
EXPERIMENT 5

The Franck-Hertz Experiment (Critical Potentials)

Introduction

In the early part of the twentieth century the structure of the atom was studied in depth. In the
process of developing and refining a theory of atomic structure, scientists developed a number of
theories and techniques designed to explain and investigate experimental atomic phenomena.

Scientists had developed a periodic table of the known elements without realizing the part that
the structure of atoms played in placing an element in that table. It had been found that atoms
are related to electromagnetic phenomena, since molecules could be dissociated into their com-
ponent elements by applying a current to them. The differences among magnetic, insulating and
conducting materials were suspected to be related to atomic structure. Heated elements emitted
light when a current passed through them. The light emitted by elements is at specific frequencies
which indicated a characteristic internal structure specific to each element.

In 1897, J.J. Thomson developed a technique to deflect charged particles through magnetic fields.
This technique provided indications about the charge-to-mass ratio and sign of the charge of an
electron. In 1909, Ernest Rutherford, Hans Geiger and Ernest Marsden developed scattering ex-
periments to probe the internal charge and mass distribution of atoms. In 1915, Niels Bohr devel-
oped mathematical techniques for predicting atomic behaviour that incorporated the new ideas of
quantization and correlated to experimental analysis of the wavelength spectra of hydrogen.

Making quantum theory fit the experimental data led to refinements in understanding the atomic
structure. For example, Bohr’s calculations of the wavelength of hydrogen’s spectra were slightly
different from the experimental results. Resolving the differences led to the understanding that
the electron does not simply revolve about the hydrogen nucleus, but both revolve around their
combined center of mass.

Prior to the experiments performed by James Franck and Gustav Hertz, the quantum theory had
been applied to atoms to describe radiation of photons only. Franck and Hertz decided to study
electrons, atoms, and the transfer of kinetic energy. Their experiment extended the application of
quantum theory to electrons and their energy levels, and provided a new technique for studying
atomic structure. In this practical you will carry out a variant of the Frank-Hertz experiment to
determine the critical potentials of the atoms in a gas of He or Ne.
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Theory
In the kinetic theory of gases, it is assumed that the atoms of a gas are hard, perfectly elastic
spheres. The atoms collide elastically with each other, and with the walls of the containing vessel.
In this picture, the pressure the gas exerts on the walls of the containing vessel is equal to the
momentum transferred to unit area of the wall per unit time. The average kinetic energy of an
atom or molecule of gas is given by 3

2
kT, where k is Boltzmann’s constant and T is the absolute

temperature. The total energy of N molecules is then 3
2

N. If we rewrite in terms of the number of
moles, n, then the total energy of n moles is 3

2
nRT where R = k.NA is the Universal gas constant =

8.315 J/(ml.K) and NA is Avogardo’s number. Hence the total kinetic energy per mole of gas is

3

2
RT (5.1)

Now, it is found experimentally that the specific heat of a mole of monatomic gas is

3

2
R

Comparing this with Eq. 5.1, one can conclude that the energy supplied to increase the temper-
ature of one mole of monatomic gas by 1K, i.e. 3/2 R, goes solely to increasing the kinetic energy
of the atoms. The agreement between results of the kinetic theory of gases and experiment lends
strong support to the assumption that an atom can be regarded, in many instances, as a perfectly
elastic, hard sphere.

Experiments carried out at the beginning of the 1900’s indicated that atoms are made up of
nucleons and electrons. If so, one would expect that when one atom of gas collides with another,
or with the walls of the containing vessel, some of its kinetic energy would go into internal energy
of the atom, i.e. to increasing the motion of its constituents. In that case, the collision would not
be elastic, in disagreement with the kinetic theory.

This apparent contradiction can be overcome if the internal energy of an atom cannot have arbi-
trary values, but only certain quantized, or discrete, values. This could be represented, diagramati-
cally, by an energy level diagram (Fig. 5.1).

The state of the lowest internal energy of an atom is called the ground state, and the energy of this
state can be denoted by E0. E1 is the energy of the first excited state, E2 the energy of the second,
etc. The atom cannot exist with an energy intermediate between E0 and E0 and E1, or E1 and E2

etc. E∞ is the energy of the ionized atom, i.e. an atom with an electron removed completely from
it. For reasons which will become clearer later, E1, E2, E3, etc. are called the excitation potentials,
and E∞ the ionization potential of an atom, when they are expressed in electronvolts. The atom
will normally exist in the state of lowest energy, i.e., the ground state. To raise it from the ground
state to the first excited state, an amount of energy (E1 − E0) must be supplied. In the case of
atoms in a gas, this energy must come from the kinetic energy of the atoms, which could become
internal energy in a collision. The mean kinetic energy of an atom in a gas at temperature T is

Mean kinetic energy =
3

2
kT

At 300 K, this is equal to 2.6× 10−2 eV. If (E1−E0) is much greater than 2.6× 10−2 eV, then the
atoms will behave elastically in collisions. We would hope to find (E1 − E0) if we pass electrons
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Figure 5.1: Schematic energy level diagram of an atom.

of variable energy through the gas and detect the energy at which they raise the atoms with which
they collide to the first excited state. This forms the basis of the present experiment, which was
first performed by Franck and Hertz in 1914 and is an experimental verification of the fact that the
internal energy of an atom is quantized.

Experimental Apparatus

Tube Description
The Critical Potentials tube (TEL 2533) consists of a simple diode gun which emits a divergent
beam of electrons into a clear glass bulb containing either helium or neon gas at low pressure
(Fig. 5.2). Electrons are emitted thermionically from a heated tungsten filament housed in the gun’s
cathode can. Located inside the bulb is a wire ring collector positioned so that it cannot receive
electrons directly from the electron beam; this ring is connected to a screened lead terminated with
a BNC plug. The inside surface of the glass bulb is coated with a transparent conducting layer
which is insulated from the wire ring but connected to the anode of the diode gun.

Tube Operating Specification
Filament voltage (VF ): 3.0 V dc max. (IMPORTANT: Never exceed this maximum voltage,

as this would damage the tube !!)
Anode voltage (VA): 0 - 50 V dc (60 V max.)
Anode current (IA): 10 mA max.
Collector voltage (VC): ± 1.5 V dc, dry cell battery, AA type
Collector current (IC): 0 to ± 200 pA
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Figure 5.2: Schematic of the Critical Potentials tube (TEL 2533).

Tube Function

The electrons emitted from the diode gun are accelerated through a potential +VA. Some electrons
travel straight to the anode to give rise to the anode current IA, but a significant proportion are
projected through the cylindrical anode to enter the spherical glass bulb containing the gas. As the
electrons pass through the bulb, they collide with the gas atoms in their path.

If the kinetic energy of an electron is less than the lowest excitation level for the gas atom, the
collision is elastic and no energy is lost to the more massive gas atom. This electron traverses the
bulb to impact with the conductive coating and returns to the anode, thus contributing to the anode
current IA. An electron with just sufficient energy to excite an atom will, after (inelastic) collision,
have little or no residual energy and, in the field-free region of the bulb, would diffuse eventually
to the conductive coating of the walls, contributing to the current IA. However, by making the ring
collector a few volts positive (+VC) with respect to the anode, such an electron will be attracted
to it and ’collected’. Thus, when the mean energy of the electron stream is sufficient to excite
the gas atoms, the population of low energy electrons will increase significantly to produce, in the
collector, a measurable current (IC) with little or no contribution from the main stream. As the
accelerating voltage is increased, the excitation at first increases, and then falls away until another
higher energy excitation occurs, resulting in a further increase in the low-energy electron current.
A further increase in the accelerating voltage results in the ionisation of the atoms. This leads
to the liberation of more electrons in the tube, resulting in a steady increase of the current in the
collector.
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Figure 5.3: Experimental circuit diagrams.
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Experimental Procedure
Set up the experiment according to the circuit diagram shown in Fig. 5.3, making sure the filament
voltage (VF ) is at zero. Slowly increase VF in the region 1.5 to 2.6 V. For typical experiments
carried out with this apparatus VF was set at 2.6 V. Under no circumstances should VF exceed 3 V,
as this could damage the tube.

The Hertz Control Console (TEL 2812) supplies the anode voltage, VA, at Channel 1 as a saw
tooth ramp of frequency 20 Hz; this voltage is externally metered using a digital meter (TEL 2021)
and is variable from 0 to 60 V. The TEL 2021 digital meter allows the maximum and minimum
scan voltages to be set at Channels 3 and 4 respectively. The ramp is activated by an illuminated
RUN press-button.

The cable from the collector ring is connected to an integral ac amplifier via a BNC socket, and
the current (IC) is monitored (200 pA max.) at Channel 2.

The 0-1 V OUTPUTS present both the anode voltage ramp (VA) and the IC/VA characteristic in
SLOW form, for output to a data recorder, and in FAST form, for analysis with an oscilloscope. In
this experiment, the SLOW form output is directed to a CASSY-Lab data recorder, which enables
the output to be visualised and analysed using a PC.

Data acquisition
Note: Before proceeding with this section, familiarise yourself with the CASSY-Lab software.

Exploratory scan
In the TEL 2021 meter, set the minimum (VM ) and maximum anode voltages to 10 and 50 V,
respectively, to carry out an exploratory scan as illustrated in Fig. 5.4. Using the CASSY-Lab
software, overlay plots of the anode voltage ramp (VA) and the IC/VA characteristic versus time.
In order to do this, make sure that the red indicator in the Hertz Control Console is illuminated,
showing that the SLOW RAMP mode is in the off condition. To record a scan, simultaneously
press the RUN button (the red indicator will become green whilst the acquisition is in progress)
on the Control Console and the acquisition icon in the CASSY-Lab program. Carefully adjust the
filament voltage (VF )slightly taking care not to exceed 3 V until the response trace resembles that
illustrated in Fig. 5.4.

Take note of the times (x-axis) corresponding to the two features shown in Fig. 5.4 (i.e. V1

and VR). Taking into account that the acquisition-time spans from 0 to 25 s, use the minimum
and maximum anode voltages to derive a calibration factor in V/s. Using this factor, calculate the
values of V1 and VR in volts.

Upper and lower critical regions
Scan the lower part of the critical region by changing the minimum and maximum anode voltages
to the values shown in Fig. 5.5, depending on the tube used i.e. between 15 and 25 V for He
and between 10 and 22 V for Ne . Take note of the positions of features V1 to V8 in the x-axis
(time). Derive a new calibration factor to calculate the values of these features in volts. Repeat the
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Figure 5.4: The exploratory scan.

Table 5.1: Principal energy levels of Helium and their critical potentials. The 11S level is assumed
to be at 0 eV.

33S - 22.71 eV Ionisation
21S - 20.61 eV 31S - 22.91 eV potential

23S - 19.80 eV 23P - 20.96 eV 33P - 23.00 eV
21P - 21.21 eV 31P - 23.08 eV

Averages 19.8 eV 20.9 eV 22.9 eV 24.6 eV

procedure for the upper part of the critical region (Fig. 5.6). Again derive a new calibration factor
to calculate the value of VR in volts.

Data analysis

In the lower critical region scan (Fig. 5.5), features V1 to V7 correspond to different transitions
from the ground state to excited levels in the atom (Fig. 5.7 and Table 5.1). Electrons emitted
from the diode gun have the exact amount of energy to excite an atom to different levels when the
accelerating voltage VA satisfies the following equation

En′ − En′′ = VA + VO (5.2)

where V0 is the energy required to extract the electrons from within the filament to its surface.
The maximum amount of energy the atom can absorb is that required to remove an electron

completely beyond the influence of the nucleus

E∞ − En′′ = VA∞ + VO and E∞ is zero by convention.

5-7



Experiment5. The Franck-Hertz Experiment (Critical Potentials)

Figure 5.5: Scan of the lower critical region.

Figure 5.6: Scan of the upper critical region.
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Figure 5.7: Energy levels and electric dipole transitions for the neutral helium atom. Note the
separation between the singlet and triplet systems of levels. These systems arise from quantum
mechanics.

The atom, with the loss of the negatively charged electron loses its neutral condition and becomes
a positive ion. For example, in the case of helium

He → He+ + e−.

The accelerating potential difference required to create a positive ion is called the ionization
potential, Vi

Vi = VA∞ + VO volts (5.3)

The potential difference required to accelerate an electron to create an excited atom is called an
excitation potential, Ve′

Ve′ = VA′ + VO volts (5.4)

These excitation potentials are collectively known as the critical potentials (Fig. 5.8).
The experimental scans obtained above show that ionization occurs at V8, just after the lower

critical region peaks. The upper critical region must therefore represent a repeat excitation process.
An electron with energy of VR has the required energy to excite an atom to the state of V1 and
sufficient residual energy to excite yet another atom to the same state. The upper pattern thus
represents a progressive overlay of excitation processes exactly the same as the lower region but
caused by electrons ’starting’ from V1, V2, etc.

From this, it is clear that the minimum energy required to excite an electron to the first excitation
potential, Ve1, must be the difference in energy between the peaks VR and V1. Thus

Ve1 = VR − V1
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Figure 5.8: Schematic representation of energy levels

But, from Eq. 5.4,

Ve1 = V1 + V0

therefore
V0 = VR − 2V1

Accurate values for the other excitation potentials and that of ionization can now be calculated
using Eqns. 5.4 and 5.3, respectively. For convenience you should save your data to a file for
importing and analysis with a package such as Mathcad or Excel.

Energy levels
Evaluate the allowed energy levels En (i.e. Ve − Vi, see Fig. 5.8) and form a table such as Table
5.2.

Bohr’s model predicts that for an atom with nuclear charge Z, the energy of the electron in the
nth level shell is given by

En =
−13 · 6 · Z2

n2

where En is measured in eV.
Use this equation to calculate a set of predicted critical potentials for Helium or Neon, depending

on your apparatus, for n = 1 to 10. Identify, if possible, each of your experimental critical potentials,
with a principal quantum number, n.
Note: The Bohr model was most successful in the case of the simplest element, Hydrogen.

Questions
1. Do your values of the critical potentials correspond to the values predicted by the Bohr

model? Explain.
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Table 5.2: The derivation of energy levels.

Feature 0 1 2 3 4 5 6 7
a b

Ve 0
En

(Ve − Vi

n 1

Reference
’Introduction to Modern Physics’, Richtmyer, Kennard and Cooper, for an advanced discussion of
energy levels in atoms and the spectrum of helium.

WWW :

• Atomic Theory - http://www.visionlearning.com/library/module−viewer.php?mid=51

• Beautiful animations of atomic orbitals - http://daugerresearch.com/orbitals

• Ion propulsion - http://nmp.jpl.nasa.gov/ds1/tech/ionpropfaq.html
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