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Foreword

During the Renaissance. algebra wiis resumed from Near Fastern sources, and geometry from the
Greck. Schobirs of the tme became familiae with chissical mathematics. When calculus was born
in 1665, the new ideas spread quickly through the intellectual circles of Europe. Our history shows
the importance of the diffusion of these mathematical ideis. and their effects upon the subsequent
development of the sciences and echnology

Today, there is a cultural resistance o nuthematical ideas. Due o the widespread impression that
puathematicos is difficult to understand, or o a stractureal faw in our educational svstem. or perlugps
1o other mechanisms, mathematics has become an esoteric subject. Inellectuals of all sorts now
carry on their discourse i nearly wotal ignorince of mathematical ideas. We cannot help thinking
thae this is o eritical sinmtion, as we hold the view tue muehematical ideas are essential for the
future evolution of our sociery.

Ihe absence of visual representations in the curriculum may be part of the problem, contributing
to mathematical illiteracy and the math-avoidance refles. This book is hased on the idea tha
mathematical concepts may be communicated easily in g format that combines visual, verbal. and
symbolic representations in tght coordinauon. 1t aims w attack math ignorance with an abundance
of visual representations

I sum, the purpose of this book is o encourage the diffusion of mathematical ideas by presenting
them dseally

(A



Preface

Dynamics is a field emerging somewhere between mathematics and the sciences, In our view, it
is the most exciting event on the concept horizon for many vears. The new concepts appearing
in dynamics extend the conceptual power of our civilization and provide new understanding in
many Fficlds

We discovered, while working together on the illustrations for a book in 1978 * that we could
explain mathematical ideas visually. within an easy and pleasant working partnership. In 1980,
we wrote an expository article on dynamics and bifurcations.? using hand-animation to emulate
the dynamic picture technigue universally used by mathematicians in talking among themselves:
a picture is drawn slowly. line by line, along with a spoken narrative— the dynamic picture and
the narrative tightly coordinated.

Our efforts inevitably exploded into four volumes, now combined into this book. The dyvnamic
picture technigue, evolved through our work together, and in five vears of computer graphic
experience with the Visual Math Project at the University of California at Santa Cruz. is the basis
of this work. The majority of the book is devoted to visual representations, in which four colors
are used according to a strict code,

Math symbols have been kept to a2 minimum. In fact, they are almost completely suppressed. Our
purpose is to make the book work for readers who are not practiced in symbaolic representations.
We rely exclusively on visual representations, with brief verbal explanations. Some formulas are
shown with the applications, as part of the graphics, but are not essential. However, this strategy
15 exclusively pedagogic We do not want anvone to think that we consider symbolic representa-
tions unimportant in mathematics. On the contrary, this field evolved primarily in the symbolic
realm throughout the classical period. Even now, a full undersianding of our subject demands a
full measure of formulas, logical expressions, and technical intricacies from all branches of
mathematics. A brief introductions to these is included in the Appendix.

We have created this book as a short-cut to the research frontier of dynamical systems: theory, exper-
iments, and applications. [t is our goal — we know we may fail o reach it—ro provide any interested
person with an acquaintance with the basic concepts:

* Footnotes refer 1o the Notes, which follow the Appendis



Prefoace X

+ state spaces: manifolds —geometric models tor the virtual states of a system

« artractors: static. periodic. and chaotic — geometric models for its local asymptotic behavior

» separatrices: repellors, saddles. insets. mngles —defining the boundaries of regions (basins)
dominated by different behaviors (attractors), and characterizing the global behavior of
4 svsiem

+ hifurcations: subtle and catastrophic — geometric models for the controlled change of one
system into another,

The ideas included are selected from the literature of dynamics: Part One, UPeriodic Behavior,
covers the classical period from 1600 to 1950, Part Two, " Chaotic Behavior” is devoted to recem
developments, 1950 1o the present, on the chaotic behavior observed in experiments. Part Three,
“Global Behavior” describes the concept of structural stability, discovered in 1937, and the important
generic properties discovered since 1959 relating to the tangled insets and outsets of a dynamical
svstem. These are fundamental o Part Four. " Bifurcation Behavior™ In fact, the presentation in
Part Four of an atlas of bifurcations in dvnamical schemes with one control parameter was the
original and primary goal of this whole book. and all of the wpics in the first three parts have
been selected for their importnce 1o the understanding of these bifurcations. For we regard the
response diagram, a molecular arrangement of the aromic bifurcation events deseribed here. as
the most useful dynamical model available w a scientist,

We assume nothing in the way of prior mathematical rraining, bevond yectors in three dimensions,
and complex numbers. Nevertheless. it will be tough going without a basic understinding of the
simplest concepts of calculus

Owur first attempt at the pictorial stvle used here evolved in the first draft of Dynamics: A Visnearl
Introduction. during the summer of 1980, Our next effort. the preliminary draft of Part Two of
this book, was circulated among friends in the summer of 1981 Exiensive feedback from them
has been very influential in the evolution of this volume, and we are grateful w them

Fred Abraham George Francis Jerey Marsden Rob Shaw
Ethan Akin Alan Garfinkel Nelson Max Mike Shub
Michael Arbib John Guekenheimer  Jim MeGill Sweve Smale
Jim Crutchfield Moe Hirsch Kent Morrison Joel smolier
Larry Cuba Phil Holmes Charles Musés Jim Switt
Richard Cushman Dan Joseph Norman Packard Bob Williams
Larry Domash Jean-Michel Kantor Tim Poston Art Winfree
Jean-Pierre Eckman Bab Lansdon Otro Rossier Marianne Wolpert
Len Fellman Arnold Mandell Lee Rudolph Gene Yaies

Katie Scott Chris Aeeman

We are especially grateful to Tim Poston and Fred Abraham for their careful reading of the manuscript:
to the Dynamics Guild (J. Crutchfield. D Farmer. N, Packard, and R, Shaw ) for their computer plots
used in many places in this book: to Richard Cushman for history lessons; to Phyllis Wright and
Claire Moore of TypaGraphix tor their care in typeserting and production; o Lauro Lato of Acrial
Press for her expert assistance in the production process: to Diane Rigoli for her splendid final
drawings based on our rough sketches for Part Four: and to Rob Shaw for providing photos for



Vi Preface

section 163 and computer plots for Section 17,3 The generosite and goodwill of many dynamicists
has been crucial in the preparation of this hook; we thank them all, We are grateful to Tom Jones,
Andre Leroi-Gourhan, Preston James. Goeftrey Martin. and their publishers for permitting the
reproduction of their illustrations. Finally. it s a pleasure to thank the National Science Founda-
tion for financil support

Raiph H. Abraham
Christopher 13 Shaw
Santa Cruz. Californic
October, 1991
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DYNAMICS HALL OF FAME

Dynamics has evolved into three disciplines: applied. mathematical. and experimental.
Applicd dynamics is the oldest. Originally regarded as @ branch of natural philosophy, or
physics. it goes back o Galileo at least. It deals with the concept ot change, rate of change,
rate of rate of change. and so on, as they occur in natural phenomena, We take these con-
cepts for granted, but they emerged into our consciousness only in the fourteenth century!

Mathematical dyvnamics began with Newton and has become a large and active branch of
pure mathematics. This includes the theory of ordinary differential equations. now a classical
subject. But since Poincaré, the newer methods of topology and geometry have dominated
the field.

Experimental dynamics is an increasingly important branch of the subject. Founded by
Galileo. it showed little activity until Rayvleigh, Duffing, and Van der Pol. Experimental
technigues have been revolutionized with ¢ach new development of wehnology. Analog
and digital computers are now accelerating the advance of the research frontier. making
experimential work more significant than ever.

This chapter presents a few words of description for some of the leading figures of the history
of dynamics. Their positions in a two-dimensional tableau — date versus specialty (applied.
mathematical, or experimental dynamics)— are shown in Tible 1.1 Those included are not
more important than numerous others, but limitations of space and know ledge prevent us
from giving a more complete muscum here.
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TABLE L1-THE HISTORY OF DYNAMICS

| APPLIED MATHEMATICAL EXPERIMENTAL
Duate DYNAMICS DYNAMICS DY NAMICS
e |
1600 - Kepler Galileo
1650 | ‘ '
Huvghens Newton
Leibmiz
1700)
| Euler
1750 | |
[ Lagrange
| |
B0
1850 |
Helmhbolte
Ravleigh Poincare Ravlcigh
. Lic |
— Lizpounon
FO00)
Duffing
Lotka Birkhoff Van der Pol
Valterra Andronov
Rashevsky | Cartwright Havashi

1950)




Dynamics Hall of Fame 5

Galileo Galilei, 1564-1642. One
of the first to deal thoroughly with
the concept of acceleration, Galileo
founded dynamics as a branch of
natural philosophy. The close inter-
play of theory and experiment, char-
acteristic of this subject, was founded
by him

bty conurtesy Of DL Stradk, A& Concize History of
Matbematics, Dover Pubiications, New Yok ( F058)

Johannes Kepler, 1571-1630. The
outstanding and original exponent of
applied dynamics. Kepler made use of
extensive interaction between theory
and observation to understand the
planetary motions,

cowrfesy of Kepler Gesamonelie Werke, feck,
Mipnobenr (F9040)




7 Periodic Behavior

Isaac Newton, 1642-1727. Math-
cmatical dvnamics, as well as the
calculus on which it is based, was
founded by Newton at age 23, Appli-
cations and experiments were basic to
his ideas, which were dominated by
the doctrine of determinism. His
methods were geometric,

fbvater conterfesy of e Trustoes of the Britisis Meusein

Gottfried Wilhelm Leibniz, 1646—
1716. The concepts of calculus,
mathematical dvnamics, and their im-
plications for natural philosophy, oc-
curred independently to Leibniz. His
methods were more symbolic than
geometric,

Ir.r!:rarra CrFtesy rg,r'HM Fristecs of e Brstdsl Meeseiom
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Leonhard Euler, 1707-1783. Pri-
marily known for his voluminous con-
tributions to algebra, Euler developed
the techniques of analysis which were
to dominate mathematical dynamics
throughout its classical period.

Photn cenrtesy of T Bell, Men of Matbemalics,
Simon and Schuster, Now York (1937)

Joseph-Louis Lagrange, 1736-1813.
A disciple of Euler, Lagrange devel-
oped the analytical method to ex-
tremes, and boasted that his definitive
text on the subject contained not a
single illustration.

Phato conrtesy af the Bitliothéque Nationale, Paris,
France.
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Marius Sophus Lie, 1842-1899,
In combining the wdeas of svmmetry
and dynamics, Lie built the founda-
tions for a far-reaching extension of
dynamics, the theory of groups of
transtornmtions

frwilin conrtesy of Winkogske, B Beiofe o Bl
fifierd, W Bertragin  nnd Devansgogehen con |
Bhadenlerg, I Lastenbeis.  Spredogen Verfog
Pharaady gy 195 10

John William Strutt, Baron Ray-
leigh, 1842-1919. In a carcer ol
exceptional length and breadih, span-
ning applicd mathematics, phvsics,
and chemisery, Ravleigh dwelled at
length on acouwstical physics In this
context, he revived the experimental
tradition of Galileo in dynamics, lay-
ing the foundations for the theory of
nonlinear oscillations. His text on
acoustics, published in 1877, remains
to this day the best account of this
subject

Mwates ceaderfesy af Afaftiod Mech, Rer. 26000974
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Jules Henri Poincare, 1854=1912.
konown for his contributions o many
branches of pure mathematics, Pain-
vire devoted the majoriey of his ctfores
1o maathematical dynamics. Among the
fiest to accept the fact thar the classical
analviical methods of Euler and
Lagrange had serious limitations, he
revived geomerrical methods. The
results were revolutionary for
dvnamics, and gave birth 1o wpology
and global analvsis as well, These
branches of pure mathemeatics are very
aenive vet

Fm cotrdisr o phe Ll ol Engiess, Wi
dertteand, B3 A

Aleksandr Mikhailovich Liapou-
nov, 1857-1918. Another pioncer of
geometric methods in mathematical
dyvnamics. Liapounov contribured
basic ideas of stability.

Filsades gondrtesy ol dBaeleen il Naanale AR TS
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Georg Duffing, 1861-1944. A
serious experimentalist, Duffing
studied mechanical devices to discover
geometric properties of dynamical
svstems: The theory of oscillations wis
his explicit goal

Filsenes doamrhesy o W, Whanadbed Vovwised senad Peaef fa
P B Gooiseh Bopdin

George David Birkhoff, 1884-
1944, The first dynamicist in the New
World, Birkhoff picked up where
Poincaré left off, Although a geomerer
at heart, he discovered new symbolic
methods, He siw bevond the theory of
oscillations. ereated arigorous theory
of ergodic behavior, and foresaw
dyvnamical models for chaos.

privcfee dargrrtesy af . 2 Herkhiff. Colfetedd
Vaattveeniaatic oel f"u,l'll'r'\- Andewieaes Wabhergafical Wge
ey, New Yok (1050
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Balthasar van der Pol, 1889-
1959, The first radio transmitter
Bediame. in the hands of this outstand-
ing experimentalist. a high-speed
laboratory of dvonamics. Many of the
basic ideas of modern experimental
dyvmamies came out of this laboraton

plwiers grapredesy of Bofitwesorr canl ofer Pl siicted
Fapers, W I Bveenger o 0
Berideeienpr feels 1 Veardh Foadlorered eeisdarieliding (P 0

Nicholas Rashevsky, 1899-1972,
From antiguity until the 1920°s
applicd dyvnamics meant physics. At
lust, the important applications to the
hiological and social sciences came
into view, in the visionary minds of the
general scientists Lotka, Volterra. and
Rashevsky

st costietesy o Sl Math, Hiopbs 84 00972
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Mary Lucy Cartwright, 1900-
Dame Cartwright, together with | E.
Littlewood, revived dyvnamics in
England, during World War 1. In-
spired by the work of Van der Pol. thesy
obtained important results on the
ultraharmonics of forced electronic
oscillations, uwsing analveical and
topological methods

flieeter dvanrbieny o Wikl Cradzerne 36§ 1UF2

Chihiro Hayashi, 1911-1986, The
experiments ol dyvnamicists were
restricted toa few simple systems (Duf-
fing's svstem, Van der Pol's svstem,
cte.) until the appearance of the
general purpose analog computer, One
of the creators of this tvpe of machine,
and the first 1o fully exploit one as a
laboratory of dynamics. Havashi con-
tributed much o our knowledge of
ascillations,

[ates cortesy of G Mayeshy, selectidd Poprers o
Veartfineny Chscillators. Kyedo (1979,
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Basic Concepts of Dynamics

The kev to the geometric theory of dyvnamical svsiems created by Poincaré is the phase
portrait of o dvmamical system. The first step in drawing this portrait is the creation of
a geometric model for the set of all possible states of the svstem. This is called the stare
space. On this geometric model, the dynamics determine a cellulir structure of basins
ciclosed by sefurratrices. Within cach cell or basin is a nucleus called the attractor: The
states thar will actually be observed in this system are the attractors, Thus, the portrait of
the dymamical system. showing the basins and attractors, is of primary importance in ap-
plications. This chapter introduces these basic concepts.

13



Basic Concepts of Dynamics 15

1.1. State Spaces

The strategies for making mathematical models for observed phenomena have been evolving since
ancient times. An organism — physical, biological, or social —is observed in different states. This
observed system is the target of the modeling activity. Its states cannot really be described by only
a few observable parameters, but we pretend that they can. This is the first step in the process of
“mathematical idealization'” and leads 1o a geometric model for the set of all idealized states: the
state sprace of the model. Different models may begin with different state spaces. The relationship
between the actual states of the real organism and the points of the geometric model is a fiction
maintained for the sake of discussion, theory, thought, and so on: this is known as the conven-
tional interpretation. This section describes some examples of this modeling process.

The simplest scheme is the one-parameter model. The early history of science used this

scheme extensively.

1.1.1. The actual state of this waffle
iron cannot be described completely by
a single observable parameter, such as
the temperature. But usually we find it
convenient o pretend that it can, This
pretense is an agreement, the conven-
tional inferprretation, within the
modeling process. It is justified by its
usefulness in describing the behavior
of the device,

1.1.2. The correlation berween the in-
ternal state of a complex system, such
as a mammal, and a single observed
parameter may be very good or very
bad, depending on the context. In the
case of George Washington, the oral
temperature correlates better with his
health than his honesty.
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L A e N L e
TEMPERATURE
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L.L.3. Inthese examples. the geometric model for the set of all (mathematically idealized)
states is the real number line. This is one of the simplest state spaces.

w !
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to t Lz i3
TIME
1.1.4. Observing the parameter for a 1.1.5. These daw compose 2 Hime

while, it will probably change. The dif-
ferent values observed may be labeled
by the time of their observation: the
states observed at four different times
are shown here,

series of observations, and are shown
here as a graph. The vertical line
represents the state space, and the
horizontal line axis indicates time.
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Closer observation may suggest two parameters for the description of a given state of

the actual organism,
e =
L&

1.1.6. In this modeling scheme of
Konrad Lorenz and Christopher
Zeeman, two parameters are used for
the emotional state of a dog. The two
observed parameters are ear attifude,
which correlates with the emotional
state of fear, and fang exposure, cor-
responding to the degree of rage.

1.1.7. Electronic devices are simple to

model, as the observations are

explicitly numerical, This electronic

“black box" is provided with pancl

meters, which indicate the instan- Z
taneous values of voltage and current

at specific points of the electronic net- .
work within the box. I
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1.1.8. The values of two numerical
parameters (of a model such as those
of the preceding two examples) may be
i i | L - represented by a single point in this
two-dimensional state space, the plane
of Euclidean geometry.

Changes in the actual state of the system are observed and are represented as a curve
in the state space. Each point on this curve carries (implicity at least) a label recording
the time of observation. This is called a trajectory of the model.

1.1.9. For example, if the two param-
eters representing the emotional state
' of a dog, or the internal state of an
clectronic black box, are observed at
successive times and recorded in the
plane with labels, a trajectory of the
model is obtained.
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Another style of representing the changing data is by its time series, which means the
graph of a trajectory. We have already seen a time series, in 2 one dimensional context,
But this style of data representation may also be used in higher dimensions.

FrTpTe

[
K
\1

TIME

A
Az

tn tl t"-‘- t5

Yy

1.1.10. Here the vertical plane represents the state space, and the horizontal axis represents
the time of observation. The pammeters observed at a given time are plotted in the vertical
plane passing through the appropriate point on the time axis.
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L.1.11. The trajectory may be obtained from the time series, by simply viewing it from
the right angle —straight down the time axis from the end, infinitely far away.




20 Periodic Bebatvior

Observing more parameters leads to models of higher dimensions.

e e

1.1.12. Suppose that at 7 am, this athlete observes three of his body parameters (say
temperature, blood pressure, and pulse rate), records these three data as a point in three-
dimensional state space,

Many phenomena require geometric models that are not simply coordinate spaces. In
dynamical systems theory, the geometric models used are manifolds.

1.1.13. Here are some examples of manifolds. Other examples will arise in later chaprers.
They are made of pieces of flat spaces, bent and glued together.
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1.2. Dynamical Systems

At this point, the history of a real system has been represented graphically, as a trajectory in a
geometric stafe space. An alternative representation is the time serfes, or graph, of the trajectory,
The dynamical concepts of the Middle Ages included these kinds of representation. But in the 1660,
something new was added —the instantaneous velocity, or derivative, of vector calculus—by
Newton. As dynamical systems theory evolved, the velocity vectorfield emerged as one of the basic
concepts. Trajectories determine velocity vectors by the differentiation process of calculus. Con-
versely, velocity vectors determine trajectorics by the integration process of calculus,

This is the differentiation process, which determines the velocity vectorfield from the
trajectories.

1.2.2. The average velocity of the
change of state, , is the vector start-

ing at the point labeled 4, on the curve,
and directed along the vector of change
of state, €, but divided by T, the time
clapsed between £, and £,. Let Vdenowe
this vector, V=C/T. It represents the
average specd and direction of the
change of stare.

1.2.1. On this trajectory, the states
obseved at two different times. &, and
£y, are connected by a bound vector,
represented here by a line segment
pointed on one end. Let € denote this
bound vector.
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] T

| ‘ |

{ o 4 1.2.3. The fnstantaneous velocity of
the trajectory at the time &, is the bound
vector that Votends to as the elapsed
time Fshrinks smaller and smaller. This
limiting vector, denoted here by €T,

is also known as the fangent vector
The construction of this velocity, or
tngent vector, from the curve is called
differentiation in vector calculus.

Tr—————

The modeling process begins with the choice of a particular state space in which to repre-
sent observations of the system. Prolonged observations lead to many trajectories within
the state space. At any point on any of these curves, a velocity vector may be derived.
This is the new dynamical concept of Newton and Leibniz. It is useful in describing an
inherent tendency of the system to move with a habitual velocity, at particular points
in the state space,

The prescription of a velocity vector at each point in the state space is called a vectorfield.
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> o -‘ — 1.2.4. A vectorfield is a field of bound
i i ' vectors, one defined at (and bound to)
: : . P cach and every point of the state space,
| | Here only a few of the vectors are
drawn, to suggest the full field.
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The state space, filled with trajectories, is called the phase portrait of the dynamical
system. The wvelocity vectorfield has been derived from the phase portrait by
differentiation.

We regard this vectorfield as the model for the system under study. In fact, the phrase
dynamical system will specifically denote this vectorfield.

in the practice of this modeling art. the choice of a vectorfield is a difficult and critical siep, Exwen-
sive observations of the organism being modeled, over a long period of time, will usually reveal
tendencies (to a dyvnamicist, at least) that can be represented as a dvnamical svstem. The history
of applicd dynamics provides excellent examples of this process. Several of these are described
in the next ftour chapters. The usefulness of this kind of model depends on the followig fundamen-
il hypatheses,

Hypothesis 1 The observation of the organism over time, refiresented as a trafectory in the steate
spaace, will bave this prrofrerty, at each of iis points: its velocity rector is exactly the same as the
vector specified by the dynamical system.

Hencetorward. the word tragectory will alwavs carey this assumption. That is, the trajectorics of
the phase portrait have the specified velocity vectors, and further, they will be assumed o repre-
scnt the behavior of the svstem being modeled, Further, for wechnical reasons we also assume

Hyfrothesis 2. The vectorfield of the model s smooth,
Smoothness, in this context, is most easily seen in the one-dimensional case. On a one-

dimensional state space, a vectorfield is specified by a graph in the plane. In this context,
the graph is smooth if it is continuous as well: no jumps, no sharp corners,
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1.2.5. For example, here is a vector-
field (green) on a one-dimensional st
space (black). The vector at the rest
point (red) is the “zero vector™: idts
length is zero.

1.2.6. Stand up each green vector by
rotating cach one counterclockwise by
a right angle. The arrowheads (green)
trace out a curve (red), which is the
graph of a function. The vectorfield is
completely described by this function.

1.2.7. Another vectorfield is described
by this function. This function is not
continuous, so the vectorfield is not
smooth,

1.2.8. Yo another vectorfield is
described by this function. This func-
tion is continuous but has a sharp cor-
ner. This vectorfield is not smooth
either.
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We suppose now that a dynamical system has been chosen as a model for a system. Given
this vectorfield, how can we deduce the trajectories, thus the phase portrait, and the

behavior of the system?
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1.2.9. Given a state space and a dynamical system (smooth vectorfield), a curve in the
state space is a trafectory, or integral curve, of the dynamical system if its velocity vector
agrees with the vectorfield at each point along the curve. This means the curve must evolve
50 a$ to be tangent to the vectorfield at each point, as shown here. The point on the trajec-
tory corresponding to elapsed time zero, {,, is the indtial state of the trajectory,

Given a dynamical system (a smooth vectorfield on a manifold), how can we find its
trajectories? Analysis, the mathematical theory which as evolved since Newton and
Leibniz, has established that from each initial point, there is a single trajectory of the
system. Finding it requires the construction called infegration in vector calculus. Thus,
trajectories are sometimes called integral curves.
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A graphical construction that approximates the integration of a trajectory, or integral
curve, was discovered by Euler.

=2

y 1.2.10. Euler's method approximates
an integral curve by a polygon. Starting
from the initial point, A, a straight line

is drawn along the vectdr of the
dynamical system attached to that
: point, V{A). The length of this straight

P line is a small proportion of the length
of this vector, say one-tenth, At point
| : B, at the far end of this line segment,

/ ——_ the construction is repeated, using the
—1B i vector, V(E), attached to this point by
A the dynamical system. This construc-

St tion is repeated as many times as

necessary, o draw the polygonal,
approximate trajectory.

\

Sy

trajectories, completely determined by

1.2.11. The state space is filled with
) the dynamical system. The display of

& the state space, decomposed into these
curves, is the phase portrait of the

system. Furthermore, the space of

states may be imagined to flow, as a
fluid, around in itself, with each point
following one of these curves. This

///’
ALY )

motion of the space within itself is
called the flow of the dynamical
system.
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In the next chapter, simple examples will show that flat, Euclidean spaces will not suf-
fice for all of our geometric models. In some cases, curved spaces (that is, manifolds)
will be necessary. In global analysis, the calculus of Newton and Leibniz is generalized
to the context of manifolds. This generalization provides the basic tools of mathematical

dynamics.

The trajectory and velocity vector concepts fit nicely into the context of manifolds. Here
we illustrate these ideas on a two-dimensional manifold, which is simply a curved surface,

1.2.12. Here the instantaneous veloc-
ity vector is obtained as a limit of
average velocity vectors, as in an earlier
illustration. But in this case, the state
space is curved, The velocity vector
does not lie in the curved surface. It
sticks out into the ambient three-
dimensional space, It is dangent to
the surface.

1.2.13. Now repeat this construction
many times, with different curves lying
in the surface, all passing through the
same point. All the vectors lic in the
same plane, tangent to the curved sur-
face at a point. This plane is the
tangent space of the space of states at
that point.
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1.2.14. A vectorfield, in this context, means the assignment of a mngent vector to every
point of the curved surface,

1.2.15. This is a trajectory, or integral curve, of a vectorfield (dynamical system) on a curved
space of state, The tangent vectors at each point project off the surface, ver the integral
curve stavs within it
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This compleres the introduction of the basic concept of a dynamical system, and the
modeling process, which we may summarize as follows,

suppose a4 dyvnamical model has been proposed for some experimental situation, This situation
muty be a luboratory device, an organism, @ social group, or whatever The model consists of a
manifold and a vectorficld. The manitold s o geometeical model for the observed states of the
experimental situation and is called the sfafe space of the model, The vectorhield is o mode] tor
the habitual wendencies of the situanon o ovolve from one state to another and is called the dysameic
of the model, Now muthemartics can be brought owr of the oolbox and vsed o deew many trajec-
tories of the dynamical svstem, creatng its fbease porctrasd, These basic concepts of dyvnamical
svarems theory have been illusteated in the preceding two sections.

Now vou may ask: SO NWHAT? Well, according o our contentional interpretation. the agreed rules
ol the game, these trjectories are supposcd o desceribe the behavior of the svsiem as observed
vver an intervid of nme, Either they do this, with an accuraey sufficient o impress vouand be usctul
for predicting the behavior of the experimental sitwation, or they do not. In many examples of
this art. called apyglicd dynaniics, they doo These models succeed renuiekably well and have been
used by many satistficd customers over the vears, Some of these examples are presented in the nexse
four clupters

Bur some obstimare readers may still exclaome SOOWHAT? Well, dynamical svstems theory has vee
more o offer: PREDICTION FOREVER . saphisticated wechnigues from the research frontier of pure
mathemiatics have been emploved w vicld gredditative predictions of the asviptolic hebavior of
the system in the doseg v, o even forever: Althoogh qualicitive predictions are mon as precise as
quanntitative ones, they are aowhaole Tt beter than no peedictions acall, Aad fore mrost proffems
of apylicd dynamies, gucaititative predictions are inprossifife,. Sa, the remaining sections ol this
chapter are devored o illustrating the concepts of asympfolic bebairion
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1.3. Special Trajectories

The first step in the quest for qualitative predictions of asymptotic behavior is the examination
of the phase portrait for special types of trajectories. Here we illustrate some of these special
trajectories.

The simplest special trajectory is a point. Let’s consider this in a one-dimensional con-
text first.

O

o0

1.3.1. Here is a vectorfield on a one-
dimensional state space. At one point
in the state space, marked ¢, the
associated velocity vector is the zero
vector. This vector has length zero. The
point marked € is called a eritical
point, or an equilibritem point, of the
vectorfield. Because we assumed at the
start that the vectorfield is continuous,
the velocity vectors attached to points
near the critical point are very short,

1.3.2. This is the phase portrait of the
dynamical system to the left, Three
trajectories are shown, starting at the
points, 4, 8B, and €. Tick marks along
the trajectories indicate the positions
at successive seconds, Note that they
are closer together near the critical
point. One trajectory is piled up on the
critical point. The velocity of this tra-
jectory is zero at all times. [t does not
move. Itis called a constant trajectory,
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1.3.3. These are the fime series corresponding to the three trajectories of the preceding
phase portrait, The graph (time series) of the trajectory of € is a horizontal line, a constant
function of time. This represents the constant trajectory of the critical point.

Now let's look at the same idea in a two-dimensional context.

[ 4 J
NS W S S . .

1.3.4. Thisisagarden-variety vector- 1.3.5. Thisis the phase portrait of the
field in the plane. The zero vector ap- vectorfield to the left. The trajectory of
pears once, as the velocity vector of the the critical point is again piled up on
critical point €. Nearby, the vectors are the critical point. It is a constant

short, trajectory.
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TIME

1.3.6. This is the time series of the constant trajectory in the two-dimensional context.

Once again, it is a constant function of the time parameter,
=== S e

In two dimensions or more, other types of special trajectories frequently occur. Here
is a very important one, the cycle.
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| 1.3.8. This is the phase portrait of the
! ! preceding dynamical system. Indeed,
here we find a trajectory that is
wrapped around and around the same
1.3.7. This planar vectorfield has an curve. This is called a closed trafectory.
eddy. It seems as if the flow must It is also known as a closed orbit,
somehow circle about a point. Pperiodic trafectory, cycle, or oscillation.
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1.3.9. This is the time series representation of a closed trajectory. The graph wraps arcund
a horizontal cylinder, The same interval of time is required to complete each wrap. This
time interval is called the period of the closed trajectory.

?)

>

TIME

1.3.10. Ifasingle parameter (of the two coordinates in the plane) is chosen, and the other
dlata are forgotien, the time series of the chosen data may be plotted in the plane. The result,
the fime series of the preferred parameter, is a periodic function. This means that in every
vertical strip corresponding to one period (or wrap, or cycle) of the closed trajectory, the
graph cxactly repeats itself.
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These special types of trajectories, constant and periodic trajectories, also occur in phase
portraits of dimension three or more.

1.3.11. This is what a periodic tmjectory looks like in 3D,

TIME

1.3.12. Choosing one parameter from the three coordinates, this preferred parameter may

be recorded along the periodic trajectory. The time series of these data is again a periodic
function.
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But in higher dimensional phase portraits, other special trajectories may be found.

1.3.13. Inthe three-dimensional state space, imagine a torus (doughnut-like surface) with
an infinitely long coil of wire wrapped endlessly around it, but never crossing itself or pil-
ing up. This can occur as a trajectory of a dynamical system, as we whall see in Section
4.4. It is called a solenoidal or almost periodic trajectory. An application is discussed in
Chapter 5.

This finishes our list of special types of trajectory. Their significance in applications
depends on the fact they occur as limit sets, as we describe in the next section.
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1.4. Asymptotic Approach to Limit Sets

The second step in the dynamical systems quest for qualitative predictions of asymptotic behavior
is the examination of the phase portrait for asymiptotic limit sets. Let's see what this means.

We reconsider critical points in one dimension first, to start with the simplest case,

L4.1. Hereis the vectorfield on a one-dimensional state space. Recall that the point marked
Cis a critical point of the vectorfield. Because the vectorfield is smooth, the velocity vee-
tors attached to points near the eritical point are very short.

1.4.2. This is the phase portrait of the dynamical system above, Two trajectories are shown.
starting at the points A and €. Tick marks along the trajectories indicate the positions at
successive seconds. Note, again, that they are closer together near the critical point. The
trajectory of € is a constant trajectory, piled up on the critical point. As time marches on,
the trajectory of A gets ever closer to the point €. As it gets closer, it slows down., It gets
closer and slower indefinitely and approaches the eritical point asymptotically, That is,
it takes forever to reach €. We say that € is the fimit point of the trajectory through A,

This trajectory approaches its limit point asymptotically.,
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1.4.3. These are the time series corresponding to the three trajectorics of the preceding
phase portrait, The graph (time series) of the trajectory of € is a horizontal line, 2 constant
function of time. This represents the constant trajectory of the critical point. The graph
of the trajectory of A is descending to the right toward the horizontal line. It approaches
this line asymptotically, as time increases to the right. The horizontal line is the asymprote
of the graph of the trajectory of point A,
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L4.4. The graph of the trajectory of 8 similarly approaches the horizontal line asymp-
totically, but going backwards in time,

c) T e
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Now let's look at these ideas in a two-dimensional context.

1.4.5. Thisis a garden-varicty vector-
ficld in the plane. As in the linear
example in the preceding section, the
ZEr0 Vector appears once, at the point
C. Nearby, the vectors are short, But
this vectorfield is different. The vectors
spiral around the critical point, Itisa
critical point of spiral type.
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1.4.6. This is the phase portrait of the
vectorfield. The trajectory of the
critical point is again piled up on the
critical point, It is a constant trajectory.
The other neaby trajectories, such as
the one through the point marked A,
spiral around the critical point, getting
closer and closer. They approach this
point asympitotically, slowing down as
they close in. We say that the critical
point C is a lmidt point of the trajec:
tory through the point A.

_—
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This trajectory approaches its limit point asymptotically.
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1.4.7. Here are the time series of two trajectories of this phase portrait. The time series
of the constant trajectory, piled up on the critical point €, is the graph of a constant (vector-
valued) function. This graph is a horizontal straight line. The time series of the nearby point
A spirals around this straight line, approaching closer and closer as time moves to the right.

3
i
|

TIME

1.4.8. Choosing one of the two coordinates of the plane as a preferred parameter, the time
series of this parameter along the two trajectories looks like this. The time series of the
trajectory through A (wavy curve) approaches asymptotically toward the time series of the
constant trajectory (horizontal straight line) as time increases to the right.
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In two dimensions or more, other types of special trajectories frequently occur. One of
these, as we have seen in the previous section, is the cycle. A cycle may be the asymptotic
limit set for a trajectory.

1.4.9. This is the phase portrait of a
planar vectorfield with a cycle, marked
. A point on the cycle is marked B,
The trajectory through B is a closed
trajectory, winding around and around
this cycle. Another trajectory is shown,
through the point marked 4. This
trajectory spirals around the ovele,
gewting closer and closer as rime goes
on, We say that © is a limit cycle, It is
the liwmit set for the trajectory through
the point A,

TIME

1.4.10. This is the time series representation of the two trajectories, A horizontal cylinder
is shown. extending to the right from the cycle €. The time series for the spiraling trajec-
tory, A, is wound loosely around the cylinder, and gets tighter and tighter as time increases
to the right,
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Limit points and limit cycles also occur in phase portraits of higher dimensions. Further,
in dimensions greater than two, other limit sets may turn up. For example, a torus can
occur as a limit set in a three-dimensional system. The solenoid, described in the
preceding section, is a case in point.

/| /] o
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1.4.11. Here, the trajectory through the point marked A is wound, like a loose solenoid,
around the torus. As time goes on, it winds around tighter and tighter. It approaches its

limirt set, the worus, asympiotically.

There are many more limit sets. Some of the more exotic ones will be shown in Part Two. But we
have not yet made our case for the importance of the geometric theory of dynamical systems, To
explain what we mean by prediction forever, a further concept is needed; that of an attractor
This is an outstanding tvpe of limit set. It represents the behavior of a system in dynamical
eguilibrinm, after transienis die away. So let’s go on,
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1.5. Attractors, Basins, and Separatrices

If an organism is dropped into a prepared environment, or an experimental deviced is prepared inan
initial state and then turned on, we expect to see a brief settling-in period before it settles down to
an observable behavior. The erratic behavior during the initial settling-in period is called the start-
up transient. The settled-in, eventual observable behavior is the equilibrium state of the experi-
ment.. Warning: Equilibrium, as used beve, does not imply a static equilibrium, nor a steady state.

In a dynamical system, modeling this experimental situation, a trajectory will model the spare-up
transient, while its limit set models the equilibrium state that follows. The asymptotic approach
of the trajectory to its limit set models the dying away of the transient, as the system settles to
its dynamic equilibrium,

For probability reasons to be explained shortly, the only equilibrium states which may be observed
experimentally are those modeled by the limit sets that receive most of the trajectories. These are
called attractors,

Here is the attractor concept, illustrated in two dimensions. The same ideas apply in all
dimensions. First, we consider limit points, the simplest limit sets.
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1.5.1. Supposea dynamical system in
the plane has a critical point. And let's
suppose further thar this critical point
is the limit set of some trajectories in

the phase portrait. point).

1.5.2. Now, find every single trajec-
tory which approaches this limit point
asymptotically, and color it green. The
green portion of the plane is the inset
of the limit ser (that is, the critical
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The inset of a limit set represents, in a dynamical model, all the initial states that end
up in the same equilibrium state, after the start-up transient dies away.
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1.5.3. Other trajectories depart from
the limit point. That is, if the direction
of time were reversed, these trajec-
tories wonld approach asymprtotically
to this Himit point. Restoring the direc-
tion of time to normal again, we say
these departing trajectories have the
critical point as their alpha-limit set.

1.5.4. Now find every trajectory that
has this critical point as its alpha-limit
set, and color it blue. The blue portion
of the plane is the owfset of the limit
set (that is, the critical point).

Sometimes we say omega-limit in place of just plain limit. The omega-limit set refers
to the future asymptotic behavior, while alpha-limit set refers to the past. The trajectory

goes from alpha-limit to omega-limit.

Warning: Some trajectories neither arrive nor depart at a critical point, although they

may pass close by!

1.5.5. Here we see the same dyna-
mical system in the plane. Both the
inset and the outset are colored in. The
black trajectorics start near the inset
and go toward the limit set for a while.
When they get near the limit point,
they feel the influence of the outset,
and turn aside. Following the outset,
they disappear into the distance.
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When a trajectory flies by, it is on its way somewhere. Either it has an omega-limit set

elsewhere in the phase portrait, or it departs from the state space, never to be seen again.
Similarly, it came from somewhere else. Thus, every trajectory may belong simultaneously
to the outset of one limit set (its alpha-limit set) and to the inset of another (its omega-
limit set). In two dimensions, cycles may be limit sets. Limit cycles have insets and outsets,
too. (50 do the other limit sets, in higher dimensions.)

What if all nearby trajectories are arriving?
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1.5.6. Here is a limit point in two
dimensions. Every nearby trajectory is
arriving, The inset contains an open
disk around the limit point. Every ini-
tial point in this disk is captured by the
limit point, when its transient dies
away. If an initial point is chosen at
random from all the points in the state
space, the probability of it asymp-
totically approaching this limit poine,
instead of some other, is positive. {In
fact, it is 100% in this particular exam-
ple.) This limit point is an attractor As
it is a point, and represents static
equilibrium, it is also called a static
attracior

1.5.7. This is the phase portrait of a
different dynamical system in the
plane. It has a limit cycle. Again, the in-
set of this limit set is as large as possi-
ble. Except for the solitary red point in
the center, which is a critical point,
every Hll‘leL initial state evolves to the
same limit set, The inset includes an
open annulus (ring) around the limit
cvele. The probability that an initial
state, chosen at mandom from among all
the initial states in the state space, will
end up at this limit cyele is positive. (In
fuct, it is 100% in this particular case. )
This limit cycle is an attractor. As it is
a cvele, and represents a periodic
equilibrium, it is also called a periodic
altracior.
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An attractor is a limit set with an open inset. That is, there is an open neighborhood
of the limit set within its inset.

Of all limit sets that represent possible dynamical equilibria of the system, the attractors are the
most prominent, experimentally. This is because the probability of an initial state of the experi-
ment o evolve asymptotically 1o a limit set is proportional to the volume of its inset. We will say
that a limit set is probable it the volume of its inset is a positive number instead of zero, Open
sets have positive volume, although not every set of positive volume is an open set. Attractors have
open inscts, so they are probable, They are experimentally discoverable. Other limit sets may be
probable, without being attractors in the strict sense of the preceding paragraph. They are called
vague attractors. This is synonymous with probable limit sef. These are also experimentally
discoverable. Limirt sers that have thin fnsets (that is, that have probability zero) are non-attractors.
They are experimentally insignificant. These are called exceptional limit sets, or synonymously,
imprrobable limir sefs®.

The inset of an attractor is called its basin. In a typical phase portrait, there will be more than
one attractor. The phase portrait will be divided into their different basins. The dividing boun-
daries (or regions) are called separatrices. In fact, any point that is not in the basin of an attractor
belongs o o separatrix, by definition.

Here are some examples of attractors, basins, and separatrices, in two dimensions. The
same concepts apply in three or more dimensions, but are harder to visualize.

COLOR CONVENTION:
Attractors = red
Basins = blue
Separatrices = green
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1.5.8. In this example, there are two attractors: a point and a cyele. A third limit set, a
cycle, comprises the separatrix.
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1.5.9. Here, also, there are two attractors, both points, A third limit sct, also a point, is
not an attractor. It is a vague limit set. The inset of this limit set comprises the separatrix.

This reveals the pattern of the general case: the separatrix consists of all points, not in
a basin, Every point tends to a limit set. If its limit set is an attractor, it belongs to a basin.
So, if it belongs to the separatrix (and therefore not to a basin), it must tend to a non-
attractor. Thus, the separatrix consists of insets of exceptional limit sets,

The preceding examples are artificial, made up to illustrate the concepts. But we are overdue for
some more meaningful examples. So, at this point, let's turn to gradient systems—a rich source
of simple examples, based on a geometrical construction,
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1.6. Gradient Systems

The gradient operation of vector calculus provides dynamical svstems (vectorfields) of an especially
simple type called a gradient system. In these, there is an auxiliary function, called the potential
Junction. The velocity vectorfield is simply the gradient vectorfield of this potential function.

This means that, at each point in the state space, the velocity vector indicates the direction of most
rapid increase of the function, and the magnitude (slope) of this increase.

This section develops a typical example of the gradient dynamics in the plane.
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1.6.1. The state space, in this example, 1| 1 | : :
is the plane. The potential function is | T
a function from the state space to the
real number line. To each point in the I —
state space, it assigns a real number. ' &t 10
This number is the potential of the cor- —_
responding state. In an application of
this scheme, this potential would
presumably be observable, or deduc-
ible from observations,

3._ L ]
1.6.2. Represent this function as a 2 -/
graph in three-dimensional space. The | T
state space is the horizontal coordinate 4 Vi T
plane. From cach point in this plane, I+ L
move vertically a distance equal to the | ;."
potential of that point—up if the VA VA S £
potential is a positive real number, D £ L

down if it is negative.
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The graph of a potential function on a planar state space is a surface in three-dimensional
space, called the potential surface. We may think of this as a landscape.

1.6.3. For the sake of definiteness,
: S/ let’s choose a particular potential func-
| : 3 ’ tion, and visualize it as a potential sur-

- ' 7 face. This one, for example, has two
c valleys, with a saddle ridge in between.

An alternative representation of a function is its contour map. Let us represent our
exemplary potential this way.

1.6.4. At regular intervals along the
b . ; vertical axis. dreaw horizontal cutting
l . _ ; , _ : planes. Mark the potential surface with

o - - : a red curve where cach cutting plane
. : cuts through the surface. These are
L S S L called the level curves of the surface,
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1.6.5. Next, each level curve is pro-
jected onto the horizontal coordinate
plane. This curve in the stte space, also
called a contowr curve, contains every
state with the same value of the poten-
tial function. Over this curve, the
potential surface has a constant height.
Label this contour with its common
value of the potential.

1.6.6. Repeart this process for each of
the level curves. The result is the con-
tour map of the potential surface, drawn
in the horizontal coordinate plane. This
is essentially what vou would see, look-
ing up from far below at the potential
surface, with level curves deawn upon it

1.6.7. Finally, extract the state space,
with the contour map drawn within
it, from the three-dimensional con-
text of the graph. This is the alternate
representation,
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The gradient dynamical system for this particular potential function is derived as follows,

1.6.8. Sprinkle the potential surface
with a fine mist of blue ink. Droplets
will run down the fall lines, that is, the
routes of steepest descent, Suppose
that the speed of a droplet is exactly the
steepness of the slope.

1.6.9. Viewed from far below, the

]1|1w n’TN'LI'IlI‘I\i ANTHEAT T MOVE OVEE 1]1:-
i lapas F T sl sl O =TS PSS aiar ™ P % % 7S ffds 7R s e N g
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The blue curves, perpendicular to the contours, together with the parameter of time along
each, comprise the phase portrait of the gradient dynamical system.

e

|
<

j %/{
\\ b&

A .
i
1.6.10. In this example, the gradient / )\
phase portrait has two basins, with a | l
point attractor in each, Between them @ | [ ;
is a limit point of saddle type, or sad- / \\
dle point, corresponding to the saddle

on the ridge between the two valleys
in the landscape. The inset of the sad-
dle point consists of the two green tra-
jectories. This inset is also the
separatrix, dividing the state space into
the two basins,

I

Gradient systems, generally, are much like this example. Their limit sets are generally
equilibrium points. A limit cycle is impossible in a gradient system, as you cannot go
steadily downhill and still return to your starting point (except in an Escher print).
Although gradient systems are useful in some elementary physics problems, their
usefulness in general applications is severely limited by the lack of limit cycles. The next
chapter will show why limit cycles are so important.
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Classical Applications:

Limit Points in 2D from Newton to Rayleigh

The early work in applied dynamics, before Rayleigh and Poincare, was devoted
primarily to the motions of the planets around the sun. This application, called
celestial mechanics, comprises an enormous and important field. It was the main
subject of Poincare's rescarch, and is still very active. Under the name conservative
mechanics, it has been enlarged to include all non-dissipative, that is, frictionless,
mechanical systems,

General dyvoamicil systems in nature — whether phyvsical. chemical. biological. or social —are
not conservative, but dissipative. The theory and applications of these dynamical sysiems
have been elaborated mostly in this century. after the lead of Fuler. Ravieigh, Poincare. and
Liapounow,

I'he classical examples of dissipative dvnamical systems — primarily those mcluded in
Ravleigh's text of 1877 —are described in this chapter Some of the analytical descriptions,
as svstems of ordinary differential equations of the first order written classically, are in-
cluded here without discussion. Explanations of these expressions, not essential for
understanding the rest of this wext. may be found in the Appendix.

53
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2.1. Pendula

The pendulum may be the most classical example of the dynamical modeling process. [t has a two-
dimensional state space, and a dynamical system established by Newion.

This model assumes that the rod is very light, but rigid. The hinge at the wp is perfectly frictionless.
The weight at the lower end is heavy, but very small. It moves in a vacuum. The force of gravity
always pulls it straight down.

These idealizations describe the modeling assumptions in this example, called the simple
pendulum.

2.1.1. If A denotes the angle of elevation of the pendulum and Fthe force of gravity, then
Fcos A is the pull along the rod, and £ sin A the force turning it. as shown here.
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2.1.2. The angle of elevation, A,
parameterizes a circle. That is, values
of A can be any real number, but 4 = 0
and 4 = 27 denote the same angle. The
angle 4 represents a point of the circle.
it is called an angular variable.

2.1L.3. Let R denote the rate of rotation
of the rod at a given moment. This rate
is also obscrvable, by radar for exam-
ple. In Newton's model, this parameter
is included, along with the angle A, as
a descriptor of the state of the pen-
dulum. The rate of rotation, R, may
have any real number as its value. It
represents a point of the real number
line.
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2.1.4. The rtwo parameters, A and £,
together locate a point on a circular
cylinder. This is the swte space of
Newton's model. The vertical circle in
the center of this cvlinder denotes the
states of zero angular velocity, K =10,
The straight line from front o back, at
the botom of the cvlinder, is the axis
of zero inclination, A = (), where the

pendulum is lowest.

R
e

- %

W

2.1.5. Atthe origin, defined by (A, &) = (0.0, the pendulum is at rest at its lowest position,
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Moving the pendulum a little to the left and then letting it go with no shove causes it
to swing indefinitely. Remember, there is no friction in the hinge and no air in the way.
The representation of this motion as a trajectory in Newton's model is shown here in four

steps.

2.1.6. Swep 1. Immediately after the '
Il p, | d. 1 : 2.1.7. Step 2. It also moves to the
COauium s eeleascd, e represcn- L . 3 ] g i HE
P : i _ | right as the inclination increases. Here
tative point is on the circle of £ = 0 to ; ) I :
o dofi of the. orieli: o awk it has just reached the axis, A = 0, as the
e left o € origin, moving away A :
& B : pendulum goes by its bottom point.

from us as the ate & increases,

® ) JI
ans t ;

2.1.8. Swep 3. ltcontinues [ move
the right, moving towards us rather

than away, as £ decreases, It reaches the
circle of B =0, when the pendulum
attains its maximum swing to the right,
and turns to fall again wward its bot-
tom, A =10,

2.1.9. Step 4. It approaches us and
moves to the left, as the pendulum falls.
It crosses the axis. A =0, as the pen-
dulum swings through botiom,

Then the cycle begins again. The full trajectory in the state space, corresponding to this
oscillating motion of the pendulum, is a cycle, or closed loop.
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The next sequence shows the trajectory in Newton's cylindrical model representing the
motion of the pendulum dislodged from a precarious balance at the top.

2.1.11. Step 2. Aninfinitesimal touch

on the left will start it falling to the
right. Picking up speed, its states trace
the red trajectory shown here.

2.1.10. Step 1. The pendulum can
be balanced at the wp, in unstable
equilibrium.

2,1.12. Step 3. As the pendulum 2.1.13. Swep4. Onthe way back up to
passes the botrom of its swing, the rate the top again, the pendulum is slowing
of rotation reaches its maximum. down.

As this trajectory approaches the position of balance at the top (its omega-limit point,
an unstable equilibrium) it moves slower and slower. The pendulum actually balances
at the top again, at the end of the motion, but this motion takes forever.

Warning. This trajectory is not a cycle, because the point at the top, the omega-limit point,

does not belong to the trajectory.
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The next sequence is a slight modification of the preceding — the pendulum is balanced

at the top, then shoved hard to the right,

2.1.14. Step 1. The pendulum is just
to the right of the top, but its rate is
large. Thus, the point in the geometric
model corresponding to this stute—
shown as a red dot here — is closer wo us
than it was in the preceding sequence.

oy

2.1.15. Step 2. The pendulum accel-
erates as it falls down to the right,

2.1.16. Step 3. It passes the bottom,
moving fast, attains its maximum
speed, and keeps on going.

2.1.17. Swep4. Moving back up again,
it slows down, but not enough to come
to rest at the wop.

In this motion, the pendulum rotates clockwise indefinitely, The corresponding (red) tra-
jectory in the cylindrical state space closes at the top. It is a cycle. But unlike the slow
oscillation described above, this fast cycle goes around the cylinder.
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2.1.18. Performing many such experiments with a pendulum, or emulating one with an
analog or digital computer, would reveal the phase portrait of Newton's model. This cyvlinder
full of trajectories is easicr to see if it is cut down the top and flattened, as shown here.
Notice that there are two equilibrium points. One at the top is a saddle, a type we have
already seen in the gradient dynamical system in the preceding chapter. The other, at the
origin, is another type called a center, or vortex point. This type will recur throughout
the rest of this book. The critical point in the center is not a limit point of the nearby
trajectories.
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2.1.19. A more realistic example may be obtained by including the effects of friction in
the hinge, and air resistance. Here is the phase portrait which results. Notice that it is very
similar to the preceding portrait, but the equilibrium point at the origin is no longer a center
It has become an attractor: This is because any nearby trajectory, representing a slow motion
of the pendulum near the bortom, will die away because of friction, and the pendulum
will come fo rest. This spiraling type of point attractor is sometimes called a focal fraint,
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An instructive variation of this example may be produced by adding small forces that
break the symmetry.

2.1.20, Suppose the pendulum is
magnetic, and two magnets are added
near the bottom of the are. The one on
the left is stronger,

2.1.21. As the pendulum bob could A i
be stopped near cither magnet and W Fi i
held slightly aloft by its auraction, : ;
the dynamical system modeling this
device will have two basins, with a
point attractor in cach,
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2.1.22. Here is the phase portrait of the magnetic pendulum, unrolled. The basin of the
rest point near the smaller magnet, shaded, is smaller. Thus, the probability of an initial
state (angular position plus angular velocity) evolving asymptotically to the rest point ad-
jacent to the smaller magnet is less than 50%.

Naote. In this particular case, the shaded basin extends upward only. Thus, if the boh
is swinging rapidly counterclockwise, it cannot come to rest at the smaller magnet.

This is not solely an armchair experiment. It has actually been studied.!

This is the most classical application. Although pendulum theory may not turn everyone
on, it has certainly been fundamental to the growth of dynamics, The writings of Lord
Rayleigh are held together with this common thread, and he saw pendula everywhere.
The spirit of his work lives on in many dynamics laboratories, even today.
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2.2. Buckling Columns

The deformations of elastic solid material provided the context for some of the early
applications of dynamics. The buckling of a vertical, elastic column—under a weight
balanced on its top—was studied by Euler. A particularly simple analysis of this ex-
perimental situation has been made by Stoker in 1950. His dynamical model, illustrated
in this section, is closely related to the model for the simple pendulum, shown in the

preceding section.

1 T O R

2.2.1. An elastic colwmn —a thin metal bar balanced on end —is slightly compressed by
a light weight on top. If the center is pushed to one side and released, it oscillates back
and forth. Under a heavier weight, it buckles to one side or the other,




fiti Perfodic Bebavior

This physical system may be crudely modeled by a dynamical system in the plane.

TR B A i PR () -

2.2.2. stoker's model idealizes the elastic column as a hinged rod, restrained by two springs,
When the compressive force is less than a critical value, the rods return to vertical align-
ment, Under a larger force, the hinge moves to one side or the other, compressing one
of the springs and stretching the other. This corresponds to the buckling of the column,

The geometrical model for the states of the hinged rod is the plane. The two observed
parameters are the displacement of the hinge to the right of vertical, recorded on the
horizontal axis: X, and the velocity of the hinge on the vertical axis: V= X"
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2.2.3. This tableau shows a succession of states, and their corresponding representations in the
state space, as the hinge vibrates back and forth, Assume the weight is lighter than the critical value
for buckling and there is no friction in the system. Then the phase portrait is a cenfer, as in the
preceding example. That is, it consists of concentric closed trajectories. These are periodic trajec-
tories, representing oscillations. The breadth of a closed trajectory represents the amplitude of
the oscillation.
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2.2.4. Adding friction, the concentric loops are replaced by spiraling trajectories. As in the case
of the pendulum with friction, they approach the origin as the amplitude of oscillation decreases
to zero. This is a typical phase portrait, with one basin surrounding its unique aftractor—in this
case a focal point, Recall that a point attractor, or rest freint, s a critical point (equilibrium point,
limit point) that attracts all nearby initial states. Thus, all the state parameters describing these nearby
initial states evolve asymptotically, as time increases, o constant values, Their omega-limit state
is at rest, at the rest point.
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2.2.5. This is the phase portrait for the frictionless system, with the heavier weight. The sequence
of states — A B.C.1),A — describes an oscillation around an average displacement to the right. The
equilibrinm point at the origin is a saddle.
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2.2.6. Adding friction, the concentric circles are again replaced by spirals, This is a tvpical por-
trait with two basins, a focal point attractor in each, Note that the insets of the saddle at the origin —
shown here in green —do not belong to either basin. Thus, they co mprise the seperatriv, defining
the boundaries of the two basins, one of which is shaded here. The relative area of a basin deter-
mines the probability of its attractor. That is, the chance of choosing an initial state that evolves
to the attractor on the left is proportional to the area of the shaded basin. In this example, the two
point attractors are equally probable,

This example is like the gradient systems described earlier, in that the limit sets are all
points. Thanks to friction, closed trajectories are impossible. But unlike those of gra-
dient systems, the trajectories approach the limit point in spirals, rather than radially.
The point attractor is a focal point. The spirals correspond to oscillations of diminishing
amplitude —damped oscillations. The point attractor that occurs in gradient systems
is radial. That is, the approaching trajectories do not spiral. The radial type of point
attractor is sometimes called a star point, or node.
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2.3. Percussion Instruments

In The Theory of Sound, Lord Rayleigh studied separately the production, propagation, and recep-
tion of sound. His efforts to explain the production of sound by musical instruments became the
theory of nonlinear oscillations.? From the point of view of dvnamics, musical instruments may
be divided in two classes:

percussion instruments, such as drums, guitars and pianos, to be modeled by damped oscilla-
tions (focal points, or point attractors of spiral type). and

sustained instraments, such as bowed strings and winds, which are to be modeled by self-
sustaining oscillations (periodic attractors),

This section describes the classical models for the percussion instruments. The sustained
instruments will be treated in the next section.

2.3.1. The percussion instrurnents all produce musical tones which decay (die out) in time,
Wi hear the transient response of the system. The aymptotic limit of the audible transient
is silence. Although in principle it takes a very long time for the note to die away, it actually
becomes inaudible a short time after being struck.
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2.3.2. Simple mechanical models for the most sophisticated instruments look like an
elementary physics lab. Different configurations of springs and weights behave, very approx-
imately, like the instruments. As in the case of the buckling column, discussed in the
preceding section, the resulting model is surprisingly useful.

-# Yy % . il i T,

2.3.3. For example, the mechanical model for a plucked string is two lincar springs of
cqual length, with a weight berween them. The springs are stretched in-line, and the weight
moves only along the line perpendicular to the springs.
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2.3.4. As in the two preceding ap-
plications, the geometric model for the
state space of the mechanical system is
the plaine, The parameters are the
displacement of the weight to the right
of cquilibrium, and the velocity of its
motion. If there is no friction in the
mechanical model, the phase portrait
of its dynamical model (Newton's Law
of Motion) is a cenfer, This is very much
like the frictionless pendulum de-
scribed at the beginning of this chapter.

2.3.5. Each trajectory of the center is closed. As described in Chapter 1, the time series
of a preferred parameter (for example, the displacement of the weight concentrated at
the center of the string) is a periodic function, The weight oscillates back and forth,
periodically. In fact, under simplifying assumptions, this motion is sinusoidal, It corresponds
to i pure tone,
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2.3.6. More oscillations per second
correspond o higher frequencies, or
Lones.

2.3.7. The vertical displacement of
the time series, or amplitude, cor-
responds to the loudness of the note,

4
by
\

\

2.3.8. The time series of a plucked
guitar or struck piano string is a func-
tion that decays, as shown here.

2.3.9. A trajectory in the state space
of the mechanical model must spiral
asymprotically toward the origin, in
order to have the function on the left
as its time series,
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A model for decaying tones must include friction. To further simplify the discussion,
we now replace the two springs (perpendicular to the motion of the weight) with a single

spring (along the line of motion).

2.3.10. The dvnamical model
iNewron's Law) for this mechanical
svstem is similar o that of the
preceding system, with the two col-
linear springs. The difference is in-

significant for small displacements.

2.3.11. Next, in the single spring
svstem, we assume the spring is linear.
That is, we assume Hooke's Law: The
force required to extend the spring a
certain distance is a constant times that
distance. Here is a graph of force ver-
sus extension, under this assumption.

L

-
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The mechanical system described here, with a linear spring, is called the barmonic
oscillator. Without going through the mathematical analysis of this system, which is
classical, we simply present the results.

1/ ;\ X 2.3.12. If after all there is no friction
1 = } e

! } between the weight and the surface it
moves upon, the phase portrait is a
center. Further, all the concentric tra-

jectories are periodic, with the same
period, This is shown by the tick marks
on the trajectories, in this illustration.
Thus, no matter how hard you pluck
the string, the note will have the same
pitch. The spring characteristic (force
versus extension) is shown in the inset.

= 2.3.13. Tightening the guitar string
corresponds to increasing the slope of
the spring force versus extension
graph. The steeper spring characteristic
is again shown in the inset. The phase
portrait is still a center, with concen-
tric {(more eccentric) elliptical trajec-
tories. All these periodic trajectories
still have the same period. But it is
shorter than before. That is, the fre-
quency of the oscillation is greater, and
the pitch is higher.
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The harmonic oscillator may be a poor model for a guitar string, for two reasons: (1) a
guitar string is not linear, and (2) it is not frictionless either. Let's remove these objec-

tions one at a time.

AF

2.3.14. Suppose the string is not linear. The graph of force versus extension will not be
4 line. But we may still suppose that its deviation from linearity is symmetric. The simplest
such deviation from linearity is a cubic one. Two cases have been extensively studied. In
one of these, called the soft spring, the force is less than linear, as shown in the inset. The
phase portrait in this case is still a center. But in this case, the eccentricity (and thus also
the frequency) of the periodic trjectories depends upon the amplitude. The larger trajec-
tories have a lower frequency. Thus, the pitch of the plucked note will be lower for louder
notes than for softer ones—such a string may make a poor guitar.

¥

2.3.15. The other well-studied case of u T

a nonlinear spring is the bard spring.
Here, the spring force is a cubic func-
tion that is srore than linear, as shown
in the inset. The larger trajectories have \

a higher frequency in this case,
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Now we deal with objection 2 by introducing friction between the weight and its sup-
porting surface,

T

2.3.16. Friction, unlike the spring
force, does not depend upon the exten-
sion of the spring. But it does depend
on the velocity, and it works against
the motion. We assume the table top is
equally rough all over,

e = = = e

2.3.17. The force of friction, as a

function of the velocity, need not be

linear. But for the present, we assume

it is. Thus its graph, as shown here, is

a straight line, This system is called

\ the harmonic oscillator with linear
damping.
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The mathematical analysis of the damped harmonic oscillator, likewise, is classical. Here
again, we simply present the results of this analysis, as it was known to Newton. We return
to the case of a linear spring, but add linear friction.

2.3.18. The phase portrait of the
damped linear oscillator has a point
attractor (focal point) at the origin, This
is very like the damped pendulum,
The linear spring and friction func-
tions are shown in the insets. The
damped oscillation has a constam
period (hence also constant frequency
or pitch) which is the same as the un-
damped system. The amplitude decays
exponentially,

2.3.19. Inthe case of greater friction,
the same spring will exhibit damped
oscillation of the same period. But in
this case, the amplitude decays faster.
The spiraling trajectory approaches the
focal point more quickly.
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Now let's consider the spring model with both objections eliminated.

-

pees = — LA ]
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2.3.20. Here is the soft spring with 2.3.21. Here is the hard spring with
lincar damping. The spring and fric- linear damping. The pitch of a note
tion functions are shown in the insets. falls as the one dies away. Another
The pitch of a note rises as the one poor guitar!
dies away.

All the possible combinations and deviations from these simplifying assumptions have
been explored, but by now you get the idea: A damped nonlinear oscillator is a reasonable
model for a percussion instrument.

As a general rule, aftractors model the observed states of the system.

Our first three applications violate this general rule. For in this case the transient response
models the tone heard, the attractor models the silence that follows. And in the preceding
examples the transient response modeled the damped oscillation of the pendulum or
column, the attractor modeled the stillness that follows.
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Finally, let's consider an extreme variation: what if the friction force were reversed?

= 1

2.3.22. Previously, we considered
friction that is normal, That is, it drags,
or pulls against the motion. The
dashed line here represents an inverse

Sfriction: it aids the motion. And the
faster the motion, the more the inverse
friction aids i,

Y

2.3.23. Here is the classical phase
portrait for the harmonic oscillator
with inverse friction. Again, the spring
and friction graphs are shown in the
insets. Here we have a paint repellor
at the origin. For any initial state, the
alpha-limit set (asymptotic limit for
the infinitely distant past) is the origin
(no motion). The time series for any
of these trajectories is an oscillation
that grows (exponentially) with time,
Presumably the spring breaks after a
while,

In the next chapter, we will find this unusual model useful.
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2.4. Predators and Prey

In this section, we illustrate an ecological application. This is a 1925 classic, due o Lotka and Volwerra,
the early pioneers of mathematical biology.* Consider a fictitious ¢cosystem, containing substan-
tial populations of two species only — say big fish and small fry —along with a large supply of food
for small fry. The choice of a state space for this application is easy.

The number of small fry and the number of big fish, respectively, are represented as coor-
dinates in the plane.
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2.4.1. To apply the modcling concepts of dynamics, the dotted lines must be idealized
into continuous curves by interpolation.

. e R A N S

2.4.2. The observations, over time, of the two populations describe a dotted line in the
plane. Births and deaths change the coordinates by integers, a few at a time,
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The dynamical system for this model, the Lotka-Volterra vectorfield, can be roughly
described in four regions.
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2.4.3. Region A, Inthis part of the state space, both populations are relatively low, When
both populations are low, big fish decrease for lack of food (small fish) while small fry
increase thanks to less predation. This is the habitual tendency for states in this region,
The interpretation of this tendency as a bound velocity vector is shown in region A.

Region B. In this region, there are many small fry but relatively few predators. But when
there are many small fry and few big fish, both populations increase. This is interpreted
by the direction of the vector shown in region B.

Region €. Here both populations are relatively large. The big fish are well fed and mul-
tiply, while the small fry population declines drastically, This tendency is shown by the
veowor in region C.

Region D. In this part of the state space, there are few small fry but many big fish. Both
populations decline. This tendency is shown by the vector inn region D,
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The Lotka-Volterra vectorfield is not just some vectorfield with these features, it is a
particular one, which seemed the simplest choice at the time.

/N
\. ./

2.4.4. The phase portrait of this 2.4.5. The answer, in this case, is a
svstem can be visualized, in part, from prediction of the mathematical model.
these features: the flow tends wo cir- The phase portrait is a cenfer: a nest of
culate counterclockwise. The ecologist closed trajectories around a central
would like to know what happens to equilibrium point.*

the two populations in the long run.

Conclusion: every trajectory is periodic. Each initial population of big fish and small fry
will recur periodically.

Now that the modeling process had been described, we may return to the question: why
bother? This question has an exceptionally convincing answer, which accounts for the
numerous examples of the process now proliferating in the literature of applied dynamics:
dynamical systems theory tells what to expect in the long run. In this case, the two popula-
tions persistently oscillate. The same cycle of population numbers, for both species, will
recur indefinitely, each time with the same elapsed time, or period. This is an example
of a prediction forever. The periodicity of fish populations in the Adriatic Sea actually
inspired Volterra to make his model.
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2.4.6. If some kind of ecological fric-
tion were added to the model, the
center would become a focal point
attractor. This would be a reasonable
maodel for an ecological svstem in static
equilibrium.

2.4.7. A more subtle modification of
the model could result in a phase por-
trait like this, with only one periodic
trajectory. This would be a more satis-
fying model for the observed periodici-
tv of the fish in the Adriatic,

These improvements to the Volterra and Lotka model have been made recently.® But the
type of phase portrait on the right, with the limit cycle, was well-known to Lord Rayleigh,
as we shall see in the next chapter.



Vibrations:
Limit Cycles in 2D from Rayleigh to RasheuvsRy

The history of dynamics, from Pythagors to the present. has been enlivened by music. Until
around 1800, this history was domimued by the limit point concept. Then, Chladni s
experiments with musical instruments attracted Napoleon's attention. And the limit cvele
idea began o grow in the consciousness of the scientific community, This is an abstract
amalog of the discovery of the wheel In this chapter. we present the key dynamical steps
of this bifurcation in the history of science
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The damping depends on the string only. It is not changed by the bow. The violinist
uses rosin on the bow, making it sticky. This changes the shape of the curve describ-
ing the friction as a function of the velocity. To get the idea, we consider a weight
moving on a sticky tabletop.
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3.1, Wind Instruments

Following his analysis of the percussion instruments, Lord Ravieigh went further In his auempi
to explain all aspects of sound, he created 2 successful model for the sustiined instruments. He
managed o combinge inverse friction o snull motions with normal friction for large motions in
asingle dyvnamical svsteme. The result s a simple example of sedf-sustained oseillariont, The same
miode] turned out, 45 vears Later to be usetul i the field of mdio freguency electronics, This Liter
application is described in the List chaprers Here, we resume our story in 1877

L

--"'.ﬂ}"‘.fﬂ__.——

5.1, What do these instruments have in common with o cudio toinsmitier* As long as
vou dont run out of uice. they kr.'r.']'l i |1|.n 1
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3.1.2. The sound of a sustained instru-
ment, portrayed as a time series
iamplitude of air motion versus time)
by an oscilloscope for example, is a
periodic function that does not decay
in time. As long as the plaver puts
energy into the instrument, the oscilla-
tion may be sustained at the same
loudness (amplitude),

The dynamical model must have a closed trajectory, or periodic attractor, with this
function as the time series for a preferred parameter. For the sake of definiteness, let's
choose a clarinet reed as the target of the model.

3.1.4. The 1870 styvle model for the
reed is a Nexible wand, with a concen-
trated small weight at the end, Some-
how, we agree on @way o measure the
amount the reed is bent and its velo-
city (rate of change of this amount).

3.1.3. Byblowingalong the reed, the
clarinetist adds energy to the system,
sustaining the vibration,
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3.1.5. With no blowing, the wand is
a type of pendulum. A reasonable
dynamical model will look like this. A
point attractor of spiral type is located
at the origin. This is the spring model
from the preceding section, The
characteristic functions describing the
damping and the spring are displayed
in the insets.

3.1.6. Rayleigh modifies the spring
model o include the clarinetist by
replacing the behavior near the origin
by inverse friction. As described at the
end of the preceding section, the origin
becomes a point repellor. The behavior
far from the origin is not changed.
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3.1.7. A simple way to mate normal
friction for large motions with inverse
friction for small motions is with this
characteristic curve, a cubic (poly-
nomial of degree three). This is the
simplest curve with negative slope near
the origin, and positive slope far away,

3.1.8. The resulting phase portrait has
a poin repellor at the origin. Yet far
from the origin, all the trajectorics are
spiraling in.

3.1.9. Berween the distant spiraling in
and the central spiraling out, a periodic
trajectory (limit cycle) is trapped.
Although this was obvious to Lord
Rayleigh, mathematicians succeeded in
proving it to their own satisfaction only
about 50 years later.
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This limit cycle is the dynamic model for the sustained oscillation of the blown clarinet
reed. What is the relationship between the parameters in the model and the sound of
the clarinet?

3.1.10. A stiffer reed is modeled by a
stronger spring. The characteristic
function of the spring is a steeper line,
as shown in the inset on the left. The
limit cycle has a different shape, and
the tone (timbre) of the clarinet is
richer,

3.1.11. Blowing harder is modeled by
a broader friction characteristic, as
shown in the inset on the right. The
limit cycle is larger, and the tone of the
clarinet is louder,

This example of Lord Rayleigh's turned out to the be most important single item in the dynam-
ics field for a century. To get more familiar with it, let’s start again, this time with a violin.
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3.2. Bowed Instruments

Many musical instruments produce sustained tones with the bowing mechanism. Besides the violin,
cello, bass, and so on, Lord Rayleigh mentions the wine goblet, bowed by a finger on the rim, His
great precursor, Chladni, applied his experimental bow o plates of glass, in hopes of creating new
instruments,

To choose one example, let's consider the violin.

3.2.1. lgnoring the bow, the string of
the violin is modeled by this nine-
teenth-century gadget. This is identical
to the goitar string model of the
preceding section, Again, we use X (o
denote values of the displacement of

the spring (that is, the string at the //},/,-//' Rl

{ if +

point of bowing) and y for the velocity,

that is, the rate of change of the

displacement,
\I/

3.2.2. The phase portrait has, again,
a focal point attvactor at the origin,
The freguency (ratc of spiraling) and
the rate of decay are determined by the
characteristic functions of the spring
{left inset) and the friction (right inset),
Both of these are aspects of the violin
string itself and of its tightness.
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3.2.3. The violinist sustains the vibra-
tion by putting encrgy into the string
with the bow. The friction of the bow
on the string depends on the rate of
bowing. We introduce a new symbol,
B, to denote the rae of drawing the
bow across the string.

o
¥V x

m'h S

3.2.4. The spring model may be
simply modified to include the action
of the bow. Replace the tabletop on
which the spring slides by a conveyor
belt. This represents the bow, The
weight, as before, represents the violin
string.
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The damping depends on the string only. It is not changed by the bow. The violinist uses
rosin on the bow, making it sticky. This changes the shape of the curve describing the
friction as a function of the velocity. To get the idea, we consider a weight moving on
a sticky tabletop,

| ™

3.2.5. Further, suppose the mbletop
is very sticky with rosin, and we just
begin to push the weight lightly to the
right. The speed is zero. But the force
of friction is building up as we push.
Suddenly it slides, as the force reaches
a critical value, The same thing hap-
pens if we pull instead of push. This ex-
perimental situation is represented in

the mechanical model by the shape of

the characteristic function of friction
shown here,

3.2.6. In the preceding discussion,
we assumed the weight had hardly
begun to move, Now, let's imagine the
same experience —sticking, pulling up
to critical force, then slipping — while
the mablewop is moving relative to the
weight with speed &, This situation is
maodeled by this friction function, ob.
tained from the preceding example by
sliding the graph to the right. You see,
the tabletop is moving at speed b, S0
when the weight sticks to the abletop,
it must be moving at the same speed,
©=b. Thus, the vertical segment of the
graph must be located at the common
velocity,
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Identifying the tabletop with the bow, and the spring-weight system with the violin string,
we now have a dynamical model for the bowed string, The dynamical model corresponds
to a 19-century mechanical model: a weight, fixed to a linear damped spring, oscillating
on a conveyor belt. This dynamical model is the same as that for the clarinet reed, except
that the smooth (cubic) friction function for the blown reed is replaced by this one with
a glitch. The glitch is located at the speed of the bow. We have only drawn the function
for one bowing speed. This happens to be positive. That is, the violinist is pushing toward
positive deflection. We do not have, in this case, a precise function in mind. We just assume
that it is shaped something like this.

Assuming the friction function characterizing the bowed violin string looks something
like this, what can we deduce about the phase portrait of the dynamical system? (If you
just want a quick answer to this question, you could skip to the end of the section.)

A

3.2.7. When the motion pauses, the
velocity is zero. The force of friction,
read from the graph here, is then some
number, F{0). This friction is indepen-
1 dent of the displacement of the spring.
It depends only on the velocity,

3.2.8. Meanwhile, the force of the
spring depends linearly on the deflec-
tion. It is independent of the velocity,
For some certain deflection, x = a, the
spring force will be — Fl0).
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3.2.9. Authis special deflection, and
at zero velocity, the friction forece
exactly balances the spring force. The
phase portrait has a critical point at
(e, 0).

3.2.10. Here is the mechanical model
at the critical point. The bow is mov-
ing to the right at its fixed speed b, The
weight has paused (¢ = () at the critical
displacement (x = a) where the friction
force is balanced by the spring force.,

e

3.2.11. At this critical point, the incli-
nation of the friction function is posi-
tive. This is the situation called fnverse
Sriction at the end of Section 2.3,

3.2.12. This means that a small
motion of the weight 1o either side will
create a runaway oscillation, as ex-
plained at the end of Scection 2.3,
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3.2.13. So far, we have figured out that there is a critical point in the phase portrait of
our dyvnamical model for the bowed violin string, and that is a focal point repellor

As the small motions about the critical point grow, and the large motions decay, it seems
plausible that there is a limit cycle in the phase portrait for the bowed violin string. This
would be just like the model for the blown clarinet reed. Unfortunately, this cannot be
proved without assuming more about the shape of the friction function.
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Assuming that there is a limit cycle in the phase portrait, what does this mean the violin
string is doing when it is bowed? It means the endless cycle of states shown here:
1,2,3,4,1,2,3,4, and so on. Nefe: The spring force graphs are drawn upside down here
for easier comparison with the adjacent friction force graphs in the inserts.

3.2.14. 1. STUCK. The friction and
spring forces are balanced and the
weight is stuck to the belt. The weight
is a little o the the right of zero (equil-
ibrium of the spring) but not as far as
the critical point.

Tt gl L
S S T S - -

£
_
L
%
-
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2

0 a. ...
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3.2.15. 2. BEGINNING TO SLIP. The
friction and spring forces are balanced,
but larger, as the displacement in-
creases, At the critical force for friction,
slipping begins,

A

9

3.2.16. 3. SLIPPING. When the velocity
begins decreasing, while xis still increas-
ing, then the sudden drop in the friction
vields the tug of war to the spring. The
acceleration is negative. Rightward
maotion slows to a halt, and the weight
begins to move back to the left,

3.2.17. 4. GRABBING. When the leftward
maotion has decreased the spring force
to a value smaller than the slipping fric-
tion, the tug of the belt wins once more,
Mation to the left slows, and the weight
turns and begins once again to move o
the right. When the velocity reaches the
critical value (the red dot on the glitch)
in the friction function, slippage is
going 1o happen again (return o 1),
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3.2.18. Here are the four stages in the
cvele, located in the phase portrait, The
rest of the limit cycle has been inter-
polated. The flat part at the top cor-
responds to the stuck phase. The repell-
ing critical point is inside the cycle. In-
itial states near this repellor will spiral
outward, clockwise, approaching the
self-sustaining oscillation.

What happens outside the cycle? Let’s make a change of scale, so the cycle is only about

one-tenth its former size.

3.2.19. Now the inverse friction
region is smaller than grape seed and
is almost at the origin. The friction
function looks essentially linear and
normally dissipative. The phase por-
trait has, roughly, an attractive point
near the origin. Actually, it is not a
point. It is an attractive region about
the size of a grape seed or 50, contain-
ing a limit cycle. The initial states in this
picture, corresponding o very large
scale motions of the weight on the
convevor belt, will decay to the vici-
nity of the limit cycle (the seed). So
essentially, the closed trajectory is
attractive (a limit cycle), as we have
assumed all along.
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3.2.20. Returning to normal scale, here is the complete phase portrait for the dynamic

model for the bowed violin string.

All this was child’s play for Lord Rayleigh. He managed to make mechanical models very
simply, learn from them, translate back and forth to the symbolic expressions of differen-
tial equations, and relate them equally well to electrical models. We will refer to the
dynamical system used by him as a model for self-sustained oscillations — equally for
wind or bowed instruments, or electrical oscillator of Helmholtz —as Rayleigh's system.
It comes up again in the next section, as Van der Pol's model for electronic oscillations,

and again in Chapter 5.
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3.3 Radio Transmitters

Rayleigh had already observed that his model for self-systained mechanical oscillations
applied equally well to an electrical oscillator suggested a few years earlier by Helmholtz.
Among Rayleigh's followers the early experimentalists, Duffing and Van der Pol were
particularly influential. Duffing was especially interested in mechanical vibrations, while
Van der Pol worked with the first electronic oscillators based on vacuum tubes. In the
next two chapters, we will describe the main results of these two experimentalists. At
this point, the work of Van der Pol provides a second example of the representation of
an oscillating physical system by a dynamical model with a periodic attractor.

3.3.1. Hereis the scheme of Helmholtz's electrical vibrator, the funing fork interrupter.
This device lives on, even today, as an alarm-bell ringer, or doorbell buzzer.
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The invention of the triode vacuum tube made possible the realization of Helmholtz's
scheme at very high frequencies, and so radio transmission was born. But to Yan der Pol,
this device became an extremely manageable laboratory instrument for experimental

dynamics.

3.3.2. The physical system consists of
the original radio transmitter. The
chassis contains power supplies, a
triode vacuum tube, a fank circuit con-
sisting of an inductive coil and a
variable capacitor in parallel, load
resistors, and a feedback coil from the
plate tank circuit to the grid of the tube,
to induce oscillations. The rwo dials on
the fromt of the chassis monitor the
radio frequency current and voltage at
the plate of the tbe.

3.3.3. The observed parameters of

-
| this system are voltage and current,
G\ Son shown by the panel meters. Thus, the
\__/ appropriate state space is plane, Here

is the phase portrait of the vectorfield
deduced by Van der Pol for this system.
This is based upon electronic circuit
theory, now standard. [ts chief features
are a repelling equilibrium point at the
origin, and a periodic attractor around
the origin. The mathemarical proof of
these facts is arduous compared to the

-ase of their discovery by experiments.
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3.3.4. A simple modification of the preceding dynamical model for the triode oscillator
viclds this portrait, called a relaxation oscillator The speed along the periodic attractor
in this case is relativelv slow on the near-vertical segments, and fast on the longer horizon-
tal segments. Thus, the equilibrium oscillation lingers long at the minimum voltage (horizon-
tal axis), snaps over o the maximum voltage, lingers there, then snaps back. Van der Pol
proposed this as a model for the heartbeat.
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3.4. Biological Morphogenesis

Many novel and exciting applications of dynamics to topics in biclogy and social theory
were envisioned by Rashevsky. The best known of these, a model for biological morpho-
genesis, was rediscovered by Turing, and later studied by others. In this section, we will
illustrate our interpretation of Rashevsky's model in the context of Phyllotaxis, the
morphogenesis of plant growth.

The empirical domain for this application is an idealized vine.

3.4.1. Have you noticed how some plant stalks sprout branchlets symmetrically? This vine,
for example, sprouts one branchlet at a time, The direction of these branchlets rotate around
the stalk with trihedral symmetry.
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3.4.2. At the tip of the growing stalk
isagrowth bud. Beneath the epidermis
is the apical meristerm, a mass of un-
differentiated, totipotent cells. Trailing
in their wake, as they move upward on
the growing stalk, are wvarious
derivative, cytologically differentiated,
cells. Among these are the leaf bud
cells, the branch cells, and so on. The
question of morphogenesis, also called
phyllotaxis in this context, is the for-
mation of the pattern of these differen-
tiated cells, and thus, of the leaf buds
and branchlets.

The Rashevsky model for morphogenesis is based on a ring of growth cells, around the
circumference of the stalk, near the growth bud at the top. Let’s build up his model for

this ring of cells, one cell at a time.

e

3.4.3. The cell is regarded as a bag of
fluid. Convection stirs this fluid, so that
its chemical composition is
homogeneous, or well-stirred. One of
the chemical constituents, called a
morphogen, is a growth hormone, The
relative concentration of this mor-
phogen, x, is the observed parameter
in the model for one cell. The state
space is a line segment, as the
parameter varies only between O and 1.
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3.4.4. If the concentration of this
morphogen in the fluid of the cell
excecds a4 certain critical value, the
growth function of the cell is turned
on. It divides, and a branchlet is born,

ON

Next step: two cells, with one morphogen, in an open system. This means that the mor-
phogen can come and go between the two-celled system and its environment,

3.4.5. Observing the relative concen-
trations of morphogen in each cell
determines a point in the unit square,
{x.y). The square is the state space for
the system of two cells, with one mor-
phogen, as an open system, The state
space is shown here, divided into four
regions:

A Cell 1 off, cell 2 growing.

B. Both cells’ growth turned off.

C. Cell 1 growing, cell 2 off,

D. Both cells growing.
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Now let's close the system. In the closed system of two cells, the morphogen cannot enter
or leave. The total amount is constant.

3.4.6. The state space for the closed
system is a subspace of the square.
Only the points of the square on the
black line segment satisfy the con-

3.4.7. Extracting this line segment, we
have the state space for the closed

system. Notice that the line meets the straint of the closed system: the sum of
zones A, B, and ¢ of the square. the concentrations is constant, or
a+y=1

2

3.4.8. If the state of the closed system of two cells is in the line segment A, cell 1 is off
and cell 2 is growing. In segment B, neither cell is growing, and in segment €, cell 1 is
growing while cell 2 is off,
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Final step: three cells, one morphogen, closed system, We think of them as a ring of cells.

3.4.9. Here is the ring of three cells,
with a uniform concentration of the
maorphogen in each. The point (x,1,2)
in the unit cube of three-space
represents 4 state of the system,

3.4.10. Plotting the state in three
space, we find the assumption of a
closed system, x + ¥ + £ = 1, constrains
the state to lic on this triangle, called
the unit simplex of three space. This
planar, equilateral triangle is the state
space for the closed system of three
cells, with one morphogen.

3.4.11. The three small triangles at
the corner points of the state space
correspond to a distribution of mor-
phogen in which the amount in one of
the cells exceeds the critical value for
growth.

3.4.12. Suppose now that a
dynamical system has been added to
the model, and thar it has a periodic at-
tractor like this. Then periodically, one
after another of the three cells is turned
on, then off,
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We may now connect with the bean stalk by imagining a sfack of rings of cells, as a

simplified model for the stalk.

3.4.13. Here is the stack of rings of
cells, each ring represented as an iden-
tical copy of the triangular model.
Growth of the stalk upwards in time is
represented by associating time with
the upward direction. The periodic
attractor of the preceding illustration
thus gives rise to a perfodic time series
spiraling upwards in time,

3.4.14. Successively, the turned-on
cell proceeds around the stalk, initiat-
ing branchlets. Many improvements to
this model come immediately o mind,
and no doubt they had occurred to
Rashevsky already, in 1940,

The further biological and social applications of this scheme for morphogenesis await

us in the near future.
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Forced Vibrations:
Limit Cycles in 3D from Rayleigh to Duffing

Lord Rayleigh's study of musical instruments provided the early examples of limit
points and limit cycles in the plane, discussed in the two preceding chapters. He
went on to study forced oscillations, with musical applications in mind. Besides
these applications, involving tuning forks and the determination of pitch, he
envisioned further applications to tides and electrical motors, This led him into
experimental work, progressive abstraction into theory, and the foundation of a
new branch of dynamics: forced vibration.

Forced vibration is one of the most significant topics in dynamics, and its potential applica-
tions are manifold. We distinguish two separate cases:

(1) A system which tends to rest is subject to a periodic force. Classical example: effect
of mechanical vibration on a pendulum. Biological example: effect of the seasons on big
fish and small fry (Figure 2.4.6).

(2) A system which tends to self-sustained oscillation is subject 1o a periodic force.
The preceding section on biological morphogenesis, for example, suggests the question:
what happens if a biological oscillator is influenced by an external periodic force, such as
sunlight?

In the next chapter, we will describe the results obtained for case 2 by Rayleigh and Van
der Pol. In this chapter, we describe Rayleigh's work on case 1 with the double pendulum,
and the related results obtained later by Duffing. We begin by constructing a three-dimensional
model for the states of the forced system, the ring model.

I3
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4.1. The Ring Model For Forced Springs

To the early experimentalists, a self-sustained oscillator was hard to arrange, so they
approximated one with a very large pendulum. The decay in the amplitude of its swing
would be insignificant in a short experiment. As the source of the periodic force applied
to the driven system, a smaller pendulum, it would be relatively unmoved by the motion
of the driven system. Of course, we would properly consider this a coupled system of
two swinging pendula. It only approximates a forced vibration, which is an unreal
idealization. This was well understood by Rayleigh, who wrote:!

As has already been stated, the distinction of forced and free vibrations is imporant;
but it may be remarked that most of the forced vibrations which we shall have to con-
sider as affecting a system, take their origin ultimately in the motion of a second system,
which influences the first, and is influenced by it. A vibration may thus have to be reck-
oned as forced in its relation to a system whose limits are fixed arbitrarily, even when
that system has a share in determining the period of the force which acts upon it. On
a wider view of the matter embracing both the systems, the vibration in gquestion will
be recognized as free.

Our goal in this section is to turn this intuition into a geometric model in three dimen-
sions. This is the state space for the coupled system. In it, a free vibration of the coupled
system (equivalent for a forced oscillation of the driven system) is represented as a
periodic attractor.

()

4.1.1. Here are the actual experimental devices of three early workers: Rayleigh, Duffing,
and Ludeke.
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4.1.2. Helmholtz and Rayleigh also
analyzed mechanical systems subject
to periodic electrical forces. These
systems more closely approximate the
ideal forced vibration, in that the
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R forcing system (alternating current

generator) is relatively indifferent to the

// motion of the driven system (tuning
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4.1.3. The early experimentalists also
analyzed electrical systems subject to
periodic electrical forces, For example,
a parallel plate capacitor and an induc-
tive coil in series was regarded as an
electrical analog of the tuning fork in
the driven system.
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We now describe Duffing’s results in the original mechanical context, the double pen-
dulum. First, the driven system,

4.1.4. This pendulum will be the
driven system in the mechanical ap-
paratus for studying forced vibration in
case 1. One observed parameter, 4, is
the angle of deflection of the bob from
vertical. We also observe another
parameter, the rate of change of the
angle, R,

4.1.5. Recall that the state space for
this device is a cylinder, as described
in Section 2.1. But we may cut the
cylinder and unroll it into a plane. This
will be useful here, as we will consider
only small motions of the bob,
represented by points near the origin,
(A,R) = (0,0}, of the state space. Recall
also that the phase protrait for this
system has a focal point attractor at
the origin.
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And now, the driving system, with twenticth century additions. . ..

4.1.6. This turntable motor has 4
sophisticated governor, which works
hard to maintain a constant frequency
of rotation. To its turmable is con-
nected a push-rod and lever. The upper
ipointed) end of this lever will even-
tually be the oscillating point of sup-
port for the driven pendulum.

4.1.7. This motor is a replacement for
the giant pendulum in Rayleigh's
original scheme. It has a self-sustained
b oscillation, Like the clarinet reed and
| violin string of the preceding chapter,
. its dynamical model has an attractive
limit cycle in a planar state space.
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4.1.8. If we leave the motor running,
we may forger start-up transients, and
regard the limit cycle itself as the en-
tire state space. Thus, there is only one
observed parameter for this driving
system: its phase, @. The phase varies
from O to 2% around the cyecle of
phases, which is the state space. The
frequency of the cycle is supposed to
be fixed by the governor, It is not a
variable, but a constant in the model,

4,1.9, For ease of visualization, we
now cut the cycle, and unroll it into a
straight line segment. Cut on the right,
at phase zero. Holding the upper end
fast, bend the lower end down, to the
left, and up, until straight. Having cut
the cycle at phase zero, both ¢nds of
this line segment correspond to the
beginning of the cycle.

The dot marks phase zero, ¢ =0, the beginning of a cycle. This choice is somewhat
arbitrary, but we show here the most common choice, called the cosine convention. In
this convention, phase zero means the rod has just arrived full left, and is turning to go
back. Thus, the pointed top of the lever is full right at driving phase zero.

!
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Next, we combine the geometric models for the driven pendulum and the driving motor
into a single, combined model. This model represents the compound system of the two
devices, uncoupled.

4.1.10. At each point of the unrolled
cyele of phases of the driving motor,
place an identical copy of the plane of
states of the driven system. Orienting
these planes vertically as shown, we
may think of the scheme as a deck of
carcds on edge. Each card has the phase

portrait of the damped pendulum
printed on it (This is an example of Cer-
tesian product construction.) Every
point in the resulting three-dimensional
scheme represents, simultancously, a
state of the pendulum, (A R), and a
phase of the driver, ¢, The three dimen-
sions thus represent the observed
parameters, (o0, 4,K), of the combined
(but uncoupled) system, Comparing
with Figure 1.4.7, notice that the fphase
of the driving oscillation has replaced
fine as the parameter. Thus, the driving
oscillation has become the clock. Dur-

ing one cyvele of this clock, the state of
the driven oscillation approaches its
attractor, as shown by the exemplary
trajectory (red) in this illustration.

4.1.11. Finally, to get the correct model for the combined system, we roll up the cyele
of phases again, carrying the deck of cards along with the cycle. Bend the left end down,
to the right, and up again, until the two ends meet at the right. Glue the two end cards
together, This ring model is the geometric model for the combined system.
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4.1.12. The phase portrait for the combined, uncoupled system looks like this. Scrolls
within the ring contain the trajectories, which spiral around the red cvele in the middle
of the ring, This is an attractive limit cyele for the combined dynamical system. [t represents
the pendulum bob coming to rest, as the driving motor keeps on running at its regulated
frequency, Each scroll is actually a cylinder, rolled up like a pant leg. Also, itis an invariant
mraneifold of the flow. This means, simply, that it is a collection of trajectories, No trajec-

tory enters or leaves o scroll. A slice has been removed from the scroll ar phase zero for
better visibility,
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4.1.13. For comparison, here is the phase portrait for the combined dynamical system,
in the case of the undamped pendulum, with the same driving motor, The scrolls are
replaced by concentric ford. Each card of the deck is printed with concentric circles. The
trajectories of the combined system spiral around these tori, which are invariant manifolds.
The central cvele (red) is mof a fmit cycle for nearby trajectories. These concentric tori
have also been cut through, at phase zero, for visibility,




Farced Vibrations 123

The trick of cutting through the combined phase portrait at a fixed phase, for better
visualization, came from the early experimentalists. It is now called stroboscopy: Rayleigh
names Platean (1836) as the inventor.?

4.1.14. The strobe lamp is aimed at
the driven bob. [t is turned on momen-
tarily, when the drive (blue) pendulum
contacts the microswitch, at phase
zero. Lord Rayleigh used the rays of
the sun, interrupted by an electrical
diaphragm.

4.1.15. Inthe light of the stroboscope,
the parameters of the driven bob may
be observed at the fixed phase of the
driving motor. The observed data
define a point in the strobe plane, the
card of the deck corresponding to this
fixed phase. At this point, the trajectory
of the combined systemn pierces the
strobe plane.

B e e




124

Feriodic Bebavior

4.1.16. Recording the observations of
successive flashes of the strobe light,
a sequence of points in the strobe plane
is obtained, instead of a continuous
trajectory, as the record of motion of
the bob. We may call this a strobed
tretfector.

4.1.17. If the driving frequency is
relatively fast with respect to the free
(unforced) frequency of the driven
pendulum, the strobed trajectory will
appear to step along a spiral in the
strobe plane. In other words, if the
driving clock (see Figure 4.1.10) runs
quickly, the free pendulum will seem
slow, That is, it will run around the
spiral almost like a continuous trajec-
tory. Here the driving frequency s
approximately 24 times the free
frequency.
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4.1.18 If the driving frequency is \
about the same as the free frequency g 5l?
of the driven system, the strobed tra- @
jectory may appear to walk directly
woward the origin, as the pendulum
comes to rest. In the strobe light of the
cxperiment, the blue pendulum will
seem to swing slowly to rest from one
side.

4.1.19. Finally, if the driving frequen-
cy is relatively slow with respect to the
pendulum, the strobed trjectory will
take giant steps, spiraling at a very slow | i
pace wward rest. Here, the driving
frequency is approximately % of the
free frequency,

All this regard for the uncoupled system has been for practice in 3D visuvalization and
getting used to the ring model. In the next section, we will finally connect the two gadgets.
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4.2. Forced Linear Springs

At last, let’s pin the pendulum to the swinging end of the motor-driven lever.

)

4.2.1. The coupled system has the same observed parameters as the uncoupled system:
angle of the bob from vertical, rate of change of the angle, and phase of the driving motor.

The state space is still the ring. The dynamics, however, are changed. The vectorfield is
quite different. So are the trajectories and the phase portrait.
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To get the idea of the phase portrait for the coupled system (forced vibrations), a few
armchair experiments will be helpful. We call this the game of bob.

4,2.2, Give vour hand a little jerk,
then hold it still. The pendulum swings
slowly 1o rest. Notice the frequency.
This is the frequency of the free,
unforced pendulum. Now, without
changing the length of the string,
oscillate your hand back and forth
along a horizontal line. If the driving
frequency of your hand is sfower than
v the free frequency, the pendulum
= follows your hand. Instead of coming
to rest, it is in sustained oscillation

4.2.3. Start again with your hand and
the bob at rest. This time, oscillate your
hand faster than the free frequency.
Notice that the bob swings opposite to
the motion of your hand.
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If you are in public that's enough for now. But if nobody is watching, here is another
experiment to try.

4.2.4. If the driving frequency s
relatively close o the free frequency,
the amplitude of the swinging bob is
groater.

4.2.5. If the forcing frequency s
much faster or slower than the free
frequency, and the amplitude of the
forcing motion is unchanged. the
amplitude of the swinging bob is less.

Now let’s get on with Duffing’s discoveries, First, we will improve the mechanical setup
to simplify the analysis.
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4,2.6. The driving motor will be the
same as in the previous section, but the
connecting rod is disconnected from
the vertical lever, and attached to a
weight. This weight is forced to move
horizontally on the abletop.

4.2.7. Asin Chapter 2, we replace the
pendulum with a spring. The spring is
fixed to a support on the left, and to
the weight on the right, The weight is
free to move on the abletop, which
resists the motion with friction,

\F
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4.2.8. For a start, we assume the
spring is linear. This restriction will be
removed in the following section.

4.2.9 Recall that weights with linear
springs have a natural frequency
independendent of the emplitude of
the oscillation. They make perfect

guitar strings.
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4.2.10. Here is the coupled system. The connecting rod of the driving motor moves the

support of the spring, previously fixed to the tabletop, in a horizontal oscillation. For
experimental purposes, we include a speed control for the forcing frequency, and a strobe

light set for phase zero.

The state space for this forced vibration is again the ring, with observed parameters: phase
of the forcing cycle, deflection of the spring, and velocity of the driving weight. As for

the phase portrait, we have discovered by experiment that it contains an attractive limit
cycle. Thus, in the coupled system, the drive (blue) weight is forced to oscillate by the

driving (green) weight.
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4.2.11. The bob oscillates. To repre-
sent this as a limit cycle in the ring, let’s
begin by recording a full cycle of the
bob in its own, planar, state space. This
is not a trajectory of a dynamical
system in the plane, just a step in 2
graphical construction. Later we will
erase it

:

4.2.12. Recall that the state space for the driving motor is a cycle of phases. Earlier, the
ring was constructed by cutting this cycle and straightening it out.
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4.2.13. The deck of cards represents
the ring, cut and straightened. On cach
card, we have drawn (in green) the
observed cyele of the bob, as shown in
the panel before last. This makes a
green cylinder in the 3D model.

1

4.2.14. Now, rccord the observed
motion of the combined system in this
maodel as the bob oscillates and the
driving mator traverses one full cyele,
The red curve is this record, It is seen
to stay on the green cylinder, I is a tra-
jectory. Note that this illustration close-
Iy resembles Figure 1.3.9, with driving
phase in place of time as the pammeter,

i ]
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The green cylinder is not a feature of the phase portrait; it is just another step in our
graphical construction. Later, we will erase this, also.

4.2.15. Next step, roll up the deck of cards again to make the ring. The green cylinder
becomes a green torus, The red curve closes up, making a cvele on the green torus.

4.2.16. This is the attractive limit
cyele known to Rayleigh, Duffing, and
all those who have plaved the game of
hob as we instructed. Itis called an iso-
chronous barmonic, as it completes
one full cycle of the bob to cach full
cvcle of the driving motor

Now is a good time to erase the green torus. It is not an invariant manifold; most trajec-
tories pass through it. It is just an aid for visualizing the isochronous harmonic, which
is the only trajectory on it. Next, let's see what the nearby trajectories actually do.
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4.2.17. Here we have cut through the ring at phase zero for better secing. The blue trajec-
tory is a typical one. It spirals around the ring, getting closer to the red atractor with

each cyvcle.

4.2.18. Observing this motion with
the strobe light, we plot the tracks of
several blue dots in the strobe plane a
each flash. This is the strobe trajectory
of this motion. The isochronous
harmonic meets the strobe plane at a
single point, the red one. The blue
strobe trajectory approaches closer and
closer to the red point. All nearby tra-
jectories approach the red point like
this, and may cross the green ring.
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Retracing the steps of Duffing, let's play the game of bob in earnest with this apparatus.
Suppose we change the speed of the driving motor.
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4.2.19. If the forcing frequency is very slow, the driven (blue) weight will follow the motion
of the driving (green) weight. The strobe at phase zero (according to the cosine conven-
tion, this means full right, and turning to go back) will flash on the blue weight at its phase
#er0 position,

AY

-
%

Ve

4.2.20. This means that the two separate trajectories are cycles that are in phase. That
is, they both reach phase zero at the same time. They are both full right, and turning to
go back, at this moment.,




136 Perfodic Bebavior

4.2.21. Thus, the combined tra-
jectory, a periodic attractor, passes
through the line of constant phase,.
zero, in the state plane of the driven
(blue) weight (the positive horizontal
axis) at the same time the driving phase
passes the same value. This occurs just
as the strobe flashes and records the
point shown here in the strobe plane.

\

4.2.22. Increasing the driving frequency to a value close to the free frequency of the linear
spring and drive (blue) weight, but still smaller, the attractive limit cycle is still an isochronous
harmonic. But its phase has slipped. Here, the drive (blue) weight is bebind the driving
(green) weight in phase. This is represented by the red strobe point position above the
horizontal axis in the strobe plane. Further, the amplitude of the driven (blue) weight's
motion is larger than before. This is represented by drawing the red limit cycle on a larger
imaginary torus.
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4.2.23. As you may have found in playing the game of bob (Figure 4.2.4), the forced oscilla-
tion attains its largest amplitude when the driving frequency is equal to the free frequency
of the driven oscillator, But the strobe light on our machine reveals further that at this max-
imum amplitude, the phase of the forced (blue) weight is /2 (a quarter cycle) behind the
driving (green) phase,

»

4.2.24. The mechanics of this phase
delay is very well known to children
who swing. (4) When the driven
weight (yourself) goes through phase
w (all the way up in back) the driving
force goes through phase - 7/2 (you
begin to pump forward). (1) At the
bottom of the swing forward, your
pump has peaked. (2) At the top of
vour swing to the front, you begin to
pump back. (3) At the bottom of your
back swing, your back pump has
peaked. {(Be careful with the larger
amplitudes.)
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4.2.25. With the driving frequency much faster than the green frequency, the phase of
the driven (blue) weight lags a half-cycle ( — 7) behind the forcing (green) weight. Also, the
amplitude of the forced oscillation is smaller than it was, when the frequencies were the
same. But we know this already, from the game of bob. The smaller amplitude is shown,
in this illustration, but the smaller “waist”’ of the locating torus. Compare with Figure 4.2.23.

i
Al

4.2.26. The amplitude of the driven
bob’s motion, as well as its phase,
depends on the driving frequency.
Here is the graph of this relationship,
as revealed by Duffing's mathematical
analysis, as well as by his experiments.

There are precious few linear springs around, so we really should do this all over again
for hard and soft springs. And so, on to the next section for hard springs. Soft springs
will be left to the reader as a test.
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4.3.3. Forced Hard Springs

A hard spring is slightly more realistic than a linear spring. Recall that with a linear spring, if the
force required to stretch it a distance x is F(x), then the force required to stretch it twice as far
is twice as great, or F{2x) = 2F(x).

4.3.1. Most springs in real life are bard. This means that the force required to stretch the
spring twice as far is more than twice as great, or F(2x)>2F(x).
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4.3.3. The dynamic consequence

of this stiffness is this bend in the
response curve: as the amplitude
decreases, the frequency decreases —
another poor guitar string. The next
illustrations explain this bend.

4.3.2. Here is an example of an ideal
hard spring. The characteristic func-
tion of this spring is a cubic, as shown
in this graph.

4.3.4. Here is our laboratory apparatus, left over from the experiments of the preceding
section. Let’s replace the linear spring with a hard one and observe a sequence of forced
vibrations with different forcing frequencies. The amplitude of the forcing oscillation is
not changed in this sequence.
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4.3.5. Starting with the speed control
at position 1 (slow forcing) and then
increasing it, we see a shift in phase,
and an increase in amplitude, of the
resulting oscillation of the driven (blue)
weight, At positions 1 and 2, this is
about the same as the linear case. At
positions 3 and 4, the effect of stiffness
can be observed. The amplitude keeps
on increasing, even after the forcing
frequency exceeds the free frequency.

4.3.6. Now start a new sequence of
experiments, with the driving motor
running at top speed, and decreasing
it for each test. Again, the response is
much like the linear spring at positions
G and 5. But at 4, the amplitude of the
response vibration suddenly jumps to
the higher value. This higher amplitude
is the same one found in the first sc-
quence of observations, after increas-
ing the speed from position 3 o 4,
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4.3.7. Moving the speed lever all the
way to slowest, then back to fastest,
back to slowest, and so0 on, we observe
this bysteresis loop of Duffing. At 4 and
decreasing, the amplitude suddenly
increases. At 5 and increasing, it sud-
denly decreases. If you don't believe it,
try it out. Because a pendulum behaves
like a soft spring, you may observe this
phenomenon in the game of bob.

4.3.8. If you do believe it, then you
agree that when the speed control of
the driving motor is between positions
4 and 5, there are fwo periodic atirac-
tors in the phase portrait of the forced
system,
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4.3.9. One of the atrractive limit
cycles, corresponding to the smaller
vibration, is close to a half eycle out of
phase with the driver. (See Figure
4.2.25.) It circles around a smaller
{imaginary) torus. The other, cor-
responding to the larger vibration, is
roughly in phase with the driver. (Sce
Figure 4.2,.22.) It circles around a larger
{imaginary) torus.

Both of these limit cycles are isochronous harmonics. Neither of the tori is an invariant
manifold —most trajectories go through them. Some nearby trajectories tend asymp-
totically to one of these attractors, some to the other. There are two basins, as in the

examples of Sections 1.6 and 2.2,

The two basins are divided by a separatrix. Where is it located in the phase portrait?

4.%.10. In the response diagram, the
two branches of the response curve,
observed in the experiments described
above, are connected as a smooth
curve. The connecting segment cor-
responds to another limit cycle in the
phase portrait—one that is experimen-
tally invisible
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4.3.11. The invisible third limit cycle

e ™ is a saddle cycle. These occur in state
> : gt spaces of dimension three or more.
. o Saddle cvceles are the periodic analog
of saddle points. That is, they are
related to periodic attractors as saddle
points are related o point attractors. In
three dimensions, the inset of a saddle
cycle is a surface, a deformed cvlinder
beled by the saddle cyele. The inser is
shown in green in this illustration. It is
A sefraralrix; it separates two basins.
The outset of a saddle cycle is another
deformed cvlinder. which crosses
through the inset where it is belted by
the saddle cycle. The outser is shown
in blue. Half of the outset is in one
hasin, half in the other These halves
are divided by the cycle itself, shown
in red,

This green inset is an {nvariant manifold. It consists of trajectories which stay on it
forever and tend asymptotically toward the red saddle cycle as time increases. The saddle
cycle is the omega-limit set for the trajectories on the green inset, as explained in Sec-
tion 1.5.

To better visualize the phase portrait, we may use the trick immortalized by Poincaré:
extract the strobe plane.

Pl _..r'/

4.3.12. Here the strobe positions of
the three limit cycles are shown as red
points in the strobe plane. The solid red
dots represent attractors. The small
half-filled circle denotes the saddie
cycle. The inset of the saddle, two
green spirals, intersect the strobe plane
in two curves, whon here in green,
They divide the strobe plane into two
regions: the dark-shaded teardrop
shape, and the rest. These two regions
comprise the basing in cross-section,
that is, in the strobe plane. Note that the
saddle point in the cross-section is
Befiween the two atractors, both in
phase and in amplitude.
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4.3.13. To visualize the basins in full, as three-dimensional regions, we repeat the strobe
process at many successive phases of the driving motor. The full basins, revealed by this
technique, look like this: vin-yang in 3D. The teardrop revolved once as the section pro-
gresses around the driving cycle. The three red cycles are the isochronous harmonics
discovered by Duffing.

All this from experimenting with different forcing frequencies, at the same forcing
amplitude. What if we changed the amplitude?
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4.3.14. Drilling more holes in the turntable, we gain easy access to the amplitude of the
forcing oscillation, without affecting its frequency.

Having changed the amplitude, we may repeat all the experiments described above, with
the frequency changed variously.

(Al

4,3.15. The results are always similar,
except that the location of the response
curve is shifted, kink and all. Here are
the response curves for three different
amplitudes. The larger the amplitnde,
the higher the response curve in this
diagram. Notice that the lower curve
(smallest forcing amplitude) looks
rather like the response curve of a
linear spring.
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4.3.16. Regarding the response as a
function of the two control parameters,
frequency and amplitude of the forc-
ing oscillation, we find that the curves
on the right are successive slices of a
kinked surface in a three-dimensional
response diagram.,

4.3.17. 1f you have already heard
about catastrophe theory, you may
recognize this as the cusp catastrophbe?
Here, we have added the bisteresis loop

to the cusp figure. [ — =%

Actually, since Duffing there has appeared an enormous literature on the forced pen-
dulum. Much of this is devoted to additional attractors that have been found in Duffing's
phase portrait, which are non-isochronous barmonics.

In the next section, we give a brief introduction to these other harmonics.
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4.4, Harmonics

When the driving amplitude is fixed but the frequency is changed in a sequence of experiments,
as described in the preceding section, unusual motions of the bob turn up when the driving frequency
is twice the free frequency, or half of it, and so on. These are the non-isochronous barmonics,
Here is the simplest example, sometimes called the second barmonic Suppose that the driving
motor is turning at about half of the free frequency of the spring-bob system. We find that the driven
system responds with a sustained oscillation at about the free frequency,

Get out your game of bob again for this one.

4.4.1. Here are four strobe views of the second harmonic motion.

1. Driver phase 0, driven phase (. They are both at the beginning of a cycle, in phase.

2. Driver phase w/2, driven phase .

3, Driver phase w, driven phase 0. Since being in phase in 1, the drive (blue) weight
has completed a full cycle, while the driving turntable has completed only half a turn.

4. Driver phase — w/2, driven phase =

1. Driver phase 0, driven phase 0. Since 1 above, the turntable has completed a full
turn at last, while the driven weight has done two swings.
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4.4.2. Let's now pick up the four
cards (strobe planes) of the preceding
panel, and place them in their proper
places within the ring model, Inter-
polating the rest of the trajectory, we
obtain this red trajectory, Itis an atteac-
tive limit ¢yele, which winds twice
around the waist of the imaginary
green torus, while making one full
circuit of the ring. It represents the
second harmonic of the driven
spring-bob.

In the preceding section, there was already an imaginary green torus or two in the ring
model, representing the isochronous harmonics of Duffing. If this double-twisting
attractor is also in the ring, how is it situated with respect to the isochronous harmonics,
or the rotating teardrop?

The isochronous harmonics, the second harmonics, and all the other little harmonics,
all live harmoniously together in the ring model.

4.4.%. Here are several of the harmonics in the ring model, Each has its own home, in
one of the concentric rings. When the forced oscillation creates a harmonic (periodic
attractor) in the compound system with a non-isochronous frequency, the amplitude of
the harmonic is smatler, Thus, it winds around a locating torus with a smaller waist. Thus,
the outer rings in this illustration contain the osichornous harmonics. The smaller rings
house the more exotic harmonics, just like the circles of Hell in the Inferno of Dante.
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To get a clear picture of the harmonic vibrations of a forced pendulum or spring, we need
a certain familiarity with trajectories on a torus.

We pause now for a short course in toral arrangement.

4.4.4. Farlier, in Figure 4.3.21, we
introduced a phantom torus to depict
the isochronous harmonic, in phase
with the driving oscillation.

4.4.5. We may regard the state space . - T - — =
as a cvelical deck of cards. Each card ;
slices the phantom torus in a vertical
{green) circle. Thus, the torus is made
of green circles. Each of these cor-
responds to a particular phase of the
driving oscillation of the green weight.
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4.4.6 On the other hand, we may
think of the torus as being made of
these horizontal blue stripes. Each of
these horizontal circles corresponds 1o
a particular phase of the drive (blue)
weight.

Let’s take an imaginary green torus out of the ring. Slice vertically through it at the strobe
plane on the extreme right, corresponding to green phase zero.

4.4.7. Grabthe loose end closer to us,
Pull it out and leftward and push it
hack, to straighten it out.

4.4.8 Straightening out the tube and
reducing the scale of the green phase,
we have a section of a cvlinder. Both
ends correspond to green phase zero,
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4.4.9 Now cut the back of the cylin-
der, along the line of zero phase of the
blue cycle, Push the lower edge down,
while pulling the upper edge up.

4.4,10. We obtain this flat square.
Both horizontal edges correspond to
blue (driven) phase zero while both
vertical edges correspond to green
{driver) phase zero,

The red trajectory turns out to be a straight line through two corners, in the case of a

linear spring.

This red trajectory represents an isochronous harmonic, with both cycles in phase. Thus
the driving (green) weight and the driven (blue) weight begin together, each at phase zero.
After one cycle of each, they return to phase zero simultaneously. To be sure of this, move
along the red trajectory, little by little. At each point, observe the turntable phase {by
looking down to the lower edge) and the bob phase (by looking left, to the vertical edge)

and see how they are changing.
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Here is another translation exercise, from toral to flat representation.

0

4.4.11. This is another isochronous
harmonic on the toras, But the two
oscillations are a gquarter-cyvele out of
phase, as in Figure 4.3.23,

4,4,12, The phase relationship is
easier o analyze in the flat representa-
tion. On the left edge, driving weight
is at phase zero while driven weight is
at phase 7/2.

To step along this red trajectory, you must remember that when you fall off the top of
the square, you reappear at the bottom. Likewise, when you run off the right edge, you
reappear on the left. It's just like a TV screen.

That finishes the digression on toral arrangement. Now, back to harmonics. The ideas
developed, originally, in the context of musical instruments.

4.4.13. A guitar string vibrates in dif-
fernt modes. Explained mathematical-
Iy by Euler, they were exhaustively
studied in experiments by Pythagoras.
The sound of each of these modes is
a pure tone. The mode shown on the
left is called the fundamental. The fre-
quency of each mode is an integer
multiple of the fundamental frequency.
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Musical harmonics may be plotted on a torus. But instead, we will return to the context

of the driving and the driven weights. In this context, the driving weight plays the role
of the fundamental tone. We shall explain, in sequence, ultrabarmonics, subbarmonics,

and ultrasubbarmonics.
This is an example of an ultraharmonic. in toral and TV representations.

¢

T

4.4.15. In the flat square, the red tra-

4.4.14. This red trajectory on the
torus winds three times around the

waist (driven cyele) while going only

jectory crosses the horizonml edge
three times and the vertical edge only

O,

once around the hole (driving cycle)

This example is an untraharmonic of barmonic ratio 3:1. That is, 3 bob cycles occur dur-

ing 1 turntable cycle. There are untraharmonics of all integer ratios.

4.4.16. Here is the general ultrahar-
monic, There are an arbitrary number
of driven cycles, say B for one turntable
cycle. The harmonic ratio is #:1,

I -!_ i r] fi
| | rfl. a"J Iil:
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A subharmonic is characterized by slower motions of the driven weight. The drive must
complete several cycles before the driven weight completes one.

4.4.18. The flat representation of the

4.4.17. This is a subharmonic l'EqI.Iil'- red tl"ﬂj(ﬁ'Cl{}l’}’ wraps around the ver-

ing 3 driven cycles, to complete 1 tical edge 3 times and the horizontal

response cvcle, edge just once. The harmonic ratio
is 1:3.

The general subharmonic requires some number of turntable cycles, say Q, for one cycle
of the bob. The harmonic ratio in this case is 1:Q.

Isochronous harmonics have harmonic ratio 1:1. Isochronous, ultra, and subharmonics
are special types of the general harmonic, also known as the ultra-subbarmonic. These
have harmonic ratios P:Q, with any integers for P and Q.

The next example gives rise to the musical interval do-sol (a fifth). The harmonic ratio
is 3:2,
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4.4.19. The red trajectory goes twice 4.4.20. In the flat representation, it
around the hole, each time making a transits the horizontal 3 times and the
turn and a half around the waist. vertical edge twice,

You see now how to draw a general harmonic, with any rational number P:( as ratio.
Beware: we have drawn the trajectories on the flat square more or less straight, for
simplicity. But in actuality, they may be very curved,

How about a harmonic with an irrational ratio?

4.4.22. Again we have chosen the
simplest situation to draw: the trajec-
tory becomes a straight line in the flat
square. But after each wrap-around, it
hits a blank space upon re-entry. It
never closes.

4.4.21. Here is a piece of a red trajec-
tory. If we drew it all, the toros would
be almost all red. It goes round indefi-
nitely, without closing. This is the
sodenoid of Section 1.4,
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As we shall see in Part Two, this situation is very rare. Even in the case of actual harmonics
(rational harmonic ratios) the more exotic ratios are relatively rare, as experimentalists
have found.* They are restricted to very small rings isn the ring model. This means they
occur with very small amplitudes.

There is much more to be learned from Duffing's game of bob, as we shall see in Part
Two. But now let's move on to the penultimate topic in classical dynamics —compound
oscillations.
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Compound Oscillations
Invariant Tori in 3D from Huyghens to Hayashi

The considerations of Rayleigh. in the question of the production of sound by bowed strings
in particular, evolved into a large branch of dynamics, called forced oscillations, or nonlinear
vibrations. ! The first results were obtained by Duffing. in 1918, for the forced pendulum,
and have already been described in the preceding chapter. In the following decade, similar
results were abtained by Appleton, Van der Pol, Andronov, and others for the periodic, forced
perturbation of a self-sustained oscillator. In this chapter, we describe their results. These
discoveries for forced oscillators are subtly different from Duffing's observations of forced
pendula, described in the preceding chapter. There, we forced a point attractor. Here, we
will force a periodic attractor,
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Now the two oscillators are coupled. This means that the phase portrait is perturbed by
the addition of small vectors at each point of the state space. This small vectorfield is
added to the dynamical model representing the uncoupled system. Without saying exactly
what this small perturbation is, one can conclude something about the coupled system
anyway. This amazing conclusion is a geometric theorem of Peixoto, described at length
in Part Three.

Here is the geometrical model for the same physical system, with coupling introduced
between the mechanical oscillators.,

I59
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5.1. The Torus Model for Two Oscillators

The first step toward understanding forced oscillations is to make a geometric model for the states.
We will use the torus, now familiar from the previous chapter. Then, we describe the dynamics
on the torus corresponding to two uncoupled oscillators. In the following section, we allow coupling
between the two oscillators, describing the dynamics on the torus. In the third section. we introduce
the ring model for forced oscillations.

5.1.1. These mechanical systems have dynamical models, described in Chapter 3, with
similar phase portraits. They are self-sustained oscillators.
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5.1.2. Their phase portraits contain
i attractive limit cycles, that is, periodic
attractors. After the start-up transient
dics away, the trajectory follows the
attractive limit cycle,

For the sake of visualizing the asymptotic behavior of the oscillators, we may ignore the transient
behavior in the dynamical model. Thus, the two-dimensional model (the plane with a limit cycle
around the origin) may be replaced by the limit cycle itself, standing alone,
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5.1.3. Recall that in the last chapter, we introduced the reduced model for the states of
an oscillator. The state of the oscillator is represented by a point of this cycle, correspand-
ing to its phase. The two-dimensional model for the states of one oscillator is thus replaced
by a one-dimensional model. We allow the plane to fade away, while the cvele remains.
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Next, we consider two different oscillators. If the two oscillators are physically separate,
the motion of each is uninfluenced by the other. We say they are uncoupled oscillators.

5.1.4, In the reduced model, the state
space for one oscillator is a cycle
Although this cycle may belong to the
plane of displacement and velocity, we
will forget the plane and concentrate
on this cycle, A state of this oscillator
is specified by an angle, A, correspond-
ing to its phase.

5.1.5. The second oscillator is
represented by another cycle. We also
forget the plane we have used to define
this cycle. A state of this oscillator may
be specified by another angle, B,
representing its phase.




104 Periodic Behavior

The two oscillators may be described simultaneously in a single state space as follows.

5.1.6. First, recline the planar model for the blue oscillator horizontally. As we say above,
cach point of the limit cycle in this plane, A, describes a unique phase of the blue oscillator.
At this point, A4, we erect a planar maodel of the green oscillator standing vertically. We
imagine this plane to be perpendicular to the limit cycle of the blue oscillator. Within this
vertical plane, we visualize the limit cycle of the green oscillator. The red point in this draw-
ing is described exactly by the two phases, A and B. This pair of phases (A, B), describes
the red point, and represents the state of the combined system consisting of the two
oscillators,

5.1.7. If the blue oscillator is stuck at
phase A and the green oscillator moves
through a full cycle, the red point
describing the combined system

traverses this red cycle.
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5.1.8. If the blue oscillator moves
through a full cycle, the red cyele is
pushed around the horizontal cycle,
sweeping out this red torus.

i .,TI.}:T.{.H T

Reducing both oscillator models from planes to cycles, the planes in the preceding panels
fade away, leaving just the torus. The state space for the combined system of two oscillators
is this torus, which is the Cartesian product of the two cycles. The full model for two oscillators
is four-dimensional, but this doubly reduced model has only two dimensions. It is easier
to visualize.

This all seems very much like the imaginary little green tori in the ring model for the forced pen-
dulum of Duffing, constructed in the preceding chapter. Yet we took pains to point out repeatedly
that the green tori were not invariant manifolds. Trajectories went right through them as if
they were not even there. The red torus is different. It is the state space, there is a dynamical
system on it modeling the two oscillators, and the trajectories must stay within the torus.

5.1.9. Here is a reminder about the
green torus in the ring model for the

forced pendulum, in the preceding
chapter, It served, in a graphical con-
struction, to locate an attractive limit
cycle. Trajectorics go right through it.
We cannot reduce the ring model for }'
the forced pendulum of the preceding *
chapter o the green torus. -
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5.1.10. Here, for contrast, is the red
torus. This is an attractive, invariam
manifold for a dynamical system in
another ring model. It is made of tra-
jectories that stay within it, We are
regarding this as the state space, ignor-
ing the rest of the ring.

5.1.11. Although the red torus is not an
analog of the green tori in the ring
- { model, it does have a relative in the
' forced pendulum context. The
sepanitrix dividing the basins of the two
- ' isochronous harmonics found by Duf-
fing is also an invariant set.

&

Having constructed the state space for the two oscillators, we may now describe the
dynamical system for compound oscillations, by coupling the two oscillators.
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5.2. The Torus Model for Coupled Oscillators

Any two dynamical systems may be combined into a single system by the Cartesian product con-
struction. A small perturbation of this combined system is called a coupling of the two systems.
For example, the Cartesian product of two one-dimensional systems is a two-dimensional system,
as described in the preceding section. In this section, we introduce a perturbation, or coupling, in
the model for two oscillators. We will obtain a dynamical system on the torus as a geometric model
for the behavier of the two coupled oscillators.

s sl j_'.'_'

4
:.

sk
Vit

¥

e

oy -
A
Ll

.,

o
o

-.'35.

5.2.1. An example is provided by coupling two clocks. This particular system was observed
by Christiaan Huyghens, an outstanding dynamicist of the seventeenth century. He noticed
that two clocks hung on the same wall tend to synchronize and suspected that this entrain-
ment phenomenon was caused by nonlinear coupling through the elasticity of the wall. The
full explanation of entrainment, a recent result in dynamical systems theory, is due to Peix-
oto and is described in Part Two,
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5.2.2. In many applications, two parameters are observed, and both are periodic. The torus
will provide a geometric model for all of these empirical situations.

Let’s choose a particular situation 1o model: to two clocks observed by Huvghens, To begin with
consider fwo wncoupled clocks.
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5.2.3. The geometric model for the states of this combined system is formed as follows:
reduce the model for each clock (oscillator) o one dimension (2 cyvele), then ke the Carte-
sian product of the two one-dimensional state spaces. The result is a two-dimensional torus,
as explained in the preceding section.

In this uncoupled situation, there is no entrainment. Here's why.

5.2.4. The trajectory of a point on the torus, corresponding to the time (phase) of each
clock, winds around the torus. Assume the rate of each clock is constant. Then on the fla
rectangular model of the torus, the trajectory is a straight line,
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The slope of this line is the ratio: rate of second (green) clock to rate of first (blue) clock.
This ratio, a contant, may be rational or not.

5.2.5. Ideally, if the two clocks run at
the same rates, the ratio is one. Further,
if they tell the same time, their phases
are identical. Therefore, the trajectory
on the flat torus is the diagonal line run-
ning from corner to corner,

5.2.6. Ifthe system is slightly changed,
by a speck of dust in the works of one
of the clocks for example, the ratio of
the rates changes. The slope of the
straight line on the flat model of the
torus changes slightly. Itis ne longer ex-
actly equal to one. And the trajectory on
the torus changes from a periodic tra-
jectory to a solenoid, perhaps, or to a
periodic tmjectory which winds many
times around, instead of just once.

e ——

This is the situation called non-entrainment. This means that a slight change in the system
resulls in a slight change in the ratio of the rates (frequencies) of the oscillators.

Now we may explain entrainment,

5.2.7. So far, we have assumed each
clock is totally indifferent o the state of
the other: the clocks are uncoupled.

5.2.8. A slight mechanical connection
between the two oscillators will create
an interaction: the motion of each will
influence the motion of the other
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Now the two oscillators are coupled. This means that the phase portrait is perfurbed by
the addition of small vectors at each point of the state space. This small vectorfield is
added to the dynamical model representing the uncoupled system. Without saying exactly
what this small perturbation is, one can conclude something about the coupled system
anyway. This amazing conclusion is a geometric theorem of Peixoto, described at length
in Part Three.

Here is the geometrical model for the same physical system, with coupling introduced
between the mechanical oscillators.

e
i R

5.2.9. The dynamical system modeling this is a perturbation of the uncoupled system
described previously. The theory of Peixoto ensures that for a typical perturbation, the
perturbed model looks like this. There is a finite, even number of closed trajectories. They
all wind around the same number of times. Every other one is an attractor. The intermediate
ones are repellors. There are no other limit sets. This kind of portrait is called a braid.

Even more, Peixoto’s theorem says that this braid is structurally stable. This means that
a small perturbation (another speck of dust) will make no significant change in the phase
portrait. For example, a braid with periodic trajectories winding once around (equal rates
of the clocks) will still be a once-winding braid after a small perturbation. Thus, Peixoto’s
theory provides a mathematical rationale for the frequency entrainment phenomenon
observed by Huyghens. Warning: The pbases need not be entrained, only the frequencies.

How do braids arise? Although Peixoto’s theory provides a mathematical basis for this
phenomenon, the actual mechanism of it is not yet clear. We will demystify the mechanics
of braids in Section 5.4. First, we need to enlarge the geometric model from two dimen-
sions to three. So, on to the next section.
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5.3. The Ring Model for Forced Oscillators

We are now ready to apply the abstract ideas of coupled oscillators to some concrete ex-
amples, In this section (and the next two), we consider the coupling of mechanical
oscillators. This is analogous to the work of Duffing described in the preceding chapter.
But there, the forcing oscillator (motor) was coupled to a system that tended to come to
rest (damped pendulum). Here, we couple the forcing oscillator (motor) to a system that
tends to a self-sustained oscillation (clockworks). This clockworks will be assumed to be
affected by the coupling, while the turntable motor is unaffected.

5.3.1. The turntable motor is so well regulated that its speed, once set with the control
knob, is unaffected by the load. The forcing oscillation is coupled o the clock pendulum
by a light spring, The stiffer the spring, the greater the effect of the driving oscillation on
the periodic motion of the clock pendulum.




Componnd Oscillations 173

The most useful geometric model for the state space of this system is three-dimensional.
It is essentially the same as the ring model of Section 4.1. We will place the torus in this
three-dimensional context.

/—""“‘“‘!E*
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5.3.3. But the state space of the
clockworks will be visualized as a two-
dimensional phase plane, The phasce
portrait consists of a periodic attractor,
representing the self-sustained oscilla-
tion of the pendulum. The width of this
cycle then corresponds 1o the
emplitude, A, of the oscillation of the
pendulum of the clock. This amplitude
will be affected by the force of the driv-
ing motor, communicated through the
coupling spring.

5.3.2. We use the reduced model for
the driving motor, as this oscillation is
unchanged by the coupling. Only its
fbgise 15 imporant.

1D X 2D =

&v

O x -

5.3.4. The Cartesian product of the clock plane and the motor cycle is the three-dimensional
ring mode! for the combined system. (Compare with Figure 5.2.3.)
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This scheme represents a special case of coupled systems, in which there is a dominant
partner and a more flexible one. We have used the same strategy in the ring model for
the forced pendulum (see Section 4.2). A more general scheme would use two dimensions
for each oscillator, for a total of four dimensions.

The regulated motor maintains its rate, but the motion of the pendulum is affected by the
periodic force of the spring. To see how it is affected, we may take out the coupling spring,
then replace it.

5.3.5. With no spring, the two oscillators are uncoupled. Once the transients die away, the
maotion may be recorded as a trajectory on a torus, as explained in Section 5.1. Unlike the
green torus in the ring model of the forced pendulum in Chapter 4, this red torus is an /x-
variant manifold of the dynamical system. This means that every trajectory that begins on
the torus stays on the torus. In fact, the red torus is attractive, yet probably not an attractor
It is attractive in this sense: if we put the combined system in an initial state off the torus
(for example, by giving the pendulum a shove o a larger amplitude) and let it go, the resulting
trajectory will be attracted to the torus, as the amplitude decays o the original value,
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And it may be not an atiractor in the following sense: if we put the combined system in
a typical initial state on the torus and let it go, the resulting trajectory may be a periodic
trajectory on the torus. But when we say a set is an attractor, we mean not only that it
is attractive, but also that it is transitive: that is, most trajectories on it wander all over it.

Thus, not all attractive tori are attractors,

When we reattach the spring, the two oscillators are coupled. The phase portrait is a
perturbation of the picture described above for the uncoupled system. According to an
important theorem of mathematical dynamics, the perturbed portrait still has an attrac-
tive, invariant torus, If the perturbation (coupling) were gradually turned on, the uncoupled
torus would be gradually deformed into the coupled one. Therefore the theory of Peixoto
applies, as described in the preceding section. The phase portrait contains a braid of
periodic attractors on the torus. The invariant torus is attractive, yet not an attractor. The
braided periodic trajectories within the torus are the actual attractors, in the coupled case.

Because of these braids, the clockworks and the motor are entrained in frequency, but
not in phase. In the next section, we will examine the dynamics of these braids,
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5.4. Braids: The Dynamics of Entrainment

In Section 5.2, we encouniered the braided periodic attractors in the two-dimensional torus
maodel for coupled oscillators. To explain the mechanics of frequency entrainment in our
forced mechanical oscillator, we will reconsider the braids in the three-dimensional ring
model of the preceding section.

5.4.1. Recall that the ring model for forced oscillators has an invariant torus. This attractive
tirus corresponds o the wrus (reduced) model of Section 5.2, Now we put the 2D wrus
Back into the context of the 3D ring model. By performing armchair experiments with out
mechanical device, we will see how braids arise on this torus.
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In this series of experiments, we will couple the turntable motor to the pendulum of the
clockworks with a very feeble spring. Thus, the phase portrait of the combined system
will be a slight variation of the uncoupled system, in the ring model. The uncoupled system
was shown in Figure 5.3.5. Also, we will begin by setting the speed of the driving motor
to the natural frequency of the clock. This is the situation called weakly coupled, isochor-
nous oscillators.
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5.4.2. Start up the motor. After a brief
start-up transient, we observe the driven
weight and the pendulum swinging in
fhease. The motion of the pendulum has
been influenced by the motion of the
wght, through the intercession of the
weak coupling spring. We suppose the
weight has a bigger swing than the pen-
dulum, as shown here, Then the only
result of this influence, in contrast 1o the

uncoupled situation, is a slight increase
in the amplitude (width of swing) of the
pendulum,

1 A

5.4.3. Now let's look at the trajectory
"? ; of this motion in the ring model. First,

we slice the ring in the strobe plane cor-
responding to phase zero of the driving
oscillator. In this slice, the invariant
torus of the uncoupled system shown
in Figure 5.4.1 appears as a red circle,
Because the amplitude of the pendulum
has been slightly increased by the coupl-
ing, the green locating torus (not in-
variant) for this trajectory is slightly fat-
ter than the uncoupled red torus, Thus,
in this strobe plane, it appears as a slight-
Iy larger circle, The tmjectory of the
isochronous, in-phase, periodic motion
observed in the preceding panel winds
around a green locating torus, and ap-
pears in the strobe plane as a point,
shown here as a solid red dot. The blue
dots represent trajectories that are ap-
proaching the attractor.
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5.4.4. Here is the isochronous in-phase trajéctory in the ring model. Note that the attrac-
tive trajectory goes through phase zero of the driving motor at roughly the same time it passcs
phase zero of the driven clock. It is fn phase Also, it is isochronowus, as the frequencies are
entrained to be equal. This periodic trajectory is actually an affractor
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Recall that in Section 5.2, Peixoto’s theory predicted that in the torus model, we would
find not only a periodic attractor, but a periodic repellor as well. Another experiment,
with the motor and clock isochronous but out of phase, will locate this periodic motion
in the ring model.

5.4.5. In this experiment, the clock
pendulum is set at phase « (half-cycle,
or full left) and the driving weight at
phase zero (full right). They are out of
phase when the experiment begins.
They are as close together as they can
get. We let them go, and the start-up
transient dies away. After half a cycle,
in step 2, they are as far apart as they
can get. Here the clock’s pendulum is
opposed by the full force of the
stretched coupling spring. After a full
cycle, step 1 repeats, and they are closest
together at the same time again. Once
more, the clock’s pendulum is oppos-
ed by the spring’s greatest force. The
effect of the coupling is 1o reduce the
amplitude of the pendulum’s motion,

But this motion does not persist. Its trajectory is not an attractor, for if the clock began
slightly ahead of phase =, its phase would drift forward until it were in phase with the
driving weight. Likewise, if it began slightly behind phase , its phase would drift backwards
until it were in phase. In fact, in the two-dimensional torus model (Figure 5.2.9), this mo-
tion was a repellor, belonging to the separatrix. Let’s plot this motion in the ring model,
beginning with the driving-phase-zero strobe plane.

5.4.6. Again, the invariant torus of the
uncoupled system cuts the sirobe plane
in acircle, shown here inred. Another
smaller torus, not invariant but conve-
nient for visualization, cuts the plane
in the green circle. The periodic trajec-
tory corresponding to the isochronous,
out-of-phase oscillation winds once
around the green, locating torus, 1t cuts
the strobe kane in a single point, shown
here as a half-filled red dot. Note that
this trajectory repels in the direction
along the wrus and atiracis in the
perpendicular direction. The repellor
in the torus model becomes a saddle in
the ring model.
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5.4.7. And here is the strobe plane, placed in the three-dimensional ring model. The red
trajectory records the motion of the ideal experiment, with a perfectly out-of-phase,
isochronous oscillation. This periodic trajectory is not actually an attractor, but a periodic
saddle. Tt attracts amplitudes but repels phases, as shown by the ribbon arrows.
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Now we have located the braided cycles, and we are ready to determine the shape of the
invariant torus they are braided around.

5.4.8. The invariant torus of the
weakly coupled system is close 1o that
of the uncoupled system. It is com-
posed of the outset of the periodic sad-
dle. Here, we shown this outset in red,
as cut by the strobe plane. Note that it
lies between the green locating tori
used in the preceding constructions.

5.4.9. Here, in three dimensions, is
the new invariant torus of the weakly
coupled system (coarse shading). It is
close to the old invariant torus of the
uncoupled system (fine shading). The
periodic attractor and the periodic sad-
dle wind around the new torus. Both
SN are isochronous. That is, they wind
once around the waist of their invariant
torus.

Another important feature of the phase portrait of the combined system is the central repelliorn
There is a repellent periodic trajectory near the center of the ring model. It corresponds to a small
oscillation of the clock pendulum, out of phase with the driving motor. [tis an unstable equilibrium.
That is, it is possible in principle to balance the clock precariously in this mode of oscillation, just
as it is possible o balance a pendulum at the top of its swing (sce Scection 2.1),
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5.4.10. Again, we imagine a green,
noninvariant, locating torus. This one
is quite thin, and lies near the center
of the invariant torus. Here, we show
the strobe plane. It cuts the locating
torus in the small green circle and the
invariant torus in the dorred red circle,
The isochronous central repellor
winds once around the green locating
torus, meeting the strobe plane in a
single point, shown here as a bollow
red dot.
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5.4.11. Here is the strobe plane, in the three-dimensional context of the ring model. The
outset of the periodic saddle comprises the invariant torus. The outset of the central repellor
comprises the central portion of the basin of the periodic attractor.
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5.4.12. Putting all the pieces together, we see the two braided periodic trajectories on
the invariant (red) torus, with the central repellor on its locating (green) torus within. The
inset shows the driving-phase-zero strobe plane.
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Now we see the braid: one periodic attractor and one periodic saddle, each isochronous, occupy
the perturbed invariant torus. The attractor represents an in-phase oscillation of the coupled system.
This situation is sometimes called phase entrainment. But unlike frequency entrainment, it is not
structurally stable. This means that 4 further perturbation of the system (for example, a slight change
in the speed of the driving motor) may shift the phase difference of the periodic attractor away
from zero, while the clock frequency will still be entrained by the motor. Worse, for two general
oscillators without an obvious zero phase, phase entrainment does not even make sense.

We bave establisbed that the pbase portrait of the compound oscillator bas at least three
periodic trajectories: the braided saddle and attractor, and the central repellor. These
three motions are isochronous. But we bave only experimented with approximately
equal frequencies. What bappens if we really change the speed of the driving motor?
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5.5. Response Curves for Frequency Changes

Tor see how this phase portrait depends on the speed of the driving motor, we must repeat the ex-
periments of the preceding section many times, with different driving frequencies.
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5.5.1. Changing the speed control of the driving motor a little and repeating the experiment, we
will observe almost identical results; three isochronous periodic motions of the compound system,
The pendulum is still isochronous. or entrained, with the driving frequency. Yet there are subtle
differences in the amplitude of the three isochronous periodic motions. So, we must carefully
measure these amplitudes in our experiments,
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5.5.3. In each experiment with the

forced oscillator, we will measure on-
Iy the amplitude of the periodic mo-
tion found. called the response
ampiitude, and rthe frequency of the
driving motor, or driving freqguency.
These two measurements may then be
plotted in this response plane of
response amplitude versus driving
frequency.,

5.5.2. The amplitude is measured
along the arc of the swinging pen-
dulum. It is the maximum angle at-
tained by the bob, in deviation from the
vertical. It is a positive number.

After many experiments, we will obtain the graphs of these response amplitudes, regarded
as functions of the driving frequency. These response curves comprise the response
diagram, also called the bifurcation diagram of the one-parameter system.

We have already done the isochronous experiments, and may find the response amplitudes
by looking back at the strobe plane illustrations of the preceding section. Recall that we
use the following strobe plane convention:

solid dot = attractor
half-filled dot = saddle
hollow dot = repellor

for representing the three trajectories as points in the strobe plane.
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5.5.4. Hereisthe strobe plane portrait
for the isochronous case, The diameter
of the locating torus, represented as a
green circle here for each of the three
periodic trajectories, is the response
amplitude,

5.5.5. Here, the three response
amplitudes are plotied above the point
on the horizontal axis, w,, representing
the driving frequency. This cor-
responds to the speed of the motor,
which in this case is isochronous with
the clock.

5.5.6. Asweincrease the frequency of the driving oscillation, w, the isochronous oscilla-
tion of the elock pendulum (periodic attractor, solid dot in the preceding plot) lags behind
the driving oscillation. Simultaneously, the phase of the unstable mode (periodic saddle,
half-filled dot in the preceding plot) advances ahead of the driver. As the driving frequen-
¢y increases further, the amplitudes of these two periodic trajectories become closer 1o
each other. Eventually, they coincide, cancel, and disappear. This is a catastrophic change
in the phase portrait, which now has only one isochronous periodic trajectory, instead
of three. And the remaining one is repelling! In this illustration, the amplitudes and phases
of the periodic trajectorics are shown in the cross-section of the ring model correspon-
ding to phase zero of the driving oscillation. The sequence of sections, from left to right,
corresponds to increasing driving frequencies, wy, w, w;, and so on,
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5.5.7. Measuring the response ampli-
tudes of the periodic motions, seen as
the diameters of the green circles in
cach of the strobe planes in the
000 o - pr{‘ctding_ p:lnl.:l, wi rr:g:nrdlhulrusult:i
{a) of the series of armchair experiments
=— =i = in the response plane. Over each of the
g g, chosen driving frequencies. we record
the observed response amplitudes,
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5.5.8. After more experiments if
necessary, we can fill in the complete
. response curves for the isochronous
——— {_\} maotions. The change from three mo-
tions o only one turns out w he a
T ol - smooth one, as two curves join in a
circular shape,

Here we have used the response plane convention: solid curves are the tracks of attrac-
tors, dotted curves are the tracks of saddles or repellors.

Known as the dynamic annibilation catastropbe, this particular diagram is an example
of bifurcation bebavior, the subject of Part 4.

A similar event results from decreasing the speed of the driving motor, as we shall see
in the next illustration.
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5.5.9. Decreasing the driving frequency results in a similar bifurcation event, as shown
in this sequence of sections. The phase of the attractor advances, while the phase of the
saddle lags behind, Eventually, they meet and wipe each other out. The sequence of sec-
tions shown here, from right to left, corresponds to decreasing driving frequencies, wq,
Wy, w;, and so on.

"W W= =R -
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5.5.10. Again, we plot the response
amplitudes (observed above as the
diameters of the green circles) as func-
tions of the decreasing driving fre-
quency, to obtain the rest of the
response diagram for the compound
system with the weak coupling spring.
Here we have adjoined the new data to
the response diagram for increased .
driving frequencies in Figure 5.5.8. g

On the other hand, we could change the spring and repeat all of the experiments. For
example. . .
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5.5.11. Here are the data produced by
a stronger spring. The amplitudes
change over a wider range under the
influence of stronger coupling.

Al

\
N\
.
e SUR—
N —
..--""f
-
Cad
%
b
bt
LY
}
4
#-"

5.5.12. Here are the data produced by
an even stronger spring. In this case,
the saddle may cancel either the arerac-
tor or the repellor

These response data record amplitudes of oscillation, as functions of two control
parameters: driving frequency and coupling strength. Stacking up a number of response
diagrams such as the two preceding ones, for stronger and stronger springs, would pro-
duce a three-dimensional plot. This is known as the bifurcation diagram of the two-
parameter system. Many examples will be described in Part Four. A more compact
representation of the same data may be made, just by superimposing the plots on the
same planar diagram. This is called the response diagram of the two-parameter system,
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Here is the response diagram for the two-parameter system. The parameters are coupl-

ing strength and driving frequency.

5.5.13. Here, the three different one-
parameter response diagrams, de-
scribed above, are superimposcd. A
regular structure begins to emerge,

IAl
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This diagram tells almost everything about the amplitudes of the isochronous oscilla-
tions of an ideal, self-sustained oscillator, when driven by another, regulated oscillator.
Many more oscillations, called harmonics, are known to occur in such systems, however.
Their discovery and analysis was greatly facilitated by the development of electrical

oscillators, to which we now turn.
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5.6. Forced Electrical Oscillators

Lord Rayleigh's model for self-sustained oscillations in organ pipes and violin strings
(Chapter 3) applies very naturally to vibrations in an electrical context. In fact, Rayleigh
himself carried out the application to an electrical vibrator invented by Helmholtz. For-
ty years later, the early electrical engineers found that Rayleigh's model worked very
well for the vacuum tube oscillators used in the first radio transmitters. Further, Rayleigh
had briefly studied a coupled system of two such oscillators —a large one forcing a small
one. But real progress in understanding coupled oscillators awaited the further develop-
ment of radio frequency electronics. In 1921 the time was right, and Van der Pol began
this progress. In this section, we describe his program, which culminates Part One.

Electronic oscillators are easier for experimentalists to manipulate than clocks, but harder for
onlookers to understand.

5.6.1. First, we replace the clockworks with an electric oscillator: not an electric clock.
but a radio frequency oscillator running millions of times faster, (See Section 3.4,
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5.6.2. As the current and voltage fluctuations are much too rapid to be observed on the
panel meters, we connect an oscilloscope to the device. Horizontal deflection measures
current and vertical measures voltage of the output circuit of the oscillator,

o
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5.6.3. Next, we replace the regulated driving motor with another electrical oscillator. This
is a VFO (variable frequency oscillator) a well-regulated sinusoidal oscillator with a fre-
quency adjustment knob.
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5.6.4. Asinthe preceding section, the state space for the driving oscillator is a circle. One
dimension, the phase of the driving oscillation, suffices. The state space of the driven
oscillator is a plane. Before coupling, the phase portrait consists of a single periodic attrac-
tor, cycling around a point repellor,

5.6.5. The combined state space is
again a ring model, the Cartesian pro-
duct of the circle and the plane, Before
coupling the two oscillators, the com-
bined phase portrait consists of an at-
tractive, invariant torus around a
periodic repellor.
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5.6.6. Next, the coupling. The output of the driving generator is connected to the input
of the driven oscillator. The actual coupling is electromagnetic, through an auxiliary coil
around the inductor of the driven oscillator,

g
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5.6.7. Finally, we will utilize a pulse from the driving oscillator. This brief pulse is emit-
ted each time the driving oscillation passes phase zero. It is connected to the high-voltage
power supply of the oscilloscope, so that the beam is on only during the brief pulse. This
scheme replaces the strobe lamp of the mechanical device in the preceding section, Thus,
we see on the screen of the oscilloscope only the cross-section of the ring model correspond-
ing 1o driving phase zero,
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Let's try out this setup, which is essentially the same as the appratus in Van der Pol's
laboratory. First, we unplug the coupling wire between the two oscillators. Then . . .

5.6.8. Turning on everything, we see
adotted outline of the periodic attrac-
tor of the driven oscillator on the
oscilloscope screen. These dots are tra-
jectories crossing driving-phase-zero
strobe plane. The oscilloscope is
strobed by the zero-phase pulses from
the driving oscillator,

5.4.9. Prolonging this cross-section
around the ring model, we see that the
trajectory is a periodic atrractor or 2
solenoid. The way it winds around the
attractive (red) torus depends on the
relationship between the two fre-
quencies, as described in Section 5.1.

Before plugging the coupling wire back in, we can try changing the frequency of the driv-

ing oscillator.

.--’j#-_ ]

!,
5.6.10. Setting the driving frequency to exactly the same frequency as the driven oscillator
would reduce the trajectory to a single dot, in the cross-section of the attractive torus, But
it is impuossible to set it exactly right, so the dot wanders around.
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Now we plug in the coupling wire between the two oscillators.

5.6.11. Miraculously, the wandering dot settles down in a single spot. Further tiny
movements of the driving frequency knob may move this spot back and forth on the driven
(red) cycle, but at any one frequency it does not wander.

5.6.12. But we expect this, after the explanations of the preceding section. The streec-
tural stability of the coupled phase portrait implies frequency entrainment of the coupl-
ed oscillators,
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For example, here is one called the third subharmonic (see Section 5.2). It may be observed with
Van der Pol’s original apparatus, by setting the driving frequency to three times the frequency of

the driven oscillator,

..-‘-"‘"'____“‘——-—________

5.6.13. Set the frequencies, then turn
on the oscillators, and connect the
coupling wire, You will see three dots
on the red cycele.

5.6.14. These three dots, prolonged
around the attractive (red) torus, trace
a periodic attractor winding thrice
around.

A few zillion experiments like these will reveal further details of the response diagram,
as we mentioned at the end of the preceding section.

5.6.15. Here is the response diagram,
as described by Stoker in 1950. Unex-
pected exotic details would be
discovered a decade later,

And for these exotic details, of
chaotic attractors and tangled
separatrices, turn to Part Three.
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CONCLUSION

The hardy reader, arriving at this point without extensive short cuts, has seen the dynamics of
the classical period, 1600-1950. In fact, this subject had a full and happy life, and died of natural
causes. The masterly text of Stoker (1950) is the eloquent epitaph of classical dynamics. Fortunately
for the evolution of our specics on planet Earth, this demise was foreseen in 1882 by Poincaré,
His vision, nourished in secrecy by his faithful followers in Russia and America, emerged in the
1950)'s into the mainstream of mathematics, united with the outstanding applications of the classical
period and acquired new electronic laboratory tools, Thus, modern dynamics was born,

Our goal has been not only to survey classical dynamics, but to do so from the viewpoint of the
modern period. Thus, the groundwork for the following chapters has been laid. Part Two will report
on the amazing discoveries of the modern period: generic tangles and attractive chaotics.

Basically, the classical period ended because the analytical techniques were exhausted. The moden
period relies upon the geometric techniques pioneered by Poincaré. But simultaneously, experimental
dynamics was revolutionized by electronic inventions. With fast analog and digital computers replac-
ing the mechanical apparatus of the classical dynamics laboratory, amazing discoveries were rapid-
ly made. The theory and experiements evolved together in the recent decades, and a new sct of
paradigms emerged to revolutionize the sciences. This story is the subject of Parts Two and Three,
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Chaotic Dynamics Hall of Fame

As deseribed in Part One, experiments play an increasingly important role in dynamics. Helmholiz,
Ravleigh, Duffing, Van der Pol, and Hayashi relied on experimental simulations to discover the main
properties of periodic motions in nonlinear oscillations. Sincd 1950, digital simulations have become
increasingly important, especially since the experimental discovery of chaotic attractors in 1962
by Lorenz.

But chaotic limit sets had been known to theoretical dvnamics since Poincaré. The first chaotic
attractor in a dynamical system (in the mathematical sense of a vector field on a state space) was
discovered in 1932 by Birkhoff, It took many years before these objects emerged into the theoretical
literature, in the works of Charpentier, Levinson, Cartwright, Littlewood, Smale, and others.
Experimental studies accelerated this process.

But we must emphasize at once, and we cannot possibly do this as strongly as we would like, that
the connection between the chaotic attractors of theory and those of experiments is bypothetical
at this time

In fact, many believe that the connection is fictitious. An account of this view may be found in
the literature (Abraham, 1983). But in this Part, we will be very casual about this fundamental pro-
blem. We will speak of chantic attractor in cither the theoretical or experimental context.

This introduction presents a few words of description for some of the leading figures in the history

of chaotic dynamics. Their positions in a two-dimensional tableau —date versus specialty (applied,
mathematical, or experimental dynamics)—are shown in Table 2.1.

203
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TABLE 2.1-THE HISTORY OF DYNAMICS

Date THEORY EXPERIMENT
1850
Helmholiz
Poincaré Rayleigh
1900
Duffing
Birkhoff Van der Pol
Charpenticr
Levinson Hayvashi
1950 Cartwright & Littlewood
Lorenz, Stein & Ulam
smale Rissler, Ueda
Shaw
2000
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Here are some capsule histories. Further details may be found in Chapter 8.

Jules Henri Poincaré. 1854-1912. In
his studies of celestial motion, Poin-
caré discovered bomoclinic trafector-
fes (see Section 3.1). Eventuoally, in
1962, Smale showed that these are
chaotic (non-artractive) limit scts. Thus
the first appearance of a chaotic limit set
in the mathematical literature, as far as
we know, was in Poincaré's three-volume
work on celestial mechanics, in 1892,

Marie Charpentier. Charpenticr fur-
ther developed the properties of
Birkhoff's remarkable curves, in a series
of papers in the 1930,

Mary Lucy Cartwright and J.E.
Littlewood. In a joint paper published
in 1945, Cartwright and Littlewood
announced a similar results. Their
proof appearcd in 1949, They were in-
spired by experimental observations of
van der Pol and Van der Mark, pub-
lished in 1927.

Stephen Smale. In 1962, Smale proved
that Poincaré's homoclinic trajectories
are chaotic limit sets, in the
mathematical sense.

George David Birkhoff, 1884-
1944, The first chaotic attractor w
appear in the mathematical literature,
to our knowledge, is in Birkhoff's
paper on remarkable curves, published
in 1932, (Sce Section 3.2.) The
actual discovery, in a context derived
from celestial mechanics, occurred in
1916.

Norman Levinson. In 1944, Levinson
conjectured that Birkhoff's chaotic at-
tractor might occur in the three-
dimensional dynamics of forced
oscillation. In 1948, he announced he
had proved that it does.

Edward N. Lorenz. In one of the first
digital simulations of a dynamical
system, around 1961, Lorenz dis-
covered the experimental object which
has come o be known as a chaotic at-
tractor, in the experimental sense, ina
maodel for atmospheric air currents.

More recently, there has been an enormous explosion of research work on both mathematical and
experimental chaos. Reluctantly, we close our history at this point, in 1962,
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Static Limit Sets and Characteristic Exponents

In Part One, limit points and cycles in dimensions one, two, and three were introduced.
In this chapter and the next, we review the geometry of these simple limit sets. Further,
we introduce the Liapounov charvacteristic exponents, which completely characterize the
geometry of the simple limit sets. This is prosaic, but important. In Chapter 8, more com-
plicated limit sets will be introduced.
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6.1. Limit Points In One Dimension

In one-dimensional state spaces, dynamical systems are naturally very constrained. For example,
the typical limit set must be a point. As in Part One, we begin with this case for completenesss.
In addition, this provides a simple context in which to describe a new idea, the Liapounov
characteristic exponent.

Recall that one-parameter state spaces were used extensively in the early history of
science.

For example, George's temperature may be represented as a point on a line. A simple
dynamical model for this experimental domain (George's oral temperature) could be the
vector field shown here. It has a single point attractor. Starting with the thermometer
at an arbitrary initial state (room temperature, say), he inserts it under his tongue. In three
minutes, the transient dies away, leading to a static attractor.
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6.1.1. In this dynamical system, there is a single attractor, a limit point, at 98.6 degrees.
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We now describe the characteristic exponent or CE of this limit point. Rotate each vector 90 degrees
counterclockwise. Their ends delineate the graph of the vectorfield. In this context (one-dimensional
linear state space) the graph is a curve in the two-dimensional plane. The graph goes through the
horizontal axis at the limit point.

frR)
| R
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6.1.2. The slope of the graph is
negative at the limit point, as the limit
point is attractive The steeper the
slope, the faster the temperature of the
thermometer approaches equilibrium.

There is only one CE because the dimension of the state space is one. In general, the number of
CEs is equal to the dimension of the state space. Here, the dimension of the inset is one, which
is maximal. The inset is an open subset of the state space. It is the basin of the point attractor,
Meanwhile, the outsef consists of a single point, the attractor, Thus, the index (dimension of the
outset) is zero, The magnitude of the CE tells the strength of the attractor; that is, the rate of approach
of the nearby trajectories, within the inset or basin,

By P

C.E.

6.1.3. Here is a weakly attractive
limit point in one dimension. The
characteristic exponent (or CE, shown
in the inset) is a small negative
number.
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6.1.4. The time series of typical tra-
jectories {see Part One) in this system
show a gradual afiprroach to the weak-
fy attracting point.

6.1.5. Here, in contrast, is a strongly
attracting limit point. The character-
istic exponent (see inset) is a large
negative number.
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TIME

6.1.6. The time series of typical tra-
jectories of this system reveal a rapid
dfafrroach to the strongly attracting
Jfraxdnt.

6.1.7. Another possibility is a positive
slope, or characteristic exponent, at the
critical point. This can occur only for
a point repellor, indicated here by a
hollow dot. The vectors point away
from the critical point.
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A limit point in one dimension is called byperbolic if its CE is not zero. Some hyperbolic critical
points in one dimension are shown below,

portrait gra/oh ?}f fancﬁon C.E.

6.1.8. Hyperbolic limit points in one dimension.
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What about zero as a CE? Zero Slope implies tangency.

A limit point with zero as its CE is called nonbyperbolic or degenerate.

O

—+-

6.1.9. These are the four degenerate critical points on a line. The graph is tangent 1o the
horizontal axis at the critical point,

In Part Three we will explain how these degenerate cases are exceptional. Garden-variety dynamical
systems do not have them. But they become important in the theory of bifurcations, treated in
Part Four.
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6.2. Saddle Points In Two Dimensions

In Part One, we described limit points in the plane as nodal or spiral. Here we will characterize
them in terms of their CEs.

),

6.2.1. Remember the phase portrait of the gradient system in Part One (1.6.10)? It has three
limit points: two point attractors and a saddle point,
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Let's start with the saddle point. What are its CEs?

fnset and an ontset, both of dimension
one. The inset is green, denoting the
Separatrix.,

\
\ l / 6.2.2. This typical saddle point has an
X

The index of this saddle is one.

To identify the two CEs of this saddle point, let's introduce a new coordinate system, by translation
and rotation, so that the new coordinates start at the saddle, and are oriented long its inset and outset.

6.2.3. Hercis the preceding portrait,
with new coordinate axes included,
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6.2.4. Here is the same portrait,
rotated and translated, with the new
coordinate axes in standard position.

Now we suppose that we may treat each of the new coordinates separately. This seems to be assum-
ing a lot, but is actually justifiable.

VA

—
6.2.5. Graphing the horizontal {(u) U
component of the vector ficld (in the
new coordinates) along the horizontal
{u) axis, as in the preceding section, we

may measure the slope, or strength of
refrlsion, in this direction. This
pasitive slope is one of the CEs of the
saddle point,
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6.2.6. Likewise, graphing the vertical
iv) component of the vectorfield, along
the vertical (v) axis, we may measure
the slope, or strength of atfraction, in
this direcrion. This negative slofre is
the ather CE af the saddle point,

6.2.7. Here are the two CEs of the sad-
dle peint, pictured on the line of real
numbers. One is negative, the other
positive. As in the one-dimensional
case, the CE wo the left of the origin
characterizes attraction, the one to the
right repulsion,

Recall that the fndex of a critical point is the dimension of its outset. In this case, the
index is one. And this is also the number of CEs to the right of zero.
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6.3. Nodal Points in Two Dimensions

Next we consider attractive critical points for dynamical systems in two dimensions. There are
two types, nodal and spiral, as described in Part One, In this section, we look at the nodal case,
What are the CEs in this context? Let's consider 2 typical nodal attractor, as in the gradient system,
Figure 6.2.1.

NN

|

6.3.1. Like the saddle point, this has characteristic directions (red). In one.direction
indicated by double arrows the attraction is stronger than in the other. We call this the fast
direction, the other the sfow direction. The identification of these directions, for a nodal
point, is not as casy as in the preceding case of a saddle point, Algorithms of linear algebra
are normally used.
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—— 6.3.2. As with the saddle point, we
\ X introduce new coordinates, centered at
the attractive node and oriented along

the fast and slow directions.

6.3.3. Graphing the components of
the vectorfield along the new coor-
dinate axis in the fast direction (u}), we
measure the slope of the graph at the
critical point to obtain the fast CE. It
is large and negative, characterizing fast
{(strong) attraction.
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6.3.4. Graphing the component for
the vecrorfield along the slow (v) axis,
the slope at the origin provides the
slow CE. It is small and negative,
characterizing slow (weak) attraction.

VA

6.3.5. The two CEs are shown in the
inset. The one to the left characterizes
the stronger attrction of the fast direc-
tion. Both are to the left of zero, as the
node is an attractor. To the right of zero
there are no CEs, and the index of the
nodal attractor is zero,

.u-n.-
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6.3.6. In contrast, the same pro-
cedure applied to a nodal repellor pro-
vides two CEs to the right of zero. The
one to the right characterizes the
stronger repulsion of the fast direction
(double arrows). The index of this
node is two, as the outset is two-
dimensional.

In all hyperbolic cases, the index is equal to the number of CEs to the right of zero, This
is zero for attractors, one for saddles, and two for repellors.
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6.4. Spiral Points In Two Dimensions

In two dimensions, there are two types of limit points, nodes and spirals. The spiral differs from
a node in that there are no characteristic (fast and slow) directions,

6.4.1. Recall from Part One that the damped simple pendulum has a point attractor at the
bottom, corresponding to an oscillation that dies away.
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6.4.2. Note that the trajectories
asymptotically approach this point,
while spiraling around it.

The point attractor of spiral type, in the plane, also has two CEs. But they are not real numbers,
and cannot be explained by reducing to the one-dimensional case. Instead, the vector field must
be approximated, near the critical point, by a linear vectorfield. Linear algebra, applied to this ap-
proximation, provides two cigenvalues. These conjugate complex numbers are the CEs in this case.
(For details, see any text on linear algebra.) This is also the actual procedures, using linear algebra,

needed to calculate the CEs in the nodal case of the preceding section.
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6.4.3. The CEs of a point attractor of
spiral type, in the plane, are a pair of
conjugate complex numbers. They are
in the feft balf (green) of the complex
plane because the point is attracting;
the farther to the left, the stronger the
aftraction. Meanwhile, their pertical
separvation measures the rate of rota-
tion, or angular velocity of spiraling
around the attractor. Confugate means
cach is the mirror reflection of the
other in the horizontal (real) axis, as
shown here,
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The set of CEs, pictured in the complex plane, is called the spectrum of the critical point,

6.4.5. Inthis case, they rotate rapidly
while moving gradually toward the
point.

r
i | -
G.4.4. In this example, trajectories
zoom toward the point attractor while
spiraling slowly. The CE spectrum is
shown in the inset,
A e
r
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Remember: all attractors have index zero.

Y=

6.4.6. Forarepelling spiral point, the
conjugate CEs are in the right half of
the complex plane, The index of a
repellor in the plane is two.

6.4.7. Adegenerative spiral or center:
an intermediate case between attrac-
tion and repulsion, is a critical point
surrounded by concentric periodic tra-
jectories, This is a nonbyperbolic

\\ // critical point,
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6.4.8. The typical hyperbolic limit points, their CEs, and their indices are summarized
in this table.

Actually, two cases are omitted from the table. These are the hyperbolic attractor and repellor with
equal (real) CEs, They are classed among the degenerate cases, even though they are hyperbolic,
because they are transitional phenomena between the nodal and spiral types. The cases shown
are all the elementary ones, meaning hyperbolic, with distinct CEs.



228 Chaotic Bebavior

6.5. Critical Points In Three Dimensions

As in lower dimensions, critical points in three dimensions are mostly hyperbolic, with nonhyper-
bolic (degenerate) cases occurring exceptionally. We begin with the typical cases, which are hyper-
bolic. These may all be constructed by combining the hyperbolic linear and planar critical points
of the preceding sections in a single, three-dimensional portrail.

We begin with a three-dimensional saddle point. There are three CEs for a critical point
in three dimensions.

6.5.1. Here, a one-dimensional repellor is combined with a nodal attractor in a plane o
form a nodal saddle in three dimensions, In this case the linear component comprises the
outset, which is one-dimensional. The planar component comprises the inset, which is
two-dimensional. The sum of these dimensions is three, the total dimension of the state
space, and the index is one. The trajectories which are neither in the inset nor in the outset
fly by hyperbolically. The inset (green) is repelling.
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6.5.2. There are three CEs for a critical point in three dimensions. Here are all three, for
the nodal saddle point, pictured in the complex plane. All are real numbers in this case.
The two in the left half-plane are the CEs of the attractive planar node, comprising the
inset, The other is the CE of the linear repellor. Thus, the CEs for the combined critical
point are just the CEs of the components.
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This is another example of this construction.

6.5.3. Here a planar repellor of spiral
type is combined with a linear attrac-
tor, to form a spiraling saddle point
in three dimensions. This time, the
planar component comprises the outset,
which is two-dimensional, so the index
is two. The lincar component com-
prises the inset. Trajectories neither in
the outser nor the inset fly by, spiral-
ing as they go.

6.5.4. Again, the spectrum of the
combined saddle point is the union of
the spectra of the components. The
conjugate pair in the right half-plane is
contributed by the spiral repellor in the
outset. The other CE, on the negative
real axis in the left half-plane,
belongs to the one-dimensional attrac-
tor in the inset. Again, the number of
CEs on the right equals the index of the
combined critical point,

Excluding the degenerate cases with coincident CEs, six more typial hyperbolic critical points may
be constructed in this way, for a total of eight. Again, a critical point is called elementary it it is
hyperbolic, with distinct CEs,
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6.5.5. Four elementary critical points are illustrated in this table,
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6.5.6. These are the remaining four, in three dimensions.

There are many more degenerate cases in three dimensions than in two. They include the hyper-
bolic cases with coincident CEs on the real axis. We have not illustrated any of these degenerate
critical points, as they are exceptional. That is, they are rarely encountered in applications, except
in the context of béfurcations, described in Part Four.
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Periodic Limil Sets
and Characteristics Multipliers

We have encountered periodic limit sets, or fimit cycles, in most of the examples in Part
One. In this chapter we will review the tyvpical ones that occur in dimensions two and three,
Also, within this review, we will add an important concept, the Poincare characteristic
mudtipliers, or CM’s, of these limit cycles. Like the CE's of critical points, these characterize
the geometry of the insets and outsers of typical limit cyveles.
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7.1. Limit Cycles in the Plane

In Part One, we described eight exemplary dynamical systems, five of them with planar state spaces,
We now recall the vwo kinds of limit cyveles occurring among them, and describe their CM's, In
this context, each limit cycle has a single CM. In general, the number of CM's is one less than the
dimension of the state space.
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7.1.1. Van der Pol's dynamical model for the radio transmutter contains one limit cvele,
which is attractive, It is a periodic attvacior, All other trajectories (other than the critical
point at the origin) tend asymptotically to this limit cycle.
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There is no obvious way to define CE'’s for this limit set. We will describe a subtle way,
due to Poincare.

/?

7.1.2. Choose a point on the limit

cycle, say P, and enlarge a neighbor-

hood of it. Nearby trajectories are
/—— attracted to the limit cycle

7.1.3. Through P, draw a small
perpendicular line segment, 5. This is
called a Poincaré section, as in 2
Ycross-section,”
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7.1.4. Start at a point in 8 above P, say
x, and follow its trajectory, determined
by the dynamical system of Van der
Pol. This trajectory follows around
near the limit cycle. Eventually, it
passes through the section again. Let
Ri{x) denote the first return of the tra-
jectory of x to 5. This point, Rix), is
above Pin 5, but is closer to P than x
is, as the limit cycle is attractive. Start-
ing at 4 point v of § below P, the first
return of the trajectory of v 1o §, R{v),
is below P, but closer than is v
Likewise, every point of 5 has a first
return to 5, This defines a function
from § to itself called the first return
map, R, Note that R(P) = P

7.1.5. Make a square with the line scg-
ment, §, for cach side. The graph of R
is a4 curve in this square. It passes
through (PP} because R(P) = B
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=1 0 / 7.1.6. The CM is defined as the slope
of this curve over the point Pof S, This
is necessarily a positive real number, in
this context. For example if it's about
Yz, as shown in this example (Figure
7.1.4.), then R{x) will be about half as
far from P as is x. The limit cvele must
be an attractor,

For the limit cycle of the Van der Pol system, the CM is between zero and one because the limit
cycle is attractive.

Let's consider another system in the plane, with a periodic repellor. The CM of a periodic
repellor in the plane is a real number greater than one,

7.1.7. For example, if the CM is about
three, as shown here, then Rix) will be
about three times as far from P as is x,
Thus, the limit cycle must be a repellor,
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A limit cvele in the plane is called yperbolic if its CM is not equal to one. There are only two cases.
A periodic attractor has its CM between zero and one, while a periodic repellor has its CM greater
than one A limit cvele with CM equal to one may be neither an attractor nor a repellorn

= o
-

7.1.8. A limit cycle surrounded by
other limit cycles has a very special
return map: the identity function, Riz)
= z. The slope of this function is ong,
50 the CM is one in this case. This is a
nonhyperbolic limit cycle,

Recall the frictionless pendulum, Figure 2.1.18 in Chapter 2. This is an example of a
nonhyperbolic limit cycle.



2af) Clwrotic Bebavior

7.2. Limit Cycles in a Mobius Band

In the preceding section, we found that the CM of a limit cyele in the plane was inevitably a positive
real number. Why do we never come across @ negative CM? The answer is: we do! But only in a
non-orientable surface, as we shall see in this section,

7.2.1. Suppose we have roomed inon
a Poincaré section of a limit cyvele in a
two-dimensional context, graphed the
P | reverse map, and found a negative
R(K) slope, or CM, Then necessarily, a point
in the section above the cvele, like x
| here. has a first return on the opposite

| side of the cvele. like R(x) here.

T.2.2. Now let’s zoom back out, so we
can see the entire limit cvele, and the
entire trajectory from x 1o Rix). There
has to be a feedst in the surface, in order
for the return map 1o reeerse orienta-
tienn of the Poincar¢ section. The
Mabius band, shown here, is just one
of the many possibilities.
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The CM of a periodic attractor around a Mobius band is a negative real number, between
-1 and 0.

7.2.3. A periodic repellor around a
Mobius band has a CM less than -1.

7.2.4. A limit cycle around a Mdobius
band with a CM equal to -1 is non-
hyperbolic. In this case, the limit cycle
belongs to a family of “‘parallel”
periodic trajectories.
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Of course, not all limit cycles in a Mobius band have negative CM’s.

7.2.5. For example, a limit cycle that
does not go all the way around . . .

7.2.6. .. .or one that goes twice
around.
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7.2.7. The limit cycles in two-dimensional state spaces are classified in this 1able, which
includes both positive and negative CM contexts, The CM is never zero.
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7.3. Saddle Cycles In Three Dimensions

In two-dimensional state spaces, typical limit eycles are either attractors or repellors, In
three-dimensional contexts, there are several possibilities.

7.3.1. Recall Duffing’s model for the forced pendulum, from Part One, Figure 5.4.12. There
are three prominent limit cycles in a three-dimensional context: an attractor, a saddle, and
a repellor.
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Now we are going to characterize these limit cyeles in terms of the CM's of Poincaré. His subtle
construction of the CM’s of a limit cycle works in contexis of any dimension.

We will consider the saddle cycle first.

PO [

f |

L s N -
7.3.2. Atapoint, P, in the limit cycle,
construct a small cross-section, 5. This
time, the Poincaré section is fiwo-
dimensional, like the strobe planes of

&

Chapter 4.

7.3.3. Each point of § {if it's not o
close to the edge, at least), when pro-
longed forward along its trajectory, will
have a first return o the section. Here,
the point x returns at R{x), while
another point y returns at R(y). As x is
chosen here in the insef, R(x)is closer
to the limit cycle. On the other hand,
y is in the outset, so R(y) is farther from
the limit cycle,




240 Chaotic Bebavior

This construction defines a function from (most of) § to itself, the first return map, R. The graph
of R is a surface in four-space, so we cannot draw it pictorially. But according to vector calculus,
R may be approximated very well, in a neighborhood of P, by a linear transformation. The theory
of these, linear algebra, provides an algorithm for obtaining two complex numbers, the eigenvalues
of this linear approximation, These characterize the linear transformation exactly and the first return
map approximately. These two complex numbers are, in general, either real or a complex conjugate
pair. These are the CM's of the limit cycle

7.3.4. In the case of the saddle cycle . )
in Duffing’s system, the CM's are i : ;
positive real numbers. One is larger I 0 I
than one, characterizing the ownfset.
The other is ssnaller than one, charac-
terizing the insel.

-l Q |

7.3.5. The curve in § corresponding
to the smaller CM (shown in the box)
is the cross-section of the inset of the
limit cycle. This surface is invariant:
trajectories that start on it stav on it,
Within this invariant surface, the inset,
the limit cycle acts as an attractor. The
smaller CM determines t he rate of this
attraction, The smaller the CM, the
faster the asymptotic approach to the
limit cycle.
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7.3.6. The other curve in 8, corres-
ponding to the larger CM (see below),
is the cross-section of the outset of the
limit cycle. Within this invariant sur-
face, the limit cycle acts as a repellor,
The larger the CM, the stronger this
repulsion.

7.3.7 Here are the two invariant sur-
faces, inset and outset, They intersect
in a curve, the limit cycle. Only small
portions of them are shown here. They
both may extend far out of the picture.
Both CM's are shown in the box.
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7.3.8. The trajectories of the inset spiral toward the limit cyele, while those of the ourser
spiral away. Other nearby trajectories just fly on by, spiraling closer for a while, then spiral-
ing away,
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o S 7.3.9. Even though the CM's are
positive, the inset and outset cylinders
may be twisted. But they must twist an
even number of twists, if the CM's are
positive. Here, for better visibility, we
have shown only the insct,

7.3.10. As in the two-dimensional
_ case of the preceding section. negafive
S— CM’s arise when both the inset and the
— outser are Mabius bands, each with an
aded number of twists while going once
around. Again, the outset band has
been deleted for beter visibiliny.
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7.4. Nodal Cycles In Three Dimensions

Here we consider variations on the saddle cycle of the preceding section. If the CM's are real and
both small (between -1 and 1), we have an attracting or repelling cycle that looks rather like 2
saddle. These are called nodal cycles.

7.4.1. These two small, real CM's corres pond to two invariant surfaces, as in the saddle
cycle. But the limit cycle acts as an attractor within each. One, with the smaller CM, attraces
more strongly than the other. They are sub-insets, called the Jast-inset and the slow-inset
respectively,
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7.4.2. As with saddle cycles, these
positive CM's could correspond to sur-
faces with any even number of twists,
Here, the first return, Rix), is on the
same side of the fast-inset as the initial
point, x.

7.4.3. And as with saddle cycles, the
invariant surfaces may both be twisted
an odd number of times. In this case,
the CM’'s are negative and the first
return, Rix), is on the opposite side
from the initial point, x.
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7.4.4. Repelling cycles can be nodal,
too. Here, the two large (greater than
one), real CM's correspond o two
invariant surfaces, the fast- and slow-
outsets. Bur the limit cycle acts as a
repellor within each,

7.4.5. Repelling nodal cycles may also
have twisted fast- and slow-outsets,
with negative CM's.
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7.5. Spiral Cycles In Three Dimensions

As the two CM's of a limit ¢vele in three-dimensional space are the eigenvalues of a linear transfor-
mation, it is possible for them to be a pair of conjugate complex numbers, rather than a pair of
real numbers. This is the case with limit cycles of spiral type.

7.5.1. Recall that in the ring model for the damped pendulum (Figure 4.1,12), the periodic
attractor around the center was surrounded by spiraling trajectories.
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7.5.2. Since there are no invariane sur-
facesas in the case of a nodal cycle, the
CM’s cannot be real. They are a con-
jugate pair of complex numbers. The
magnitude (distance of either from the
origin) characterizes the rate of asymp-
totic approach to the limit cvcle, The
angle (in the sense of polar coor-
dinates) characterizes the rate of
spiraling.

7.5.3. The unit circle in the complex
plane discriminates attractors from
repellors.
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7.5.4. Inthe case of a spiral attractor,
the complex conjugate. CM's are inside
the unit circle,

7.5.5. In the case of a spiral repellor,
the complex conjugate CM's are onut-
side the unit circle.

What about CM's on the unit circle?

A limit cycle is byperbolic if none of its CM's are on the unit circle. Animportant example
of a nonhyperbolic limit cycle in three-space is a cenfer.
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7.5.6. A center is surrounded by concentric tori, which are invariant surfaces. Nearby tra-
jectories stay on these tori, neither attracted nor repelled by the central limit evele,
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7.5.7. A limit cycle is called elementary if it is hyperbolic and its CM’s are distinet (no
two equal). All the elementary limit cycles in three-space are summarized in this table.
e B LSS i
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7.6. Characteristic Exponents

In the case of a limit point, the local asymptotic behavior is described by the CE’s. The number
of CE’s is equal to the dimension of the state space. In the case of a limit cycle the local asymptotic
behavior is described by the CM’s. The number of CM’s is equal to the dimension of the Poincaré
section, one less than the dimension of the state space.

In this section, we develop the relationship between CE’s, and CM’s.

7.6.1. Recall from the preceding "t
chapter that with CE’s the borizontal 3 frr acti ve
coordinate (real) indicates the strength
of repulsion (right half) or attraction
(left half). The vertical coordineate (im- — * ¥ o
aginary) indicates the rate of spiraling. -1 !

The CE's on the left are attractive,
Those on the right are repulsive. The
imaginary axis is excluded, for hyper- 4.--?i
bolic limit points. We will call this
diagram the CF plane

7.6.2. On the other hand, in the .
preceding section we have seen that, dft?" ac h ve

with CM's the magnitude indicates O —
strength of repulsion, while the angle
characterizes spiraling, The CM's are
dattractive if inside the unir circle, and
repulsive when outside, The unit cir-
cle is excluded for hyperbolic limit
cycles. We will call this diageam the CM
plane
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We now describe a function from the CE plane to the CM plane, called the exponential map, or

polar coordinaltes.

X

attractive rePufsi ve
-._.A--—'\I /-\__/\__/"

- + t + —
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7.6.3. Step 1. Map the horizontal axis of the CE plane onto the positive half of the horizontal
axis of the CM plane, using the natural exponential function. Note that zero is mapped to one.
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the CM plane.

7.6.4. Step 2. Wrap the vertical axis of the CE plane around the unit circle of the CM plane,
Iinear measure on the real axis of the CE plane angular measure on the unit circle of
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7.7. Discrete Power Spectra

Before ending this review and expansion of Part One, we pause 1o emphasize the periodic attributes
of attractive limit cycles, This explains why we call them perfodic attractors, which is not becausc
they come and go!

7.7.1. In Figures 2.3.5 w0 2.3.7, we
discussed the pitch and volume of pure --
tones. These are attributes of sinus-
oidal time series, or time records of
one coordinate of a regular (circular)
periodic attractor,

Fd
7.7.2. A time series from another, very
irregular periodic attractor might look . 1
like this. It may be bumipny, but it is
periodic in the sense that the same ir-
regular pattern is repeated over and P :
over. Each repetition takes the same 4 .

period of time—hence periodic. The
reciprocal of the period of time is the
[frequency of the periodic time series.
This one would sound like a complex
tone, with a colorful timbre.
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7.7.3. Following the ideas of Fourier analysis, we may represent the irregular periodic time
series (or tone) as a sum of regular (sinusoidal) pure tones of various frequencies, amplitudes,
and relative phases, all sounded together,
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7.7.4. Recording the square of the amplitude, and the frequency, of each of the compo-
nent pure tones in a diagram such as this is called the power spectriom of the periodic time
series (complex tone). In this case, the power spectrum is discrefe, as it consists of discrete
vertical line segments. This is characteristic of periodic attractors,

Likewise, continuous power spectra are uncharacteristic of periodic attractors. And yet, they abou nd
in music, and throughout nature, in #oise. The dynamical model for a noisy time series is the chaotic
attractor, to which we turn at last.
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Chaotic Limit Sets

Points and cycles are not the only limit sets found in dynamical systems. The torus is a limit
set proved to be rare in theory but frequently seen in experiments. Reasons are given in
Part Three, *‘Global Behavior' In this chapter, we introduce some of the curious limit
sets discovered by experimentalists. Among all kinds of limit sets, only the attractors are
directly observable in simulations by analog and digital computers. So this chapter will
emphasize chaotic attractors, primarily. The reasons these are called chaotic will be described
in Chapter 9.
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8.1. Poincaré’'s Solenoid

Poincard's discovery of bomoclinic tangles, and their subsequent analysis by Birkhotf and Smale,
are described in detail in Part Three. Poincaré predicted, in his original description of homoclinic
tangles, that they might be too complicated ever to be understood. The full picture, recently emerged,
contains a chaotic limit set of saddle type. which we call Poincard'’s solenoid. In this section, we
describe the superficial appearance of this theoretical object.

8.1.1. Here is the solenoid, Like an infinite coil of wire, shown here in red with a piece
cut away for visibility, it might be regarded as thickening of a periodic trajectory of saddle
type. But it has an infinite number of picces. as we shall see. In this representation, we
emphasize its Poincaré cross-section. The inset cross-section is a thickened curve, with
an infinite number of picces, The outset cross-section is also a thickened curve,

Let's build up this picture, piece by piece.
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8.1.2. Recall, from Section 7.3, this typical periodic saddle in three-space,

8.1.3. This twisted version has Mobius bands for its inset and outset. Fach has a single twist,
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Next, consider a twisted periodic saddle going fwice around before closing. Each half almost closes,
but not quite, The inset of each half is twisted, like a Mobius band. These half-inscts may thus be
parallel, without crossing. The outset of each half is likewise twisted, so these may be parallel as
well. We may visualize this as follows.

8.1.4. Takeanarrow strip of paper (1) 2
and fold it the long way (2).

8.1.5. Use this folded strip to make
a Mdbius band, twisting and taping
carefully (3). Note that the fold does
not match up at the taped part, This is
no problem, because we. ..
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8.1.6. ... trim the fold off. What
remains is a double strip. This is the
inset-mogdel.

8.1.7. Here is the insct model, with the limit cycle and attracted trajectories dreawn on it.
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8.1.8. Trying to uncoil the inset model, we find that we have a long band that is double
twisted.
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Now take another narrow strip of paper. Fold, twist, and tape, as above, but with this complemen-
tary orientation.

8.1.9. This model is horizontal where
the previous one was vertical, and
s0 on. Cutting off the fold, we obuain
this model for the outset of our double
periodic trajectory, This is the ontser-
molel.

8.1.10. Putting together the two models, we obtain this picture of the double periodic
trajectory. The trajectory completes two revolutions before closing, likewise the inset and
outset bands,

Note that the inset and outset must intersect in this picture, The intersection is another saddle cy-
cle that completes two revolutions before closing. The outset of the new cycle coincides with the
insct of the original one, and vice versa. This is the complication Poincaré had noticed and despaired.
The fantastic consequence of this intersection, obtained by a small perturbation, is known as a
Bomaoctinic tangle. This is detailed in Part Three, ** Global Behavior” For the present, we will ignore
this consequence.
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8.1.11. We could equally well fold the
strip twice, like this.

8.1.12. Twisting, taping, and cutting, we obtain an inset-model for a quadruple periodic
trajectory.
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frerating this procedure, we may make models for very long periodic trajectories, all coiled 50 as
to fit in the same ring. All these may have their insets parallel, likewise their outsets. Adding
trajectories that coil around the ring endlessly without closing, we obtain a complicated limit set
of saddle type, Poincard's solenoid, as shown in Figure 8.1.1. The occurrence of this limit set in
the forced Van der Pol system (Chapter 5) was suggested by Cartwright and Littlewood, and fully
analyzed by Smale, as explained in the Hall of Fame. It is not observed in experiments, because

it is not an attractor.

We turn now to the chaotic limit sets that are actually attractive.
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8.2. Birkhoff's Bagel

Birkhoff picked up dynamical systems theory, in 1912, where it was left by Poincaré's death. Within
four years, he had discovered the chaotic attractor, as a theoretical object in discrete dynamical
systems (1932). This was his remarkable curve, found in the dynamics of 2 map of the plane o
itself. This was later studied by Charpentier (1935) and is still an active research topic. This so-
called curve is actually thicker than a normal one-dimensional curve, so we call it a thick curve.
Thickness, in this sense, relates to fractal dimension, explained in the next chapter,

In 1944, Levinson raised the question of the occurrence of this attractor in the context of forced
oscillation. Here, the plane would be the strobe plane, a Poincaré section, and the map of the plane
to itself would be the first return map. Then the remarkable (thick) curve of Birkhoff would be
the strobe section of a thick torus, which we call here a bagel. He answered this question in the
affirmative for a particular system, similar to the forced Van der Pol svstem (1948, 1949).

Meanwhile, Cartwright and Littlewood announced a similar result (1945) for the forced Van der
Pol system, and later published their proof (1949). They pointed out experimental evidence for
this strange attractor, which they had found in the earliest electronic simulations of the Van der
Pol system, done by Van der Pol himself in collaboration with Van der Mark (1927).

Recent experiments by Holmes (1977) on the Duffing system, and by Robert Shaw (1980) on the
forced Van der Pol system (standard and variations) with an analog computer have detailed the
folded structure of Birkhoff's attractor, which we present in this section, Our presentation relies
heavily on Part One,
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8.2.1. Recall that Van der Pol studied forced oscillators in the context of radio transmit-
ters and receivers. Here is the analog device, as explained in Chapter 5. The transmitter
(right) is forced by an isolated oscillator (center). Its plate voltage and current are monitored
by a storage scope (left) only during a short pulse sent by the forcing oscillator, This strobe
pulse is in phase with the forcing oscillation. Here we have added a control knob to the
forcing oscillator (shown high on its left side, with a green marker) for changing the phase
of the forcing oscillation at which the strobe pulse is sent.
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8.2.2. With the frequency of the forc-
ing oscillator close to the natural Fre-
quency of the unforced radio oscillator,
the combined system may oscilliate in
an fsochronowus barmonic In this case,
we observe a single red dot on the
Breen SIOmge scope,

8.2.3. Advancing the phase control from phase zero forward to phase 27, we see the dot
advance around a closed loop. Assembling these planar sections in the large three-
dimensional state space of the ring model (see Chapter 5), we see the isolated chronous
harmonic as a periodic trajectory on an attractive invariant torus,
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By increasing the frequency of the driving oscillator, we may observe many different
braids, as described in Chapter 5.

8.2.4. For example, an ultraharmonic
would appear, in the strobe plane or
storage scope screen, as a discrete point
set on the section of the invariant torus.
With each pulse from the forcing
oscillator, one of the dots is refreshed.
In other words, the trajectory hits the
strobe plane repeatedly. The successive
hits cvele through the discrete poine
set, repeatedly. The order of successive
hits is not simply clockwise or
counterclockwise. However, the same
arder is repeated each cycle. Thus, if we
watch for a while, we learn to predict
the next hit exactly.

8.2.5. Forsome higher frequency and
carefully chosen amplitude, we find
what appears to be a continuous closed
curve instead of a discrete point set.
This is the remarkable curve of
Birkboff, exactly as predicted by Levin-
son. As far as we know, this was not
actually observed until very recently
i(Shaw, 1980). The trajectory hits the
strobe plane in a point that appears to e 2 j
rove randomly around this curve, : g 16
Unlike the preceding (periodic) situa- : £ :
tion, we find ourselves unable : S
predict the next hit of the trjectory on
the strange curve, no matter how long
we observe it,

Bt




Chaotic Limit Sets 279

8.2.6. Adjusting the phase control
reveals a rotating distortion of the
closed curve. The spike slowly crawls
to the right along the top, while the
lower spurs march briskly to the left
along the bottom. One by one, they
catch up with the upper spike and
merge with it,

©73
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8.2.7. Here is a sequence of eight successive phases, a full cycle around the ring model,
exactly as discovered by Robert Shaw (1980) in analog simulation of Van der Pol's system.
His equations are reproduced in the Appendix.
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8.2.8. Assembling Robert Shaw's sec- o
tions in the ring model for the forced 7 J
Van der Pol system, the bagel emerges. Wig

=

8.2.9. Interpolating more sections and smoothing between them, we obtain this folded,
thickened surface. But this is essentially the trace of a single trajectory, It is not a periodic
trajectory. The missing sections have been cut away for better visibility.
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This single trajectory represents a most irregular behavior of the forced oscillator, chaotic
bebavior.

Let's color the bagel red. Now we isolate a small picce on Birkhoff's remarkable curve, color it
blue, and follow it once around the bagel.

D0

Q) o o

8.2.10. Starting at phase 37/2, this black piece is pinched to a beak and pulled out to the
left, away from the main body of the bagel. It is not yet moving. But the two lower spurs

(red) are moving down and to the left,
O@}

=
2

e

]

8.2.11. Afier phase 0. the blue beak is pinched more, elongates further, and crawls o the
right along the top of the bagel. Meanwhile, the lower spurs are marching briskly around
after the beak. At =/2, one of them has caught up with the beak and merged with it A
new beak is forming on the right. At S#/4, the second spur has also merged. The old beak
is now a spur. Finally the new beak has fully formed and become a spur, while yet a new
beak has been born on the left,
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8.2.12. Going on around a bit, the red spur is pressed flat into the side of the bagel, like
4 pleat. This whole process, from fresh beak to ironed pleat, took one and one-half cycles
of the forcing oscillation,

The bagel consists of an infinite number of pleats, almost all of which have been pressed flat against
the thickened toroid. This fractal microstructure, characteristic of all the known chaotic attractors,
will be clarified in Chapter 9. It is actually responsible for their unpredictable behavior.
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8.3. Lorenz's Mask

The advent of digital computers made a great impact on dynamical systems theory, One of the early
results was the surprising discovery, by Lorenz (1963). who had been a student of Birkhoff, of an
unsuspected type of chaotic attractor. This discovery ocurred during simulation of global weather
patterns, and eventually provided science with its first deterministic model of turbulence.

8.3.1. The earth, warmed by the sun, heats the atmosphere from below, while outer space,
always cold, absorbs heat from the outer shell of the atmosphere. The lower laver wants
to rise, while the upper air wants o drop. This causes a traffic problem.
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To visualize the air currents in the atmosphere, we construct a cross-section. The plane
section, passing through the center of the earth, cuts the atmosphere in a ring. Let us
look now at a small piece of that ring,

8.3.2. The rraffic problem of the
competing warm and cold air masses
is solved by circulation vortices, called
Beénard cells.

8.3.3. Returning to three dimensions,
a typical vortex may have warm air ris-
ing in a ring and cool air descending
in the center like this,
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8.3.4. The atmosphere, or at least a
portion of its spherical shell perhaps
as large as the Sahara Desert, might be
secthing in a sea of Bénard cells, closely
packed as a hexagonal lattice,
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8.3.5. Infact, this aerial photo of the
Sahara Desert shows, in the pattern of
sand dunes, the sculptured footprint of
such a sea of atmospheric vortices,
snowfields and icebergs reveal similar
patterns, apparently sculptured by
invisible Bénard cells,
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Lorenz set out to model this atmospheric phenomenon, using a dynamical system derived
from the equations of fluid dynamics.

8.3.6. Simulating the model with computer graphics in the early 19605, he saw this on
the screen. Here. as with the bagel in the preceding section, the attracting object is rigidly
determined. But the future of a trajectory within it is unpredictable by the observer, In
the next chapter, we will explain this paradox.

Like Birkhoff's bagel, this is an attractor that is neither a point nor a cycle.

The behavior of a trajectory following this attractor, as observed by Lorenz, is very erratic. It orbits
one of the holes for a while, then jumps to the other for a while, and so on. This is why its behavior
is called chaotic, as we shall see in more detail in the next chapter. Itis so erratic that Lorenz despaired
of predicting the weather by simulation of this dynamical model. The chaotic attractor, translated
back into the original context of air currents in the atmosphere, provides a model for atmospheric
turbelence.

The actual microstructure of this object, which we call Lorenz’s mask, is described fur-
ther in the next chapter and still further in Part Three.



Chaotic Limit Sets 287

8.4. Rossler’s Band

Inspired by Lorenz's discovery, and aided by an analog computer with stereo 3D display, Rossler
set out to find the simplest dynamical systems with chaotic attractors. Among others, he discovered
the simple folded band described in this section, Later, Crutchfield et al. (1980) found the same
phenomenon in the Duffing model for the forced pendulum.
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8.4.1. Here is an electronic analog of Duffing's forced pendulum. In the black box, upper
right, is an electronic analog of a damped pendulum. The meters read the instantaneous
current through, and voltage across, the load resistor on top of the box. The forcing oscilla-
tion is generated by the isolated oscillator, center, which also sends a strobe pulse to the
storage scope, left. A dot written on this screen will persist.

This is much like Robert Shaw's experimental setup for the Birkhoff bagel, in the forced Van der
Pol device described in Section 8.2,
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8.4.2. Recall, from Part One, these mechanical devices used by Lord Rayleigh to model
the violin string (later studied by Duffing) and the clarinet reed (later studied by Van der
Pol). Without being forced, the oscillation of one dies away, while the other’s is self-
sustained. When forced, both will oscillate,

TR
Q0

8.4.3. In the context of electronic analog devices, we have these two devices: without
forcing, one wants to be still, the other to oscillate, as shown in these phase portraits. When
forced, both will oscillate, as described in Part One.

From these two devices, extensively described in Part One, much of dynamics has evolved.
We return now to the electronic analog of the Duffing device, starting with a brief review.
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With the forcing oscillator set close to the natural frequency of the damped electronic pendulum,
there are two periodic attractors in the ring model for the three-dimensional state space of the
combined system (Figure 4.3.8). Thus, our strobed storage scope will show a dotted curve asymp-
totically approaching a point. There are two such attractive points in the strobe plane. Which
attractor our strobed (dotted) trajectory ends up at depends on which basin the initial point is
in. (The initial point may be chosen by the experimentalist before turning the device on.) The
two basins are separated (in the three-dimensional ring model) by a scrolled surface, the inset of
a periodic saddle (Figure 4.3.13). In the strobe plane, they are separated by a teardrop-shaped curve
(Figure 4.3.12).

8.4.4. Here is the separatrix of the isochronous oscillations of the electronic Duffing
device. As the inset of a periodic saddle, it is not a limit set, but it is repelling. In the strobe
plane, it appears as a teardrop-shaped curve, Meanwhile, the outset of the periodic saddle,
although not a limit set cither, is attractive. [t is a fwisted band (shaded blue in this draw-
ing) bounded by the two periodic attractors. This outset band meets the strobe plane in
a short curve segment, shown here in heavy black. Just as the inset (separatrix, red) is repell-
ing, the outset band (black) is attracting.
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Now let’s watch this attractive outset band, as we increase the frequency of the driving
oscillator.

8.4.5. Fora while, as the driving fre-
quency increases, we find an increas-
ing number of periodic attractors.
These are the barmonics, described in
some detail in Chapter 4 (for example,
Figure 4.4.17). In the strobe plane
observed by the storage scope, they
appear as a growing set of isolated
points.

8.4.6. But after we increase the fore-
ing frequency sufficiently, this entire
arc appears as an attractor. It is the
strobed view of the attractive outset
band of the periodic saddle. The at-
tracted tmjectory hits it repeatedly, ran-
domly walking throughout its length,
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8.4.7. If we leave the freqguency fixed
but change the phase of the strobe
pulse, we find the arc rotates, flexes,
stretches, and folds,

8.4.8. Putting these strobe views
together around the ring model, we
obtain a three-dimensional picture of
this unusual attractor, first observed by
Réssler in another dynamical system,
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8.4.9. Here is the full Réssler band, in the Duffing system. Like the Birkhoff bagel and
the Lorenz mask, it appears to be a slightly thickened surface. A more detailed picture of
its rich microstructure is presented in the next chaprer. Keep in mind, meanwhile, that these
auractors are not static objects. They determine the dynamic behavior of an auracted
trajectory,
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8.4.10. Here is the full Rossler band, as scen by Rossler in his original system. (See the
Appendix for the equations; this computer drawing courtesy of Robert Shaw.) This view
is straight down from the top, so the height of the fold (shown in the preceding panel)
is foreshortened. The trajectories do not actually cross in 3D,

There are many other unusual attractors waiting to be discovered by pioneers with analog and digital
computers. This is one of the last frontiers of the local theory of dynamical systems.
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8.4.11. Here is a related experimental object, also discovered by Rissler, which we call
the funnel. (Sec the Appendix for the equations; this computer drawing courtes v of Robert
Shaw. )

The trajectories attracted to these attractors asymptotically approach almost every loca-
tion in the thickened surface. Of course, the motion of such a trajectory is precisely
determined by the mathematical model. Yet because the smallest uncertainty in the deter-
mination of the actual position of the trajectory at a given moment implies an enormous
uncertainty later on, the future of the trajectory along the attractor is apparently chaotic.
Hence, these experimental objects are called chaotic attractors. They may not be either
attractors or chaotic in any rigorous mathematical sense, however. All this will be clarified
in the next chapter.
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Attributes of Chaos

There are many reasons for calling the unusual limit sets, found experimentally and described
in the preceding chapter, chaotic. In this chapter we will describe some of these reasons,
which have received considerable attention in the literature.

295
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9.1. Unpredictability

Although the large-scale attractors are aspects of a dynamical system that are fully deterministic
in the formal mathematical sense. the behavior of a trajectory attracted to such an attmctor is totally
unpredictable in the long run. This is the reason these extended limit sets have earned the name
cheotic attractors. In this section we explain this paradox, originally emphasized by Lorenz
(1962, 1963).

Al
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9.1.1. In the preceding section, we observed this situation, in the electronic Duffing device,
before the appearance of Rossler’s band. The attrcted trajectory returns repeatedly. avexact
intervils. to the same point in the strobe plane. This is the epitome of predictable bebavion
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9.1.2. Here is a computer drawing of
the periodic attractor of the Duffing
system, seen from above. Not only the
point of periodic passage through the
strobe plane, but all of the states on
this periodic attractor, are exactly
predictable.

9.1.3. Increasing the forcing fre-
quency, we observe higher harmonics
as periodic attractors. Here, in another
computer drawing also seen from
above, is a periodic trajectory cycling
four times around the ring before clos-
ing. Its intersection with the strobe
plane is a set of four dots, each visited
in turn by the orbiting trajectory.

This motion is completely predictable. After observing a few cycles, we can predict, based
on one¢ strike of the strobe plane, exactly where the next few will strike.
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9.1.4. Increasing the forcing fre-
quency further, we obtain an extended
attractor. Also seen from above in this
computer drawing, there are several
bands within a figure like Rossler’s
band. The intersection with the strobe
plane is a set of thick arcs. (The
thickness is explained in Section 4.4.)
Although the orbiting trajectory passes
through these thick arcs periodically,
we are unable w make long-range
predictions based on one strike,

Although the motion is fully deterministic in the mathematical sense, it is rather
unpredictable in the experimental sense. This is one reason this motion is called chaotic,

The successive passages of the trajectory, orbiting the Rossler-like band, are experimentally rather
unpredictable, because (1) we do not know the exact position of the trajectory at a given moment,
(2} a small difference in this current position leads to an enormous difference in position later on,
and (3) the trajectory will eventually come arbitrarily close to any point on the thick bands.

Property 2, characteristic of all chaotic sets, is called sensitive dependence on initial conditions.
Property 3, also characteristic of chaotic sets, is called topological transitivity. Related to the ergodic
hypotbesis of statistical physics, this just means that a single trajectory picrces every little region
in the limir set, These conditions are described further in the next section.

We now explain why these three conditions lead to unpredictability,
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9.1.5. The prrecision of our measure-
meent of the pendulum’s state (displace-
ment and velocity ), ata given time, may
be regarded as an amaonnt of informe-

b4 tian. Here, for example, suppose we

e e - i st know only that the state is in the green
=17 ) : | shaded area of the state space. Qur
4 information, then. is only that the pen-

dulum is to the right of bouwom. We
know nothing of the speed of its
i motion, not even its direction. This is
asmall amount of information about
the instantaneous state of the system.

The more precise the measurement, the smaller is the region known to be occupied by
the state of the system, and the more information we have about it.

1
+
L
[

1 ] T 9.1.6. In this case, our measurement
is more precise, The state is known to
be in the small shaded box. Thus the
displacement and velocity are known,
4 within small intervals of error. We have
a considerable amount of informea-
tion about the state of the pendulum.
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9.1.7. Carried tw extremes, if our
measurement were infinitely accurate,
the region of uncertainty would be a
point, and our information would be
infinite. This is the assumption in the
mathematical context.
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+
+
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4

9.1.8. But in the experimental con-
fext, there is always a region of uncer-
tainty, due 1o the realities of observa-
tional instruments, recording media,
and the Uncertainty Principle. Here, we
see this region by enlarging the
preceding drawing,
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9.1.9. Returning to Rossler’s band, let us begin with a region of uncertainty, shown in
green here and labeled x, within the strobe plane. After approximately one cyvele, this track
passes through the strobe plane again in the set shown here in green, labeled Rix). But
the track exfrands. 5o the original region, x, has expanded to the larger set R(x). After this
expansion. we bave less informeation about the state of the system,
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9.1.10. We relabel Rix) by R'(x). The track continues o expand. And after another similar
period of time, it has passed through the strobe plane again, in the green set R7(x). The
ariginal region x, its first return R'(x), and its second return R” (%), comprise the beginning
of an infinite sequence of sets. These are getting wider and wider. And so we bave less
and less information about the state of the system as time goes on.

In fact, no matter how small the initial region, the successive strikes of its trajectories
through the strobe plane will spread in this way. The cause of this spreading is explained
in the next section.

So this, at last, is the meaning of wnpredictability in the context of chaotic attractors, Any small
error in the measurement of the current state (inevitable) eventually leads to total ignorance of
the position of the trajectory within the chaotic attractor,
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9.2. Divergence and Information Gain

The basic dynamical feature of chaotic attractors is bounded expansion, or divergence and folding
together of trajectories within a bounded space. This feature implies sensitive dependence on in-
itial condition, originally emphasized by David Ruelle, and gain of experimental information,
introduced by Robert Shaw. In this section we explain these implications. The connection between
divergence and characteristic exponents (CE’s) is given in the following section.

}

9.2.1. Suppose we have a dynamical system with a planar state space, and a repelling point.
After a careful measurement of both variables at time t,. we have determined that the stawe
of the system is in a small region near the point repelfor. The track of this region along
trajectories of the dynamical syvstem spirals away from the repellor. expanding as it goes.
Thus. at a later time, 1, the track of the initial region is a larger region, as shown here.
Supposing that we do nof remeasure the state of the system at this later time, Then the
information we originally had, rogether with our knowledge of the phase portrait of this
system, add up to the knowledge that the system is in a state in the larger region, nothing
more, But the larger uncertainty means we have less information at the later time than
we had at the time of the initial measurement. The divergence of the trajectories leaving
a repellor fmplies loss of the information obained from an inital measurement,
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On the other hand, the divergence of trajectories leaving a repellor, together with new measurements
at a later time, implies a gafn of information. Now let's carefully follow this divergence, and its
attendant information gain, in four steps:

* measure the initial state of the system,

* watch this region expand, while initial information is lost,

* remeasure the state of the system, increasing current information,

* extrapolate backwards, gaining information on the initial state.

—

9.2.2. Atthe initial time, we miedstre
the state of the system as accurately as
possible, within the limitations of the
given laboratory instruments. The posi-
tion of the initial point in the swate
space is thus a small region, such as this
rectangle. Its sides are the experimen-
tal errors in the values of the separate
coordinates, such as position and
velocity of the pendulum,

9.2.3. Afteran interval of time, the in-
itial region flows outward from the
repelling point, along the diverging tra-
jectories of the dyvnamical system, as
we see here. The initial region grows
into this larger region. Information
about the current state scems o be
decreasing, as we know less and less
about the actual state of the system as
time goes on.
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9.2.4. But at this later time, we
remedsure the state of the system,
again with the best accuracy of the
laboratory apparatus. Now we have in- ;
creased our information about the Y >

system at the later time,

9.2.5. Finally, we flow the larger
region backweards in time to its original

paosition, as a small rectangle, and along f
with it we flow the small rectangle it 5

contains. This becomes the immeasur- '\ fl -~ = \
ably small dot within the initial rec- /
tangle, as shown here. As this is smaller
than the initial rectangle, we have more Ly : —
G E

information about the initial state, N
because of the second set of measure-
ments, than we could possibly have \

known at the beginning,  — . ' Y -

!
e |
By this sequence —measure, flow, remeasure, reflow backwards —we have obtained more infor-

mafion about the state of the system at the initial time than we did with the initial measurement
{with the same instruments).

To emphasize the actual gain of information provided by diverging flow, let’s repeat this
sequence with the state space coarse-grained by cells indicating the limit of precision
of the measuring and recording apparatus,
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— , - P—
=, = 9.2.6. In this armchair experiment,
we suppose that the measuring appa-

y ] ratus is digital, with data bins 0.1 unit

wide, Thus, all values of x between
2.35 and 2.45 are thrown into the 2.4

bin by the measuring and recording
process, and likewise for values of y
Here we see the siate space, coarse-

grained by these bins. The green
shading represents a region known
mathematically to be occupied by the

initial state of the dynamical system.
But the black shaded bin represents the
region known experimentally, accord-

ing to the most accurate measurement
possible, with the assumed instru-
ments, at the initial time, The system,

with almost 100 percent certainty,
occupies the cell labeled (2.4,2.6) by
the measuring instruments, as shown

in the corner box.
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\
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9.2.7. After a period of diverging flow,

as o cover many experimentally

N

Py / the initial green cell has expanded so

distinguishable cells. Without a new

=

prany!
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mation now aboul the current state
f than we initially had about the initial
state. We do not know which of the

/ / 3 / .{ measurement, we have less {nfor-

thirteen black shaded bins the system

. / Y now occupies. However, if we now
- make a new measurement and ex-
A trapolate backwards in time, we will
\ / I\ have more information now about the
40 fnitial state than we did originally,
i E J Acknowledging our capacity to make
measurements any time we wish, we
SRS ;Qgg& sce that diverging flow provides
b g.% tncreasing information about initial
1 & states. Information is gained in

pY | diverging flows,

L-
j ——
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9.2.8. Conversely, near a point attrac- Bt _' el o i
tor, the flow is convergent. An initial e e I i
region shrinks smaller and smaller, e e
Here, initial points, known through T ek
measurement 1o be distinet, eventually 3
become experimentally indistinguish- e
able. Extrapolation backwards of 'ﬂ S
current measurements may  ell us /
nothing about the initial state of the ]
system. Thus, convergent flow pro- i 5 =
vides decreasing information about J e /
initial states. Information is lost in
converging flows.

We have illustrated the concepts of information gain and loss, or flow, in flows near repelling
and atteacting points, Similar concepts apply to repelling and attracting limit cycles, and, as we
shall see in the next section, 1o chaotic attmctors. We turn now to the related concept of sensitive
dependence on fnitfal condifions.

9.2.9. Suppose we have two adjacent
initial conditions, near a repelling
point. Because of the divergence of tra-
jectories in this flow, the trajectories
from these two initial points diverge.
After some time, the two initial states
have flowed to final states that are far
apart. Thus, in this context, a smell
change n initial state resulls in a
large change in final state, afier a short
time of evolution of the system. This,
called sensitive dependence on initial
conditions, is a characteristic feature of
chaotic auractors. These, like the
repelling point illustrated here, have
diverging trijectorics, as we shall sec in
the next section.
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9.2.10. Conversely, in the converging
flow near an attracting point, a large
change in initial swate results in a
smaller change in final state, after a
short time, We may call this insensitive
dependence on initial conditions,

9.2.11. Finally, suppose that a set, such as the Rossler band pictured here, is almost com-
pletely filled by a single solenoidal trajectory. Then a small region of initial states at the
initial time, t,,, moves along to a more extended region at a later time, t,. After a long while,
this set must be pulled and rwisted $0 as to cover most of the entire band. For the solenoidal
trajectory pierces the initial region infinitely often, and these initial points flow along the
solenoid and almost fill the band. This sitwation, called fopological transitivity, is not im-
plied by diverging trajectories alone, but is nevertheless an observed feature of all experimen-
tally known attractors. This may be due to the constraints of reality, causing experimental
dynamics to study a single trajectory.
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9.3. Expansion, Compression, and Characteristic Exponents

Divergence (or equivalently, information gain, or sensitive dependence) plus transitivity imply
unprediceability, as described in Section 9.1, In this section, we show how divergence and con-
vergence, or expansion and compression, occur simultaneously near chaotic attractors.

How can compression to the attractor, and expansion along the attractor, happen simul-
taneously? Here we explain the geometry of this paradox, in the case of Rossler’s band.

9.3.1. Consider a flow in three dimensions, like the flow near a periodic saddle, which
is attractive in one direction and repellent in another. For periodic sadeles, this is described
by two characteristic multipliers: one CM inside the unit circle, the other outside. (See Sec-
tion 7.3.) Alternatively, we describe the saddle behavior with two characteristic exponents:
one CE to the left of the imaginary axis, and one to the right. (See Section 7.6.) For our
present purpose, we prefer CE's. But these CE's may be calculated for trajectories that are
not closed, as long as they are recurrent like the transitive solenoidal trajectory in the Rdssler
band, illustrated in Section 8.4.

In this flow, horizontal information is gained, while vertical information is lost. The

negative CE describes the rate of vertical convergence, while the positive CE describes
the rate of horizontal divergence.
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All the chaotic attractors illustrated in the preceding chapter are thick surfaces in three-dimensional
space. (The source of this thickness, an infinite number of surfices compacted close together, is
explained in the next section.) A transitive trajectory in each is saddle-like, as in the preceding panel.
But the attracting dirvection is perpendicular to the thick surfaces, which are therefore attractive.
Meanwhile, the repelling direction is tangent o the thick surfaces, so the flows along thesc attrac-
tors are diverging.

At the same time, trajectories converge toward the attractor and diverge along it, saddle-
like. Here is the way the Rdssler attractor manages endless divergence within a bounded
region, in five steps.

9.3.2. Here we have a horizontal surface, which is a piece of the attractor. The flow is
away from us, diverging horizontally for a while, making information, and exhibiting sen-
sitive dependence,

As the flow progresses, this piece of surface grows at the far end. We will track this growth.
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9.3.3. Instep 1, the back extends away from us, and widens as it goes because of divergence.
The right wing is rising. Step 2, the back extends and widens further, but the widening
is all to the right and upwards. The growing right wing is folded up and to the left. Step
3, the back extends further, widens more to the right, and the right wing is folded further
upwards and to the left, until it is parallel to the unchanged orientation of the left wing.
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9.3.4. Instep four, the process is continued, and we find that the rearward growth of the
surface is actually along a circle, bringing it eventually back and around to meet the front,
Step five, it closes. In fact, it does not exactly close as a surface. What we have described
is a thick surface, composed of infinitely many layers, like flaky pastry, filo, or croissant
dough. This is explained in some detail in the next section,

Try following two trajectories around the band, and you will see that they endlessly
diverge in a bounded space, as transitive solenoids. They keep on diverging from each

other in the short term, while succeedinng in getting too far from each other in the long
run,
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9.3.5. Birkhoff's bagel also expands endlessly in a bounded space, as shown in this eight-
step model. In step 1, we start with a diverging flow on a piece of surface, as before, Step
2, the back grows away from us, and a fold begins to form in the middle. In step 3, the
back extends further away from us, and the fold is pressed down flat, like a pleat, This
drawing has been shrunk a bit to save space. Step 4, the back grows further and the fold
is pressed flatter. Taking more of the sides into view, we see they bend downward. The
drawing is shrunk again, to fit in the panel. In step 5, more of the object comes into view,
and we see that the sides join at the bottom like a pleated cylinder. Step 6, following the
growth at the back of the cylinder, we see it is bending around a circle. In step 7, the bent
pleated cylinder is joining itself to make a torus. Finally, it closes as a thick surface in step 8.
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9.3.6. Lorenz's mask is also endlessly expanding in a bounded surface. We will describe
this in seven steps. First, take two copies of our usual piece of surface, with a diverging
flow on each. Join them, as shown in step 2.

9.3.7. In step 3, taking more of the flow into view, we see the surfaces bending. In step
4, the flow of the back edge away from us begins to curve all the way around. Likewise,
the flow into the front edge is seen to come from around a bend, also.

To get ready for the next step, rotate the S-shaped model (step 4) clockwise a half turn.
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9.3.8. In these last three steps, the front and back edges are extended further along the
flow, bending further until they join. These joints are as thick surfaces, as we shall see in
more detail in the next section.

These objects have a fractal dimension, somewhere between two and three. They also
have CE’s, like a periodic saddle.

To complete our models for these three chaotic attractors, we zoom in on the fractal
microstructure of thick surfaces in the next section.
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9.4, Fractal Microstructure

The folding required to expand endlessly in a bounded region requires an infinite microstructure.
Here we explain this feature of chaotic attractors, again using Rissler’s band for illustration.

9.4.1. Here is the Réssler band, as the folded thick surface constructed in the preceding
section, in five steps. As distinet trajectories of a dynamical system may never join, this
object cannot possibly be a simple surface, with two layers glued together.
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9.4.2. Let's follow the progress, at
time marches on, of a Poincaré section
of the thick surface. This appears to be
a line-segment at first. As we shall soon
see, it is actually a thick line-segment.
First it extends backwards away from
us, curving to the left and around a cir-
cle. At the same time, it widens and
folds over. Eventually it reaches dou-
ble its double width, folding all the way
over, and comes back to the Poincaré
section as a U-shaped channel.

9.4.3. Now we understand that the
cross-section of the band is not an in-
terval. It must be a folded interval with
two layers. Let’s follow the evolution
of this folded interval as it goes around,
repeating exactly the steps above. Start-
ing another turn as a U-shaped chan-
nel, the stretch and fold produces a
double-U-shape on return to the Poin-
caré section,
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9.4.4. Now we know that the section
is not a line-segment, and it's not a
U-channel either. Starting a third turn
as a double-U, the folding action of the
band creates a quadruple-U on next
return to the Poincaré section. And
50 on!

9.4.5. After countless repetitions, the
original interval of section has ex-
panded, folded, and returned in
countless layers. These accumulate in
a certain pattern. To examine this pat-
tern, we cut again in a cross-section.
This one, which we call the Lorenz sec-
tion, cuts through the Poincaré
section.
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9.4.6. Turning the Lorenz section face front, we see a single dot corresponding to each
layer of the filo dough of Rossler’s band. The number of dots is infinite, But they have
a pattern, There are gaps within gaps within gaps.

elc.

9.4.7. The pattern may be reconstructed in a sequence of steps called Cantor’s process,
First take a line segment, at 1. Then remove a smaller segment from somewhere within,
making a gap, as in 2. Then repeat this surgery on each of the two remaining segments,
obtaining 3, and continue forever. If at each step yvou take away the middle third of a seg-
ment, this is the middle thirds process, But there are many other possibilities.
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9.4.8. For example, this construction removes two intervals in each surgery. It is the mid-
dle fifths process. We cannot pin down exactly which process is needed to reconstruct the
Lorenz section of the Rossler band. But it is definitely this kind of thing, called in general
a Cantor sel.

»

9.4.9. S0 take a Cantor set, rotate to vertical, and attach a horizontal line to each point,
This is called a Cantor one-manifold by specialists. But we have been calling it a thick
fine all along,
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9.4.10. Orinstead, attach a piece of surface to each point of the Cantor set. This is a Can-
tor two-manifold, or thick surface

By fractal microstructure, we just mean a thick line or surface, more or less. We also must allow
creases, folds, and so on. For more information on fractals and their fractal dimensions, see the
excellent books by Mandelbrot and 1. Stewart, listed in the Bibiography.

All the experimentally known chaotic attractors are characterized by this kind of fractal
microstructure, as well as by the divergence of trajectories, measured by characteristic
exponents. Relationships between the fractal dimension and the characteristic exponents
are a current research topic.
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9.5. Noisy Power Spectra

The normal impulse of an experimentalist, upon sighting a complex time series, is to take its power
spectrum. As we have scen in Section 7.7, the power spectrum from a periodic attractor is a discrete,
or ling, spectrum, This technique has been very successful with the chaotic attractors. But the power
spectra of chaotic attractors are continuous, or noisy.

9.5.1. The power spectrum of a time series is com puted by an arduous algorithm. The
longer the time series input, the more accurate the power spectrum output. The spectrum
contains about half enough information to recreate the original time series. It records the
frequencies and powers, but not the phases, which are used in the reco nstruction, as shown
in Section 7.7.
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9.5.2. This is the power spectrum of
a typical periodic attractor. Each line,
over an integral multiple (octave) of the
fundamental frequency of the
oscillator, indicates by its height the
power contributed to the oscillatory
: motion in that octave. This is called a
F 2F 3F 4F discrete spectrum.

9.5.3. This, in contrast, is the power
spectrum of a typical chaotic attractor,

; * There is activity at every frequency.
F ZF 3F 4F This is called a continuous spectrum.

With experience, we might be able to recognize attractors from the power spectra of the
time series produced by one coordinate of the state space, if we had enough examples
on file. This is like the fingerprint strategy for criminal identification.
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9.5.4. This periodic attrctor in three
dimensions is fully described by three
time series, one for each coordinate.
The power spectrum of one of these is
shown here.

9.5.5. This chaotic attractor in three
dimensions is also fully described by
three time series, the coordinates of a
transitive solenoidal trajectory. The
power spectrum of one of these might
look like this: a discrewe spectrum with
a little noise added.
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9.5.6. These chaotic attractors (Réssler bands and funnels) are increasingly chaotic, as
shown by the increasing levels of the noise (continuous spectra) in their power spectra,
shown below in each case. This is actual data from analog simulations (Crutchfield et al.,
1980). Note that the spikes, indicating approximately periodic behavior, are lost in the noise
in the lower right example,
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9.5.7. Here is a summary table of the exemplary attractors we have presented,
with sketches of their characteristic output. One could wish for an extension of
this table, showing all possible attractors likely to arise in experiments and ap-

plications. But at this point, that’s a big wish.




Conclusion

This completes our visual introduction to the focal bebavior of dynamical systems, begun in Part
One. By local behavior, we mean the behavior of trajectories on or near a single attractor. It is
important to keep in mind that a typical dynamical system has many atiractors and basins. In appli-
cations, the location of these may be more important than the particular local behavior of each
attractor (point, cycle, or chaos). We repeat here, in ending this part of our story, that the iden-
tification of experimental attractors with limit sets of mathematical models is not yet fully justified
in dynamical theory.

In Part Three, we will turn to the global bebavior of dynamical systems.



PART 3

Global Behavior

Dedicated to Mauricio Matos Peixoto

Photograph by Caroline Blakemore
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Mathematical Dynamics Hall of Fame

The early days of modern dynamics span half a century, beginning in the 1880’s, as described
in Part One. At this time in France, Poincaré innovated qualitative methods. More or less
simultancously in Russia, Liapounov pioneered stability methods. These techniques then
underwent separate, parallel developments. By the 1930's, important progress had been made
in Europe and America, following the lead of Poincaré. Birkhoff, at Harvard, was the outstand-
ing figure. Meanwhile, in Russia, the ideas of Liapounov had grown. Andronov was an
important figure in this tradition.

There followed a quiet period. For another quarter century, the tradition of Poincaré dwindled
in Europe and America. Developments in Russia were forgotten in the West, During this
period, experimental dynamics began in Europe, as described in Part Two.

Eventually, through the efforts of emigré mathematicians familiar with the Russian work,
such as Lefshetz and Minorksy, the qualitative theory of dynamical systems was revived
in America. Beginning in the 19505, a vigorous mathematical program picked up steam
and continues today. The global behavior of dynamical systems is the main theme of this
movement, which we may call mathematical dynamics,

TABLE 3.1-THE HISTORY OF GLOBAL THEORY
Date EUROPE/AMERICA RUJSSIA
1850
1900 Poincare Liapounovy
Floguet Mandelshtam
Birkhoff
1950 Lefshetz, Minorsky, de Baggis, Kolmogoroy
Peixoto, Markus, Thom, Arnol'd
Smale, Pugh
2000
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Here are some capsule histories:

Henri Poincaré, 1854-1912. Besides
pioneering the new methods of
dynamics and topology, Poincaré
discovered tangles and bifurcations as
we know them today.

George David Birkhoff, 18841944,
Birkhoff was fascinated by tangles, and
wrote several papers about them. In
ane, he introduced the signature of a
tangle, making a first step in the historic
struggle to untangle them. In another,
he showed that homoclinic tangles are
always surrounded by myriad periodic
trajectories.

Gaston Floguet. He established the
Characteristic Multipliers of a limit
cycle as the dererminants of stability,
parallel to the CE's of Liapounov, in
1879,

Aleksandr Mikhailovich Liapou-
nov, 1875-1918. In his Ph.D. thesis of
1892, Liapounov ecstablished the
Characteristic Exponents of an
equilibrium point as the determinants
of its asymptotic stability.

Aleksandr Aleksandrovich Andro-
nov, 1901-1952. With co-workers
Leontovich and L.S. Pontrjagin, Andro-
nov pioneered the phase portrait point
of view. Andronov and Pontrjagin
published a five-page paper in 1937
which revolutionized global dynamics.
Its main contribution was the defini-
tion of structural stability. In the same
year, Andronov published an influen-
tial book, written with C.E. Chaikin,
on nonlinear oscillations.

Solomon Lefshetz, 1884-1972, In
the World War II years, this great inno-
vator of algebraic topology turned his
attention to qualitative dynamics. A
text on the local theory in 1946 was
followed by a global treatment in 1957,
in which structural stability was
discussed in two-dimensional systems.
A native of Russia, he reinjected the
tradition of Liapounov into the main-
stream of Western marhematics,
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Nicolai Minorsky, b. 1883. Like Lef-
shetz, Minorsky emigrated to the
United States in the prewar years. His
knowledge of the Russian school of
dynamical systems theory, presented in
his book of 1952, gave great impetus
to the resumption of mathematical
dynamics in the United States,

Mauricio M. Peixoto. Also a student
of Lefshetz, he improved enormously
on de Baggis's result in 1959. In doing
so, he forged the connection between
dynamics and topology which has
been so fruitful in recent years.

Lawrence Markus, b, 1922, Another
pioneer in the merger of topology and
dynamics, he clarified the meaning of
generic property in global dynamics,
in 1960, This work is described in Sec-
tion 11.1.

Henry de Baggis, b. 1916. A student
of Lefshetz, in 1947 he proved the con-
jecture of Andronov and Pontrjagin on
structural swability in the plane.

René Thom, b. 1923. Thom used
dynamics in his work in topology, for
which he was awarded the Field Medal.
In 1960 or so, he began advocating the
importance of the concept of structural
stability in applications, and his very
global view of bifurcations. His pro-
gram was presented in full in his
epochal book, Structural Stability and
Morphogenesis, in 1966,

Stephen Smale, b. 1930. Like Thom,
Smale used dynamics in his work in
topology, which earned a Fields Medal
in 1960. He then went on to study
dynamics itself, and produced a series
of papers in the 1960s which have
been very influential ever since. In one
of these, he improved substantially on
Birkhoff's results on homoclinic
tangles, as we explain in Section 14.4,




10
Global Phase Portraits

In Part One, we introduced limit points and cycles in dimensions one, two, and three. The
decomposition of the state space into basins of attraction, by the separatrices, was emphasized.
In Part Two, the inset structure of the separatrices was developed. The geometry of the
exceptional limit sets, determined by their Liapounov characteristic exponents, was described.
In this chapter, we review all this and assemble it into a global overview of the phase por-
trait of a typical system.
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10.1. Multiple Attractors

For pedagogic reasons, our discussion has often centered on an attractor. However, generic systems
commonly have several attractors. So we begin this review chapter with an explicit acknowledg-
ment of this fundamental feature: multiple attractors.

Let's begin with the simplest case, in which the state space is one-dimensional: a curve.

In this context, limit sets are points. Generically, poim attractors and point repellors alternate along
the curve. The repelling points separate the basins of the attracting points. An initial state, chosen
from one of the basins, tends toward the unique attractor in its basin, The different attractors repre-
sent the equilibrium states that may be obsérved in this system.

10.1.1. In this example, there are fwo attractive points, each in its own basin. The system
is bistable, in that two distinct stable equilibria are possible,

In general, a one-dimensional system is multi-stable, in that more than one stable equilibrium point
is possible,
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10.1.2. Notice that in this example, the two basins are separated by the point repellor,

Initial points slightly to the left of the repellor tend to attractor A, while those slightly to
the right tend to attractor B. This behavior is roughly like a mechanical toggle switch.

Now let's move on to two dimensions.

10.1.3. Remember the pendulum? Here is the magnetic bob from Figure 2.1.22. This is
also a bistable system. But the two basins are two-dimensional, so the separatrix between
them is a curve. This curve is repelling, vet not a repeftior, In fact, it consists of the fnset
of the saddle point between the point attractors. This saddle point represents an unstable
equilibrium of the bob, balanced between the forces of the two magnets. And its inset
represents those improbable initial states which tend to this unstable equilibrium and balance
there.

Not every separatrix is the inset of a saddle point.
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10.1.4. Recall this porteait, from Figure 1.5.8. Here, the periodic repellor bounds the two-
dimensional basin of an attractive point. It is a scparatrix,

Two dimensions are rather special. Let’s have a look at the three-dimensional case, which
is more typical.

P
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10.1.5. In this portrait of a simple bistable system in 30, there are again two artractors.
Both are rest points. Their basins are three-dimensional, and are bounded by a surface,
This surface, the separatrix in this example, is the inset of a saddle point of index 1.
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Recall that the index of a saddle point is the dimension of its outset.

Separatrices need not be insets of a saddle point. They are, usually (but not always), insets
of a nonattractive limit set: point, cycle, or chaos.

e ey
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10.1.6. Here, for example, is a bistable system with two periodic attractors. Their basins
are bounded by a cylindrical surface, the separatrix. It is the inset of a periodic saddle.

Remember that limit sets can be aperiodic, that is, chaotic. Thus, there may be both chaotic attrac-
tors and chaotic separatrices in a typical multistable system. Details are given in Part Two.
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10.1.7. This is one of the most famous
chaotic attractors.
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10.2. Actual and Virtual Separatrices

In Section 1.5, we defined the separatrix of a dynamical system as the complement of the basins
of attraction, That is, an initial state belongs to the separatrix if its future (omega) limit set is not
an attractor. According to this agreement, the separatrix consists of the insets of the non-attractive
(or exceptional) limit sets. (See Section 1.5.) But do they, in fact, actually separate basins? If so,
they are called actual separatrices. But, as we shall see, it may happen that they do not separate
basins. In this case, they are called virtual separatrices.

Here are some examples, beginning with 1D,

10.2.1. As we have seen in the
preceding section, point repellors may P
scparate basins in one-dimensional s
state spaces.

10.2.2. Butif we connect the ends of
the curve, we have a unistable system!
There is only one basin. The separatrix
(a single point repellor) bounds it, but
does not separate anything. It is a vir-
tual separatrix,
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Likewise, in 2D, the separatrix consists of curves that are either insets of saddle points or periodic
repellors. Examples of both sorts have been shown in the preceding section. But now look at these.

Recall that in the bistable magnetic pendulum, there is a saddle point near the bottom, as shown
in Figure 10.1.3. But like the simple pendulum of Section 2.1, there is also a saddle point at the
top of the swing.

>

10.2.3. The saddle point at the top of the swing represents the watershed between falling
to the right and falling to the left. Its inset consists of those improbable initial states that
tend to balance at the top of the swing. As shown here, the initial states close to this inset,
to either side, belong to the same (unshaded) basin. Thus, this inset curve is a virtual
separafrix,
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This inset failed to actually separate basins because the state space is a cylinder. Another
way an inset may fail to divide basins occurs on the Mébius band.

10.2.4. Consider first this bistable
system. Two basins of periodic attrac-
tors arc separated by a periodic
repellor. The periodic repellor is an
actual separatrix. There is also a point
repellor in the center. It is a virtual
separatrix.

Now remove the point repellor at the center, cut through the remaining strip, give one
end a half-twist, and carefully paste the ends together again.

10.2.5. Now we have a monostable
dynamical system. There is only one
periodic attractor, which goes around
twice, The periodic repellor remains,
and still goes around only once before
closing. It no longer separates two
basins. It is a virtual separatrix,

And now, some examples in 3D.
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10.2.6. Recall this portrait from
Figure 3.9. The inset of a periodic sad-
dle in three-dimensional Euclidean
space is twisted an even number of
times. It still bounds two basins, and
is an actual separatrix.

10.2.7. On the other hand, as shown
in Figure 7.3.10, it may twist an odd
number of times. Then it bounds only
one basin, and is a virtual separatrix,

Finally, recall that insets may be thick, or chaotic. Our favorite example, Poincaré’s solenoid, was

constructed step by step in Section 8.1
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10.2.8. The fractal inset of this periodic saddle of homoclinic type is twisted once, as
shown in Figure 8.1.7, It is a virtual separatrix.
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Generic Properties

We always try to convey the features of typical, garden-variety, dynamical systems. The
exceptional cases are more complicated and numerous, and they interrupt the discussion.
Moreover, we feel that they should not arise very often in applications, because they are
exceptional. This prejudice, shared by all dynamicists, has become a main theme in dynamical
systems theory.

The properties characterizing these typical systems are called generic properties. Although
this name was established early in the program, it turned out that it might have been better
to call them weakly generic properties. For it has become commonplace to observe excep-
tional behavior (violating a so-called generic property) very frequently. An explanation for
this paradox will be given in Part Four, "'Bifurcation Behavior!” Meanwhile, with this warn-
ing, we will continue to call these properties generic!

A considerable portion of the history of mathematical dynamics has been dominated by
the search for generic properties. These define a class of phase portraits that are far simpler
than arbitrary ones. The goal of the search is to narrow down the complexity of the por-
traits enough to allow a complete classification. This was achieved for dynamical systems
in the plane by Peixoto around 1959. This gave the whole program a tremendous boost,
but the higher dimensional generic systems are still hopelessly complex. This chapter presents
the fundamentals of this program, initiated by Andronov and Leontovich in 1934.

The prototypical results, due to Peixoto, apply to orientable (untwisted) surfaces. An early
global result for other state spaces was found by Lawrence Markus around 1960. Definitive
results were obtained by Ivan Kupka and Stephen Smale in 1964. Now we will describe
the essence of this main theme in the theory.

We begin with the definition of the most important global properties of dynamical systems,
or vectorfields: G1, G2, and G3. Then, in a final section, we describe the official meaning
of generic property and state the Kupka-Smale Theorem: Properties Gl, G2, and G3 are
generic.
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11.1. Property G1 for Critical Points

To begin, let’s recall the distinction between hyperbolic and nonhyperbolic critical points.

In Chapter 6 we created an atlas of limit points, Using their CE's, we carefully distinguished the
hyperbolic and nonhyperbolic cases. We brushed aside the nonhyperbolic cases, claiming they are
nondegenerate, exceptional, or nongeneric. The global formulation of this assertion is the part
of the Kupka-Smale Theorem asserting the genericity of property 1, for critical points. In this
section. we describe this property of critical points (that is, limit points).

type | index |  portrait CE
e - — : 1=1
0 -
; ®) |-
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11.1.1. This is Figure 6.4.8, showing the five elementary critical points in 2D. There are
seven hyperbolic critical points, namely, these five together with the radial attrator and
the radial repellor.

repellors

Here, radial means that the CE’s are real and equal, The radial type is intermediate between the
spiral and nodal types,
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11.1.2. This is a nonhyperbolic critical
point called a center The CE's are
shown in the inset window.
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11.1.3. This is another type of non-
hyperbolicity.

11.1.4. This is the worst case of
nonhyperbolicity. Many more different
portraits are possible with both CE's
zero than in the two cases above,
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Now we are ready for property Gl.

11.1.5. A dynamical system has property G1 if all of its critical points are elementary. In
this example, each and every critical point is elementary.

In the literature of dynamical systems theory, this definition usually has hyperbolic in place of
elementary. But this version probably results in 2 more satisfactory theory, from the point of view
of the experimentalist, or in the context of applications.

For the eight elementary critical points that occur in 3D, see Figures 6.5.5 and 6.5.6.
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11.2. Property G2 for Closed Orbits

In Chapter 7, we created an atlas of limit cycles, Using their CM's, we carefully distinguished the
hyperbolic and nonhyperbolic cases, As in the case of limit points, we neglected the nonhyper-
bolic cases. The global justification of this neglect is the part of the Kupka-Smale Theorem assert-
ing the genericity of property G2, for limit cycles. In this section, we describe this property of

limit cycles.

To begin, let’s recall the distinction between hyperbolic and nonhyperbolic limit cycles.

For 2D, these were shown in Figure 7.2.7.

portrait .M
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11.2.1. In 2D, a limit cycle has only one characteristic multiplier (CM), which is real. These
are the only hyperbolic limit cycles in 2D. The absolute value of the CM is smaller than
1 (periodic attractor) or greater than 1 (periodic repellor).
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In the nonhyperbolic case, the CM is equal to plus or minus 1, and the limit cycle may be an attrac-
tor, a repellor, or neither. Here are two examples, with the CM equal to plus 1.

11.2.2. This portrait, called a center,
has more or less concentric limit
eveles, Each of them is nonhy perbolic,

11.2.3. This portrait has a single limit
evele, It attracts on one side, and repels
/ on the other. Its CM of plus 1 is not

enough information to predict its
artracting/repelling behavior,
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This completes our partial survey of limit cycles in 2D. In 3D, each limit cycles has two CM's, They
may be conjugate complex, or both real. If they are both real, they may be distinct or identical.
This brings up the distinction between byperbolic and the similar idea, elementary. The actual
definition of byperbolic limit cycle in any one dimension is: there are no CM's of absolute value
1. Elementary is a little stronger. An elementary limit cycle is one which is hyperbolic, plus all its
CM’s are distinct.

All the elementary limit cycles in 3D are shown in Figure 7.5.7.

Here is the definition of G2.

11.2.4. A dynamical system satisfies property G2 if cach and every one of its limit cycles
is clementary. In this example on the two-dimensional torus, there are several limit cycles
in a braid, and each is elementary.
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11.3. Property G3 for Saddle Connections in 2D

Every trajectory of a dynamical system comes from somewhere and goes somewhere. That is, it
has an alpha limit set and an omega limit set. Every trajectory is in the outset of its alpha limit
set, and at the same time in the inset of its omega limit set. Thus, outsets and insets normally inter-
sect each other,

However, most of the time, a trajectory comes from a repellor and goes to an attractor, Exeeption-
ally, one comes from a repellor and goes to a saddle, or comes from a saddle and goes to an attrac-
tor. Very exceptionally, a trajectory comes from a saddle and also goes to a saddle. Such a trajectory
is called a saddle connection, or a beteroclinic trafectory, It is even possible for a trajectory to
connect a saddle to itself! This is called a homoclinic trajectory. Poincaré realized that these trajec-
tories were particularly important in the qualitative behavior of dynamical systems.

Note that a heteroclinic trajectory always belongs to the outset of a saddle (the donor), and to the
inset of a saddle (the receptor) as well. Therefore, the donor outset and the receptor inset must
intersect, and their intersection contains the entire heteroclinic trajectory. Generally, the intersec-
tion of a saddle outset and a saddle inset contains not just one, but an entire family of heteroclinic
trajectories. Property G3 concerns the quality of the intersection of insets and outsets of limit sets
of saddle type, especially saddle points and periodic saddles. It requires that these intersections
all be transperse (that is, cleanly crossing).

In state spaces of one dimension, there are no saddles. In two dimensions, hyperbolic saddle points
have invariant curves as inset and outset. There are no periodic saddles. In this section, we briefly
explain property G3 in dimension two only. The full story is told in detail in Chapters 13 and 14,

In two dimensions, a dynamical system satisfies property G3 if it has no saddle connec-
tions at all.
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1.3.1. This is a saddle connection in 2D. The dashed trajectory comprises half of the
outset of the hyperbolic saddle point on the left, its donor. Simultaneously, it is half of
the inset of the hyperbolic saddle point on the right, its receptor. As this system contains
a saddle connection, it does not satisfy G3
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11.3.2. This system has no saddle connection. The outset of the saddle points on the left
consists of two trajectories, which go to attractors (not shown). The inset of the saddle
point on the right consists of two trajectories, which come from repellors (not shown),
One of the trajectories leaving the left saddle narrowly misses one of the trajectories ap-
proaching the saddle on the right. This portrait is obtained from the preceding one by a
slight perturbation.
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Property G3 is a global property. It requires, in two dimensions, that each saddle outset
avoid coinciding with any saddle inset,
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11.3.3. The magnetic pendulum is a global system satisfying property G3. All four saddle
outset trajectories successfully avoid all four saddle inset trajectories. (See Figure 2.1.22.)
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11.4. Properties G4 and F

Another generic property, G4, will be described in Chapter 15. It was originally formulated by
Peixoto, in its oriented, two-dimensional version: The system has no nontrivial recurrence. Here
is the main example of nontrivial recurrence,

11.4.1. Recall this solenoid, from
Figures 1.4.11, 4.4.21, and 4.4.22. All
trajectories on this torus are recurrent
in the sense that their omega (and
alpha) limit sets are the entire torus.
Thus, if we choose any little disk in the
torus, each trajectory recurs, or passes
through that disk again and again in its
future (and past). We call such a system
a limit torus.

In other words, a limit torus is topologically transitive, as described in Figure 9.2.11. It shares this
property of all the known chaotic attractors and limit sets. But, it occurs in two-dimensional systems,
while chaotic sets do not. So in 2D, the toroidal solenoid is the main example of nontrivial recur-
rence, while in 3D the situation is much more complicated.
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Finally, there is one more generic property we must describe, one which is special to
the 2D case.

A dynamical system has property F if it has only a finite number of limit sets. In the 2D context.
limit sets must be limit points, limit cycles or limit tori. This is a classical result of two-dimensional
dynamic systems theory, known as the Poincaré-Bendixson theorem. Thus a 2D system satisfying
G4 (no limit tori) will also satisfy property F if it has only a finite number of limit points and only
a finite number of limit cycles.

11.4.2. Here isa 2D system violating
property F. It has a center: an infinite
number of limit cycles, arranged as
concentric cycles around a limit point.
See Figures 2.1.18, 2.2.3, and 2.2.5 for
cxamples.

These properties G1, G2, G3, G4, and F, were all introduced by Andronov, de Baggis, and Peixoto
in their historical works on structural stability in 2D, We now turn to that subject.
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Structural Stability

In the applications of dynamics in various fields, the dynamics—that is, the actual
vectorfield— can never be specified exactly. In fact, outside of a few cases in theoretical
physics, one basically makes a rough guess. The mathematical theory of dynamical systems
might be useful anyway, if it can describe features of the phase portrait that persist when
the vectorfield is allowed to move around. This idea, now called structural stability, emerged

early in the history of dynamics.
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12.1. Stability Concepts

The idea of structural stability seems to have appeared first in the 1930's, in the writings of Andronoy
and collaborators, in Russia. It was introduced to North America by Lefshetz, the great topologist,
and has played a central role in the development of the subject here ever since.

the state space.

12.1.1. The criteria for structural
stability rely upon two supplementary
notions: perturbation and topological
equivalence, A perturbation of a vec-
torfield means the addition to it of a
relatively small vectorfield, frequently
unspecified. Here we show the effect
of a perturbation, at a single point in
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12.1.2. Here we show the effect of a global perturbation. The perturbation is itself a vec-
torfield, as shown here. The effect of adding this perturbing vectorfield to the original one
{on the left) is 1o modify it at every point in the state space,
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Topological equivalence, or synonymously, toprological conjugacy, of two phase portraits, means
there is a bomeomorphism of the state space, or continuous ‘rubber sheet”™ deformation, which
maps one of the portraits wo the other, preserving the arrow of time on each trajectory,

Here are some topologically equivalent portraits in two dimensions,

12.1.3. These two point attractors are topologically equivalent. A homeomorphism can
deform one into the other, preserving the integral curves.

sl

12.1.4. But the point repellor on the left is not topologically equivalent to the center
on the right. A homeomorphism cannot map a spiral onto a circle.

To be faithful to the theory in higher dimensions, we will need also the concept of epsilon
eguivalence. This is a topological equivalence of dynamical systems, in which the deforming
homeomorphism only stretches or slides the state space a small amount (measured by epsilon).
Likewise, in the spirit of classical mathematics, we will call a perturbation a delta perturbation,
if it is small (measured by delta).
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Now we use both of these stability concepts, delta perturbation and epsilon equivalence,
to introduce the idea of structural stability.

A vectorfield has the property of structural stability if (choosing epsilon}) all delta perturbations
of it (sufficiently small) have epsilon equivalent phase portraits,

Here is a simple example.
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12.1.5. Imagine a system with a spiral attractor which attracts very weakly. By adding
a medium-sized perturbation pointing outward, we might be able o change it into a spiral
repellor.
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12.1.6. But adding a delta perturbation pointing outward (sufficiently feeble) may make
our attractor weaker, but it still attracts. It is topologically (in fact, epsilon) equivalent to
the original system. This is an example of a structurally stable system.
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12.1.7. Now consider this dynamical system, a center. The addition of a delta perturba-
tion pointing outward (no matter how weak) results in a point repellor, which is not
topologically equivalent to the center. This is a primary example of a structurally unstable

sysfem,
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12.1.8. In fact, the center may be perturbed into either a point repellor or a point attrac-
tor, depending on the inclination of the perturbation,
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12.1.9. On the other hand, this portrait is structurally stable. The inclination of the per-
turbation may make the periodic attractor smaller or larger, but the perturbed portraits
are all topologically equivalent.
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12.1.10. Here is another important example. Consider a system with a saddle connection,
as in Figure 11.3.1, Adding a delta perturbation pointing downward {or upward), we destroy
the saddle connection. The resulting phase portrait is not topologically equivalent. These
two examples illustrate all basic types of structural instability in 2D,
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12.2. Peixoto’s Theorem

Now we go on to Peixoto’s historic theorem, relating the generic properties of the
preceding chapter to structural stability in 2D

A watershed in the history of dynamics, Peixoto’s work brought together different topology and
classical dynamics, ushering in a new age of mathematical dynamics. The attempts to extend his

2D results to 3D and beyond characterized the early days of this new approach, in the 1960's.

Peixoto’s result applies to a very restricted class of state spaces, called compact, orient-
able surfaces. We start with these.

£
[

1

i

12.2.1. A state space is called compact if it can be described as a surface (of whatever dimen-
sion) in a finite region of Euclidean space (of a higher dimension) which is a closed set.
Here, closed means no holes or loose ends. A surface is orfentable if it has two sides inside
and outside. The surfaces shown here are all compact and orientable. All state spaces in
this section will be assumed to be compact orientable 2D surfaces.

12.2.2. This excludes a sphere with a hole, the Klein bottle, the upper hemisphere, and
s0 on. Nevertheless, the theory described here has been extended o many of these spaces
as well!
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Now we are ready to state Peixoto's theorem, We will use property § as a synonym for structural
stabiliry.

Peixoto’s theorem: among all smooth dynamical systems on a compact, orientable surface,
A, properties G1, G2, G3, G4, and F are generic,
B. property S is equivalent to these properties (A), and
C. property S is generic,

Clearly C follows from A and B, but this is the most exciting aspect of the theorem. For it says
that in applications. this strong kind of stability is to be expected as the typical case, while struc-
tural instability is pathological,

Here, generic is a technical term, which we translate as fypical sometimes. However, the
atypical cases (especially those in which property G4 is violated) are so frequently
observed in experiments that we should use weakly generic as the technical term, and
understand typical as meaning slightly more probable than the exceptional cases. The
reason for this paradox is that the Kronecker (solenoidal) flows on the torus (See Part
One) occur for a fat fractal or thick Cantor set of leaves in Thom's big picture.? This will
be explained in more detail in Part Four.

Part A was generalized promptly to higher dimensions, except for the genericity of F which failed,
along with C. Part B also was generalized, by Smale and Palis, More about this in later chapters.

Peixoto’s proof is outlined in the next section. Here, we give some examples.

12.2.3. Here is a system exhibiting G1 =G4 plus F, and thus 5.
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12.2.4. A delta perturbation yields an epsilon equivalent portrait.

But Peixoto's theorem says more: saddle connections are structurally unstable, as we saw in Sec-

tion 11.3.
Peixoto’s theorem says still more: nontrivial recurrence (solenoidal flow on a torus) can

be perturbed (in Thom's big picture) into a structurally stable system.

12.2.5. Here is a torus with a solenoidal Alow, It violates property G4, so by part B of
Peixoto's theorem, it is not structurally stable. By part C, it can be changed 1o an 8 system
by a delta perturbation. Warndng: This delta perturbation may be rare, or hard to find, since
it belongs to the complement of a thick Cantor set, as explained in Part Four,
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12.2.6. This § system will not have any limit points or limit tori, but it must have limit
sets, 5o, there are some limit cycles, braided around the torus. They occur in pairs, alter-
nately attracting and repelling. The implications for frequency entrainment of coupled
oscillators are discussed in detail in Chapter 5.
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12.3. Peixoto’s Proof

We break the proof into five steps;

1. G1 implies FP (finite number of limit points).
2. G2 implies FC (finite number of limit cycles).

3. G4 implies no limit tori,
Therefore, G1, G2, and G4 imply F

4. G1, G2, G3, and G4 (and hence F) imply 5.

5. 8 implies G1, G2, G3, and G4,

12.3.1. Step I: Generic property G

implies there are only a finite nuniber

of limit points. For in the compact state
space, an infinite number of critical
points would have o contin a con-
vergent sequence as shown here, And
the critical point at the end of the
sequence will have o violate G1.
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L i st 12.3.2. Similarly, generic property
' ; j G2 implies there are only a finite

1\ : 4 number of limit cycles. This is special

il k\_w to two dimensions, where an infinite
el b i number of limit cycles would be forced
(\:""’ to “'pile up.’ That is, either they must
converge to a limit cycle, as shown here

o (violating the generic condition
G2 —hyperbolic limit points),

The proof of this step used topology and calculus, and is not terribly difficult.

12.3.3. Step 2: If the system is generic (G1, G2, G3, and G4), then it bas only a finite
number of limit points, a finite number of limit cycles, and no other limit sets. This is
called property F Further, they are all hyperbolic, and there are all hyperbolic, and there
are no saddle connections. Here is a typical portrait of this type.

The proof of Step 2 requires the infamous Closing Lemma. This is used to eliminate the possibility
of a toroidal limit set. First proved in the present context by Peixoto, it has been wonderfully general-
ized by Pugh and Robinson.?
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12.3.4. Step 3: These generic properties (Gl, G2, G3, G4, and perforce F) ensure siruc-
tural stability, An arbitrary small perturbation of the portrait shown in the preceding panel
produces an equivalent portrait.

The proof of this step requires the actual construction of a topological deformation from the original
portrait to the perturbed one, but is not o difficult.
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12.3.5. Step <: Structural stability ensyres the generic properties (G, G2, G3, G4, and neces-
sarify, F), The preceding section gives examples showing how structural stability ensures the
first three properties. Here is an example showing how G4 is ensured. The center portrait has
a toroidal limit set with no limit cycles or limit points. The only limit set is the entire state
space, a torus. Small perturbation can produce the two portraits shown below, which are not
topologically equivalent. The difficult Closing Lemma is used in this step also. Warning: Again,
the perturbations producing these structurally stable (braided) flows from the solenoidal flow
can be rare, or hard to find, because of belonging to the complement of a thick Cantor set.
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Heteroclinic Tangles

Limit points and cycles of saddle type may be distributed throughout the state space. Each
has insets and outsets, which wander around near each other. Intersections are not unlikely.
These, called saddle connections, consist of trajectories of the dynamical system that lead
from one saddle (called the donor) to another (the receptor). This connecting curve is called
a heteroclinic trajectory if the donor and receptor saddles are different, or a bomoclinic
trajectory if they are the same. This chapter is devoted to saddle connections by heteroclinic
trajectories which satisfy the generic property 3, or bransversality. The bomoclinic case
(a trajectory connects a saddle to itself) is described in the next chapter.

In state spaces of one dimension, there are no saddles. In two dimensions, there are generic
saddle points with one-dimensional insets and outsets. In the three-dimensional cases, there
are generic saddle points and cycles, of which the insets or outsets may be surfaces. In this
chapter, we will describe all of the transverse heteroclinic saddle connections in two and
three dimensions: limit point to limit point, limit point to limit cycle, and cycle to cycle.
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13.1. Point to Point

First, consider phase portraits in the plane, with two hyperbolic limit points of saddle type. The
insets of each are curves, likewise their outsets. These curves are trajectories of the dynamical system.

13.1.1. These three phase portraits each have two hyperbolic limit points of saddle type,
The end ones have no saddle connection, while the one in the center has a single heteroclinic
trajectory. The sequence has occurred previously in Part One, uunder the name saddle
switching. It represents the actual coincidence of the outset from the left saddle and the
inset to the one on the right. The transverse intersection of two curves in the plane must
be in isolated points. Therefore, this intersection is not transverse. It is a nongeneric saddle
connection. There are not transverse saddle connections in the two-dimensional case.
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And now, on to two hyperbolic saddle points in 3D.

In the three-dimensional case, there are several possibilities. There are two types of topologically
distinct hyperbolic saddle points: index 1 {inset two-dimensional, outset one-dimensional) and
index 2 (inset one-dimensional, outset two-dimensional). Each can be a donor or receptor of a
saddle connection. But transverse saddle connections, in 3D, only occur between two-dimensional
outsets and two-dimensional insets. Such an intersection consists of a single curve, a trajectory.
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13.1.2. A saddle point of index 1 cannot have a transverse connection to a saddle point
ofindex 2, in three dimensions. Three closely related portraits are shown here, in analogy
to saddle switching in the two-dimensional case. The one in the center has a nontransverse
heteroclinic trajectory connecting the two saddle points,

13.1.3. The next donor, a saddle point of index 2, cannot have a transverse connection
to a saddle point of index 2 (same receptor as above), in three dimensions, Here again,
three similar portraits are shown. The one in the center is an example of a nontransverse
heteroclinic trajectory.
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13.1.4. Transverse connection from a saddle point of index 1 to a saddle point of index
I {like the case of index 1 to index 2, and index 2 to index 2, described above) cannot

occur in three dimensions.

13.1.5. In this fourth case, a heteroclinic trajectory leads from a saddle point of index
2 1o one of index 1. The outser of the donor and the inset of the recepror are both two-
dimensional. Thus, a trnsverse intersection of them in a one-dimensional curve (necessarily
a trajectory of the dynamical system) is possible. A nontriansverse intersection along a
heterclinic trajectory is also possible — for example, the two surfaces could be tangent to
each other, along their intersection. Here, the transverse case is illustrated, This is the only
generic (transverse) connection between saddle points in three dimensions,
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/_3 y 13.1.6. The preceding illustration
O

g -J- -d; . — shows the transversely connected sad-
4 i - dle points, assuming both are of the
y radial (nonspiral) type. Here, the donor
has been replaced by a spiral type. This
is topologically equivalent to the
preceding portrait,

13.1.7. Inthis example, both the donor and the receptor are of the spiral type. Again, this
is topologically equivalent to the preceding portraits,
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13.2. Outsets of the Lorenz Mask

Recall the Lorenz mask, from Part Two. This was the first chaotic attractor to be firmly established
in experimental dynamics, It is actually made of angled outsets. Here, developed in stages, is the
complex of point-to-point tangles found in the Lorenz system.! There is a radial saddle point of
index 1 (the receptor) situated between two spiral saddle points of index 2 (the donors). The outset
surfaces of the two donors are heteroclinically incident to the inset surface of the receptor.

- m e ey
L

13.2.1. Here are two saddle points, A and Y. They are hyperbolic, in three dimensions.
One, A, has index 2, with spiral dynamics on its planar outset (shaded), Cut{A). The other,
Y, has index 1, with nodal dynamics on its planar inset (dotted), IniY). The two outsets
are attractive, as shown by the neighboring trajectories. As Out{A) and In(Y) are both two-
dimensional, they could intersect transversely in three space, If they did, the transversal
intersection would have to be a trajectory, called a beteroclinic trajectory,

Next, we will build up this complex, step by step.
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13.2.2. Adding another saddle point, B, essentially identical to A, we make a voke like
this. Both A and B are heteroclinic to Y. They are transversely beteroclinic, as the two planar
outsets (shaded) intersect the planar inset (dotted) transve rsely. There are fwo beteroctinic
frafectories in this yoke. Note that the arriving outsets are incident upon the departing
outset, at Y. We call this a neat yoke Next, we will see where these outsets end up.
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13.2.3. Asthe arriving outsets, Out{A) and Out{B), both have spiral dvnamics, the depart-
ing outset that bounds them, Out(Y), swirls around and reinserts, as shown here. It cannot
go off to infinity, as the Lorenz system has a repellor at infinity.
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13.2.4. The result of reinserting is this: as each branch of Out(Y) swirls around one of
the shaded outsets, it approaches near the other shaded outset. It gets attracted, as outsers

are attractive. Thus, the omega limit set of Qut(Y) is within the closure of the union of
the three yoked outsets.




Heteroclinic Tangles

387

13.2.5. And here, for comparison, is a computer drawing by Robert Shaw of the Lorenz
attractor. Inspection of the equations reveals the three distinguished saddle points, right
where we want them. But the planar inset of the saddle point in the lower center is
qualitatively invisible, It is a kind of a separatrix. Now we will add it to the picture, with
its full extension.
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13.2.6. Referring to Figure 13.2.4, we run the flow backwards in time, to extend the planar
{dotted) inset outward from Y. It follows the heteroclinic trajectorics (dashed) back o the
voked saddles, A and B, scrolling as it goes.
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13.2.7. Extending the dotted inset farther backwards in time, it scrolls up tightly around
the one-dimensional insets of A and B, In{A) and In{B).
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15.2.8. Extending the dotted inset farther backwards still, the four ends of the scrills are
pulled out along the curves, In{A) and In(B), toward their source at infinity.

The chaotic Lorenz attractor is composed of a yoke of tangles, folded into itself. Perhaps all of
the familiar chaotic attractors have such an outset structure. But even in nonchaotic systems, the
tangles are very important features.

We resume now our excursion into tangles.
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13.3. Point to Cycle

There is only one kind of hyperbolic saddle cycle in 3D: index 1 (two-dimensional inset and outset),

The two-dimensional outset of a hyperbolic limit point of index 2 can have a transverse intersec-
tion with the two-dimensional inset of such a limit cycle.

! T
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13.3.1. A heteroclinic trajectory from a saddle point of index 1 to a saddle cycle can never

be transverse in three dimensions. Here is a nongeneric portrait, in the center, flanked by
two nearby generic ones.
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13.3.2. Similarly, a heteroclinic trajectory from a saddle cycle to a saddle point of index 2
is nongeneric.
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13.3.3. Thetwo preceding panels illustrate nongeneric connections between a saddle cycle
and a saddle point of the radial type, Here is an analog, with the radical point replaced
by a spiral.
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13.3.4. In this example, the outset of a saddle point of index 2 actually coincides with
the inset of a saddle cycle. These nongeneric examples illustrate a degeneracy of order
I: only one condition of genericity has been violated.
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| \ 13.3.5. Nevertheless, heteroclinic
~ o ; AT connection from a saddle point of
X e index 2 to a saddle cycle can occur
k""eﬁ .ﬁs’d gencrically in three dimensions. Here
is the first step in the visualization of
this configuration.

13.3.6. To generate more of the picture, the inset of the limit cycle (upper cone above)
must be extended further into the past, to see how the trajectories spiraling into the limit
cycle must have come from near the inset trajectories of the limit point,
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13.3.7. Before, the saddle point of radial type was shown. Here, it has been replaced by
a spiraling one. These two distinctive types of heteroclinic behavior are topologically
equivalent, however.
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13.3.8. The heteroclinic portraits just described can be transformed into two other generic
portraits by reversing the direction of time. Thus, the prior connection, on the left, sug-
gests a new sort, on the right, in which the heteroclinic trajectory goes from a saddle cycle
to a saddle point of index 2.
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13.3.9. These two forms, radial and spiral, of the generic saddle connection result. As
above, they are topologically equivalent.

All of the forms of this section could be reversed, by changing the direction of time, to provide
examples of heteroclinic tangles from a limit cycle to a limit point: cycle fo point.



Heteroclinie Tangles 397

13.4. Cycle to Cycle

Thus far, three generic and topologically distinet saddle connections have been described:
—saddle point index 2 1o saddle point index 1,
—saddle point index 2 o saddle cycle,
—saddle cycle to saddle point index 1.

In three dimensions, there is just one more.

13.4.1. The outset of a saddle cycle
{two-dimensional) can intersect the
inset of another saddle cycle (also two-
dimensional) transversely, in a (one-
dimensional) curve of intersection,
necessarily a spiraling trajectory. This
fourth type of generic heteroclinic
behavior is decidedly complicated.
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13.4.2. To dissect the complicated structure of such a connection between limit cyeles,
Poincar¢ introduced the transverse section, and the first return map. Within the cross-
section (the Poincaré section) the two limit cycles are represented by points, and their in-
sets and outsets by curves, The intersection of the outset of the donor cycle (above) and
the inset of the receptor cycle (below) is a heteroclinic trajectory, represented in the Poin-
caré section by the point designated H,
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13.4.3. This picture, understood by Poincaré and fully analyzed by Birkhoff and Smith,?
involves a doubly infinite sequence of intersections of the curves representing the inset
and outset, For the marked point, H, representing the heteroclinic trajectory, is mapped
by the Poincaré first return map into another point, H+, which is also in both curves. This
point, H +, is actually on the same heteroclinic trajectory as H, at a later time. Further, the
image of H+ is another point, H+ +, through which both curves must cross.

The completion of this drawing, showing the full tangle of curves within the Poincaré section,
was carried out brilliantly by Birkhoff. His topological analysis of this picture reveals that between
the points of intersection, H and H+, there must be, assuming G3, an odd number of others.

This construction of Birkhoff is carried out in the next section.
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13.5. Birkhoff's Signature

The successive intersections of the inset and outset, curves within the Poincaré section, shown
above, are all points belonging to a single heteroclinic trajectory. However, there may be (in fact,
must be) other intersections, belonging to other heteroclinic trajectories. Our task now is to chart
all of these, and the course of the inset and the outser curves between intersection points.

13.5.1. Here is a close-up view of two
successive intersections, M and H+
belonging to a single heteroclinic tra-
jectory. They are shown here on a piece
of the inset curve of the saddle point
on the right, representing the receptor
saddle cycle. Through H+ passes a
short piece of the outset curve of the
saddle point on the left, representing
the donor saddle cycle, How can we fill
in the entire donor outset curve, con-
necting these short segments?

Notice the arrows on the outset segments, indicating the out-directions on the outset
curve, away from the donor.
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13.5.2. The simplest solution might
be just to connect up the loose ends,
as shown here. Unfortunately, this does
not work. The out-directions must
connect properly, without conflict,

13.5.3. This drawing shows three possible connections for the outset curves, joining the
short segments without conflict of the out-directions. The complete outset segment, join-
ing two successive points corresponding to the same heteroclinic trajectory, H and H+,
cuts through the inset segment joining the same two points in an odd number of points,
all heteroclinic, but belonging to different heterclinic trajectories. The two complete
segments, joining H and H + . comprise the figure Birkhoff called the signature of the sad-
dle connection,
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Some more complicated examples are given in the next chapter.

13.5.4. This shows the simplest pos-
sible Birkhoff signature. The odd
number of interpolated heteroclinic
points is only 1, This point, /, repre-
sents another heteroclinic trajectory,
sharing the same donor and receptor,
and possessing its own signature (not
shown).

13.5.5. Reinserting this Birkhoff
signature into the starting picture of
this section, together with two of its
forward images under the first return
map, we have a roughly complete idea
of the donor outset. There are many
possibilities for the future of the outset,
but here we have used only the
simplest signature, as shown in the
preceding panel. In this case, there
is an infinite sequence of points of
intersection, M, H+, H++, ..., all
belonging wo a single heteroclinic
trajectory.

Meanwhile, the inset curve of the receptor is still only half-drawn. Where is its past?
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13.5.6. Extending the receptor's inset backwards in time, we obtain the predecessor of
H, H-, its predecessor, H- -, and so on, This completes a doubly infinite sequence, cor-
responding to one full beteroclinic trajectory. Likewise, the interspersed heteroclinic tra-
jectory contributes a2 complementary doubly infinite sequence as shown bere, in the Poin-
careé section,




Fhd Global Bebavior

13.5.7. The doubly infinite sequences each correspond to a heteroclinic trajectory of in-
tersection of the donor’s outset and the receptor's inset, in the original three-dimensional
context, Here, the generic connection of saddle cycles in three dimensions is shown, with
all its complex structure. A section has been removed here, for improved visibility.

If this object were set down upon a rotating phonograph turntable, it would look rather
like a bolt being screwed down.
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The behavior of the trajectory passing by a cycle-to-cyele heteroclinic tangle is a spiraling asymp-
totic approach along the inset of the donor, followed by a period of entrapment, spiraling along
the screw thread of the heteroclinic rangle, and finally an asymptotic escape, along the outset of
the receptor. Thus, the heteroclinic tangle provides a model for transient oscillation.
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13.5.8. In the three-dimensional case, there are several possibilities, summarized in this
table. The two types of topologically distinct hyperbolic saddle points (of index 1 and 2)
and the unigue hyperbolic saddle cvele are each possible donors, or receptors, of a saddle
connection. The nine possibilities are pictured here, with the donors down the left, and
the receptors along the top. Note the order and orientation of the donors is not the same
as those of the receptors.

In summary, there are no generic saddle connections in two-dimensional dynamical systems, In
three dimensions, there are four topologically distinct types. In higher dimensions, the situation
is even more complicated.

The generic property G3 for dynamical systems is this: all inset and oulsel intersections
are transverse. The genericity of this property, like the properties Gl and G2, is estab-
lished by the theorem of Kupka and Smale.
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Homoclinic Tangles

In addition to the four kinds of transverse saddle connections described in the preceding
chapter, there is one more that can occur in three dimensions. This is the connection from
a saddle cycle to itself, called a bomoclinic connection. Homoclinic connections are much
more important than heteroclinic ones, as they occur as exceptional limit sets within
separatrices. Further, as shown by Birkhoff and Smith! they are full of limit cycles. The
study of this complicated case, initiated by Poincaré. is still in progress, An advance was made
by Smale? in 1963. Many topologically different forms are possible. This chapter describes
the main ideas of the three-dimensional context, including some constructions not previously
published.

407
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14.1. Homoclinic Cycles

By definition, a homoclinic trmjectory must belong to the inset and outset of the same limit set.
In the generic context of properties G1, G2, and 3, this limit set may not be a point. The simplest
generic case is a limit cyvele of saddle type, in three dimensions, In this section, we dissect this case,

14.1.1. Here the outset of the limit cycle, at the wop, is pulled down like a sleeve turned
inside out, The inset, below, is likewise pulled up. Then, they are pushed through each
ather, o produce the beginning of an extensive intersection,
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14.1.2. To visualize the intersection, we cut through it with a Poincaré section. The pro-
cedure is the same as the heteroclinic case, described in the preceding chapter (see 13.4.2.).

The key to the analysis is the first return map, which maps the Poincaré section into itself,
corresponding to one revolution around the limit cycle.

14.1.3. As in the preceding chapter
{sce 13.5.1.), the outset surface of the
donor limit cycle and the inset surface
of the receptor limit cycle (in this case,
. they are the same cycle) intersect the
Poincaré section in two curves, the
outset and inset curves, These curves
[ intersect once at the point cut by the
| # limit cycle (shown as a curved arrow
here), and again at a point cut by the
| homoclinic trajectory, such as the
homoclinic point H, shown here.

What happens to the homoclinic point after another revolution around the limit cycle?
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14.1.4. As in the heterclinic case
(again, see 13.5.1), this point is mapped
to another, H+, closer to the limit
point. This image point is on the inset
curve, as this curve is mapped into itself
by the first return map. Further, this
curve consists of all the incoming
points. However, the image point must
also be on the outset curve, which is
also mapped into itself by the first
return map, and which consists of al
outgoing points. The homoclinic
points, H and H -+, are both outgoing
and incoming, by assumption. Thus
through the image point, H+, there
must also pass a picce of the outset
curve, shown here with its out-
direction indicated by an arrow,

How may these outset segments be connected, so as to obtain the entire outset?

14.1.5. Asin the heteroclinic case (sec
13.5.2.), direct connection leads to a
conflict of out-directions. Thus . . .
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14.1.6. .. .as in the heteroclinic case

(sce 13.5.3.), the outset segment from
H v H+ must cross the inset segment
{(between the same two points) an odd
number of times. This is the simplest
legal construction, illustrating the
Birkboff signature in the homoclinic
case,

14.1.7. Reiterating the first return map
again and again, the outset segments
push up against the inset curve, near
the limit point.

14.1.8. Repeating the construction
for negative times (iterating the prior
retrrn map), the insct segments pile up
against the outset curve, again near the
limit point. Thus, we obtain a full pic-
ture of the entire bomoclinéc tangle, as
shown in this drawing of a tangle
studied by Hayashi,* the greatest master
of experimental tangle art,
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14.1.9. Here is the tangle within the Poincaré section, replaced within the original 3D
context (compare with 13.5.7). The behavior of 4 nearby trajectory is a spiraling asymp-
totic approach, along the non-tangled half of the inset surface, followed by a period of
chaotic motion, entrapped within the tangle, and finally a spiraling asymptotic escape, along
the non-tangled half of the outset surface. Thus, the homoclinic tangle provides a model
for transient chaos.

This tangle, based on the simplest Birkhoff signature, reveals additional intersections of inset and
outset loops. This deeper structure is not determined by the Birkhoff signature. Thus, to fully describe
the structure of the tangle, additional signatures must be specified.

In the next section, we introduce a sequence of signatures, published here for the first
time, for the full description of a homoclinic tangle in 3D.
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14.2. Signature Sequence

During the preparation of a preliminary edition of this work in 1980, we tried to deform the Hayashi
tangle (shown in the preceding panel, 14.1.8.) into the Smale horseshoe (described in the next section;
see also Figure 8.1.10). Although the two homoclinic tangles have the same Birkhoff signature, we
were unable to deform the Hayashi tangle into the horseshoe,

In trying to understand the difference between these two exemplary tangles, we developed an infinite
sequence of signatures. The first of these is the Birkhoff signature, which is the same for the two
examples, The second, however, is different, Thus, they could not be deformed, one into the other,
This led o our signature conjecture: if two tangles bave the same signature sequence they are
topologically equivalent.

In this section, we construct the signature sequence, step by step, for the Hayashi tangle.
In the next section, we will apply it to the Smale horseshoe tangle.

14.2.1. Here, again, is the Hayashi
tangle. Itis not a mathematician's pipe
dream, but was laboriously drawn by
Hayashi, from extensive simulations of
the Duffing system (for the forced pen-
dulum, see Part One) with an elec-
tronic analog computer. How can we
give a full characterization of this
tangle? Let's single out 2 homoclinic
point, such as H, and its image H+.
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14.2.2. Extracting the inset and
outset curve segments bounded by
these two points, we obtain the
Birkhoff signature. Again it is the
simplest possible one (see Figure 13.5.3
for three alternatives). To some extent,
it characterizes the chief feature of the
tangle.

14.2.3. For example, here is another
tangle. At first glance, it appears
significantly different from the
preceding one,

14.2.4. Extracting a Birkhoff signa-
ture, we see that it is indeed different.
And this does seem to capture the chief
feature of this new tangle.
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14.2.5. Now let’s return to the old
tangle. Notice how inset loops may
cross through several outset loops. We
want o capture a signature of this
larger-scale behavior of the figure, cor-
responding to its minor features, We
will proceed in steps,

14.2.6. Step 1. Single out a homo-
clinic point and its image, and draw the
Birkhoff signature they determine.
Draw it again, straightened out, as
shown in the inset.

14.2.7. Step 2. Extend the signature
another iteration, by applying the first
return map. Here we see both the
Birkhoff signature and its entire image.
Straighten out this figure also, as shown
in the inset,
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14.2.8. Step 3. Repeat the preceding
step again, and in general, as many
times as you can, as long as the
clongating outset loops never come
back to cross a part of the original
signature, or its forward iterations.

14.2.9. Step <. Repeat the single itera-
tion step once more. This time, one of
the elongating upper loops will make
a new intersection with a segment of
the inset curve belonging to the
original Birkhoff signature, or one of
its forward iterations. In this example,
four new crossings have all appeared
at once.
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The Birkhoff signature is the first of our sequence. The figure in the inset above is the
second. Let’s try out these two on another example.

14.2.10. This is yet another tangle. [t
looks like Hayashi's, but is not. The
Birkhoff signature (shown in the inset)
is the same. Will our second signature
reveal the difference?

o H#

14.2.11. The first iteration of the fun-
damental (Birkhoff) signature comes
close to the fundamental, but does not
cross it. The second image crosses the
fundamental. The figure in the inset is
the second signature of this tangle.
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14.2.12. Here, for comparison, is the
second signature of the two tangles.
The new tangle has two humps, while
the Hayashi tangle has three, under the
arching inset loop. They are topo-
logically inequivalent tangles.

These two signatures are the first of an infinite sequence. See if you can draw the third

signature in the examples above.
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14.3. Horsehoes

In this section, we will tackle another tangle, called Smale's horseshoe. This third example originated
as a geometric construction, but was subsequently observed in the forced Van der Pol system,*
and many others. Along the way, we will give an idea of the third signature of a tangle.

14.3.1. Here is yet another homoclinic tangle, the famous borseshoe of Smale. Note that
the first signature is the familiar simplest one. But in the second signature, shown in the
inset, the hump has been twisted back, creating two new intessections. To further
characterize this tangle, we must draw the third signature,
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14.3.2. Here are the first four sig-
natures of our signature sequence, for
Smale’s horseshoe, The third signature
is not identical to the third signature of
the preceding example (try it and see).

14.3.3. The horseshoe has been untangled by Smale* in a most ingenious way. Choosing
a curved rectangular patch in the Poincaré section with some care, and applying the first
return map yields another rectangular patch crossing the original patch at each end, Now,
deform the whole picture by lassoing the two patches around the waist and pulling gently.
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14.3.4. Continue to pull the upper patch upwards by the waist, while pushing down on
the ends. The idea is to straighten out the lower patch.

14.3.5. There is the fully untangled tangle, the horseshoe of Smale. It is topologically
equivalent to the messy original tangle, yet it admits a full analysis, as shown by Smale.
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14.3.7. Looking at a portion of the
outset through a microscope, we see an
infinite set of horizontal lines. Their in-
tersection with a vertical line (such as
the left edge of the box here) is much
like Cantor’s middle thirds set (see
Figure 9.4.7).

Smale’s analysis of this particular tangle, based on combing it out and applying symbolic dynamics,
might be applied to other homoclinic tangles, through careful use of the signature sequence,

The theory of homoclinic tanges is very important, and yet little known. Even in three
dimensions, the lowest in which they occur generically, there are outstanding problems.
In higher dimensions, little is known. Poincaré expressed the fear that they might defy
analysis forever, but the theory of horseshoes, and the work of Zeeman, Newhouse, and
others® on more general shoes, gives hope.
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14.4. Hypercycles

An even more complicted situation occurs generically in dimension three or more. The insets and
outsets of these may have transverse intersections, tangles, and heteroclinic trajectories in a daisy

chain, called a bypérqwe, or beteroclinic cycle
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14.4.1. Here is the simplest example of a cycle. In a three-dimensional state space, two
closed orbits of saddle type (index 1) have heteroclinic trajectories, each to the other.




Henpoclinie Tangles

25

14.4.2. Thissituation may be described by this diagram, called a directed graph, or guiver.
This has a vertex for each of the limit cyeles, and was introduced by Peixoto™ 1o describe
generic systems in two-dimensional suite spaces,

AN
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14.4.3. More complicated cycles may involve larger sets of critical points, closed orbits,

and even more complicated limit sets, in a daisy chain of saddle connections.
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14.4.4. Here is a hypercycle involving three limit cveles of saddle type. Each is heteroclinic
to each of the others. In all of these situations, it can be proved, by topological analysis,
that each of the limit sets involved is actually homoclinic. That is, membership in a

heteroclinic cycle implies homoclinicity.

Cycles of heteroclinically related critical points are endemic in real dynamical systems, and are
vitally involved in chaotic motions.
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Nontrivial Recurrence

In the history of dynamics, as in philosophy. the concept of recurrence frequently recurs.
A periodic trajectory has the recurrence property: every one of its states will recur again
and again. This is called trivial recurrence. The recurrence property also applies to more
complicated (aperiodic) trajectories. This is called nontrivial recurrence. This concept already
surfaced in the generic property G4, described in Section 11.3, and in the chaotic attractors
of Part Two. In this chapter, more versions of this important phenomenon will be described.
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15.1. Nearly Periodic Orbits

Recall that generic property G4 limits the types of almost-periodic motions, Discovered by Peixoto
in two dimensions, its genericity was established by Pugh in higher dimensions! Suppose that we
take a sequence of points in the state space, converging (approaching asymptotically closer and
closer) to a point, and that each of the points belongs to a closed orbit (limit cycle, or periodic
trajectory). Topological consequences of the generic condition G3 (transversality ) force the periods
of these periodic trajectories to get longer and longer. Thus, the oscillations they represent have
frequencies that get lower and lower. The limit point of the original sequence lies on a trajectory
that need not be periodic. But it is nearly periodic, in that observations cannot distinguish it from
a low-frequency oscillation. We will denote the set of all nearly periodic points of the dynamical
system by NE

15.1.1. A homoclinic limit cycle provides good examples of nearly periodic points. Here
is 2 Poincaré section of 2 homoclinic tangle. Look carefully at the trajectory of the point a,.
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Expansion of the tangle shows how the periodic orbits fit into this picture, from the cover of Hayashi's
collected works. 2

15.1.2. Inside this tangle, there must be a periodic orbit.? Let's follow the small red rec-
tangle, marked c,. Its sides are segments of insets and outsets. After one revolution around
the ring, its first return to the Poincaré section is again a small rectangle c,. Note thart it
is stretched in one direction and compressed in the other. Now follow its next five revolu-
tions, noting that inset segments are stretched o longer insct segments, and outset segments
are compressed to shorter outset segments. Note that ¢, intersects ¢,
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15.1.3. Now take the little piece of ¢, intersected by ¢, and follow it around five times.
It will again pass through the initial rectangle. Continuing in this way, we obtain 2 sequence
of nested boxes, which converge to a periodic point of period five, as predicted by the
theorem of Birkhoff and Smith.4

We may use the expansion of the tangle as a magnifier, to zoom into the microstructure
of the tangle.
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15.1.4. Now let's select two points a, and by, and follow their fates. The line segment agb,

becomes, after five revolutions, the segment agh,,.
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15.1.5. All the intersections of the inset within this sirewched segment ab, must also be

found in the shorter segment ab, but they are five generations smaller;
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We may continue to zoom into this microscopic structure of the tangle.

15.1.6. A few repetitions of the magnification method suffice to locate the periodic point
as accurately as needed. It is within the small tangle.
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By starting with other small rectangles and making judicious use of the zoom method,
additional periodic points may be found.

15.1.7. Closer to the homoclinic point a, there must be another periodic point with a higher
period, such as ¢, shown here. And even closer, another with an even higher period, such
as d,. These may be located as accurately as needed by the zoom method described above,

=

Thus the original homoclinic point is the limit of a sequence of periodic points in the Poincaré
section. In the three-dimensional state space, a sequence of closed orbits (periodic trajectories)
asumptotially approach the homoclinic trajectory. Thus, every point on the homoclinic trajectory
is nearly periodic, yet not periodic.
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15.1.8. Here, highly magnified, is a sequence of periodic points approaching closer and
closer to a homoclinic point, which is nearly periodic, yet not actually periodic,
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15.2. Why Peixoto’s Theorem Failed In 3D

As described in Section 12.2, Peixoto’s theory of structurally stable systems is restricted to the two-
dimensional case. In the case of state spaces of three dimensions or more, it is still true that struc-
turally stable systems must have the four generic properties: G1, G2, G3, and G4. But these condi-
tions no longer ensure structural stability. In fact, structurally stable systems are rare (that is, hard
to find) in higher dimensions. A complete characterization of structural stability in three-dimensional
systems (having a global section) has been accomplished recently. This section describes the failure,
and the remnants of Peixoto's theory that apply in higher dimensions,

15.2.1. It is Step 1 in Peixoto’s proof which is specifically two-dimensional. That step
established that there are only a finite number of closed orbits (limit cycles) in the two-
dimensional case. Here is an example of a generic portrait in three-dimensions, The
homaoclinic tangle forces the occurrence of an infinite number of limit cycles, as described
in the preceding section. This example makes Step 2 wrong as well, as Step 2 is a simple
consequence of Step 1.
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15.2.2. Step 3 remains true in higher dimensions. It assumes property F: the limit sets
consist of a finite number of limit points and limit cycles only, as well as the four generic
conditions. These are sufficient to ensure structural stability, This is a difficult result, due
to Palis and Smale.® Here is an example of such a portrait, in three dimensions.

15.2.3. Step 4 fails in higher dimen-
sions. Structural stability does ensure
the four generic conditions. This is a
relatively easy result, due to Markus
and Robinson.” But structural stability
does not ensure property F the
finiteness of the limit sets. The generic
homoclinic tangles can be structurally
stable, as Smale has shown for the ex-
ample shown here.®

The progress of dynamical systems theory stalled briefly at this point, until it occurred to Smale
to regard 2 homoclinic tangle as a generalized limit cycle and propose generic properties for it as
a unit, He called this a basic set. The main example is the horseshoe, dissected in the preceding
chapter. This was a prototype for the chaotic attractors, described in Part Two. One of the fun-
damental properties of a basic set is nonwanderingness, described in the next section,
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15.3. Nonwandering Points

One of the most restrictive versions of the recurrence property is near-periodicity, defined above,
in Section 15.1. And one of the least restrictive versions is the property of nonwandering, defined
in this section,

15.3.1. Suppose, having picked out a point in the state space and a little disk centered
on it, that we follow the future meandering of the entire disk. If wide enough, it may meet
up with itself along its meander.
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15.3.2. If so, start with a smaller disk, and repeat the construction. If now the meander-
ing disk leaves its original position, wanders away, and never returns to overlap its original
position, then the original point at the center of the disk is called a wandering point.

On the other hand, it may happen that, no matter how small you draw the original disk, it always
comes back to overlap itself. Or, it may never cease overlapping itself, no matter how long vou
wait. In these cases, the original point is a nonwandering point. The set of all nonwandering points
of a given dynamical sytstem will be denoted by NW.

= el

15.3.3. For example, a limit point (equilibrium) is nonwandering, The little disk is tied
down at the center.
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15.3.4. Similarly, a closed orbit (limit cycle) is nonwandering. The center of the little disk
keeps passing through the initial point, again and again. In fact, the set of nearly-periodic
points, NF is contained in the set of nonwandering points, NW, for topological reasons.

15.3.5. Here isan outstanding exam-
ple of a nonwandering point which is
not nearly periodic, In this solenoidal
flow on the worus, called a Kronecker
frrational flow, every point is non-
wandering, yvet no point is periodic, or
even nearly periodic.
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15.3.6. This is an example of a nonwandering point which is not itself recurrent in any
sense. The flow has a limit eyele of saddle (index 1) type, which is homoclinic, and satisfies
G3 (transversal intersection). The heteroclinic trajectories within this tangle are

nonwandering.

15.3.7. The theorem of Birkhoff and Smith, later generalized to higher dimensions by
Smale, shows that these trajectories are nearly periodic, That is, they are approximated by
limit cycles of very low frequencies. The heteroclinic trajectories belonging o a heterochinic

cycle of tangles are also nearly periodic.
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Generic property G4, discussed previously in Section 11.4, can now be simply stated: NP = NW,
That is, a dynamical system has property G4 if its every nonwandering point can be approximated
by periodic points (points belonging to limit cycles). This property is generic, as proved by Peixoto
{in 2I2) and Pugh (in higher dimensions),

15.3.8. The proof of the genericity of this property is intuitively simple, vet it is one of
the most difficult in the whole literature of mathematical dynamics to carry out in detail.
The key step, called the Closing Lemmma, makes small changes in the vectorfield, so that
a closed orbir is found in the disk that meerts itself.

Warning: As described briefly in Chapter 12, this property is generic only in a very weak
sense. The reason is that the violation of G4 by persistent solenoidal flows (equivalent
to irrational Kronecker flows on invariant tori) occurs with positive expectation. Thus,

in the sense of probability, G4 violation is also generic. We may call this the G4 paradox.
It will be explained further in Part Four.



PART 4

Bifurcation Behavior

Dedicated to René Thom

Photograph by Ismael Selim Khaznadar
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Bifurcation Hall of Fame

Bifurcation concepts emerged early in the history of dynamics. Soon after Newton the first
case, the pitchfork, was discovered. Eventually, bifurcation theory bifurcated into two
branches, dealing with similar phenomena in the contexts of ordinary differential equa-
tions (ODE's) and partial differential equations (PDE’s), respectively, ODE’s comprise the
type of model introduced by Newton for mechanics, and this branch has evolved in this
century into dynamical systems theory. PDE’s were introduced by d'Alembert in 1749 to
model the continuous (that is, spatially extended) mechanics of the vibrating string.

Recently, thanks to global analysis, these two branches have reunited. This reunification
was effected by reinterpreting a PDE in a finite-dimensional physical space as an ODE in
an infinite-dimensional space of functions. In this section we give capsule biographies of
some of the historically important personalities. Further description of their roles in the
history of the subject may be found in Chapter 16.

TABLE 4.1, —THE HISTORY OF BIFURCATION THEORY

Date [ ODE PDE
1600
Hooke
Newton
1700
Clairaut
Maclaurin
Simpson
d'Alembert
18300
Jacobi
Tchebychey
, Poincaré Liapounov
1900 ' Liapounov , Poincare
Andronov Couette
Hopf Tavlor
Thom

2000
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Here are some capsule histories,

Robert Hooke, 1635-1703. In 1683,
Hooke guessed that the Earth was flat-
tened at the poles.

Alexis Claude Clairaut, 1713-1765.
Clairaut examined the possibility that
Newton's oblate spheroid was a relative
equilibrium for a blob of fluid.

Thomas Simpson, 1710-1761. By
careful analysis, he actually showed in
1743 that two distinct Maclaurin
spherofds were relative equilibria, im-
plying a bifurcation in the possible
figures of the Earth,

Carl Gustav Jakob Jacobi,
1804-1851. In 1834, he discovered a
new equilibrium figure for a rotating
fluid blob, the Jacabi ellipsaid. Also,
he introduced the word bifurcation in
this context, to describe the relation-
ship between the Maclaurin spheroids
and the ellipsoidal figures.

Isaac Newton, 1642-1727. In 1687,
Newton assumed that the Earth was a
spheroid, flattened at the poles. To
calculate its eccentricity, he devised his
frinciple of canals.

Colin Maclaurin, 1698-1746. Using
Newton's principle of canals, he estab-
lished, in 1742, the relative equilibrium
of a rotating cllipsoid of homogeneous
fluid, subsequently known as a Mac-
laurin spheroid.

Jean d’'Alembert, 17171783, He ex-
plicitly analyzed, in 1768, the bifurca-
tion implied by Simpson in 1743,

Jules Henri Poincaré, 1854-1912,
The question of the stability of the
figures of the Earth was introduced by
Poincarc in 1885, in response to a pro-
blem posed in 1882 by Tehebychey on
the evolution of the figure in the case
of a gradually increasing angular
momentum, He also carried over this
concept into our current context of
dynamical systems.
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Aleksandr Mikhailovich Lia-
pounov, 1857 -1918. Liapounov con-
sidered the problem of Tchebychey
also, and created his classical theory of
stability in this context.

Eberhard Hopf, b. 1902. Hopf pub-
lished, in 1942, a rigorous proof of
the first excitation event, after which
it became known as the Hopf bifir-
cation.

Aleksandr Aleksandrovich An-
dronov, 1901-1952. Andronov
created a complete theory of bifurca-
tions of dynamical systems in the
plane.

René Thom, b, 1923, The publication
of Thom's revolutionary book, Stric-
tural Stability and Morphogenesis, in
1972 marked a major turning point in
the importance of nonlinear dynamics
and bifurcation theory to the sciences:
physical, biological, and social.
Without doubt he is the most impor-
uant pioneer in this area since Poincare
and we are all deeply in his debt. In
recognition of this, we have dedicated
this Part to him.
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Origins of Bifurcation Concepts

In Part One, “*Periodic Behavior,' limit points and cycles in dimensions one, two, and three
were introduced. The decomposition of the state space into basins of attraction, by the
separatrices, was emphasized. In Part Two, "'Chaotic Behavior,” the inset structure of the
separatrices was developed. The geometry of the exceptional limit sets, determined by their
Lyapounov characteristic exponents, was described. In Part Three, “'Global Behavior," the
fundamental idea of structural stability was introduced, along with the related notion of
ECNETic Property.

All of this material is basic to the theory, experiments, and applications of dynamics. However,
the most important of all, from the point of view of applications, are the bifurcations of
dynamical systems being changed by a control parameter. This is the subject of Part Four,
and in the preceding parts we have selected topics o as to create the minimum background
needed for this theory.

In this chapter, we trace the history of the bifurcation concept from darkest antiquity.

445
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16.1. The Battle of the Bulge

Our knowledge of the shape of the Earth has grown throughour history, and out of this history
emerged the concepts of bifurcation theory. We begin with a capsule version of this story. A splen-
did 150-page version may be found in Jones and the associated mathematical details in Todhunter!

16.1.1. The Earth, Gaia, Goddess: what is her figure? The Venus figurine from the
Gravettian culture, found throughout Upper Paleolithic Europe, is generally assumed 1o
be a fertility amulet. (Reproduced from Leroi-Gourhan, 1967.) Was it also a geographical

maodel of the Earth?

We do not know when or how the globular shape of our home planet was first discovered, but
we do know that Aristotle knew it by 350 BCE. And by 225 BCE, Eratosthenes (the Alexandrian
librarian) knew its circumference within one percent! Thus begins the early history of our subject.
Things changed little until the dawn of the Barogue, although confidence in Eratosthenes had waned
by the time of Columbus,



452 Bifurcalion Bebavior

O  Obelisk ot Alexondria
W Well at Syene

C  Earth’s center

AB Sun’s roys at Alexandria
SC Suns rays of Syene

u Opposite angles

]

L)

]

]

1

I

[}

i

i

i

'

]

B C
Distance OW subtended by angle oCS§ equals 1.!’55 of
the circumference of a circle

Calculation of the earh's circumference by Eratosthanes,

16.1.2. Throughout this period, the Earth was thought to be roughly spherical. Then
paradoxes began to accumulare,

One problem was the discrepancies in the measurements of the circumterence, some of which were
done with great care. Another difficulty was the accuracy of pendulum clocks, which were found
to slow down at the equator. Here is a summary of the events casting doubt on the spherical
hypothesis.

1522 Magellan sails all the way around

1525 Fernel calculates circumference

1577 Halley’s comet

1610 Galileo

1617 Snell measures one degree latitude

1635 Norwood measures latitnde

1650 Riccioli measures latitude

1657 Firenze academy founded

1665 Halley's comet

1666 Paris academy founded

1669 Picard measures latitude accurately
1669 Dom Cassini (1) moves to Paris

1672 Richer goes to Cayenne, pendulum too slow
1677 Halley goes to 5t. Helena, pendulum slow

1680 Halley comes to Paris to work with Cassini 16.1.3. Early Baroque events leading

up to the “"Battle of the Bulge”
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16.1.4. In 1683, Robert Hooke sug-

N E w T ON gested an oblae spheroid figure for the

Eartl. This anion miodel was immaor-
talized in Newron's Principia in 1687,

A spheroid is what you get by spinning an ellipse about an axis. An oblate spheroid results from
spinning around the shorter axis, A spanish onion or a bun has this shape. A prolate spheriod results
from spinning around the longer (major) axis. A lemon has this shape. An eflipsoid is not made
by spinning, but has elliptical sections when cut

16.1.5. Daom Cassini, the first of four

generations of outstanding
CA SSIN! astronomers, countered in 1700 with
a prolate spheroid, or femon model,

and the Battle of the Bulge was on!
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1683 Robert Hooke makes onion hypothesis

1686 Fontenelle publishes Plurality of Worlds,
popularizing Descartes

1687 Isaac Newton publishes onion hypothesis
with mechanical arguments, computations

1690 Huyghens supports Newton

1691 Dom Cassini observes oblateness of
Jupiter

1700 Dom Cassini publishes the lemon
hypothesis

16.1.6. The events (1680-1700)
leading up to the controversy, which
nearly resulted in World War in Europe
and the Americas.

The Paris Academy of Science decided to resolve the crisis by sending expeditions to the Arctic
Circle in Lapland and to the Equator in Peru, to make definitive measurements of meridional arcs
of one degree of latitude. These would be north-to-south arcs of about 110.5 kilometers (68.7 miles)
length, assuming a spherical figure, Between endpoints determined by observing the angle to the
Sun at noon (as in celestial navigation), the measured length of the southern are should be longer
than 110.5 kilometers for a prolate spheroid, and shorter for an oblate one.

1718 Jacques Cassini publishes measurements supporting the lemon hypothesis

1732 Maupertuis and Clairaut support Newton's onion hypothesis

1733 La Condamine proposes expedition to Equator (Cavenne)

1734 Godin suggests expedition 1o Equator (Ecuador)

1735 Expedition leaves Paris for Ecuador with La Condamine and Bouguer
Maupertuis proposes expedition to Arctic Circle (Lapland)

1736 Expedition leaves Paris for Lapland with Maupertuis, Clairaut, and Celsius

1718~-1736,

16.1.7. Here, ina nutshell, is the sequence of events during the early years of the conflict,

When the measurements finally reached Paris in 1744, the onion team had won.
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1737

1738

1739
1740

1743
1744

Lapland measurements reach Paris

Algarotti publishes popular account of Newton’s optics

D. Bernoulli analysis fluid cylinder

Clairaut finds a formula for the equilibrium of a rotating fluid blob
Euler writes analysis of the fluid onion

War of Jenkins' Ear, and pyramids

Maclaurin proves the onion for a rotating blob of homogeneous fluid
Cassini publishes new measurements supporting the lemon hypothesis
Expedition leaves Ecuador for home

Bouguer arrives in Paris

Ecuador measurements completed by La Condamine and Bouguer
Maupertuis finds the principle of least action

d’Alembert analyzes the fluid blob

Celsius dics

Cassini de Thury capitulates

La Condamine returns to Paris

16.1.8. The last eight vears of battle, during which hydrostatics and bifurcation theory
were born,




456 Bifurcation Bebavior

Degree of Latitude in Meters compared with early measures
(after Geographical fournal 98 (19413 p. 292)
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16.1.9. Here s a summary display of the best known measurements of 2 one-degree arc,
tiken from the Geographical Journal * The measures ar all latitudes would fall along 2
horizontal line. if the world were spherical. The rise toward the pole (on the right) con-

firms an oblate (onion) figure,
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1600 1700 1800
Cassini | 1625 1712 T
Huyghens 1629 1695 e sT—
Newion 1ha2 727 [
Cassini 11 1677 17560 e
Bach 1685 1750 E——————;
Bouguer 1694 1758 C———
Maupertuis 1698 1758 e
Maclaurin 1698 1759 rE—l
La Condamine 1701 1774 =—————
Clairaunt 1713 1765 e
Euler 1707 1783 e
Simpson 1710 1761 =
Clairaut 1713 1765 ]
Cassini 11 1714 1784 —r———
d’Alembert 717 17835 e
Lagrange 1756 1513 e
Cassini 1V 1748 1845 e
Laplace 1749 1827 re————n

16.1.10. The cast of characters in order of their appearance,

We turn now to the emergence, in this strange context, of the bifurcation concepts
which are fundamental to the modern theory of bifurcation behavior.
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16.2. The Figure of the Earth

From this lively story of scientific conflict and creativity that dominated the activities of the first
scientific socicties of Europe throughout their early years, we here extract the mathematical events
leading up to the development of the bifurcation concepts of modern dynamical systems theory.
These considerations deal with a rotating homogeneous fluid mass {or blob) and apply equally
to the cosmogenic problems of stellar evolution and galaxy formation. For additional details, see
Hagihara* and Lyuleton.s

From 400 BCE until 1683, the Earth was thought to be roughly spherical.

16.2.1. In fact, if the blob is not rotat-
ing, then a sphere is its only relative
equilibrium, and it is stable, as Lia-
pounoy showed in 1884,

But it #5 rotating. Newton introduced the principle of canals in his Principia of 1687, to analyze
the dynamics of a spinning oblate spheroid (onion shape).
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) 16.2.2. The principle of canals. In
1 the spherical Earth, assumed solid, drill
q two long tunnels that meet in the
: center: one from the North Pole, and
%3 2 another from some point on the
W g Equator. Fill nearly full with water. Due
v to the centrifugal force (named by
et Huyghens but successfully analyzed by
Newton as a graduate student) the
Equatorial tube of water will be pulled
outward, rising to a higher level than
the polar tube,

ik i 2 16.2.3. Using the principle of canals,
N il o Newton calculated the eccentricity
needed by the onion (as a function of
its angular momentum) to maintain
equilibrium. Maclaurin proved this
condition was necessary for hydro-
static equilibrium in 1740, and Clairaut
generalized his result to inhomogen-
eous blobs.
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The analysis of the onion by the principle of canals was completed by Simpson® in 1743,
Let 2a denote the length of the major axis of an ellipse, 2c the length of the minor axis, and 2d
the distance between its foci. Then a2 = ¢ + d2. Recall that the eccentricity of the ellipse is the
ratio d/a. The ratio is zero for a circle, and is always less than one. The eccentricity increases with
the ratio a/c,

16.2.4. As the eccentricity of the homogeneous spheroidal blob increases, the angular
velocity traces out this curve, obuined by Simpson, with a maximum at e = .9299,
oralc = 2.7198.5 Thus for smaller angular velocities there are two equilibrium Maclaurin
spheroids having the same rate of rotation, and there is a maximum rate, However, the
angular momentum goes on increasing along this curve,s which describes the Maclaurin
series of spheroids,

The next major advance in our story was the discovery by Jacobi in 1834 of a new figure,
which defies intuition in that it does not have rotational symmetry.
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16.2.5. Drilling three canals in a
spherical Earth, the two Equatorial
canals would be expected to have the
same equilibrium water level, Jacobi
showed that this is not necessarily trug.

16.2.6. The romating ellipsoids, with
three unegual axes (rotating about the
shortest of the three) will be in hydro-
static equilibrium at the correct rate of
rotation. These are now called the
Jacobi ellipsoids. They are found in a
curve of increasing ellipticity, called
the Jacobi series of ellipsoids.
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The two series of equilibrium figures actually cross, That is, at one special case of the Maclaurin
series, the Jacobi series branches off from the Maclaurin series.
It is for this crossing point that Jacobi invented the word bifurcation.
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16.2.7. Here are the two series, Maclaurin in blue and Jacobi in red. The coordinates
represent the diameters of the equatorial ellipse, if the polar diameter is taken as one
Note that the Maclaurin series occupies the diagonal, along which the two equatorial
diameters are equal. That is, the spheroids are special cases of the ellipsoids.”
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In 1882 Tchebychev asked how the equilibrium figure changes as the angular momentum is gradually
increased. This is the essential question in most applications of bifurcation theory today, and we
may take this moment as the alpha point of the history of bifurcation theory.

16.2.8. Adding angular velocity as a third (vertical) coordinate, the two crossing series
are draped like this. The Maclaurin series (blue curve) has a maximum, as discovered by
Simpson, and the Jacobi series also has a maximum velocity, but smaller than the Maclaurin
maximum, This was discovered by Sir G. H. Darwin® in 1887.
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Relative equilibria of a dynamical problem may be stable or unstable. The unstable ones, in general,
will not be observed. Thus, the relevance of the mathematical models of Newton to the actual figures
of the planets and stars will depend critically on stability,

And yet, the stability problem was never analyzed until Poincaré and Liapounov attacked
Tchebychev's problem in 1885. After forty years, the last part of the problem was resolved
by Cartan?® in 1922

=

P

16.2.9. Here again is the plot of the two series, in the space of eccentricity and angular
velocity, as before. But here, the stable branches are shown in red, the unstable ones
in green.
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This is the final stage in the emergence of the first bifurcation diagram in history, the pifchfork.
But, there is more to our history of the figures of the Earth,

16.2.10. While studying the stability
of the Jacobi series of equilibria, Poin-
care discovered ver another equilib-
rium figure, the pear shape or piriform
figure. These occur in series, called the
Peoincard series, which branch off from
the Jacobi series,

The stability of the Jacobi serics ends at its crossing with the Poincare serics, Poincare believed
the pears were stable, and could explain the origin of double stars and planctary satellites by a kind
of hydrostatic bifurcation. But Liapounov was convinced they were unstable, and he was right.
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16.2.11. Here is a plot of the three series, showing stability in red. The horizontal axes
are the overall ellipticity of the Equatorial section as before, while the vertical axis represents
pearness. The arrival of the unstable branches of the Poincaré series at the Jacobi series
kills its stability. This is an ¢xample of a eatastrophic bifurcation, and is related to the pitch-
fork bifurcation at the branching of the Jacobi series from the Maclaurin serics.

Both of these historic bifurcations were discovered by Poincaré!® in 1885,
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16.3. The Stirring Machine

As interest in rotating fluids heated up, kitchen experimentalists inevitably began to carefully observe
their soup pots, coffee cups, and martini glasses, while vigorously stirring with a spoon or swizzle
stick. Eventually, the professionals created a super-sophisticated version, Couette’s stivring machine,
capable of reproducible phenomena’®. And among these phenomena were found a host of reliable
examples of the bifurcation effects discovered by Poincaré among his analytical formulae,

Stellar evolution had come to Earth!
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16.3.1. One way o stir water in a glass (not necessarily the best) is with a rotaring cvlin-
drical rod. Although inefficient at the cockuail bar, great progress has been made in ex-
perimental fluid dynamics this way, Since its earliest days a century ago, this experiment
of Mallock and Couette has been repeated over and over, with ever improving rods, cvlinders,
motors, and observing methods. As the speed of rotation is gradually increased, an
experimental comment on the problem of Tehebyehey is reliably obtained.
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Although the shape of the outer envelope of the fluid is constrained by the glass and the rod, the
inner structure is seen o depart very quickly from a homogeneous form (latered rotating cylinders)
to a highly structured form of nonuniform motion. We show this inner structure in three

representations:

(a) the fluid seen from the outside,

(b} the velocity vectorfield within the
fluid, and

(c) as a point in the state space.

First, we begin with a still fluid and no rotation.
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16.3.2.a. Through the side of the
outer cylinder, we see a homogeneous
fluid mass at rest. The fluid fills a three-
dimensional space in the shape of a
thick tube, which we will call the fluid
domarn. (We are grateful to Rob Shaw
and Russ Donnelly for these photos of
an actual Couette machine.)

16.3.2.b. One mathematical model for
the state of the fluid is the velocity
pectorfield in the fluid domain (here
shaded in red), At each point in this do-
main is drawn a vector representing the
velocity of the particle of the fluid
passing through the selected point at
the instant of observation. As in this
first instance the fluid is at rest, the
velocity vectors are all zero. They are
shown as red dots in this illustration.

16.3.2. ¢. The entire velocity vectorfield may be regarded as a mathematical point in a
huge (infinite-dimensional) space of all possible velocity vector fields, the state space. And
since the velocity vector at each point in the cylinder of fluid is zero, this point in the state
space of all vector fields is zero as well. Thus, it is located at the origin (Or zero vector)
of the infinite-dimensional state space. Here we show the state space as a vertical plane
(in schematic rather than pictorial representation) outlined in green. The observed state
of the fluid, represented here by the red dot in the green plane, is actually an affractor
of a dynamical system (infinite-dimensional vectorfield) on the green state space, which
we will call the superdynamic (for example, the Navier-Stokes equations) according to fluid
dynamical theory'?.

The third dimension, extending to the right, represents the control parameter: the speed
of rotation, or equivalently, the Reynolds number. This composite picture of the state space
(vertical plane) and the control parameter (horizontal line) may be called the response space,
here shaded blue, Within it, the response diagram will be drawn, showing the loci of the
attractors as the controls are varied.

In the response space, the zero velocity vectorfield is shown as a point, the red dot, in
the state space furthest to the left (outlined in green) corresponding to the zero value of
the control parameter (no rotation).

Next, we gradually begin a slow rotation of the rod, and let the system relax into a state
of constant stirring.
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16.3.3. a. Through the side of the
outer cvlinder, we see a homogencous
fluid mass in uniform rotation, Each
particle of fluid is moving along a
horizontal circle at a constant rate. The
rate is zero for the largest circles at the
outer glass cylinder, it is fixed by the
speed of rotation of the rod at the
smallest circles, and in the interior of
the fluid, it varies uniformly between
these extremes,

16.3.3. b. Here is the velocity vector-
field in the Auid domain, revealed by
some trajectories of fluid particles,
drawn in red. It shows the circular mo-
tion of the fluid, with the smaller
velocities outside, and the higher ones
inside, At any chosen point in the fluid
domain, this velocity vector is at rest,
it does not change with time while we
are observing.

16.3.3. . Here we view the velocity vectorfield as a single point in the response space.
And since the velocity vector at each point in the fluid domain is at rest, this point in the
response space is at rest as well. This red point is located within the vertical plane (state
space of all velocity vectorfields) shaded in green, corresponding to a small value of the
control parameter. And within that green plane, itis near the origin, indicating a small range
of actual fluid velocities within the fluid domain, The black line passing through the red
dot represents the track of the red dot as the control parameter is varied, and is called the
locus of attraction. Generally, the response diagram significs the record of all the loci
of attraction known for the given experimental system, drawn within this blue response

space. The job of the experimentalist is to create this record.

We will now try to discover a locus of attraction for the stirring machine, by continuing
to increase the speed of rotation.
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16.3.4, a. After a moderte increase
in the rate of stirring, this is one mode
we are likely to see through the walls
of the stirring machine. The fluid mo-
tion has separated into a stack of ring-
shaped cells, divided by flat boundaries
evenly spaced along the axis of rota-
tion. The boundaries are still. These are
the Taylor cells discovered by Taylor
in 1923,

16.3.4. b. Upon closer inspection
(sometimes aluminum powder is put in
the fluid to show the motion more
more clearly) we see that the fluid
motion in each cell is sofenoidal. Onc
cell is a clockwise vortex, the next
counter-clockwise, and so on. Here,
the velocity vectorfield is indicated by
some cxemplary red trajectories. In
spite of the increasingly complicated
fluid motion, the vectorfield is still sta-
tionary. It is a point attractor of the
superdynamic,

16.3.4. ¢. Here is the current situation, represented in the response diagram. The current
state (velocity vectorfield) is shown as a red dot (point attractor) in the appropriate state
space (shaded in green) somewhat to the right of the state space outlined in the previous
sequence, Note that the locus of attraction (black curve through the red dot) has a gap just
to the left of the yoke. This is due to a bifurcation event called the static fold, related to
the pitchfork bifurcation discovered by Jacobi in 18 34 in his study of the figure of the Earth.
The observation of this event requires careful experimental work, repeatedly turning the
speed control up and down.

Now we make substantial increase in the rate of the stirring rod, to see what turns up.
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16.3.5. b. This wary vorfex phenom-

16.3.5.a. We now see, looking direct- enon is represented by a velocity vee-
Iy at the fluid through the side of the torfield in the fluid domain, shown
outer cylinder, that the Taylor cell here in stop-motion drawing, which is
boundaries have developed waves, and slowly (and periodically) varying in
the wavy cells are slowly romting time. The pattern shown here repeats
around the central axis's, every few seconds.

16.3.5. ¢. Representing this stop-motion vectorfield as a red dot in the state space (here
outlined in green as usual) and waiting a few seconds, we would see it move around a small
cycle. The periodic change in the fluid velocity vectorfield indicates that we are observing
a periodic attractor of the superdynamic. And the black locus of attraction, to the left of
this red cycle, shows a change from a static to a periodic attrictor. This exhibits yet another
bifurcation, discovered by Poincaré in 1885 and successfully analyzed by Hopf in 1942,
This event will be described in further detail later in this volume,

Now we make a further increase in the rate of rotation of the stirring rod, and discover
chaos!



Bifurcation Bebavior

478

Ll_a




Origins of Bifurcation Concefits

478

16.3.6. a. After things settle down as
much as they ever will, we may see tht
some rings are pinched off. The com-
plete rings are still wavy vortices, but
they wave irregularly. Worse still, the
pinched cells may jump around. This
is genuine turbulence!

16.3.6. b. The velocity vectorfield, at
a single instant of observation, is very
complicated, but still vnderstand-
able. Over time, however, it wanders
erratically about, and never returns to
an exact copy of an earlier state.

16.3.6. c. The wandering of the red dot within the green state space (shown here as a
three-dimensional box, to give us adequate space in which to represent its shape) fills out
with a thickened torus, perhaps, or some other chaotic attractor (see Part Two) of the super-
dynamic. The black locus of attraction has suffered some further bifurcation, the onset
of chaos. Its entire history, from the far left to this point, is called a chaotic scenario.

Finally, we thrust the speed control to the maximum.
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16.3.7. a. Hang on tw your kayak,
there is white water everywhere!

16.3.7. b. The velocity vectorfield,
drawn here in stop motion, is beyond
understanding,

16.3.7. ¢. The motion of the red dot within the green state space, again traced over a few
secands, describes a chaotic attractor of the syperdynamic as before. Here the attractor
is shown as a bagel (Section 8.2), although in reality it might be much more complicated.
This is a fully developed turbulence! The black locus of attraction has suffered further bifur-
cations, from one type of chaos to another, which are little understood at present.
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16.4. The Big Picture

In the first two sections of this historical introduction to the concepts of bifurcation theory, we
kept our feet on the ground. We spoke about physical phenomena and their simplest mathemarical
models. In the third section we introduced 2 fourfold visual representation:

1. the physical phenomena,

2. their simplest mathematical representation (velocity vectorfield in fluid domain, stop-motion
or time-varving),

3. more abstract mathematical representation (red dot moving upon red attractor in green
State space),

4. green state space moving within blue response diagram, while red attractor drags along black
locus of attraction,

We now wish to take one last leap, to a bigger picture of bifurcation theory, introduced
by René Thom in his revolutionary text of 1972'% on structural stability.

We will again use the Couette machine as an example, but the rotating blob or the game of bob
(see Part One) would do as well. What we must keep in mind in these examples is that the fun-
damental model is not a dynamical system, such as the superdynamic of fluid mechanics. Instead,
the central object of bifurcation theory is a dynamical scheme, that is, a dynamical system depend-
ing upon control parameters. For example, in the dynamical model for the Couette machine, the
superdynamic depends on the stirring speed. Thus also, the phase portrait of the-dynamical system
depends on the controls, and putting these pictures side by side generates the response diagram,

We are now going to leap to the ultimate abstraction: the superspace of all superdynamics.

In the preceding section we imploded an instantaneous state of a complex physical system and
regarded it as simply a single point of a geometrical model, the state space. The dynamical model
for the evolution of these instantaneous states in time consists of a dynamical system, which
we have been calling the superdynamic in this context. In general, it is just called the dynamic,
or the dynamical rule. This representation assumes that the control parameter is fixed at a con-
stant value,
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16.4.1. Here we show the instantancous state scrunched to a single red point of the state
space, on which the dynamic is indicated by the blue curves. The red cycle denotes 2 periodic
attractor, such as that observed in Figure 16.3.5.
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16.4.2. Here we have scrunched once again, so that the superdynamic becomes represented
by a single point in dynamical superspace, Thom's Big Picture, within which every super-
dynamic on the given state space is represented by a single point. Every state space has
its own personal superspace.

We now use superspace to construct an alternative to the response diagram as a representation of
a dynamical scheme, or dynamical systemn depending on control parameters. We start with a small
picce of the response diagram developed in the preceding section, in Fig. 16.3.5,
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16.4.3. Here the control parameter increases a small amount from A to C, the cylinder
of fluid changes from flat vortices (point attractor) to wavy vortices (periodic attractor)
as the control passes B, and the locus of attraction has the form of a goblet. This is an example
of a bifurcation event called excitation, also known as the Hopf bifurcation. It is treated
in more detail in the next section.

We now transform this picture into superspace. Each and every value of the control parameter
specifies a copy of the state space having its own superdynamic. That is, the control parameter
changes the dynamical rule but not the state space. In this scrunch, each of these superdynamics
becomes a single point in superspace. We may think of this scrunch as a movement of the control
space (the blue interval in this panel) into superspace. The result is the blue curve in the following
picture of supcrspace.
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16.4.4. Scc that the starting superdynamic determined by A corresponds to the lower
endpoint of this curve, the final superdynamic determined by C corresponds to the upper
endpoint of this curve, and the bifurcation point B corresponds to an intermediate point
in the curve, shown here at the intersection of the blue curve and a red surface. This red
surface is part of the Bad Set.

As Andronov discovered in 1937, the Bad Set consists of dynamical systems which are not struc-
turally stable (see Chapter 12 for the definition). One of the numerous contributions of René Thom
to dynamical systems theory is a Big Picture of the Bad Set within superspace, a strategy for analyz-
ing its structure, and a recognition of this structure as a kind of universal Platonic model for mor-
phogenetic (evolutionary) processes in nature.
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Now let’s take a guided tour of superspace, using the stirring machine, to develop a better
idea of the structure of the Bad Set in the Big Picture,

ohh W
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16.4.5. Here is the entire response diagram developed in the preceding section, all
scrunched onto a curve in the Big Picture. Each and every bifurcation located in the
preceding discussion identifies a sheet of the Bad Set. There are infinitely many of these
sheets, which accumulate in fat fractals, as we shall see later in this book.

The balance of this work is a pictorial atlas of bifurcations that are generic for dynamical schemes
depending upon a single control parameter. They identify only the largest structures of the Bad

Set.
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Subtle Bifurcations

The early history of the bifurcation idea unrolled in the context of physical systems demand-
ing infinite-dimensional dynamical models, based upon partial differential equations. In
the revolutionary work of Poincaré, the connection was made with dynamical systems of
finite dimension, based upon ordinary differential equations. The recent history of bifurca-
tion theory has therefore been developed along two parallel tracks. Throughout this work,
we concentrate on the finite-dimensional case, dynamical bifurcation theory (DBT). The
parallel theory for systems of partial differential equations, which we occasionally call
classical bifurcation theory (CBT), may be developed in a similar fashion. Unfortunately,
we will not be able to indicate the fantastic importance of this theory in applications. Our
view, often expressed in other writings, is that the response diagrams of these atomic bifur-
cation events are our most important source of models for the dynamical processes of nature.
For some support of this view, see the seminal works of Thom and Prigogine. Thus, Part
Fouris the culmination and main motive for the entire book. The bifurcations of DBT may
be classified in three types: subtle bifurcations, catastrophbic bifurcations (catastrophes),
and explosive bifurcations (explosions).

In this Chapter, we present the subtle bifurcations in their simplest versions.

484



Subtle Bifurcations 491

2.1. First Excitation

We have already encountered the first excitation, known to Poincaré in 1885 and analyzed by Hopf
in 1942, as the second event in the bifurcation sequence of the stirring machine (see Figure 16.3.5).
It is most frequently called the Hopf bifurcation. There are at least two complete texts on this
phenomenon alone. One of these? contains a section on the recent history and numerous applica-
tions of the event. The other? develops very early applications to the speed governor (for the steam
engine invented by Watt in 1782) ascribed to Airy (1840), Maxwell (1868), and Vyshnegradskii (1876).
Both have very detailed analyses and extensive bibliographies and are highly recommended.

we will describe simple excitation in the context of radio transmitters developed in Sec-
tions 3.3, 5.6, and 8.2,

-y

17.1.1. Here is the antique transmitter, as used by Marconi and Van der Pol. Wi have specially
prepared it for this experiment by loosening the screws at the base of the small feedback
coil so that it may be easily rotated a half turn or so in either direction. In this figure, the
coil is in the normal position, the current and voltage in the larger tank coil are oscillating,
and the transmitter is ‘on the air’' A plot of the current and voltage (shown in the win-
dow) is tracking a periodic attractor clockwise.
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In this exercise, the small coil will be our control knob.

A

17.1.2. Now we grab the small coil
from above and twist it more than a
quarter turn to the right, If not elec-
trocuted, we find that the transmitter
quits, the oscillations gradually die out,
and the plotted measurements follow

= an exponential spiral down to the point
attractor at the origin of the state space,
e ¥ | We are off the air!
-t
™
17.1.3. Grabbing the small coil again,
- we slowly untwist it a few degrees,
= trving to undo the damage. No change

in the situation, so we keep on un-
twisting.
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17.1.4. After we pass a quarter turn by
a few degrees, the oscillations resume,
but very feebly! The phase portrail
(window) shows a very small periodic
attractor encircling a point repellor at
the origin,

17.1.5. Now slowly untwist the coil
some more, gradually returning to the
original position. The oscillation grows
stronger, and the audience may hear a
feeble broadcast, which grows stronger
and becomes normal,
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This is a subtle bifurcation, as the qualitative change in the behavior of the transmitter is almost
imperceptible. The small coil orientation is the control parameter, and for cach orientation there
is a different dynamical system modeling the transmitter, according to Van der Pol. (The parameter
Is represented by B in Example 4a of the Appendix. The other parameters are fixed.) We now put
together, side by side, the phase portraits shown in the window of the last few panels. To relate
the phenomenon to the qualitative theory of rest points, we will add to each portrait the CE's of
the critical point of the origin (see Section 6.4).

Sl
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'

17.1.6. Arranging the phase portraits in order, we obtain this record of behavior, with the
CE's shown in the windows, They may be obtained from the equations defining the scheme,
by means of algorithms given in texts of linear algebra.® Here we have added, at the mo-
ment of bifurcation, an additional phase portrait. This portrait, shown as a cenfer (con-
centric periodic trajectories), is generally a very weak spiral in or out. But it will look like
a center to the casual observer,
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17.1.7. We now erect these portraits and arrange them in their proper places within the
response diagram of Van der Pol’s dynamical scheme. We call this display a side-by-side
representation, It is a sort of skeleton of the full response diagram.

R
N

17.1.8. Finally we strip away the technical detail and connect up the skeletons to form
this mnemonic version of the response diagram, called the cutaway representation, suitable
for framing. The joint of the goblet, where the stem joins the cup, is the bifurcation event,
Near it, the goblet has a smooth parabolic shape.
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SUMMARY. In the first excitation, a point attractor of spiral type gradually weakens (its complex
CE’s move toward the right, approaching the imaginary axis) and destabilizes (the CE's cross to
right half-plane} while emitting a periodic attractor. The period of oscillation of the new attractor
is determined by the CE's of the origin, at the moment of its creation. The amplitude of the new
attractor grows gradually as the control parameter continues to increase, creating the parabolic goblet
shape shown in Figure 17.1.8.

The bifurcation point (the critical value of the control parameter at which the CE's cross the imag-
inary axis}) is a quarter turn of the coil in this case. At the bifurcation point, the critical point at
the origin is not elementary, it is 4 center (see Section 11,13, Thus, by Peixoto's theorem, the dynamical
system corresponding to this bifurcation point is not structurally stable (sce Section 12.2). The arc
in the Big Picture described by this dynamical scheme (see Figure 16.3.4 above) pierces the Bad
Ser at the bifurcation point only.

The locus of this new periodic attractor branches off from the locus of the critical point, We may
say that stability is lost by the critical point at the origin, and passes to the limit cvele. This event
is also described as the excitation of a mode of oscillation, a mode that (before excitation) is im-
plicit in the point attractor of spiral type. Such an attractor may be viewed as an attractive oscillator
of amplitude zero. More details may be found in the literature, which includes several volumes
devoted entirely o this event.
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17.2. Second Excitation

The kind of excitation we have just described can happen o an oscillator as well as to a static attractor,
This event has been known since Poincaré at least, but is usually attributed to Neimark in 1959,
Sometimes it is called the secondary Hopf bifurcation. It occurs in the hifurcation sequence of
the stirring machine, but we omitted it in our description for economy,

We will now need all we have learned about the art of toral arrangement from the
preceding chapters.

17.2.1. Recall this attractive invariant torus (AIT) from the discussion of forced oscillators
in Section 5.3, We will now explode an innocent periodic attractor of spiral type in 3D
(see Section 7.5) into one of these gems.
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17.2.2. BEFORE: Here is vour garden
variety spiral cycle in 3D (red for attrac-
tors) with a piece of the asymptotically
attracted trajectory foliage (blue) cut
away to reveal a 2D section (strobe
plane, see Section 4.1). And in the win-
dow, the CM’s within the unit circle, in-
dicating the strength of attraction (Sec-
tion 7.5).

17.2.3. AFTER: The cycle has turned
green, indicating repulsion, while an
enclosing AIT has appeared, red indi-
caring attraction, It is attractive, vet not
necessarily an attractor, (It contains
attractors, like the red curve spiraling
it.} Again, the window shows the CM's
of the central cycle, now outside the
unit circle, showing the strength of
repulsion.
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17.2.4. DURING: The bifurcation oc-

curs as the CM's pass through the unit
circle. At this moment, the central limit
cycle is neither attracting nor repelling.
In fact, the 2D strobe plane is filled
with spirals (in or out) which are
wound so tightly that they may appear
to be nested invariant circles, These
tight spirals correspond to scrolled
insets or outsets which may appear to
be nested invariant tori in the 3D flow,

17.2.5. To construct the response diagram of this scheme, we will extract the strobe planes
and erect them side by side in our usual fashion. Note that it looks like the response diagram
for first excitation at the end of the preceding section. But here we are stacking strobe planes,
rather than state spaces.
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17.2.6. Finally, here is the cutaway view of the response diagram. We have abandoned
the strobe planes, and replaced cach with a full 3D state space, seen in 2D perspective view.

SUMMARY: In the first excitation, stability is lost by a critical point, and its implicit oscillator emerges
from hiding. This event is characterized by the CE's of the critical point. But a critical point in
2D is rather like a limit cycle in 3D, as the Poincaré section (strobe plane) technique shows. And
in this way a point attractor of spiral type in the plane (see Section 6.4) corresponds to a periodic
attractor in 3D of spiral type (sce Section 7.5). And the two complex conjugate CE's of the spiral
point in 2D correspond to the two CM's of the spiral cycle in 31 So by analogy, we may see in
such an oscillation in 3D an infinitesimally thin torus, hiding and ready to jump out, should the
attraction of the oscillator weaken. When this torus jumps out, it represents a compound oscilla-
tion of two modes, such as we have studied in the context of two coupled oscillators in Chapter
5. If the original oscillator is considered the first mode, then the new torus may be regarded as
the combination of the original mode with a new, second mode. Hence the name, second excitation.
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17.3. Octave Jump In 2D

The main feature of this event is the replacement of a periodic attractor by another one of twice
the period. If this happened while a musical instrument was holding a note and some parameter
was being adjusted, you would hear a very soft tone begin an octave below and gradually increase

in volume.

Here are some computer plots of actual simulations of an octave jump in a 3D system,
provided by Rob Shaw.

17.3.1. BEFORE: Trajectory tracing around a periodic attractor in the 3D state space, but
projected into the 2D screen of the oscilloscope.

AFTER: Trajectory tracing around a different periodic attractor. Note that this one follows
closely the track of the previous one. But after one revolution, it does not quite close. After
a second circuit, it closes upon itself exactly. Note that the trajectory docs not cross itself,
as that is highly illegal for dynamical systems. But it appears to, because of the projection
onto the 2D viewing screen.

Now we will replot these trajectories in an intrinsically 2D context. A Mobius band is
neccesary to accommodate the negative real CM, as explained in Section 7.2.
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17.3.2. BEFORE: We start with a dynamical system on the band having a single periodic
attractor (red) that goes once around.

AFTER: This new system has a single periodic attractor that goes twice around the band,
without crossing itself. The former attractor still exists as a repellor (green).

Here is a review of the CM’s of the central cycle, from Section 7.2.

17.3.3. BEFORE: Draw a strobe line
{(black) across the band. The negative
real CM means that a near by trajectory
(blue) starting on the strobe line to the
left of the red cycle will return to the
right {and closer) after one circuit,
Thus the strobe line is reversed by the
first-return map, and the inset must be
twisted,

The CM is shown in the window, While
negative, it is within the unit circle
(blue), signifying attraction,
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17.3.4. AFTER: Again draw a strobe
line across the band. The CM is still
negative. A nearby trajectory starting
on the strobe line to the left of the red
cycle will still return to the right (but
further away) after one circuit,

The CM is again shown in the window.
While negative, it is outside the unit
circle, signifying repulsion. The cycle
is drawn in red and green, as it is still
attractive to some curves off the band,
and repulsive to those on the band.

17.3.5. DURING: The CM, srtill
riegative, is actually sitting at minus one
on the negative real axis, A nearby tra-
jectory starting on the strobe line to the
left of the red eyele will still return to
the right (but at the same distance from
the red cvele) after one circuit,

The CM is again shown in the window,
While negative, it is on the unit circle,
signifying neither attraction nor repul-
sion, This situation is structurally
unstable, according to Peixoto’s
theorem (see Section 12.2).

We now put these portraits together, in a side-by-side representation of the response
diagram.
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17.3.6. Reading from left to right, the red cycle turns green at the instant of bifurcation.
A new red cycle branches off gradually, but it must go twice around to close on itself. Note
that the CM of the new periodic attractor is positive and within the unit circle,

SRR

Gt e e

17.3.7. And finally, a cutaway representation, for the collection.
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SUMMARY: A periodic attractor on a Mobius band responds to a control parameter by losing stabili-
ty. Its CM journeys outward, secking to escape, Upon the CM crossing the unit circle, this limit
cycle becomes a repellor and a new periodic attractor is born, This has twice the period, hence
half the frequency. Its fundamental is one octave down. However, it traces closely around the same
track twice before closing, so its second harmonic (same tone as the recently vanished attractor)
is strong, Thus, this bifurcation event is subtle, in that its detection is possible only after the new
behavior grows strong. One cannot detect the exact moment of bifurcation by casual observation,
This is in marked contrast to the explosive and catastrophic events, as we shall soon see. Some
people like to call this event a period doubling bifurcation.
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17.4. Octave Jump in 3D

Of course the octave jump can happen in 3D, 4D, and so on. In this section we illustrate one of
several scenarios in 3D.

We begin with a periodic attractor of nodal type.

17.4.1. BEFORE: Recall this nodal saddle in 3D from Figure 7.4.3. Note that both of its
CM’s are negative reals within the unit circle, Its inset, a solid 3D ring, contains two in-
variant surfaces, both M&ibius bands (blue). One of these, the fast band, corresponds to
the smaller CM (closer to the origin). Trajectories on this band spiral toward the red attrac-
tor faster than the others. The other, the sfow band, corresponds to the other CM (for slow
traffic only).
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17.4.2. AFTER: Here is another old acquaintance, a saddle cycle in 3D from Figure 7.3.10.
Both CM’s are negative real, but only one is within the unit circle. It corresponds to a twisted
band as before, but now this band is the entire inset. The other CM is outside the unit circle
and corresponds to the outset, another twisted band. These two bands are oriented exactly
like those in the BEFORE panel, but now one of them is the outset, rather than the slow band.

But this AFTER portrait has an additional feature, which we shall reveal with strobe

sections.

Ab
\/

1|

17.4.3. BEFORE: Here is a section of the periodic attractor (red) of nodal type, showing
the section curves (green) of the fast and slow bands within its inset, and the CM’s,
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¥

17.4.4. AFTER: And here likewise is a section of the saddle cycle (red and green) with
its inset (green) and outset (blue). But here we have added an additional feature to the sec-
tional portrait. Notice the two red dots. These are two successive passages of the same
trajectory, a periodic attractor, through the strobe plane, The CM's of the new attractor
are shown in the window on the left.

To understand this 3D phase portrait, just take the AFTER portrait of Figure 17.3.2 and
imbed it here as the outset of the saddle. This octave jump in 3D is identical to the 2D
event on a Mobius band, but taking place entirely on this fixed band through our central
cycle, The attraction along the fast inset does not change during this event. This 3D bifur-
cation is an extension of the preceding 2D bifurcation.

Here is the view of the response diagram made from erecting the strobe planes side
by side.
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17.4.5. From lefi to right, the strength of attraction of the slow band of the nodal attrac-
tor progressively weakens (outer CM moves further out) and turns to repulsion at the bifur-
cation point (as the outer CM transits the unit circle). The speed of attraction of the fast
band (inner CM) is unaffected by the control parameter. The progress of the CM's of the

original cycle is shown in the upper window.

A new attractor is subtly born, which closes only after two circuits of the 3D ring. This
is shown, after the event, as two disjoint red points. They spread roughly parabolically
as the control parameter continues to increase. The CM's of the new attractor are roughly
the square of those of the original cycle. These are shown in the lower window.
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SUMMARY: This event is not a new entry in our encyclopedia of generic bifurcation diagrams for
single control schemes. It is just the extension to 3D of the preceding entry, the octave jump in
2D, to suggest the variety of possible presentations of a single universal form in the Big Picture.



18
Fold Catastropbes

As explained earlier, there are three kinds of bifurcations with one control in DBT: subtle,
catastrophic, and explosive, The previous chapter surveyed the simplest occurrences of the
best known subtle bifurcations, and there are not many known bifurcations in this class.
But catastrophic bifurcations are very numerous, and this chapter and the following two
will be devoted to them. The chief feature of a catastrophe is the disappearance of an attractor,
along with its entire basin. This can occur to any type of attractor— whether static, periodic,
or chaotic—in a variety of ways. The catastrophic bifurcations of static attractors comprise
the subject matter of elementary catastropbe theory (ECT))

In this chapter, we introduce the simplest one: pairwise annihilation, also called the fold
catastrophe

i
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18.1. Static Fold in 1D

A favorite way for an attractor to disappear, as the control parameter of a dynamical scheme is varied,
is like the moth and the flame. The attractor drifts slowly towards the separatrix at the edge of
its basin, When it arrives, three things disappear simultaneously: the attractor, its basin, and its
separatrix. In this section we illustrate the simplest case of this type of catastrophe: the 113 (one-

dimensional) case.

We will make use of the CE of the critical point of a dynamical system in 1D.
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18.1.1. Recall this tabulation of the hyperbolic critical points in 1D from Figure 6.1.8. Here
we introduce our predominant color code: attractors are red (all trajectories sfop) and
repellors are green (all trajectories go). At the same time, insets are green (gr-in) and outsets
are blue (bl-out). Meanwhile, the velocity vectors in the first column are red {a temporary
expedient) and the inclined red lines in the middle column are the graphs of the vector-
field as a function of position in the (horizontal) state space. The right column indicates
the position of the CE (blue) in the CE plane of complex numbers. The CE {blue point)
in the green region indicates repulsion. The one in the red region indicates attraction. See
Part Two for more explanation of the CE's.
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Having recalled this technical background from Part Two, we are now ready for our first
fold catastrophe: the static fold.

18.1.2. BEFORE: Here is a relatively simple phase portrait of a dynamical system in 1D.
As closed orbits are impossible, the only limit sets are critical points. There are only two
of them. Their CE's, shown in the windows, are hyperbolic, This system is structurally stable.
There is only one attractor, and its basin is shaded green. The repellor is the separatrix,
and the upper outset consists of a trajectory going to infinity, We could regard infinity as
an attractor in this case and the blue segment as its basin.

18.1.3. AFTER: what can we say? The attractor has disappeared into the blue!
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How can we go smoothly from BEFORE to AFTER by simply turning a control knob? The
clue, hinted in the first panel of this section, is in the CE’s.

18.1.4. Here is BEFORE again, but we
have bent the state space so that the
flow of the dynamical system may be
understood as raindrops trickling
downhill, A puddle collects at the
point attractor, The CE's are shown in
the windows,

18.1.5. Fulling up the right hand end
of the hill a bit brings the two critical
points closer wgether: the red moth
approaches the blue flame. The puddle
decreases. Note that the CE's are get-
ting intimate as well,

18.1.6. Pulling on the right end some
more, the puddle and the two critical
points are gone. The catastrophe has
occurred!

18.1.7. Pulling firmly up on the right
end some more increases the slope a bit
but makes little difference to the sur-
face water. All rain goes downhill to the
left forever.
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18.1.8. We now turn these phase portraits upright, place them side by side in their proper
places in the response diagram of the dynamical scheme we have constructed, and inter-
polate a few more portraits. At the moment of bifurcation, the red and green critical points
meet at an inflection point of the curve (state space).

A
2 P | P i =il 5

18.1.9. Plotting both of the blue CE's in the same red/green CE plane directly under the
corresponding state space, we obtain this curve as a record of their dependence on the
control parameter.




518  Bifurcation Bebavior

18.1.10. Filling in the continuous locus of each critical point as the control knob is
smoothly changed provides this parabolic curve, the full response diagram of the static
fold catastrophe in 1D.

Elementary catastrophe theory (ECT) is a beautiful subject, crucially important for the progress
of many scientific subjects. Also, it boasts several superb expository texts, which are largely respon-
sible for the development of the basic bifurcation concepts presented in this volume.? Study of
the early chapters of these texts is strongly suggested for those who wish eventually to understand
this atlas of bifurcations. BEWARE: Most of ECT deals with schemes having two or more control
parameters, a context well beyond our present purview, But as our agreed context includes more
complicated attractors than ECT allows, we will see challenging complications, even with only one
control,

There is a growing literature of multiparameter bifurcations, and in due time we may
present a pictorial atlas of some of them.
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18.2. Static Fold In 2D

Here we present not a new bifurcation, but simply a review of the preceding event in a different
context: a 2D state space. We will use the characterization of a critical point in 2D in terms of its
CE's, as summarized in Figure 6.4.8. Again we are looking for the drift of a point attractor toward
a fatal assignation with its separatrix. In 2D, recall that a separatrix must be either a periodic repeller
or the inset of a saddle point. [t is the latter case that occurs here.

In this event the point attractor drifts toward the saddle point of its separatrix.

18.2.1. BEFORE: There are two
critical points, a saddle (red/green) and
an attractor (red). The inset of the sad-
dle {green) is the separatrix of the basin
of the attractor, The CE's are shown in
the windows,

b 18.2.2. AFTER: There are no attrac-
tors, except for an infinite ocean in the
\ South. All trajectories disappear into
the blue, Note that a test droplet resting
in equilibrium at the attractor before
the event now finds itself in the blue
basin of infinity, very far from equi-
librivm. It must now get under way and
4, begin a major journey. This is the
reason for the name, catastrophe, used
in French o describe this behavior,
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The mechanism of this event may be intuited from the fold in 1D. Just imagine the two
critical points on a north/south train track, which is attractive to trajectories off the track
to the east and west,

18.2.3. Asthe control knob is adjusted, let the two critical points fold together along the
track, exactly as in the 1D event of the preceding section, culminating at the instant of
bifurcation. But in this case there are two CE's for cach of the two critical points. Only
one of the CE's for each of the critical points is affected by the variation of the control.
The affected CE corresponds to the strength of attraction or repulsion along the track. The
other CE of each critical point indicates the attraction of the track for trajectories off the
track, and is unaffected by the control, At the moment of catastrophe, there is only one
critical point, and it is nonhyperbolic, as one of its CE's is zero,

/\){\

18.2.4. As the control knob continues to turn, the nonhyperbolic critical point vanishes
into the blue, and the flow smooths over the shadow of the event.
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18.2.5. Erecting five phase portraits side by side in their proper positions in the space
of the response diagram, we obtain this skeleton of the full response of the scheme.

18.2.6. Interpolating the remaining details, we have this cutaway picture of the full response
diagram.
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Note that if the control is moved to the right, the catastrophe may be described as the drift of an
attractor to a saddle point within its separatrix. At contact, there occurs the simultaneous disap-
pearance into the blue of three things: the attractor, its entire separatrix, and its entire basin. But
reading from right to left, the catastrophic event consists of an increasingly evident slowing down
of the blue flow in a certain region, then the magical emergence (out of the blue slow region) of
an attractor, with its full-blown basin and separatrix. Thus, the fold is sometimes called an
annibilation/creation event.

SUMMARY: This 2D version of the fold is may be called the extension of the 1D version
presented in the preceding section. This is the same relationship that we have seen at
the end of the prececing Chapter, in which the octave jump event was presented first in
2D, then again in 3D.

We want to point out, before going on to another event, that the bifurcation events we are describ-
ing one at a time in small boxes of euclidean space are atomic events. They are to be expected,
in actual dynamical schemes encountered in applications, in molecular combinations comprising
complex response diagrams, such as that of the stirring machine. A further complication encountered
in practice is that the phase portrait of the system, for a fixed value of control, will be a global
one with multiple attractors and basins, Generally, at a given bifurcation, only a small part of the
global picture will be affected. Our atomic response diagrams may thus be encountered in a small
piece of the garden variety response diagram.

Here is a global version of the 2D fold catastrophe. As usual with catastrophic events,
the total number of basins is altered by the bifurcation.

18.2.7. BEFORE: A flow on the two-sphere has two basins {green and blue). Each attrac-
tor is static. The separatrix is the inset of a saddle point, completed by a repellor at the
North Pole,
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18.2.8. APPROACHING: One of the attractors has drifted close to the flame. The green
basin has shrunk about to about half its former greatness. The blue domain has gained,
but near its attractor nothing has changed.

18.2.9. BIFURCATION INSTANT: Briefly, there is a degenerate (nonhyperbolic) critical point
on the separatrix, which is now virtual, within the blue basin of the one-and-only attrac-
tor. This is the shadow of the blue basin, shrunk completely onto its former separatrix.
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18.2.10. DEPARTING: There is a slow spot in the flow, a feeble memory of the departed
basin.

A response diagram for this scheme is cdsy to imagine, but difficult to draw. Only the study of
numerous examples of real systems, such as are found in the literature of experimental and applied
dynamics, can give an idea of the enormous variety of response diagrams that may be constructed
from the atomic bifurcations we have presented so far.

But furthermore, some of the atomic events presented in the following drawings get pretty
complicated by themselves,
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18.3. Periodic Fold In 2D

The fold catastrophe we have seen in the two preceding sections for static attractors has an analog
for periodic attractors. One way to understand this periodic fold catastophe is by a rotation of the
static fold in 1D around a circle.

We now depart the domain of elementary catastrophe theory forever.

18.3.1. Recall the characterization of a limit cycle in 2D by means of its CM. Here is a
table of three cases from Figure 7.2.7: attractor, repellor, and a highly degenerate intermediate
case, The CM's on the right correspond to the limit cycles on the left.
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18.3.2. BEFORE: Here is a simple phase portrait in 2D, with two attractors. One is static
(light blue basin), the other periodic (dark blue basin). A periodic repellor serves as
separatrix, dividing the rwo basins. If a test droplet is thrown into this dynamic, it will
evolve towards a rest state (Moff') if it falls initially into the light blue and toward oscilla-
tion (“on")if it falls to the dark blue. A toggle switch to turn on a motor might have a model
of this bistable type.
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18.3.3. AFTER: This simpler phase portrait is monostable, Any initial state will settle to
the “off' attractor as its transient dies away.
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The annihilation of the periodic attractor takes place in a periodic fold catastrophe.

18.3.4. BEFORE: The first step is the
bistable phase portrait just described.
Here we have shown the CM's of each
limit cycle in the windows,

18.3.5 APPROACHING: Next, the
periodic attractor and its separatrix
(the periodic repellor) drift toward
each other. Note the progress of the
CM’s toward each other as well.

18.3.6. BIFURCATION: Conjunction
of the two hyperbolic cycles creates a
nonhyperbaolic cycle with CM equal to
one. It still bounds the basin of the
point attractor.

18.3.7. AFTER: No limit cycles. The
whole plane is the basin of the one
attractor, which has been unaffected by
the control parameter.
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18.3.8. Here we stack the four phase portraits just described side by side in their proper
positions in the response diagram of the hypothetical scheme under discussion.

18.3.9. Here, suitably enlarged, we stack the CM's of the two limit cycles, this time in
the same CM plane. Note the similarity to the CE movie of the static fold in 1D (Fig. 18.1.9),
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18.3.10. Finally, we interpolate a continuum of phase portraits, for the museum edition
of the response diagram of this event. For easy viewing, we have omitted the blue filling
denoting the locus of the blue basin. Also, we have omitted the static attractor in the center
of the blue basin entirely, as it is not really part of this atomic bifurcation event.




Fold Catastrophes 531

T S e
B e e i e

AR
R

18.3.12. Here is the strobe section plane of the response diagram on its own. Note the
similarity to the response diagram of the static fold in 1D, and note that rotating this figure
around a circle will recreate the preceding figure,

As in the fold catastrophe in 2D, we are going to illustrate this event in a more realistic global context.

18.3.13. BEFORE: Two limit cycles and two critical points are arranged like this on the
sphere. The flow is bistable: there are two basins, “on™ and “off™
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18.3.14, APPROACHING: The “on’ attractor and its separatrix drift toward each other,

18.3.15. BIFURCATION: The conjunction of the two cycles creates a nonhyperbolic cycle,
shown here as a thin red cycle,
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18.3.16. AFTER: The common monostable flow. The blue basin is greatly enlarged.

SUMMARY: This is 2 new entry for our encyclopedia, but it is very similar to the static fold. We
now have five distinet atomic bifurcations on our list, in two categories;

Subtle—first excitation, second excitation, and octave jump.
Catastrophic—static fold and periodic fold,

We continue now with another version of the periodic fold,

WARNING: A strobe section is not exactly revealed by a strobe light blinking periodically. By a strobe
section, or Poincaré section, we mean simply a cross-section of the flow.



534 Bifurcation Bebavior

18.4. Periodic Fold In 3D

This is not a new bifurcation for our list, but just another occurrence of the periodic fold. This

introduces not only a more general context for this bifurcation, but also some technigues of visual
representation that we will find useful in the sequel.

We need to recall the basic concepts of limit cycles in 3D,

18.4.1. Here are two kinds of elementary limit cycles in 3D, along with their CM's, taken
from Figure 7.5.7.
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18.4.2. BEFORE: Thisisa portion of a flow in 3D, showing two elementary limit cycles—a
saddle and an attractor —along with their CM's, and some discrete trajectories (the blue
points, which belong to a continuously spiraling trajectory, are revealed by the strobe light)

in the strobe section.

It will be easier to visualize this event by restricting attention to the strobe planes. But you must
keep in mind that the dynamics within the strobe plane is discrete. That is, continuous trajectories
of the 3D flow appear as a discrete sequence of points in the 2D strobe plane.
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18.4.3. BEFORE, STROBED: Here is the initial configuration in the strobe plane, The green
region, the strobed insct of the saddle, is the boundary (within the strobe plane) of the
strobed dark blue basin of the strobed periodic attractor (red point). The light blue region
is the strobe view of the basin of some other attractor, which is out of sight,

J

18.4.4. APPROACHING: The attractor and the saddle belonging to its separatrix move
toward each other, as the control of the scheme is increased. At the same time, one of the
CM’s of the attractor (controlling the attraction in the north-south direction) moves out-
wird toward the real number one on the unit circle in the CM plane. This indicates a weaken-
ing of the strength of attraction in this direction. The other CM of the attractor (controll-
ing east-west attraction) is unaffected, Meanwhile the outer CM of the saddle {controlling
north-south repulsion) moves inward toward the unit circle. The other CM of the saddle
is unaffected.
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18.4.5. BIFURCATION: At the moment of conjunction, the two points (and the entire limit
cycles they represent) coincide. This single limit cycle is nonhyperbolic, as one of its CM's
is ore, on the unit circle.

18.4.6. AFTER: No limit cycles. All points in the strobe plane belong to the blue basin,
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18.4.7. Here are the strobed portraits, erected side-by-side in their proper places within
the (strobed) response diagram (recall Figure 18.3.12). Note the parabolic meeting com-

mon to all of the fold catastrophes.

18.4.8. And here is a composite view of the action in the CM plane, showing the affected
CM’s of each limit cycle only. As the control moves to the right and the two limit cycles
move toward ¢ach other, the two CM's approach plus one on the real axis, (Compare with

18.3.9.)
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18.4.9. Finally, interpolation of a continuum of strobe planes in the strobed response
diagram yields this memorable version (compare 18.2.6).

SUMMARY: This 3D version is harder to visualize than the 2D version of the periodic fold catastrophe.
This atomic bifurcation may occur in 4D, and higher dimensions as well. Also, it may occur in
much more complicated global phase portraits. It is particularly common in the dynamics of forced
oscillators, as we have explained in Section 5.5,



19
Pinch Catastropbes

We now discover some new events for our atlas by reversing the direction of time. Thus,
insets become outsets, attractors become repellors, and so on. In this chapter we systematically
reverse the four subtle bifurcations of Chapter 17, obtaining a new catastrophe in each case.

541
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19.1. Spiral Pinch In 2D

We begin with the first excitation in 2D, otherwise known as the Hopf bifurcation. What happens
when we reverse the direction of time?
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19.1.1. Recall, from Section 17.1, that in this event a point attractor of spiral type expands
parabolically into a periodic attractor, The critical point turns into a point repellor of spiral
type (a virtual separatrix) as its CE's transit the imaginary axis of the CE plane, from the

red to the green region,

19.1.2. Reversing the direction of flow of all trajectories, we obtain a point repellor of
spiral type on the left. We will take this portrait as the final one of the new event. On the
right, a point attractor of spiral type is surrounded by a periodic repellor, the actual separatrix
of its basin (blue). We will consider this one the initial portrait of this event.
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19.1.3. Erecting these portraits in their proper positions in the response diagram and inter-
polating a few others, we obtain this side-by-side skeleton.

19.1.4. Stripping off the CE details and shading in the continuous locus of attraction, we
obtain this image of the spiral pinch event in 2D, Note that as the control is increased to
the right. the separatrix (and basin) shrinks down to the point attractor, the strength of
which is dwindling as well. At the moment of bifurcation, the actual separatrix becomes
a virtual separatrix, replacing the point attractor, which has catastrophically vanished.
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SUMMARY: By reversing the direction of flow in a subtle bifurcation. first excitation, we have ob-

tained a new catastrophic bifurcation for our atlas. The spiraling 2D basin shrinks and pinches off
its central attractor. Separatrix, basin, and attractor all vanish at once.
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19.2. Vortical Pinch In 3D

Reversing direction in first excitation was easy, so we will repeat the operation for the second
excitation. Once again, time reversal will create a catastrophe from a subtle bifurcation.
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19.2.1. Recall this event in 3D from Section 17.2, in which a periodic attractor is trans-
formed into a periodic repellor within 2 braided attractive invariant torus or AIT,

Technically, this event is not a single bifurcation. Instead, it consists of a fractal family of bifurca-
tions. As in Section 17.2, we will not dwell on this complication, which concerns the braid dynamics
on the AIT, but just concentrate on the central cycle and the AIT,

And now, about face! Attractors become repellors, and so on.

19.2.2. On the left, the periodic attractor of spiral type has become a repellor, And on
the right, AIT has become a repulsive invariant torus (RIT). As in the preceding section,
we will regard the portrait on the right as the initial configuration.
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Now let's strobe these portraits, to cut things down to 2D.

19.2.3. Here again is second excitation, showing the strobe plane, along with the CM's
of the central cycle.

19.2.4. And here is the same portrait, with time reversed, showing similar details.
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19.2.5. Erecting the two strobe plane portraits in their proper positions in the space of
the strobed response diagram, and interpolating a few in-betweens, we have the skeleton
of the strobed response diagram.




Pinch Catastrophes 551

19.2.6. Stripping off the details and filling in the loci of attraction and repulsion, we have
this framable image of the vortical basin pinching down to destroy its central attractor.
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SUMMARY: Reversal of a subtle bifurcation has again given us a new catastrophe for our atlas of
response diagrams of atomic bifurcation events. As long as there is an invariant torus in the por-
trait, we must expect a fractal set of braid bifurcations on it. But in this case, they do not affect
the locus of attraction, The green RIT shrinks, and catastrophically pinches off the central periodic
attractor, as the control is moved to the right.



Pinch Catastrofibes 533

19.3. Octave Pinch In 2D

Recall that the octave jump phenomenon involved a periodic attractor, as one of its CM's transits
the unit circle at minus one. In the 2D version presented in Section 17.3, the affected limit cycle
turns into a periodic repellor, and a period-doubled attractor is emitted. The state space is necessarily

a Miobius band.

What happens to the octave jump if the direction of time is reversed?
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19.3.1. Here are the BEFORE and AFTER portraits, recalled from Section 17.3. Note that
the basin is not substantially changed by the bifurcation, it is almost the entire band, After
the event, the single-period repellor (green) is a virtual separatriv, This means that while
technically it is a separatrix (that is, it does not belong to any basin). it does not actually
separate two distinet basins. (See Scection 1.5 and Section 10.2.)

19.3.2. Reversing time, the flow goes backwards, and attraction is replaced by repulsion.
On the left, we have a periodic repellor, as a virtual separatrix in the basin of an attractor
out of view. On the right, we have a single-period attractor in the dark blue basin bounded
by the double-period repellor, an actual separatrix, We will now regard the portrait on the
right as the initial configuration.
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19.3.3. From this perspective, we see a periodic attractor disappear as the control parameter
increases, The actual separatrix of the dark blue basin contracts toward its weakening at-
tractor and pinches the entire basin down to a meager repellor and virtual separatrix, The
CM's shown are for the central cycle only.

19.3.4. Erecting these two portraits into a side-by-side representation and interpolating
three more, we obtain this skeleton of the octave pinch event,




350 Bifurcation Bebavior

19.3.5. Interpolating a continuum, we fill out the skeleton to create this smoothed and
cutaway response diagram. Here we have cut away a segment of the diagram for better view-
ing and also to suggest the strobed response diagram, in which each full phase portrait
is replaced by a strobe section line.

19.3.6. Here is the strobed response diagram, Unlike some similar appearing diagrams
shown earlier. the two branches of the green curve both correspond to the same periodic
repellor,

SUMMARY: Running the 2D octave jump backwards yvields a new entry for our atlas of generic bifur-
cations with one control. This is our third example of a pinching catastrophe. The basin and
separatrix of a periodic attractor shrink, and eventually pinch off the attractor, leaving a green shadow
(periodic repellor) in its place,
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19.4. Octave Pinch In 3D

As we have seen earlier, an atomic bifurcation event may present itself in contexts of different dimen-
sion. Nevertheless, we may regard these presentations as essentially the same event. One way o
increase the dimension of a presentation is to embed the phase portraits in a larger state space as
an attractive, invariant subspace. W have referred to this previously as the extension construction.
For example, the octave jump in 3D is the extension of the octave jump in 2D.

Similarly, the octave pinch in 2D may be extended to obtain the octave pinch in 3D.
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19.4.1. BEFORE: Here is the initial portrait of the 2D octave pinch, from Figure 19.1.3,
embedded as an attractive blue band in a 3D flow. The single-periodic attractor within the
2D context becomes a single-periodic 3D attractor after the embedding. But the double-
periodic repellor of the 2D band becomes a double-periodic saddle after the embedding,
as it is attractive in the north-south direction but repelling in the east-west direction.
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19.4.2. AFTER: And here is the final portrait of the 2D octave pinch, from Figure 19.1.3,
as the same blue band. The attraction of the 3D flow to the blue band is unaffected by
the control parameter, The single-periodic repellor of the 2D band becomes, after embed-

ding, a single-periodic saddle.
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We may create space for the indication of additional detail by extracting the strobe

sections.

i e
e

19.4.3. BEFORE: Here is the strobe section plane of the initial 3D flow. The inset band

of the saddle (green) cuts the section in two disjoint line segments. These comprise the

actual separatrix of the blue basin of the central attractor. The CM's of each limit cvcle are

shown in their own windows,

19.4.4. AFTER: Here is the strobe plane of the final portrait, showing the CM's of the
solitary limit cycle. The inset is a virtual separatrix, all that remains of the former attractor,

basin, and actual separatrix after the pinch.
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19.4.5. Erecting these portraits with interpolations, we have the side-by-side representa-
tion of the response diagram of the 3D octave pinch.
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19.4.6. Omitting details and smoothing in the interpolations gives us this cutaway represen-
tation for the gallery,

SUMMARY: The 3D octave pinch is not a new entry for the encyclopedia of bifurcations, but simp-
ly another presentation of the 2D pinch, Again, a basin pinches down to a virtual separatrix, and
its artractor is catastrophically lost,
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Saddle Connection Bifurcations

This is the third and final chapter on catastrophic bifucations. The fold and pinching bifur-
cations are rather similar types. In a fold, an attractor drifts toward its separatrix, where
it collides with a peer, a similar actor. In a pinch, a separatrix squeezes down on an attrac-
tor, and the collision involves dissimilar actors. But both types are local events: the action
takes place in the immediate neighborhood of the affected attractor. We are now going to
consider some global bifurcations, in which the tangling of insets and outsets create large-
scale consequences. The concepts of global behavior from Part Three will be indispensable.

563
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Saddle Connection Catastrophbes
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13.1.1. The structural instability, at the moment of bifurcation, is caused by the violation of generic

We have encountered this phenomenon previously, under the name saddle switching, in Figure
condition 3 by a saddle connection in 2D (see Section 11.1).

20.1. Basin Bifurcation In 2D
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(green curves) comprise the separatrices. In this scheme, only one side of one inset and

20.1.1. Here are the BEFORE, DURING, and AFTER shots of the event. There is not a single
attractor in sight, although three are implied out-of-view. Portions of the three basins of
attraction are shown (dark blue, light blue, and white regions). The insets of the saddles
one side of one outset are affected by the control knob.

connecting two different saddle points) is to radically change the territory claimed by the two com-

peting attractors. As only the basins are affected, and not the attractors, we call this a basin

The effect of the bhifurcation (passing through a saddle connection of beteroclinic type, that is,
bifurcation.
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20.1.2. Ereccting these portraits, and two in-between interpolations, in their proper posi-
tions within the space of the response diagram creates this side-by-side skeleton of the
response diagram of this event.

20.1.3. And shading in a continuum of other portraits, we have this cutaway version of
the response diagram,
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We may understand the effect of this event better in the context of an example. Recall the magnetic
pendulum from Part One, Figures 2.1.20 and 2.1.22, remembering that position in the figure indicates
position and speed of the pendulum,

20.1.4. BEFORE: Here is the unrolled phase portrait of the machine in the window. The
saddle points indicated on the extreme right and left both repesent the same state, with
the pendulum near the top of its swing. We will call this the fop saddle. The inscts, the
solid green curves, are actual separatrices, while the dashed green curves represent virtual
separatrices. The blue curves are outsets.

Note that the shaded basin winds around the cylinder indefinitely toward the North (upper
half-plane).
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In this phase portrait, the upper half cvlinder (here shown unrolled, hence, the upper half plane)
corresponds to counterclockwise (CCW) rotation of the bob, If you want to spin the bob rapidly
CCW and to have it fall eventually into the attractor of the smaller magnet on the left, you must
start with an initial CCW spin and angle within the shaded basin. As this basin winds around the
cylindrical state space (here shown unrolled) indefinitely while tending toward larger and larger
CCW rotation rates, there are many good choices (for a given initial position, such as the top) for
the initial COW rate, and for any initial CCW rate, there are good starting portions in the basin.
But for CW rates (lower half cylinder) there is only one small portion of the basin. and vOou must
start within this small region to end up at the left equilibrium.

Thus, the probability of throwing the bob CW at random and having it end up at the left
equilibrium is much smaller than it is in the CCW case.

20.1.5. Recall from Part One, Figures 2.1.19, 2.3 18, and 2.3.19 that friction determines
the CE’s, and thus the rate of decay of each spiraling trajectory, on the way to its attractor.
On the left, here, is a closcup of one of the attractors in the case of strong friction. And
on the right, the same attractor with weak friction,
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20.1.6. AFTER. Here is the phase portrait of the saime pendulum system, with the friction
in the hinge substantially reduced by a good lubrication. The key to the difference is the
overall rate of spiraling toward the boftom complex, the configuration at the bottom of
the swing (two point attractors and one saddle point). In fact, we might just pretend for
a moment that the entire shaded basin is a single blue trajectory, attracted to this bottom
complex. With less friction, more spirals are necessary to make a given amount of progress
toward the bottom.

Note that the shaded basin of the equilibrium of the smaller magnet on the left now winds around
the cylinder indefinitely toward the south. Surely this makes a difference, especially if you are left-
handed. The probability of throwing the bob CW at random and having it end up at the left
equilibrium is mauch larger than it is in the CCW case. We will now interpolate from BEFORE to
AFTER through four in-betweens. The control parameter in this scheme will be the friction within
the support axle of the pendulum, which will decrease during the sequence. Two occurrences of
the saddle connection bifurcation will be discovered in the process.
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20.1.7. BEFORE: Strong friction. The system is siructurally stable, and the rail of the blue
snake winds to the North,

20.1.8. FIRST CONNECTION: After the first lubrication, the lower green boundary of the
blue tail (half of the inset of the bottom saddle) makes contact with the blue outset of the
top saddle (shown on the left) in a heteroclinic saddle connection. This is the first occur-
rence of basin bifurcation in this sequence of experiments.
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20.1.9. MIDDLE: After the second lubrication, the first basin bifurcation is behind us, the
system is again structurally stable, and the blue tail is split into two streamers. There are
good chances of hitting the blue basin with either CW or CCW spins. The lower half of

the inset of the top saddle (shown on the left) has changed from a virtwal to an actual
separatrix.
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20.1.10. SECOND CONNECTION: After a thied lubrication, the upper green houndary
of the blue tail conjoins the outset of the top saddle, the upper streamer of the blue basin
has been pinched off, and the upper inset of the top saddle has switched from an actual
to a virtual separatrix. This is the second occurrence of basin bifurcation in this sequence
of experiments,
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20.1.11. AFTER: After a final lubrication, the friction is reduced, the system is again struc-
turally stable, and the blue il winds only o the South.
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20.1.12. Erecting the five phase portraits in the space of the response diagram of this
scheme, we have this side-by-side skeleton sketch.
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20.1.13. And after continuous interpolation, we have this response diagram, exhibiting
two basin bifurcations,

SUMMARY: The saddle connection in 2D is the simplest basin bifurcation. There are numerous
other simple examples, in all dimensions, But most saddle connection events in 3D or more entail
further complications involving tangles, as we shall see later in this chapter,
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20.2. Periodic Blue Sky In 2D

Of saddle connections there are two sorts: heteroclinic and homoclinic. The latter are 3 much richer
source of bifurcation behavior, as we shall now see,

20.2.1. Recall this heteroclinic saddle connection from Figure 20.1.8. What if this con-
nection went from a saddle point to itself?

20.2.2. DURING: Here is 4 homoclinic saddle point in 2D. The outset to the North is
conjunct with the inset from the East. This loop is a single trajectory of the flow. It is coming
asymptotically from, and going asymptotically to, one and the same critical point. This
portrait is not structurally stable. Enclosed within the loop must be, for topological reasons,
at least one critical point.




Sarelelle Connection Catastrophes 575

Now let us try to embed this portrait in a bifurcation sequence,

20.2.3. BEFORE: Here is a similar portrait, which is structurally stable. There are two
critical points in view, a saddle and a repellor. The insct of the saddle is a virtual separatrix,
in the basin of an out-of-sight attractor,

20.2.4. AFTER? If the control parameter steers the outset and inset curves that surround
the repellor were to cross, as in Figure 20.2.2, we might expect to end up with this por-
trait But something is wrong here. The North-Eastern outset goes to a repellor!
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Unless the repellor cleverly changed itself into an attractor at the very moment of the
homoclinic conjunction, which is not allowed in the one-at-a-time style of a generic bifur-
cation, this portrait is impossible.

20.2.5. AFTER! Instead, what we find in the generic occurrence of this global bifurca-
tion is the emission of a periodic attractor (of very long period) by the homoclinic con-
junction. It simply appears ouf of the blue. The inset of the saddle changes from a virtual
0 an actual separatrix, and bounds the basin of the new attractor, The repellor is unaf-

fecied by the event.
; :
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20.2.6. Putting the correct three portraits together with two in-betweens, we obtain this
side-by-side skeleton of the response diagram.
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20.2.7. And filling in the loci of insets and outsets smoothly, we obtain this picture of
the blue sky catstrophe.

SUMMARY: In this event, the momentary saddle connection is responsible for the appearance out
of the blue of a slow, long-periodic attractor and its large basin. This is a basin catastrophe, in that
the basin jumps out fully formed, as well as the attractor. As the event is observed in reverse, the
periodic attractor moves toward a certain segment of its separatrix, and they vanish into the blue
together. As in a fold catastrophe, there is no pinching of the basin,
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20.3. Chaotic Blue Sky In 3D

The extension of the periodic blue sky event is not a straightforward construction, because a
homoclinic saddle cycle in 3D involves a tangle of inset and outset surfaces (Section 14.1), rather
than the simple coincidence of inset and outset curves in 2D that we have seen in the preceding
section. A fuller description of this event will be attempted in a later chapter, but here we introduce
the basic event: a chaotic attractor (the Birkhoff bagel, see Section 8.2) appears out of the blue.

The initial and final portraits of this event are obtained from those of the 2D periodic
blue sky event by simply swinging them around a cycle.

20.3.1. BEFORE: This phase portrait contains two periodic trajectories — a saddle and a
repellor of spiral type. The inset scroll of the saddle spirals out from the periodic repellor.

The control parameter affects the positions of the inset and outset scrolls of the saddle
cycle, without affecting the repellor.



Saddle Connection Caltastrophes

379

20.3.2. DURING: The homoclinic tangle persists for an interval of control values, not
just a single moment of bifurcation. Within this tangle interval there is a fractal set of angen-
cy bifurcations, as will be discussed in Section 2.2.4. Ignoring these details for the present,
the periodic repellor persists through it all.

20.3.3. AFTER?: This is the simple suspension (prolongation around a cvele) of the im-
possible Fig. 20.2 4. As the blue outset scroll of the saddle (having passed completely through
the green inset scroll as the control parameter moved through the entire tangle interval)
rolls up tightly around its limit set, which cannot possibly be the unaffected periodic repellor,
there must be a new limit set in the portrait. And there is!
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Let’s extract the strobe plane for a closer look. Recall that AIT is short for Attractive
Invariant Torus.

20.3.4. WELL AFTER! This is the
simple suspension of the correct result
of the periodic blue sky event, Figure
200.2.5. The blue outset scroll (shown
here in strobe section as a blue curve)
wraps up around an AIT, a red torus
(seen here in strobe section as a red cy-
cle) engulfing the periodic repellor (ap-
pearing in strobe section as a green
daot).

And now, to interpolate some in-betweens, we will run this movie slowly backwards, focus-
ing on the red torus, seen in strobe view.

20.3.5. AFTER. As the control nears
the right-hand endpoint of the tangle
interval, the section curves of the inset
and outset scrolls approach their first
tangency bifurcation, the afftangency,
Because a tangency, after one turn
around the cycle (or one application of
the Poincare section map), moves on-
to another tangency. there must be an
infinitc number of tangencies created
simulteneously. Mecanwhile, the red
torus expands and develops some
bulges, as it is pulled toward the tangle
by the blue ourser.
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20.3.6. OFFTANGENCY: Here is the
final tangency bifurcation. The inset
and outser curves have a one-sided
tangle, and the red torus has been
pulled into tangency as well, by the in-
finite sequence of folds of the bluc
outset.

20.3.7. DURING: Within the tangle
interval, the red torus becomes a
chaotic bagel attractor, as many ex-
periments have shown! There is an
infinitude of further tangency bifurca-
tions for control values within this in-
terval.
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20.3.8. ON-TANGENCY: Now the
green inset has been pulled complete-
Iy through the blue ocutset, and the first
moment of contact has been attained
by this reverse sequence. The folds of
the red bagel attractor are tangent to the
smooth blue inset, in an infinite se-
quence of points, as well,

20.3.9. Erecting the strobed portraits in the space of the strobed response diagram, we
obtain this side-by-side skeleton. Reading from left to right, we see a chaotic bagel appear
out of the blue. This is a catastrophic event involving a chaotic attractor: a chaotic
catastrophe, or chaostroprbe,




Saddle Connection Catastropbes 583

20.3.10. Here we have smoothly interpolated the strobed inset curves, showing their severe
folding for control values within the tangle interval,

20.3.11. And here, finally, is the cutaway view showing the locus of attraction in the strobed
response diagram.
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SUMMARY: In this event, an infinitude of microscopic bifurcations within an interval of control
values cooperate in the catastrophic creation of a chaotic attractor, which finally settles down o
a braid of periodic attractors on an AIT, There are many unanswered questions about this event,
which was originally suggesied by the extension construction applied to the periodic blue sky event
and eventually confirmed in experimental work.
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20.4. Rossler’s Blue Sky In 3D

A similar event, in which a fully developed chaotic attractor disappeared suddenly, was obscrved
by Rissler carly in the history of chaotic bifurcations.” We start with a Rossler attractor in a 3D
flow (see Section 8.4). In this sequence, it will disappear into the blue.

20.4.1. Here is a chaotic attractor that is vaguely periodic. We may cut across it with a
strobe section,
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20.4.2. The strobe section reveals the fractal structure of the attractor, and we will describe
the blue sky event within this plane.

20.4.3. WELL BEFORE: We will start the sequence with this strobe portrait of the Rossler
band, the red curve labeled B, within its white basin, There is another attractor, periodic,
represented in this strobe portrait by the red point, 8, in the lower right. Its basin is shaded
blue here. The boundary between the two basins, an actual separatrix, is one-half of the
green inset of the saddle point, . The band attractor is nestled within a curve of this green
separatrix, which is getting ready for a homoclinic angency with one-half of the blue outset
of the saddle, D,

Advancing the control parameter, we see the following sequence of events, shown by the computer
graphics of Bruce Stewart.® We are very grateful to Bruce for his help with this section.
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20.4.4. BEFORE: As the control parameter advances, the green inset of the saddle, D, gains
a thick set of folds, somewhat like a tangle, and prepares for the onset of homoclinic tan-
gency, The positions of the other actors in the drama are unaffected.

As the control parameter continues its advance, the tangency occurs, and a full-scale homoclinic
tangle develops. This is a bifurcation, but it is not the event we wish to describe. It is an essential
pPrecursor event.

20.4.5. JUST BEFORE: The tangled green inset that separates the blue and white basins
has thickened, and is now very close (at two points) to the chaotic band.
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20.4.6. AT CHAOSTROPHE: The tangled, green, basin boundary, thickened further, arrives
at the band, ouching it at the two extremes with the kiss of death.

The band is actually a tangle, the outset of a homoclinic saddle cycle, which was attractive before
the kiss, In strobe section, the saddle cycle appears as a point, I, within the thickened curve, B.
The contact with the attractor, B, and its basin boundary is a heteroclinic tangency between the
green inset of one saddle, In(D), and the red outsct of another saddle, Our(l).

20.4.7. AFTER: Beyond the chaostrophic kiss the tangled band is still here, but is no longer
attractive. Experiments now reveal that all orbits eventually leave the tangle and approach the
sole remaining attractor S. The blue basin has engulfed the white basin, and the thick
separatrix is now virtual.
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20.4.8. Assembling the strobed portraits side by side, and smoothly interpolating the loci
of attraction and separation, we obtain this response diagram of the Rossler event,

SUMMARY: In this event, frequently observed in digital and analog simulation since the carly days
of chaotic dynamics, a chaotic band attractor disappears catastrophically into the blue. The involve-
ment of the nearby tangle, fully analyzed only recently, is characteristic of many similar events.



21

Explosive Bifurcations

After a chapter on subtle bifurcations and three on catastrophes, you may have forgotten
that there are three categories of bifurcation: subtle, catastrophic, and explosive. For vears
we said that there were only two. subtle and catastrophic, It now seems 1o us that explo-
sions should be regarded as a separate class, rather than being included among the
catastrophes. Explosive bifurcations are discontinuous like catastrophes, But like subtle bifur-
cations, they lack hysteresis. The name and basic concept were given by Stephen Smale in
1967 Here are some simple examples.

3
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21.1. Blue Loop In 2D
There is another way a periodic attractor can pop up, not out of the blue sky, but from a blue loop
associated with a saddle point. This example is due 10 Zeeman.?

Recall this typical portrait on a sphere, from Figure 18.2.7. It has critical points, but no
limit cycles.

21.1.1. Here, the two outset curves (blue) of the saddle point, which must end up at
attractors, belong to two different basins, The system is bistable. The inset curves (green)
actually separate the basins.
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Q

21.1.2. BEFORE: On the other hand, this portrait could arise. Here there is only one
attractor and basin. The system is monostable. Both outset curves from the saddle point
£0 to the same point attractor. We call this a blue loop. The loop encloses a point repellor
and touches a point attractor. The two inset curves of the saddle are virtual separatrices,

Now we will perform a static fold catastrophe (Section 18.2) upon the two critical points

of the blue loop.
g

21.1.3. JUST BEFORE: The saddle and attractor points approach conjunction on one of
the outset curves of the saddle. One CE of each is approaching rero. The angle made by
the two outset arcs at the point attractor is increasing toward 180 degrees.
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21.1.4. JUST AFTER: The point attractor and the saddle point have mutually annihilated
in a static fold catastrophe. But the blue loop bas become a periodic attractor! The system
is still monostable, but the solitary equilibrium state is a slow oscillation with a large

amplitude, rather than a rest point.

The point attractor has exploded into a periodic attractor.

"
9
|

21.1.5. Erccting these phase portraits side-by-side in the control-phase space of the response
diagram, we obtain this skeletal representation of the event.
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21.1.6. Fillingin the continuous red locus of attraction and stripping off some of the green
details, we have the response diagram of the blue loop event,

SUMMARY: The static fold catastrophe, in a portrait having a blue loop, results in the explosion
of the point attractor into a periodic attractor. The locus of attraction looks like a pot with a handle,
The sudden enlargement of an attractor, within its undisturbed basin. is the defining feature of
an explosive bifurcation. The event is reversible in that the implosion, which takes place as the
control is reversed, occurs at the same bifurcation value of the control parameter. The event does
not exhibit hysteresis (see Figure 4.3.7). The loca! event involving the fold is identical to that discribed
in Section 18.2. But the global event involving the blue loop makes this event a new entry in our
atlas of bifurcations, in which the loci of attraction within the response diagram have top priority.
For this reason, the response diagram is not exactly identical to the bifurcation diagram, as defined
by mathematicians. Bifurcations diagrams indicate bifurcation events living entirely within the
separatrices, while response diagrams emphasize the bifurcations affecting the loci of attraction only.
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21.2. Blue Loop In 3D

The simple suspension around a cycle of the preceding event gives rise to a 3D version of cssen-
tially the same phenomenon.

Within an unperturbed basin, a periodic attractor may explode into a braided torus (ALT).

21.2.1. BEFORE: Here is the initial portrait. There are three limit cycles of about the same
period going around a ring: attractor, saddle, and repellor. The strobe plane section looks
a lot like the initial portrait of the blue loop in 2D. The two leaves of the outset of the
saddle (blue surfaces) are both attracted to the same periodic attractor. In strobe section,
they form a blue loop. In 3D, they form a blue sleeve, having a crease marked by the periodic
attractor (red cycle).
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We now increase the control to effect a periodic fold catastrophe, simultaneously anni-
hilating the periodic attractor and saddle.

21.2.2. FIRST BIFURCATION: The attractor and saddle are now conjunct, in a honhyper-
bolic limit cycle. The crease in the blue sleeve has been ironed out flat. The blue loop in
the strobe section is an invariant cycle of the first-return map, having rotation number
(average rotation) zero. The rotation number, which indicates the number of times that
trajectories wind around the waist of the AIT between two flashes of the strobe lamp, is
about zero throughout this example. But any rational number could have been used. The
fluctuating braid bifurcations of a fractal bifurcation event, characteristic of toral dynamics,
complicate this event. We postpone discussion of this feature to Section 22.2. For the
moment, we just need to know that there is an interval of fluctuation in the control range,
in which there are an infinite number of bifurcations. These affect only the flow on the
torus, and involve minor changes in the number of attractor-saddle cycle pairs braided
around the AIT. Some changes in the number of braids may be associated with a change
of the rotation number. These involve control intervals of irrational solenoidal flow.
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For the present, we may simplify this event by regarding the red AIT as the attractor,
throughout the interval of fluctuation. (See Section 22.3.)

21.2.3. DURING INTERVAL: The blue sleeve has become an attractive invariant torus (AIT),
around which trajectories wind only slightly. There are frequent fluctuations in the flow
on the torus, between braids and solenoids,

21.2.4. AFTER: The flow on the AIT has settled down to a steady braid, and a few periodic
attractors braided on the torus now dominate the portrait.
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21.2.5. Extracting the strobe planes, erecting them side by side in the control-space, and
smoothly interpolating the locus of attraction, we obtain this cutaway representation of
the strobed response diagram, The dark ring represents the interval of fluctuation.

SUMMARY: In this event, a direct suspension of the blue loop in 2D to 3D, a local event iperiodic
fold catastrophe) is complicated by a global feature (blue sleeve) so that an AIT of large amplitude
explodes from the vanishing periodic attractor. When the dust settles, there are several new periodic
attractors braided around the former blue sleeve. Many other variants of this explosion are known.
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21.3. Zeeman's Blue Tangle In 3D

In the early 1960's, Smale constructed his famous horseshoe example, a 3D flow with a tangled,
virtual separatrix (see Section 14.3). Eventually, chaotic attractors were observed to explode out
of periodic attractors associated with such tangles. In this section we develop a version of this event,
following Zeeman.?* Recall the homoclinic tangle from Figure 14.1.9,

21.3.1. BEFORE: Here we have a global portrait containing four periodic trajectories of
about the same period: a repellor, two saddles, and an attractor. (Compare Figure 21.2.1.)
The two saddles are individually homoclinic, and heteroclinic o each other. They are in-
volved in the tangle described by Smale’s horseshoe. The global system is monostable, with
rangled virtual separatrices within a single basin. The inner saddle (passing through the
strobe section on the left) has an untangled inset strip arriving from the repellor and an
untangled outset strip departing for the attractor.
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We now increase the control to effect (locally) a periodic fold catastrophe between the
inner saddle and the attractor.

21.3.2. AFTER: The periodic attractor and inner saddle are gone, after mutual annihila-
tion. The remaining saddle is homoclinic as before, But its fractal outset has become the
solitary attractor. The global dynamic is still monostable, and the virtual separatrix is only

slightly changed.
21.3.3. Placing the strobe portraits in their proper places in the space of the strobed

response diagram, we interpolate a snapshot of the moment of bifurcation. The inner sad-

dle vanishes along with its blue outset. But the oscillating blue outset of the outer saddle
turns red.
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21.3.4. Here is the response diagram, cut away to display the strobed locus of attraction
alone,

SUMMARY: In this event, a periodic attractor explodes to a large-scale chaotic attractor, This has
been suggested by Zeeman as a model for the onset of turbulence. Without a significant change
in the basin, an attractor abruptly changes its type and the volume of the phase space it dominates.
Similar explosions can be triggered by either an octave jump or a vertical pinch.®
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21.4 Ueda’s Chaotic Explosion In 3D

S0 far we have seen explosions from point to cycle, from cyele to braid, and from cvele to chaos,
It is also possible to have an explosion from small chaos to large chaos. In 1980, this example was
published by Ueda! the first of the great artists of chaos.

Here, trnslated o four colors, is an early stage on the way to the Rossler band, from Figure 8.4.4.
This is obtined from an electronic analog of Duffing's forced pendulum?

21.4.1. First, we fix the amplitude of the electronic forcing oscillator. Its frequency will
be the control knob in this experiment. After a periodic fold catastrophe, a second periodic
attractor appears. Here they are, separated by the scrolled green inset of the new periodic
saddle. This is a bistable system.
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From this point, we will make a few preparatory hifurcations, before beginning the Ueda sequence.
These may require changing forcing amplitude as well as frequency, and perhaps other parameters,

We will indicate these preparations in the strobe plane only.

-
e
a“
/,-U-/ 21.4.2, Next, we vary some para-
i — !mz:tcr:i, and turn these t“jt{ aml':li:mrs
[ into saddles. One possibility for ac-
S complishing this would be an octave
\ jump, in which case we imagine the

new attcactors to have disappeared
from view.

' : _ 21.4.3. For the next modification, we
// — — move the inset and outset of the cen-
. — tral saddle, 1o make two homoclinic
tangles. In the window, we show a
simplificd schematic of the tangles,
Note that the loops represent homao-
clinic rangles (a stable, generic
phenomenon), not unstable homo-
clinic orbis.
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21.4.4. Changing other parameters, we now make both of the outer saddles half-
homoclinic, as shown here. The former central tangle is omitted for simplicity, but it has
not changed in this modification.
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21.4.5. BEFORE: Superimposing the last two strobe portraits, we have this configuration,
reproduced from Ueda's computer plot. All tangles are indicated schematically in the win-
dow. This is the starting point for our chaotic explosion,
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21.4.6. BEFORE: Here is an enlargement of the schematic diagram from the window in
the preceding panel. As the outer outsets are attracted to the center tangle, the chaotic at-
tractor in this portrait is the tangled outset of the center saddle, It is contained in the red-

shaded region,

21.4.7. AFTER: The schematic now has new heteroclinic saddle connections, indicated
by the bold green arrows here. Now the entire system is tangled: it is a bypercycle (see Sec-
tion 14.4). The chaotic attractor has exploded so as to included the outsets of the outer

saddles.
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21.4.8. AFTER: Here is the new strobe portrait, corresponding to the new schematic, again
reproduced from Ueda.

21.4.9. Repeating our usual side-by-side construction in the state/control space of the
strobed response diagram, here is the skeleton representation for this chaotic explosion.
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21.4.10. And here is a schematic cutaway portrait of Ueda’s explosion.

SUMMARY: In this event, thanks to tangency bifurcations in which structural stability is lost momen-
tarily because of the violation of generic property G3. an attractive tangle is abruptly enlarged
through the addition of new foliage o a hyperevele,
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Fractal Bifurcations

Referring to the Big Picture in which a dynamical scheme is represented as a curve of
dynamical systems, we see a bifurcation occurring wherever the curve pierces a hypersur-
face belonging to the Bad Set. An important feature of the Bad Set, which we have not
illustrated as vet. is the accumulation of an infinite number of these bad sheets in fractal
systems. Thus, a curve representing a generic scheme may unavoidably encounter an infinite
set of bifurcations. Even though such a configuration involves an infinitude of individual
hifurcation events, we may regard it as a single atomic bifurcation event. Thus, we speak
of fractal bifurcation events. In this chapter we illustrate four examples of these fractal
events. Many more may occur.

ol
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22.1. Octave Cascade

The simplest fractal bifurcation event is the octave cascade. The infinite set of bifurcation sheets
in the big picture are arranged in a simple sequence, like the footprints of the frog jumping halfway
to the wall, That is, the sheets get closer and closer to a limit sheet. This configuration is called
a cascade. Each sheet (individual bifurcation event) in the convergent sequence is the same atomic
event: the octave jump in 3D, hence the name, octave cascade. (Sometimes this is called the fTip
cascade; see Section 17.4). The limit sheet marks the onset of chaotic behavior.

Recall that the Mobius band is fundamental to the octave jump.

22.1.1. Here is a review of the octave jump in 3D: BEFORE and AFTER. Note that the CM's
of the original cycle are both in the left half of the red disk (attractive region of the CM
plane) before the event, while one of them (indicating behavior within the rwisted band)
has moved to the left half of the green (repelling) region after the event. However, the new
attractor (corresponding to a tone one octave lower) has one of its CM's on each side of
the red disk.
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In order to go on with the next step of this cascade, we must adjust the new artractor so that both
of its CM's are in the left half of the red disk. This adjustment may be smoothly made if the band
is folded in two layers, as indicated in Section 8.1. And if the band has the folded structure of a
Rossler artractor, instead of the twisted structure of a Mibius band, then we may adjust the double-
period attractor on the band so that it appears to cross itself, but the two branches belong to two
different layers of the folded band. The lower branch has been pushed back, over the fold, and
down onto the lower sheet. At the same time, the CM's have been pushed to the left of the unit disk.

22.1.2. Now we are in a position to repeat the octave jump event. The twice-around attractor
becomes a saddle cycle, and a four-times-around attractor takes over the basin.

To continue these events in a infinite cascade, we need more and more layers of the folded band,
as are found in the Rbssler attractor. And after each octave jump, we need another fold of the underly-
ing band, to adjust the CM’s to the left half of the unit disk, in preparation for another jump. In-
deed, after the convergence of the cascade of individual octave jumps, we find the attractor has
become a chaotic band,
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This is one of the first chaotic scenarios to be discovered experimentally, by Rossler in
1976.

——— e, . = =

22.1.3. Here, then, is the strobed response diagram of the octave cascade, Each vertical
plane corresponds to a strobe plane section through the infinitely folded band. Each octave
jump is represented by a fork as explained in Fig. 17.4.5. These accumulate in an infinite
sequence of multiplications and converge on a chaotic band. The bifurcation set in the
control interval is fractal (see Section 9.4), and the chaotic attractor at the end of the event
is fractal as well.
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22.1.4. This example, visualized in the Big Picture, reveals a fractal structure in superspace.

SUMMARY: In this fractal bifurcation event, an infinite number of successive octave jumps accumulate
on a phantom Rossler band, which eventually becomes the attractor,
NOTE: We have used fractal loosely here, as the dimension of the bifurcation set is actually zero.
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7.2. The Noisy Cascade

This event may be viewed as a simple modification of the preceding one. First, regard the Rossler
attractor as a noisy oscillator, as suggested in Section 9.5, Then replace each oscillator in the octave
cascade by a noisy oscillator,

An individual bifurcation that has not been presented earlier in our atlas is the principal
actor in the scenario: the chaotic octave jump.

22.2.1. Hereis aside-by-side skeleton of the strobed response diagram, showing the entire
cascade, From left to right, a Rossler attractor makes an octave jump, turning into a twice-
around band, shown here in strobe plane section. This is repeated in a convergent sequence,
but at the limiting end, the final configuration on the right is again a once-around band!
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In actuality, this cascade occurs on the other side of the limit attained by the octave jump for periodic
attractors, as discovered by Lorenz.?

22.2.2. Here is a stripped-down view of the strobed response diagram for the full event,
showing a periodic cascade approaching from the left and a noisy one from the right.

SUMMARY: In this event, the bifurcation set in the control interval consists of two convergent
sequences, approaching the same limit point from opposite sides. A generic scheme, as a curve
in the Big Picture, might encounter a doubly infinite set of sheets of the Bad Set. Unavoidably, this
bifurcation event would result,
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22.3. Braid Bifurcations

We have referred repeatedly to rearrangements of the braided periodic attractors encountered in
toral dynamics (Chapter 5 and Section 8.2). We now review this phenomenon in the Big Picture.

22.3.1. We might begin with the simplest toral flow, with two periodic trajectorics: an
attractor and a repellor. The rotation number (average rotation of the Poincaré first-return
map on the strobe section) in this case is zero.
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Alternatively, the rotation number could be any number of full circles, if the two periodic trajec-
tories would around the waist of the torus a few times hefore the first return to the strobe plane.
In fact, any rational number may arise as a rotation number in this context. On the other hand,
there could be any number of periodic attractors, interspersed with an equal number of periodic
repellors on the torus. In this case, the rotation number may still be zero,

However, we now consider the simple case pictured, and ask: what happens if the control
parameter changes the rotation number?

Control

22.3.2. The answer is: this devil’s staircase. As the control parameter increases to the
right in this fictitious example, the rotation number increases from zero to one full revolu-
tion, but not smoothly.




Fractal Rifurcations 621

But there are an infinite number of rational numbers in this rotation interval. And at each and every
one of them, the rotation number tends to dwell awhile, in spite of the still increasing control
parameter. This is because toral flows with rational rotations typically are structurally stable
{according to Peixoto's theorem, Section 12.2) with a stable braid of periodic attractors and repellors
which wind appropriately. The irrational rotations, less likely, always correspond to solenoidal flows
(Figure 10.3.13). These may still fill up a set of control parameters having substantial expectation
(probability larger than zero). This situation is known as a fa? fractal bifurcation set. The bifurca-
tion set in the control interval is a Cantor set, or fractal, as there are infinite sequences of control
values of solenoidal flows (structurally unstable, hence bifurcations, the risers of the staircase)
converging to an infinity of control values at the endpoints of control intervals (the steps of the
staircase) corresponding to a stable rational braid. This has been beautifully analyzed by Herman

22.3.3. Here are the side-by-side strobe planes for this scheme. The red cyeles indicate
ephemeral solenoidal flows, while the blue cycles with red and green dots signify the stable
braids with rational rotations, which survive for a small interval of control parameter values.
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22.3.4. And here is the Big Picture, showing a thick slice of superspace in which the fractal
sheets of braid bifurcations predominate.

SUMMARY: All AIT's in a dynamical scheme are troubled by the fluctuating braid bifurcations. Thus,
it is pragmatic in many applications to regard an attractive torus as a kind of generalized attractor,
and ignore as far as possible the microscopic details of its internal dynamic. As in all the bifurcation
events in this chapter, we usually regard the entire fractal set of bifurcations as a single bifurcation
event. These are characterized by a bifurcation interval enclosing the fractal bifurcation set, rather
than a single bifurcation point in the control space.
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22.4. Tangle Bifurcations

We have seen, in Chapter 20, that saddle connection bifurcations in 3D or more involve tangles.
In the blue bagel, for example, as the control parameter increases and the affected inset and outset
strips approach each other, there is a bifurcation point of first contact. The two invariant strips
have an infinity of tangencies, which are nongeneric (failing G3) and thus structurally unstable:
bifurcations. Later, there was a final bifurcation of tangency, before the two strips have completely
passed through one another. These two extreme values define an interval, which we have called
the tangle interval, For an infinite number of control values (belonging to a fraceal set) within the
tangle interval, other tangencies may be expected. At these bifurcations, the signature of the tangle
changes. (See Section 13.5.) Thus, tangles imply an interval of control values that are dominated
by a fractal bifurcation set, which may be regarded as a single bifurcation event. These events have
been extensively studied by Newhouse and others.?



Appendix
Symbolic Expressions

As we have freely admitted in the Preface, our presentation of mathematical ideas by visual and
verbal representations alone, without rigorous, symbolic expressions, is incomplete. It is unfair
to mathematics and to the mathematically literate reader. But, wanting to give the maximum
understanding to readers without experience of symbolic expressions, we decided to collect all
the symbols in a closet of their own. This is it.

Our goal is to provide symbolic expressions for the basic concepts of dynamics (section A) and
for the main examples of dynamical systems (section B),

A. Basic Concepts

In this section, we complete the representation of the basic concepts from Chapter 1 by adjoining
their analytical (formal, symbolic) definitions. This is only a summary. For more details, consult
the texts listed in the Bibliography.

State spaces are smooth manifolds. The examples used in the book are:

R = R the real number line,

R" = R % ...x Rin times), Euclidian n-space,
51 = T, the circle,
™ = 8§ % ... x 8§ (n times), the n-torus,

and their Cartesian products, the various cylinder spaces.

In such a manifold, M, the space of tangent vectors at a point, xe M, is naturally identified with
Euclidean space, T.M = R". Thus, a smooth vectorfield on M is represented by a smooth mapping,

Vi M= R"; x=(Vix),. .., Vaulx))
and 1 smooth curve, ¢: R—+M, is an integral curve or trafectory of the vectorfield, V. if for all £,

c' (1) = (e(f), Vic(), where ¢'(#) is the tangent vector to ¢ at £. In case M = R", the tangent vector is
c'(t) = (c(h), v(t), where v(f) is the velocity vector, v{f) = lim fc(f + B) - )]/ as b goces to 2ero.

625
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Thus, the curve, ¢, is an integral curve if

c(t) = (&), . ealt)),

and the component functions satisfy the system of ordinary differential equations of first order,

€y (7)) = Vileu(t), . . enl(t))

c'nl(t) = Viles(t).. . cu(t))

Here ¢ denotes the ordinary derivative.

Two special cases were described in Section 1.3. First, if V(x) = 0, then x is a critical point of
the vectorfield, and the constant curve,

c: R=M; 1=C(l) = x,
is an integral curve.

Second, if ¢ is 4 nonconstant integral curve and ¢(t + 7) = ¢(¢) for some (smallest positive) real
number T, then ¢ is a periodic trajectory of period T,

An integral curve is complete if it is defined for all real numbers. Suppose ¢ is a complete integral
curve at x = ¢(0). The point x is called the initial point of ¢. The omega-limit set of x is the
countable intersection,

w(x) = Nfclc[n,==)) | neN]|

where N denotes the positive integers, [#, ) denotes the closed ray, and c/(4) denotes the closure
of the set A, Similarly, the alpha-limit set of x is the countable intersection,

a(x) = Nfcl(c(-= ,-n]) | neN|.
Let L M be a subset. Then the inset of L is the set
(L) = [xeM | w(x)CL]
and similarly, the outset of L is the set
Out(l) = [xeM | a(x)CL].
If L has an open neighborhood, U, in its inset, LC UCIn(L)C M, then L is attractive (there are many
important variants of this definition) and /(L) is its basin of attraction. An attractor is more than

an attractive set. It is a subset, ACM, which is attractive, and which has no proper subset that is
atrractive, The separatrix is the complement of all basins of attraction:
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Sep = [xeM | w(x) is not contained in an attractor).

B. Exemplary Systems

Using the notational conventions described in the preceding section, we give here the formulary
of the examples described in the text, in tabular form.,

Example: 1,

Section: 1.6,

Type: Negradient system,
Origin:  Newton, ca. 1665.
Space: Plane, R?

System:

-xd = 2x7 + 3x
_JF

..rf
}l.l'

n

Remarks: Potential function,

F(x) = x%4 + 2x3/3 - 3x%/2 + y¥/2,

Example: 2a,
Section: 2.1
Type: Simple pendulum,

Origin:  Newton, ca. 1665.
Source:  Stoker (1950), p. 61.
Space: Cylinder, $'xR.
Coords: angle of elevation, 4,
angular velocity, B.
System:
AF
BJ

B
Fsin{4) - cB

Remarks: coefficient of viscous damping, ¢,
weight of pendulum, F

Example: 2b.
Section: 2.2
Type: Buckling column.

Origin:  Stoker, 1950,
Source:  Stoker (1950), p. 54.
Space: Plane, R?

Coords:  displacement, x,

velocity, 3
System:
x' =y
3= (=1/m) [a;x? + a,x + cy]



628  Appendix

coefficients,
a, = A+ C - 2P/l
a, =B+ D - P/

Remarks: cocfficient of viscous damping, ¢,
mass, i,
length or column, 21,
vertical force, P
restoring force of primary (lateral) hard spring, Ax + Bx?
restoring force of secondary (hinge coil) hard spring, Cx + Da?

Example: 2c.
Section: 2.3,
Type: Spring.
Origin:  Rayleigh, 1877,
Source:  Stoker (1950), p. 15,
Space; Plane, R?
Coords:  displacement, x,
velocity, 3.
System:
P
,.P.l

Y
b (=1/m) [ayx3 a,x + cy)
Remarks: mass, m,
restoring force of spring, @, + a.x3% a, > 0,
hard spring, a, > 0,
linear spring, a, = f,
soft spring, a, < 0.

Example: 3.
Section: 2.4.
Type: Predator-prey.
Origin:  Volterra, Lotka, 1924,
Sowurce:  Hirsch and Smale (1974), p. 259.
Space: Plane, R?
Coords:  prey population, x,
predator population,
System:
xl‘

v

Remarks: ABC.D = 0,
saddle point, (0,0),
center, (D/C, A/B).

(4-By)x
(Cx-D)y
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Example: 4a.
Section:  3.1-3.
Type: Self-sustained oscillation.

Origin:  Rayleigh, 1883.
Sowrce:  Stoker (1950), p. 119.
Space: Plane, B2
Coords:  current, x,

voltage, 3
System:

2
¥

¥
' = (-1/CL) [x + By} - Ay
Remarks: capacitance, € > 0,
inductance, L = 0,
characteristic function of vacuum tube, Br* — Ay, 4. B > 0.

Example: 2d.
Section: 4.3, 7.4.
Type: Forced spring.

Origin:  Duffing, 1908,
Source:  Stoker (1950), p. 81.
Sprace: Ring, K? = §!
Coords: displacement, X,

velocity, 1,

driving phase, 6.
System:

x' =y

it o= (—1/m) [asxd + ax + Y] + Feos(0)
w

¥

&:
Remarks: mass, m,

restoring force of spring, ax + a.x?%, a; > 0,

hard spring, @, > 0,

linear spring, a; = 0,

soft spring, a4, < (0,

coupling strength, F

driving frequency, w.

Example: 4b.
Section: 5.4, 7.2.
Type: Forced, self-sustained oscillation,

Origin:  Rayleigh, 1888,
Source:  Stoker (1950), p. 147,
Space: Ring, £* = §!
Coords:  current, x,

voltage, ¥,
driving phase, 8.
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System.

’
r

n

F

¥
(-1/CL) [x + By* — Ay] + Fcos(@)
w

= K

Remarks: capacitance, € > 0,
inductance, L > 0,
characteristic function of vacuum tube, By* - 4y A, B > 0,
coupling strength, F,
driving frequency, w.

Example: dc.
Section: 7.2,
Origin:  Van der Pol, 1922,

System:
x'=y
¥ = (-1/CL) {x + (3Bx* — A)y] + Fcos@
@ = w

Remark: version of 4b, obtained by differentiation.

Example: 4d.

Origin:  Robert Shaw, 1980.

Section: 7.2,

System:
X' =y + Fcosf
¥ = (-1/CL) [x + (3Bx* - A)y]
g =uw

Remark: version of 4b, obtained by moving the force to the first equation.

Example: 5.

Section: 7.3,

Type: Polynomial.
Origin: Lorenz, 1962,
Space: Euclidean, R?
Coords: X, ), Z.

System:
x = 10(y - x)
y' = x(28 - 2) - y
2" = xy - (8/3)z
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Example: 6.
Section: 7.4,
Type: Polynomial.

Origin:  Rassler, 1968,
Space: Euclidean, &2
Coords: X, 1, 2.

System:
x' = =y + 2)
¥ =x+ 95
= 1/5 + z{x - 5.7)



Notes

Preface

! Abraham and Marsden (1978).
* Dynamics, a visual introduction, in F. E. Yates (ed.), Self-Organizing Systems, Plenum, 1982,

Hall of Fame

! For historical details of this crucial event, see Carl Benjamin Boyer, The History of the Calculus,
and Its Conceptual Development: Dover, New York, 1959,

Chapter 1
! See Zeeman (1977}, p. 4.
* For an elaborate and carefully considered alternate definition of attractor, see David Ruelle, Small

random perturbations of dynamical systems and the definition of attractors, Commun. Math FPhys.,
82, 137-151 (1981).

Chapter 2

' See Holmes and Moon, J. Sound Vibr 65(2), 275-296, 1979.

* An excellent history of this development is found in M.L. Cartwright, Nonlinear vibrations: a
chapter in mathematical history, Math. Gaz, 36, 80-88, 1952.

7 For the history and more discussion of this model, see Rosen (1970). And for the details of the
mathematical analysis, see Hirsch and Smale (1974).

* See Hirsch and Smale (1974) for details,

* See H. 1. Freedman, Deterministic Mathematical Models in Population Ecology: Decker, New
York, 1980,

Chapter 3
! See Rosen (1970), Chapter 7, for more discussion of this scheme.

Chapter 4

! The Theory of Sound, Article 51,

* The Theory of Sound, Article 42.

* If you haven't, this is a good time to begin. See Zeeman (1977), Chapter 9, for seven applications
of Duffing's cusp catastrophe to psychological behavior.

632
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+ An early study of harmonics in the Duffing ring is C. A. Ludeke, four Appl. Physies 13, 215-233,
1942.

Chapter 5

| For historical details, see M. L. Cartwright, Nonlinear vibrations: a chapter in mathematical history.
Math. Gaz. 36, B0-88, 1952, Also, see the outstanding text of the subject, Stoker (1950).

Chapter 12

| C. Guitierrez (1978) has published some results on structural stability in the nonorientable case.
2 See Arnol’d (1961) and Herman (1979) for the awesome details on the thickness of the bad set.
s See Pugh (1967) and Robinson (1977) for the details of the Closing Lemma.

Chapter 13

1 See Perello (1980) for an earlier exposition of these tangles.

2 §ee Stewart’s wonderful film (1985) for a better view of the scrolled insets and outsets,
s §ee Birkhoff and Smith (1950) and Birkhoff (1950) for a simple geometric proof.

Chapter 14

I See Birkhoff (1950),

: §ee Smale (1964) for the original horseshoe analysis.

s See the cover of Hayashi (1975) for a spectacular drawing of this tangle.

¢ See M. Levi (1981) for the occurrence of horseshoes in the forced Van der Pol system.
s Smale (1964 ).

6 §ee Zeeman (1973) for the theory of shoes,

7 See the original paper of Peixoto (8) for the first use of the quiver.

Chapter 15

! See Pugh (1967) for the proof of G4 from the Closing Lemma.

2 §e¢ the cover of Hayashi (175),

3 §ee Birkhoff and Smith (1950).

4+ See Birkhoff and Smith (1950).

s See the recent papers of R, Mané (1978) for new results on structural smability in 3D,

é §ee Palis and Smnale (1970) for the proof of structural stability under various hypotheses.

7 See Markus (1961) and Robinson (1973) for the generic consequences of structural stability.
& See Smale (1964).

Chapter 16

| see Jones (1967) for a thrilling history, and Todhunter (1962), especially Chapters 1-13.

! §ee Anonymous (1941).

3 See Hagihara (1970), especially the Introduction, and Chandrasekar (1969) Introduction, and
Lyttleton (1953), especially Chapters 1 and 2.

+ Todhunter (1062), p. 181.

s Lyttleton (1953), p. 39.

& Lyttleton (1953), p. 45.

7 Lyttleton (1953), p. 45.

& Lyttleton (1953), p. 41; Hagihara (1970), p. 2.

9 Lyttleton, pp. 1-5.
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' See, for example, looss and Joseph (1980).
"2Abraham, Marsden, and Ratiu (1983), Chapter 8.
BDonnelly, et al. (1980). See also Coles (1965).
“Thom (1972, 1975, 1983).

Chapter 17

' Thom (1972, 1975, 1983) and Prigogine (1980).

¢ Marsden and McCracken (1976).

* Hassard, Kazarninoff, and Wan (1981).

* Hirsch and Smale (1974) is one of the best for this purpose.

Chapter 18

' See Thom (1983), Zeeman (1982), and Poston and Stewart (1978).
* Besides the above, see Postle (1980).

Chapter 20

! See Abraham and Scott (1985), Abraham and Simo (1986), Abraham and Stewart (1986), and
Thompson and Stewart (1986), p. 282.

? Rossler (1976), Simo (1979), and Thompson and Stewart (1986), pp. 280-284,

* H.B. Stewart, Fig. 6; Thompson and Stewart (1986), p. 282.

Chapter 21

b See Smale (1967).

? Zeeman (1982), Thompson and Stewart (1986), p. 130.

* Zeeman (1982), Thompson and Stewart (1986), p. 143,

* Ueda (1980), Simo (1979), Thompson and Stewart (1986), pp. 234, 278.
* Actually, this preceded Duffing. See Martienssen (1910).

& See Pomeau (1980),

Chapter 22

' Rossler (1976), Thompson and Stewart (1986), p. 242,

2 Lorenz (1980).

3 See, for example, Herman (1979),

* Newhouse (1979}, also Guckenheimer and Holmes (1983), p. 331.



Bibliography

Abraham, Ralph H., Is there chaos without noise?, in Chaos, Fractals and Dynamics (P. Fischer
and W. R, Smith, eds.): Dekker, New York, 1983,

Abraham, Ralph H., and Jerrold E. Marsden, Foundations of Mechanics, 2d ed.: Benjamin/Cum-
mings, Reading, Mass., 1978,

Abraham, Ralph H., Jerrold E. Marsden, and Tador Ratiu, Manifolds, Tensor Analysis, and Applica-
tions: Addison-Wesley, Reading, Mass., 1983,

Abraham, Ralph H., and Katherine A, Scott, Chaostrophes of forced Van der Pol systems, in Chaos,
Fractals, and Dynamics (P. Fisher, W, Smith, eds.), pp. 123-134: M. Dekker, New York, 1985.

Abraham, Ralph H., and Carles Simo, Bifurcations and chaos in forced Van der Pol systems, in
Dynamical Systems and Singularities (5. Pnevmatikos, ed.), pp. 313-323: North-Holland, Amster-
dam, 19806.

Abraham, Ralph H., and H. Bruce Stewart, A chaotic blue sky catastrophe in forced relaxation oscilla-
tions: Physica 21D:394-400, 1986,

Anonymous, Maupertuis and the flattening of the Earth: Geogr. Jour 98:291-293, 1941

Arnol'd, V. L., On the mappings of a circumference onto itself, fze. Akad. Nauk SS5R, Ser. Matem.
25(1):21-86, 1961,

Arnol'd, V. L., Ordinary Differential Equations {transl, by R. A, Silverman): MIT Press, Cambridge,
Mass., 1978,

Birkhoff, G. D., Nouvelles recherches sur les systémes dynamiques, in Collected Works, vol. 2 1950.
Birkhoff, G. D., and P, Smith, Surface transformations, in Collected Works, vol. 2 1950,

Chandrasckar, 8., Ellipsoidal Figures of Equilibritm: Yale University Press, New Haven, Conn.,
1969,

Coles, €., Transition in circular Couette flow: J. Fluid Mech. 21:385-425, 1965,

Crurchfield, J., R. ], Donnelly, D, Farmer, G. Jones, N. Packard, and R. Shaw, Power spectra analysis
of a dynamical system: Phys. Left, T6A:1-4, 1980.

Donnelly, R. ], and K. Park, R. Shaw, R. W. Walden, Early nonperiodic transitions in Couette flow,
Phys. Rev. Lett. 44:987-989, 1980.

035



636 Biblivgraphy

Guckenheimer, J., and P. Holmes, Noniinear Oscillations, Dynamical Systems, and Bifurcations
aof Vector Fields: Springer-Verlag, New York, 1983

Gurel, Okan, Poincaré's bifurcation analysis: Ann. N. ¥ Acad. Sci. 316:5-22, 1979,

Gutierrez, C., Structural swability for flows on the torus with a cross-cap, Trans. American
Matbemctics Soctety 241, 1978.

Hagihara, Yusuke, Theories of Equilibrium Figures of a Rotating Homogeneous Fluid Meass: National
Acronautics and Space Administration, Washington, D.C., 1970 [1935].

Hassard, B. D., N. D. Kazarninoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation:
Cambridge University Press, Cambridge, UK., 1981,

Hayashi, Chihiro, Nonlinear Oscillations in Physical Systems: McGraw-Hill, New York, 1964.
Hayashi, Chihiro, Selected Papers on Nonlinear Oscillations: Kyoto University Press (1975).

Helleman, Robert H. G. (ed.), Nonlinear Dynamics (Annals, vol. 357): New York Academy of
Sciences, New York, 1980,

Herman, M. R., Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations
Publ, Math. ITHES 49:5-234, 1979.

Hilton, Peter (ed.), Structural Stability, the Theory of Catastropbes, and Applications in Sciences
(Lecture Notes in Mathematics, 525): Springer-Verlag, New York, 1976.

Hirsch, Morris W., and Stephen Smale, Differential Eguations, Dynamical Systems, and Linear
Algebra: Academic, New York, 1974,

Hoppensteadt, Frank C., Nonlinear Oscillations in Biology (Lectures in Applied Mathematics, vol.
17): American Mathematical Society, Providence, R.I., 1979,

looss, Gerard, Bifurcations of Maps and Applications: North-Holland. Amsterdam, 1979,

looss, Gerard, and Daniel D. Joseph, Elementary Stability and Bifurcation Theory: SpringerVerlag,
New York, 1980.

Irwin, M. C., Smooth Dynamical Systems: Academic, New York. 1980,

James, Preston E,, and Goethey, J. M., Al Possible Worlds: A History of Geagraphical Ideas (2nd
ed.): Wiley, New York, 1981.

Jones, Tom B., The Figure of the Earth: Coronado Press, Lawrence, Kans., 1967,
Leroi-Gourhan, André, Treasures of Prebistoric Art: Abrams, New York, 1967,

Levi, Mark, Qualitative analysis of the periodically forced relaxation oscillations, Memoires Amer
Math. Soc. 214:1-147, 1981,

Lichtenberg, A. ., and M. A. Licherman, Regular and Stochastic Motion- Springererlag, New York,
1982,

Lorenz, E. N., Deterministic non-periodic flow, fournal of Atmospheric Science 20:130-141, 1963,

Lorenz, E. N., Noisy periodicity and reverse bifurcation, in Nonlinear Dynamics (R. H. G. Helleman,
ed.): New York Academy of Science, New York, 1980,

Lyttleton, R. A., The Stability of Rotating Liguid Masses: Cambridge University Press, Cambridge,
UK., 1953,



Bibliographby 637

Mandelbrot, Benoit, Fracfals: W. H. Freeman, San Francisco, 1982,
Mafié, R., Contributions to the stability conjecture, Topolagy 17:386-396, 1978,

Markus, Lawrence, Lectures in Differentiable Dynamics: American Mathematical Society, Pro-
vidence, R.1., 1971,

Markus, Lawrence, Structurally stable differential systems: Ann. Math, 73:1-19, 1961,

Marsden, Jerrold E., and Marjorie McCracken, The Hopf Bifurcation and lts Applications: Springer-
Verlag, New York, 1976.

Martiecnssen, O., Uber neue Resonanzerscheinungen in Wechselstrombkreisen: Physik. Zeitschr
11:448-460, 1910,

Newhouse, Sheldon E., The abundance of wild hyperbolic sets and non-smooth stable sets for dif-
feomorphisms: THES Publ. Math. 50:101-152, 1979,

Nitecki, Z., Differentiable Dynamics: American Mathematical Society, Providence, R.1., 1971

Nitecki, Z., and C. Robinson (eds.), Global Theory of Dynamical Systems (Lecture Notes in
Mathematics, vol. 8B19): SpringerVerlag, New York, 1980,

Palis, ]., and 8. Smale, Structural stability theorems, in Proceedings of the Symposium on Pure
Mathematics, X1V, Global Analysis, pp. 223-231: American Mathematics Society, Providence,
R.I., 1970,

Peixoto, M., Structural stability on two-dimensional manifolds: Topology 2:101-121, 1961

Perello, C., Intertwining invariant manifolds and the Lorenz attractor, in Global Theory of Dynamical
Systems (£. Nitecki and C. Robinson, eds.), pp. 375-378: Springer, New York, 1980.

Pomeau, Y., and P Manneville, Intermittent transition to turbulence in dissipative dynamical systems,
Commun. Math. Phys. 74:189-197, 1980.

Postle, Denis, Catastropbe Theory: Fontana, London, 1980,
Poston, Tim, and lan Stewart, Catastropbe Theory and Its Applications: Pitman, London, 1978.

Prigogine, Ilya, From Being to Becoming: Time and Complexity in the Physical Sciences: W. H,
Freeman, San Francisco, 1980.

Pugh, C. C., An improved closing lemma and a general density theorem: Am. J. Math. 89:1010-1021,
1967.

Ravleigh, Baron, The Theory of Sound 2 vols.: Dover, New York, 1945 [1877].

Robinson, R. C., C[1] structural stability implies Kupka-Smale, in Dynamical Systems M. Peixoto,
ed.), pp. 443-449: Academic, New York, 1973,

Robinson, R. C., Introduction to the closing lemma, in The Structure of Attractors in Dynamical
Systems: National Science Foundation, Washington, D.C., 1977,

Rosen, Robert, Dynamical System Theory in Biology: Wiley-Interscience, New York, 1970,

Rissler, Otto, Different types of chaos in two simple differential equations: Zeftschr. Naturforsch.
31a:1664-1670, 1976.

Ruelle, D, Strange attractors: La Recherche: 108, 1980,



G638  Bibliography

Shaw, R. 5., 1981, Strange attractors, chaotic behavior, and information flow: Zeitch. Naturforsch.
36a:80, 1981,

Simo, Carles, On the Henon-Pomeau attractor: Jour Stat. Phys. 21:465-494, 1979,

Smale, Stephen, Diffeomorphisms with many periodic points, in Differential and Combined
Topology Symposium in Honor of Marston Morse: Princeton University Press, Princeton, N J., 1964.

Smale, Stephen, Differential dynamical systems: Bull. Am, Math, Soc. 73:747-817, 1967.
Sparrow, C., The Lorenz Equations: SpringerVerlag, New York, 1982

Stewart, H, B., The Lorenz Attractor; 16mm film, Aerial Press, Santa Cruz, Calif., 1985,
Stewart, 1., Les Fractals: Belin, Paris, 1982,

Stewart, L. Bruce, A chaotic saddle catastrophe in forced oscillators, Dynamical Systems, Approaches
to Nonlinear Problems in Systems and Circuits (F. Salam and M. Levi, eds.), 138- 149, SIAM,
Philadelphia, 1988.

Stoker, ]. .. Nonlinear Vibrations: Interscience, New York, 1950,
Thom, René, Mathematical Models of Morpbogenesis: Horwood, Chichester, UK., 1983.

Thom, René, Stabilité Structurelle et Morphogénése: Essai d'une Theorie Générale des Models:
Benjamin, Reading, Mass., 1972,

Thom, René, Structural Stability and Morpbogenesis (transl. by D. H. Fowler): Benjamin/Cum-
mings, Reading, Mass., 1975,

Thompson, ). M. T., and H. B. Stewart, Nonlinear Dynamics and Chaos: Wiley, New York, 1986.

Todhunter, 1., A History of the Mathematical Theories of Attraction and the Figure of the Earth:
From the Time of Newton to that of Laplace: Dover, New York, 1972 [1873].

Ueda, Yoshi, Explosion of strange attractors exhibited by Duffing’s equation in Nonlinear Dynamics
(R. H. G. Helleman, ed.), pp. 422-434: New York Academy of Science, New York, 1980.

Winfree, Arthur T., The Geometry of Biological Time (Biomathematics, vol. 8): Springer-Verlag,
New York, 1980,

Zeeman, E. Christopher, Bifurcation, catastrophe, and turbulence, in New Directions in Applied
Mathematics (Peter ]. Hilton and Gail 5. Young, eds.): SpringerVerlag, New York, 1982,

Zeeman, E. Christopher, Catastrophe Theory: Selected Papers, 1972-1977: Addison-Welsey, Reading,
Mass., 1977,

Zeeman, E. Christopher, C*-Density of stable diffeomorphisms and flows, in Proceedings of the
Dynamic Systems Conference, Southampton Univ, 1973,



Index

Index numbers refer to panels, rather than pages.

accumulation, 22.0.0

actual separatrix, 10,2.1

almost periodic trajectory, 1.3.13

alpha-limit, 1.5.4

amplitede, 2.2.3, 2.3.7, 4.2.26, 5.3.3

annihilation/creation event, 3.2.6

applied dynamics, 1.2.15

asymptote, 1.4.3

asymptotic behavior, 1.2.15

asymptotic limit sets, 1.4.0

asymptotic, 1.4.2, 1.4.6

atomic events, 3,.2.6

attractive, 5.3.5

attractor, 1.4.11, 1.5.0, 1.5.7, 2.1.19, 2.2.4,
10.0.0

average velocity, 1.2.2

bad set, 144, 22.0.0

basic set, 15.2.3

basin, L0.0, 1.5.7, 2.2.6, 4.5.12

basin bifurcation, 20.1.1

bifurcation behavior, 5.5.8

hifurcation diagram, 21.1.6

hifurcation diagram, one-parameter, 5.5.3

bifurcation diagram, two-parameter, 5.5.12

bifurcation interval, 22,3 4

bifurcation point, 6.1.8

big picture, 22.0.0

Birkhoff intro, 13.5.0

Birkhoff signature, 13.5.3, 14.1.6, 14.2.0

histable, 10.1.1, 12.3.2, 15.1.1, 18.5.2,
21.1.1

blue loop, 21.1.2

bound vector, 1.2.2

braid, 5.2.9

calculus, 1.2.0

Cartesian product, 5.1.8

cascade, 22.1.0

catastrophe, 18.2.2

catastrophe hifurcation, 6.2.11

celestial mechanics, 2.0.0

center, 2.1.18, 2:1.19, 2.2.3, 2.3.4, 2.4.5, 11.1.3,
11.2.2, 11.4.2, 17.1.6

chaostrophe, 18.2.2

chaotic attractor, 16.3.6, 21.0.0, 21.2.3

chaotic catastrophe, 20.3.9

chaotic scenario, 16.3.6

characteristic multiplier (CM), 11.2.0

classical bifurcation theory (CBT), 17.0.0

closed orbit, 1.3.8

closed space, 12.2.1

closed trajectory, 1.3.8

Closing Lemma, 12.3.3, 15.3.8

compact, 12.2.0

compound oscillation, 2.2.6

conservative systems, 2.0.0

constant trajectory, 1.3.2

contour map, 1.6.3

control parameter, 16.3.2

conventional interpretation, 1.1.1

cosine convention, 4.1.9

Couette’s stirring machine, 16.3.0

coupled system, 4.1.0

coupling, 5.2.0

critical point, 1.3.2

cubic, 2.3.14, 2.3.15, 3.1.8

curved space, 1,2.13

cusp catastrophe, 4.3.17

cur-away view, 17.1.8

cyvele, 1.3.6, 1.3.8

639



G460 Index

damped harmonic oscillator, 2.3.17
damped nonlinear oscillator, 2.3.21
damped oscillations, 2.2.6, 2.3.19
damped spring, 2.3.21

delta perturbation, 12.1.5

devil's staircase, 22,.3.2
differentiation, 1.2.0, 1.2.3
directed graph, 14.4.2

discrete, 18.4.2

dissipative systems, 2.0.0

donor, 11,0.0, 11.3.1, 13.0.0
driven system, 4.1.0

driving frequency, 5.5.3

dynamic, 1.2.15

dynamic annihilation catastrophe, 5.5.8

dyvnamic picture, preface

dynamical bifurcation theory (DBT), 17.0.0

dynamical scheme, 16.4.0
dynamical superspace, 16.4.2
dynamical system, 1.2.4

eccentricity, 16.2.3
elastic column, 2.2.1

elementary catastrophe theory (ECT), 18.0.0

elementary critical poing, 11.1.1

elementary entrainment, 5.2.1, 5.2.9, 5.3.5

elementary limit cycle, 7.2.3
cllipsoid, 16.1.4

ellipticity, 16.2.3

equilibrium, 1.5.0
equilibrium point, 1.3.2, 2.2.5
exceptional limit sets, 1.5.7
excitation, 16.4.3, 17.1.8

explosive bifurcations {explosions), 17.0.0

fast band, 7.4.1

Fat fracral, 22.3.2

far fraceal ser, 22.2.2

first return map, 13.4.2

flip cascade, 22.1.0

flow, 1.2.11

focal point, 2,119, 2.2.4

focal poimt attractor, 2.2.6, 3.2.2
focal point repellor, 3.2.13

fold catastrophe, 18.0.0

forced oscillation, 4.0.0, 5.0.0
forced vibration, 4.0.0

fractal hifurcation events, 22.0.0
fractal separatrix, 10.2.8
frequency, 3.2.2

frequency entrainment, 5.6.12
fundamemal mode, 4.4.13%

G4 paradox, 15.3.8

game of bob, 4.2.1

generic, 11.0.0

generic condition G3, 14.1.0
generic, weakly, 11.0.0
global, 20.0.0, 21.1.6

global analysis, 16.2.11
gradient system, 1.6.0
gradient vectorfield, 1.6.0
graph, directed, 14.4.2

hard spring, 4.3.1

harmonic oscillator, 2.3.11

harmonic ratio, 4.4.15

Hayashi, 14.1.8, 14.2.1

Hayashi tangle, 14.2.0, 15.1.2

heteroclinic, 14.1.1

heteroclinic cycle, 14.4.0

heteroclinic trajectory, 11.3.0, 12.2.7,
13.0.0

homeomorphism, 8.1.2

homoclinic point, 14.1.3

homoclinic tangle, 14.1.8

homoclinic trajectory, 11.3.0, 13.0.0

Hooke's Law, 2.3.11

Hopf bifurcation, 16.4.3, 17.1.0

horseshoe, 14.3.5, 15.2.3

hyperbolic critical point, 11.1.1

hyperbolic limit cycle, 11.2.1

hypercycle, 14.4.0, 21.4.7

hysteresis, 4.3.7

hysteresis loop, 4.3.17

improbable limit sets, 1.5.7
index, 10.1.5

initial stare, 1.2.9

in-phase, 4.2.20, 5.4.4

inset, 1.5.2, 4.3.11
instantancous velocity, 1.2.3
integral curve, 1.2.9
integration, 1.2.0, 1.2.9
interval of fluctuation, 21.2.2
invariant manifold, 4.1.12, 4.3.11
inverse friction, 2.3.23, 3,212
isochronous, 5.4.1, 5.4.4
isochronous harmonic, 4.2.16

Jacobi ellipsoids, 16.2.6
Kronecker irmtional flow, 15.3.5

Kupka, 13.5.8
Kupka-Smale theorem, 13.5.8



Index % ¥

lemon model, 16.1.5 periodic saddle, 5.4.7
level curves, 1.6.5 periodic trajectory, 1.3.8
limit cycle, 1.4.9 perturbation, 5.2.9, 12.1.1
limit point, 1.4.2, 1.4.6 perturbation epsilon, 12.1.5
limit set, 1.4.9 phase entrainment, 5.4.12
limit torus, 11.4.1 phase portrait, 1.0.0, 1.2.11, 1.2.15, 6.2.4
linear spring, 2.3.11 phase zero, 4.1.9
local, 20.0.0, 21.1.6 phylomxis, 3.4.0, 3.4.2
locus of attraction, 16.3.3 pinch, 20.0.0
Lorenz mask, 13.2.0 pitchfork, 16.2.9
LotkaVolterra vectorfield, 2.4.2 Poincaré infro, 9.4.4, 14.3.7
Poincaré-Bendixson Theorem, 11.4.2
Maclaurin series, 16.2.4 Poincaré first return map, 13.4.2
manifolds, 1.1.13, 1.2.11 Poincaré section, 13.4.2
maodel, 16.0.0, 6.1.0 Poincaré series, 16.2.10
modes of vibration, 4.4.13 Poincaré solenoid, 16.2.8
monostable, 18,33, 21.1.2 point attractor, 2,24
morphogen, 3.4.4 point repellor, 2.3.23
multiple attractors, 10,10 potential, 1.6.2
multistability, 10.1.1 potential function, 1.6.0
prediction forever, 1.2.15, 1411, 2.4.5
nearly periodic point, 15.1.0 preferred parameter, 1.3.10
non-isochronous harmonics, 4.3.17, 4.4.0 principle of canals, 16.2.1, 16.2.2
nonlinear vibrations, 5.0.0 probability of an attractor, 2.2.6
nontrivial recurrence, 11.4.0 probable limit sets, 1.5.7
nonwandering, 15.3.0 prolate spheroid, 16.1.4
NF, 15.1.0 property F 1141
NW, 15.3.3 property G1, 11.1.4
property G2, 11.2.3
oblate spheroid, 16.1.4 property G3, 11.5.0, 11.3.2, 13.0.0, 13.5.8, 15.1.0
observed system, 1.1.0 property G4, 11.4.0, 15.0.0, 15.3.7
octave cascade, 22,1.0 property §, 12.2.2
off-tngency, 20.3.5
omega-limit, 1.5.4 gualitative predictions, 1.2.15
omega-limit set, 4.3.11 quiver, 14.4.2
onion model, 16.1.4
onset of chaos, 16.3.6 radial critical point, 11.1.1
open system, 3.4.4 radial point, 2.2.6
orientable surface, 12.2.1 Rayleigh's system, 3.2.20
origin, 2.1.5 receptor, 11.0.0, 11.3.1, 13.0.0
oscillation, 1.3.8 recurrence, 11.4.0, 15.0.0, 15.3.0
outset, 4.3.11 recurrence, nontrivial, 11.4.0, 15.0.0
reduced model for oscillators, 5.1.3
pear-shape, 16.2.10 relaxation oscillator, 3.3.4
Peixoto fmtro, 1100, 14.4.2 response amplitude, 5.5.3
Peixoto theorem fntro, 11.0.0, 14.4.2 response curves, 5.5.3
pendulum, 10.1.3 response diagram, 5.5.3, 16.3.2, 16.3.3, 21.1.6
percussion instruments, 2.3.0 response plane, 5.5.3
period, 1.3.9, 2.4.5 response plane convention, 5.5.8
period doubling bifurcation, 17.3.7 response space, 16.3.2
periodic attractor, 1.5.7, 4.1.0, 6.3.5 rest point, 2.2.4

periodic function, 1.3.10 reversible, 21.1.6
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ring, 4.1.11
ring model, 4.0.0, 5.1.0, 5.3.4, 5.6.5
rotation number, 21.2.2

saddle, 2.1.18, 2.2.5

saddle connection, 11.3.0, 13.0.0, 14.1.0
saddle connection, transverse, 13.1.1
saddle cycle, 4.3.11

saddle point, 1.6.10

saddle switching, 13.1.1, 14.1.0
second excitation, 17.2.6

second harmonic, 4.4.0
secondary Hopf bifurcation, 17.2.0
self-sustained oscillations, 3.1.0
separatrix, 1.0.0, 1.5.7, 2.2.6, 4.3.11, 10.1.3
separatrix, actual, 10.2.0
separatrix, fractal, 10.2.8
separatrix, virtual, 10.2.0
side-by-side view, 17.1.7
signature, 22.4.0

signature, Birkhoff, 13.5.3, 14.1.6
signature, conjecture, 14.2.0
signature, sequence, 14.2.0
simple pendulum, 2.1.0

slow band, 17.4.1

Smale fntro, 12.2.3, 13.5.8
Smale horseshoe, 14.3.5, 15.2.3
solenoid, 4.4.22

solenoidal, 16.3 .4

solenoidal flow, 12.2.2, 15.3.5
solenoidal trajectory, 1.3.13
spheroid, 16.1.4

star point, 2.2.6

start-up transient, 1.5.0

state space, 1.1.0, 1.2.0, 1.2.15
static attractor, 1.5.7

static fold, 16.3 .4

stationary, 16.3.4

strobe plane, 4.1.15

strobe section, 18.5.11

strobe plane convention, 5.5.3
strobed trajectory, 4.1.17
structural stability, 5.6.12, 12.1.0
structurally stable, 16.4.4
subharmonics, 4.4.13

subtle bifurcations, 17.0.0, 17.1.5
superdynamic, 16.3.2

suspension, 20.3.3
sustained oscillation, 4.2.2

tangent space, 1.2.13

tangent vector, 1.2.3

angle cvecle o point, 13.3.9
tangle, Hayashi, 14.2.0, 15.1.2
tangle, homoclinic, 14.1.8
tangle, point to cycle, 13.3.9
tangle, point to point, 13.1.7
tangle interval, 20.3.2, 22.4.0
tank circuit, 3.3.2

Taylor cells, 16.3.4

thick Cantor set, 8.2.2

time series, 1.1.5, 1.1.9, 1.3.10, 3.4.14
topological equivalence, 12,12
topological transitivity, 11.4.1
tori, 4.1.13

trajectory, 1.1.9, 1,2.0, 1.2.4
transient chaos, 14.1.9
transient oscillation, 13.5.7
transitive, 5.3.5
transversatility, 13.0.0
transverse saddle connection, 13.1.1
trivial recurrence, 15.0.0
tuning fork interrupter, 3.3.1

ultraharmonics, 4.4.13
ultra-subharmonics, 4.4.13
uncoupled oscillators, 5.1.3
undamped, 4.1.13

unit simplex, 3.4.10

unseable equilibrium, 2.1.10, 10.1.3

vague attractor, 1.5.7
vectorfield, 1.2.4

velocity, 1.2.3

velocity vector, 1.2.3

velocity vectorfield, 1.2.0
virtual separatrix, 10.2.0, 13.3.1
vortex point, 2.1.18

wandering point, 15.3.2
wavy vortex, 16.3.5
weakly-generic property, 11,00

voke, neat, 13.2.2
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