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Figure 6.12: The Rall model with static current injected a distance x along the
equivalent cable while the soma is clamped at its resting potential. The schematic
at left shows the recording set up. The potential at the site of the current injection
and the current entering the soma are measured. The central diagram is the equiv-
alent circuit for this case, and the corresponding formulas for the somatic current
and dendritic voltage are given at the right. Rsoma is the membrane resistance of
the soma, and R3 and R4 are the resistances given in equations 6.26 and 6.27.

Rλ sinh(x/λ) cosh((L − x)/λ)/ cosh(L/λ). When L and x are both much
larger than λ, this approaches the limiting value Rλ. The current attenua-
tion is defined as the ratio of the somatic to electrode currents and is given
by

Isoma

Ie
=

R4

R3 + R4
=

cosh ((L − x)/λ)

cosh (L/λ)
. (6.28)

The inward current attenuation (plotted in figure 6.11) for the recording
configuration of figure 6.12 is identical to the outward voltage attenuation
for figure 6.10 given by equation 6.25. Equality of the voltage attenuation
measured in one direction and the current attenuation measured in the
opposite direction is a general feature of linear cable theory.

The Morphoelectrotonic Transform

The membrane potential for a neuron of complex morphology is obviously
much more difficult to compute than the simple cases we have considered.
Fortunately, efficient numerical schemes (discussed later in this chapter)
exist for generating solutions for complex cable structures. However, even
when the solution is known, it is still difficult to visualize the effects of
a complex morphology on the potential. Zador, Agmon-Snir, and Segev
(1995; see also Tsai et al., 1994) devised a scheme for depicting the attenua-
tion and delay of the membrane potential for complex morphologies. The
voltage attenuation, as plotted in figure 6.11, is not an appropriate quan-
tity to represent geometrically because it is not additive. Consider three
points along a cable satisfying x1 > x2 > x3. The attenuation between x1

and x3 is the product of the attenuation from x1 to x2 and from x2 to x3,
v(x1)/v(x3) = (v(x1)/v(x2))(v(x2)/v(x3)). An additive quantity can be
obtained by taking the logarithm of the attenuation, due to the identity
ln(v(x1)/v(x3)) = ln(v(x1)/v(x2)) + ln(v(x2)/v(x3)). The morphoelectro-
tonic transform is a diagram of a neuron in which the distance betweenmorphoelectrotonic

transform
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6.3 The Cable Equation 23

any two points is determined by the logarithm of the ratio of the mem-
brane potentials at these two locations, not by the actual size of the neuron.

vv

anatomy attenuation (in) delay (in)

100 µm 10 ms

Figure 6.13: The morphoelectrotonic transform of a cortical neuron. The left panel
is a normal drawing of the neuron. The central panel is a diagram in which the
distance between any point and the soma is proportional to the logarithm of the
steady-state attenuation between the soma and that point for static current injected
at the terminals of the dendrites. The scale bar denotes the distance corresponding
to an attenuation of exp(−1). In the right panel, the distance from the soma to a
given point is proportional to the inward delay, which is the centroid of the soma
potential minus the centroid at the periphery when a pulse of current is injected
peripherally. The arrows in the diagrams indicate that the reference potential in
these cases is the somatic potential. (Adapted from Zador et al, 1995.)

Another morphoelectrotonic transform can be used to indicate the amount
of delay in the voltage waveform produced by a transient input current.
The morphoelectrotonic transform uses a different definition of delay than
that used in Figure 6.8B. The delay between any two points is defined as
the difference between the centroid, or center of ‘gravity’, of the voltage
response at these points. Specifically, the centroid at point x is defined
as

�
dt tv(x, t)/

�
dt v(x, t). Like the log-attenuation, the delay between any

two points on a neuron is represented in the morphoelectrotonic transform
as a distance.

Morphoelectrotonic transforms of a pyramidal cell from layer 5 of cat vi-
sual cortex are shown in figures 6.13 and 6.14. The left panel of figure
6.13 is a normal drawing of the neuron being studied, the middle panel
shows the steady-state attenuation, and the right panel shows the delay.
The transformed diagrams correspond to current being injected peripher-
ally, with somatic potentials being compared to dendritic potentials. These
figures indicate that, for potentials generated in the periphery, the apical
and basal dendrites are much more uniform than the morphology would
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24 Model Neurons II: Conductances and Morphology

suggest.

The small neuron diagram at the upper left of figure 6.14 shows attenua-
tion for the reverse situation from figure 6.13, when DC current is injected
into the soma and dendritic potentials are compared with the somatic po-
tential. Note how much smaller this diagram is than the one in the central
panel of figure 6.13. This illustrates the general feature mentioned previ-
ously that potentials are attenuated much less in the outward than in the
inward direction. This is because the thin dendrites provide less of a cur-
rent sink for potentials arising from the soma than the soma provides for
potentials coming from the dendrites.

100 Hz 500 Hz

0 Hz

Figure 6.14: Morphoelectrotonic transforms of the same neuron as in figure 6.13
but showing the outward log-attenuation for DC and oscillating input currents.
Distances in these diagrams are proportional to the logarithm of the amplitude of
the voltage oscillations at a given point divided by the amplitude of the oscillations
at the soma when a sinusoidal current is injected into the soma. The upper left
panel corresponds to DC current injection, the lower left panel to sinusoidal cur-
rent injection at a frequency of 100 Hz, and the right panel to an injection frequency
of 500 Hz. The scale bar denotes the distance corresponding to an attenuation of
exp(−1). (Adapted from Zador et al, 1995.)

The capacitance of neuronal cables causes the voltage attenuation for time-
dependent current injection to increase as a function of frequency. Figure
6.14 compares the attenuation of dendritic potentials relative to the so-
matic potential when DC or sinusoidal current of two different frequen-
cies is injected into the soma. Clearly, attenuation increases dramatically
as a function of frequency. Thus, a neuron that appears electrotonically
compact for static or low frequency current injection may be not compact
when higher frequencies are considered. For example, action potential
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waveforms, that correspond to frequencies around 500 Hz, are much more
severely attenuated within neurons than slower varying potentials.

6.4 Multi-Compartment Models

The cable equation can only be solved analytically in relatively simple
cases. When the complexities of real membrane conductances are in-
cluded, the membrane potential must be computed numerically. This is
done by splitting the neuron being modeled into separate regions or com-
partments and approximating the continuous membrane potential V(x, t)
by a discrete set of values representing the potentials within the differ-
ent compartments. This assumes that each compartment is small enough
so that there is negligible variation of the membrane potential across it.
The precision of such a multi-compartmental description depends on the
number of compartments used and on their size relative to the length con-
stants that characterize their electrotonic compactness. Figure 6.15 shows
a schematic diagram of a cortical pyramidal neuron, along with a series
of compartmental approximations of its structure. The number of com-
partments used can range from thousands, in some models, to one, for the
description at the extreme right of figure 6.15.

Figure 6.15: A sequence of approximations of the structure of a neuron.
The neuron is represented by a variable number of discrete compartments
each representing a region that is described by a single membrane poten-
tial. The connectors between compartments represent resistive couplings.
The simplest description is the single-compartment model furthest to the
right. (Neuron diagram from Haberly, 1990.)

In a multi-compartment model, each compartment has its own membrane
potential Vµ (where µ labels compartments), and its own gating variables
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26 Model Neurons II: Conductances and Morphology

that determine the membrane current for compartment µ, iµm. Each mem-
brane potential Vµ satisfies an equation similar to 6.1 except that the com-
partments couple to their neighbors in the multi-compartment structure
(figure 6.16). For a non-branching cable, each compartment is coupled to
two neighbors, and the equations for the membrane potentials of the com-
partments are

cm
dVµ

dt
= −iµm +

Iµ
e

Aµ

+ gµ,µ+1(Vµ+1 − Vµ) + gµ,µ−1(Vµ−1 − Vµ) . (6.29)

Here Iµ
e is the total electrode current flowing into compartment µ, and

Aµ is its surface area. Compartments at the ends of a cable have only
one neighbor and thus only a single term replacing the last two terms in
equation 6.29. For a compartment where a cable branches in two, there are
three such terms corresponding to coupling of the branching node to the
first compartment in each of the daughter branches.
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Figure 6.16: A multi-compartment model of a neuron. The expanded region
shows three compartments at a branch point where a single cable splits into two.
Each compartment has membrane and synaptic conductances, as indicated by the
equivalent electrical circuit, and the compartments are coupled together by resis-
tors. Although a single resistor symbol is dranw, note that gµ,µ� is not necessarily
equal to gµ�,µ.

The constant gµ,µ� that determines the resistive coupling from neighboring
compartment µ� to compartment µ is determined by computing the cur-
rent that flows from one compartment to its neighbor due to Ohm’s law.
For simplicity, we begin by computing the coupling between two com-
partment that have the same length L and radius a. Using the results of
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6.4 Multi-Compartment Models 27

chapter 5, the resistance between two such compartments, measured from
their centers, is the intracellular resistivity, rL times the distance between
the compartment centers divided by the cross-sectional area, rL L/πa2. The
total current flowing from compartment µ + 1 to compartment µ is then
πa2(Vµ+1 − Vµ)/rL L. Equation 6.29 for the potential within a compart-
ment µ refers to currents per unit area of membrane. Thus, we must divide
the total current from compartment µ� by the surface area of compartment
µ, 2πaL. Thus, we find that gµ,µ� = a/(2rL L2).

The value of gµ,µ� is given by a more complex expression if the two neigh-
boring compartments have different lengths or radii. This can occur when
a tapering cable is approximated by a sequence of cylindrical compart-
ments, or at a branch point where a single compartment connects with
two other compartments as in figure 6.16. In either case, suppose that com-
partment µ has length Lµ and radius aµ and compartment µ� has length
Lµ� and radius aµ� . The resistance between these two compartments is the
sum of the two resistances from the middle of each compartment to the
junction between them, rL Lµ/(2πa2

µ) + rL Lµ�/(2πa2
µ� ). To compute gµ,µ�

we invert this expression and divide the result by the total surface area of
compartment µ, 2πaµLµ, which gives

gµ,µ� =
aµa2

µ�

rL Lµ(Lµa2
µ� + Lµ� a2

µ)
. (6.30)

Equations 6.29 for all of the compartments of a model determine the mem-
brane potential throughout the neuron with a spatial resolution given
by the compartment size. An efficient method for integrating the cou-
pled multi-compartment equations is discussed in appendix B. Using this
scheme, models can be integrated numerically with excellent efficiency,
even those involving large numbers of compartments. Such integration
schemes are built into neuron simulation software packages such as Neu-
ron and Genesis.

Action Potential Propagation Along an Unmyelinated Axon

As an example of multi-compartment modeling, we simulate the propa-
gation of an action potential along an unmyelinated axon. In this model,
each compartment has the same membrane conductances as the single-
compartment Hodgkin-Huxley model discussed in chapter 5. The dif-
ferent compartments are joined together in a single non-branching cable
representing a length of axon. Figure 6.17 shows an action potential prop-
agating along an axon modeled in this way. The action potential extends
over more than 1 mm of axon and it travels about 2 mm in 5 ms for a speed
of 0.4 m/s.

Although action potentials typically move along axons in a direction out-
ward from the soma (called orthodromic propagation), the basic process
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Figure 6.17: Propagation of an action potential along a multi-compartment model
axon. The upper panel shows the multi-compartment representation of the axon
with 100 compartments. The axon segment shown is 4 mm long and has a radius
of 1 µm. An electrode current sufficient to initiate action potentials is injected at
the point marked Ie. The panel beneath this shows the membrane potential as a
function of position along the axon, at t = 9.75 ms. The spatial position in this
panel is aligned with the axon depicted above it. The action potential is moving
to the right. The bottom two panels show the membrane potential as a function
of time at the two locations denoted by the arrows and symbols V1 and V2 in the
upper panel.

of action potential propagation does not favor one direction over the other.
Propagation in the reverse direction, called antidromic propagation, isorthodromic;

antidromic
propagation

possible under certain stimulation conditions. For example, if an axon is
stimulated in the middle of its length, action potentials will propagate in
both directions away from the point of stimulation. Once an action poten-
tial starts moving along an axon, it does not generate a second action po-
tential moving in the opposite direction because of refractory effects. The
region in front of a moving action potential is ready to generate a spike
as soon as enough current moves longitudinally down the axon from the
region currently spiking to charge the next region up to spiking threshold.
However, Na+ conductances in the region just behind the moving action
potential are still partially inactivated, so this region cannot generated an-
other spike until after a recovery period. By the time the trailing region
has recovered, the action potential has moved too far away to generate a
second spike.

Refractoriness following spiking has a number of other consequences for
action potential propagation. Two action potentials moving in oppo-
site directions that collide annihilate each other because they cannot pass
through each other’s trailing refractory regions. Refractoriness also keeps
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6.4 Multi-Compartment Models 29

action potentials from reflecting off the ends of axon cables, which avoids
the impedance matching needed to prevent reflection from the ends of or-
dinary electrical cables.

The propagation velocity for an action potential along an unmyelinated
axon is proportional to the ratio of the electrotonic length constant to the
membrane time constant, λ/τm = (a/(c2

mrLrm))1/2. This is proportional to
the square root of the axon radius. The square-root dependence of the
propagation speed on the axon radius means that thick axons are required
to achieve high action potential propagation speeds, and the squid giant
axon is an extreme example. Action potential propagation can also be sped
up by covering the axon with an insulating myelin wrapping, as we dis-
cuss next.

Propagation Along a Myelinated Axon

Many axons in vertebrates are covered with an insulating sheath of
myelin, except at gaps, called the nodes of Ranvier, where there is a high
density of fast voltage-dependent Na+ channels and other ion channels
(see figure 6.18A). The myelin sheath consists of many layers of (glial cell)
membrane wrapped around the axon. This gives the myelinated region of
the axon a very high membrane resistance and a small membrane capaci-
tance. This results in what is called saltatory propagation, in which mem- saltatory

propagationbrane potential depolarization is transferred passively down the myelin-
covered sections of the axon, and action potentials are actively regenerated
at the nodes of Ranvier. The cell membrane at the nodes of Ranvier has a
high density of fast Na+ channels. Figure 6.18A shows an equivalent cir-
cuit for a multi-compartment model of a myelinated axon.

We can compute the capacitance of a myelin-covered axon by treating the
myelin sheath as an extremely thick cell membrane. Consider the geom-
etry shown in the cross-sectional diagram of figure 6.18B. The myelin
sheath extends from the radius a1 of the axon core to the outer radius
a2. For calculational purposes, we can think of the myelin sheath as be-
ing made of a series of thin concentric cylindrical shells. The capacitances
of these shells combine in series to make up the full capacitance of the
myelinated axon. If a single layer of cell membrane has thickness dm and
capacitance per unit area cm, the capacitance of a cylinder of membrane
of radius a, thickness �a, and length L is cm2πdmLa/�a. According to the
rule for capacitors in series, the inverse of the total capacitance is obtained
by adding the inverses of the individual capacitances. The capacitance of a
myelinated cylinder of length L and the dimensions in figure 6.18B is then
obtained by taking the limit �a → 0 and integrating,

1

Cm
=

1

cm2πdmL

� a2

a1

da

a
=

ln(a2/a1)

cm2πdmL
. (6.31)
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Figure 6.18: A myelinated axon. A) The equivalent circuit for a multi-
compartment representation of a myelinated axon. The myelinated segments are
represented by a membrane capacitance, a longitudinal resistance, and a leakage
conductance. The nodes of Ranvier also contain a voltage-dependent Na+ conduc-
tance. B) A cross-section of a myelinated axon consisting of a central axon core of
radius a1 and a myelin sheath making the outside radius a2.

A re-evaluation of the derivation of the linear cable equation earlier in
this chapter indicates that the equation describing the membrane potential
along the myelinated sections of an axon, in the limit of infinite resistance
for the myelinated membrane and with ie = 0, is

Cm

L

∂v

∂t
=

πa2
1

rL

∂2v

∂x2
. (6.32)

This is equivalent to the diffusion equation, ∂v/∂t = D∂2v/∂x2 with diffu-
sion constant D = πa2

1L/(CmrL) = a2
1 ln(a2/a1)/(2cmrLdm). It is interesting

to compute the inner core radius, a1, that maximizes this diffusion con-
stant for a fixed outer radius a2. Setting the derivative of D with respect to
a1 to zero gives the optimal inner radius a1 = a2 exp(−1/2) or a1 ≈ 0.6a2.
An inner core fraction of 0.6 is typical for myelinated axons. This indi-
cates that, for a given outer radius, the thickness of myelin maximizes the
diffusion constant along the myelinated axon segment.

At the optimal ratio of radii, D = a2
2/(4ecmrLdm), which is proportional to

the square of the axon radius. Because of the form of the diffusion equation
it obeys with this value of D, v can be written as a function of x/a2 and t.
This scaling implies that the propagation velocity for a meylinated cable
is proportional to a2, that is, to the axon radius not its square root as in
the case of an unmyelinated axon. Increasing the axon radius by a factor
of four, for example, increases the propagation speed of an unmyelinated
cable only by a factor of two, while it increases the speed for a myelinated
cable fourfold.
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6.5 Chapter Summary

We continued the discussion of neuron modeling that began in chapter 5
by considering models with more complete sets of conductances and tech-
niques for incorporating neuronal morphology. We introduced A-type K+,
transient Ca2+, and Ca2+-dependent K+ conductances and noted their ef-
fect on neuronal activity. The cable equation and its linearized version
were introduced to examine the effects of morphology on membrane po-
tentials. Finally, multi-compartment models were presented and used to
discuss propagation of action potentials along unmyelinated and myeli-
nated axons.

6.6 Appendices

A) Gating Functions for Conductance-Based Models

Connor-Stevens Model

The rate functions used for the gating variables n, m, and h of the Connor-
Stevens model, in units of 1/ms with V in units of mV, are

αm =
0.38(V + 29.7)

1 − exp[−0.1(V + 29.7)]
βm = 15.2 exp[−0.0556(V + 54.7)]

αh = 0.266 exp[−0.05(V + 48)] βh = 3.8/(1 + exp[−0.1(V + 18)])

αn =
0.02(V + 45.7)

1 − exp[−.1(V + 45.7)]
βn = 0.25 exp[−0.0125(V + 55.7)] . (6.33)

The A-current is described directly in terms of the asymptotic values and
τ functions for its gating variables (with τa and τb in units of ms and V in
units of mV),

a∞ =

�
0.0761 exp[0.0314(V + 94.22)]

1 + exp[0.0346(V + 1.17)]

�1/3

(6.34)

τa = 0.3632 + 1.158/(1 + exp[0.0497(V + 55.96)]) (6.35)

b∞ =

�
1

1 + exp[0.0688(V + 53.3)]

�4

(6.36)

and

τb = 1.24 + 2.678/(1 + exp[0.0624(V + 50)]) . (6.37)
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Transient Ca2+ Conductance

The gating functions used for the variables M and H in the transient Ca2+

conductance model we discussed, with V in units of mV and τM and τH in
ms, are

M∞ =
1

1 + exp (−(V + 57)/6.2)
(6.38)

H∞ =
1

1 + exp ((V + 81)/4)
(6.39)

τM = 0.612 +
�
exp (−(V + 132)/16.7) + exp ((V + 16.8)/18.2))

�−1

(6.40)

and

τH =

�
exp ((V + 467)/66.6) if V < −80 mV
28 + exp (−(V + 22)/10.5) if V ≥ −80 mV .

(6.41)

Ca2+-dependent K+ Conductance

The gating functions used for the Ca2+-dependent K+ conductance we dis-
cussed, with V in units of mV and τc in ms, are

c∞ =

�
[Ca2+]

[Ca2+] + 3µM

�
1

1 + exp(−(V + 28.3)/12.6)
(6.42)

and

τc = 90.3 −
75.1

1 + exp(−(V + 46)/22.7)
. (6.43)

B) Integrating Multi-Compartment Models

Multi-compartmental models are defined by a coupled set of differential
equations (equation 6.29), one for each compartment. There are also gat-
ing variables for each compartment, but these only involve the membrane
potential (and possibly Ca2+ concentration) within that compartment, and
integrating their equations can be handled as in the single-compartment
case using the approach discussed in appendix B of chapter 5. Integrating
the membrane potentials for the different compartments is more complex
because they are coupled to each other.

Equation 6.29 for the membrane potential within compartment µ can be
written in the form

dVµ

dt
= AµVµ−1 + BµVµ + CµVµ+1 + Dµ (6.44)
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where

Aµ = c−1
m gµ,µ−1 , Bµ = −c−1

m (
�

i

gµ

i + gµ,µ+1 + gµ,µ−1) ,

Cµ = c−1
m gµ,µ+1 , and Dµ = c−1

m (
�

i

gµ

i Ei + Iµ
e /Aµ) . (6.45)

Note that the gating variables and other parameters have been absorbed
into the values of Aµ, Bµ, Cµ, and Dµ in this equation. Equation 6.44, with
µ running over all of the compartments of the model, generates a set of
coupled differential equations. Because of the coupling between compart-
ments, we cannot use the method discussed in appendix A of chapter 5 to
integrate these equations. Instead, we present another method that shares
some of the positive features of that method.

Two of the most important features of an integration method are accuracy
and stability. Accuracy refers to how closely numerical finite-difference
methods reproduce the exact solution of a differential equation as a func-
tion of the integration step size �t. Stability refers to what happens when
�t is chosen to be excessively large and the method starts to become in-
accurate. A stable integration method will degrade smoothly as �t is in-
creased, producing results of steadily decreasing accuracy. An unstable
method, on the other hand, will, at some point, display a sudden transition
and generate wildly inaccurate results. Given the tendency of impatient
modelers to push the limits on �t, it is highly desirable to have a method
that is stable.

Defining

Vµ(t + �t) = Vµ(t) + �Vµ , (6.46)

the finite difference form of equation 6.44 gives the update rule

�Vµ =
�
AµVµ−1(t) + BµVµ(t) + CµVµ+1(t) + Dµ

�
�t (6.47)

which is how �Vµ is computed using the so-called Euler method. This
method is both inaccurate and unstable. The stability of the method can
be improved dramatically by evaluating the membrane potentials on the
right side of equation 6.47 not at time t, but at a later time t + z�t, so that

�Vµ =
�
AµVµ−1(t + z�t) + BµVµ(t + z�t) + CµVµ+1(t + z�t) + Dµ

�
�t .

(6.48)

Two such methods are predominantly used, the reverse Euler method for
which z = 1 and the Crank-Nicholson method with z = 0.5. The reverse
Euler method is the more stable of the two and the Crank-Nicholson is
the more accurate. In either case, �Vµ is determined from equation 6.48.
These methods are called implicit because equation 6.48 must be solved
to determine �Vµ. To do this, we write Vµ(t + z�t) ≈ Vµ(t) + z�Vµ and
likewise for Vµ±1. Substituting this into equation 6.48 gives

�Vµ = aµ�Vµ−1 + bµ�Vµ + cµ�Vµ+1 + dµ (6.49)
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where

aµ = Aµz�t , bµ = Bµz�t , cµ = Cµz�t , and

dµ = (Dµ + AµVµ−1(t) + BµVµ(t) + CµVµ+1(t))�t . (6.50)

Equation 6.49 for all µ values provides a set of coupled linear equations for
the quantities �Vµ. An efficient method exists for solving these equations
(Hines 1984, Tuckwell 1988). We illustrate the method for a single, non-
branching cable that begins with at compartment µ = 1, so that a1 = 0, and
ends at compartment µ = N, so cN = 0. The method consists of solving
equation 6.49 for �Vµ in terms of �Vµ+1 sequentially starting at one end
of the cable and proceeding to the other end. For example, if we start the
procedure at compartment one, �V1 can be expressed as

�V1 =
c1�V2 + d1

1 − b1
. (6.51)

Substituting this into the equation 6.49 for µ = 2 gives

�V2 = b�
2�V2 + c2�V3 + d�

2 (6.52)

where b�
2 = b2 + a2c1/(1 − b1) and d�

2 = d2 + a2d1/(1 − b1). We now repeat
the procedure going down the cable. At each stage, we solve for �Vµ−1 in
terms of �Vµ finding

�Vµ−1 =
cµ−1�Vµ + d�

µ−1

1 − b�
µ−1

. (6.53)

where

b�
µ+1 = bµ+1 +

aµ+1cµ

1 − b�
µ

(6.54)

and

d�
µ+1 = dµ+1 +

aµ+1d�
µ

1 − b�
µ

. (6.55)

Finally, when we get to the end of the cable we can solve for

�VN =
d�

N

1 − b�
N

(6.56)

because cN = 0.

The procedure for computing all the �Vµ is the following. Define b�
1 = b1

and d�
1 = d1 and iterate equations 6.54 and 6.55 down the length of the cable

to define all the b� and d� parameters. Then, solve for �VN from equation
6.56 and iterate back up the cable solving for the �V’s using 6.53. This
process takes only 2N steps.
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We leave the extension of this method to the case of a branched cable as
an exercise for the reader. The general procedure is similar to the one we
presented for an non-branching cable. The equations are solved starting
at the ends of the branches and moving in toward their branching node,
then continuing on as for an non-branching cable, and finally reversing
direction and completing the solution moving in the opposite direction
along the cable and its branches.

6.7 Annotated Bibliography

Many of the references for chapter 5 apply to this chapter as well, includ-
ing Jack et al. (1975); Tuckwell (1988); Johnston & Wu (1995); Koch &
Segev (1998); Koch (1998); Hille (1992); Mascagni & Sherman (1998). Rall
(1977) describes cable theory, the equivalent cable model of dendritic trees,
and the 3/2 law. Marder & Calabrese, (1996) review neuromodulation.

Two freely available modeling packages for detailed neural models are in
wide use, Neuron (see Hines & Carnevale, 1997) and Genesis (see Bower &
Beeman, 1998). These are available at http://www.neuron.yale.edu and
http://genesis.bbb.caltech.edu/GENESIS/genesis.html.
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