattern, 1159–1160
resolution and, 1160–1161
single-slit pattern, 1149–1152, 1155–1157
of waves, 517–518

Diffraction gratings, 1162–1165
holograms, 1164–1165
intensity of, 1162
interference maxima, 1162
resolving power of, 1163–1164

Diffuse reflection, 1062–1063
Digital holograms, 1165
Dilute gases, 571, 574
Dimensions

of acceleration, 8, 35
of physical quantities, 7–8

Diode lasers, 1086
Diodes, 1301–1303
Diopters (D), 1115
Dipole(s), 710–711

electric field lines for, 712–713
in external electric fields, 717–718

Dipole moment, 710–711. See also Magnetic
dipole moment(s)

definition of, 710
magnetic, 901, 902–904
permanent, 717
solubility of substances and, 754

Dirac, Paul, 940n, 1242n
Dirac equation, 940n, 1242n, 1393–1394
Direct-current circuits

capacitor in, 999
charging a capacitor in, 870–873
discharging a capacitor in, 868–870
electromotive force (emf), 850–853
energy in, 849–853
junction rule, 860, 864, 878
Kirchhoff’s rules, 860–868, 878
loop rule, 860–863
measuring devices, 867–868
multiloop circuits and, 863–866
power delivered to a resistor, 850
rate of potential energy loss, 850
RC circuits, 868–873
resistors in, 854–859
single-loop circuits and, 860–863

Discontinuity of electric field at surface
charge, 749–750

Disks
collision of two, 342–343
moment of inertia for uniform, 296

Dispersion, 552–554, 1068–1070
modal, 1093
rainbow as example of, 1068–1070

Dispersive medium, 553
Displacement, 14, 17, 27, 28–29, 309

angular, 291, 309
distance traveled vs., 28–29
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Displacement current, Maxwell’s, 1030–1033
Ampère’s law and, 1030–1031, 1034
defined, 1030
Faraday’s law and, 1031

Displacement vector, 14–15
for motion in two and three dimensions, 64

Dissociation energy, 1263, 1284
Distance

displacement vs., 28–29
of most distinct vision, 1123
nonslip condition for, 310

Distortion, 1121
Distribution functions, 579–582
Diurnal tides, 95
Diverging (negative) lens, 1113–1114
Division, significant figures in, 9
DNA molecule, 1268
Donor levels, 1300
Doping, 1299–1300
Doppler effect, 390, 518–523

defined, 518
moving reference frame and, 519
relativistic, 521–522, 1328–1330
shock waves, 522–523

Doppler Orbitography and Radio
Positioning Integrated by Satellite
(DORIS) system, 353

Dot products. See Scalar (dot) product
Doublet, 1252
Downforce, 448
Drag forces, 139–141, 438, 448
Drag sled, 158
Drift speed, 840, 842–843

current and, 841
Drift velocity, 840–841

Hall voltage in terms of, 905–906
Driven (forced) oscillations, 481–485

amplitude for, 482, 484
differential equation for, 483–484
phase constant for, 484
position for, 484

Driven RLC circuits, 1011–1018
parallel, 1018
power factor of, 1013
Q factor for, 1014
at resonance, 1013–1017
series, 1011–1013

Drop, potential, 844–845, 849–850
Drude, Paul K., 1281, 1287n
Dubnium, electron configuration of, 1251
Dulong-Petit law, 611, 625
Dumbwaiter, 198
Dynamics, 27
Dyne, 5
Dysprosium, electron configuration of, 1250

Ear, human, 510–511
beats detectable by, 538

Earth
attraction to Sun, 96
density of, 424
gravitational field of, 100, 378
gravitational force exerted by, 374
gravity map of, 380–381
magnetic field of, 887, 889, 908
rate of rotation of, 4

Earthquake, resonance from, 524
Echoes, architectural acoustics to limit, 554
Echolocation, 57, 518

Eddington, Arthur, 386
Eddy currents, 974, 1004n
Edge, R. D., 320
EDLCs, 828
Effective nuclear charge, 1246, 1247
Efficiency

Carnot, 638–642, 643
of heat engine, 632, 633–634
second law of, 642, 662
of steam engine, 641
of wind turbine, 233

Einstein, Albert, 3, 228, 232n, 386, 1079, 1084,
1176, 1229, 1319, 1321, 1344, 1348,
1349, R-1, R-3. See also Relativity;
Special relativity

equation for photon energy, 1079, 1081
Einstein equation

for photoelectricity, 1177
for photon energy, 1176

Einsteinium, electron configuration of, 1251
Einstein ring, 386
Einstein temperature, 628
Elastic collisions, 255, 272–273

of neutron and a nucleus, 266
in one dimension, 264–267, 272–273
relative velocities in, 265
in two and three dimensions, 269–271

Elastic limit, 409–410
Elastic material, proportional limit of, 534n
Elastic modulus, 410
Elastic object, 409
Elastic scattering, 1376
Elastic (spring) potential energy, 202–203,

207–208
Electrical conductivity, 845
Electrical current, SI unit of, 4
Electrical double-layer capacitors (EDLCs), 828
Electrical systems, vehicle, 874
Electric charge. See Charge, electric
Electric conduction in metals, 1281
Electric constant (permittivity of free space),

732, 1030
written as farad per meter, 802

Electric current. See Alternating current (ac);
Current(s); Direct-current circuits

Electric dipole, 710–711
Electric dipole moments of molecules of

dielectric, 824–825
Electric dipole radiation, 1042–1045
Electric field(s), 96, 508

action on charges, 714–718
on axis of uniform disk of charge, 735–737
at conductor surfaces, 750–752
conservative, 860
due to a continuous charge distribution,

728
Coulomb’s law for, 705–706, 728–738
definition of, 705
due to dielectric, 824–825
dielectric breakdown in very high, 784–787
dipoles in, 717–718
discontinuity of, at surface charge, 749–750
electric dipoles in, 710–711
electric potential to compute, 772–773
due to infinite line charge, 748–749
for an infinite plane of uniform charge of

density, 777
motion of point charges in, 714–716
in nature, 705

as negative gradient of electric potential,
772

nonconservative, 860n, 962
due to a single point charge, 740
inside and outside a spherical shell of

charge, 778
due to system of point charges, 706
due to thin uniformly charged rod,

730–731
for uniformly charged infinite line,

732–733
due to uniformly charged solid sphere,

747–748
of uniformly charged thin spherical shell,

745
of uniform plane of charge, 737
using symmetry to calculate, with Gauss’s

law, 742–749
wave equation for, 1034

Electric field lines, 711–714, 933
of electric dipole, 712–713, 1043
electric flux and, 739–740, 741
Gauss’s law and, 738–741
magnetic field lines compared with, 937
for negative charge -q at small distance

from positive charge +2q, 713
for oppositely charged cylinder and plate,

752
in parallel-plate capacitor, 803
rogue, 712
rules for drawing, 712
of single positive point charge, 711
outside spherical vs. nonspherical

conductor with equipotential
surfaces, 781

for two equal positive point charges,
711–712

Electric flux, 739–740
definition of, 739
net flux through closed surface, 739–740,

741
net flux through spherical surface, 744

Electric force, 95
Electric grid, 1019
Electricity

charge, 694–696
conductors of, 697–699
Coulomb’s law and, 699–704
insulators of, 697
origin of word, 693

Electric potential, 763–800
on axis of charged ring, 774
on axis of uniformly charged disk,

775–776
continuity of, 765
for continuous distribution of charge,

773–781
Coulomb potential, 767
defined, 764
electric fields and, 765–767, 772–773
electrostatic potential energy, 787–790
on equipotential surfaces, 781–787
due to infinite line charge, 780–781
due to infinite plane of charge, 776–777
due to point charge, 767
potential difference, 764–767
reference point for, 767
relation between potential energy and, 764
as scalar function, 764
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inside and outside spherical shell of
charge, 778–779

due to system of point charges, 767–771
units for, 765

Electric ray, 851
Electrodes

of battery, 810
of electrical double-layer capacitors, 828

Electrolyte, 810
Electrolyte separator, 828
Electromagnetic attraction, 128
Electromagnetic energy, 233
Electromagnetic force, 95, 96
Electromagnetic interaction, 1390, 1404

bosons mediating in, 1403
properties of, 1405

Electromagnetic radiation/waves, 228, 232n,
495, 508–509, 521, 675, 683, 1040–1048

electric dipole radiation, 1042–1045
energy and momentum in an

electromagnetic wave, 1045–1048
energy density, 1045–1046
intensity (average power), 1045–1046, 1047
linearly polarized waves, 1070–1075
Maxwell’s equations for, 1030, 1034–1040
production of waves, 1042
radiation pressure, 1045, 1046–1048
speed of, 1030, 1058
as transverse waves, 1040

Electromagnetic spectrum, 1040–1041, 1049,
1129

Electromagnetic waves, 1175. See also Light
Electromagnetism, 2

Maxwell’s theory of, 1175
Electromotive force. See Emf
Electron(s), 51, 95, 352, 362, 896–897,

1227–1228, 1390, 1391. See also Free
electrons

atomic magnetic moments due to, 940
in bound state, 1192
classical electron radius, 800
cloud-of-charge picture of, 1192
Compton scattering and, 1178–1180
current loops and, 938
deflection of, 896–897
delocalized, 674n, 697
diffraction and interference patterns of,

1174
electric charge and transfer of, 695
energy of, 1229–1230
kinetic energy of, 1176
motion of, 42
orbital magnetic moment of, 1241–1242
rest energy of, 228, 1343
Schrödinger equation for two or more,

1220–1221
spin magnetic moment of, 1243
spin of, 352, 362, 1242–1243
spin resonance of, 1259
Thomson’s measurement of q/m for,

896–897
valence, 1240
wave function of, 1234
wave-particle duality, 1187

Electron affinity, 1262
Electron configuration(s), 1244, 1247,

1249–1251
for boron atom, 1248

for carbon atoms to neon atoms, 1248
of elements with Z 
 18, 1248, 1249–1251
of lithium atom in ground state, 1246
of sodium atoms to argon atoms, 1248

Electronic energy of diatomic molecule,
1271, 1274–1275

Electron microscopes, 1161, 1184
Electron neutrino, 1391, 1392
Electron–positron annihilation, 228
Electron volt (eV), 174–175, 177, 765
Electron waves, 1181–1185

barrier penetration, 1214–1217
de Broglie hypothesis, 1181–1183, 1184
diffraction and interference of, 1183–1184
reflection and transmission of, 1211–1217
scattering of, 1296–1297
standing, 1185, 1186
step potential, 1211–1213
wave function for, 1185–1187
wavelength of, 1183

Electroscope, 697
Electrostatic equilibrium, 750
Electrostatic field energy, 809–810
Electrostatic paints, 694
Electrostatic potential energy, 787–790

of continuous charge distribution, 789
of system, 788

of conductors, 789
of point charges, 788–789
two-charge, 767–768

Electrostatic powder coating, 719
Electrostatics, 694

equivalence of Gauss’s law and
Coulomb’s law in, 738, 741, 744, 753

Electroweak interaction, 95
big bang and, 1408

Electroweak theory, 1403, 1404
Element(s), 1227

chemical properties and physical
properties of, 1227–1228

with crystal structures, 1285
transition, 1248
with Z 
 18, 1248–1251

Elementary particles, 1341, 1389–1406. See
also Hadrons; Leptons; Quarks

conservation laws for, 1396–1400
electroweak theory, 1403, 1404
field particles (field quanta), 1403
grand unification theories (GUTs), 1406,

1408
masses of, 1402
spin and antiparticles, 1393–1396
standard model of, 1404–1406

Ellipse, 364
El Niño weather patterns, 353
Embossed holograms, 1165
Emf, 850–853

direction of, 962, 963, 965, 970
generators and motors, 972–973
induced, 959–960, 961–965
magnitude of, 970–971
motional, 959, 969–973
power supplied by, 851
self-induced emf (back emf), 967, 976, 999
source of, 850, 851
for stationary circuit in changing magnetic

field, 962
Emission (optical) spectra, 1251–1252

of diatomic molecule, 1274–1275

Emissivity, 683
Emitter, 1303–1304
Endothermic reaction, nuclear, 1370–1371
Endpoint cooking temperature (EPT), 584
Energy. See also Kinetic energy; Potential

energy; Relativistic energy
binding, 229, 230, 376, 1233, 1344–1345,

1360–1362
in capacitor, 806–810
chemical, 201, 219, 226–227
conservation of. See Conservation of energy
defined, 176
for diatomic molecule, 232, 1271–1274
dimension of, 8
dissipated by kinetic friction, 222
dissociation, 1263, 1284
Einstein’s equation for photon, 1079, 1081
in electric circuits, 849–853
electromagnetic, 233, 1045–1046, 1047
electrostatic field, 809–810
emf, 850–853
entropy and availability of, 652–653
Fermi, 1291–1293, 1310
first ionization, 1245, 1246, 1248, 1262
ground state, 232
intensity (average power), 1045–1046
internal (rest), 228, 231, 592, R-14
ionization, 1233
magnetic, 977–979
mass and, 228–231
orbit classification by, 375–378
of photons, 1176–1178
power and, 186–188
power delivered to a resistor, 850
of proton, 899–900
quantized, 612–613, 1174
quantum of, 201
radiation, 219
rate of potential energy loss, 850
rest, R-14, 228, 1342, 1360
rotational, 232n
of satellite, 377–378
in simple harmonic motion, 465–468
SI unit of, 593
solar, 629, 641
of sound waves, 508
stored in presence of dielectric, 821–824
of system, total, 209
thermal, 176, 201, 219, 221, 226, 592
transfer via waves on a string, 505–507

Energy density
in electromagnetic wave, 1045–1046
of electrostatic field, 809, 810
magnetic, 978–979

Energy distribution function, 1309
Energy gap, 1298–1299

superconducting, 1307–1308
Energy-level diagram, 232
Energy levels

for particle in three-dimensional box, 1219
rotational, 351–352

Energy quantization, 231–232
in atoms, 1180–1181
in box, 1289–1290
in other systems, 1196–1197
standing waves and, 1185

Engine(s)
Carnot, 637–643
diesel, 627

Electric potential (cont.)
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heat, 629, 630–631
internal-combustion, 631–632
peak rating of, 198
reversible, 637
steam, 630–631, 632, 641
Stirling, 659
work lost by, 642–643

Engine oil, coefficient of viscosity of, 446
Entropy, 645–646

energy availability and, 652–653
of ideal gas, 646
probability and, 653–654

Entropy changes, 646
for Carnot cycle, 650–651
for constant-pressure processes, 648–649
for free expansion of ideal gas, 647–648
during heat transfer, 649–650
for isothermal expansion of ideal gas,

646–647
for perfectly inelastic collision, 649

Equal areas, law of, 365, 371
Equality, vector, 20
Equation of state, 570
Equilibrium. See also Static equilibrium

general motion near, 467–468
neutral, 217
potential energy and, 216–219
sedimentation, 316
stable, 102, 217, 218
thermal, 564–566
unstable, 217

Equilibrium separation, 1284
Equinoxes, precession of, 362
Equipartition theorem, 577–578, 1295, 1297

conditions for validity of, 612
failure of, 611–614
heat capacities and, 609–610

Equipotential region, 781
Equipotential surfaces, 781–787
Equivalence, Principle of, 391, 1348–1349
Equivalent capacitance, 812

for capacitors in parallel, 812
for equally charged capacitors in series,

814, 815
Equivalent resistance, 677, 854, 855
Erbium, electron configuration of, 1250
Erg, 5
Erosion, 132
Error, round-off, 149
Escape speed, 374–375
Eta (meson), 1391
Ethane molecule, 1270
Ethanol, density of, 424
Ether

reference frame of, R-2–R-3
speed of light and, 1320–1321

Euler disks, 362
Euler’s method, 147–149
European Laboratory for Particle Physics

(CERN), 1394, 1395
Europium, electron configuration of, 1247,

1250
Eustachian tubes, 452
Events

simultaneous, 1330–1336
spacetime, R-6–R-7

Exact values, 9
Exa prefix, 5
Exchange interaction, 942–943

Excimer, 1279
Excited states, 359, 1252
Exclusion principle, 1081, 1222, 1244,

1290–1291
bosons and, 1307
elementary particles and, 1393
free electrons and, 1290–1291

Exothermic reaction, nuclear, 1370–1371
Expansion, thermal, 666–670

coefficient of linear expansion, 666, 667
coefficient of volume expansion, 

666–667
isothermal, 633
water and, 667–668

Expansion joints, 669
Expectation values, 1193–1196

calculating, 1194, 1195–1196
defined, 1193

Experimental uncertainty, 8
Experimentation, 2
Exponent, 10
Exponents and logarithms, M-8–M-10
Exponential decrease, 869
Exponential function, M-27–M-28
External forces, 155
Extraordinary ray of light, 1074, 1075
Eye, 1122–1124, 1126

resolution of, 1161
surgery on, 1131

Eyepiece (ocular), 1126

Fabry–Perot interferometer, 1172
Face-centered-cubic (fcc) structure,

1282–1283, 1285
Fahrenheit, Daniel, 565n
Fahrenheit temperature scale, 564–566, 569
Falkirk wheel, 423
Farad, 802
Faraday, Michael, 802, 817, 946, 959, 961
Faraday’s law, 960, 961–964, 1035–1036

defined, 962
Maxwell’s equation for, 1031, 1033, 1034
minus sign in, 962, 963, 965
restricted form of, 1031

Farsightedness, 1122
“Faster than gravity” demonstration, 329
Fat, body, 435–436

resistivity of, 847
Federal Communications Commission, 1049
Femto prefix, 5
Fermat, Pierre de, 1059
Fermat’s principle, 1060

derivation of laws of reflection and
refraction from, 1078–1079

Fermi, Enrico, 12
Fermi–Dirac distribution, 1289, 1309–1312
Fermi energy, 1291–1293

density of states in terms of, 1310
in one dimension, 1291
in three dimensions, 1291–1292

Fermi factor, 1293–1294, 1310, 1311
Fermi gas. See Free electrons
Fermi National Accelerator Laboratory, 51
Fermions, 352, 1393

wave function for two or more identical,
1222

Fermi questions, 12
Fermi temperature, 1293–1294
Fermium, electron configuration of, 1251

Ferromagnetism, 937, 938, 939, 942–946
Fiber optics, 1066, 1067
Field particles (field quanta), 1403
Field point, 378, 706
Fields, 96. See also Electric field(s); 

Magnetic field(s)
crossed, 895–897

Filter(s)
RC high-pass, 1024
trap, 1025

Fine structure, 1241–1243
Fine-structure constant, 1260
Fine-structure splitting, 1243
Finite potential difference, 764
First Bohr radius, 761, 1231–1232
First focal point, 1114
First harmonic, 542
First ionization energy, 1245, 1248

of lithium atom, 1246
of sodium, 1262

First-order spectrum, 1163
Fission, 229, 1372–1379

defined, 1372
distribution of fission fragments, 1376
reactors using, 1376–1379
schematic illustration of, 1375

Fizeau, Armand, 1056–1057
Flavors of quarks, 1400
Flicker bulb, 910–911
Flow. See also Bernoulli equation; Fluids

blood, 439, 445–446, 447
laminar, 446–447
resistance to, 445–447
steady-state, 439
streamlined, 440
turbulent, 438–439, 447
viscous, 445–447

Flow rate, 439
Fluids, 423–456

Archimedes’ principle, 432–438
Bernoulli equation, 440–445
buoyancy, 432–438
density of, 424–425
inviscid, 440
laminar flow of, 446–447
in motion, 438–447
pressure in, 425–431
sound waves in, 498
steady-state flow of, 439
Torricelli’s law, 441–442
Venturi effect, 442–445
viscosity of, 493

Fluorescence, 1082–1083
Fluorine, 1248, 1262

electron configuration of, 1249
Fluxon, 984
FM radio waves, 1041
Focal length, 1101–1102
Focal plane, 1101, 1102
Focal point, 1101, 1102
Focal ray, 1104, 1116
Foci of ellipse, 364
Foot, 5
Foot-pound, 174, 177, 187
Foot-pound per second, 187
Forbidden energy band, 1298
Force(s), 14, 309

action-at-a-distance, 95, 96, 704–705
average, 255–260
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buoyant, 432–438
central, 371
centripetal, 142
coercive, 955
combining, 96
conservative, 203–204, 209, 469
contact. See Contact forces
couples, 405–406
defined, 95
dimension of, 8
drag, 139–141, 438, 448
electric, 95
electromagnetic, 95, 96
external, 155
frictional, 102
fundamental units of, 5–6
gravitational (weight), 95, 96, 99–101
impulsive, 255–260
internal, 154–155
linear momentum and, 248
linear restoring, 458
line of action of, 302
magnetic, 95
of magnetic field, 888–892, 895
measurements and, 158
net, 96
Newton’s laws of motion and, 95–96
nonconservative, 203–204, 219
normal, 101, 102
position and, 179
potential-energy function and, 217–218
shear, 411
on simple pendulum, 471
SI unit of, 96
strong nuclear interaction (hadronic

force), 95, 96
tensile, 409
tension, 505–506
viscous, 445–447
weak interaction, 95, 96

Forced (driven) oscillations, 481–485
amplitude for, 482, 484
differential equation for, 483–484
phase constant for, 484
position for, 484

Force (spring) constant (k), 102
Ford Motor Company, 1165
Forestay, 415
Formula 1 cars, 448
Formulas, math, AP-5, back of book
Forward biased junction, 1302
Foucault, Jean, 1057
Foucault, Leon, 470
Foucault pendulum, 470
Fourier, J.B.J., 551–552
Fourier analysis (harmonic analysis), 551–552
Fractional quantum Hall effect, 907
Frames of reference. See Reference frame(s)
Francium, electron configuration of, 1251
Franklin, Benjamin, 563, 694, 803
Franklin, Rosalind, 1268
Franklin panes, 803
Fraunhofer diffraction patterns, 1159–1160
Free-body diagrams, 104–109

centripetal force and, 142
Free-electron laser, 1086–1087
Free electrons, 697, 840–841, 1286–1287,

1289–1296

contact potential, 1294–1295
energy quantization in box, 1289–1290
exclusion principle, 1290–1291
Fermi energy, 1291–1293
Fermi factor, 1293–1294, 1311
heat capacity due to electrons in metal,

1295–1296
number density of, 1291–1292, 1297

Free end, 546
Free expansion, 602

of ideal gas, 647–648, 652–654
Free-fall, 43–44, 71, 100
Free-fall acceleration, 43–44, 369, 370, 391
French Academy of Science, 655
Frequency(ies), 232

angular, 460, 471, 1009
beat, 538
collision, 578
cyclotron, 893
de Broglie, 1181–1182
fundamental, 542
natural, 482, 544, 1009, 1013
resonance, 482, 542–544, 546, 1013
of simple harmonic motion, 458, 460, 462
threshold, 1177

Fresnel, Augustin, 1060, 1159, 1175
Fresnel diffraction pattern, 1159–1160
Fresnel lens, 1116
Fresnel relations, 514
Friction, 94, 128–139, 630, 638

cars, antilock brakes, and, 138–139
coefficient of, 129, 130, 131, 132
kinetic, 129–130, 131, 138, 219, 221–225
rolling, 130, 131
static, 129, 131, 138
work-energy theorem with, 222

Frictional force, 102
Fullerenes, 1286
Fundamental frequency, 542
Fundamental mode of vibration, 542
Fundamental strong interaction, 1405
Fundamental theorem of calculus, 48
Fundamental unit of angular momentum, 351
Fundamental unit of charge, 695
Fuses, 859
Fusion

latent heat of, 596
nuclear, 229, 230, 1372, 1379–1382

Gabor, Dennis, 1165
Gadolinium, electron configuration of, 1250
Galaxies, clusters of, 386
Galilean transformation, 1322–1323
Galileo Galilei, 2, 3, 86, 92, 93, 94, 370, 592,

1056, 1129, 1320
Galileo’s Rule of Odd Numbers, 59
Galle, John, 394
Gallium, 1300

electron configuration of, 1249
Galvanometer, 867

tangent, 957
Gamgee, John, 655
Gamma decay, 1367–1368
Gamma rays, 508, 1041
Gamow, George, 1216, 1369
Gas(es)

compressibility of, 426
diatomic, 607, 609–610, 611–613, 614
dilute, 571, 574

Fermi. See Free electrons
free expansion of, 602
heat capacities of, 606–610
ideal. See Ideal gas
isobarically cooled, 604
isometrically heated, 604
kinetic theory of, 574–583
pressure-depth (altitude) relation and,

430–431
pressure exerted by, 575
PV diagrams of states of, 603–606
quasi-static adiabatic compression of,

615–618
rotation of, 613–614
sound waves in, 499
van der Waals equation for, 670–673
work done by, 602–603
work done on, 603–604, 605–606

Gas lasers, 1086, 1087
Gasoline, density of, 424
Gas phase, 1282
Gas thermometers, 566–569
Gauge, copper wire, 847
Gauge pressure, 429
Gauss (G), 889
Gauss, Carl Friedrich, 727
Gaussian surface, 742

inside material of conductor in
electrostatic equilibrium, 750–751, 752

spherical, 744
Gaussmeter, rotating coil, 993
Gauss’s law, 738–749, 1030

Coulomb’s law and, 738, 741, 744, 753
for magnetism, 932–933, 1033, 1034
Maxwell’s equation for, 1033, 1034
statement of, 738, 740–741
using symmetry to calculate electric field

with, 742–749
Gay-Lussac, Joseph, 569
Geiger, H. W., 1229
Gell-Mann, M., 1398, 1400
General relativity, 386, 1319, 1348–1350, R-1,

R-2
Generators, 850

ac, 972–973, 993, 997–998. See also
Alternating-current (ac) circuits

average power delivered by, 998
Geometric center, 150
Geometry

and trigonometry formulas, back of book
review of, M-11–M-12

Georgia Tech Research Institute, 448
Geosynchronous satellites, 392
Germanium, 1285

electron configuration of, 1249
resistivity and temperature coefficient of, 847

Germer, L. H., 1183–1184
Giga prefix, 5
Gilbert, William, 887
Glancing collision, 269–271
Glashow, Sheldon, 1403
Glass, 1282

coefficient of thermal expansion for, 666
density of, 424
resistivity of, 847
specific heat and molar specific heat of, 593
thermal conductivity of, 676

Global Positioning System (GPS), 21, 82,
1319, R-1

Force(s) (cont.)
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Globular cluster, 394
Gluons, 95, 1403, 1405
Glycerin, coefficient of viscosity of, 446
Goddard, Robert, 279
Goebel, Timothy, 356–357
Gold

boiling point of, 596
density of, 424
electron configuration of, 1250
latent heat of fusion of, 596
latent heat of vaporization of, 596
magnetic susceptibility of, 939
melting point of, 596
specific heat and molar specific heat of, 593
thermal conductivity of, 676
work function for, 1295

Golf ball collision, 247, 259–260
Goniometer, 834
Grace mission, 363
Gradient, 772
Grain boundaries, 1282
Gram, 5
Grand unification theories (GUTs), 1406,

1408
Graphite, 412, 1286

coefficient of thermal expansion for, 666
Gravitational constant, universal, 367, 368

measurement of, 369–370
Gravitational field, 96, 378–385

calculating, 379
center of gravity in, 302–303
defined, 378
of Earth, 100, 378
principle of equivalence and, 1348
inside solid sphere, 381–382
of solid sphere, 381
of spherical shell, 381, 384–385
of two point particles, 379
of uniform rod, 380

Gravitational field lines, 714
Gravitational force, 95, 96, 99–101
Gravitational interaction, 1390

bosons mediating in, 1403
properties of, 1405

Gravitational lenses, 386
Gravitational mass, 370
Gravitational potential energy, 202, 205–207,

374–378, 1349–1350
classification of orbits by energy, 375–378
escape speed, 374–375

Gravitational redshift, 1350
Gravitational torsional balance, 370
Gravitons, 95, 1403
Gravity, 43, 363–396. See also Newton’s law

of gravity
acceleration due to, 71
center of, 302–303, 398–399
Kepler’s laws and, 364–366, 370–373
similarity between Coulomb’s law and

Newton’s law of, 700–701
specific, 424–425
torque due to, 302–303
variations in, 363

Gravity board, 416
Gravity map, 363

of Earth, 380–381
Gravity waves, 498
Greece, ancient, 2
Greek alphabet, front of book

Grounded conductor, 698–699
Grounding, 861
Ground state, 231–232, 359, 1218

energy at, 232
of hydrogen, 1238–1239
wave function, 1209–1211

Group velocity, 553
Gyroscope, 339–340

Hadronic force (strong nuclear interaction),
95, 96, 1358, 1390

bosons mediating in, 1403
fundamental, 1405
properties of, 1405
residual, 1405

Hadrons, 95, 1390–1393, 1400–1401
big bang and, 1408
excited states of, 1405
strangeness of, 1399

Hafnium, electron configuration of, 1250
Hahn, Otto, 1374
Hale, G. E., 908
Half-life, 1216, 1364, R-17
Half-wave plate, 1075
Hall effect, 841, 905–907, 1300, 1317

quantum, 906–907
Hall resistance, 907
Hall voltage, 905–906, 907
Harmonic analysis, 551–552
Harmonic oscillator, 1196–1197

Schrödinger equation for, 1208–1211, 
1273

Harmonic series, 544
Harmonic synthesis, 552
Harmonic waves, 502, 503–508

interference–diffraction pattern of
multiple slits, 1157–1158

interference of, 536–542
interference pattern of three or more

coherent sources, 1153–1155
phasors to add, 1152–1158
single-slit diffraction pattern, 

1155–1157
Hassium, electron configuration of, 1251
Head-on collisions, 264–267, 271

fractional energy loss for, 266
Head-to-tail method, 15, 16
Hearing, threshold of, 512
Heat, 220. See also Thermal properties and

processes
conversion of work into, 630
defined, 592
latent, 595–598
mechanical equivalence of, 598
radiation of, 1042
theories of, 592

Heat capacity(ies), 592–595
calorimetry, 594–595, 619
defined, 592–593
due to electrons in metal, 1295–1296
equipartition theorem and, 609–610
of gases, 606–610
molar specific heat, 593, 607
of solids, 611
specific heat, 593–594
temperature and, 612

Heat-engine (Kelvin) statement of second
law of thermodynamics, 630–634,
636–637

Heat engines, 629, 630–631
efficiency of, 632, 633–634
internal-combustion, 631–632
schematic representation of, 632
second law of thermodynamics and,

630–634, 636–637
steam, 630–631, 632
work done by, 633

Heathrow International Airport, 193
Heating, Joule, 849, 1006
Heat islands, urban, 686
Heat pumps, 643–644
Heat reservoir, 632, 634, 637, 642–643
Heat transfer, 630, 674–685

conduction, 674, 675–682
convection, 578, 675, 683, 686
entropy changes during, 649–650
Newton’s law of cooling and, 675
radiation, 219, 228, 232n, 523, 531, 675,

683–685
Heavy hydrogen, 229
Heavy water (deuterium oxide), 229
Hecto prefix, 5
Heinlein, Robert, 392
Heisenberg, Werner, 1189
Helion, rest energy of, 1343
Heliostats, 641
Heliox, 570
Helium, 613, 1227, 1244–1245, 1248, 1266,

1267n
abundance of, 1407
boiling point of, 596
critical temperature for, 674
diffraction of, 1184
electron configuration of, 1249
electron interaction energy in, 1245
at high density, 672
latent heat of fusion of, 596
latent heat of vaporization of, 596
melting point of, 596
molar heat capacity of, 607
quantum mechanics of, 1220

Helium-neon laser, 1085–1086
Helmholtz coils, 951
Henry (H), 975
Henry, Joseph, 959, 961, 967
Herschel, Friedrich Wilhelm, 1129
Herschel, William, 394
Hertz (Hz), 458
Hertz, Heinrich, 1030
Hexagonal close-packed (hcp) structure, 1285
Hieron II, King, 432
Higgs boson, 1404
Higgs field, 1404
High-pass filter, RC, 1024
High-temperature superconductor (HTS)

ceramic, 985
Hiking out, 414
“Hohmann transfer orbit,” 390
Holes (in valence band), 1299
Holmium, electron configuration of, 1250
Holograms, 1164–1165
Holographic optical tweezers (hot) method,

1088
Hooke, Robert, 1174–1175
Hooke’s law, 102, 409, 458

for contact forces, 102
for torsional stress, 411
work done by spring obeying, 180–182
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Hoop
center of mass of semicircular, 153–154
moment of inertia for, 296

Hoover Dam, 237
Horizontal range of projectile, 72, 75–77
Horsepower (hp), 187
Hot-air balloon, 563
Howard, Luke, 686
Hubble, Edwin Powell, 1129, 1406
Hubble age, 1407
Hubble constant, 1406–1407
Hubble’s law, 57, 1353, 1406–1407
Hubble Space Telescope, 250, 331, 344–345,

1130
Humans, energy budget of, 619
Huygens, Christian, 1059, 1174–1175
Huygens’s construction or principle,

1059–1060
laws of reflection and refraction derived

from, 1077
Hybridization, 1270
Hybrid orbitals, 1270
Hydraulic lift, 428–429
Hydrochloric acid, absorption spectrum of,

1276–1277
Hydrogen, 1227. See also Bohr model of

hydrogen
critical temperature for, 674
diatomic, 607, 612–613
diffraction of, 1184
electric force in, 700–701
electron configuration of, 1247, 1249
energy-level diagram for, 1197
in first excited state, 1240–1241
gaseous, 1264
in ground state, 1238–1239
heat capacity of, 612–613
heavy, 229
isotopes of, 1358
line spectrum of, 1228
magnetic susceptibility of, 939
mass of, 573
molar heat capacity of, 607
molecular, 1261, 1265–1266
quantum theory of, 1220, 1236–1241
rotational energy of, 614
Rydberg constant for, 1229
speed of, 583

Hydrogen bonds, 1262, 1268, 1269
Hydrogen maser clock, 1350
Hydrogen sulfide, molar heat capacity of, 607
Hydrostatic paradox, 429
Hypersonic XLC, 114
Hysteresis, 944
Hysteresis curve, 944

Icarus (asteroid), 390
Ice. See also Water

coefficient of thermal expansion for, 666
density of, 424
specific heat and molar specific heat of,

593
thermal conductivity of, 676

Ice-point temperature (normal freezing
point), 564

Ideal battery, 850–851
Ideal gas, 570

adiabatic curve for, 615–618
bulk modulus of, 618

Carnot cycle for, 638–639
entropy of, 646
free contraction of, 653
free expansion of, 647–648, 652–654
internal energy of, 601–602
isothermal expansion of, 633, 646–647
isotherms for, 572
volume of, 572
work done by, 602–603
work done on, 603–604, 605–606

Ideal-gas law, 569–574
partial pressures, 570–574

Ideal-gas temperature scale, 568
Image of object, 1097. See also Optical images
Image point, 1062
Impact parameter, 269
Impedance, in parallel RLC circuit, 1018
Impulse, 247, 248

average force and, 256
specific, 286

Impulse collisions, 255–260
Impulse–momentum theorem, 248, 256
Impurity semiconductors, 1299–1300
Inches of mercury (inHg), 430
Incidence

angle of, 1061, 1063
plane of, 1061

Incoherent sources, 541–542
Indefinite integral, 49
Index of refraction, 1060–1061, 1062, 1063

definition of, 1060
of diamonds, 1066
dispersion and dependence on

wavelength of, 1068–1070
Indium, electron configuration of, 1250
Induced currents, 959, 965–967, 970
Induced emf, 959–960, 961–965

direction of, 962, 963, 965, 970
in generators and motors, 972–973
magnitude of, 970–971
motional emf, 959, 969–973
self-induced emf (back emf), 967, 976, 999
for stationary circuit in changing magnetic

field, 962
Inductance, SI unit of, 975
Induction

charging by, 697–698, 699
via grounding, 698
magnetic. See Magnetic induction

Inductive reactance, 1000–1001
Inductor(s), 976, 977–978. See also RL circuits

in ac circuits, 999–1001
average power delivered to, 1001
current and potential drop across, 1000
instantaneous power delivered to, 1001

Indy cars, 448
Inelastic collisions, 255, 271, 342. See also

Perfectly inelastic collisions
in one dimension, 260–264
in two and three dimensions, 268–269

Inelastic scattering (Raman scattering), 1082
deep, 1401

Inertia, 94
law of, 94–95
mass and, 96
moment of. See Moment of inertia

Inertial confinement, 1382
Inertial mass, 370

in “weightless” environment, 460

Inertial reference frame, 1320, R-2
Newton’s laws of motion and, 94–95
speed of light and, R-3–R-4

Infinite square-well potential, 1196, 1205–1206
Infrared waves, 1040–1041
Ingenieurbuero Stengel GmbH, 193
Initial conditions, 48
Initial-value problems, 48
Instantaneous acceleration, 35
Instantaneous-acceleration vector, 68
Instantaneous speed, 32–35
Instantaneous velocity, 32–35
Instantaneous-velocity vector, 64–65
Insulators, 677, 697

band structure of, 1298–1299
resistivities in, 1297

Intake stroke, 631
Intamin AG, 114
Integral

circulation, 933
defined, 48
indefinite, 49
table of, M-28–M-30, back of book

Integrating factor, 646n
Integration, 47–50

center of mass found using, 153–154
initial-value problems, 48
numerical, 147–149
velocity from a given acceleration, 47–48

Integration circuit, 1025
Intensity

of diffraction gratings, 1162
of electromagnetic wave, 1045–1046, 1047
for interference of three or more coherent

sources, 1154–1155
level of, 511–513
of light, 1070, 1071–1072
loudness and, 511–513
due to point source, 510
for single slit diffraction pattern, 1156–1157
SI units of, 510
in terms of phase difference, 1148
of three-dimensional wave, 510
of two-slit interference pattern, 1148–1149
wave, 510–513

Interference, 1175
beats and, 537–538
coherence and, 541–542
constructive, 537, 1144
defined, 1141
destructive, 537, 1144
of harmonic waves, 536–542
phase difference and, 539–541
in thin films, 1143–1145
of three or more coherent sources,

1153–1155
two-slit pattern, 1145–1149, 1151–1152
of waves, 1143

Interference–diffraction pattern of multiple
slits, 1151–1152

phasor method to calculate, 1157–1158
Interference fringes, 1144
Interferometer, Fabry–Perot, 1172
Integral calculus, M-28–M-30
Integration formulas, back of book
Internal-combustion engine, 631–632
Internal forces, 154–155
Internal reflection, total, 516
Internal resistance of battery, 852
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Internal (rest) energy, 231, 592, R-14
of bound systems, 231–232
of ideal gas, 601–602
relativistic, 1342, 1343, 1344
of system, 228

International Bureau of Weights and
Measures, 4, 21

International Earth Rotation and Reference
Systems (IERS) Service, 21

International Radiotelegraph Convention,
1049

International Space Station (ISS), 372–373
International Telecommunication Union, 1049
International Telegraph Union, 1049
Intraocular lenses (IOLs), 1131
Intrinsic semiconductor, 1299
Invar, coefficient of thermal expansion for,

666
Invariance of coincidences, R-7
Inviscid fluid, 440
Io (moon), 273, 1056
Iodine, electron configuration of, 1250
Ion, 697
Ionic bonds, 1262–1263, 1266
Ionization, 1233
Ionization energy, 1233

first, 1245, 1246, 1248, 1262
Ions, 1228
Iota Draconis, 390
Iridium, electron configuration of, 1250
Iris, 1122
Iron, 1285

bulk modulus of, 426
density of, 424
electron configuration of, 1247, 1249
maximum magnetic field and relative

permeability values for, 945
resistivity and temperature coefficient of,

847
shear modulus of, 411
soft, 944
strength of, 410
thermal conductivity of, 676

Iron–silicon, 945
Irreversible processes, 630, 638, 645
Isobarically cooled gas, 604
Isobaric compression, 603
Isochoric processes, 604n
Isometrically heated gas, 604
Isothermal bulk modulus, 499n, 618n
Isothermal compression, 604
Isothermal expansion, 633

of ideal gas, 646–647
Isotherms, 572

liquid–vapor, 670–673
Isotopes, 1358

masses of, 897, 1361
of nickel, 898

Isotropic materials, 1074
Isovolumetric processes, 604n

Jamin refractometer, 1173
Jefferts, Steve, 4
Josephson, Brian, 1308
Josephson effect, 1308–1309
Josephson junction, 1308
Joule (J), 174, 177

conversion between electron volts and,
765

Joule, James, 2, 592, 593, 598, 601–602
Joule heating, 849, 1006
Junction lasers, 1086
Junction rule, 860, 864, 878
Junctions, 814

diodes, 1302–1303
forward biased, 1302
reverse biased, 1302
semiconductor, 1301–1305, 1308

Kamioka Liquid Scintillator Anti-Neutrino
Detector (KamLAND), 1392

Kaon, 1391, 1393
Karate collision, 257
Keck Observatory, 1130
Kelvin (K), 4
Kelvin (absolute) temperature scale, 568–569
Kelvin (heat-engine) statement of second

law of thermodynamics, 630–634,
636–637

Kepler, Johannes, 93, 364–366, 367, 390
Kepler’s laws, 364–366

derivation of, 370–373
second, 361
third, 25

Kilocalorie, 593n, 627
Kilogram (kg), 4, 96
Kilo prefix, 5
Kilowatt-hour (kW·h), 187
Kinematic equations for constant

acceleration, 37–47
derivation of, 49

Kinematics, 27. See also Motion in one
dimension

particles in, 28
Kinetic energy, 201, 1341

conversion to electromagnetic energy, 233
defined, 176
of diatomic molecule, 609–610
of electrons, 1176
of molecule, 575–576
of neutron, 287–288
power and, 187–188
relativistic, 1342, 1343–1344
rotational, 292–293, 309, 310–311, 351
in simple harmonic motion, 465, 466
speed and, 177
of system, 254–255, 297–298
thermal, 1282
translational, 190–192

Kinetic friction, 129–130, 131, 138, 219,
221–225

coefficient of, 129
energy dissipated by, 222

Kinetic theory of gases, 574–583
calculating pressure exerted by gas, 575
distribution of molecular speeds, 579–583
equipartition theorem, 577–578, 609–610,

611–614
mean free path, 578–579
molecular interpretation of temperature,

575–576
Kirchhoff, Gustav Robert, 1060
Kirchhoff’s rules, 860–868

junction rule, 860, 864, 878
loop rule, 813, 860–863
multiloop circuits and, 863–866
single-loop circuits and, 860–863

“Kirkwood gaps,” 390

Korsunsky, Boris, 161
Krypton

electron configuration of, 1249
molar heat capacity of, 607

Laboratory reference frame, 271
Lambda (baryon), 1391
Lamb shift, 1260
Lamina, 446
Laminar flow, 446–447
Land, E. H., 1071
Lanthanum, electron configuration of, 1250
Large Hadron Collider, 1404
Laser cooling and trapping, 1052
Lasers, 196, 1084–1087

optical trapping using, 1088
recent developments in, 1086–1087

Laser scissors, 1087
Laser tweezers, 1047
Latent heat, 595–598

of fusion, 596
of vaporization, 596

Lateral magnification, 1105
Laughlin, R. B., 907
Lawrence, E. O., 898, 1370
Lawrencium, electron configuration of, 1251
Lawson, J. D., 1380
Lawson’s criterion, 1380
LC circuits, 1007–1009
Lead

boiling point of, 596
bulk modulus of, 426
density of, 424
electron configuration of, 1251
latent heat of fusion of, 596
latent heat of vaporization of, 596
melting point of, 596
resistivity and temperature coefficient of,

847
shear modulus of, 411
specific heat and molar specific heat of,

593
strength of, 410
thermal conductivity of, 676

Leap second, 21
Leap years, 21
Left circularly polarized wave, 1094
Length

of day (LOD), 353
as dimension, 7
proper, 1326
SI unit of, 4

Length contraction, 1326–1328, R-8–R-9
Lens(es), 1108–1120

of eye, 1122
eyepiece or ocular, 1126
Fresnel, 1116
gravitational, 386
intraocular (IOLs), 1131
nonreflecting, 1145
objective, 1126
ray diagrams for, 1116–1118
refraction in, 1108–1111
thin, 1111–1120, 1121

Lens-maker’s equation, 1112
Lenz’s law, 965–968, 970

defined, 965
induced current and, 965–967
in terms of magnetic flux, 965–966
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Lepton era, 1408
Lepton number, 1397

conservation of, 1396–1397
Leptons, 51, 95, 1390–1393, 1397, 1400

big bang and, 1408
masses of, 1402
in standard model, 1404

Lever, 415
Lever arm, 302
LeVerrier, Urbain, 394
Leyden jar, 803, 828
Lifetime, mean, 1363–1364

for gamma decay, 1368
Lift, 448
Light, 508, 1055–1096, 1174–1181. See also

Photons; Quantum mechanics; Wave-
particle duality

bent, 386
black, 1083
coherence length of, 1143
coherence time of, 1143
diffraction of, 517
Doppler shift for, 522
in gravitational field, 1348–1350
optical trapping using, 1088
particle nature of, 1175–1180
perceived colors of, 1055
polarization of, 1070–1076
propagation of, 1059–1060
quantization of, 3
reflection and refraction of, 1060–1070,

1077–1079
sources of, 1081–1087
spectra, 1055, 1080
speed of, 4, 56, 1030, 1056–1059, 1061,

1074, 1320–1321, R-3–R-4
visible, 1040, 1041, 1175, 1177–1178
wavelength of, 1162–1165
wave-particle duality, 1079, 1187
wave theory of, 1159, 1174–1175

Light clock, R-5–R-6
Light-emitting diodes (LEDs), 1303
Light-in-flight recording, 1113
Lightning, 727

as arc discharge on large scale, 785
cloud-to-ground (CG), 791
“runaway breakdown” and formation of,

791
Lightning rod, 698
Light rays, 1074, 1075
Light waves, 1042
Light-year, 26, 1059
Like poles, 887
Linear accelerators, 51
Linear electric quadrupole, 796
Linear induction motors (LIMs), 193
Linearly damped system, 477–478
Linear momentum, 198, 247–288. See also

Collisions
conservation of. See Conservation of linear

momentum
defined, 248
force and, 248
SI units of, 248
of system, 248–249, 271, 288
as vector quantity, 248

Linear motion, rotational motion and,
308–309

Linear restoring force, 458

Line (cylindrical) symmetry, 742
Line of action of force, 302
Line spectra, 1080

sources of, 1081
Line wave, 509
Liquid crystals, 584
Liquid-drop model, 1358
Liquid lasers, 1086
Liquid nitrogen, 583
Liquid oxygen, 941
Liquids, 1282

compressibility of, 426
Liquid–vapor isotherms, 670–673
Liter (L), 11, 424
Lithium, 1227, 1246–1247, 1248, 1285

electron configuration of, 1249
Livingston, M. S., 898, 1370
Lloyd’s mirror, 1148–1149
Load resistance, 1005
Logarithms and exponents, M-8–M-10
London, England, 686
London Eye, 289
Longitudinal waves, 496
Long radio waves, 1041
Long-range order, 1282
Long solenoid, 926
Loop antenna, 1043
Loop rule, 813, 860–863
Lorentz, Hendrik A., 1281, 1327
Lorentz-FitzGerald contraction, 1327
Lorentz invariant, 1356
Lorentz transformation, 1322–1330

length contraction, 1326–1328
relativistic Doppler effect, 1328–1330
time dilation, 1324–1326, 1327–1328

Loudness, 511–513
Loudspeakers, 511
Luminous intensity, SI unit of, 4
Lutetium, electron configuration of, 1250
Lyman, T., 1233
Lyman series, 1233

Macdonald Observatory, 6
Mach angle, 523
Machines, simple, 197
Mach number, 523
Macho (massive compact halo object), 386
Madelung constant, 1283
Magnesium, 1285

electron configuration of, 1249
magnetic susceptibility of, 939

Magnet, poles of, 887–888, 932–933. See also
Magnetic dipole; Magnetic
monopoles

Magnetically hard materials, 945
Magnetically soft material, 944
Magnetic bottle, 894, 895
Magnetic confinement, 1380–1381
Magnetic constant (permeability of free

space), 918, 1030
Magnetic dipole, 932–933

potential energy of, 941–942
Magnetic dipole moment(s), 901, 902–904

of atoms, 937
of current loops, 901, 902–904
potential energy of, 902–903

Magnetic domain, 943
Magnetic energy, 977–979

stored in inductor, 977–978

Magnetic energy density, 978–979
Magnetic field(s), 887–958. See also Magnetic

induction; Magnetism
Ampère’s law, 933–937, 1036
current loops, 901, 902–904, 919–923
of currents (Biot–Savart law), 919–932
cyclotron and, 898–899
of Earth, 887, 889, 908
force exerted by, 888–892, 895
Gauss’s law for magnetism, 932–933
Hall effect, 905–907
mass spectrometer and, 897–898
of moving point charge, 892–900, 918–919
between parallel wires, 930–932
remnant, 944–945
SI unit of, 888
of solenoid, 923–927, 938
in straight wire, 927–930
of Sun, 908
Thomson’s measurement of q/m for

electrons, 896–897
velocity selector, 895
wave equation for, 1035

Magnetic field lines, 891, 932, 933
of circular current loop, 921
of electric dipole, 1043
electric field lines compared with, 937
of ferromagnetic materials, 943
of long, straight wire, 928
of solenoid, 924

Magnetic flux, 932, 959–961, 967
defined, 960
through flat surface, 960
Lenz’s law in terms of, 965–966
SI unit of, 960

Magnetic force, 95
Magnetic induction, 959–994

defined, 959
eddy currents, 974
Faraday’s law, 960, 961–964, 965
induced currents, 959, 965–967, 970
induced emfs, 959–960, 961–965, 970, 976,

999
Lenz’s law, 965–968, 970
magnetic flux, 959–961, 967
motional emf, 959, 969–973
mutual inductance, 976–977
in RL circuits, 979–983
self-inductance, 974–976, 978
in superconductors, 983–985

Magnetic moment(s)
angular momentum and, 939–940
atomic, 939–941, 943

Magnetic monopoles, 1051
Magnetic quantum number, 1235, 1237
Magnetic resonance imaging (MRI), 1306
Magnetic susceptibility, 939, 941, 942

of ferromagnetic materials, 943, 944
of a superconductor, 946

Magnetism, 937–947
atomic magnetic moments, 939–941
diamagnetism, 937, 938, 939, 946
ferromagnetism, 937, 938, 939, 942–946
Gauss’s law for, 932–933, 1033, 1034
paramagnetism, 937, 938, 939, 941–942

Magnetization, 938–939, 942
saturation, 940–941
SI units for, 938

Magnetization vector, 938
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Magnification
angular, 1125, 1127, 1128
lateral, 1105
due to refraction, 1109

Magnifier, simple, 1124–1126
Magnifying power

of microscope, 1127
of simple magnifier, 1125
of telescope, 1128

Magnitude
order of, 12–13
quantities with, 14. See also Vector(s)

Maiman, Theodore, 1084
Malus, E. L., 1072
Malus, law of, 1071
Manganese

electron configuration of, 1249
work function for, 1295

Manganin, resistivity and temperature
coefficient of, 847

Manometer, open-tube, 429
Marconi, Guglielmo, 1049
Maricourt, Pierre de, 887
Marine electrical systems, 874
Mark I detector, 1392
Marsden, E., 1229
Mass(es), 5–6, 96–98, 309

of astronomical object, 373
of atomic particles, 228
of atoms, 1227
center of. See Center of mass
comparing, 98
as dimension, 7
of elementary particles, 1402
energy and, 228–231
gravitational, 370
of hydrogen atom, 573
inertial, 370
molar (molecular), 573
Newton’s second law and, 97
of nucleus, 1360–1362
pendulum motion and, 471
quantitative description of, 98
reduced, 1272
relativistic, 1340, R-12–R-13
relativistic energy and, 1344–1347
rest, 1340, R-13n
SI unit of, 4, 96
sprung, 479
system with continuously varying, 273–276
weight vs., 100

Mass flow rate, 439
Massive compact halo object (macho), 386
Mass number (nucleon number), 1358
Mass spectrometer, 879, 897–898
Mathematics

review of, M-1–M-30
formulas, AP-5, back of book

Matter
dark, 386
phases of, 1282

Matter waves, 1181–1185
Maxwell, James Clerk, 2, 937, 1029, 1175, 1321
Maxwell–Boltzmann distribution, 582–583,

590, 1309–1311
Maxwell–Boltzmann energy distribution

function, 583
Maxwell–Boltzmann speed distribution

function, 582

Maxwell’s equations, 1029–1040
for Ampère’s law, 1030–1031, 1033, 1034
displacement current and, 1030–1033
for electromagnetic waves, 1030,

1034–1040
for Faraday’s law, 1031, 1033, 1034
for Gauss’s law, 1033
for Gauss’s law for magnetism, 1033, 1034

Mean free path, 578–579, 1288–1289
classical calculation of, 1289
quantum calculation of, 1296–1297

Mean lifetime, 1363–1364
for gamma decay, 1368

Mean orbital radius, 365n
Mean square score, 580
Measurements, 3–14

dimensions of physical quantities, 7–8
forces and, 158
order of magnitude, 12–13
scientific notation and, 9–11
significant figures, 8–11
uncertainty in, 8
units of, 3–7

Mechanical advantage, 197, 415
Mechanical energy

conservation of. See Conservation of
mechanical energy

kinetic friction and, 221–225
nonconservative forces and, 219
in simple harmonic motion, 465–466
of system, 254
total, 209
work-energy theorem for systems, 209

Mechanical equivalence of heat, 598
Mechanics, defined, 27
Medium

dispersive and nondispersive, 553
proportional limit of, 409, 534

Meekhof, Dawn, 4
Megabyte (MB), 24
Mega prefix, 5
Meissner, Walter, 983
Meitnerium, electron configuration of, 1251
Melting point, 596
Mendelevium, electron configuration of, 1251
Mercury (element)

boiling point of, 596
bulk modulus of, 426
coefficient of thermal expansion for, 666
critical temperature for, 1306
density of, 424
electron configuration of, 1251
latent heat of fusion of, 596
latent heat of vaporization of, 596
line spectrum of, 1228
magnetic susceptibility of, 939
melting point of, 596
resistivity and temperature coefficient of,

847
specific heat and molar specific heat of, 593

Mercury barometer, 430
Mercury (planet), excess precession of

perihelion of orbit of, 1349
Mesons, 1390, 1391, 1393, 1398, 1400, 1405

", 1401
Y, 1401

Metabolic rate, 237
Metal(s)

charge carriers in, 905

conduction in, 1281–1282, 1286–1289,
1296–1297

free electrons. See Free electrons
impurities in, 1297
resistivity of, 1281, 1286–1288, 1296, 1297,

1299
work functions for, 1294–1295

Metallic bonds, 1262, 1268–1269
Metastable state, 1083, 1368
Meter (m), 4

conversion factor between light-years and,
1059

Methane molecule, 322, 1270
Michelson, Albert, 1057, 1321, R-2–R-3
Microlens, 386
Micro prefix, 5
Microscope

compound, 1126–1127
electron, 1161, 1184

Microwave ovens, 717
Microwaves, 508, 1041
Microwave technology, 51
Millennium bridge, 486
Millibar, 430
Millikan, R. A., 1177
Milli prefix, 5
Mimas (moon), 390
Minimum deviation, angle of, 1070
Mirages, 1067
Mirror(s), 1097–1107

concave, 1099–1104, 1105
convex, 1105, 1106–1107
focal length of, 1101–1102
focal plane of, 1101, 1102
focal point of, 1101, 1102
Lloyd’s, 1148–1149
mirror equation, 1102
parabolic, 1121
plane, 1097–1099, 1105
ray diagrams for, 1104–1107
spherical, 1099–1104
spherical aberration of, 1100

Modal dispersion, 1093
Modelocking, 1087
Mode of vibration, 542
Moderator, 1376–1377
Modern physics, 3
Moiré pattern, 557
Molar (molecular) mass, 573
Molar specific heat, 593, 607
Mole (mol), 4, 570
Molecular force of attraction, 102
Molecular (molar) mass, 573
Molecular orbitals, 1262
Molecular thermometers, 584
Molecules, 1261–1280

analysis with analytical ultracentrifuge,
316

average translational kinetic energy of,
575–576

bonding. See Bond(s)
diatomic. See Diatomic molecules
distribution of speeds of, 579–583
DNA, 1268
elastic collisions between, 264
energy distribution of, 583
energy-level diagram for rotating, 351
energy states of, 359–360
escape speed of, 375
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light quantum emitted by, 359
in liquid, 424
mean free path of, 578–579
moment of inertia of, 1272
nonpolar, 718, 1267
organic, 1270
polar, 717, 1267
polarized, 718
polyatomic, 1269–1270
root-mean-square speed of, 576

Molybdenum, 1285
electron configuration of, 1250

Moment arm, 302
Moment of inertia, 293–300, 309

calculating, 294–300
for continuous objects, 294–296
defined, 293
estimating, 294
of molecule, 1272
parallel-axis theorem, 297–300
for system of discrete particles, 293–294
of uniform bodies of various shapes,

295–296
Momentum, 309. See also Angular

momentum; Linear momentum
classical, 1340
in electromagnetic wave, 1046–1048
of photon, 1179
relativistic, 1340–1341, R-12–R-13
relativistic energy and, 1344

Monopoles, magnetic, 1051
Mood rings, 584
Moon

atmosphere of, 375
distance to, 6
escape speed for, 375

Morley, Edward, 1321, R-2–R-3
Morse potential, 495
Moseley, Henry, 1253–1254
Most probable speed, 582
Motion. See also Newton’s laws of motion;

Oscillations; Rotation; Simple
harmonic motion

absolute, 522, 1320–1322
of center of mass, 154–157
critically damped, 477
damped, 477
of electron, 42
fluids in, 438–447
laws of, 2
linear, 308–309
overdamped, 477, 479
perpetual, 655
planetary, 364–366
straight-line, 179–182
underdamped, 477–478, 481

Motional emf, 959, 969–973
defined, 969
direction of, 970
generators and motors, 972–973
magnitude of, 970–971

Motion along a curved path, 141–146
centripetal force, 142
unbanked and banked curves, 144–146
work–kinetic-energy theorem for, 188–189

Motion diagrams, 37
Motion in one dimension, 27–62

acceleration, 35–47

average velocity and speed, 29–32, 39–40,
50, 64

displacement, 14, 17, 27, 28–29, 291, 309
instantaneous velocity and speed, 32–35
integration to derive equations of, 47–50
position, 28–29

Motion in two and three dimensions, 63–92
acceleration vectors for, 68–71
circular motion. See Circular motion
position and displacement vectors for, 64
projectile motion. See Projectile motion
relative velocity, 66–67
tacking, 63
velocity vectors for, 64–66

Motors
electrical, 973
linear induction (LIMs), 193

Müller, K. Alexander, 1306
Multiloop circuits, Kirchhoff’s rules and,

863–866
Multimeter, 867
Multiplication

significant figures in, 9
vector, by scalar, 17, 20

Mu-metal, maximum magnetic field and
relative permeability values for, 945

Muonium atom, 1260
Muon neutrino, 1391
Muons, 95, 1327–1328, 1390–1391, R-18

rest energy of, 1343
Musical instruments, 462, 545, 548–550,

551–552
Mutual inductance, 976–977

defined, 976

N3L pair, 110
Nanolasers, 1087
Nano prefix, 5
Nanotubes, carbon, 412, 1286
National Electric Reliability Council, 1019
National Institute of Standards and

Technology (NIST), 4
National Physical Laboratory, 21
Natural frequency, 482, 544, 1009, 1013
Natural philosophy, 2
Near point, 1122, 1123
Nearsightedness, 1122
Negative (diverging) lens, 1113–1114
Negative vector, 26
Neodymium, electron configuration of, 1250
Neon, 1248

critical temperature for, 674
electron configuration of, 1249
molar heat capacity of, 607

Neoprene, resistivity of, 847
Neptune, 394–395
Neptunium, electron configuration of, 1251
Net force, 96
Neutral buoyancy, 453
Neutral equilibrium, 217
Neutral rotational equilibrium, 407–408
Neutrinos, 51, 1366, 1390, 1391–1392, 1397
Neutron-capture cross sections, 1371–1372
Neutrons, 51, 95, 352, 695, 1227, 1357–1358,

1389
atomic masses of, 1361
beta decay of, 1365
delayed, 1378–1379
diffraction patterns of, 1184

elastic collision of nucleus and, 266
kinetic energy of, 287–288
reactions with, 1371–1372, 1373
rest energy of, 228, 1343
thermal, 1371

Neutron stars, 88, 293, 356, 394
Newton (N), 96
Newton, Isaac, 2, 3, 93, 94, 96, 162, 248, 367,

370, 592, 1080, 1174, 1175, 1320
Newtonian (nonrelativistic) mechanics, 231
Newtonian relativity, 1320–1321
Newton’s law of cooling, 675, 685
Newton’s law of gravity, 363, 367–373

defined, 367
gravitational and inertial mass, 370
inverse-square nature of, 367–368, 371
Kepler’s laws and, 364, 371–372
measurement of G, 369–370

Newton’s laws of motion, 93–172
applied to problems with two or more

objects, 111–114
Archimedes’ principle from, 432
center of mass, 149–157
contact forces, 101–104
drag forces, 139–141
first (law of inertia), 94–95
force, 95–96
free-body diagrams and, 104–109
friction, 94, 128–139
inertial reference frames, 94–95
mass, 5–6, 96–98, 309
motion along a curved path, 141–146
second, 96, 97–99, 104–109, 155, 231, 248,

273, 301–309, 336–337, 339, 348–349
third, 109–111, 341, 358

Newton’s rings, 1144
Nichrome, resistivity and temperature

coefficient of, 847
Nickel

electron configuration of, 1249
isotopes of, 898
work function for, 1295

Niobium, electron configuration of, 1250
Nishijima, K., 1398
Nitric oxide, critical temperature for, 674
Nitrogen

boiling point of, 596
electron configuration of, 1249
emission spectrum of, 1275
gaseous, 1264
latent heat of fusion of, 596
latent heat of vaporization of, 596
liquid, 583
magnetic susceptibility of, 939
melting point of, 596
molar heat capacity of, 607

Nitrogen oxide, molar heat capacity of, 607
Nitrox, 570
N number, 1359
Nobelium, electron configuration of, 1251
Nodes, 543
Nonconservative electric fields, 860n, 962
Nonconservative forces, 203–204, 219
Nondispersive medium, 553
Nonparaxial rays, 1100
Nonpolar molecules, 718
Nonrelativistic (Newtonian) mechanics, 231
Normal boiling point (steam-point

temperature), 565, 673

Molecules (cont.)
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Normal distribution, 582
Normal force, 101, 102
Normal freezing point (ice-point

temperature), 564
Normalization condition, 580, 581, 1186–1187
Nova target chamber, 1382
npn transistor, 1304
n-type semiconductor, 1300, 1301
Nuclear charge, effective, 1246, 1247
Nuclear interaction, strong (hadronic force),

95, 96
Nuclear interaction, weak, 1390
Nuclear physics, 1357–1388. See also

Radioactivity
fission, 229, 1372–1379
fusion, 229, 230, 1372, 1379–1382

Nuclear reactions, 229, 1370–1372
endothermic, 1370–1371
exothermic, 1370–1371
with neutrons, 1371–1372, 1373
Q value of, 1370

Nucleon number (mass number), 1358
Nucleons, 1358, 1390, 1391, 1408
Nucleosynthesis period, 1408
Nucleus/nuclei, 1229, 1357–1362

daughter, 1366
elastic collision of neutron and, 266
mass and binding energy, 1360–1362
N and Z numbers, 1359
parent, 1366
radius of, 1227
size, shape, and density of, 1358

Nuclide, 1358
Null detector, 885
Number density, 841, 843–844, 1291–1292,

1297
Numerical aperture of optic fiber, 1093
Numerical integration, 147–149
Nutation, 340

Oak, thermal conductivity of, 676
Objective lens, 1126
Ochsenfeld, Robert, 983
Ocular (eyepiece), 1126
Oersted, Hans Christian, 917, 919
Ohm, 844, 907
Ohmic materials, 845
Ohmmeters, 845, 867–868
Ohm’s law, 845–846, 1281
Oil, coefficient of viscosity of, 446
Omega (baryon), 1391
One-dimensional collisions. See Collisions in

one dimension
O’Neill, Gerard, 171
Onnes, H. Kamerlingh, 1305–1306
Open-circuit terminal voltage, 810, 811
Oppenheimer, J. Robert, 1350
Optical images, 1097–1140

aberrations, 1100, 1121
lenses, 1108–1120
mirrors, 1097–1107, 1121
optical instruments, 1122–1130, 1160–1161
real image, 1099, 1105
reflection, 1103, 1105
virtual image, 1097, 1100, 1105

Optically flat plates, 1145
Optical pumping, 1084
Optical spectra, 1251–1252

of diatomic molecule, 1274–1275

Optical trapping, 1088
Optical tweezers, 1088
Optical vortex, 1088
Optic axis, 1074–1075
Optic fiber, numerical aperture of, 1093
Optic nerve, 1122
Orbital angular momentum, 337, 349–350,

1235, 1237, 1241, 1242
quantization of, 351–352

Orbital quantum number, 1235
Orbital resonance, 390
Orbitals

atomic, 1269–1270
molecular, 1262, 1270

Orbits
classification by energy, 375–378
planetary, 364–366

Order of magnitude, 12–13
Ordinary ray of light, 1074
Organic molecules, 1270
Organ pipe, 548
Orrery, 364
Oscillations, 232, 457–495

damped, 477–481
driven (forced), 481–485
large-amplitude, 473–474
of Millennium bridge, 486
natural frequency of, 482
of object on vertical spring, 468–470
physical pendulum, 474–477
simple harmonic motion, 458–468
of simple pendulum, 470–474
torsional oscillator, 474

Oscillator, torsional, 472, 474
Osmium, 1285

density of, 424
electron configuration of, 1250

Otto cycle, 632, 634
Overdamped motion, 477, 479
Overtone, 542
Oxygen

boiling point of, 596
critical temperature for, 674
diatomic, 613
electron configuration of, 1249
latent heat of fusion of, 596
latent heat of vaporization of, 596
liquid, 941
magnetic susceptibility of, 939
melting point of, 596
molar heat capacity of, 607

Palladium, electron configuration of, 1250
Parabolic mirrors, 1121
Parallel-axis theorem, 297–300

applying, 297
proof of, 297–298

Parallel circuits
equivalent capacitance for capacitors in,

812
resistors in, 854–858
RLC, 1018

Parallelogram method, 16
Parallel-plate capacitor, 803–804, 868

capacitance of, 803, 818
energy stored in, 809, 821–823
polarization of homogeneous dielectric in,

825
Parallel ray, 1104, 1116

Parallel vectors, 15
Paramagnetism, 937, 938, 939, 941–942
Paraxial rays, 1100, 1101
Parent nucleus, 1366
Parsec, 26
Partial derivative, 501
Partial pressures, 570–574

defined, 570–571
law of, 571

Particle(s), 190
angular momentum of, 334–335, 337–338,

348, 351
bound, 350
classical, 1186–1187
defined, 28
elementary. See Elementary particles
energy exchange by, 1174
force of attraction between, 367–368
impulse–momentum theorem for, 256
position as a function of time, 33–34
propagation of, 1174
Schrödinger equation for, 1205–1208,

1220–1222
source points, 378
“spin-one-half,” 352
strange, 1398–1399
in three-dimensional box, 1219–1220
transmitted, 517
waves vs., 517

Particle detectors, 51, 1303
Particle in a box, 1189–1193

allowed energies for, 1190
calculating probabilities and expectation

values for, 1194–1195
ground-state energy for, 1190
photon emission by, 1192–1193
standing-wave condition for, 1189–1190
standing-wave functions for, 1190–1193

Particle-induced X-ray emission (PIXE), 51
Pascal (Pa), 426
Pascal, Blaise, 428, 453
Pascal’s principle, 428
Paschen series, 1233
Path-length difference, 1142, 1143–1144
Pauli, Wolfgang, 1081, 1222, 1366
Pauli exclusion principle, 1081, 1222, 1244,

1290–1291
bosons and, 1307
elementary particles and, 1393
free electrons and, 1290–1291

PCBs, 828
Peak current, 998, 1000
Peak rating, 198
Pendulum

ballistic, 262, 347
Foucault, 470
physical, 474–477
simple, 470–474
torsional, 474

Penzias, Arno, 1407
Percussion, center of, 323
Perfectly inelastic collisions, 255, 271, 342,

1345–1346
entropy change for, 649
in one dimension, 260–264

Performance, coefficient of
for heat pump, 644
for refrigerator, 635

Perihelion, 364, 365
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Period, 80, 232
cyclotron, 893, 894, 899
for large-amplitude oscillations, 473
of physical pendulum, 475
of planet, 364, 365
of simple harmonic motion, 458, 459, 462
of simple pendulum, 470, 471
of torsional oscillator, 474

Periodic table, 1244–1251, AP-6
beryllium, 1247
boron to neon, 1247–1248
elements with Z 7 18, 1248–1251
helium, 1244–1245
lithium, 1246–1247
sodium to argon, 1248

Periodic waves, 503–509
electromagnetic, 508–509
harmonic, 503–508

Perl, Martin Lewis, 1390
Permalloy, maximum magnetic field and

relative permeability values for, 945
Permeability, 944

of free space (magnetic constant), 918,
1030

relative, 939, 944
Permittivity

of dielectric, 818
of free space (electric constant), 732, 802,

1030
Perpetual motion, 655
Peta prefix, 5
Pfund, H. A., 1233
Phase

changes of, 592n, 595–598
of harmonic wave, 504
of simple harmonic motion, 459–460

Phase coherence, 1143
Phase constant, 459

for driven oscillator, 484
Phase diagrams, 673–674
Phase difference, 1142–1143

intensity in terms of, 1148
due to path-length difference, 1142,

1143–1144
due to reflection, 1142–1143, 1144

Phases of matter, 1282
Phase velocity, 553
Phasors, 1010–1011, 1012, 1152–1158

to calculate interference–diffraction
pattern of multiple slits, 1157–1158

to calculate interference pattern of three or
more coherent sources, 1153–1155

to calculate single-slit diffraction pattern,
1155–1157

Philosophy, natural, 2
Phoenix, Arizona, 686
Phosphorescence, 584
Phosphorescent materials, 1083
Phosphorus, electron configuration of, 1249
Photoelectric effect, 723, 1079, 1082, 1083,

1176–1178, 1187
Photons, 232, 352, 359, 1079, 1175–1180

big bang and, 1408
Compton scattering, 1178–1180
Einstein’s equation for photon energy,

1079, 1081
emission of, by a particle in box, 

1192–1193
energy of, 1176–1178

exchange of, 95
frequency of, from energy conservation,

1230–1231
momentum of, 1179
photoelectric effect, 1176–1178
photon-atom and photon-molecule

interactions, 1082–1083
rest energy of, 1343
spontaneous emission of, 1081
virtual, 1403

Physical quantities, 3. See also Measurements
dimensions of, 7–8

Physics
classical, 2
modern, 3
nature of, 2–3
as science, 1–2

Pickering series, 1258
Pico prefix, 5
Piezoelectric effect, 827
Pion, 908n, 1391, 1393, R-8n, R-17

rest energy of, 1343
Pioneer 10, 116
Pitch, 462, 551
Pitot-static tube, 454
Planck, Max, 232n, 684, 1176n, 1229
Planck’s constant, 232, 351, 1079, 1176
Plane angle, defined, 753
Plane mirrors, 1097–1099, 1105
Plane of incidence, 1061
Plane symmetry, 742
Planet(s)

atmosphere of, 375
escape speed for, 375
Kepler’s laws of motion for, 364–366
orbital radii and orbital periods, 364
outside solar system, 390

Plane waves, 509, 517, 1034
Plasma, 1380
Platinum

electron configuration of, 1250
resistivity and temperature coefficient of, 847

“Plum pudding” model, 1229
Plutonium

in breeder reactors, 1379
electron configuration of, 1251

pn junction, 1301–1302, 1303
pnp transistor, 1304–1305
Point charge(s)

electric field due to single, 74, 705–706
electric field lines due to single positive,

711
electric field lines due to two positive,

711–712
electric potential due to, 767
electric potential due to system of, 767–771
electrostatic potential energy of system of,

788–789
nonpolar molecule polarized by positive,

718
Pointillism, 1172
Point (spherical) symmetry, 742
Poise, 446
Poiseuille, Jean, 446
Poiseuille’s law, 446
Poisson, Siméon, 1159
Poisson spot, 1159
Polarity (dipole moment), 754

solubility of substances and, 754

Polarizability, 826
Polarization

by absorption, 1071–1072
by birefringence, 1074–1076
circularly polarized wave, 1075
of homogeneous dielectric in parallel-

plate capacitor, 825
of light, 1070–1076
piezoelectric effect, 827
by reflection, 1073
by scattering, 1074

Polarization rotator, 1094
Polarized molecule, 718
Polarizer, 1072
Polarizing angle, 1073
Polarizing sunglasses, 1073
Polar molecules, 717, 1267
Polaroid, 1071
Pole, magnetic, 887–888, 932–933. See also

Magnetic dipole; Magnetic
monopoles

Polonium, electron configuration of, 1251
Polychlorinated biphenyls (PCBs), 828
Polycrystalline solids, 1282
Polystyrene, resistivity of, 847
Population inversion, 1084, 1085–1086
Porcelain, resistivity of, 847
Position

of center of mass, 150–152
electric field as vector function of, 705
Euler’s method for approximating, 147–149
force and, 179

Position vectors, 64
Positive (converging) lens, 1112–1113, 1116
Positron, 51, 228, 1260, 1362n, 1394

rest energy of, 228, 1343
Positron emission tomography (PET) scan,

R-17
Positronium, 1260
Potassium, 1248, 1285

electron configuration of, 1249
work function for, 1295

Potential. See Electric potential
Potential difference, 764–767

across capacitors in parallel, 812
across capacitors in series, 814
definition of, 764
finite, 764
across inductor, 976

Potential drop, 844–845, 849–850
in ac circuits, 1011
across inductor, 1000

Potential energy, 176, 201, 202–208
in capacitor, 807
conservative force, 203–204
defined, 202, 374
of dipole in an electric field, 717
elastic (spring), 202, 207–208
electric potential and, 764
electrostatic, 787–790
equilibrium and, 216–219
gravitational, 202, 205–207, 374–378,

1349–1350
of harmonic oscillator, 1197
of magnetic dipole, 902–903, 941–942
negative, 374
nonconservative force, 203–204
Schrödinger equation and, 1196
in simple harmonic motion, 465, 466
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Potential-energy barrier, 1214–1217
Potential-energy functions, 204–208

associated with elastic force, 207–208
associated with gravitational force,

205–207
defined, 204–205
force and, 217–218

Pound (lb), 97
Pound-force, 5
Powder coating, electrostatic, 719
Power, 307–309, 505–506

average, 998
defined, 186
delivered to resistor, 850
dimension of, 8
factor of ac circuit, 1013
from emf, 851
incident, 510
SI unit of, 186
of torque, 308
wave intensity, 510–513
work and, 186–188

Power stroke, 631
Power surges, 1019
Poynting vector, 1046
Praseodymium, electron configuration of, 

1250
Precession, 340

of equinoxes, 362
Precipitation, urban heat islands and, 686
Prefixes, front of book, 5
Pressure(s)

along streamlines, 444–445
altitude (or depth) and, 430–431
atmospheric, 430
blood, 430
defined, 425
depth and, 426–428
dimensions of, 8
exerted by a gas, 575
in fluid, 425–431
hydrostatic paradox, 429
measurement of, 429–430
partial, 570–574
radiation, 1045, 1046–1048
units of, 426
vapor, 673
viscous flow and, 445

Pressure gauge, 429
capacitive, 834

Pressure wave, 508
Principal quantum number, 1235, 1237
Principal rays, 1104
Principia (Newton), 248
Principle of Equivalence, 391, 1348–1349
Prism(s)

critical angle for total internal reflection in,
1066

spectrum of refracted light produced by,
1080

white light dispersed by, 1068
Probability

calculating, 1194
entropy and, 653–654

Probability density, 1185–1186
radial, 1239, 1241

Projectile motion, 71–78
height, 376
horizontal range, 72, 75–77

independence of horizontal and vertical
components of, 71–72

speed, 377
in vector form, 77–78

Promethium, electron configuration of, 1250
Propagation of light, 1059–1060
Proper frame (rest frame), R-5
Proper length (rest length), 1326, R-5
Proper time, 1324, 1330, 1335
Proper time interval, R-7
Proportional limit of medium, 409, 534
Protactinium, electron configuration of, 1251
Proteins, changes in charge distributions of,

754
Protium, 1358
Proton(s), 51, 95, 352, 695, 1227–1228,

1357–1358, 1405
energy of, 899–900
lifetime of, 1406
magnetic force on, 889–890
ratio of electric force to the gravitational

force exerted on electron by, 701
rest energy of, 228, 795, 1343

Proton–antiproton pair, 1395–1396
Proton–proton collision, 271
Proxima Centauri, 56
" Meson, 1401
p-type semiconductor, 1300, 1301
Pulsars, 88, 356, 1129

spin glitches in, 362
Pulse detonation engine (PDE), 277
Pulsed lasers, 1086, 1087
Pulses, 552–553

colliding, 534–535
wave, 496–497

Pupil of eye, 1122
PV diagrams, 603–606
px, py, and pz atomic orbitals, 1269–1270
Pyroelectric effect, 827

Q factor, 479–481, 1014
resonance and, 482

Quanta, 201, 232, 1174
Quantities, physical, 3. See also

Measurements
Quantization

of angular momentum, 350–352
of energy, 231–232, 612–613, 1174,

1289–1290
Quantized angular momentum, 1231–1232,

1234
Quantum chromodynamics (QCD), 1403
Quantum electrodynamics, 1403
Quantum mechanics, 3, 1185. See also

Quantum theory; Schrödinger equation
interpretation of wave function, 1185–1187

Quantum number, 232, 1191, 1244
magnetic, 1235, 1237
orbital, 1235
principal, 1235, 1237
rotational, 1271
spatial, 1290
in spherical coordinates, 1235–1236
vibrational, 1273

Quantum theory, 1176, 1234–1241
boundary conditions in, 1190
of electrical conduction, 1281–1282,

1296–1297
hydrogen atom, 1236–1241

Schrödinger equation in spherical
coordinates, 1234–1235

Quantum tunneling, 1214
Quarks, 51, 95, 695n, 1390, 1400–1403

big bang and, 1408
confinement, 1402–1403
flavors of, 1400–1401
properties of, 1401
in standard model, 1404

Quarter-wave plate, 1075
Quartz, 1283
Quasars, 386
Quasi-static processes, 602–603, 605

adiabatic compression of gas, 615–618
Q value, 1370

Radar, police, 521
Radial equation, 1234–1235
Radial probability density, 1239, 1241
Radial ray, 1104
Radiation, 219, 675, 683–685

Cerenkov, 523, 531, 1129
electromagnetic, 228, 232n, 683

Radiation era, 1408
Radiation pressure, 1045, 1046–1048
Radiation treatment of cancer, 51
Radioactive decay, 253
Radioactivity, 1362–1369

alpha decay, 1368–1369
beta decay, 228, 1365–1367
gamma decay, 1367–1368

Radio antenna(s)
electric-dipole, 1042, 1043–1044
very large array (VLA) of, 1161

Radioisotopes, 51
Radio Telegraph Convention, 1049
Radiotelegraphy, 1049
Radio telescope, very large array (VLA),

1163
Radio waves, 508, 1041, 1042, 1043
Radium, electron configuration of, 1251
Radius, first Bohr, 761
Radon, electron configuration of, 1251
Ragone, Carlos, 56
Rainbow, 1068–1070

angular radius of, 1068, 1069, 1070
secondary, 1069
separation of colors in, 1069

Rainbow holograms, 1164, 1165
Rainwater runoff in urban areas, 686
Raman scattering (inelastic scattering), 1082

deep, 1401
Range of projectile, horizontal, 72, 75–77
Ray(s)

central, 1116
electric, 851
focal, 1104, 1116
nonparaxial, 1100
parallel, 1104, 1116
paraxial, 1100, 1101
principal, 1104
radial, 1104

Ray approximation, 517
Ray diagrams

for lenses, 1116–1118
for mirrors, 1104–1107

Rayleigh, Lord, 1082
Rayleigh scattering, 1082
Rayleigh’s criterion for resolution, 1160
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RC circuits, 868–873
charging a capacitor in, 870–873
discharging a capacitor in, 868–870

RC high-pass filter, 1024
Reactance

capacitive, 1003
inductive, 1000–1001
total, 1012

Reactions
chemical, 219
nuclear, 229, 1370–1372, 1373

Reactors, 1376–1379
breeder, 1379

Real battery, 852
Real image, 1099, 1105
Réaumur temperature scale, 588
Recession, speed of, 267
Reciprocal Celsius degrees (1/°C), 666
Reciprocal Kelvins (1/K), 666
Recoil, angle of, 270
Rectangular coordinates, geometric relations

between spherical coordinates and,
1234

Rectification, 1302
Redshift, 1329

expansion of universe and, 1406
gravitational, 1350

Reduced mass, 1272
Reference frame(s), 66, 1320

accelerated, 406–407, 472–473
center-of-mass, 190, 271–273
of ether, R-2–R-3
inertial, 94–95, 1320, R-2, R-3–R-4
laboratory, 271
moving, Doppler effect and, 519
Newton’s second law for rotation and, 312
noninertial, 1348
proper (rest), R-5
relativity and, R-2
uniformly accelerated, 1348

Reference point, for electric potential, 767
Reflected intensity, 1063
Reflection, 1060–1070

diffuse, 1062–1063
law of, 1061, 1077, 1078
phase difference due to, 1142–1143, 1144
physical mechanisms for, 1062
of plane waves, 1103
polarization by, 1073
relative intensity of reflected and

transmitted light, 1063
sign conventions for, 1105
of sound waves, 516
specular, 1062–1063
total internal, 516, 1064–1066
of waves, 513–516

Reflection coefficient, 514–515
Reflection grating, 1162
Refraction, 515–516, 1060–1070, 1174

angle of, 1061
derivation of law of, 1077–1079
index of, 1060–1061, 1062, 1063
in lenses, 1108–1111
magnification due to, 1109
mirages and continuous, 1067
physical mechanisms for, 1062
sign conventions for, 1108
at single surface, 1108
Snell’s law of, 1061–1062

Refractive surgery, 1131
Refractometer, Jamin, 1173
Refrigerator(s)

coefficient of performance for, 635
heat pumps, 643–644
schematic representation of, 635
second law of thermodynamics and,

634–637
Refrigerator (Clausius) statement of second

law of thermodynamics, 630, 634–637
Relative permeability, 939, 944
Relative velocity, 66–67
Relative velocity vectors, 67
Relativistic energy, 1341–1347, R-13–R-15

kinetic, 1342, 1343–1344
mass and, 1344–1347
relation for total energy, momentum, and

rest energy, 1344
rest, 1342, 1343

Relativistic mass, 1340
Relativistic momentum, 1340–1341, 

R-12–R-13
Relativity, 1319–1356. See also Special

relativity
clock synchronization and simultaneity,

1330–1336
Doppler shift and, 521–522
Einstein’s postulates, 1321–1322
general, 386, 1319, 1348–1350, R-1, R-2
Lorentz transformation, 1322–1330
Newtonian, 1320–1321
nonrelativistic (Newtonian) mechanics

and, 231
principle of, R-2
reference frame and, R-2
relativistic energy, 1341–1347, R-13–R-15
relativistic momentum, 1340–1341
of simultaneity, R-10–R-11
velocity transformation, 1336–1339

Religion, 1
Remnant field, 944–945
Repose, angle of, 132
Reproduction constant, 1376, 1378
Residual strong interaction, 1405
Resistance, 445–447, 844–849, 1286–1287

defined, 844
differential, 1316
equivalent, 677, 854, 855
Hall, 907
internal, 852
load, 1005
SI unit of, 844

Resistance, thermal, 676–682
in parallel, 678, 679–680
in series, 677, 679

Resistivity, 845–846, 847
critical temperature and, 847, 1305–1306
of metals, 1281, 1286–1288, 1296, 1297,

1299
temperature coefficient of, 846–847

Resistor(s), 854–859
alternating current in, 996–999
carbon in, 848
change in potential across, sign rule for,

863–864
color code for, 848
current in, 867
in parallel, 854–858
potential difference across, 867

power delivered to, 850
in series, 854, 857–858
shunt, 867

Resolution
diffraction and, 1160–1161
of eye, 1161
Rayleigh’s criterion for, 1160

Resolving power
of diffraction grating, 1163–1164
of optical instrument, 1160–1161

Resolving vector into components, 18
Resonance, 460, 481–485, 1372

defined, 482
driven RLC circuits at, 1013–1017
from earthquake, 524
electron spin, 1259
mathematical treatment of, 483–485
of Millennium bridge, 486
of standing waves, 543–544
for weak damping, 482

Resonance absorption, 1082
Resonance curves, 482, 1014
Resonance frequency, 482, 542–544, 546, 1013
Resonance width, 1014
Resonant absorption, 1052
Resonant frequencies, 542–544
Respirometry, 619
Rest frame (proper frame), R-5
Rest (internal) energy, 231, 592, R-14

of bound systems, 231–232
of ideal gas, 601–602
relativistic, 1342, 1343, 1344
of system, 228

Restitution, coefficient of, 267
Rest length (proper length), 1326, R-5
Rest mass, 1340, R-13n
Rest energy, 228, R-14, 1342, 1360
Restoring force, linear, 458
Resultant (vector sum), 15
Retina, 1122
Reverberation, 554
Reverse biased junction, 1302
Reversibility of waves, 1103
Reversible engine, 637
Reversible processes, 638
Reynolds number, 447
R factor, 680–681
Rhenium, electron configuration of, 1250
Rhodium, electron configuration of, 1250
Right circularly polarized wave, 1094
Right-handed coordinate system, 333
Right-hand rule for determining direction,

332
Ampère’s law and, 933
of current loop, 900
of induced emf, 963
of magnetic field due to long, straight,

current-carrying wire, 928
of magnetic field force, 888

Ripple tank, 509
Ritz, Walter, 1228
Ritz combination principle, 1257
RLC circuits, 1009–1018

driven, 1010–1018
without a generator, 1009–1010

RL circuits, 979–983
current as function time in, 981
with make-before-break switch, 980–981
time constant of, 979
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Rocket(s)
principle of, 253
thrust, 275
thrust-to-weight ratio of, 286

Rocket equation, 275
Rocket propellant, specific impulse of, 286
Rocket propulsion, 273–277

with pulse detonation engines (PDEs), 277
Rod, uniform

center of mass of, 153
gravitational field of, 380

Rods (eye), 1122, 1126
Roentgenium, electron configuration of, 1251
Rogue field lines, 712
Roller coasters, 114, 193
Rolling, 310–315

center of mass and, 312–313
without slipping, 310–314
with slipping, 314–315

Rolling friction, 130, 131
coefficient of, 130

Römer, Ole, 1056
Röntgen, Wilhelm, 2
Root-mean-square (rms) speed, 576
Root-mean-square score, 580
Rotating coil gaussmeter, 993
Rotation, 289–362

angular velocity and acceleration, 290–291
with constant angular acceleration, 291
of gas molecule, 613–614
kinetic energy for, 292–293, 309, 310–311
linear motion and, 308–309
moment of inertia, 293–300, 309
Newton’s second law for, 301–309, 312, 339
rolling, 310–315
of system of particles, 293
ultracentrifuges, 316
vector nature of, 332–334

Rotational energy, 232n, 351–352
of diatomic molecule, 1271–1273,

1274–1275, 1276
of hydrogen atom, 614
of molecule, 576

Rotational equilibrium, stability of, 407–408
Rotational kinetic energy, 292–293, 309

quantization of, 351
total, 310–311

Rotational quantum number, 1271
Round-off errors, 149
Rowland ring, 955
Rubber, resistivity of, 847
Rubbia, Carlo, 1403
Rubidium, electron configuration of, 1249
Ruby laser, 1084–1085, 1086
Russell, Bertrand, 664
Ruthenium, electron configuration of, 1250
Rutherford, Ernest, 352, 1229
Rutherfordium, electron configuration of,

1251
Rydberg, Johannes R., 1228
Rydberg atom, 1260
Rydberg constant, 1229, 1232
Rydberg–Ritz formula, 1228–1229

Saint Rosalie Interceding for Plague-Stricken of
Palermo (painting), 1373

Salam, Abdus, 1403
Salts, 1262–1263, 1266
Samarium, electron configuration of, 1250

Samarium monosulfide, 1246
San Francisco earthquake (1906), 524
Santa Rosa, town of, 524
Satellites

energy of, 377–378
geosynchronous, 392

Saturated bond, 1266
Saturation magnetization, 940–941
Savart, Félix, 917, 928
Scalar (dot) product, 182–188

defined, 182
differentiating, 186
properties of, 182
scalar-product notation, 184–186
vector products and, 334

Scalars, defined, 14
Scandium, electron configuration of, 1249
Scanning tunneling microscope (STM), 24,

1216–1217
Scattering, 1074

anti-Stokes Raman, 1082
Compton, 1082, 1083
deep inelastic, 1401
elastic, 1376
inelastic (Raman), 1082
from nuclear reaction, 1371
polarization by, 1074
Rayleigh, 1082
Stokes Raman, 1082

Schrieffer, Robert, 1307
Schrödinger, Erwin, 1185, 1204n
Schrödinger equation, 1185–1186, 1196,

1203–1226
for harmonic oscillator, 1208–1211, 1273
normalization condition, 1186
in one dimension, 1204
for particle in an infinite square-well

potential, 1205–1206
for particle in finite square well, 1206–1208
probability density, 1185–1186
reflection and transmission of electron

waves, 1211–1217
for rotation, 1271
in spherical coordinates, 1234–1235
standing-wave solutions of, 1204, 1234
in three dimensions, 1217–1220
time-dependent, 1204
time-independent, 1204–1205
for two identical particles, 1220–1222

Schwartzkopf, Anton, 114
Schwarzschild radius, 394, 1350
Science, 1
Scientific notation, 9–11
Screen, viewing, 1099n
Seaborgium, electron configuration of, 1251
Seasonal energy efficiency ratio (SEER), 635
Seat of emf, 850
Seawater, density of, 424
Second, 4, 5

leap, 21
Second focal point, 1114
Second harmonic, 542
Second law efficiency, 642, 662
Second-order spectrum, 1163
Sedimentation, 316
Sedimentation equilibrium, 316
Sedimentation velocity, 316
Sediment basins, earthquake resonance and,

524

Segrè, Emilio, 1395
Seismic waves, 524
Selection rules, 1237
Selective availability, 82
Selenium, electron configuration of, 1249
Self-capacitance, 802

of spherical conductor, 809
Self-induced emf (back emf), 967, 976, 999
Self-inductance, 974–976

calculation of, 975
defined, 974–975
SI unit of, 975
of solenoid, 975–976, 978

Semicircular hoop, center of mass of, 153–154
Semiconductor(s), 1286, 1299–1301

doping of, 1299–1300
impurity, 1299–1300
intrinsic, 1299
junctions and devices, 1301–1305, 1308
n-type, 1300, 1301
p-type, 1300, 1301
resistivity of, 1299

Semiconductor lasers, 1086, 1087
Semidiurnal tides, 95
Semimajor axis, 364, 365
Semiminor axis, 364
Separation, speed of, 265
Separation of variables, 869, 1234
Series, 814

capacitors in, 812–815
resistors in, 854, 857–858

Series RLC circuit, 1011–1013
average power versus frequency for, 1014
impedance of, 1012
peak current in, 1012
phase constant for, 1012
potential drops in, 1012–1013

Seurat, Georges, 1172
Shallow waves, 498
Shear force, 411
Shear modulus (torsion modulus), 411
Shear strain, 411
Shear stress, 411
Shockley, William, 1303
Shock waves, 522–523
Short radio waves, 1041
Short-range order, 1282
Shunt resistor, 867
Shuttle Loop roller coaster, 114
Sigma (baryon), 1391
Significant figures, 8–11

scientific notation and, 9–11
Silicon, 1285

doping with arsenic, 1299–1300
doping with gallium, 1300
electron configuration of, 1247, 1249
resistivity and temperature coefficient of,

847
Silicon dioxide (quartz), 1283
Silver

boiling point of, 596
electron configuration of, 1247, 1250
latent heat of fusion of, 596
latent heat of vaporization of, 596
magnetic susceptibility of, 939
melting point of, 596
neutron-capture cross section, 1371–1372
resistivity and temperature coefficient of, 847
specific heat and molar specific heat of, 593



I-22 | Index

thermal conductivity of, 676
work function for, 1295

Simple bipolar junction transistor, 1303
Simple harmonic motion, 458–468

acceleration in, 459
amplitude of, 458–459, 462, 466
circular motion and, 464–465
conditions for, 458
cycle of, 458
defined, 458
energy in, 465–468
frequency of, 458, 460, 462
near equilibrium, 467–468
period of, 458, 459, 462
phase of, 459–460
position in, 458
velocity in, 459

Simple machines, 197
Simple magnifier, 1124–1126

angular magnification of, 1125
Simple pendulum, 470–474

acceleration of, 471–473
forces on, 471
period of, 470, 471

Simultaneity
definition of, 1331
relativity of, R-10–R-11

Simultaneous events, 1330–1336
Single-loop circuits, Kirchhoff’s rules and,

860–863
Single slit diffraction pattern, 1149–1152

intensity for, 1156–1157
interference–diffraction pattern of two

slits and, 1151–1152, 1155–1157
maxima and minima, 1150–1151
points of zero intensity for, 1150

Siphon, 455
SI system, 3–5

prefixes in, 5
SI unit(s)

conversion factors for, front of book, AP-2
of acceleration, 35
of angular acceleration, 291
of angular velocity, 290
for coefficient of linear expansion, 666
of current, 840
of emf, 850
of energy, 593
of force, 96
of impulse, 255
of inductance, 975
of intensity, 510
of magnetic field, 888
of magnetic flux, 960
of magnetic moment, 901
for magnetization, 938
of mass, 96
of momentum, 248
of power, 186
of pressure, 426
of radioactive decay, 1365
of resistance, 844
of temperature, 568
of thermal current, 675–676
of velocity, 30
of viscosity, 446
of work, 174
tables of, AP-1

68-95-99.7 rule, 582
Size, apparent, 1122–1123, 1124
Skidding, 314–315
Sliding, 101–102
Slingshot effect, 287
Slip rings, 972, 993
Slope, 30

velocity and, 33
Small angle approximations, M-16
Snell, Willebrord, 1062
Snell’s law of refraction, 1061–1062

derivation of, 1077–1079
polarization by reflection and, 1073

Snowflake, symmetry of, 1283
Snyder, Hartland, 1350
Sodium, 1262–1263, 1285

electron configuration of, 1249
magnetic susceptibility of, 939
optical transitions of, 1252, 1253
relative resistance versus temperature in,

1297
work function for, 1295

Sodium chloride, 1282–1285
dissociation energy of, 1284
structure unit cell of, 1282–1283

Soft iron, 944
Solar cell, 1303
Solar energy, 629, 641
Solar system, 364–366

formation of, 390
planets outside, 390

Solar wind, 879, 887, 908
Solenoid

applications of, 947
long, 926
magnetic field lines of, 924
magnetic field of, 923–927, 938
self-inductance of, 975–976, 978

Solid(s), 1281–1318
amorphous, 1282
band theory of, 1297–1299
compressibility of, 426
conduction in. See Conduction in metals
contact force with, 101–102
Einstein model of crystalline, 628
Fermi–Dirac distribution, 1289, 1309–1312
free electrons in. See Free electrons
heat capacities of, 611
polycrystalline, 1282
semiconductors, 1286, 1299–1305, 1308
structure of, 1282–1286
superconductivity, 1305–1309

Solid angle, 753
Solid-state devices, 1299
Solubility

charge distribution and, 754
dipole moment (polarity) and, 754

Solvent, water as, 754
Sommerfeld–Hosser displacement theorem,

1257
Sonar, 57, 518
Sonic boom, 522–523
Sound waves, 496, 502–503

diffraction of, 517
energy of, 508
harmonic, 507–508
harmonic analysis of, 551–552
reflection of, 516
sonic boom and, 522–523

speed of, 562, 618
standing, 548–550
ultrasonic, 518

Source of emf, 850, 851
Source points, 378, 706
Space, curvature of, 386
Spacetime coincidence, R-7
Spacetime event, 906–907, R-6–R-7
Spark-gap transmitter, 1049
Spatial quantum numbers, 1290
Spatial state, 1222
Special Bureau for the Atmosphere of the

Global Geophysical Fluids Center, 353
Special relativity, 3, 228, 1319, 1321, 

R-1–R-20. See also Relativity
antiparticles and, 1393–1394
energy and, R-13–R-15
invariance of coincidences, R-7
length contraction, R-8–R-9
mass and, R-12–R-13
momentum and, R-12–R-13
relativity of simultaneity, R-10–R-11
spacetime coincidences, R-7
spacetime events, R-6–R-7
time dilation, R-5–R-6

Specific gravity, 424–425
Specific heat, 593–594

molar, 593, 607
Specific impulse, 286
Spectra, light, 1055, 1080
Spectral-distribution curves, 684–685
Spectral line, 1163
Spectroscope, 1080, 1162–1163
Specular reflection, 1062–1063
Speed

angular, 290, 340
of approach (closing speed), 265, 267
average, 29–32
dimensions of, 7, 8
drift, 840, 841, 842–843
of electromagnetic waves, 1030
escape, 374–375
of hydrogen molecules, 583
instantaneous, 32–35
kinetic energy and, 177
of light, 4, 56, 1030, 1056–1059, 1061, 1074,

R-3–R-4
most probable, 582
nonslip condition for, 310
of oscillating object, 467
of recession, 267
root-mean-square (rms), 576
of separation, 265
of sound, 562, 618
terminal, 56, 140–141
of waves, 497–500, 502–503

Speed–The Ride, 193
Sphere, gravitational field of solid, 

381–382
Spherical aberration, 1100, 1121

of mirrors, 1100
Spherical coordinates

geometric relations between rectangular
coordinates and, 1234

quantum numbers in, 1235–1236
Schrödinger equation in, 1234–1235
volume element in, 1238

Spherical mirrors, 1099–1104
Spherical (point) symmetry, 742

Silver (cont.)
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Spherical shell, gravitational field of, 381
finding by integration, 384–385

Spin
of electron, 352, 362
of elementary particles, 1393–1396

Spin alignment, wave-function symmetry
and, 1265

Spin angular momentum, 337, 349–350, 1242,
1393

of particle, 352
Spin glitch, 362
“Spin-one-half” particles, 352, 1393
Spin-orbit effect, 1241–1243
Spoilers, 448
Spontaneous emission, 1081, 1082
Spring(s), 102–103

paper, 469
work done by, 180–182

Spring, object on
oscillation of, 458, 460, 462, 464, 465
vertical, 468–470

Spring (elastic) potential energy, 202–203,
207–208

Spring (force) constant (k), 102
Spring stiffness, 460
Sprung mass, 479
Square-wave voltage source, 1027
Square wells, 1264
Stable equilibrium, 102, 217, 218
Stable rotational equilibrium, 407
Standard body, 4
Standard deviation, 581–582
Standard model, 1404–1406
Standard temperature and pressure (STP)

(standard conditions), 572
Standing-wave condition, 543, 544

quantization of angular momentum and,
1232

Standing-wave functions for particle in a
box, 1190–1193

Standing waves, 542–550, 1185, 1186
conditions necessary for, 547
defined, 542
resonance of, 543–544
sound waves, 548–550
on string fixed at both ends, 542–545
on string fixed at one end, free at the

other, 546
superposition of, 550–551
wave functions for, 546–547
whole-room, 554

Star(s)
binary, 389, 394
neutron, 88, 293, 356, 394
surface temperatures of, 684
wobbling, 532

State(s)
change of (phase change), 595–598
density of, 583
equation of, 570

State variables, 570
Static equilibrium, 102, 397–422

in an accelerated frame, 406–407
in carbon nanotubes, 412
center of gravity and, 398–399
conditions for, 398
couples, 405–406
indeterminate problems, 408–409
net force and, 398

net torque and, 398
stability of rotational equilibrium, 407–408
stress and strain, 409–411

Static friction, 129, 131, 138
coefficient of, 129, 131

Stationary states, 1230, 1234, 1244
Steady-state flow, 439
Steam, specific heat and molar specific heat

of, 593
Steam engines, 630–631, 632

efficiency of, 641
Steam-point temperature (normal boiling

point), 565, 673
Steel

bulk modulus of, 426
coefficient of thermal expansion for, 666
shear modulus of, 411
strength of, 410
thermal conductivity of, 676

Stefan, Josef, 683
Stefan-Boltzmann law, 683, 1081n
Stefan’s constant, 683
Steinert, Darryl, 320
Step barrier, reflection and transmission at,

1212–1213
Step-down transformers, 1004
Step potential, 1211–1213
Step-up transformers, 1004
Steradian (sr), 753
Stevin, Simon, 370
Stimulated emission, 1082, 1083, 1084

in ruby vs. helium-neon laser, 1086
Stirling engine, 659
Stokes Raman scattering, 1082
Stopping distance, 40–41
Störmer, H.L., 907
ST plot, Carnot cycle on, 651
Strain, 409–411

shear, 411
Strangeness, 1398–1399
Strange particles, 1398–1399
Strassmann, Fritz, 1374
Stratosphere, 353
Streamlined flow, 440
Streamlines, 438, 440, 442–445

airfoil and, 443–444
pressure along, 444–445

Stress, 409–411
compressive, 410
shear, 411
tensile, 409–410

Strings, 103–104
standing waves on, 542–547

Strong form of Newton’s third law of motion,
358

Strong nuclear interaction (hadronic force),
95, 96, 1358, 1390

bosons mediating in, 1403
fundamental, 1405
properties of, 1405
residual, 1405

Strontium, electron configuration of, 1249
Sublimation, 674
Substance, SI unit of, 4
Subtraction

significant figures in, 9
vector, 15–17, 20

Sulfur
boiling point of, 567, 596

electron configuration of, 1249
latent heat of fusion of, 596
latent heat of vaporization of, 596
melting point of, 596
resistivity of, 847

Sulfur dioxide, critical temperature for, 674
Sun

Earth’s attraction to, 96
magnetic field of, 908
22° halo around, 1069

Sun dogs, 1069
Sunglasses, polarizing, 1073
Sunspots, 569, 908
Supercollider, 879
Superconducting energy gap, 1307–1308
Superconducting quantum interference

detectors (SQUIDs), 985
Superconductivity, 1305–1309

BCS theory, 1307–1308
Josephson effect, 1308–1309

Superconductors, 750n, 946, 947
magnetic properties of, 983–985
promise of, 985
type I, 984
type II, 984

Super-Kamiokande (Super-K) detector, 531,
1390, 1391

Supermassive black hole, 395, 1350
Supernovae, 356
Superposition, 534–542

interference of harmonic waves, 536–542
principle of, 96, 534
of standing waves, 550–551
of two waves of same amplitude and

frequency, 537
wave equation and, 535–536

Superposition, principle of
electric fields following, 706, 709
force exerted by system of charges and,

702, 703
Surface-barrier detectors, 1303
Surgery, eye, 1131
Susruta, 1131
Svedberg, Theodor, 316
Swim bladders, 456
Symbols, mathematical, front of book
Symmetric wave functions, 1221–1222
Symmetry

calculating electric field with Gauss’s law
using, 742–749

center of, 150
classes of, 742

Symmetry axis, 335
Synchronized clocks, 1330–1336

twin paradox, 1335–1336
Synchrotron radiation, 1042
Synchrotrons, 1042
System(s)

angular momentum of, 335–338, 349–350
binary, 689
bound, 229, 231–232, 350, 376, 612
center of mass for, 149–150, 154–155
with continuously changing mass, 273–276
energy budget of, 619
impulse–momentum theorem for, 256
kinetic energy of, 254–255, 297–298
linear momentum of, 248–249, 271, 288
mechanical energy of, 254
microscopic, 232
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moment of inertia for, 293–294
Newton’s second law for, 155, 273
rest energy of, 228
rotation of, 293
stability of, 408
total energy of, 209
unbound, 376
work done on, 175, 202, 209
work-energy theorem for, 209

Système International. See SI system; SI unit(s)

Tables, list of, AP-5
Tacking motion, 63
Tacoma Narrows suspension bridge, 544
Tangent galvanometer, 957
Tangential acceleration, 81, 111, 292, 305
Tangential direction, 79
Tangential velocity, 292, 305
Tantalum, electron configuration of, 1250
Tau (lepton), 1390, 1391, 1392
Tau neutrino, 1391
Technetium, electron configuration of, 1250
Teflon, resistivity of, 847
Telescope, 1127–1130

light-gathering power of, 1128
magnifying power of, 1128
very large array (VLA) radio, 1163

Television waves, 1041, 1043
Tellurium, electron configuration of, 1250
Temperature, 564–566

absolute (Kelvin) scale, 568–569
Celsius scale, 565, 568–569
centigrade and Fahrenheit temperature

scales, 564–566, 569
critical, 613, 673, 674, 1305–1306, 1307
Curie, 943
density and, 424
Einstein, 628
endpoint cooking (EPT), 584
Fermi, 1293–1294
ice-point (normal freezing point), 564
ideal-gas temperature scale, 568
molar heat capacity and, 612
molecular interpretation of, 575–576
Réaumur scale, 588
SI unit of, 4, 568
steam-point (normal boiling point), 565
work and, 598–600

Temperature coefficient of resistivity, 846–847
Temperature drop versus current, 676
Temperature gradient, 675
Tensile force, 409
Tensile strength, 410, 412
Tensile stress, 409–410
Tension, 104, 111–112
Tension force, 505–506
Tera prefix, 5
Terbium, electron configuration of, 1250
Terminal speed, 56, 140–141
Terminal voltage, 810–811, 852–853

open-circuit, 810, 811
Terms (states), 1237
Terrestrial data, table, AP-3, front of book 
Tesla (T), 888–889
Tesla coil, 977
Thallium, electron configuration of, 1251
Thermal conductivity, 675, 682
Thermal contact, 564

Thermal current, 675–676
calculating, 678

Thermal energy, 176, 201, 219, 221, 226, 592
Thermal equilibrium, 564–566
Thermal kinetic energies, 1282
Thermal neutron, 1371
Thermal properties and processes, 665–692.

See also Heat; Heat transfer
liquid–vapor isotherms, 670–673
phase diagrams, 673–674
thermal expansion, 666–670
van der Waals equation, 670–673

Thermal resistance, 676–682
in parallel, 678, 679–680
in series, 677, 679

Thermistor, 588
Thermochromic properties, 584
Thermodynamics, 2. See also Heat

zeroth law of, 564
Thermodynamics, first law of, 600–601, 629

perpetual motion machines violating, 655
Thermodynamics, second law of. See also

Entropy; Entropy changes
Carnot engine, 637–643
Clausius (refrigerator) statement of, 630,

634–637
entropy statement of, 647, 654
heat pumps, 643–644
Kelvin (heat-engine) statement of,

630–634, 636–637
microscopic systems and, 654
perpetual motion machines violating, 655
refrigerators and, 634–637
refrigerator statement of, 634–636

Thermodynamic temperature scale.
See Absolute temperature scale

Thermographs, 684
Thermometers, 564–566

fluorescent, 584
gas, 566–569
liquid crystal, 584
molecular, 584

Thermometric property, 564
Thin films, interference in, 1143–1145
Thin lenses, 1111–1120

aberrations in, 1121
combinations of, 1118–1120
compound, 1120
converging (positive), 1112–1113, 1116
diverging (negative), 1113–1114
equation for, 1112
focal length of, 1112, 1115
focal plane of, 1114
focal points of, 1114
power of, 1115
principal rays for, 1116
refraction at, 1111

Third harmonic, 542
Thomson, G. P., 1184
Thomson, J. J., 714, 896, 1181, 1187, 1229, 1389
Thorium

alpha decay series for, 1368–1369
electron configuration of, 1251

Three-dimensional collisions. See Collisions
in two and three dimensions

Threshold braking, 138
Threshold frequency, 1177
Thrust, rocket, 275
Thrust Air 2000, 114

Thrust-to-weight ratio of rocket, 286
Thulium, electron configuration of, 1250
Tidal bulge, 395–396
Tides, 95
Time, 5

as dimension, 7
proper, 1324, 1330, 1335
SI unit of, 4

Time constant, 478, 869
Time-dependent Schrödinger equation, 1204
Time dilation, 1327–1328, R-5–R-6
Time-independent Schrödinger equation,

1204–1205
Timekeeping, 21
Tin, electron configuration of, 1250
Titanium

electron configuration of, 1249
magnetic susceptibility of, 939

Tokamak Fusion Test Reactor (TFTR), 936,
1380–1381

Tolerance, 25
Tone quality, 551
Top Thrill Dragster, 114
Toroid

magnetic field of, Ampère’s law and,
935–936

Rowland ring, 955
Torque, 301–303

angular momentum and, 334–340
about an axis, 337, 350
calculating, 302
by a couple, 405
on current loops, 900–904
on dipoles in electric fields, 717
direction of, 332
equivalent expressions for, 302
due to gravity, 302–303
for gyroscope, 339–340
about a point, 337
power input of, 308
of system, Newton’s third law and, 341
as vector product, 332
work done by, 307–308

Torr, 430
Torricelli, Evangelista, 430
Torricelli’s law, 441–442
Torsional constant, 474
Torsional oscillator, 472, 474
Torsion balance, 370, 411
Torsion modulus (shear modulus), 411
Total internal reflection, 516, 1064–1066
Total mechanical energy, 209
Total reactance, 1012
Total relativistic energy, R-14
Tower cranes, 397
Transducers, piezoelectric crystals used in, 827
Transformers, 977

in ac circuits, 1004–1006
power surges within, 1019

Transistors, 1301–1305
Transition elements, 1248
Translational kinetic energy, 190–192

of molecule, average, 575–576
Transmission axis, 1071, 1072
Transmission coefficient, 514–515, 1212
Transmission grating, 1162
Transmission of waves, 513–516
Transverse velocity, 504
Transverse waves, 496

System(s) (cont.)
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Trap filter, 1025
Triboelectric charging, 719
Triboelectric properties, 719
Triboelectric series, 695
Trigonometry

and geometry formulas, back of book
review of, M-12–M-18

Triple point, 568, 674
Tritium, 1260, 1358
Triton, 228, 229, 1260

rest energy of, 1343
Troposphere, 353
TRPV1 protein, charge distributions of, 754
Tsui, D. C., 907
Tube length, 1126
Tuned-mass dampers, 459, 486
Tungsten

bulk modulus of, 426
electron configuration of, 1250
magnetic susceptibility of, 939
resistivity and temperature coefficient of, 847
shear modulus of, 411
specific heat and molar specific heat of, 593

Tunnel diode, 1303
Tunneling current, 1303, 1307
Turbines, wind, 233
Turbulent flow, 438–439, 447
Turning points, 466
Tweezers, laser, 1047
Twin paradox, 1335–1336
2.7-K background radiation, 1407
Two-dimensional collisions. See Collisions in

two and three dimensions
Two-slit interference pattern, 1145–1149,

1187–1188
intensity calculation, 1148–1149
interference–diffraction pattern of two

slits and, 1151–1152
maxima and minima, 1146

Type I superconductors, 984
Type II superconductors, 984

Ultracentrifuges, 316
Ultrasonic waves, 495, 518
Ultraviolet rays, 1040, 1041
Unbound system, 376
Uncertainty, experimental, 8
Uncertainty principle, 1188–1189
Unconsolidated sediments, 524
Underdamped motion, 477–478, 481
Unified atomic mass unit (u), 96, 1272
Uniform bodies, moment of inertia of, 295–296
Uniform circular motion, 79–81
Uniqueness theorem, 800
Unit cell, 1282–1283
U.S. customary units, 5–6, 100

conversion factors for, front of book, AP-2
of energy, 187
of force, 97
of heat, 593
of power, 187
of pressure, 426
of work, 174

U.S. Patent and Trademark Office, 655
Units of measurement, 3–7. See also SI

unit(s); U.S. customary units
conversion of, 6–7
conversion factors for, front of book, AP-2
international system (SI) of, 3–5

other systems of, 5–6
Unit vector, 20
Universal gas constant (R), 499, 570
Universal gravitational constant, 367, 368

measurement of, 369–370
Universal Time (UT1), 21
Universe, 1406–1408

big bang, 1406, 1407, 1408
Hubble’s law, 1406–1407
by orders of magnitude, 12
total energy of, 220
2.7-K background radiation, 1407

Unlike poles, 887
Unstable equilibrium, 217
Unstable rotational equilibrium, 407
Y Meson, 1401
Uranium

electron configuration of, 1251
fission of, 1374–1376
in nuclear fission reactors, 1376–1379

Uranium–236, 229
Uranus, 394–395
Urban heat islands (UHIs), 686
UTC (Coordinated Universal Time), 21

Valence band, 1298–1299
Valence electrons, 1240
Valves, solenoid, 947
Vanadium, electron configuration of, 1249
Van Allen belts, 894, 895
Van de Graaff, R., 1370
Van de Graaff accelerator, 784
Van de Graaff generator, 763, 783–784, 787, 1370

maximum potential obtained in, 785
Van der Waals bonds, 1262, 1267
Van der Waals equation, 570
Van der Waals forces, 1267, 1282
Van Dyck, 1373
Vaporization, 674

latent heat of, 596
Vapor pressure, 673
Variables

separation of, 1234
state, 570

Vector(s), 14–21
acceleration, 37, 68–71
addition and subtraction of, 15–17, 20
antiparallel, 15
average-acceleration, 68
average-velocity, 64
basic definitions, 14–15
components of, 17–19
constant, 69
displacement, 14–15, 64
equal, 15
equality of, 20
in GPS navigators, 82
instantaneous-acceleration, 68
instantaneous-velocity, 64–65
magnetization, 938
multiplying by a scalar, 17, 20
negative of, 20
parallel, 15
phasors, 1010–1011, 1012, 1152–1158
position, 64
Poynting, 1046
properties of, 20
relative velocity, 67
unit, 20

velocity, 14, 64–66
wind, 353

Vector bosons, 1403
Vector product, 332–334

defined, 332
dot products and, 334

Vector sum (resultant), 15
Vehicle electrical systems, 874
Velocity, 3, 27, 309

acceleration and, 35–37
angular, 290–291, 309, 332
average, 29–32, 39–40, 50, 64
for center of mass, 154
conservation of linear momentum to find,

249
defined, 30
dimensions of, 30
drift, 840–841
in elastic collisions, 265
Euler’s method for approximating,

147–149
Fermi factor versus, 1294
as function of time, 36–37
from a given acceleration, 47–48
group, 553
instantaneous, 32–35
phase, 553
relative, 66–67
relativistic transformation of, 1336–1339
sedimentation, 316
in simple harmonic motion, 459
SI unit of, 30
tangential, 292, 305
transverse, 504

Velocity selector, 895
Velocity vectors, 14

for motion in two and three dimensions,
64–66

Ventricular fibrillation of heart, 789
Venturi effect, 442–445
Venturi meter, 443
Very large array (VLA) of radio antennas, 1161
Very large array (VLA) radio telescope, 1163
Vibration, mode of, 542
Vibrational energy of diatomic molecule,

1271, 1273–1275, 1276
Vibrational energy of molecule, 576
Vibrational modes of carbon dioxide, 610
Vibrational quantum number, 1273
Viewing screen, 1099n
Viewing the image at infinity, 1126
Virtual image, 1097, 1100, 1105. See also

Optical images
Virtual photons, 1403
Viscosity, 440

of fluid, 493
SI unit of, 446

Viscous dampers, 486
Viscous flow, 445–447
Visible light, 1040, 1041, 1175

photon energies for, 1177–1178
Visible spectrum, 1055
Vision, distance of most distinct, 1123
Vogel, Steven, 659
Volt (V), 765, 850

electron (eV), 174–175, 177, 765
Voltage, 765

Hall, 905–906, 907
terminal, 810–811, 852–853



I-26 | Index

Voltage divider, 883
Voltage gain, 1305
Voltmeters, 867–868, 997
Volume, dimension of, 8
Volume flow rate, 439
Von Klitzing, Klaus, 907
Von Klitzing constant, 907
Walking, lateral force from, 486
Walton, E. T. S., 1370
Water. See also Ice

boiling point of, 596
bulk modulus of, 426
coefficient of thermal expansion for, 666
coefficient of viscosity of, 446
critical temperature for, 674
density of, 424
heavy (deuterium oxide), 229
latent heat of fusion of, 596
latent heat of vaporization of, 596
melting point of, 596
normal boiling point of, 565
normal freezing point of, 564
phase diagram for, 673–674
as solvent, 754
specific heat of, 593–594
thermal properties of, 667–668, 676
triple point of, 568

Water clock, 3
Water molecule, 1267, 1269–1270
Watson, James, 1268
Watt, 186, 676
Watts per square meter (W/m2), 510
Wave(s), 495–562. See also Electron waves

circularly polarized, 1075, 1094
classical, 1187
coherence of, 1142
density, 508
diffraction of, 517–518
Doppler effect, 518–523
electromagnetic, 495, 508–509, 521, 675
energy exchange by, 1174
gravity, 498
harmonic, 502, 503–508, 536–542
intensity of, 510–513
interference of, 1143
line, 509
longitudinal, 496
mechanical, 496
particles vs., 517
periodic, 503–509
phase difference, 539–541, 1142
plane, 509, 517, 1103
pressure, 508
propagation of, 1174
radio, 508
reflection of, 513–516
reversibility of, 1103
seismic, 524
shallow, 498
shock, 522–523
sound, 496, 502–503, 517, 518, 522–523,

548–550, 551–552, 618
speed of, 497–500, 502–503
standing, 542–550, 1185, 1186
on string, 500
in three dimensions, 509–513
transmission of, 513–516
transverse, 496
ultrasonic, 495, 518
wave pulses, 496–497

Wave equation, 497, 500–503, 1034–1035
superposition and, 535–536
for taut string, 501

Waveforms, 551
harmonic analysis of, 551–552

Wavefronts, 509, 517
Huygens’s construction describing

propagation of, 1059–1060
mirages and nonspherical, 1067

Wave function(s), 497
antisymmetric, 1221–1222
atomic, 1269–1270
for electromagnetic waves, 508
of electron, 1234
for first excited state, 1209
ground-state, 1209–1211
harmonic, 502, 504
improper, 1207
interpretation of, 1185–1187
normalizable, 1196–1197
normalization condition, 1186–1187
for particle in three-dimensional box,

1219–1220
probability density, 1185–1186
spin alignment and, 1265
for standing waves, 546–547
symmetric, 1221–1222

Wave guide, 51
Wavelength, 503

Compton, 1179
de Broglie, 1181–1182, 1289
of electron waves, 1183
of light, 1162–1165

Wave mechanics. See Quantum mechanics
Wave number, 504
Wave packets, 552–553, 1213, 1215
Wave-particle duality, 1079, 1187–1189

two-slit experiment and, 1187–1188
uncertainty principle and, 1188–1189

Wave theory of light, 1159
W bosons, 95
Weak damping, 478, 480, 481

resonance width for, 482
Weak interaction, 95, 96, 1390

bosons mediating in, 1403
properties of, 1405

Weber (Wb), 960
Weight, 95, 96, 99–101

apparent, 100, 432, 433
mass vs., 100
molecular (molar mass), 573

Weightlessness, 100, 369
Weinberg, Steven, 1403
Western hemisphere, gravity map of, 363
Wheatstone bridge, 885
Wheeler, John, 1375
White pine, thermal conductivity of, 676
Wien’s displacement law, 684, 1082
Wilkins, Maurice, 1268
Wilson, Robert, 1407
Wind, solar, 879, 887, 908
Wind farms, 233
Windmills, 233
Wind tunnels, 448
Wind vectors, 353
Wire

gauge of copper, 847
magnetic field of, 890, 891–892, 927–932,

933, 935
Wireless communication, 1049

Wireless local-area-network protocol, 1041
Wireless Medical Telemetry Service, 1049
Wolfram, electron configuration of, 1250
Wood

density of, 424
resistivity of, 847

Work, 173–200
center-of-mass work, 190–192
by a constant force, 174–179
conversion into heat, 630
defined, 174, 184
done by a torque, 307–308
electrostatic potential energy and, 787–790
by expanding gas, 602–606
by heat engine, 633
incremental, 184
lost, 652
needed to charge capacitor, 807
on particle, 202
power and, 186–188
on roller coasters, 193
scalar (dot) product, 182–188
SI unit of, 174
by a spring that obeys Hooke’s law, 180–182
on systems, 175, 202, 209
temperature and, 598–600
total, 175, 176–177, 209
by a variable force, 179–182

Work–energy theorem, 220–221
with friction, 222–225
for systems, 209

Work function, 1177
for metals, 1294–1295

Working substance, 630
Work–kinetic-energy theorem, 176–179, 202,

220
for curved paths, 182, 188–189
net force and, 177

Work lost, 642–643

Xenon
electron configuration of, 1250
molar heat capacity of, 607

Xi (baryon), 1391
X rays, 2, 508, 1042
X-ray spectra, 1252–1254

Years, leap, 21
Young, Thomas, 1079, 1145–1146, 1175, 1187
Young’s modulus, 409–410, 669

for nanotubes, 412
Ytterbium, electron configuration of, 1250
Yttrium, electron configuration of, 1250

z axis (axis of rotation), 335
Z bosons, 95
Zener diode, 1302
Zeromotor, 655
Zero-point energy, 1190
Zeroth law of thermodynamics, 564
Zinc, 1285

boiling point of, 596
electron configuration of, 1249
latent heat of fusion of, 596
latent heat of vaporization of, 596
melting point of, 596
specific heat and molar specific heat of, 593

Zirconium, electron configuration of, 1250
Z number, 1359
Zweig, G., 1400



Physical Constants*

Atomic mass constant mu � m(12C) 1 u � 1.660 538 86(28) � 10�27 kg

Avogadro’s number NA 6.022 1415(10) � 1023 particles/mol

Boltzmann constant k � 1.380 6505(24) � 10�23 J/K
8.617 343(15) � 10�5 eV/K

Bohr magneton mB � eU/(2me) 9.274 009 49(80) � 10�24 J/T �

5.788 381 804(39) � 10�5 eV/T

Coulomb constant k � 1/(4pP0) 8.987 551 788 . . . � 109 N m2/C2

Compton wavelength lC � h/(mec) 2.426 310 238(16) � 10�12 m

Fundamental charge e 1.602 176 53(14) � 10�19 C

Gas constant R 8.314 472(15) J/(mol K) �
1.987 2065(36) cal/(mol K) �
8.205 746(15) � 10�2 L atm/(mol K)

Gravitational constant G 6.6742(10) � 10�11 N m2/kg2

Mass of electron me 9.109 3826(16) � 10�31 kg �

0.510 998 918(44) MeV/c2

Mass of proton mp 1.672 621 71(29) � 10�27 kg �

938.272 029(80) MeV/c2

Mass of neutron mn 1.674 927 28(29) � 10�27 kg �

939.565 360(81) MeV/c2

Magnetic constant (permeability of free space) m0 4p � 10�7 N/A2

Electric constant (permittivity of free space) P0 � 1/(m0c2) � 8.854 187 817 . . . � 10�12 C2/(N m2)

Planck’s constant h 6.626 0693(11) � 10�34 J s �
4.135 667 43(35) � 10�15 eV s

U � h/(2p) 1.054 571 68(18) � 10�34 J s �
6.582 119 15(56) � 10�16 eV s

Speed of light c 2.997 924 58 � 108 m/s

Stefan-Boltzmann constant s 5.670 400(40) � 10�8 W/(m2 K4)

* The values for these and other constants can be found in Appendix B as well as on the Internet at
http://physics.nist.gov/cuu/Constants/index.html. The numbers in parentheses represent the uncertainties in the
last two digits. (For example, 2.044 43(13) stands for 2.044 43 � 0.000 13.) Values without uncertainties are exact.
Values with ellipses are exact (like the number p � 3.1415. . .), but are not completely specified.

#

#
#

#
#

#

#
##

#
#

#

R>NA
1

12

Derivatives and Definite Integrals

sin ax � a cos ax e�ax dx � x2 e�ax2 dx �

cos ax � �a sin ax e�ax2 dx � x3 e�ax2 dx �

eax � aeax xe�ax2 dx � x4e�ax2 dx �

Vector Products

� AB cosu � � AB sinu ( obtained using right-hand rule)n̂n̂B
S

A
S

B
S#A

S

Apa5

3
8�



0

2
a�



0

d
dx

4
a2�



0
Apa1
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0

d
dx

The a in the six integrals is
a positive constant.

Apa3

1
4�



0

1
a�



0

d
dx

http://physics.nist.gov/cuu/Constants/index.html


For additional data, see the following tables in the text.

1-1 Prefixes for Powers of 10

1-2 Dimensions of Physical Quantities

1-3 The Universe by Orders of Magnitude

1-4 Properties of Vectors

5-1 Approximate Values of Frictional Coefficients

6-1 Properties of Scalar Products

7-1 Rest Energies of Some Elementary Particles and Light Nuclei

9-1 Moments of Inertia of Uniform Bodies of Various Shapes

9-2 Analogs in Fixed-Axis Rotational and One-Dimensional Linear
Motion

11-1 Mean Orbital Radii and Orbital Periods for the Planets

12-1 Young’s Modulus � and Strengths of Various Materials

12-2 Approximate Values of the Shear Modulus Ms of Various
Materials

13-1 Densities of Selected Substances

13-2 Approximate Values for the Bulk Modulus B of Various Materials

13-3 Coefficients of Viscosity for Various Fluids

15-1 Intensity and Intensity Level of Some Common Sounds 
(I0 � 10�12 W/m2)

17-1 The Temperatures of Various Places and Phenomena

18-1 Specific Heats and Molar Specific Heats of Some Solids and
Liquids

18-2 Melting Point (MP), Latent Heat of Fusion (Lf), Boiling Point (BP),
and Latent Heat of Vaporization (LV), all at 1 atm for Various
Substances

18-3 Molar Heat Capacities J/mol K of Various Gases at 25°C

20-1 Approximate Values of the Coefficients of Thermal Expansion for
Various Substances

20-3 Critical Temperatures Tc for Various Substances

20-4 Thermal Conductivities k for Various Materials

20-5 R Factors �x/k for Various Building Materials

21-1 The Triboelectric Series

21-2 Some Electric Fields in Nature

24-1 Dielectric Constants and Dielectric Strengths of Various Materials

25-1 Resistivities and Temperature Coefficients

25-2 Wire Diameters and Cross-Sectional Areas for Commonly Used
Copper Wires

27-1 Magnetic Susceptibility of Various Materials at 20°C

27-2 Maximum Values of m0Ms, and Km for Some Ferromagnetic
Materials

30-1 The Electromagnetic Spectrum

36-1 Electron Configurations of the Atoms in Their Ground States

38-1 Free-Electron Number Densities and Fermi Energies at T � 0 for
Selected Elements

38-2 Work Functions for Some Metals

39-1 Rest Energies of Some Elementary Particles and Light Nuclei

40-1 Atomic Masses of the Neutron and Selected Isotopes 

41-1 Hadrons That Are Stable Against Decay via the Strong Nuclear
Interaction

41-2 Properties of Quarks and Antiquarks

41-3 Masses of Fundamental Particles

41-4 Bosons That Mediate the Basic Interactions

41-5 Properties of the Basic Interactions

#

Geometry and Trigonometry

C � pd � 2pr definition of p

A � pr2 area of circle

V � pr3 spherical volume

A � V/ r � 4pr2 spherical surface area

V � AbaseL � pr2L cylindrical volume
A � V/ r � 2prL cylindrical surface area

sin2u � cos2u � 1

sin(A � B) � sin A cos B � cos A sin B

cos(A � B) � cos A cos B � sin A sin B

sin A � sin B � 2 sin[ (A � B)] cos[ (A � B)]

If �u � 		 1, then 
cosu � 1 and tanu � sinu � u (u in radians)

Quadratic Formula

If ax2 � bx � c � 0, then x �

Binomial Expansion

If �x� 	 1, then (1 � x)n �

1 � nx � x2 � x3 �…

If �x� 		 1, then (1 � x)n � 1 � nx

Differential Approximation

If �F � F(x � �x) � F(x) and if ��x� is small,

then �F � �x.
dF
dx

n(n � 1)(n � 2)
3!

n(n � 1)
2!

�b � 2b2 � 4ac
2a

1

u

u

cos u

sin u

(x, y)

y

x

1
2

1
2

h
o

a
u

o � h sinu
a � h cosu

��

��

4
3

sinu � y
cosu � x

tanu �
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